1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)65 bool cpufreq_supports_freq_invariance(void)
66 {
67 	return static_branch_likely(&cpufreq_freq_invariance);
68 }
69 
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72 
has_target(void)73 static inline bool has_target(void)
74 {
75 	return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77 
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 			      struct cpufreq_governor *new_gov,
85 			      unsigned int new_pol);
86 
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96 
97 static int off __read_mostly;
cpufreq_disabled(void)98 static int cpufreq_disabled(void)
99 {
100 	return off;
101 }
disable_cpufreq(void)102 void disable_cpufreq(void)
103 {
104 	off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107 
have_governor_per_policy(void)108 bool have_governor_per_policy(void)
109 {
110 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113 
114 static struct kobject *cpufreq_global_kobject;
115 
get_governor_parent_kobj(struct cpufreq_policy *policy)116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 	if (have_governor_per_policy())
119 		return &policy->kobj;
120 	else
121 		return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124 
get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 	struct kernel_cpustat kcpustat;
128 	u64 cur_wall_time;
129 	u64 idle_time;
130 	u64 busy_time;
131 
132 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133 
134 	kcpustat_cpu_fetch(&kcpustat, cpu);
135 
136 	busy_time = kcpustat.cpustat[CPUTIME_USER];
137 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
142 
143 	idle_time = cur_wall_time - busy_time;
144 	if (wall)
145 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146 
147 	return div_u64(idle_time, NSEC_PER_USEC);
148 }
149 
get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153 
154 	if (idle_time == -1ULL)
155 		return get_cpu_idle_time_jiffy(cpu, wall);
156 	else if (!io_busy)
157 		idle_time += get_cpu_iowait_time_us(cpu, wall);
158 
159 	return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
cpufreq_generic_init(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table, unsigned int transition_latency)170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
cpufreq_cpu_get(unsigned int cpu)218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
cpufreq_cpu_put(struct cpufreq_policy *policy)246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
cpufreq_cpu_release(struct cpufreq_policy *policy)256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
cpufreq_cpu_acquire(unsigned int cpu)280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
cpufreq_notify_transition(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, unsigned int state)343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
cpufreq_freq_transition_begin(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
cpufreq_freq_transition_end(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	arch_set_freq_scale(policy->related_cpus,
450 			    policy->cur,
451 			    policy->cpuinfo.max_freq);
452 
453 	spin_lock(&policy->transition_lock);
454 	policy->transition_ongoing = false;
455 	policy->transition_task = NULL;
456 	spin_unlock(&policy->transition_lock);
457 
458 	wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461 
462 /*
463  * Fast frequency switching status count.  Positive means "enabled", negative
464  * means "disabled" and 0 means "not decided yet".
465  */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468 
cpufreq_list_transition_notifiers(void)469 static void cpufreq_list_transition_notifiers(void)
470 {
471 	struct notifier_block *nb;
472 
473 	pr_info("Registered transition notifiers:\n");
474 
475 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
476 
477 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478 		pr_info("%pS\n", nb->notifier_call);
479 
480 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482 
483 /**
484  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485  * @policy: cpufreq policy to enable fast frequency switching for.
486  *
487  * Try to enable fast frequency switching for @policy.
488  *
489  * The attempt will fail if there is at least one transition notifier registered
490  * at this point, as fast frequency switching is quite fundamentally at odds
491  * with transition notifiers.  Thus if successful, it will make registration of
492  * transition notifiers fail going forward.
493  */
cpufreq_enable_fast_switch(struct cpufreq_policy *policy)494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496 	lockdep_assert_held(&policy->rwsem);
497 
498 	if (!policy->fast_switch_possible)
499 		return;
500 
501 	mutex_lock(&cpufreq_fast_switch_lock);
502 	if (cpufreq_fast_switch_count >= 0) {
503 		cpufreq_fast_switch_count++;
504 		policy->fast_switch_enabled = true;
505 	} else {
506 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
507 			policy->cpu);
508 		cpufreq_list_transition_notifiers();
509 	}
510 	mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513 
514 /**
515  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516  * @policy: cpufreq policy to disable fast frequency switching for.
517  */
cpufreq_disable_fast_switch(struct cpufreq_policy *policy)518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520 	mutex_lock(&cpufreq_fast_switch_lock);
521 	if (policy->fast_switch_enabled) {
522 		policy->fast_switch_enabled = false;
523 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524 			cpufreq_fast_switch_count--;
525 	}
526 	mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529 
530 /**
531  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
532  * one.
533  * @policy: associated policy to interrogate
534  * @target_freq: target frequency to resolve.
535  *
536  * The target to driver frequency mapping is cached in the policy.
537  *
538  * Return: Lowest driver-supported frequency greater than or equal to the
539  * given target_freq, subject to policy (min/max) and driver limitations.
540  */
cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, unsigned int target_freq)541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 					 unsigned int target_freq)
543 {
544 	target_freq = clamp_val(target_freq, policy->min, policy->max);
545 	policy->cached_target_freq = target_freq;
546 
547 	if (cpufreq_driver->target_index) {
548 		unsigned int idx;
549 
550 		idx = cpufreq_frequency_table_target(policy, target_freq,
551 						     CPUFREQ_RELATION_L);
552 		policy->cached_resolved_idx = idx;
553 		return policy->freq_table[idx].frequency;
554 	}
555 
556 	if (cpufreq_driver->resolve_freq)
557 		return cpufreq_driver->resolve_freq(policy, target_freq);
558 
559 	return target_freq;
560 }
561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562 
cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564 {
565 	unsigned int latency;
566 
567 	if (policy->transition_delay_us)
568 		return policy->transition_delay_us;
569 
570 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 	if (latency) {
572 		/*
573 		 * For platforms that can change the frequency very fast (< 10
574 		 * us), the above formula gives a decent transition delay. But
575 		 * for platforms where transition_latency is in milliseconds, it
576 		 * ends up giving unrealistic values.
577 		 *
578 		 * Cap the default transition delay to 10 ms, which seems to be
579 		 * a reasonable amount of time after which we should reevaluate
580 		 * the frequency.
581 		 */
582 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 	}
584 
585 	return LATENCY_MULTIPLIER;
586 }
587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588 
589 /*********************************************************************
590  *                          SYSFS INTERFACE                          *
591  *********************************************************************/
show_boost(struct kobject *kobj, struct kobj_attribute *attr, char *buf)592 static ssize_t show_boost(struct kobject *kobj,
593 			  struct kobj_attribute *attr, char *buf)
594 {
595 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596 }
597 
store_boost(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count)598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 			   const char *buf, size_t count)
600 {
601 	int ret, enable;
602 
603 	ret = sscanf(buf, "%d", &enable);
604 	if (ret != 1 || enable < 0 || enable > 1)
605 		return -EINVAL;
606 
607 	if (cpufreq_boost_trigger_state(enable)) {
608 		pr_err("%s: Cannot %s BOOST!\n",
609 		       __func__, enable ? "enable" : "disable");
610 		return -EINVAL;
611 	}
612 
613 	pr_debug("%s: cpufreq BOOST %s\n",
614 		 __func__, enable ? "enabled" : "disabled");
615 
616 	return count;
617 }
618 define_one_global_rw(boost);
619 
find_governor(const char *str_governor)620 static struct cpufreq_governor *find_governor(const char *str_governor)
621 {
622 	struct cpufreq_governor *t;
623 
624 	for_each_governor(t)
625 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 			return t;
627 
628 	return NULL;
629 }
630 
get_governor(const char *str_governor)631 static struct cpufreq_governor *get_governor(const char *str_governor)
632 {
633 	struct cpufreq_governor *t;
634 
635 	mutex_lock(&cpufreq_governor_mutex);
636 	t = find_governor(str_governor);
637 	if (!t)
638 		goto unlock;
639 
640 	if (!try_module_get(t->owner))
641 		t = NULL;
642 
643 unlock:
644 	mutex_unlock(&cpufreq_governor_mutex);
645 
646 	return t;
647 }
648 
cpufreq_parse_policy(char *str_governor)649 static unsigned int cpufreq_parse_policy(char *str_governor)
650 {
651 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 		return CPUFREQ_POLICY_PERFORMANCE;
653 
654 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 		return CPUFREQ_POLICY_POWERSAVE;
656 
657 	return CPUFREQ_POLICY_UNKNOWN;
658 }
659 
660 /**
661  * cpufreq_parse_governor - parse a governor string only for has_target()
662  * @str_governor: Governor name.
663  */
cpufreq_parse_governor(char *str_governor)664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665 {
666 	struct cpufreq_governor *t;
667 
668 	t = get_governor(str_governor);
669 	if (t)
670 		return t;
671 
672 	if (request_module("cpufreq_%s", str_governor))
673 		return NULL;
674 
675 	return get_governor(str_governor);
676 }
677 
678 /*
679  * cpufreq_per_cpu_attr_read() / show_##file_name() -
680  * print out cpufreq information
681  *
682  * Write out information from cpufreq_driver->policy[cpu]; object must be
683  * "unsigned int".
684  */
685 
686 #define show_one(file_name, object)			\
687 static ssize_t show_##file_name				\
688 (struct cpufreq_policy *policy, char *buf)		\
689 {							\
690 	return sprintf(buf, "%u\n", policy->object);	\
691 }
692 
693 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696 show_one(scaling_min_freq, min);
697 show_one(scaling_max_freq, max);
698 
arch_freq_get_on_cpu(int cpu)699 __weak unsigned int arch_freq_get_on_cpu(int cpu)
700 {
701 	return 0;
702 }
703 
show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705 {
706 	ssize_t ret;
707 	unsigned int freq;
708 
709 	freq = arch_freq_get_on_cpu(policy->cpu);
710 	if (freq)
711 		ret = sprintf(buf, "%u\n", freq);
712 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
713 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
714 	else
715 		ret = sprintf(buf, "%u\n", policy->cur);
716 	return ret;
717 }
718 
719 /*
720  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
721  */
722 #define store_one(file_name, object)			\
723 static ssize_t store_##file_name					\
724 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
725 {									\
726 	unsigned long val;						\
727 	int ret;							\
728 									\
729 	ret = sscanf(buf, "%lu", &val);					\
730 	if (ret != 1)							\
731 		return -EINVAL;						\
732 									\
733 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
734 	return ret >= 0 ? count : ret;					\
735 }
736 
737 store_one(scaling_min_freq, min);
738 store_one(scaling_max_freq, max);
739 
740 /*
741  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
742  */
show_cpuinfo_cur_freq(struct cpufreq_policy *policy, char *buf)743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
744 					char *buf)
745 {
746 	unsigned int cur_freq = __cpufreq_get(policy);
747 
748 	if (cur_freq)
749 		return sprintf(buf, "%u\n", cur_freq);
750 
751 	return sprintf(buf, "<unknown>\n");
752 }
753 
754 /*
755  * show_scaling_governor - show the current policy for the specified CPU
756  */
show_scaling_governor(struct cpufreq_policy *policy, char *buf)757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
758 {
759 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
760 		return sprintf(buf, "powersave\n");
761 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
762 		return sprintf(buf, "performance\n");
763 	else if (policy->governor)
764 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
765 				policy->governor->name);
766 	return -EINVAL;
767 }
768 
769 /*
770  * store_scaling_governor - store policy for the specified CPU
771  */
store_scaling_governor(struct cpufreq_policy *policy, const char *buf, size_t count)772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
773 					const char *buf, size_t count)
774 {
775 	char str_governor[16];
776 	int ret;
777 
778 	ret = sscanf(buf, "%15s", str_governor);
779 	if (ret != 1)
780 		return -EINVAL;
781 
782 	if (cpufreq_driver->setpolicy) {
783 		unsigned int new_pol;
784 
785 		new_pol = cpufreq_parse_policy(str_governor);
786 		if (!new_pol)
787 			return -EINVAL;
788 
789 		ret = cpufreq_set_policy(policy, NULL, new_pol);
790 	} else {
791 		struct cpufreq_governor *new_gov;
792 
793 		new_gov = cpufreq_parse_governor(str_governor);
794 		if (!new_gov)
795 			return -EINVAL;
796 
797 		ret = cpufreq_set_policy(policy, new_gov,
798 					 CPUFREQ_POLICY_UNKNOWN);
799 
800 		module_put(new_gov->owner);
801 	}
802 
803 	return ret ? ret : count;
804 }
805 
806 /*
807  * show_scaling_driver - show the cpufreq driver currently loaded
808  */
show_scaling_driver(struct cpufreq_policy *policy, char *buf)809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
810 {
811 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
812 }
813 
814 /*
815  * show_scaling_available_governors - show the available CPUfreq governors
816  */
show_scaling_available_governors(struct cpufreq_policy *policy, char *buf)817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
818 						char *buf)
819 {
820 	ssize_t i = 0;
821 	struct cpufreq_governor *t;
822 
823 	if (!has_target()) {
824 		i += sprintf(buf, "performance powersave");
825 		goto out;
826 	}
827 
828 	mutex_lock(&cpufreq_governor_mutex);
829 	for_each_governor(t) {
830 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
831 		    - (CPUFREQ_NAME_LEN + 2)))
832 			break;
833 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
834 	}
835 	mutex_unlock(&cpufreq_governor_mutex);
836 out:
837 	i += sprintf(&buf[i], "\n");
838 	return i;
839 }
840 
cpufreq_show_cpus(const struct cpumask *mask, char *buf)841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
842 {
843 	ssize_t i = 0;
844 	unsigned int cpu;
845 
846 	for_each_cpu(cpu, mask) {
847 		if (i)
848 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
849 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
850 		if (i >= (PAGE_SIZE - 5))
851 			break;
852 	}
853 	i += sprintf(&buf[i], "\n");
854 	return i;
855 }
856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
857 
858 /*
859  * show_related_cpus - show the CPUs affected by each transition even if
860  * hw coordination is in use
861  */
show_related_cpus(struct cpufreq_policy *policy, char *buf)862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
863 {
864 	return cpufreq_show_cpus(policy->related_cpus, buf);
865 }
866 
867 /*
868  * show_affected_cpus - show the CPUs affected by each transition
869  */
show_affected_cpus(struct cpufreq_policy *policy, char *buf)870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
871 {
872 	return cpufreq_show_cpus(policy->cpus, buf);
873 }
874 
store_scaling_setspeed(struct cpufreq_policy *policy, const char *buf, size_t count)875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
876 					const char *buf, size_t count)
877 {
878 	unsigned int freq = 0;
879 	unsigned int ret;
880 
881 	if (!policy->governor || !policy->governor->store_setspeed)
882 		return -EINVAL;
883 
884 	ret = sscanf(buf, "%u", &freq);
885 	if (ret != 1)
886 		return -EINVAL;
887 
888 	policy->governor->store_setspeed(policy, freq);
889 
890 	return count;
891 }
892 
show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
894 {
895 	if (!policy->governor || !policy->governor->show_setspeed)
896 		return sprintf(buf, "<unsupported>\n");
897 
898 	return policy->governor->show_setspeed(policy, buf);
899 }
900 
901 /*
902  * show_bios_limit - show the current cpufreq HW/BIOS limitation
903  */
show_bios_limit(struct cpufreq_policy *policy, char *buf)904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
905 {
906 	unsigned int limit;
907 	int ret;
908 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
909 	if (!ret)
910 		return sprintf(buf, "%u\n", limit);
911 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
912 }
913 
914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
915 cpufreq_freq_attr_ro(cpuinfo_min_freq);
916 cpufreq_freq_attr_ro(cpuinfo_max_freq);
917 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
918 cpufreq_freq_attr_ro(scaling_available_governors);
919 cpufreq_freq_attr_ro(scaling_driver);
920 cpufreq_freq_attr_ro(scaling_cur_freq);
921 cpufreq_freq_attr_ro(bios_limit);
922 cpufreq_freq_attr_ro(related_cpus);
923 cpufreq_freq_attr_ro(affected_cpus);
924 cpufreq_freq_attr_rw(scaling_min_freq);
925 cpufreq_freq_attr_rw(scaling_max_freq);
926 cpufreq_freq_attr_rw(scaling_governor);
927 cpufreq_freq_attr_rw(scaling_setspeed);
928 
929 static struct attribute *default_attrs[] = {
930 	&cpuinfo_min_freq.attr,
931 	&cpuinfo_max_freq.attr,
932 	&cpuinfo_transition_latency.attr,
933 	&scaling_min_freq.attr,
934 	&scaling_max_freq.attr,
935 	&affected_cpus.attr,
936 	&related_cpus.attr,
937 	&scaling_governor.attr,
938 	&scaling_driver.attr,
939 	&scaling_available_governors.attr,
940 	&scaling_setspeed.attr,
941 	NULL
942 };
943 
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946 
show(struct kobject *kobj, struct attribute *attr, char *buf)947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949 	struct cpufreq_policy *policy = to_policy(kobj);
950 	struct freq_attr *fattr = to_attr(attr);
951 	ssize_t ret;
952 
953 	if (!fattr->show)
954 		return -EIO;
955 
956 	down_read(&policy->rwsem);
957 	ret = fattr->show(policy, buf);
958 	up_read(&policy->rwsem);
959 
960 	return ret;
961 }
962 
store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)963 static ssize_t store(struct kobject *kobj, struct attribute *attr,
964 		     const char *buf, size_t count)
965 {
966 	struct cpufreq_policy *policy = to_policy(kobj);
967 	struct freq_attr *fattr = to_attr(attr);
968 	ssize_t ret = -EINVAL;
969 
970 	if (!fattr->store)
971 		return -EIO;
972 
973 	/*
974 	 * cpus_read_trylock() is used here to work around a circular lock
975 	 * dependency problem with respect to the cpufreq_register_driver().
976 	 */
977 	if (!cpus_read_trylock())
978 		return -EBUSY;
979 
980 	if (cpu_online(policy->cpu)) {
981 		down_write(&policy->rwsem);
982 		ret = fattr->store(policy, buf, count);
983 		up_write(&policy->rwsem);
984 	}
985 
986 	cpus_read_unlock();
987 
988 	return ret;
989 }
990 
cpufreq_sysfs_release(struct kobject *kobj)991 static void cpufreq_sysfs_release(struct kobject *kobj)
992 {
993 	struct cpufreq_policy *policy = to_policy(kobj);
994 	pr_debug("last reference is dropped\n");
995 	complete(&policy->kobj_unregister);
996 }
997 
998 static const struct sysfs_ops sysfs_ops = {
999 	.show	= show,
1000 	.store	= store,
1001 };
1002 
1003 static struct kobj_type ktype_cpufreq = {
1004 	.sysfs_ops	= &sysfs_ops,
1005 	.default_attrs	= default_attrs,
1006 	.release	= cpufreq_sysfs_release,
1007 };
1008 
add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, struct device *dev)1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1010 				struct device *dev)
1011 {
1012 	if (unlikely(!dev))
1013 		return;
1014 
1015 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1016 		return;
1017 
1018 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1019 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1020 		dev_err(dev, "cpufreq symlink creation failed\n");
1021 }
1022 
remove_cpu_dev_symlink(struct cpufreq_policy *policy, struct device *dev)1023 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1024 				   struct device *dev)
1025 {
1026 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1027 	sysfs_remove_link(&dev->kobj, "cpufreq");
1028 }
1029 
cpufreq_add_dev_interface(struct cpufreq_policy *policy)1030 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1031 {
1032 	struct freq_attr **drv_attr;
1033 	int ret = 0;
1034 
1035 	/* set up files for this cpu device */
1036 	drv_attr = cpufreq_driver->attr;
1037 	while (drv_attr && *drv_attr) {
1038 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1039 		if (ret)
1040 			return ret;
1041 		drv_attr++;
1042 	}
1043 	if (cpufreq_driver->get) {
1044 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1050 	if (ret)
1051 		return ret;
1052 
1053 	if (cpufreq_driver->bios_limit) {
1054 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1055 		if (ret)
1056 			return ret;
1057 	}
1058 
1059 	return 0;
1060 }
1061 
cpufreq_init_policy(struct cpufreq_policy *policy)1062 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1063 {
1064 	struct cpufreq_governor *gov = NULL;
1065 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1066 	int ret;
1067 
1068 	if (has_target()) {
1069 		/* Update policy governor to the one used before hotplug. */
1070 		gov = get_governor(policy->last_governor);
1071 		if (gov) {
1072 			pr_debug("Restoring governor %s for cpu %d\n",
1073 				 gov->name, policy->cpu);
1074 		} else {
1075 			gov = get_governor(default_governor);
1076 		}
1077 
1078 		if (!gov) {
1079 			gov = cpufreq_default_governor();
1080 			__module_get(gov->owner);
1081 		}
1082 
1083 	} else {
1084 
1085 		/* Use the default policy if there is no last_policy. */
1086 		if (policy->last_policy) {
1087 			pol = policy->last_policy;
1088 		} else {
1089 			pol = cpufreq_parse_policy(default_governor);
1090 			/*
1091 			 * In case the default governor is neither "performance"
1092 			 * nor "powersave", fall back to the initial policy
1093 			 * value set by the driver.
1094 			 */
1095 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1096 				pol = policy->policy;
1097 		}
1098 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1099 		    pol != CPUFREQ_POLICY_POWERSAVE)
1100 			return -ENODATA;
1101 	}
1102 
1103 	ret = cpufreq_set_policy(policy, gov, pol);
1104 	if (gov)
1105 		module_put(gov->owner);
1106 
1107 	return ret;
1108 }
1109 
cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)1110 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1111 {
1112 	int ret = 0;
1113 
1114 	/* Has this CPU been taken care of already? */
1115 	if (cpumask_test_cpu(cpu, policy->cpus))
1116 		return 0;
1117 
1118 	down_write(&policy->rwsem);
1119 	if (has_target())
1120 		cpufreq_stop_governor(policy);
1121 
1122 	cpumask_set_cpu(cpu, policy->cpus);
1123 
1124 	if (has_target()) {
1125 		ret = cpufreq_start_governor(policy);
1126 		if (ret)
1127 			pr_err("%s: Failed to start governor\n", __func__);
1128 	}
1129 	up_write(&policy->rwsem);
1130 	return ret;
1131 }
1132 
refresh_frequency_limits(struct cpufreq_policy *policy)1133 void refresh_frequency_limits(struct cpufreq_policy *policy)
1134 {
1135 	if (!policy_is_inactive(policy)) {
1136 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1137 
1138 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1139 	}
1140 }
1141 EXPORT_SYMBOL(refresh_frequency_limits);
1142 
handle_update(struct work_struct *work)1143 static void handle_update(struct work_struct *work)
1144 {
1145 	struct cpufreq_policy *policy =
1146 		container_of(work, struct cpufreq_policy, update);
1147 
1148 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1149 	down_write(&policy->rwsem);
1150 	refresh_frequency_limits(policy);
1151 	up_write(&policy->rwsem);
1152 }
1153 
cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data)1154 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1155 				void *data)
1156 {
1157 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1158 
1159 	schedule_work(&policy->update);
1160 	return 0;
1161 }
1162 
cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data)1163 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1164 				void *data)
1165 {
1166 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1167 
1168 	schedule_work(&policy->update);
1169 	return 0;
1170 }
1171 
cpufreq_policy_put_kobj(struct cpufreq_policy *policy)1172 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1173 {
1174 	struct kobject *kobj;
1175 	struct completion *cmp;
1176 
1177 	down_write(&policy->rwsem);
1178 	cpufreq_stats_free_table(policy);
1179 	kobj = &policy->kobj;
1180 	cmp = &policy->kobj_unregister;
1181 	up_write(&policy->rwsem);
1182 	kobject_put(kobj);
1183 
1184 	/*
1185 	 * We need to make sure that the underlying kobj is
1186 	 * actually not referenced anymore by anybody before we
1187 	 * proceed with unloading.
1188 	 */
1189 	pr_debug("waiting for dropping of refcount\n");
1190 	wait_for_completion(cmp);
1191 	pr_debug("wait complete\n");
1192 }
1193 
cpufreq_policy_alloc(unsigned int cpu)1194 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1195 {
1196 	struct cpufreq_policy *policy;
1197 	struct device *dev = get_cpu_device(cpu);
1198 	int ret;
1199 
1200 	if (!dev)
1201 		return NULL;
1202 
1203 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1204 	if (!policy)
1205 		return NULL;
1206 
1207 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1208 		goto err_free_policy;
1209 
1210 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1211 		goto err_free_cpumask;
1212 
1213 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1214 		goto err_free_rcpumask;
1215 
1216 	init_completion(&policy->kobj_unregister);
1217 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1218 				   cpufreq_global_kobject, "policy%u", cpu);
1219 	if (ret) {
1220 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1221 		/*
1222 		 * The entire policy object will be freed below, but the extra
1223 		 * memory allocated for the kobject name needs to be freed by
1224 		 * releasing the kobject.
1225 		 */
1226 		kobject_put(&policy->kobj);
1227 		goto err_free_real_cpus;
1228 	}
1229 
1230 	freq_constraints_init(&policy->constraints);
1231 
1232 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1233 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1234 
1235 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1236 				    &policy->nb_min);
1237 	if (ret) {
1238 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1239 			ret, cpumask_pr_args(policy->cpus));
1240 		goto err_kobj_remove;
1241 	}
1242 
1243 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1244 				    &policy->nb_max);
1245 	if (ret) {
1246 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1247 			ret, cpumask_pr_args(policy->cpus));
1248 		goto err_min_qos_notifier;
1249 	}
1250 
1251 	INIT_LIST_HEAD(&policy->policy_list);
1252 	init_rwsem(&policy->rwsem);
1253 	spin_lock_init(&policy->transition_lock);
1254 	init_waitqueue_head(&policy->transition_wait);
1255 	INIT_WORK(&policy->update, handle_update);
1256 
1257 	policy->cpu = cpu;
1258 	return policy;
1259 
1260 err_min_qos_notifier:
1261 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1262 				 &policy->nb_min);
1263 err_kobj_remove:
1264 	cpufreq_policy_put_kobj(policy);
1265 err_free_real_cpus:
1266 	free_cpumask_var(policy->real_cpus);
1267 err_free_rcpumask:
1268 	free_cpumask_var(policy->related_cpus);
1269 err_free_cpumask:
1270 	free_cpumask_var(policy->cpus);
1271 err_free_policy:
1272 	kfree(policy);
1273 
1274 	return NULL;
1275 }
1276 
cpufreq_policy_free(struct cpufreq_policy *policy)1277 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1278 {
1279 	unsigned long flags;
1280 	int cpu;
1281 
1282 	/* Remove policy from list */
1283 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1284 	list_del(&policy->policy_list);
1285 
1286 	for_each_cpu(cpu, policy->related_cpus)
1287 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1288 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1289 
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1291 				 &policy->nb_max);
1292 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1293 				 &policy->nb_min);
1294 
1295 	/* Cancel any pending policy->update work before freeing the policy. */
1296 	cancel_work_sync(&policy->update);
1297 
1298 	if (policy->max_freq_req) {
1299 		/*
1300 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1301 		 * successfully adding max_freq_req request.
1302 		 */
1303 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1304 					     CPUFREQ_REMOVE_POLICY, policy);
1305 		freq_qos_remove_request(policy->max_freq_req);
1306 	}
1307 
1308 	freq_qos_remove_request(policy->min_freq_req);
1309 	kfree(policy->min_freq_req);
1310 
1311 	cpufreq_policy_put_kobj(policy);
1312 	free_cpumask_var(policy->real_cpus);
1313 	free_cpumask_var(policy->related_cpus);
1314 	free_cpumask_var(policy->cpus);
1315 	kfree(policy);
1316 }
1317 
cpufreq_online(unsigned int cpu)1318 static int cpufreq_online(unsigned int cpu)
1319 {
1320 	struct cpufreq_policy *policy;
1321 	bool new_policy;
1322 	unsigned long flags;
1323 	unsigned int j;
1324 	int ret;
1325 
1326 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1327 
1328 	/* Check if this CPU already has a policy to manage it */
1329 	policy = per_cpu(cpufreq_cpu_data, cpu);
1330 	if (policy) {
1331 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1332 		if (!policy_is_inactive(policy))
1333 			return cpufreq_add_policy_cpu(policy, cpu);
1334 
1335 		/* This is the only online CPU for the policy.  Start over. */
1336 		new_policy = false;
1337 		down_write(&policy->rwsem);
1338 		policy->cpu = cpu;
1339 		policy->governor = NULL;
1340 		up_write(&policy->rwsem);
1341 	} else {
1342 		new_policy = true;
1343 		policy = cpufreq_policy_alloc(cpu);
1344 		if (!policy)
1345 			return -ENOMEM;
1346 	}
1347 
1348 	if (!new_policy && cpufreq_driver->online) {
1349 		ret = cpufreq_driver->online(policy);
1350 		if (ret) {
1351 			pr_debug("%s: %d: initialization failed\n", __func__,
1352 				 __LINE__);
1353 			goto out_exit_policy;
1354 		}
1355 
1356 		/* Recover policy->cpus using related_cpus */
1357 		cpumask_copy(policy->cpus, policy->related_cpus);
1358 	} else {
1359 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1360 
1361 		/*
1362 		 * Call driver. From then on the cpufreq must be able
1363 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1364 		 */
1365 		ret = cpufreq_driver->init(policy);
1366 		if (ret) {
1367 			pr_debug("%s: %d: initialization failed\n", __func__,
1368 				 __LINE__);
1369 			goto out_free_policy;
1370 		}
1371 
1372 		/*
1373 		 * The initialization has succeeded and the policy is online.
1374 		 * If there is a problem with its frequency table, take it
1375 		 * offline and drop it.
1376 		 */
1377 		ret = cpufreq_table_validate_and_sort(policy);
1378 		if (ret)
1379 			goto out_offline_policy;
1380 
1381 		/* related_cpus should at least include policy->cpus. */
1382 		cpumask_copy(policy->related_cpus, policy->cpus);
1383 	}
1384 
1385 	down_write(&policy->rwsem);
1386 	/*
1387 	 * affected cpus must always be the one, which are online. We aren't
1388 	 * managing offline cpus here.
1389 	 */
1390 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1391 
1392 	if (new_policy) {
1393 		for_each_cpu(j, policy->related_cpus) {
1394 			per_cpu(cpufreq_cpu_data, j) = policy;
1395 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1396 		}
1397 
1398 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1399 					       GFP_KERNEL);
1400 		if (!policy->min_freq_req)
1401 			goto out_destroy_policy;
1402 
1403 		ret = freq_qos_add_request(&policy->constraints,
1404 					   policy->min_freq_req, FREQ_QOS_MIN,
1405 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1406 		if (ret < 0) {
1407 			/*
1408 			 * So we don't call freq_qos_remove_request() for an
1409 			 * uninitialized request.
1410 			 */
1411 			kfree(policy->min_freq_req);
1412 			policy->min_freq_req = NULL;
1413 			goto out_destroy_policy;
1414 		}
1415 
1416 		/*
1417 		 * This must be initialized right here to avoid calling
1418 		 * freq_qos_remove_request() on uninitialized request in case
1419 		 * of errors.
1420 		 */
1421 		policy->max_freq_req = policy->min_freq_req + 1;
1422 
1423 		ret = freq_qos_add_request(&policy->constraints,
1424 					   policy->max_freq_req, FREQ_QOS_MAX,
1425 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1426 		if (ret < 0) {
1427 			policy->max_freq_req = NULL;
1428 			goto out_destroy_policy;
1429 		}
1430 
1431 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1432 				CPUFREQ_CREATE_POLICY, policy);
1433 	}
1434 
1435 	if (cpufreq_driver->get && has_target()) {
1436 		policy->cur = cpufreq_driver->get(policy->cpu);
1437 		if (!policy->cur) {
1438 			pr_err("%s: ->get() failed\n", __func__);
1439 			goto out_destroy_policy;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * Sometimes boot loaders set CPU frequency to a value outside of
1445 	 * frequency table present with cpufreq core. In such cases CPU might be
1446 	 * unstable if it has to run on that frequency for long duration of time
1447 	 * and so its better to set it to a frequency which is specified in
1448 	 * freq-table. This also makes cpufreq stats inconsistent as
1449 	 * cpufreq-stats would fail to register because current frequency of CPU
1450 	 * isn't found in freq-table.
1451 	 *
1452 	 * Because we don't want this change to effect boot process badly, we go
1453 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1454 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1455 	 * is initialized to zero).
1456 	 *
1457 	 * We are passing target-freq as "policy->cur - 1" otherwise
1458 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1459 	 * equal to target-freq.
1460 	 */
1461 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1462 	    && has_target()) {
1463 		unsigned int old_freq = policy->cur;
1464 
1465 		/* Are we running at unknown frequency ? */
1466 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1467 		if (ret == -EINVAL) {
1468 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1469 						      CPUFREQ_RELATION_L);
1470 
1471 			/*
1472 			 * Reaching here after boot in a few seconds may not
1473 			 * mean that system will remain stable at "unknown"
1474 			 * frequency for longer duration. Hence, a BUG_ON().
1475 			 */
1476 			BUG_ON(ret);
1477 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1478 				__func__, policy->cpu, old_freq, policy->cur);
1479 		}
1480 	}
1481 
1482 	if (new_policy) {
1483 		ret = cpufreq_add_dev_interface(policy);
1484 		if (ret)
1485 			goto out_destroy_policy;
1486 
1487 		cpufreq_stats_create_table(policy);
1488 
1489 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1490 		list_add(&policy->policy_list, &cpufreq_policy_list);
1491 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1492 	}
1493 
1494 	ret = cpufreq_init_policy(policy);
1495 	if (ret) {
1496 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1497 		       __func__, cpu, ret);
1498 		goto out_destroy_policy;
1499 	}
1500 
1501 	up_write(&policy->rwsem);
1502 
1503 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1504 
1505 	/* Callback for handling stuff after policy is ready */
1506 	if (cpufreq_driver->ready)
1507 		cpufreq_driver->ready(policy);
1508 
1509 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1510 		policy->cdev = of_cpufreq_cooling_register(policy);
1511 
1512 	pr_debug("initialization complete\n");
1513 
1514 	return 0;
1515 
1516 out_destroy_policy:
1517 	for_each_cpu(j, policy->real_cpus)
1518 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1519 
1520 	up_write(&policy->rwsem);
1521 
1522 out_offline_policy:
1523 	if (cpufreq_driver->offline)
1524 		cpufreq_driver->offline(policy);
1525 
1526 out_exit_policy:
1527 	if (cpufreq_driver->exit)
1528 		cpufreq_driver->exit(policy);
1529 
1530 out_free_policy:
1531 	cpufreq_policy_free(policy);
1532 	return ret;
1533 }
1534 
1535 /**
1536  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1537  * @dev: CPU device.
1538  * @sif: Subsystem interface structure pointer (not used)
1539  */
cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)1540 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1541 {
1542 	struct cpufreq_policy *policy;
1543 	unsigned cpu = dev->id;
1544 	int ret;
1545 
1546 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1547 
1548 	if (cpu_online(cpu)) {
1549 		ret = cpufreq_online(cpu);
1550 		if (ret)
1551 			return ret;
1552 	}
1553 
1554 	/* Create sysfs link on CPU registration */
1555 	policy = per_cpu(cpufreq_cpu_data, cpu);
1556 	if (policy)
1557 		add_cpu_dev_symlink(policy, cpu, dev);
1558 
1559 	return 0;
1560 }
1561 
__cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)1562 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1563 {
1564 	int ret;
1565 
1566 	if (has_target())
1567 		cpufreq_stop_governor(policy);
1568 
1569 	cpumask_clear_cpu(cpu, policy->cpus);
1570 
1571 	if (!policy_is_inactive(policy)) {
1572 		/* Nominate a new CPU if necessary. */
1573 		if (cpu == policy->cpu)
1574 			policy->cpu = cpumask_any(policy->cpus);
1575 
1576 		/* Start the governor again for the active policy. */
1577 		if (has_target()) {
1578 			ret = cpufreq_start_governor(policy);
1579 			if (ret)
1580 				pr_err("%s: Failed to start governor\n", __func__);
1581 		}
1582 
1583 		return;
1584 	}
1585 
1586 	if (has_target())
1587 		strncpy(policy->last_governor, policy->governor->name,
1588 			CPUFREQ_NAME_LEN);
1589 	else
1590 		policy->last_policy = policy->policy;
1591 
1592 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1593 		cpufreq_cooling_unregister(policy->cdev);
1594 		policy->cdev = NULL;
1595 	}
1596 
1597 	if (cpufreq_driver->stop_cpu)
1598 		cpufreq_driver->stop_cpu(policy);
1599 
1600 	if (has_target())
1601 		cpufreq_exit_governor(policy);
1602 
1603 	/*
1604 	 * Perform the ->offline() during light-weight tear-down, as
1605 	 * that allows fast recovery when the CPU comes back.
1606 	 */
1607 	if (cpufreq_driver->offline) {
1608 		cpufreq_driver->offline(policy);
1609 		return;
1610 	}
1611 
1612 	if (cpufreq_driver->exit)
1613 		cpufreq_driver->exit(policy);
1614 
1615 	policy->freq_table = NULL;
1616 }
1617 
cpufreq_offline(unsigned int cpu)1618 static int cpufreq_offline(unsigned int cpu)
1619 {
1620 	struct cpufreq_policy *policy;
1621 
1622 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1623 
1624 	policy = cpufreq_cpu_get_raw(cpu);
1625 	if (!policy) {
1626 		pr_debug("%s: No cpu_data found\n", __func__);
1627 		return 0;
1628 	}
1629 
1630 	down_write(&policy->rwsem);
1631 
1632 	__cpufreq_offline(cpu, policy);
1633 
1634 	up_write(&policy->rwsem);
1635 	return 0;
1636 }
1637 
1638 /*
1639  * cpufreq_remove_dev - remove a CPU device
1640  *
1641  * Removes the cpufreq interface for a CPU device.
1642  */
cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1644 {
1645 	unsigned int cpu = dev->id;
1646 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1647 
1648 	if (!policy)
1649 		return;
1650 
1651 	down_write(&policy->rwsem);
1652 
1653 	if (cpu_online(cpu))
1654 		__cpufreq_offline(cpu, policy);
1655 
1656 	cpumask_clear_cpu(cpu, policy->real_cpus);
1657 	remove_cpu_dev_symlink(policy, dev);
1658 
1659 	if (!cpumask_empty(policy->real_cpus)) {
1660 		up_write(&policy->rwsem);
1661 		return;
1662 	}
1663 
1664 	/* We did light-weight exit earlier, do full tear down now */
1665 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1666 		cpufreq_driver->exit(policy);
1667 
1668 	up_write(&policy->rwsem);
1669 
1670 	cpufreq_policy_free(policy);
1671 }
1672 
1673 /**
1674  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1675  *	in deep trouble.
1676  *	@policy: policy managing CPUs
1677  *	@new_freq: CPU frequency the CPU actually runs at
1678  *
1679  *	We adjust to current frequency first, and need to clean up later.
1680  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1681  */
cpufreq_out_of_sync(struct cpufreq_policy *policy, unsigned int new_freq)1682 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1683 				unsigned int new_freq)
1684 {
1685 	struct cpufreq_freqs freqs;
1686 
1687 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1688 		 policy->cur, new_freq);
1689 
1690 	freqs.old = policy->cur;
1691 	freqs.new = new_freq;
1692 
1693 	cpufreq_freq_transition_begin(policy, &freqs);
1694 	cpufreq_freq_transition_end(policy, &freqs, 0);
1695 }
1696 
cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)1697 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1698 {
1699 	unsigned int new_freq;
1700 
1701 	new_freq = cpufreq_driver->get(policy->cpu);
1702 	if (!new_freq)
1703 		return 0;
1704 
1705 	/*
1706 	 * If fast frequency switching is used with the given policy, the check
1707 	 * against policy->cur is pointless, so skip it in that case.
1708 	 */
1709 	if (policy->fast_switch_enabled || !has_target())
1710 		return new_freq;
1711 
1712 	if (policy->cur != new_freq) {
1713 		cpufreq_out_of_sync(policy, new_freq);
1714 		if (update)
1715 			schedule_work(&policy->update);
1716 	}
1717 
1718 	return new_freq;
1719 }
1720 
1721 /**
1722  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1723  * @cpu: CPU number
1724  *
1725  * This is the last known freq, without actually getting it from the driver.
1726  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1727  */
cpufreq_quick_get(unsigned int cpu)1728 unsigned int cpufreq_quick_get(unsigned int cpu)
1729 {
1730 	struct cpufreq_policy *policy;
1731 	unsigned int ret_freq = 0;
1732 	unsigned long flags;
1733 
1734 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1735 
1736 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1737 		ret_freq = cpufreq_driver->get(cpu);
1738 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1739 		return ret_freq;
1740 	}
1741 
1742 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1743 
1744 	policy = cpufreq_cpu_get(cpu);
1745 	if (policy) {
1746 		ret_freq = policy->cur;
1747 		cpufreq_cpu_put(policy);
1748 	}
1749 
1750 	return ret_freq;
1751 }
1752 EXPORT_SYMBOL(cpufreq_quick_get);
1753 
1754 /**
1755  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1756  * @cpu: CPU number
1757  *
1758  * Just return the max possible frequency for a given CPU.
1759  */
cpufreq_quick_get_max(unsigned int cpu)1760 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1761 {
1762 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1763 	unsigned int ret_freq = 0;
1764 
1765 	if (policy) {
1766 		ret_freq = policy->max;
1767 		cpufreq_cpu_put(policy);
1768 	}
1769 
1770 	return ret_freq;
1771 }
1772 EXPORT_SYMBOL(cpufreq_quick_get_max);
1773 
1774 /**
1775  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1776  * @cpu: CPU number
1777  *
1778  * The default return value is the max_freq field of cpuinfo.
1779  */
cpufreq_get_hw_max_freq(unsigned int cpu)1780 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1781 {
1782 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 	unsigned int ret_freq = 0;
1784 
1785 	if (policy) {
1786 		ret_freq = policy->cpuinfo.max_freq;
1787 		cpufreq_cpu_put(policy);
1788 	}
1789 
1790 	return ret_freq;
1791 }
1792 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1793 
__cpufreq_get(struct cpufreq_policy *policy)1794 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1795 {
1796 	if (unlikely(policy_is_inactive(policy)))
1797 		return 0;
1798 
1799 	return cpufreq_verify_current_freq(policy, true);
1800 }
1801 
1802 /**
1803  * cpufreq_get - get the current CPU frequency (in kHz)
1804  * @cpu: CPU number
1805  *
1806  * Get the CPU current (static) CPU frequency
1807  */
cpufreq_get(unsigned int cpu)1808 unsigned int cpufreq_get(unsigned int cpu)
1809 {
1810 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1811 	unsigned int ret_freq = 0;
1812 
1813 	if (policy) {
1814 		down_read(&policy->rwsem);
1815 		if (cpufreq_driver->get)
1816 			ret_freq = __cpufreq_get(policy);
1817 		up_read(&policy->rwsem);
1818 
1819 		cpufreq_cpu_put(policy);
1820 	}
1821 
1822 	return ret_freq;
1823 }
1824 EXPORT_SYMBOL(cpufreq_get);
1825 
1826 static struct subsys_interface cpufreq_interface = {
1827 	.name		= "cpufreq",
1828 	.subsys		= &cpu_subsys,
1829 	.add_dev	= cpufreq_add_dev,
1830 	.remove_dev	= cpufreq_remove_dev,
1831 };
1832 
1833 /*
1834  * In case platform wants some specific frequency to be configured
1835  * during suspend..
1836  */
cpufreq_generic_suspend(struct cpufreq_policy *policy)1837 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1838 {
1839 	int ret;
1840 
1841 	if (!policy->suspend_freq) {
1842 		pr_debug("%s: suspend_freq not defined\n", __func__);
1843 		return 0;
1844 	}
1845 
1846 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1847 			policy->suspend_freq);
1848 
1849 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1850 			CPUFREQ_RELATION_H);
1851 	if (ret)
1852 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1853 				__func__, policy->suspend_freq, ret);
1854 
1855 	return ret;
1856 }
1857 EXPORT_SYMBOL(cpufreq_generic_suspend);
1858 
1859 /**
1860  * cpufreq_suspend() - Suspend CPUFreq governors
1861  *
1862  * Called during system wide Suspend/Hibernate cycles for suspending governors
1863  * as some platforms can't change frequency after this point in suspend cycle.
1864  * Because some of the devices (like: i2c, regulators, etc) they use for
1865  * changing frequency are suspended quickly after this point.
1866  */
cpufreq_suspend(void)1867 void cpufreq_suspend(void)
1868 {
1869 	struct cpufreq_policy *policy;
1870 
1871 	if (!cpufreq_driver)
1872 		return;
1873 
1874 	if (!has_target() && !cpufreq_driver->suspend)
1875 		goto suspend;
1876 
1877 	pr_debug("%s: Suspending Governors\n", __func__);
1878 
1879 	for_each_active_policy(policy) {
1880 		if (has_target()) {
1881 			down_write(&policy->rwsem);
1882 			cpufreq_stop_governor(policy);
1883 			up_write(&policy->rwsem);
1884 		}
1885 
1886 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1887 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1888 				cpufreq_driver->name);
1889 	}
1890 
1891 suspend:
1892 	cpufreq_suspended = true;
1893 }
1894 
1895 /**
1896  * cpufreq_resume() - Resume CPUFreq governors
1897  *
1898  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1899  * are suspended with cpufreq_suspend().
1900  */
cpufreq_resume(void)1901 void cpufreq_resume(void)
1902 {
1903 	struct cpufreq_policy *policy;
1904 	int ret;
1905 
1906 	if (!cpufreq_driver)
1907 		return;
1908 
1909 	if (unlikely(!cpufreq_suspended))
1910 		return;
1911 
1912 	cpufreq_suspended = false;
1913 
1914 	if (!has_target() && !cpufreq_driver->resume)
1915 		return;
1916 
1917 	pr_debug("%s: Resuming Governors\n", __func__);
1918 
1919 	for_each_active_policy(policy) {
1920 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1921 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1922 				policy);
1923 		} else if (has_target()) {
1924 			down_write(&policy->rwsem);
1925 			ret = cpufreq_start_governor(policy);
1926 			up_write(&policy->rwsem);
1927 
1928 			if (ret)
1929 				pr_err("%s: Failed to start governor for policy: %p\n",
1930 				       __func__, policy);
1931 		}
1932 	}
1933 }
1934 
1935 /**
1936  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1937  * @flags: Flags to test against the current cpufreq driver's flags.
1938  *
1939  * Assumes that the driver is there, so callers must ensure that this is the
1940  * case.
1941  */
cpufreq_driver_test_flags(u16 flags)1942 bool cpufreq_driver_test_flags(u16 flags)
1943 {
1944 	return !!(cpufreq_driver->flags & flags);
1945 }
1946 
1947 /**
1948  *	cpufreq_get_current_driver - return current driver's name
1949  *
1950  *	Return the name string of the currently loaded cpufreq driver
1951  *	or NULL, if none.
1952  */
cpufreq_get_current_driver(void)1953 const char *cpufreq_get_current_driver(void)
1954 {
1955 	if (cpufreq_driver)
1956 		return cpufreq_driver->name;
1957 
1958 	return NULL;
1959 }
1960 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1961 
1962 /**
1963  *	cpufreq_get_driver_data - return current driver data
1964  *
1965  *	Return the private data of the currently loaded cpufreq
1966  *	driver, or NULL if no cpufreq driver is loaded.
1967  */
cpufreq_get_driver_data(void)1968 void *cpufreq_get_driver_data(void)
1969 {
1970 	if (cpufreq_driver)
1971 		return cpufreq_driver->driver_data;
1972 
1973 	return NULL;
1974 }
1975 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1976 
1977 /*********************************************************************
1978  *                     NOTIFIER LISTS INTERFACE                      *
1979  *********************************************************************/
1980 
1981 /**
1982  *	cpufreq_register_notifier - register a driver with cpufreq
1983  *	@nb: notifier function to register
1984  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1985  *
1986  *	Add a driver to one of two lists: either a list of drivers that
1987  *      are notified about clock rate changes (once before and once after
1988  *      the transition), or a list of drivers that are notified about
1989  *      changes in cpufreq policy.
1990  *
1991  *	This function may sleep, and has the same return conditions as
1992  *	blocking_notifier_chain_register.
1993  */
cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)1994 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1995 {
1996 	int ret;
1997 
1998 	if (cpufreq_disabled())
1999 		return -EINVAL;
2000 
2001 	switch (list) {
2002 	case CPUFREQ_TRANSITION_NOTIFIER:
2003 		mutex_lock(&cpufreq_fast_switch_lock);
2004 
2005 		if (cpufreq_fast_switch_count > 0) {
2006 			mutex_unlock(&cpufreq_fast_switch_lock);
2007 			return -EBUSY;
2008 		}
2009 		ret = srcu_notifier_chain_register(
2010 				&cpufreq_transition_notifier_list, nb);
2011 		if (!ret)
2012 			cpufreq_fast_switch_count--;
2013 
2014 		mutex_unlock(&cpufreq_fast_switch_lock);
2015 		break;
2016 	case CPUFREQ_POLICY_NOTIFIER:
2017 		ret = blocking_notifier_chain_register(
2018 				&cpufreq_policy_notifier_list, nb);
2019 		break;
2020 	default:
2021 		ret = -EINVAL;
2022 	}
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL(cpufreq_register_notifier);
2027 
2028 /**
2029  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
2030  *	@nb: notifier block to be unregistered
2031  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2032  *
2033  *	Remove a driver from the CPU frequency notifier list.
2034  *
2035  *	This function may sleep, and has the same return conditions as
2036  *	blocking_notifier_chain_unregister.
2037  */
cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)2038 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2039 {
2040 	int ret;
2041 
2042 	if (cpufreq_disabled())
2043 		return -EINVAL;
2044 
2045 	switch (list) {
2046 	case CPUFREQ_TRANSITION_NOTIFIER:
2047 		mutex_lock(&cpufreq_fast_switch_lock);
2048 
2049 		ret = srcu_notifier_chain_unregister(
2050 				&cpufreq_transition_notifier_list, nb);
2051 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2052 			cpufreq_fast_switch_count++;
2053 
2054 		mutex_unlock(&cpufreq_fast_switch_lock);
2055 		break;
2056 	case CPUFREQ_POLICY_NOTIFIER:
2057 		ret = blocking_notifier_chain_unregister(
2058 				&cpufreq_policy_notifier_list, nb);
2059 		break;
2060 	default:
2061 		ret = -EINVAL;
2062 	}
2063 
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2067 
2068 
2069 /*********************************************************************
2070  *                              GOVERNORS                            *
2071  *********************************************************************/
2072 
2073 /**
2074  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2075  * @policy: cpufreq policy to switch the frequency for.
2076  * @target_freq: New frequency to set (may be approximate).
2077  *
2078  * Carry out a fast frequency switch without sleeping.
2079  *
2080  * The driver's ->fast_switch() callback invoked by this function must be
2081  * suitable for being called from within RCU-sched read-side critical sections
2082  * and it is expected to select the minimum available frequency greater than or
2083  * equal to @target_freq (CPUFREQ_RELATION_L).
2084  *
2085  * This function must not be called if policy->fast_switch_enabled is unset.
2086  *
2087  * Governors calling this function must guarantee that it will never be invoked
2088  * twice in parallel for the same policy and that it will never be called in
2089  * parallel with either ->target() or ->target_index() for the same policy.
2090  *
2091  * Returns the actual frequency set for the CPU.
2092  *
2093  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2094  * error condition, the hardware configuration must be preserved.
2095  */
cpufreq_driver_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq)2096 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2097 					unsigned int target_freq)
2098 {
2099 	unsigned int freq;
2100 	int cpu;
2101 
2102 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2103 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2104 
2105 	if (!freq)
2106 		return 0;
2107 
2108 	policy->cur = freq;
2109 	arch_set_freq_scale(policy->related_cpus, freq,
2110 			    policy->cpuinfo.max_freq);
2111 	cpufreq_stats_record_transition(policy, freq);
2112 
2113 	if (trace_cpu_frequency_enabled()) {
2114 		for_each_cpu(cpu, policy->cpus)
2115 			trace_cpu_frequency(freq, cpu);
2116 	}
2117 
2118 	return freq;
2119 }
2120 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2121 
2122 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int index)2123 static int __target_intermediate(struct cpufreq_policy *policy,
2124 				 struct cpufreq_freqs *freqs, int index)
2125 {
2126 	int ret;
2127 
2128 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2129 
2130 	/* We don't need to switch to intermediate freq */
2131 	if (!freqs->new)
2132 		return 0;
2133 
2134 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2135 		 __func__, policy->cpu, freqs->old, freqs->new);
2136 
2137 	cpufreq_freq_transition_begin(policy, freqs);
2138 	ret = cpufreq_driver->target_intermediate(policy, index);
2139 	cpufreq_freq_transition_end(policy, freqs, ret);
2140 
2141 	if (ret)
2142 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2143 		       __func__, ret);
2144 
2145 	return ret;
2146 }
2147 
__target_index(struct cpufreq_policy *policy, int index)2148 static int __target_index(struct cpufreq_policy *policy, int index)
2149 {
2150 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2151 	unsigned int intermediate_freq = 0;
2152 	unsigned int newfreq = policy->freq_table[index].frequency;
2153 	int retval = -EINVAL;
2154 	bool notify;
2155 
2156 	if (newfreq == policy->cur)
2157 		return 0;
2158 
2159 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2160 	if (notify) {
2161 		/* Handle switching to intermediate frequency */
2162 		if (cpufreq_driver->get_intermediate) {
2163 			retval = __target_intermediate(policy, &freqs, index);
2164 			if (retval)
2165 				return retval;
2166 
2167 			intermediate_freq = freqs.new;
2168 			/* Set old freq to intermediate */
2169 			if (intermediate_freq)
2170 				freqs.old = freqs.new;
2171 		}
2172 
2173 		freqs.new = newfreq;
2174 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2175 			 __func__, policy->cpu, freqs.old, freqs.new);
2176 
2177 		cpufreq_freq_transition_begin(policy, &freqs);
2178 	}
2179 
2180 	retval = cpufreq_driver->target_index(policy, index);
2181 	if (retval)
2182 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2183 		       retval);
2184 
2185 	if (notify) {
2186 		cpufreq_freq_transition_end(policy, &freqs, retval);
2187 
2188 		/*
2189 		 * Failed after setting to intermediate freq? Driver should have
2190 		 * reverted back to initial frequency and so should we. Check
2191 		 * here for intermediate_freq instead of get_intermediate, in
2192 		 * case we haven't switched to intermediate freq at all.
2193 		 */
2194 		if (unlikely(retval && intermediate_freq)) {
2195 			freqs.old = intermediate_freq;
2196 			freqs.new = policy->restore_freq;
2197 			cpufreq_freq_transition_begin(policy, &freqs);
2198 			cpufreq_freq_transition_end(policy, &freqs, 0);
2199 		}
2200 	}
2201 
2202 	return retval;
2203 }
2204 
__cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation)2205 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2206 			    unsigned int target_freq,
2207 			    unsigned int relation)
2208 {
2209 	unsigned int old_target_freq = target_freq;
2210 	int index;
2211 
2212 	if (cpufreq_disabled())
2213 		return -ENODEV;
2214 
2215 	/* Make sure that target_freq is within supported range */
2216 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2217 
2218 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2219 		 policy->cpu, target_freq, relation, old_target_freq);
2220 
2221 	/*
2222 	 * This might look like a redundant call as we are checking it again
2223 	 * after finding index. But it is left intentionally for cases where
2224 	 * exactly same freq is called again and so we can save on few function
2225 	 * calls.
2226 	 */
2227 	if (target_freq == policy->cur &&
2228 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2229 		return 0;
2230 
2231 	/* Save last value to restore later on errors */
2232 	policy->restore_freq = policy->cur;
2233 
2234 	if (cpufreq_driver->target)
2235 		return cpufreq_driver->target(policy, target_freq, relation);
2236 
2237 	if (!cpufreq_driver->target_index)
2238 		return -EINVAL;
2239 
2240 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2241 
2242 	return __target_index(policy, index);
2243 }
2244 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2245 
cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation)2246 int cpufreq_driver_target(struct cpufreq_policy *policy,
2247 			  unsigned int target_freq,
2248 			  unsigned int relation)
2249 {
2250 	int ret;
2251 
2252 	down_write(&policy->rwsem);
2253 
2254 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2255 
2256 	up_write(&policy->rwsem);
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2261 
cpufreq_fallback_governor(void)2262 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2263 {
2264 	return NULL;
2265 }
2266 
cpufreq_init_governor(struct cpufreq_policy *policy)2267 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2268 {
2269 	int ret;
2270 
2271 	/* Don't start any governor operations if we are entering suspend */
2272 	if (cpufreq_suspended)
2273 		return 0;
2274 	/*
2275 	 * Governor might not be initiated here if ACPI _PPC changed
2276 	 * notification happened, so check it.
2277 	 */
2278 	if (!policy->governor)
2279 		return -EINVAL;
2280 
2281 	/* Platform doesn't want dynamic frequency switching ? */
2282 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2283 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2284 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2285 
2286 		if (gov) {
2287 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2288 				policy->governor->name, gov->name);
2289 			policy->governor = gov;
2290 		} else {
2291 			return -EINVAL;
2292 		}
2293 	}
2294 
2295 	if (!try_module_get(policy->governor->owner))
2296 		return -EINVAL;
2297 
2298 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299 
2300 	if (policy->governor->init) {
2301 		ret = policy->governor->init(policy);
2302 		if (ret) {
2303 			module_put(policy->governor->owner);
2304 			return ret;
2305 		}
2306 	}
2307 
2308 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2309 
2310 	return 0;
2311 }
2312 
cpufreq_exit_governor(struct cpufreq_policy *policy)2313 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2314 {
2315 	if (cpufreq_suspended || !policy->governor)
2316 		return;
2317 
2318 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2319 
2320 	if (policy->governor->exit)
2321 		policy->governor->exit(policy);
2322 
2323 	module_put(policy->governor->owner);
2324 }
2325 
cpufreq_start_governor(struct cpufreq_policy *policy)2326 int cpufreq_start_governor(struct cpufreq_policy *policy)
2327 {
2328 	int ret;
2329 
2330 	if (cpufreq_suspended)
2331 		return 0;
2332 
2333 	if (!policy->governor)
2334 		return -EINVAL;
2335 
2336 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337 
2338 	if (cpufreq_driver->get)
2339 		cpufreq_verify_current_freq(policy, false);
2340 
2341 	if (policy->governor->start) {
2342 		ret = policy->governor->start(policy);
2343 		if (ret)
2344 			return ret;
2345 	}
2346 
2347 	if (policy->governor->limits)
2348 		policy->governor->limits(policy);
2349 
2350 	return 0;
2351 }
2352 
cpufreq_stop_governor(struct cpufreq_policy *policy)2353 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2354 {
2355 	if (cpufreq_suspended || !policy->governor)
2356 		return;
2357 
2358 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2359 
2360 	if (policy->governor->stop)
2361 		policy->governor->stop(policy);
2362 }
2363 
cpufreq_governor_limits(struct cpufreq_policy *policy)2364 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2365 {
2366 	if (cpufreq_suspended || !policy->governor)
2367 		return;
2368 
2369 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2370 
2371 	if (policy->governor->limits)
2372 		policy->governor->limits(policy);
2373 }
2374 
cpufreq_register_governor(struct cpufreq_governor *governor)2375 int cpufreq_register_governor(struct cpufreq_governor *governor)
2376 {
2377 	int err;
2378 
2379 	if (!governor)
2380 		return -EINVAL;
2381 
2382 	if (cpufreq_disabled())
2383 		return -ENODEV;
2384 
2385 	mutex_lock(&cpufreq_governor_mutex);
2386 
2387 	err = -EBUSY;
2388 	if (!find_governor(governor->name)) {
2389 		err = 0;
2390 		list_add(&governor->governor_list, &cpufreq_governor_list);
2391 	}
2392 
2393 	mutex_unlock(&cpufreq_governor_mutex);
2394 	return err;
2395 }
2396 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2397 
cpufreq_unregister_governor(struct cpufreq_governor *governor)2398 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2399 {
2400 	struct cpufreq_policy *policy;
2401 	unsigned long flags;
2402 
2403 	if (!governor)
2404 		return;
2405 
2406 	if (cpufreq_disabled())
2407 		return;
2408 
2409 	/* clear last_governor for all inactive policies */
2410 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2411 	for_each_inactive_policy(policy) {
2412 		if (!strcmp(policy->last_governor, governor->name)) {
2413 			policy->governor = NULL;
2414 			strcpy(policy->last_governor, "\0");
2415 		}
2416 	}
2417 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2418 
2419 	mutex_lock(&cpufreq_governor_mutex);
2420 	list_del(&governor->governor_list);
2421 	mutex_unlock(&cpufreq_governor_mutex);
2422 }
2423 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2424 
2425 
2426 /*********************************************************************
2427  *                          POLICY INTERFACE                         *
2428  *********************************************************************/
2429 
2430 /**
2431  * cpufreq_get_policy - get the current cpufreq_policy
2432  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2433  *	is written
2434  * @cpu: CPU to find the policy for
2435  *
2436  * Reads the current cpufreq policy.
2437  */
cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)2438 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2439 {
2440 	struct cpufreq_policy *cpu_policy;
2441 	if (!policy)
2442 		return -EINVAL;
2443 
2444 	cpu_policy = cpufreq_cpu_get(cpu);
2445 	if (!cpu_policy)
2446 		return -EINVAL;
2447 
2448 	memcpy(policy, cpu_policy, sizeof(*policy));
2449 
2450 	cpufreq_cpu_put(cpu_policy);
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(cpufreq_get_policy);
2454 
2455 /**
2456  * cpufreq_set_policy - Modify cpufreq policy parameters.
2457  * @policy: Policy object to modify.
2458  * @new_gov: Policy governor pointer.
2459  * @new_pol: Policy value (for drivers with built-in governors).
2460  *
2461  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2462  * limits to be set for the policy, update @policy with the verified limits
2463  * values and either invoke the driver's ->setpolicy() callback (if present) or
2464  * carry out a governor update for @policy.  That is, run the current governor's
2465  * ->limits() callback (if @new_gov points to the same object as the one in
2466  * @policy) or replace the governor for @policy with @new_gov.
2467  *
2468  * The cpuinfo part of @policy is not updated by this function.
2469  */
cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol)2470 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2471 			      struct cpufreq_governor *new_gov,
2472 			      unsigned int new_pol)
2473 {
2474 	struct cpufreq_policy_data new_data;
2475 	struct cpufreq_governor *old_gov;
2476 	int ret;
2477 
2478 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2479 	new_data.freq_table = policy->freq_table;
2480 	new_data.cpu = policy->cpu;
2481 	/*
2482 	 * PM QoS framework collects all the requests from users and provide us
2483 	 * the final aggregated value here.
2484 	 */
2485 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2486 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2487 
2488 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2489 		 new_data.cpu, new_data.min, new_data.max);
2490 
2491 	/*
2492 	 * Verify that the CPU speed can be set within these limits and make sure
2493 	 * that min <= max.
2494 	 */
2495 	ret = cpufreq_driver->verify(&new_data);
2496 	if (ret)
2497 		return ret;
2498 
2499 	policy->min = new_data.min;
2500 	policy->max = new_data.max;
2501 	trace_cpu_frequency_limits(policy);
2502 
2503 	policy->cached_target_freq = UINT_MAX;
2504 
2505 	pr_debug("new min and max freqs are %u - %u kHz\n",
2506 		 policy->min, policy->max);
2507 
2508 	if (cpufreq_driver->setpolicy) {
2509 		policy->policy = new_pol;
2510 		pr_debug("setting range\n");
2511 		return cpufreq_driver->setpolicy(policy);
2512 	}
2513 
2514 	if (new_gov == policy->governor) {
2515 		pr_debug("governor limits update\n");
2516 		cpufreq_governor_limits(policy);
2517 		return 0;
2518 	}
2519 
2520 	pr_debug("governor switch\n");
2521 
2522 	/* save old, working values */
2523 	old_gov = policy->governor;
2524 	/* end old governor */
2525 	if (old_gov) {
2526 		cpufreq_stop_governor(policy);
2527 		cpufreq_exit_governor(policy);
2528 	}
2529 
2530 	/* start new governor */
2531 	policy->governor = new_gov;
2532 	ret = cpufreq_init_governor(policy);
2533 	if (!ret) {
2534 		ret = cpufreq_start_governor(policy);
2535 		if (!ret) {
2536 			pr_debug("governor change\n");
2537 			sched_cpufreq_governor_change(policy, old_gov);
2538 			return 0;
2539 		}
2540 		cpufreq_exit_governor(policy);
2541 	}
2542 
2543 	/* new governor failed, so re-start old one */
2544 	pr_debug("starting governor %s failed\n", policy->governor->name);
2545 	if (old_gov) {
2546 		policy->governor = old_gov;
2547 		if (cpufreq_init_governor(policy))
2548 			policy->governor = NULL;
2549 		else
2550 			cpufreq_start_governor(policy);
2551 	}
2552 
2553 	return ret;
2554 }
2555 
2556 /**
2557  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2558  * @cpu: CPU to re-evaluate the policy for.
2559  *
2560  * Update the current frequency for the cpufreq policy of @cpu and use
2561  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2562  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2563  * for the policy in question, among other things.
2564  */
cpufreq_update_policy(unsigned int cpu)2565 void cpufreq_update_policy(unsigned int cpu)
2566 {
2567 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2568 
2569 	if (!policy)
2570 		return;
2571 
2572 	/*
2573 	 * BIOS might change freq behind our back
2574 	 * -> ask driver for current freq and notify governors about a change
2575 	 */
2576 	if (cpufreq_driver->get && has_target() &&
2577 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2578 		goto unlock;
2579 
2580 	refresh_frequency_limits(policy);
2581 
2582 unlock:
2583 	cpufreq_cpu_release(policy);
2584 }
2585 EXPORT_SYMBOL(cpufreq_update_policy);
2586 
2587 /**
2588  * cpufreq_update_limits - Update policy limits for a given CPU.
2589  * @cpu: CPU to update the policy limits for.
2590  *
2591  * Invoke the driver's ->update_limits callback if present or call
2592  * cpufreq_update_policy() for @cpu.
2593  */
cpufreq_update_limits(unsigned int cpu)2594 void cpufreq_update_limits(unsigned int cpu)
2595 {
2596 	if (cpufreq_driver->update_limits)
2597 		cpufreq_driver->update_limits(cpu);
2598 	else
2599 		cpufreq_update_policy(cpu);
2600 }
2601 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2602 
2603 /*********************************************************************
2604  *               BOOST						     *
2605  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)2606 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2607 {
2608 	int ret;
2609 
2610 	if (!policy->freq_table)
2611 		return -ENXIO;
2612 
2613 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2614 	if (ret) {
2615 		pr_err("%s: Policy frequency update failed\n", __func__);
2616 		return ret;
2617 	}
2618 
2619 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2620 	if (ret < 0)
2621 		return ret;
2622 
2623 	return 0;
2624 }
2625 
cpufreq_boost_trigger_state(int state)2626 int cpufreq_boost_trigger_state(int state)
2627 {
2628 	struct cpufreq_policy *policy;
2629 	unsigned long flags;
2630 	int ret = 0;
2631 
2632 	if (cpufreq_driver->boost_enabled == state)
2633 		return 0;
2634 
2635 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2636 	cpufreq_driver->boost_enabled = state;
2637 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2638 
2639 	get_online_cpus();
2640 	for_each_active_policy(policy) {
2641 		ret = cpufreq_driver->set_boost(policy, state);
2642 		if (ret)
2643 			goto err_reset_state;
2644 	}
2645 	put_online_cpus();
2646 
2647 	return 0;
2648 
2649 err_reset_state:
2650 	put_online_cpus();
2651 
2652 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2653 	cpufreq_driver->boost_enabled = !state;
2654 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2655 
2656 	pr_err("%s: Cannot %s BOOST\n",
2657 	       __func__, state ? "enable" : "disable");
2658 
2659 	return ret;
2660 }
2661 
cpufreq_boost_supported(void)2662 static bool cpufreq_boost_supported(void)
2663 {
2664 	return cpufreq_driver->set_boost;
2665 }
2666 
create_boost_sysfs_file(void)2667 static int create_boost_sysfs_file(void)
2668 {
2669 	int ret;
2670 
2671 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2672 	if (ret)
2673 		pr_err("%s: cannot register global BOOST sysfs file\n",
2674 		       __func__);
2675 
2676 	return ret;
2677 }
2678 
remove_boost_sysfs_file(void)2679 static void remove_boost_sysfs_file(void)
2680 {
2681 	if (cpufreq_boost_supported())
2682 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2683 }
2684 
cpufreq_enable_boost_support(void)2685 int cpufreq_enable_boost_support(void)
2686 {
2687 	if (!cpufreq_driver)
2688 		return -EINVAL;
2689 
2690 	if (cpufreq_boost_supported())
2691 		return 0;
2692 
2693 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2694 
2695 	/* This will get removed on driver unregister */
2696 	return create_boost_sysfs_file();
2697 }
2698 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2699 
cpufreq_boost_enabled(void)2700 int cpufreq_boost_enabled(void)
2701 {
2702 	return cpufreq_driver->boost_enabled;
2703 }
2704 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2705 
2706 /*********************************************************************
2707  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2708  *********************************************************************/
2709 static enum cpuhp_state hp_online;
2710 
cpuhp_cpufreq_online(unsigned int cpu)2711 static int cpuhp_cpufreq_online(unsigned int cpu)
2712 {
2713 	cpufreq_online(cpu);
2714 
2715 	return 0;
2716 }
2717 
cpuhp_cpufreq_offline(unsigned int cpu)2718 static int cpuhp_cpufreq_offline(unsigned int cpu)
2719 {
2720 	cpufreq_offline(cpu);
2721 
2722 	return 0;
2723 }
2724 
2725 /**
2726  * cpufreq_register_driver - register a CPU Frequency driver
2727  * @driver_data: A struct cpufreq_driver containing the values#
2728  * submitted by the CPU Frequency driver.
2729  *
2730  * Registers a CPU Frequency driver to this core code. This code
2731  * returns zero on success, -EEXIST when another driver got here first
2732  * (and isn't unregistered in the meantime).
2733  *
2734  */
cpufreq_register_driver(struct cpufreq_driver *driver_data)2735 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2736 {
2737 	unsigned long flags;
2738 	int ret;
2739 
2740 	if (cpufreq_disabled())
2741 		return -ENODEV;
2742 
2743 	/*
2744 	 * The cpufreq core depends heavily on the availability of device
2745 	 * structure, make sure they are available before proceeding further.
2746 	 */
2747 	if (!get_cpu_device(0))
2748 		return -EPROBE_DEFER;
2749 
2750 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2751 	    !(driver_data->setpolicy || driver_data->target_index ||
2752 		    driver_data->target) ||
2753 	     (driver_data->setpolicy && (driver_data->target_index ||
2754 		    driver_data->target)) ||
2755 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2756 	     (!driver_data->online != !driver_data->offline))
2757 		return -EINVAL;
2758 
2759 	pr_debug("trying to register driver %s\n", driver_data->name);
2760 
2761 	/* Protect against concurrent CPU online/offline. */
2762 	cpus_read_lock();
2763 
2764 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2765 	if (cpufreq_driver) {
2766 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2767 		ret = -EEXIST;
2768 		goto out;
2769 	}
2770 	cpufreq_driver = driver_data;
2771 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2772 
2773 	/*
2774 	 * Mark support for the scheduler's frequency invariance engine for
2775 	 * drivers that implement target(), target_index() or fast_switch().
2776 	 */
2777 	if (!cpufreq_driver->setpolicy) {
2778 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2779 		pr_debug("supports frequency invariance");
2780 	}
2781 
2782 	if (driver_data->setpolicy)
2783 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2784 
2785 	if (cpufreq_boost_supported()) {
2786 		ret = create_boost_sysfs_file();
2787 		if (ret)
2788 			goto err_null_driver;
2789 	}
2790 
2791 	ret = subsys_interface_register(&cpufreq_interface);
2792 	if (ret)
2793 		goto err_boost_unreg;
2794 
2795 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2796 	    list_empty(&cpufreq_policy_list)) {
2797 		/* if all ->init() calls failed, unregister */
2798 		ret = -ENODEV;
2799 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2800 			 driver_data->name);
2801 		goto err_if_unreg;
2802 	}
2803 
2804 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2805 						   "cpufreq:online",
2806 						   cpuhp_cpufreq_online,
2807 						   cpuhp_cpufreq_offline);
2808 	if (ret < 0)
2809 		goto err_if_unreg;
2810 	hp_online = ret;
2811 	ret = 0;
2812 
2813 	pr_debug("driver %s up and running\n", driver_data->name);
2814 	goto out;
2815 
2816 err_if_unreg:
2817 	subsys_interface_unregister(&cpufreq_interface);
2818 err_boost_unreg:
2819 	remove_boost_sysfs_file();
2820 err_null_driver:
2821 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2822 	cpufreq_driver = NULL;
2823 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2824 out:
2825 	cpus_read_unlock();
2826 	return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2829 
2830 /*
2831  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2832  *
2833  * Unregister the current CPUFreq driver. Only call this if you have
2834  * the right to do so, i.e. if you have succeeded in initialising before!
2835  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2836  * currently not initialised.
2837  */
cpufreq_unregister_driver(struct cpufreq_driver *driver)2838 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2839 {
2840 	unsigned long flags;
2841 
2842 	if (!cpufreq_driver || (driver != cpufreq_driver))
2843 		return -EINVAL;
2844 
2845 	pr_debug("unregistering driver %s\n", driver->name);
2846 
2847 	/* Protect against concurrent cpu hotplug */
2848 	cpus_read_lock();
2849 	subsys_interface_unregister(&cpufreq_interface);
2850 	remove_boost_sysfs_file();
2851 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2852 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2853 
2854 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2855 
2856 	cpufreq_driver = NULL;
2857 
2858 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2859 	cpus_read_unlock();
2860 
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2864 
cpufreq_core_init(void)2865 static int __init cpufreq_core_init(void)
2866 {
2867 	struct cpufreq_governor *gov = cpufreq_default_governor();
2868 
2869 	if (cpufreq_disabled())
2870 		return -ENODEV;
2871 
2872 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2873 	BUG_ON(!cpufreq_global_kobject);
2874 
2875 	if (!strlen(default_governor))
2876 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2877 
2878 	return 0;
2879 }
2880 module_param(off, int, 0444);
2881 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2882 core_initcall(cpufreq_core_init);
2883