1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * caam - Freescale FSL CAAM support for Public Key Cryptography
4 *
5 * Copyright 2016 Freescale Semiconductor, Inc.
6 * Copyright 2018-2019 NXP
7 *
8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
9 * all the desired key parameters, input and output pointers.
10 */
11 #include "compat.h"
12 #include "regs.h"
13 #include "intern.h"
14 #include "jr.h"
15 #include "error.h"
16 #include "desc_constr.h"
17 #include "sg_sw_sec4.h"
18 #include "caampkc.h"
19
20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB)
21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
22 SIZEOF_RSA_PRIV_F1_PDB)
23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \
24 SIZEOF_RSA_PRIV_F2_PDB)
25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \
26 SIZEOF_RSA_PRIV_F3_PDB)
27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */
28
29 /* buffer filled with zeros, used for padding */
30 static u8 *zero_buffer;
31
32 /*
33 * variable used to avoid double free of resources in case
34 * algorithm registration was unsuccessful
35 */
36 static bool init_done;
37
38 struct caam_akcipher_alg {
39 struct akcipher_alg akcipher;
40 bool registered;
41 };
42
rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req)43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
44 struct akcipher_request *req)
45 {
46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
47
48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);
50
51 if (edesc->sec4_sg_bytes)
52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
53 DMA_TO_DEVICE);
54 }
55
rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req)56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
57 struct akcipher_request *req)
58 {
59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
61 struct caam_rsa_key *key = &ctx->key;
62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
63
64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
66 }
67
rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req)68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
69 struct akcipher_request *req)
70 {
71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
73 struct caam_rsa_key *key = &ctx->key;
74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
75
76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
78 }
79
rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req)80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
81 struct akcipher_request *req)
82 {
83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
85 struct caam_rsa_key *key = &ctx->key;
86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
87 size_t p_sz = key->p_sz;
88 size_t q_sz = key->q_sz;
89
90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
95 }
96
rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req)97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
98 struct akcipher_request *req)
99 {
100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
102 struct caam_rsa_key *key = &ctx->key;
103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
104 size_t p_sz = key->p_sz;
105 size_t q_sz = key->q_sz;
106
107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
114 }
115
116 /* RSA Job Completion handler */
rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
118 {
119 struct akcipher_request *req = context;
120 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
121 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
122 struct rsa_edesc *edesc;
123 int ecode = 0;
124 bool has_bklog;
125
126 if (err)
127 ecode = caam_jr_strstatus(dev, err);
128
129 edesc = req_ctx->edesc;
130 has_bklog = edesc->bklog;
131
132 rsa_pub_unmap(dev, edesc, req);
133 rsa_io_unmap(dev, edesc, req);
134 kfree(edesc);
135
136 /*
137 * If no backlog flag, the completion of the request is done
138 * by CAAM, not crypto engine.
139 */
140 if (!has_bklog)
141 akcipher_request_complete(req, ecode);
142 else
143 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
144 }
145
rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, void *context)146 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err,
147 void *context)
148 {
149 struct akcipher_request *req = context;
150 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
151 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
152 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
153 struct caam_rsa_key *key = &ctx->key;
154 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
155 struct rsa_edesc *edesc;
156 int ecode = 0;
157 bool has_bklog;
158
159 if (err)
160 ecode = caam_jr_strstatus(dev, err);
161
162 edesc = req_ctx->edesc;
163 has_bklog = edesc->bklog;
164
165 switch (key->priv_form) {
166 case FORM1:
167 rsa_priv_f1_unmap(dev, edesc, req);
168 break;
169 case FORM2:
170 rsa_priv_f2_unmap(dev, edesc, req);
171 break;
172 case FORM3:
173 rsa_priv_f3_unmap(dev, edesc, req);
174 }
175
176 rsa_io_unmap(dev, edesc, req);
177 kfree(edesc);
178
179 /*
180 * If no backlog flag, the completion of the request is done
181 * by CAAM, not crypto engine.
182 */
183 if (!has_bklog)
184 akcipher_request_complete(req, ecode);
185 else
186 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
187 }
188
189 /**
190 * Count leading zeros, need it to strip, from a given scatterlist
191 *
192 * @sgl : scatterlist to count zeros from
193 * @nbytes: number of zeros, in bytes, to strip
194 * @flags : operation flags
195 */
caam_rsa_count_leading_zeros(struct scatterlist *sgl, unsigned int nbytes, unsigned int flags)196 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
197 unsigned int nbytes,
198 unsigned int flags)
199 {
200 struct sg_mapping_iter miter;
201 int lzeros, ents;
202 unsigned int len;
203 unsigned int tbytes = nbytes;
204 const u8 *buff;
205
206 ents = sg_nents_for_len(sgl, nbytes);
207 if (ents < 0)
208 return ents;
209
210 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);
211
212 lzeros = 0;
213 len = 0;
214 while (nbytes > 0) {
215 /* do not strip more than given bytes */
216 while (len && !*buff && lzeros < nbytes) {
217 lzeros++;
218 len--;
219 buff++;
220 }
221
222 if (len && *buff)
223 break;
224
225 if (!sg_miter_next(&miter))
226 break;
227
228 buff = miter.addr;
229 len = miter.length;
230
231 nbytes -= lzeros;
232 lzeros = 0;
233 }
234
235 miter.consumed = lzeros;
236 sg_miter_stop(&miter);
237 nbytes -= lzeros;
238
239 return tbytes - nbytes;
240 }
241
rsa_edesc_alloc(struct akcipher_request *req, size_t desclen)242 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
243 size_t desclen)
244 {
245 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
246 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
247 struct device *dev = ctx->dev;
248 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
249 struct caam_rsa_key *key = &ctx->key;
250 struct rsa_edesc *edesc;
251 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
252 GFP_KERNEL : GFP_ATOMIC;
253 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
254 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
255 int src_nents, dst_nents;
256 int mapped_src_nents, mapped_dst_nents;
257 unsigned int diff_size = 0;
258 int lzeros;
259
260 if (req->src_len > key->n_sz) {
261 /*
262 * strip leading zeros and
263 * return the number of zeros to skip
264 */
265 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
266 key->n_sz, sg_flags);
267 if (lzeros < 0)
268 return ERR_PTR(lzeros);
269
270 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
271 lzeros);
272 req_ctx->fixup_src_len = req->src_len - lzeros;
273 } else {
274 /*
275 * input src is less then n key modulus,
276 * so there will be zero padding
277 */
278 diff_size = key->n_sz - req->src_len;
279 req_ctx->fixup_src = req->src;
280 req_ctx->fixup_src_len = req->src_len;
281 }
282
283 src_nents = sg_nents_for_len(req_ctx->fixup_src,
284 req_ctx->fixup_src_len);
285 dst_nents = sg_nents_for_len(req->dst, req->dst_len);
286
287 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents,
288 DMA_TO_DEVICE);
289 if (unlikely(!mapped_src_nents)) {
290 dev_err(dev, "unable to map source\n");
291 return ERR_PTR(-ENOMEM);
292 }
293 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
294 DMA_FROM_DEVICE);
295 if (unlikely(!mapped_dst_nents)) {
296 dev_err(dev, "unable to map destination\n");
297 goto src_fail;
298 }
299
300 if (!diff_size && mapped_src_nents == 1)
301 sec4_sg_len = 0; /* no need for an input hw s/g table */
302 else
303 sec4_sg_len = mapped_src_nents + !!diff_size;
304 sec4_sg_index = sec4_sg_len;
305
306 if (mapped_dst_nents > 1)
307 sec4_sg_len += pad_sg_nents(mapped_dst_nents);
308 else
309 sec4_sg_len = pad_sg_nents(sec4_sg_len);
310
311 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
312
313 /* allocate space for base edesc, hw desc commands and link tables */
314 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
315 GFP_DMA | flags);
316 if (!edesc)
317 goto dst_fail;
318
319 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
320 if (diff_size)
321 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
322 0);
323
324 if (sec4_sg_index)
325 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
326 edesc->sec4_sg + !!diff_size, 0);
327
328 if (mapped_dst_nents > 1)
329 sg_to_sec4_sg_last(req->dst, req->dst_len,
330 edesc->sec4_sg + sec4_sg_index, 0);
331
332 /* Save nents for later use in Job Descriptor */
333 edesc->src_nents = src_nents;
334 edesc->dst_nents = dst_nents;
335
336 req_ctx->edesc = edesc;
337
338 if (!sec4_sg_bytes)
339 return edesc;
340
341 edesc->mapped_src_nents = mapped_src_nents;
342 edesc->mapped_dst_nents = mapped_dst_nents;
343
344 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
345 sec4_sg_bytes, DMA_TO_DEVICE);
346 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
347 dev_err(dev, "unable to map S/G table\n");
348 goto sec4_sg_fail;
349 }
350
351 edesc->sec4_sg_bytes = sec4_sg_bytes;
352
353 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
354 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
355 edesc->sec4_sg_bytes, 1);
356
357 return edesc;
358
359 sec4_sg_fail:
360 kfree(edesc);
361 dst_fail:
362 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
363 src_fail:
364 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
365 return ERR_PTR(-ENOMEM);
366 }
367
akcipher_do_one_req(struct crypto_engine *engine, void *areq)368 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq)
369 {
370 struct akcipher_request *req = container_of(areq,
371 struct akcipher_request,
372 base);
373 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
374 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
375 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
376 struct device *jrdev = ctx->dev;
377 u32 *desc = req_ctx->edesc->hw_desc;
378 int ret;
379
380 req_ctx->edesc->bklog = true;
381
382 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req);
383
384 if (ret != -EINPROGRESS) {
385 rsa_pub_unmap(jrdev, req_ctx->edesc, req);
386 rsa_io_unmap(jrdev, req_ctx->edesc, req);
387 kfree(req_ctx->edesc);
388 } else {
389 ret = 0;
390 }
391
392 return ret;
393 }
394
set_rsa_pub_pdb(struct akcipher_request *req, struct rsa_edesc *edesc)395 static int set_rsa_pub_pdb(struct akcipher_request *req,
396 struct rsa_edesc *edesc)
397 {
398 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
399 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
400 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
401 struct caam_rsa_key *key = &ctx->key;
402 struct device *dev = ctx->dev;
403 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
404 int sec4_sg_index = 0;
405
406 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
407 if (dma_mapping_error(dev, pdb->n_dma)) {
408 dev_err(dev, "Unable to map RSA modulus memory\n");
409 return -ENOMEM;
410 }
411
412 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
413 if (dma_mapping_error(dev, pdb->e_dma)) {
414 dev_err(dev, "Unable to map RSA public exponent memory\n");
415 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
416 return -ENOMEM;
417 }
418
419 if (edesc->mapped_src_nents > 1) {
420 pdb->sgf |= RSA_PDB_SGF_F;
421 pdb->f_dma = edesc->sec4_sg_dma;
422 sec4_sg_index += edesc->mapped_src_nents;
423 } else {
424 pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
425 }
426
427 if (edesc->mapped_dst_nents > 1) {
428 pdb->sgf |= RSA_PDB_SGF_G;
429 pdb->g_dma = edesc->sec4_sg_dma +
430 sec4_sg_index * sizeof(struct sec4_sg_entry);
431 } else {
432 pdb->g_dma = sg_dma_address(req->dst);
433 }
434
435 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
436 pdb->f_len = req_ctx->fixup_src_len;
437
438 return 0;
439 }
440
set_rsa_priv_f1_pdb(struct akcipher_request *req, struct rsa_edesc *edesc)441 static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
442 struct rsa_edesc *edesc)
443 {
444 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
445 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
446 struct caam_rsa_key *key = &ctx->key;
447 struct device *dev = ctx->dev;
448 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
449 int sec4_sg_index = 0;
450
451 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
452 if (dma_mapping_error(dev, pdb->n_dma)) {
453 dev_err(dev, "Unable to map modulus memory\n");
454 return -ENOMEM;
455 }
456
457 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
458 if (dma_mapping_error(dev, pdb->d_dma)) {
459 dev_err(dev, "Unable to map RSA private exponent memory\n");
460 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
461 return -ENOMEM;
462 }
463
464 if (edesc->mapped_src_nents > 1) {
465 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
466 pdb->g_dma = edesc->sec4_sg_dma;
467 sec4_sg_index += edesc->mapped_src_nents;
468
469 } else {
470 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
471
472 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
473 }
474
475 if (edesc->mapped_dst_nents > 1) {
476 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
477 pdb->f_dma = edesc->sec4_sg_dma +
478 sec4_sg_index * sizeof(struct sec4_sg_entry);
479 } else {
480 pdb->f_dma = sg_dma_address(req->dst);
481 }
482
483 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
484
485 return 0;
486 }
487
set_rsa_priv_f2_pdb(struct akcipher_request *req, struct rsa_edesc *edesc)488 static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
489 struct rsa_edesc *edesc)
490 {
491 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
492 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
493 struct caam_rsa_key *key = &ctx->key;
494 struct device *dev = ctx->dev;
495 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
496 int sec4_sg_index = 0;
497 size_t p_sz = key->p_sz;
498 size_t q_sz = key->q_sz;
499
500 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
501 if (dma_mapping_error(dev, pdb->d_dma)) {
502 dev_err(dev, "Unable to map RSA private exponent memory\n");
503 return -ENOMEM;
504 }
505
506 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
507 if (dma_mapping_error(dev, pdb->p_dma)) {
508 dev_err(dev, "Unable to map RSA prime factor p memory\n");
509 goto unmap_d;
510 }
511
512 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
513 if (dma_mapping_error(dev, pdb->q_dma)) {
514 dev_err(dev, "Unable to map RSA prime factor q memory\n");
515 goto unmap_p;
516 }
517
518 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
519 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
520 dev_err(dev, "Unable to map RSA tmp1 memory\n");
521 goto unmap_q;
522 }
523
524 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
525 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
526 dev_err(dev, "Unable to map RSA tmp2 memory\n");
527 goto unmap_tmp1;
528 }
529
530 if (edesc->mapped_src_nents > 1) {
531 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
532 pdb->g_dma = edesc->sec4_sg_dma;
533 sec4_sg_index += edesc->mapped_src_nents;
534 } else {
535 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
536
537 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
538 }
539
540 if (edesc->mapped_dst_nents > 1) {
541 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
542 pdb->f_dma = edesc->sec4_sg_dma +
543 sec4_sg_index * sizeof(struct sec4_sg_entry);
544 } else {
545 pdb->f_dma = sg_dma_address(req->dst);
546 }
547
548 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
549 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
550
551 return 0;
552
553 unmap_tmp1:
554 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
555 unmap_q:
556 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
557 unmap_p:
558 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
559 unmap_d:
560 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
561
562 return -ENOMEM;
563 }
564
set_rsa_priv_f3_pdb(struct akcipher_request *req, struct rsa_edesc *edesc)565 static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
566 struct rsa_edesc *edesc)
567 {
568 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
569 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
570 struct caam_rsa_key *key = &ctx->key;
571 struct device *dev = ctx->dev;
572 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
573 int sec4_sg_index = 0;
574 size_t p_sz = key->p_sz;
575 size_t q_sz = key->q_sz;
576
577 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
578 if (dma_mapping_error(dev, pdb->p_dma)) {
579 dev_err(dev, "Unable to map RSA prime factor p memory\n");
580 return -ENOMEM;
581 }
582
583 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
584 if (dma_mapping_error(dev, pdb->q_dma)) {
585 dev_err(dev, "Unable to map RSA prime factor q memory\n");
586 goto unmap_p;
587 }
588
589 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
590 if (dma_mapping_error(dev, pdb->dp_dma)) {
591 dev_err(dev, "Unable to map RSA exponent dp memory\n");
592 goto unmap_q;
593 }
594
595 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
596 if (dma_mapping_error(dev, pdb->dq_dma)) {
597 dev_err(dev, "Unable to map RSA exponent dq memory\n");
598 goto unmap_dp;
599 }
600
601 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
602 if (dma_mapping_error(dev, pdb->c_dma)) {
603 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
604 goto unmap_dq;
605 }
606
607 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
608 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
609 dev_err(dev, "Unable to map RSA tmp1 memory\n");
610 goto unmap_qinv;
611 }
612
613 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
614 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
615 dev_err(dev, "Unable to map RSA tmp2 memory\n");
616 goto unmap_tmp1;
617 }
618
619 if (edesc->mapped_src_nents > 1) {
620 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
621 pdb->g_dma = edesc->sec4_sg_dma;
622 sec4_sg_index += edesc->mapped_src_nents;
623 } else {
624 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
625
626 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
627 }
628
629 if (edesc->mapped_dst_nents > 1) {
630 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
631 pdb->f_dma = edesc->sec4_sg_dma +
632 sec4_sg_index * sizeof(struct sec4_sg_entry);
633 } else {
634 pdb->f_dma = sg_dma_address(req->dst);
635 }
636
637 pdb->sgf |= key->n_sz;
638 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
639
640 return 0;
641
642 unmap_tmp1:
643 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
644 unmap_qinv:
645 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
646 unmap_dq:
647 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
648 unmap_dp:
649 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
650 unmap_q:
651 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
652 unmap_p:
653 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
654
655 return -ENOMEM;
656 }
657
akcipher_enqueue_req(struct device *jrdev, void (*cbk)(struct device *jrdev, u32 *desc, u32 err, void *context), struct akcipher_request *req)658 static int akcipher_enqueue_req(struct device *jrdev,
659 void (*cbk)(struct device *jrdev, u32 *desc,
660 u32 err, void *context),
661 struct akcipher_request *req)
662 {
663 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev);
664 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
665 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
666 struct caam_rsa_key *key = &ctx->key;
667 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
668 struct rsa_edesc *edesc = req_ctx->edesc;
669 u32 *desc = edesc->hw_desc;
670 int ret;
671
672 req_ctx->akcipher_op_done = cbk;
673 /*
674 * Only the backlog request are sent to crypto-engine since the others
675 * can be handled by CAAM, if free, especially since JR has up to 1024
676 * entries (more than the 10 entries from crypto-engine).
677 */
678 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
679 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine,
680 req);
681 else
682 ret = caam_jr_enqueue(jrdev, desc, cbk, req);
683
684 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) {
685 switch (key->priv_form) {
686 case FORM1:
687 rsa_priv_f1_unmap(jrdev, edesc, req);
688 break;
689 case FORM2:
690 rsa_priv_f2_unmap(jrdev, edesc, req);
691 break;
692 case FORM3:
693 rsa_priv_f3_unmap(jrdev, edesc, req);
694 break;
695 default:
696 rsa_pub_unmap(jrdev, edesc, req);
697 }
698 rsa_io_unmap(jrdev, edesc, req);
699 kfree(edesc);
700 }
701
702 return ret;
703 }
704
caam_rsa_enc(struct akcipher_request *req)705 static int caam_rsa_enc(struct akcipher_request *req)
706 {
707 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
708 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
709 struct caam_rsa_key *key = &ctx->key;
710 struct device *jrdev = ctx->dev;
711 struct rsa_edesc *edesc;
712 int ret;
713
714 if (unlikely(!key->n || !key->e))
715 return -EINVAL;
716
717 if (req->dst_len < key->n_sz) {
718 req->dst_len = key->n_sz;
719 dev_err(jrdev, "Output buffer length less than parameter n\n");
720 return -EOVERFLOW;
721 }
722
723 /* Allocate extended descriptor */
724 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
725 if (IS_ERR(edesc))
726 return PTR_ERR(edesc);
727
728 /* Set RSA Encrypt Protocol Data Block */
729 ret = set_rsa_pub_pdb(req, edesc);
730 if (ret)
731 goto init_fail;
732
733 /* Initialize Job Descriptor */
734 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
735
736 return akcipher_enqueue_req(jrdev, rsa_pub_done, req);
737
738 init_fail:
739 rsa_io_unmap(jrdev, edesc, req);
740 kfree(edesc);
741 return ret;
742 }
743
caam_rsa_dec_priv_f1(struct akcipher_request *req)744 static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
745 {
746 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
747 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
748 struct device *jrdev = ctx->dev;
749 struct rsa_edesc *edesc;
750 int ret;
751
752 /* Allocate extended descriptor */
753 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
754 if (IS_ERR(edesc))
755 return PTR_ERR(edesc);
756
757 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
758 ret = set_rsa_priv_f1_pdb(req, edesc);
759 if (ret)
760 goto init_fail;
761
762 /* Initialize Job Descriptor */
763 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
764
765 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
766
767 init_fail:
768 rsa_io_unmap(jrdev, edesc, req);
769 kfree(edesc);
770 return ret;
771 }
772
caam_rsa_dec_priv_f2(struct akcipher_request *req)773 static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
774 {
775 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
776 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
777 struct device *jrdev = ctx->dev;
778 struct rsa_edesc *edesc;
779 int ret;
780
781 /* Allocate extended descriptor */
782 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
783 if (IS_ERR(edesc))
784 return PTR_ERR(edesc);
785
786 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
787 ret = set_rsa_priv_f2_pdb(req, edesc);
788 if (ret)
789 goto init_fail;
790
791 /* Initialize Job Descriptor */
792 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
793
794 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
795
796 init_fail:
797 rsa_io_unmap(jrdev, edesc, req);
798 kfree(edesc);
799 return ret;
800 }
801
caam_rsa_dec_priv_f3(struct akcipher_request *req)802 static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
803 {
804 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
805 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
806 struct device *jrdev = ctx->dev;
807 struct rsa_edesc *edesc;
808 int ret;
809
810 /* Allocate extended descriptor */
811 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
812 if (IS_ERR(edesc))
813 return PTR_ERR(edesc);
814
815 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
816 ret = set_rsa_priv_f3_pdb(req, edesc);
817 if (ret)
818 goto init_fail;
819
820 /* Initialize Job Descriptor */
821 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
822
823 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
824
825 init_fail:
826 rsa_io_unmap(jrdev, edesc, req);
827 kfree(edesc);
828 return ret;
829 }
830
caam_rsa_dec(struct akcipher_request *req)831 static int caam_rsa_dec(struct akcipher_request *req)
832 {
833 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
834 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
835 struct caam_rsa_key *key = &ctx->key;
836 int ret;
837
838 if (unlikely(!key->n || !key->d))
839 return -EINVAL;
840
841 if (req->dst_len < key->n_sz) {
842 req->dst_len = key->n_sz;
843 dev_err(ctx->dev, "Output buffer length less than parameter n\n");
844 return -EOVERFLOW;
845 }
846
847 if (key->priv_form == FORM3)
848 ret = caam_rsa_dec_priv_f3(req);
849 else if (key->priv_form == FORM2)
850 ret = caam_rsa_dec_priv_f2(req);
851 else
852 ret = caam_rsa_dec_priv_f1(req);
853
854 return ret;
855 }
856
caam_rsa_free_key(struct caam_rsa_key *key)857 static void caam_rsa_free_key(struct caam_rsa_key *key)
858 {
859 kfree_sensitive(key->d);
860 kfree_sensitive(key->p);
861 kfree_sensitive(key->q);
862 kfree_sensitive(key->dp);
863 kfree_sensitive(key->dq);
864 kfree_sensitive(key->qinv);
865 kfree_sensitive(key->tmp1);
866 kfree_sensitive(key->tmp2);
867 kfree(key->e);
868 kfree(key->n);
869 memset(key, 0, sizeof(*key));
870 }
871
caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)872 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
873 {
874 while (!**ptr && *nbytes) {
875 (*ptr)++;
876 (*nbytes)--;
877 }
878 }
879
880 /**
881 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
882 * dP, dQ and qInv could decode to less than corresponding p, q length, as the
883 * BER-encoding requires that the minimum number of bytes be used to encode the
884 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
885 * length.
886 *
887 * @ptr : pointer to {dP, dQ, qInv} CRT member
888 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
889 * @dstlen: length in bytes of corresponding p or q prime factor
890 */
caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)891 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
892 {
893 u8 *dst;
894
895 caam_rsa_drop_leading_zeros(&ptr, &nbytes);
896 if (!nbytes)
897 return NULL;
898
899 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
900 if (!dst)
901 return NULL;
902
903 memcpy(dst + (dstlen - nbytes), ptr, nbytes);
904
905 return dst;
906 }
907
908 /**
909 * caam_read_raw_data - Read a raw byte stream as a positive integer.
910 * The function skips buffer's leading zeros, copies the remained data
911 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
912 * the address of the new buffer.
913 *
914 * @buf : The data to read
915 * @nbytes: The amount of data to read
916 */
caam_read_raw_data(const u8 *buf, size_t *nbytes)917 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
918 {
919
920 caam_rsa_drop_leading_zeros(&buf, nbytes);
921 if (!*nbytes)
922 return NULL;
923
924 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL);
925 }
926
caam_rsa_check_key_length(unsigned int len)927 static int caam_rsa_check_key_length(unsigned int len)
928 {
929 if (len > 4096)
930 return -EINVAL;
931 return 0;
932 }
933
caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen)934 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
935 unsigned int keylen)
936 {
937 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
938 struct rsa_key raw_key = {NULL};
939 struct caam_rsa_key *rsa_key = &ctx->key;
940 int ret;
941
942 /* Free the old RSA key if any */
943 caam_rsa_free_key(rsa_key);
944
945 ret = rsa_parse_pub_key(&raw_key, key, keylen);
946 if (ret)
947 return ret;
948
949 /* Copy key in DMA zone */
950 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
951 if (!rsa_key->e)
952 goto err;
953
954 /*
955 * Skip leading zeros and copy the positive integer to a buffer
956 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
957 * expects a positive integer for the RSA modulus and uses its length as
958 * decryption output length.
959 */
960 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
961 if (!rsa_key->n)
962 goto err;
963
964 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
965 caam_rsa_free_key(rsa_key);
966 return -EINVAL;
967 }
968
969 rsa_key->e_sz = raw_key.e_sz;
970 rsa_key->n_sz = raw_key.n_sz;
971
972 return 0;
973 err:
974 caam_rsa_free_key(rsa_key);
975 return -ENOMEM;
976 }
977
caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, struct rsa_key *raw_key)978 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
979 struct rsa_key *raw_key)
980 {
981 struct caam_rsa_key *rsa_key = &ctx->key;
982 size_t p_sz = raw_key->p_sz;
983 size_t q_sz = raw_key->q_sz;
984
985 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
986 if (!rsa_key->p)
987 return;
988 rsa_key->p_sz = p_sz;
989
990 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
991 if (!rsa_key->q)
992 goto free_p;
993 rsa_key->q_sz = q_sz;
994
995 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
996 if (!rsa_key->tmp1)
997 goto free_q;
998
999 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
1000 if (!rsa_key->tmp2)
1001 goto free_tmp1;
1002
1003 rsa_key->priv_form = FORM2;
1004
1005 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
1006 if (!rsa_key->dp)
1007 goto free_tmp2;
1008
1009 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
1010 if (!rsa_key->dq)
1011 goto free_dp;
1012
1013 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
1014 q_sz);
1015 if (!rsa_key->qinv)
1016 goto free_dq;
1017
1018 rsa_key->priv_form = FORM3;
1019
1020 return;
1021
1022 free_dq:
1023 kfree_sensitive(rsa_key->dq);
1024 free_dp:
1025 kfree_sensitive(rsa_key->dp);
1026 free_tmp2:
1027 kfree_sensitive(rsa_key->tmp2);
1028 free_tmp1:
1029 kfree_sensitive(rsa_key->tmp1);
1030 free_q:
1031 kfree_sensitive(rsa_key->q);
1032 free_p:
1033 kfree_sensitive(rsa_key->p);
1034 }
1035
caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen)1036 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
1037 unsigned int keylen)
1038 {
1039 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1040 struct rsa_key raw_key = {NULL};
1041 struct caam_rsa_key *rsa_key = &ctx->key;
1042 int ret;
1043
1044 /* Free the old RSA key if any */
1045 caam_rsa_free_key(rsa_key);
1046
1047 ret = rsa_parse_priv_key(&raw_key, key, keylen);
1048 if (ret)
1049 return ret;
1050
1051 /* Copy key in DMA zone */
1052 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL);
1053 if (!rsa_key->d)
1054 goto err;
1055
1056 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
1057 if (!rsa_key->e)
1058 goto err;
1059
1060 /*
1061 * Skip leading zeros and copy the positive integer to a buffer
1062 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
1063 * expects a positive integer for the RSA modulus and uses its length as
1064 * decryption output length.
1065 */
1066 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
1067 if (!rsa_key->n)
1068 goto err;
1069
1070 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
1071 caam_rsa_free_key(rsa_key);
1072 return -EINVAL;
1073 }
1074
1075 rsa_key->d_sz = raw_key.d_sz;
1076 rsa_key->e_sz = raw_key.e_sz;
1077 rsa_key->n_sz = raw_key.n_sz;
1078
1079 caam_rsa_set_priv_key_form(ctx, &raw_key);
1080
1081 return 0;
1082
1083 err:
1084 caam_rsa_free_key(rsa_key);
1085 return -ENOMEM;
1086 }
1087
caam_rsa_max_size(struct crypto_akcipher *tfm)1088 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
1089 {
1090 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1091
1092 return ctx->key.n_sz;
1093 }
1094
1095 /* Per session pkc's driver context creation function */
caam_rsa_init_tfm(struct crypto_akcipher *tfm)1096 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
1097 {
1098 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1099
1100 ctx->dev = caam_jr_alloc();
1101
1102 if (IS_ERR(ctx->dev)) {
1103 pr_err("Job Ring Device allocation for transform failed\n");
1104 return PTR_ERR(ctx->dev);
1105 }
1106
1107 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
1108 CAAM_RSA_MAX_INPUT_SIZE - 1,
1109 DMA_TO_DEVICE);
1110 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
1111 dev_err(ctx->dev, "unable to map padding\n");
1112 caam_jr_free(ctx->dev);
1113 return -ENOMEM;
1114 }
1115
1116 ctx->enginectx.op.do_one_request = akcipher_do_one_req;
1117
1118 return 0;
1119 }
1120
1121 /* Per session pkc's driver context cleanup function */
caam_rsa_exit_tfm(struct crypto_akcipher *tfm)1122 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
1123 {
1124 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1125 struct caam_rsa_key *key = &ctx->key;
1126
1127 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
1128 1, DMA_TO_DEVICE);
1129 caam_rsa_free_key(key);
1130 caam_jr_free(ctx->dev);
1131 }
1132
1133 static struct caam_akcipher_alg caam_rsa = {
1134 .akcipher = {
1135 .encrypt = caam_rsa_enc,
1136 .decrypt = caam_rsa_dec,
1137 .set_pub_key = caam_rsa_set_pub_key,
1138 .set_priv_key = caam_rsa_set_priv_key,
1139 .max_size = caam_rsa_max_size,
1140 .init = caam_rsa_init_tfm,
1141 .exit = caam_rsa_exit_tfm,
1142 .reqsize = sizeof(struct caam_rsa_req_ctx),
1143 .base = {
1144 .cra_name = "rsa",
1145 .cra_driver_name = "rsa-caam",
1146 .cra_priority = 3000,
1147 .cra_module = THIS_MODULE,
1148 .cra_ctxsize = sizeof(struct caam_rsa_ctx),
1149 },
1150 }
1151 };
1152
1153 /* Public Key Cryptography module initialization handler */
caam_pkc_init(struct device *ctrldev)1154 int caam_pkc_init(struct device *ctrldev)
1155 {
1156 struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
1157 u32 pk_inst, pkha;
1158 int err;
1159 init_done = false;
1160
1161 /* Determine public key hardware accelerator presence. */
1162 if (priv->era < 10) {
1163 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
1164 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
1165 } else {
1166 pkha = rd_reg32(&priv->ctrl->vreg.pkha);
1167 pk_inst = pkha & CHA_VER_NUM_MASK;
1168
1169 /*
1170 * Newer CAAMs support partially disabled functionality. If this is the
1171 * case, the number is non-zero, but this bit is set to indicate that
1172 * no encryption or decryption is supported. Only signing and verifying
1173 * is supported.
1174 */
1175 if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT)
1176 pk_inst = 0;
1177 }
1178
1179 /* Do not register algorithms if PKHA is not present. */
1180 if (!pk_inst)
1181 return 0;
1182
1183 /* allocate zero buffer, used for padding input */
1184 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA |
1185 GFP_KERNEL);
1186 if (!zero_buffer)
1187 return -ENOMEM;
1188
1189 err = crypto_register_akcipher(&caam_rsa.akcipher);
1190
1191 if (err) {
1192 kfree(zero_buffer);
1193 dev_warn(ctrldev, "%s alg registration failed\n",
1194 caam_rsa.akcipher.base.cra_driver_name);
1195 } else {
1196 init_done = true;
1197 caam_rsa.registered = true;
1198 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
1199 }
1200
1201 return err;
1202 }
1203
caam_pkc_exit(void)1204 void caam_pkc_exit(void)
1205 {
1206 if (!init_done)
1207 return;
1208
1209 if (caam_rsa.registered)
1210 crypto_unregister_akcipher(&caam_rsa.akcipher);
1211
1212 kfree(zero_buffer);
1213 }
1214