1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 static char default_governor[CPUFREQ_NAME_LEN];
54
55 /*
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)65 bool cpufreq_supports_freq_invariance(void)
66 {
67 return static_branch_likely(&cpufreq_freq_invariance);
68 }
69
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72
has_target(void)73 static inline bool has_target(void)
74 {
75 return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 struct cpufreq_governor *new_gov,
85 unsigned int new_pol);
86
87 /*
88 * Two notifier lists: the "policy" list is involved in the
89 * validation process for a new CPU frequency policy; the
90 * "transition" list for kernel code that needs to handle
91 * changes to devices when the CPU clock speed changes.
92 * The mutex locks both lists.
93 */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96
97 static int off __read_mostly;
cpufreq_disabled(void)98 static int cpufreq_disabled(void)
99 {
100 return off;
101 }
disable_cpufreq(void)102 void disable_cpufreq(void)
103 {
104 off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107
have_governor_per_policy(void)108 bool have_governor_per_policy(void)
109 {
110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113
114 static struct kobject *cpufreq_global_kobject;
115
get_governor_parent_kobj(struct cpufreq_policy *policy)116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 if (have_governor_per_policy())
119 return &policy->kobj;
120 else
121 return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124
get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 struct kernel_cpustat kcpustat;
128 u64 cur_wall_time;
129 u64 idle_time;
130 u64 busy_time;
131
132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133
134 kcpustat_cpu_fetch(&kcpustat, cpu);
135
136 busy_time = kcpustat.cpustat[CPUTIME_USER];
137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 busy_time += kcpustat.cpustat[CPUTIME_NICE];
142
143 idle_time = cur_wall_time - busy_time;
144 if (wall)
145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146
147 return div_u64(idle_time, NSEC_PER_USEC);
148 }
149
get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153
154 if (idle_time == -1ULL)
155 return get_cpu_idle_time_jiffy(cpu, wall);
156 else if (!io_busy)
157 idle_time += get_cpu_iowait_time_us(cpu, wall);
158
159 return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162
163 /*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
cpufreq_generic_init(struct cpufreq_policy *policy, struct cpufreq_frequency_table *table, unsigned int transition_latency)170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173 {
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
cpufreq_cpu_get(unsigned int cpu)218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
cpufreq_cpu_put(struct cpufreq_policy *policy)246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
cpufreq_cpu_release(struct cpufreq_policy *policy)256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266 }
267
268 /**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
cpufreq_cpu_acquire(unsigned int cpu)280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295 }
296
297 /*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301 /*
302 * adjust_jiffies - adjust the system "loops_per_jiffy"
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330 #endif
331 }
332
333 /**
334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and the "adjust_jiffies"
340 * function. It is called twice on all CPU frequency changes that have
341 * external effects.
342 */
cpufreq_notify_transition(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, unsigned int state)343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346 {
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
cpufreq_freq_transition_begin(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409 {
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422 wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
cpufreq_freq_transition_end(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 arch_set_freq_scale(policy->related_cpus,
450 policy->cur,
451 policy->cpuinfo.max_freq);
452
453 spin_lock(&policy->transition_lock);
454 policy->transition_ongoing = false;
455 policy->transition_task = NULL;
456 spin_unlock(&policy->transition_lock);
457
458 wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461
462 /*
463 * Fast frequency switching status count. Positive means "enabled", negative
464 * means "disabled" and 0 means "not decided yet".
465 */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468
cpufreq_list_transition_notifiers(void)469 static void cpufreq_list_transition_notifiers(void)
470 {
471 struct notifier_block *nb;
472
473 pr_info("Registered transition notifiers:\n");
474
475 mutex_lock(&cpufreq_transition_notifier_list.mutex);
476
477 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478 pr_info("%pS\n", nb->notifier_call);
479
480 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482
483 /**
484 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485 * @policy: cpufreq policy to enable fast frequency switching for.
486 *
487 * Try to enable fast frequency switching for @policy.
488 *
489 * The attempt will fail if there is at least one transition notifier registered
490 * at this point, as fast frequency switching is quite fundamentally at odds
491 * with transition notifiers. Thus if successful, it will make registration of
492 * transition notifiers fail going forward.
493 */
cpufreq_enable_fast_switch(struct cpufreq_policy *policy)494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496 lockdep_assert_held(&policy->rwsem);
497
498 if (!policy->fast_switch_possible)
499 return;
500
501 mutex_lock(&cpufreq_fast_switch_lock);
502 if (cpufreq_fast_switch_count >= 0) {
503 cpufreq_fast_switch_count++;
504 policy->fast_switch_enabled = true;
505 } else {
506 pr_warn("CPU%u: Fast frequency switching not enabled\n",
507 policy->cpu);
508 cpufreq_list_transition_notifiers();
509 }
510 mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513
514 /**
515 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516 * @policy: cpufreq policy to disable fast frequency switching for.
517 */
cpufreq_disable_fast_switch(struct cpufreq_policy *policy)518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520 mutex_lock(&cpufreq_fast_switch_lock);
521 if (policy->fast_switch_enabled) {
522 policy->fast_switch_enabled = false;
523 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524 cpufreq_fast_switch_count--;
525 }
526 mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529
530 /**
531 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
532 * one.
533 * @policy: associated policy to interrogate
534 * @target_freq: target frequency to resolve.
535 *
536 * The target to driver frequency mapping is cached in the policy.
537 *
538 * Return: Lowest driver-supported frequency greater than or equal to the
539 * given target_freq, subject to policy (min/max) and driver limitations.
540 */
cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, unsigned int target_freq)541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 unsigned int target_freq)
543 {
544 target_freq = clamp_val(target_freq, policy->min, policy->max);
545 policy->cached_target_freq = target_freq;
546
547 if (cpufreq_driver->target_index) {
548 unsigned int idx;
549
550 idx = cpufreq_frequency_table_target(policy, target_freq,
551 CPUFREQ_RELATION_L);
552 policy->cached_resolved_idx = idx;
553 return policy->freq_table[idx].frequency;
554 }
555
556 if (cpufreq_driver->resolve_freq)
557 return cpufreq_driver->resolve_freq(policy, target_freq);
558
559 return target_freq;
560 }
561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562
cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564 {
565 unsigned int latency;
566
567 if (policy->transition_delay_us)
568 return policy->transition_delay_us;
569
570 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 if (latency) {
572 /*
573 * For platforms that can change the frequency very fast (< 10
574 * us), the above formula gives a decent transition delay. But
575 * for platforms where transition_latency is in milliseconds, it
576 * ends up giving unrealistic values.
577 *
578 * Cap the default transition delay to 10 ms, which seems to be
579 * a reasonable amount of time after which we should reevaluate
580 * the frequency.
581 */
582 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 }
584
585 return LATENCY_MULTIPLIER;
586 }
587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588
589 /*********************************************************************
590 * SYSFS INTERFACE *
591 *********************************************************************/
show_boost(struct kobject *kobj, struct kobj_attribute *attr, char *buf)592 static ssize_t show_boost(struct kobject *kobj,
593 struct kobj_attribute *attr, char *buf)
594 {
595 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596 }
597
store_boost(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count)598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 const char *buf, size_t count)
600 {
601 int ret, enable;
602
603 ret = sscanf(buf, "%d", &enable);
604 if (ret != 1 || enable < 0 || enable > 1)
605 return -EINVAL;
606
607 if (cpufreq_boost_trigger_state(enable)) {
608 pr_err("%s: Cannot %s BOOST!\n",
609 __func__, enable ? "enable" : "disable");
610 return -EINVAL;
611 }
612
613 pr_debug("%s: cpufreq BOOST %s\n",
614 __func__, enable ? "enabled" : "disabled");
615
616 return count;
617 }
618 define_one_global_rw(boost);
619
find_governor(const char *str_governor)620 static struct cpufreq_governor *find_governor(const char *str_governor)
621 {
622 struct cpufreq_governor *t;
623
624 for_each_governor(t)
625 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 return t;
627
628 return NULL;
629 }
630
get_governor(const char *str_governor)631 static struct cpufreq_governor *get_governor(const char *str_governor)
632 {
633 struct cpufreq_governor *t;
634
635 mutex_lock(&cpufreq_governor_mutex);
636 t = find_governor(str_governor);
637 if (!t)
638 goto unlock;
639
640 if (!try_module_get(t->owner))
641 t = NULL;
642
643 unlock:
644 mutex_unlock(&cpufreq_governor_mutex);
645
646 return t;
647 }
648
cpufreq_parse_policy(char *str_governor)649 static unsigned int cpufreq_parse_policy(char *str_governor)
650 {
651 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 return CPUFREQ_POLICY_PERFORMANCE;
653
654 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 return CPUFREQ_POLICY_POWERSAVE;
656
657 return CPUFREQ_POLICY_UNKNOWN;
658 }
659
660 /**
661 * cpufreq_parse_governor - parse a governor string only for has_target()
662 * @str_governor: Governor name.
663 */
cpufreq_parse_governor(char *str_governor)664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665 {
666 struct cpufreq_governor *t;
667
668 t = get_governor(str_governor);
669 if (t)
670 return t;
671
672 if (request_module("cpufreq_%s", str_governor))
673 return NULL;
674
675 return get_governor(str_governor);
676 }
677
678 /*
679 * cpufreq_per_cpu_attr_read() / show_##file_name() -
680 * print out cpufreq information
681 *
682 * Write out information from cpufreq_driver->policy[cpu]; object must be
683 * "unsigned int".
684 */
685
686 #define show_one(file_name, object) \
687 static ssize_t show_##file_name \
688 (struct cpufreq_policy *policy, char *buf) \
689 { \
690 return sprintf(buf, "%u\n", policy->object); \
691 }
692
693 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696 show_one(scaling_min_freq, min);
697 show_one(scaling_max_freq, max);
698
arch_freq_get_on_cpu(int cpu)699 __weak unsigned int arch_freq_get_on_cpu(int cpu)
700 {
701 return 0;
702 }
703
show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705 {
706 ssize_t ret;
707 unsigned int freq;
708
709 freq = arch_freq_get_on_cpu(policy->cpu);
710 if (freq)
711 ret = sprintf(buf, "%u\n", freq);
712 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
713 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
714 else
715 ret = sprintf(buf, "%u\n", policy->cur);
716 return ret;
717 }
718
719 /*
720 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
721 */
722 #define store_one(file_name, object) \
723 static ssize_t store_##file_name \
724 (struct cpufreq_policy *policy, const char *buf, size_t count) \
725 { \
726 unsigned long val; \
727 int ret; \
728 \
729 ret = sscanf(buf, "%lu", &val); \
730 if (ret != 1) \
731 return -EINVAL; \
732 \
733 ret = freq_qos_update_request(policy->object##_freq_req, val);\
734 return ret >= 0 ? count : ret; \
735 }
736
737 store_one(scaling_min_freq, min);
738 store_one(scaling_max_freq, max);
739
740 /*
741 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
742 */
show_cpuinfo_cur_freq(struct cpufreq_policy *policy, char *buf)743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
744 char *buf)
745 {
746 unsigned int cur_freq = __cpufreq_get(policy);
747
748 if (cur_freq)
749 return sprintf(buf, "%u\n", cur_freq);
750
751 return sprintf(buf, "<unknown>\n");
752 }
753
754 /*
755 * show_scaling_governor - show the current policy for the specified CPU
756 */
show_scaling_governor(struct cpufreq_policy *policy, char *buf)757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
758 {
759 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
760 return sprintf(buf, "powersave\n");
761 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
762 return sprintf(buf, "performance\n");
763 else if (policy->governor)
764 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
765 policy->governor->name);
766 return -EINVAL;
767 }
768
769 /*
770 * store_scaling_governor - store policy for the specified CPU
771 */
store_scaling_governor(struct cpufreq_policy *policy, const char *buf, size_t count)772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
773 const char *buf, size_t count)
774 {
775 char str_governor[16];
776 int ret;
777
778 ret = sscanf(buf, "%15s", str_governor);
779 if (ret != 1)
780 return -EINVAL;
781
782 if (cpufreq_driver->setpolicy) {
783 unsigned int new_pol;
784
785 new_pol = cpufreq_parse_policy(str_governor);
786 if (!new_pol)
787 return -EINVAL;
788
789 ret = cpufreq_set_policy(policy, NULL, new_pol);
790 } else {
791 struct cpufreq_governor *new_gov;
792
793 new_gov = cpufreq_parse_governor(str_governor);
794 if (!new_gov)
795 return -EINVAL;
796
797 ret = cpufreq_set_policy(policy, new_gov,
798 CPUFREQ_POLICY_UNKNOWN);
799
800 module_put(new_gov->owner);
801 }
802
803 return ret ? ret : count;
804 }
805
806 /*
807 * show_scaling_driver - show the cpufreq driver currently loaded
808 */
show_scaling_driver(struct cpufreq_policy *policy, char *buf)809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
810 {
811 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
812 }
813
814 /*
815 * show_scaling_available_governors - show the available CPUfreq governors
816 */
show_scaling_available_governors(struct cpufreq_policy *policy, char *buf)817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
818 char *buf)
819 {
820 ssize_t i = 0;
821 struct cpufreq_governor *t;
822
823 if (!has_target()) {
824 i += sprintf(buf, "performance powersave");
825 goto out;
826 }
827
828 mutex_lock(&cpufreq_governor_mutex);
829 for_each_governor(t) {
830 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
831 - (CPUFREQ_NAME_LEN + 2)))
832 break;
833 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
834 }
835 mutex_unlock(&cpufreq_governor_mutex);
836 out:
837 i += sprintf(&buf[i], "\n");
838 return i;
839 }
840
cpufreq_show_cpus(const struct cpumask *mask, char *buf)841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
842 {
843 ssize_t i = 0;
844 unsigned int cpu;
845
846 for_each_cpu(cpu, mask) {
847 if (i)
848 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
849 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
850 if (i >= (PAGE_SIZE - 5))
851 break;
852 }
853 i += sprintf(&buf[i], "\n");
854 return i;
855 }
856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
857
858 /*
859 * show_related_cpus - show the CPUs affected by each transition even if
860 * hw coordination is in use
861 */
show_related_cpus(struct cpufreq_policy *policy, char *buf)862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
863 {
864 return cpufreq_show_cpus(policy->related_cpus, buf);
865 }
866
867 /*
868 * show_affected_cpus - show the CPUs affected by each transition
869 */
show_affected_cpus(struct cpufreq_policy *policy, char *buf)870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
871 {
872 return cpufreq_show_cpus(policy->cpus, buf);
873 }
874
store_scaling_setspeed(struct cpufreq_policy *policy, const char *buf, size_t count)875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
876 const char *buf, size_t count)
877 {
878 unsigned int freq = 0;
879 unsigned int ret;
880
881 if (!policy->governor || !policy->governor->store_setspeed)
882 return -EINVAL;
883
884 ret = sscanf(buf, "%u", &freq);
885 if (ret != 1)
886 return -EINVAL;
887
888 policy->governor->store_setspeed(policy, freq);
889
890 return count;
891 }
892
show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
894 {
895 if (!policy->governor || !policy->governor->show_setspeed)
896 return sprintf(buf, "<unsupported>\n");
897
898 return policy->governor->show_setspeed(policy, buf);
899 }
900
901 /*
902 * show_bios_limit - show the current cpufreq HW/BIOS limitation
903 */
show_bios_limit(struct cpufreq_policy *policy, char *buf)904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
905 {
906 unsigned int limit;
907 int ret;
908 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
909 if (!ret)
910 return sprintf(buf, "%u\n", limit);
911 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
912 }
913
914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
915 cpufreq_freq_attr_ro(cpuinfo_min_freq);
916 cpufreq_freq_attr_ro(cpuinfo_max_freq);
917 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
918 cpufreq_freq_attr_ro(scaling_available_governors);
919 cpufreq_freq_attr_ro(scaling_driver);
920 cpufreq_freq_attr_ro(scaling_cur_freq);
921 cpufreq_freq_attr_ro(bios_limit);
922 cpufreq_freq_attr_ro(related_cpus);
923 cpufreq_freq_attr_ro(affected_cpus);
924 cpufreq_freq_attr_rw(scaling_min_freq);
925 cpufreq_freq_attr_rw(scaling_max_freq);
926 cpufreq_freq_attr_rw(scaling_governor);
927 cpufreq_freq_attr_rw(scaling_setspeed);
928
929 static struct attribute *default_attrs[] = {
930 &cpuinfo_min_freq.attr,
931 &cpuinfo_max_freq.attr,
932 &cpuinfo_transition_latency.attr,
933 &scaling_min_freq.attr,
934 &scaling_max_freq.attr,
935 &affected_cpus.attr,
936 &related_cpus.attr,
937 &scaling_governor.attr,
938 &scaling_driver.attr,
939 &scaling_available_governors.attr,
940 &scaling_setspeed.attr,
941 NULL
942 };
943
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946
show(struct kobject *kobj, struct attribute *attr, char *buf)947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949 struct cpufreq_policy *policy = to_policy(kobj);
950 struct freq_attr *fattr = to_attr(attr);
951 ssize_t ret;
952
953 if (!fattr->show)
954 return -EIO;
955
956 down_read(&policy->rwsem);
957 ret = fattr->show(policy, buf);
958 up_read(&policy->rwsem);
959
960 return ret;
961 }
962
store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)963 static ssize_t store(struct kobject *kobj, struct attribute *attr,
964 const char *buf, size_t count)
965 {
966 struct cpufreq_policy *policy = to_policy(kobj);
967 struct freq_attr *fattr = to_attr(attr);
968 ssize_t ret = -EINVAL;
969
970 if (!fattr->store)
971 return -EIO;
972
973 /*
974 * cpus_read_trylock() is used here to work around a circular lock
975 * dependency problem with respect to the cpufreq_register_driver().
976 */
977 if (!cpus_read_trylock())
978 return -EBUSY;
979
980 if (cpu_online(policy->cpu)) {
981 down_write(&policy->rwsem);
982 ret = fattr->store(policy, buf, count);
983 up_write(&policy->rwsem);
984 }
985
986 cpus_read_unlock();
987
988 return ret;
989 }
990
cpufreq_sysfs_release(struct kobject *kobj)991 static void cpufreq_sysfs_release(struct kobject *kobj)
992 {
993 struct cpufreq_policy *policy = to_policy(kobj);
994 pr_debug("last reference is dropped\n");
995 complete(&policy->kobj_unregister);
996 }
997
998 static const struct sysfs_ops sysfs_ops = {
999 .show = show,
1000 .store = store,
1001 };
1002
1003 static struct kobj_type ktype_cpufreq = {
1004 .sysfs_ops = &sysfs_ops,
1005 .default_attrs = default_attrs,
1006 .release = cpufreq_sysfs_release,
1007 };
1008
add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, struct device *dev)1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1010 struct device *dev)
1011 {
1012 if (unlikely(!dev))
1013 return;
1014
1015 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1016 return;
1017
1018 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1019 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1020 dev_err(dev, "cpufreq symlink creation failed\n");
1021 }
1022
remove_cpu_dev_symlink(struct cpufreq_policy *policy, struct device *dev)1023 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1024 struct device *dev)
1025 {
1026 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1027 sysfs_remove_link(&dev->kobj, "cpufreq");
1028 }
1029
cpufreq_add_dev_interface(struct cpufreq_policy *policy)1030 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1031 {
1032 struct freq_attr **drv_attr;
1033 int ret = 0;
1034
1035 /* set up files for this cpu device */
1036 drv_attr = cpufreq_driver->attr;
1037 while (drv_attr && *drv_attr) {
1038 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1039 if (ret)
1040 return ret;
1041 drv_attr++;
1042 }
1043 if (cpufreq_driver->get) {
1044 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1045 if (ret)
1046 return ret;
1047 }
1048
1049 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1050 if (ret)
1051 return ret;
1052
1053 if (cpufreq_driver->bios_limit) {
1054 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1055 if (ret)
1056 return ret;
1057 }
1058
1059 return 0;
1060 }
1061
cpufreq_init_policy(struct cpufreq_policy *policy)1062 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1063 {
1064 struct cpufreq_governor *gov = NULL;
1065 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1066 int ret;
1067
1068 if (has_target()) {
1069 /* Update policy governor to the one used before hotplug. */
1070 gov = get_governor(policy->last_governor);
1071 if (gov) {
1072 pr_debug("Restoring governor %s for cpu %d\n",
1073 gov->name, policy->cpu);
1074 } else {
1075 gov = get_governor(default_governor);
1076 }
1077
1078 if (!gov) {
1079 gov = cpufreq_default_governor();
1080 __module_get(gov->owner);
1081 }
1082
1083 } else {
1084
1085 /* Use the default policy if there is no last_policy. */
1086 if (policy->last_policy) {
1087 pol = policy->last_policy;
1088 } else {
1089 pol = cpufreq_parse_policy(default_governor);
1090 /*
1091 * In case the default governor is neither "performance"
1092 * nor "powersave", fall back to the initial policy
1093 * value set by the driver.
1094 */
1095 if (pol == CPUFREQ_POLICY_UNKNOWN)
1096 pol = policy->policy;
1097 }
1098 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1099 pol != CPUFREQ_POLICY_POWERSAVE)
1100 return -ENODATA;
1101 }
1102
1103 ret = cpufreq_set_policy(policy, gov, pol);
1104 if (gov)
1105 module_put(gov->owner);
1106
1107 return ret;
1108 }
1109
cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)1110 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1111 {
1112 int ret = 0;
1113
1114 /* Has this CPU been taken care of already? */
1115 if (cpumask_test_cpu(cpu, policy->cpus))
1116 return 0;
1117
1118 down_write(&policy->rwsem);
1119 if (has_target())
1120 cpufreq_stop_governor(policy);
1121
1122 cpumask_set_cpu(cpu, policy->cpus);
1123
1124 if (has_target()) {
1125 ret = cpufreq_start_governor(policy);
1126 if (ret)
1127 pr_err("%s: Failed to start governor\n", __func__);
1128 }
1129 up_write(&policy->rwsem);
1130 return ret;
1131 }
1132
refresh_frequency_limits(struct cpufreq_policy *policy)1133 void refresh_frequency_limits(struct cpufreq_policy *policy)
1134 {
1135 if (!policy_is_inactive(policy)) {
1136 pr_debug("updating policy for CPU %u\n", policy->cpu);
1137
1138 cpufreq_set_policy(policy, policy->governor, policy->policy);
1139 }
1140 }
1141 EXPORT_SYMBOL(refresh_frequency_limits);
1142
handle_update(struct work_struct *work)1143 static void handle_update(struct work_struct *work)
1144 {
1145 struct cpufreq_policy *policy =
1146 container_of(work, struct cpufreq_policy, update);
1147
1148 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1149 down_write(&policy->rwsem);
1150 refresh_frequency_limits(policy);
1151 up_write(&policy->rwsem);
1152 }
1153
cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data)1154 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1155 void *data)
1156 {
1157 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1158
1159 schedule_work(&policy->update);
1160 return 0;
1161 }
1162
cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data)1163 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1164 void *data)
1165 {
1166 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1167
1168 schedule_work(&policy->update);
1169 return 0;
1170 }
1171
cpufreq_policy_put_kobj(struct cpufreq_policy *policy)1172 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1173 {
1174 struct kobject *kobj;
1175 struct completion *cmp;
1176
1177 down_write(&policy->rwsem);
1178 cpufreq_stats_free_table(policy);
1179 kobj = &policy->kobj;
1180 cmp = &policy->kobj_unregister;
1181 up_write(&policy->rwsem);
1182 kobject_put(kobj);
1183
1184 /*
1185 * We need to make sure that the underlying kobj is
1186 * actually not referenced anymore by anybody before we
1187 * proceed with unloading.
1188 */
1189 pr_debug("waiting for dropping of refcount\n");
1190 wait_for_completion(cmp);
1191 pr_debug("wait complete\n");
1192 }
1193
cpufreq_policy_alloc(unsigned int cpu)1194 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1195 {
1196 struct cpufreq_policy *policy;
1197 struct device *dev = get_cpu_device(cpu);
1198 int ret;
1199
1200 if (!dev)
1201 return NULL;
1202
1203 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1204 if (!policy)
1205 return NULL;
1206
1207 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1208 goto err_free_policy;
1209
1210 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1211 goto err_free_cpumask;
1212
1213 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1214 goto err_free_rcpumask;
1215
1216 init_completion(&policy->kobj_unregister);
1217 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1218 cpufreq_global_kobject, "policy%u", cpu);
1219 if (ret) {
1220 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1221 /*
1222 * The entire policy object will be freed below, but the extra
1223 * memory allocated for the kobject name needs to be freed by
1224 * releasing the kobject.
1225 */
1226 kobject_put(&policy->kobj);
1227 goto err_free_real_cpus;
1228 }
1229
1230 freq_constraints_init(&policy->constraints);
1231
1232 policy->nb_min.notifier_call = cpufreq_notifier_min;
1233 policy->nb_max.notifier_call = cpufreq_notifier_max;
1234
1235 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1236 &policy->nb_min);
1237 if (ret) {
1238 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1239 ret, cpumask_pr_args(policy->cpus));
1240 goto err_kobj_remove;
1241 }
1242
1243 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1244 &policy->nb_max);
1245 if (ret) {
1246 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1247 ret, cpumask_pr_args(policy->cpus));
1248 goto err_min_qos_notifier;
1249 }
1250
1251 INIT_LIST_HEAD(&policy->policy_list);
1252 init_rwsem(&policy->rwsem);
1253 spin_lock_init(&policy->transition_lock);
1254 init_waitqueue_head(&policy->transition_wait);
1255 INIT_WORK(&policy->update, handle_update);
1256
1257 policy->cpu = cpu;
1258 return policy;
1259
1260 err_min_qos_notifier:
1261 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1262 &policy->nb_min);
1263 err_kobj_remove:
1264 cpufreq_policy_put_kobj(policy);
1265 err_free_real_cpus:
1266 free_cpumask_var(policy->real_cpus);
1267 err_free_rcpumask:
1268 free_cpumask_var(policy->related_cpus);
1269 err_free_cpumask:
1270 free_cpumask_var(policy->cpus);
1271 err_free_policy:
1272 kfree(policy);
1273
1274 return NULL;
1275 }
1276
cpufreq_policy_free(struct cpufreq_policy *policy)1277 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1278 {
1279 unsigned long flags;
1280 int cpu;
1281
1282 /* Remove policy from list */
1283 write_lock_irqsave(&cpufreq_driver_lock, flags);
1284 list_del(&policy->policy_list);
1285
1286 for_each_cpu(cpu, policy->related_cpus)
1287 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1288 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1289
1290 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1291 &policy->nb_max);
1292 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1293 &policy->nb_min);
1294
1295 /* Cancel any pending policy->update work before freeing the policy. */
1296 cancel_work_sync(&policy->update);
1297
1298 if (policy->max_freq_req) {
1299 /*
1300 * CPUFREQ_CREATE_POLICY notification is sent only after
1301 * successfully adding max_freq_req request.
1302 */
1303 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1304 CPUFREQ_REMOVE_POLICY, policy);
1305 freq_qos_remove_request(policy->max_freq_req);
1306 }
1307
1308 freq_qos_remove_request(policy->min_freq_req);
1309 kfree(policy->min_freq_req);
1310
1311 cpufreq_policy_put_kobj(policy);
1312 free_cpumask_var(policy->real_cpus);
1313 free_cpumask_var(policy->related_cpus);
1314 free_cpumask_var(policy->cpus);
1315 kfree(policy);
1316 }
1317
cpufreq_online(unsigned int cpu)1318 static int cpufreq_online(unsigned int cpu)
1319 {
1320 struct cpufreq_policy *policy;
1321 bool new_policy;
1322 unsigned long flags;
1323 unsigned int j;
1324 int ret;
1325
1326 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1327
1328 /* Check if this CPU already has a policy to manage it */
1329 policy = per_cpu(cpufreq_cpu_data, cpu);
1330 if (policy) {
1331 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1332 if (!policy_is_inactive(policy))
1333 return cpufreq_add_policy_cpu(policy, cpu);
1334
1335 /* This is the only online CPU for the policy. Start over. */
1336 new_policy = false;
1337 down_write(&policy->rwsem);
1338 policy->cpu = cpu;
1339 policy->governor = NULL;
1340 up_write(&policy->rwsem);
1341 } else {
1342 new_policy = true;
1343 policy = cpufreq_policy_alloc(cpu);
1344 if (!policy)
1345 return -ENOMEM;
1346 }
1347
1348 if (!new_policy && cpufreq_driver->online) {
1349 ret = cpufreq_driver->online(policy);
1350 if (ret) {
1351 pr_debug("%s: %d: initialization failed\n", __func__,
1352 __LINE__);
1353 goto out_exit_policy;
1354 }
1355
1356 /* Recover policy->cpus using related_cpus */
1357 cpumask_copy(policy->cpus, policy->related_cpus);
1358 } else {
1359 cpumask_copy(policy->cpus, cpumask_of(cpu));
1360
1361 /*
1362 * Call driver. From then on the cpufreq must be able
1363 * to accept all calls to ->verify and ->setpolicy for this CPU.
1364 */
1365 ret = cpufreq_driver->init(policy);
1366 if (ret) {
1367 pr_debug("%s: %d: initialization failed\n", __func__,
1368 __LINE__);
1369 goto out_free_policy;
1370 }
1371
1372 /*
1373 * The initialization has succeeded and the policy is online.
1374 * If there is a problem with its frequency table, take it
1375 * offline and drop it.
1376 */
1377 ret = cpufreq_table_validate_and_sort(policy);
1378 if (ret)
1379 goto out_offline_policy;
1380
1381 /* related_cpus should at least include policy->cpus. */
1382 cpumask_copy(policy->related_cpus, policy->cpus);
1383 }
1384
1385 down_write(&policy->rwsem);
1386 /*
1387 * affected cpus must always be the one, which are online. We aren't
1388 * managing offline cpus here.
1389 */
1390 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1391
1392 if (new_policy) {
1393 for_each_cpu(j, policy->related_cpus) {
1394 per_cpu(cpufreq_cpu_data, j) = policy;
1395 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1396 }
1397
1398 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1399 GFP_KERNEL);
1400 if (!policy->min_freq_req)
1401 goto out_destroy_policy;
1402
1403 ret = freq_qos_add_request(&policy->constraints,
1404 policy->min_freq_req, FREQ_QOS_MIN,
1405 FREQ_QOS_MIN_DEFAULT_VALUE);
1406 if (ret < 0) {
1407 /*
1408 * So we don't call freq_qos_remove_request() for an
1409 * uninitialized request.
1410 */
1411 kfree(policy->min_freq_req);
1412 policy->min_freq_req = NULL;
1413 goto out_destroy_policy;
1414 }
1415
1416 /*
1417 * This must be initialized right here to avoid calling
1418 * freq_qos_remove_request() on uninitialized request in case
1419 * of errors.
1420 */
1421 policy->max_freq_req = policy->min_freq_req + 1;
1422
1423 ret = freq_qos_add_request(&policy->constraints,
1424 policy->max_freq_req, FREQ_QOS_MAX,
1425 FREQ_QOS_MAX_DEFAULT_VALUE);
1426 if (ret < 0) {
1427 policy->max_freq_req = NULL;
1428 goto out_destroy_policy;
1429 }
1430
1431 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1432 CPUFREQ_CREATE_POLICY, policy);
1433 }
1434
1435 if (cpufreq_driver->get && has_target()) {
1436 policy->cur = cpufreq_driver->get(policy->cpu);
1437 if (!policy->cur) {
1438 pr_err("%s: ->get() failed\n", __func__);
1439 goto out_destroy_policy;
1440 }
1441 }
1442
1443 /*
1444 * Sometimes boot loaders set CPU frequency to a value outside of
1445 * frequency table present with cpufreq core. In such cases CPU might be
1446 * unstable if it has to run on that frequency for long duration of time
1447 * and so its better to set it to a frequency which is specified in
1448 * freq-table. This also makes cpufreq stats inconsistent as
1449 * cpufreq-stats would fail to register because current frequency of CPU
1450 * isn't found in freq-table.
1451 *
1452 * Because we don't want this change to effect boot process badly, we go
1453 * for the next freq which is >= policy->cur ('cur' must be set by now,
1454 * otherwise we will end up setting freq to lowest of the table as 'cur'
1455 * is initialized to zero).
1456 *
1457 * We are passing target-freq as "policy->cur - 1" otherwise
1458 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1459 * equal to target-freq.
1460 */
1461 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1462 && has_target()) {
1463 unsigned int old_freq = policy->cur;
1464
1465 /* Are we running at unknown frequency ? */
1466 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1467 if (ret == -EINVAL) {
1468 ret = __cpufreq_driver_target(policy, old_freq - 1,
1469 CPUFREQ_RELATION_L);
1470
1471 /*
1472 * Reaching here after boot in a few seconds may not
1473 * mean that system will remain stable at "unknown"
1474 * frequency for longer duration. Hence, a BUG_ON().
1475 */
1476 BUG_ON(ret);
1477 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1478 __func__, policy->cpu, old_freq, policy->cur);
1479 }
1480 }
1481
1482 if (new_policy) {
1483 ret = cpufreq_add_dev_interface(policy);
1484 if (ret)
1485 goto out_destroy_policy;
1486
1487 cpufreq_stats_create_table(policy);
1488
1489 write_lock_irqsave(&cpufreq_driver_lock, flags);
1490 list_add(&policy->policy_list, &cpufreq_policy_list);
1491 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1492 }
1493
1494 ret = cpufreq_init_policy(policy);
1495 if (ret) {
1496 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1497 __func__, cpu, ret);
1498 goto out_destroy_policy;
1499 }
1500
1501 up_write(&policy->rwsem);
1502
1503 kobject_uevent(&policy->kobj, KOBJ_ADD);
1504
1505 /* Callback for handling stuff after policy is ready */
1506 if (cpufreq_driver->ready)
1507 cpufreq_driver->ready(policy);
1508
1509 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1510 policy->cdev = of_cpufreq_cooling_register(policy);
1511
1512 pr_debug("initialization complete\n");
1513
1514 return 0;
1515
1516 out_destroy_policy:
1517 for_each_cpu(j, policy->real_cpus)
1518 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1519
1520 up_write(&policy->rwsem);
1521
1522 out_offline_policy:
1523 if (cpufreq_driver->offline)
1524 cpufreq_driver->offline(policy);
1525
1526 out_exit_policy:
1527 if (cpufreq_driver->exit)
1528 cpufreq_driver->exit(policy);
1529
1530 out_free_policy:
1531 cpufreq_policy_free(policy);
1532 return ret;
1533 }
1534
1535 /**
1536 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1537 * @dev: CPU device.
1538 * @sif: Subsystem interface structure pointer (not used)
1539 */
cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)1540 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1541 {
1542 struct cpufreq_policy *policy;
1543 unsigned cpu = dev->id;
1544 int ret;
1545
1546 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1547
1548 if (cpu_online(cpu)) {
1549 ret = cpufreq_online(cpu);
1550 if (ret)
1551 return ret;
1552 }
1553
1554 /* Create sysfs link on CPU registration */
1555 policy = per_cpu(cpufreq_cpu_data, cpu);
1556 if (policy)
1557 add_cpu_dev_symlink(policy, cpu, dev);
1558
1559 return 0;
1560 }
1561
__cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)1562 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1563 {
1564 int ret;
1565
1566 if (has_target())
1567 cpufreq_stop_governor(policy);
1568
1569 cpumask_clear_cpu(cpu, policy->cpus);
1570
1571 if (!policy_is_inactive(policy)) {
1572 /* Nominate a new CPU if necessary. */
1573 if (cpu == policy->cpu)
1574 policy->cpu = cpumask_any(policy->cpus);
1575
1576 /* Start the governor again for the active policy. */
1577 if (has_target()) {
1578 ret = cpufreq_start_governor(policy);
1579 if (ret)
1580 pr_err("%s: Failed to start governor\n", __func__);
1581 }
1582
1583 return;
1584 }
1585
1586 if (has_target())
1587 strncpy(policy->last_governor, policy->governor->name,
1588 CPUFREQ_NAME_LEN);
1589 else
1590 policy->last_policy = policy->policy;
1591
1592 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1593 cpufreq_cooling_unregister(policy->cdev);
1594 policy->cdev = NULL;
1595 }
1596
1597 if (cpufreq_driver->stop_cpu)
1598 cpufreq_driver->stop_cpu(policy);
1599
1600 if (has_target())
1601 cpufreq_exit_governor(policy);
1602
1603 /*
1604 * Perform the ->offline() during light-weight tear-down, as
1605 * that allows fast recovery when the CPU comes back.
1606 */
1607 if (cpufreq_driver->offline) {
1608 cpufreq_driver->offline(policy);
1609 return;
1610 }
1611
1612 if (cpufreq_driver->exit)
1613 cpufreq_driver->exit(policy);
1614
1615 policy->freq_table = NULL;
1616 }
1617
cpufreq_offline(unsigned int cpu)1618 static int cpufreq_offline(unsigned int cpu)
1619 {
1620 struct cpufreq_policy *policy;
1621
1622 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1623
1624 policy = cpufreq_cpu_get_raw(cpu);
1625 if (!policy) {
1626 pr_debug("%s: No cpu_data found\n", __func__);
1627 return 0;
1628 }
1629
1630 down_write(&policy->rwsem);
1631
1632 __cpufreq_offline(cpu, policy);
1633
1634 up_write(&policy->rwsem);
1635 return 0;
1636 }
1637
1638 /*
1639 * cpufreq_remove_dev - remove a CPU device
1640 *
1641 * Removes the cpufreq interface for a CPU device.
1642 */
cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1644 {
1645 unsigned int cpu = dev->id;
1646 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1647
1648 if (!policy)
1649 return;
1650
1651 down_write(&policy->rwsem);
1652
1653 if (cpu_online(cpu))
1654 __cpufreq_offline(cpu, policy);
1655
1656 cpumask_clear_cpu(cpu, policy->real_cpus);
1657 remove_cpu_dev_symlink(policy, dev);
1658
1659 if (!cpumask_empty(policy->real_cpus)) {
1660 up_write(&policy->rwsem);
1661 return;
1662 }
1663
1664 /* We did light-weight exit earlier, do full tear down now */
1665 if (cpufreq_driver->offline && cpufreq_driver->exit)
1666 cpufreq_driver->exit(policy);
1667
1668 up_write(&policy->rwsem);
1669
1670 cpufreq_policy_free(policy);
1671 }
1672
1673 /**
1674 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1675 * in deep trouble.
1676 * @policy: policy managing CPUs
1677 * @new_freq: CPU frequency the CPU actually runs at
1678 *
1679 * We adjust to current frequency first, and need to clean up later.
1680 * So either call to cpufreq_update_policy() or schedule handle_update()).
1681 */
cpufreq_out_of_sync(struct cpufreq_policy *policy, unsigned int new_freq)1682 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1683 unsigned int new_freq)
1684 {
1685 struct cpufreq_freqs freqs;
1686
1687 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1688 policy->cur, new_freq);
1689
1690 freqs.old = policy->cur;
1691 freqs.new = new_freq;
1692
1693 cpufreq_freq_transition_begin(policy, &freqs);
1694 cpufreq_freq_transition_end(policy, &freqs, 0);
1695 }
1696
cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)1697 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1698 {
1699 unsigned int new_freq;
1700
1701 new_freq = cpufreq_driver->get(policy->cpu);
1702 if (!new_freq)
1703 return 0;
1704
1705 /*
1706 * If fast frequency switching is used with the given policy, the check
1707 * against policy->cur is pointless, so skip it in that case.
1708 */
1709 if (policy->fast_switch_enabled || !has_target())
1710 return new_freq;
1711
1712 if (policy->cur != new_freq) {
1713 cpufreq_out_of_sync(policy, new_freq);
1714 if (update)
1715 schedule_work(&policy->update);
1716 }
1717
1718 return new_freq;
1719 }
1720
1721 /**
1722 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1723 * @cpu: CPU number
1724 *
1725 * This is the last known freq, without actually getting it from the driver.
1726 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1727 */
cpufreq_quick_get(unsigned int cpu)1728 unsigned int cpufreq_quick_get(unsigned int cpu)
1729 {
1730 struct cpufreq_policy *policy;
1731 unsigned int ret_freq = 0;
1732 unsigned long flags;
1733
1734 read_lock_irqsave(&cpufreq_driver_lock, flags);
1735
1736 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1737 ret_freq = cpufreq_driver->get(cpu);
1738 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1739 return ret_freq;
1740 }
1741
1742 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1743
1744 policy = cpufreq_cpu_get(cpu);
1745 if (policy) {
1746 ret_freq = policy->cur;
1747 cpufreq_cpu_put(policy);
1748 }
1749
1750 return ret_freq;
1751 }
1752 EXPORT_SYMBOL(cpufreq_quick_get);
1753
1754 /**
1755 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1756 * @cpu: CPU number
1757 *
1758 * Just return the max possible frequency for a given CPU.
1759 */
cpufreq_quick_get_max(unsigned int cpu)1760 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1761 {
1762 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1763 unsigned int ret_freq = 0;
1764
1765 if (policy) {
1766 ret_freq = policy->max;
1767 cpufreq_cpu_put(policy);
1768 }
1769
1770 return ret_freq;
1771 }
1772 EXPORT_SYMBOL(cpufreq_quick_get_max);
1773
1774 /**
1775 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1776 * @cpu: CPU number
1777 *
1778 * The default return value is the max_freq field of cpuinfo.
1779 */
cpufreq_get_hw_max_freq(unsigned int cpu)1780 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1781 {
1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 unsigned int ret_freq = 0;
1784
1785 if (policy) {
1786 ret_freq = policy->cpuinfo.max_freq;
1787 cpufreq_cpu_put(policy);
1788 }
1789
1790 return ret_freq;
1791 }
1792 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1793
__cpufreq_get(struct cpufreq_policy *policy)1794 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1795 {
1796 if (unlikely(policy_is_inactive(policy)))
1797 return 0;
1798
1799 return cpufreq_verify_current_freq(policy, true);
1800 }
1801
1802 /**
1803 * cpufreq_get - get the current CPU frequency (in kHz)
1804 * @cpu: CPU number
1805 *
1806 * Get the CPU current (static) CPU frequency
1807 */
cpufreq_get(unsigned int cpu)1808 unsigned int cpufreq_get(unsigned int cpu)
1809 {
1810 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1811 unsigned int ret_freq = 0;
1812
1813 if (policy) {
1814 down_read(&policy->rwsem);
1815 if (cpufreq_driver->get)
1816 ret_freq = __cpufreq_get(policy);
1817 up_read(&policy->rwsem);
1818
1819 cpufreq_cpu_put(policy);
1820 }
1821
1822 return ret_freq;
1823 }
1824 EXPORT_SYMBOL(cpufreq_get);
1825
1826 static struct subsys_interface cpufreq_interface = {
1827 .name = "cpufreq",
1828 .subsys = &cpu_subsys,
1829 .add_dev = cpufreq_add_dev,
1830 .remove_dev = cpufreq_remove_dev,
1831 };
1832
1833 /*
1834 * In case platform wants some specific frequency to be configured
1835 * during suspend..
1836 */
cpufreq_generic_suspend(struct cpufreq_policy *policy)1837 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1838 {
1839 int ret;
1840
1841 if (!policy->suspend_freq) {
1842 pr_debug("%s: suspend_freq not defined\n", __func__);
1843 return 0;
1844 }
1845
1846 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1847 policy->suspend_freq);
1848
1849 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1850 CPUFREQ_RELATION_H);
1851 if (ret)
1852 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1853 __func__, policy->suspend_freq, ret);
1854
1855 return ret;
1856 }
1857 EXPORT_SYMBOL(cpufreq_generic_suspend);
1858
1859 /**
1860 * cpufreq_suspend() - Suspend CPUFreq governors
1861 *
1862 * Called during system wide Suspend/Hibernate cycles for suspending governors
1863 * as some platforms can't change frequency after this point in suspend cycle.
1864 * Because some of the devices (like: i2c, regulators, etc) they use for
1865 * changing frequency are suspended quickly after this point.
1866 */
cpufreq_suspend(void)1867 void cpufreq_suspend(void)
1868 {
1869 struct cpufreq_policy *policy;
1870
1871 if (!cpufreq_driver)
1872 return;
1873
1874 if (!has_target() && !cpufreq_driver->suspend)
1875 goto suspend;
1876
1877 pr_debug("%s: Suspending Governors\n", __func__);
1878
1879 for_each_active_policy(policy) {
1880 if (has_target()) {
1881 down_write(&policy->rwsem);
1882 cpufreq_stop_governor(policy);
1883 up_write(&policy->rwsem);
1884 }
1885
1886 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1887 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1888 cpufreq_driver->name);
1889 }
1890
1891 suspend:
1892 cpufreq_suspended = true;
1893 }
1894
1895 /**
1896 * cpufreq_resume() - Resume CPUFreq governors
1897 *
1898 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1899 * are suspended with cpufreq_suspend().
1900 */
cpufreq_resume(void)1901 void cpufreq_resume(void)
1902 {
1903 struct cpufreq_policy *policy;
1904 int ret;
1905
1906 if (!cpufreq_driver)
1907 return;
1908
1909 if (unlikely(!cpufreq_suspended))
1910 return;
1911
1912 cpufreq_suspended = false;
1913
1914 if (!has_target() && !cpufreq_driver->resume)
1915 return;
1916
1917 pr_debug("%s: Resuming Governors\n", __func__);
1918
1919 for_each_active_policy(policy) {
1920 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1921 pr_err("%s: Failed to resume driver: %p\n", __func__,
1922 policy);
1923 } else if (has_target()) {
1924 down_write(&policy->rwsem);
1925 ret = cpufreq_start_governor(policy);
1926 up_write(&policy->rwsem);
1927
1928 if (ret)
1929 pr_err("%s: Failed to start governor for policy: %p\n",
1930 __func__, policy);
1931 }
1932 }
1933 }
1934
1935 /**
1936 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1937 * @flags: Flags to test against the current cpufreq driver's flags.
1938 *
1939 * Assumes that the driver is there, so callers must ensure that this is the
1940 * case.
1941 */
cpufreq_driver_test_flags(u16 flags)1942 bool cpufreq_driver_test_flags(u16 flags)
1943 {
1944 return !!(cpufreq_driver->flags & flags);
1945 }
1946
1947 /**
1948 * cpufreq_get_current_driver - return current driver's name
1949 *
1950 * Return the name string of the currently loaded cpufreq driver
1951 * or NULL, if none.
1952 */
cpufreq_get_current_driver(void)1953 const char *cpufreq_get_current_driver(void)
1954 {
1955 if (cpufreq_driver)
1956 return cpufreq_driver->name;
1957
1958 return NULL;
1959 }
1960 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1961
1962 /**
1963 * cpufreq_get_driver_data - return current driver data
1964 *
1965 * Return the private data of the currently loaded cpufreq
1966 * driver, or NULL if no cpufreq driver is loaded.
1967 */
cpufreq_get_driver_data(void)1968 void *cpufreq_get_driver_data(void)
1969 {
1970 if (cpufreq_driver)
1971 return cpufreq_driver->driver_data;
1972
1973 return NULL;
1974 }
1975 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1976
1977 /*********************************************************************
1978 * NOTIFIER LISTS INTERFACE *
1979 *********************************************************************/
1980
1981 /**
1982 * cpufreq_register_notifier - register a driver with cpufreq
1983 * @nb: notifier function to register
1984 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1985 *
1986 * Add a driver to one of two lists: either a list of drivers that
1987 * are notified about clock rate changes (once before and once after
1988 * the transition), or a list of drivers that are notified about
1989 * changes in cpufreq policy.
1990 *
1991 * This function may sleep, and has the same return conditions as
1992 * blocking_notifier_chain_register.
1993 */
cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)1994 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1995 {
1996 int ret;
1997
1998 if (cpufreq_disabled())
1999 return -EINVAL;
2000
2001 switch (list) {
2002 case CPUFREQ_TRANSITION_NOTIFIER:
2003 mutex_lock(&cpufreq_fast_switch_lock);
2004
2005 if (cpufreq_fast_switch_count > 0) {
2006 mutex_unlock(&cpufreq_fast_switch_lock);
2007 return -EBUSY;
2008 }
2009 ret = srcu_notifier_chain_register(
2010 &cpufreq_transition_notifier_list, nb);
2011 if (!ret)
2012 cpufreq_fast_switch_count--;
2013
2014 mutex_unlock(&cpufreq_fast_switch_lock);
2015 break;
2016 case CPUFREQ_POLICY_NOTIFIER:
2017 ret = blocking_notifier_chain_register(
2018 &cpufreq_policy_notifier_list, nb);
2019 break;
2020 default:
2021 ret = -EINVAL;
2022 }
2023
2024 return ret;
2025 }
2026 EXPORT_SYMBOL(cpufreq_register_notifier);
2027
2028 /**
2029 * cpufreq_unregister_notifier - unregister a driver with cpufreq
2030 * @nb: notifier block to be unregistered
2031 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2032 *
2033 * Remove a driver from the CPU frequency notifier list.
2034 *
2035 * This function may sleep, and has the same return conditions as
2036 * blocking_notifier_chain_unregister.
2037 */
cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)2038 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2039 {
2040 int ret;
2041
2042 if (cpufreq_disabled())
2043 return -EINVAL;
2044
2045 switch (list) {
2046 case CPUFREQ_TRANSITION_NOTIFIER:
2047 mutex_lock(&cpufreq_fast_switch_lock);
2048
2049 ret = srcu_notifier_chain_unregister(
2050 &cpufreq_transition_notifier_list, nb);
2051 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2052 cpufreq_fast_switch_count++;
2053
2054 mutex_unlock(&cpufreq_fast_switch_lock);
2055 break;
2056 case CPUFREQ_POLICY_NOTIFIER:
2057 ret = blocking_notifier_chain_unregister(
2058 &cpufreq_policy_notifier_list, nb);
2059 break;
2060 default:
2061 ret = -EINVAL;
2062 }
2063
2064 return ret;
2065 }
2066 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2067
2068
2069 /*********************************************************************
2070 * GOVERNORS *
2071 *********************************************************************/
2072
2073 /**
2074 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2075 * @policy: cpufreq policy to switch the frequency for.
2076 * @target_freq: New frequency to set (may be approximate).
2077 *
2078 * Carry out a fast frequency switch without sleeping.
2079 *
2080 * The driver's ->fast_switch() callback invoked by this function must be
2081 * suitable for being called from within RCU-sched read-side critical sections
2082 * and it is expected to select the minimum available frequency greater than or
2083 * equal to @target_freq (CPUFREQ_RELATION_L).
2084 *
2085 * This function must not be called if policy->fast_switch_enabled is unset.
2086 *
2087 * Governors calling this function must guarantee that it will never be invoked
2088 * twice in parallel for the same policy and that it will never be called in
2089 * parallel with either ->target() or ->target_index() for the same policy.
2090 *
2091 * Returns the actual frequency set for the CPU.
2092 *
2093 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2094 * error condition, the hardware configuration must be preserved.
2095 */
cpufreq_driver_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq)2096 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2097 unsigned int target_freq)
2098 {
2099 unsigned int freq;
2100 int cpu;
2101
2102 target_freq = clamp_val(target_freq, policy->min, policy->max);
2103 freq = cpufreq_driver->fast_switch(policy, target_freq);
2104
2105 if (!freq)
2106 return 0;
2107
2108 policy->cur = freq;
2109 arch_set_freq_scale(policy->related_cpus, freq,
2110 policy->cpuinfo.max_freq);
2111 cpufreq_stats_record_transition(policy, freq);
2112
2113 if (trace_cpu_frequency_enabled()) {
2114 for_each_cpu(cpu, policy->cpus)
2115 trace_cpu_frequency(freq, cpu);
2116 }
2117
2118 return freq;
2119 }
2120 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2121
2122 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs, int index)2123 static int __target_intermediate(struct cpufreq_policy *policy,
2124 struct cpufreq_freqs *freqs, int index)
2125 {
2126 int ret;
2127
2128 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2129
2130 /* We don't need to switch to intermediate freq */
2131 if (!freqs->new)
2132 return 0;
2133
2134 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2135 __func__, policy->cpu, freqs->old, freqs->new);
2136
2137 cpufreq_freq_transition_begin(policy, freqs);
2138 ret = cpufreq_driver->target_intermediate(policy, index);
2139 cpufreq_freq_transition_end(policy, freqs, ret);
2140
2141 if (ret)
2142 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2143 __func__, ret);
2144
2145 return ret;
2146 }
2147
__target_index(struct cpufreq_policy *policy, int index)2148 static int __target_index(struct cpufreq_policy *policy, int index)
2149 {
2150 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2151 unsigned int intermediate_freq = 0;
2152 unsigned int newfreq = policy->freq_table[index].frequency;
2153 int retval = -EINVAL;
2154 bool notify;
2155
2156 if (newfreq == policy->cur)
2157 return 0;
2158
2159 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2160 if (notify) {
2161 /* Handle switching to intermediate frequency */
2162 if (cpufreq_driver->get_intermediate) {
2163 retval = __target_intermediate(policy, &freqs, index);
2164 if (retval)
2165 return retval;
2166
2167 intermediate_freq = freqs.new;
2168 /* Set old freq to intermediate */
2169 if (intermediate_freq)
2170 freqs.old = freqs.new;
2171 }
2172
2173 freqs.new = newfreq;
2174 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2175 __func__, policy->cpu, freqs.old, freqs.new);
2176
2177 cpufreq_freq_transition_begin(policy, &freqs);
2178 }
2179
2180 retval = cpufreq_driver->target_index(policy, index);
2181 if (retval)
2182 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2183 retval);
2184
2185 if (notify) {
2186 cpufreq_freq_transition_end(policy, &freqs, retval);
2187
2188 /*
2189 * Failed after setting to intermediate freq? Driver should have
2190 * reverted back to initial frequency and so should we. Check
2191 * here for intermediate_freq instead of get_intermediate, in
2192 * case we haven't switched to intermediate freq at all.
2193 */
2194 if (unlikely(retval && intermediate_freq)) {
2195 freqs.old = intermediate_freq;
2196 freqs.new = policy->restore_freq;
2197 cpufreq_freq_transition_begin(policy, &freqs);
2198 cpufreq_freq_transition_end(policy, &freqs, 0);
2199 }
2200 }
2201
2202 return retval;
2203 }
2204
__cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation)2205 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2206 unsigned int target_freq,
2207 unsigned int relation)
2208 {
2209 unsigned int old_target_freq = target_freq;
2210 int index;
2211
2212 if (cpufreq_disabled())
2213 return -ENODEV;
2214
2215 /* Make sure that target_freq is within supported range */
2216 target_freq = clamp_val(target_freq, policy->min, policy->max);
2217
2218 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2219 policy->cpu, target_freq, relation, old_target_freq);
2220
2221 /*
2222 * This might look like a redundant call as we are checking it again
2223 * after finding index. But it is left intentionally for cases where
2224 * exactly same freq is called again and so we can save on few function
2225 * calls.
2226 */
2227 if (target_freq == policy->cur &&
2228 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2229 return 0;
2230
2231 /* Save last value to restore later on errors */
2232 policy->restore_freq = policy->cur;
2233
2234 if (cpufreq_driver->target)
2235 return cpufreq_driver->target(policy, target_freq, relation);
2236
2237 if (!cpufreq_driver->target_index)
2238 return -EINVAL;
2239
2240 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2241
2242 return __target_index(policy, index);
2243 }
2244 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2245
cpufreq_driver_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation)2246 int cpufreq_driver_target(struct cpufreq_policy *policy,
2247 unsigned int target_freq,
2248 unsigned int relation)
2249 {
2250 int ret;
2251
2252 down_write(&policy->rwsem);
2253
2254 ret = __cpufreq_driver_target(policy, target_freq, relation);
2255
2256 up_write(&policy->rwsem);
2257
2258 return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2261
cpufreq_fallback_governor(void)2262 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2263 {
2264 return NULL;
2265 }
2266
cpufreq_init_governor(struct cpufreq_policy *policy)2267 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2268 {
2269 int ret;
2270
2271 /* Don't start any governor operations if we are entering suspend */
2272 if (cpufreq_suspended)
2273 return 0;
2274 /*
2275 * Governor might not be initiated here if ACPI _PPC changed
2276 * notification happened, so check it.
2277 */
2278 if (!policy->governor)
2279 return -EINVAL;
2280
2281 /* Platform doesn't want dynamic frequency switching ? */
2282 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2283 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2284 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2285
2286 if (gov) {
2287 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2288 policy->governor->name, gov->name);
2289 policy->governor = gov;
2290 } else {
2291 return -EINVAL;
2292 }
2293 }
2294
2295 if (!try_module_get(policy->governor->owner))
2296 return -EINVAL;
2297
2298 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299
2300 if (policy->governor->init) {
2301 ret = policy->governor->init(policy);
2302 if (ret) {
2303 module_put(policy->governor->owner);
2304 return ret;
2305 }
2306 }
2307
2308 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2309
2310 return 0;
2311 }
2312
cpufreq_exit_governor(struct cpufreq_policy *policy)2313 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2314 {
2315 if (cpufreq_suspended || !policy->governor)
2316 return;
2317
2318 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2319
2320 if (policy->governor->exit)
2321 policy->governor->exit(policy);
2322
2323 module_put(policy->governor->owner);
2324 }
2325
cpufreq_start_governor(struct cpufreq_policy *policy)2326 int cpufreq_start_governor(struct cpufreq_policy *policy)
2327 {
2328 int ret;
2329
2330 if (cpufreq_suspended)
2331 return 0;
2332
2333 if (!policy->governor)
2334 return -EINVAL;
2335
2336 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337
2338 if (cpufreq_driver->get)
2339 cpufreq_verify_current_freq(policy, false);
2340
2341 if (policy->governor->start) {
2342 ret = policy->governor->start(policy);
2343 if (ret)
2344 return ret;
2345 }
2346
2347 if (policy->governor->limits)
2348 policy->governor->limits(policy);
2349
2350 return 0;
2351 }
2352
cpufreq_stop_governor(struct cpufreq_policy *policy)2353 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2354 {
2355 if (cpufreq_suspended || !policy->governor)
2356 return;
2357
2358 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2359
2360 if (policy->governor->stop)
2361 policy->governor->stop(policy);
2362 }
2363
cpufreq_governor_limits(struct cpufreq_policy *policy)2364 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2365 {
2366 if (cpufreq_suspended || !policy->governor)
2367 return;
2368
2369 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2370
2371 if (policy->governor->limits)
2372 policy->governor->limits(policy);
2373 }
2374
cpufreq_register_governor(struct cpufreq_governor *governor)2375 int cpufreq_register_governor(struct cpufreq_governor *governor)
2376 {
2377 int err;
2378
2379 if (!governor)
2380 return -EINVAL;
2381
2382 if (cpufreq_disabled())
2383 return -ENODEV;
2384
2385 mutex_lock(&cpufreq_governor_mutex);
2386
2387 err = -EBUSY;
2388 if (!find_governor(governor->name)) {
2389 err = 0;
2390 list_add(&governor->governor_list, &cpufreq_governor_list);
2391 }
2392
2393 mutex_unlock(&cpufreq_governor_mutex);
2394 return err;
2395 }
2396 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2397
cpufreq_unregister_governor(struct cpufreq_governor *governor)2398 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2399 {
2400 struct cpufreq_policy *policy;
2401 unsigned long flags;
2402
2403 if (!governor)
2404 return;
2405
2406 if (cpufreq_disabled())
2407 return;
2408
2409 /* clear last_governor for all inactive policies */
2410 read_lock_irqsave(&cpufreq_driver_lock, flags);
2411 for_each_inactive_policy(policy) {
2412 if (!strcmp(policy->last_governor, governor->name)) {
2413 policy->governor = NULL;
2414 strcpy(policy->last_governor, "\0");
2415 }
2416 }
2417 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2418
2419 mutex_lock(&cpufreq_governor_mutex);
2420 list_del(&governor->governor_list);
2421 mutex_unlock(&cpufreq_governor_mutex);
2422 }
2423 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2424
2425
2426 /*********************************************************************
2427 * POLICY INTERFACE *
2428 *********************************************************************/
2429
2430 /**
2431 * cpufreq_get_policy - get the current cpufreq_policy
2432 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2433 * is written
2434 * @cpu: CPU to find the policy for
2435 *
2436 * Reads the current cpufreq policy.
2437 */
cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)2438 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2439 {
2440 struct cpufreq_policy *cpu_policy;
2441 if (!policy)
2442 return -EINVAL;
2443
2444 cpu_policy = cpufreq_cpu_get(cpu);
2445 if (!cpu_policy)
2446 return -EINVAL;
2447
2448 memcpy(policy, cpu_policy, sizeof(*policy));
2449
2450 cpufreq_cpu_put(cpu_policy);
2451 return 0;
2452 }
2453 EXPORT_SYMBOL(cpufreq_get_policy);
2454
2455 /**
2456 * cpufreq_set_policy - Modify cpufreq policy parameters.
2457 * @policy: Policy object to modify.
2458 * @new_gov: Policy governor pointer.
2459 * @new_pol: Policy value (for drivers with built-in governors).
2460 *
2461 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2462 * limits to be set for the policy, update @policy with the verified limits
2463 * values and either invoke the driver's ->setpolicy() callback (if present) or
2464 * carry out a governor update for @policy. That is, run the current governor's
2465 * ->limits() callback (if @new_gov points to the same object as the one in
2466 * @policy) or replace the governor for @policy with @new_gov.
2467 *
2468 * The cpuinfo part of @policy is not updated by this function.
2469 */
cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol)2470 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2471 struct cpufreq_governor *new_gov,
2472 unsigned int new_pol)
2473 {
2474 struct cpufreq_policy_data new_data;
2475 struct cpufreq_governor *old_gov;
2476 int ret;
2477
2478 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2479 new_data.freq_table = policy->freq_table;
2480 new_data.cpu = policy->cpu;
2481 /*
2482 * PM QoS framework collects all the requests from users and provide us
2483 * the final aggregated value here.
2484 */
2485 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2486 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2487
2488 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2489 new_data.cpu, new_data.min, new_data.max);
2490
2491 /*
2492 * Verify that the CPU speed can be set within these limits and make sure
2493 * that min <= max.
2494 */
2495 ret = cpufreq_driver->verify(&new_data);
2496 if (ret)
2497 return ret;
2498
2499 policy->min = new_data.min;
2500 policy->max = new_data.max;
2501 trace_cpu_frequency_limits(policy);
2502
2503 policy->cached_target_freq = UINT_MAX;
2504
2505 pr_debug("new min and max freqs are %u - %u kHz\n",
2506 policy->min, policy->max);
2507
2508 if (cpufreq_driver->setpolicy) {
2509 policy->policy = new_pol;
2510 pr_debug("setting range\n");
2511 return cpufreq_driver->setpolicy(policy);
2512 }
2513
2514 if (new_gov == policy->governor) {
2515 pr_debug("governor limits update\n");
2516 cpufreq_governor_limits(policy);
2517 return 0;
2518 }
2519
2520 pr_debug("governor switch\n");
2521
2522 /* save old, working values */
2523 old_gov = policy->governor;
2524 /* end old governor */
2525 if (old_gov) {
2526 cpufreq_stop_governor(policy);
2527 cpufreq_exit_governor(policy);
2528 }
2529
2530 /* start new governor */
2531 policy->governor = new_gov;
2532 ret = cpufreq_init_governor(policy);
2533 if (!ret) {
2534 ret = cpufreq_start_governor(policy);
2535 if (!ret) {
2536 pr_debug("governor change\n");
2537 sched_cpufreq_governor_change(policy, old_gov);
2538 return 0;
2539 }
2540 cpufreq_exit_governor(policy);
2541 }
2542
2543 /* new governor failed, so re-start old one */
2544 pr_debug("starting governor %s failed\n", policy->governor->name);
2545 if (old_gov) {
2546 policy->governor = old_gov;
2547 if (cpufreq_init_governor(policy))
2548 policy->governor = NULL;
2549 else
2550 cpufreq_start_governor(policy);
2551 }
2552
2553 return ret;
2554 }
2555
2556 /**
2557 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2558 * @cpu: CPU to re-evaluate the policy for.
2559 *
2560 * Update the current frequency for the cpufreq policy of @cpu and use
2561 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2562 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2563 * for the policy in question, among other things.
2564 */
cpufreq_update_policy(unsigned int cpu)2565 void cpufreq_update_policy(unsigned int cpu)
2566 {
2567 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2568
2569 if (!policy)
2570 return;
2571
2572 /*
2573 * BIOS might change freq behind our back
2574 * -> ask driver for current freq and notify governors about a change
2575 */
2576 if (cpufreq_driver->get && has_target() &&
2577 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2578 goto unlock;
2579
2580 refresh_frequency_limits(policy);
2581
2582 unlock:
2583 cpufreq_cpu_release(policy);
2584 }
2585 EXPORT_SYMBOL(cpufreq_update_policy);
2586
2587 /**
2588 * cpufreq_update_limits - Update policy limits for a given CPU.
2589 * @cpu: CPU to update the policy limits for.
2590 *
2591 * Invoke the driver's ->update_limits callback if present or call
2592 * cpufreq_update_policy() for @cpu.
2593 */
cpufreq_update_limits(unsigned int cpu)2594 void cpufreq_update_limits(unsigned int cpu)
2595 {
2596 if (cpufreq_driver->update_limits)
2597 cpufreq_driver->update_limits(cpu);
2598 else
2599 cpufreq_update_policy(cpu);
2600 }
2601 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2602
2603 /*********************************************************************
2604 * BOOST *
2605 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)2606 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2607 {
2608 int ret;
2609
2610 if (!policy->freq_table)
2611 return -ENXIO;
2612
2613 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2614 if (ret) {
2615 pr_err("%s: Policy frequency update failed\n", __func__);
2616 return ret;
2617 }
2618
2619 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2620 if (ret < 0)
2621 return ret;
2622
2623 return 0;
2624 }
2625
cpufreq_boost_trigger_state(int state)2626 int cpufreq_boost_trigger_state(int state)
2627 {
2628 struct cpufreq_policy *policy;
2629 unsigned long flags;
2630 int ret = 0;
2631
2632 if (cpufreq_driver->boost_enabled == state)
2633 return 0;
2634
2635 write_lock_irqsave(&cpufreq_driver_lock, flags);
2636 cpufreq_driver->boost_enabled = state;
2637 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2638
2639 get_online_cpus();
2640 for_each_active_policy(policy) {
2641 ret = cpufreq_driver->set_boost(policy, state);
2642 if (ret)
2643 goto err_reset_state;
2644 }
2645 put_online_cpus();
2646
2647 return 0;
2648
2649 err_reset_state:
2650 put_online_cpus();
2651
2652 write_lock_irqsave(&cpufreq_driver_lock, flags);
2653 cpufreq_driver->boost_enabled = !state;
2654 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2655
2656 pr_err("%s: Cannot %s BOOST\n",
2657 __func__, state ? "enable" : "disable");
2658
2659 return ret;
2660 }
2661
cpufreq_boost_supported(void)2662 static bool cpufreq_boost_supported(void)
2663 {
2664 return cpufreq_driver->set_boost;
2665 }
2666
create_boost_sysfs_file(void)2667 static int create_boost_sysfs_file(void)
2668 {
2669 int ret;
2670
2671 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2672 if (ret)
2673 pr_err("%s: cannot register global BOOST sysfs file\n",
2674 __func__);
2675
2676 return ret;
2677 }
2678
remove_boost_sysfs_file(void)2679 static void remove_boost_sysfs_file(void)
2680 {
2681 if (cpufreq_boost_supported())
2682 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2683 }
2684
cpufreq_enable_boost_support(void)2685 int cpufreq_enable_boost_support(void)
2686 {
2687 if (!cpufreq_driver)
2688 return -EINVAL;
2689
2690 if (cpufreq_boost_supported())
2691 return 0;
2692
2693 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2694
2695 /* This will get removed on driver unregister */
2696 return create_boost_sysfs_file();
2697 }
2698 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2699
cpufreq_boost_enabled(void)2700 int cpufreq_boost_enabled(void)
2701 {
2702 return cpufreq_driver->boost_enabled;
2703 }
2704 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2705
2706 /*********************************************************************
2707 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2708 *********************************************************************/
2709 static enum cpuhp_state hp_online;
2710
cpuhp_cpufreq_online(unsigned int cpu)2711 static int cpuhp_cpufreq_online(unsigned int cpu)
2712 {
2713 cpufreq_online(cpu);
2714
2715 return 0;
2716 }
2717
cpuhp_cpufreq_offline(unsigned int cpu)2718 static int cpuhp_cpufreq_offline(unsigned int cpu)
2719 {
2720 cpufreq_offline(cpu);
2721
2722 return 0;
2723 }
2724
2725 /**
2726 * cpufreq_register_driver - register a CPU Frequency driver
2727 * @driver_data: A struct cpufreq_driver containing the values#
2728 * submitted by the CPU Frequency driver.
2729 *
2730 * Registers a CPU Frequency driver to this core code. This code
2731 * returns zero on success, -EEXIST when another driver got here first
2732 * (and isn't unregistered in the meantime).
2733 *
2734 */
cpufreq_register_driver(struct cpufreq_driver *driver_data)2735 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2736 {
2737 unsigned long flags;
2738 int ret;
2739
2740 if (cpufreq_disabled())
2741 return -ENODEV;
2742
2743 /*
2744 * The cpufreq core depends heavily on the availability of device
2745 * structure, make sure they are available before proceeding further.
2746 */
2747 if (!get_cpu_device(0))
2748 return -EPROBE_DEFER;
2749
2750 if (!driver_data || !driver_data->verify || !driver_data->init ||
2751 !(driver_data->setpolicy || driver_data->target_index ||
2752 driver_data->target) ||
2753 (driver_data->setpolicy && (driver_data->target_index ||
2754 driver_data->target)) ||
2755 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2756 (!driver_data->online != !driver_data->offline))
2757 return -EINVAL;
2758
2759 pr_debug("trying to register driver %s\n", driver_data->name);
2760
2761 /* Protect against concurrent CPU online/offline. */
2762 cpus_read_lock();
2763
2764 write_lock_irqsave(&cpufreq_driver_lock, flags);
2765 if (cpufreq_driver) {
2766 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2767 ret = -EEXIST;
2768 goto out;
2769 }
2770 cpufreq_driver = driver_data;
2771 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2772
2773 /*
2774 * Mark support for the scheduler's frequency invariance engine for
2775 * drivers that implement target(), target_index() or fast_switch().
2776 */
2777 if (!cpufreq_driver->setpolicy) {
2778 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2779 pr_debug("supports frequency invariance");
2780 }
2781
2782 if (driver_data->setpolicy)
2783 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2784
2785 if (cpufreq_boost_supported()) {
2786 ret = create_boost_sysfs_file();
2787 if (ret)
2788 goto err_null_driver;
2789 }
2790
2791 ret = subsys_interface_register(&cpufreq_interface);
2792 if (ret)
2793 goto err_boost_unreg;
2794
2795 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2796 list_empty(&cpufreq_policy_list)) {
2797 /* if all ->init() calls failed, unregister */
2798 ret = -ENODEV;
2799 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2800 driver_data->name);
2801 goto err_if_unreg;
2802 }
2803
2804 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2805 "cpufreq:online",
2806 cpuhp_cpufreq_online,
2807 cpuhp_cpufreq_offline);
2808 if (ret < 0)
2809 goto err_if_unreg;
2810 hp_online = ret;
2811 ret = 0;
2812
2813 pr_debug("driver %s up and running\n", driver_data->name);
2814 goto out;
2815
2816 err_if_unreg:
2817 subsys_interface_unregister(&cpufreq_interface);
2818 err_boost_unreg:
2819 remove_boost_sysfs_file();
2820 err_null_driver:
2821 write_lock_irqsave(&cpufreq_driver_lock, flags);
2822 cpufreq_driver = NULL;
2823 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2824 out:
2825 cpus_read_unlock();
2826 return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2829
2830 /*
2831 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2832 *
2833 * Unregister the current CPUFreq driver. Only call this if you have
2834 * the right to do so, i.e. if you have succeeded in initialising before!
2835 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2836 * currently not initialised.
2837 */
cpufreq_unregister_driver(struct cpufreq_driver *driver)2838 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2839 {
2840 unsigned long flags;
2841
2842 if (!cpufreq_driver || (driver != cpufreq_driver))
2843 return -EINVAL;
2844
2845 pr_debug("unregistering driver %s\n", driver->name);
2846
2847 /* Protect against concurrent cpu hotplug */
2848 cpus_read_lock();
2849 subsys_interface_unregister(&cpufreq_interface);
2850 remove_boost_sysfs_file();
2851 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2852 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2853
2854 write_lock_irqsave(&cpufreq_driver_lock, flags);
2855
2856 cpufreq_driver = NULL;
2857
2858 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2859 cpus_read_unlock();
2860
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2864
cpufreq_core_init(void)2865 static int __init cpufreq_core_init(void)
2866 {
2867 struct cpufreq_governor *gov = cpufreq_default_governor();
2868
2869 if (cpufreq_disabled())
2870 return -ENODEV;
2871
2872 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2873 BUG_ON(!cpufreq_global_kobject);
2874
2875 if (!strlen(default_governor))
2876 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2877
2878 return 0;
2879 }
2880 module_param(off, int, 0444);
2881 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2882 core_initcall(cpufreq_core_init);
2883