1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 *  Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/ioport.h>
18#include <linux/irq.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/platform_device.h>
23#include <linux/pm_domain.h>
24#include <linux/pm_runtime.h>
25#include <linux/sh_timer.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#ifdef CONFIG_SUPERH
30#include <asm/platform_early.h>
31#endif
32
33struct sh_cmt_device;
34
35/*
36 * The CMT comes in 5 different identified flavours, depending not only on the
37 * SoC but also on the particular instance. The following table lists the main
38 * characteristics of those flavours.
39 *
40 *			16B	32B	32B-F	48B	R-Car Gen2
41 * -----------------------------------------------------------------------------
42 * Channels		2	1/4	1	6	2/8
43 * Control Width	16	16	16	16	32
44 * Counter Width	16	32	32	32/48	32/48
45 * Shared Start/Stop	Y	Y	Y	Y	N
46 *
47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48 * located in the channel registers block. All other versions have a shared
49 * start/stop register located in the global space.
50 *
51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
52 * infers the start/stop bit position in the control register and the channel
53 * registers block address. Some CMT instances have a subset of channels
54 * available, in which case the index in the documentation doesn't match the
55 * "real" index as implemented in hardware. This is for instance the case with
56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57 * in the documentation but using start/stop bit 5 and having its registers
58 * block at 0x60.
59 *
60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62 */
63
64enum sh_cmt_model {
65	SH_CMT_16BIT,
66	SH_CMT_32BIT,
67	SH_CMT_48BIT,
68	SH_CMT0_RCAR_GEN2,
69	SH_CMT1_RCAR_GEN2,
70};
71
72struct sh_cmt_info {
73	enum sh_cmt_model model;
74
75	unsigned int channels_mask;
76
77	unsigned long width; /* 16 or 32 bit version of hardware block */
78	u32 overflow_bit;
79	u32 clear_bits;
80
81	/* callbacks for CMSTR and CMCSR access */
82	u32 (*read_control)(void __iomem *base, unsigned long offs);
83	void (*write_control)(void __iomem *base, unsigned long offs,
84			      u32 value);
85
86	/* callbacks for CMCNT and CMCOR access */
87	u32 (*read_count)(void __iomem *base, unsigned long offs);
88	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89};
90
91struct sh_cmt_channel {
92	struct sh_cmt_device *cmt;
93
94	unsigned int index;	/* Index in the documentation */
95	unsigned int hwidx;	/* Real hardware index */
96
97	void __iomem *iostart;
98	void __iomem *ioctrl;
99
100	unsigned int timer_bit;
101	unsigned long flags;
102	u32 match_value;
103	u32 next_match_value;
104	u32 max_match_value;
105	raw_spinlock_t lock;
106	struct clock_event_device ced;
107	struct clocksource cs;
108	u64 total_cycles;
109	bool cs_enabled;
110};
111
112struct sh_cmt_device {
113	struct platform_device *pdev;
114
115	const struct sh_cmt_info *info;
116
117	void __iomem *mapbase;
118	struct clk *clk;
119	unsigned long rate;
120	unsigned int reg_delay;
121
122	raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124	struct sh_cmt_channel *channels;
125	unsigned int num_channels;
126	unsigned int hw_channels;
127
128	bool has_clockevent;
129	bool has_clocksource;
130};
131
132#define SH_CMT16_CMCSR_CMF		(1 << 7)
133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139
140#define SH_CMT32_CMCSR_CMF		(1 << 15)
141#define SH_CMT32_CMCSR_OVF		(1 << 14)
142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143#define SH_CMT32_CMCSR_STTF		(1 << 12)
144#define SH_CMT32_CMCSR_STPF		(1 << 11)
145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
146#define SH_CMT32_CMCSR_CMS		(1 << 9)
147#define SH_CMT32_CMCSR_CMM		(1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159
160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161{
162	return ioread16(base + (offs << 1));
163}
164
165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167	return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171{
172	iowrite16(value, base + (offs << 1));
173}
174
175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176{
177	iowrite32(value, base + (offs << 2));
178}
179
180static const struct sh_cmt_info sh_cmt_info[] = {
181	[SH_CMT_16BIT] = {
182		.model = SH_CMT_16BIT,
183		.width = 16,
184		.overflow_bit = SH_CMT16_CMCSR_CMF,
185		.clear_bits = ~SH_CMT16_CMCSR_CMF,
186		.read_control = sh_cmt_read16,
187		.write_control = sh_cmt_write16,
188		.read_count = sh_cmt_read16,
189		.write_count = sh_cmt_write16,
190	},
191	[SH_CMT_32BIT] = {
192		.model = SH_CMT_32BIT,
193		.width = 32,
194		.overflow_bit = SH_CMT32_CMCSR_CMF,
195		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196		.read_control = sh_cmt_read16,
197		.write_control = sh_cmt_write16,
198		.read_count = sh_cmt_read32,
199		.write_count = sh_cmt_write32,
200	},
201	[SH_CMT_48BIT] = {
202		.model = SH_CMT_48BIT,
203		.channels_mask = 0x3f,
204		.width = 32,
205		.overflow_bit = SH_CMT32_CMCSR_CMF,
206		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207		.read_control = sh_cmt_read32,
208		.write_control = sh_cmt_write32,
209		.read_count = sh_cmt_read32,
210		.write_count = sh_cmt_write32,
211	},
212	[SH_CMT0_RCAR_GEN2] = {
213		.model = SH_CMT0_RCAR_GEN2,
214		.channels_mask = 0x60,
215		.width = 32,
216		.overflow_bit = SH_CMT32_CMCSR_CMF,
217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218		.read_control = sh_cmt_read32,
219		.write_control = sh_cmt_write32,
220		.read_count = sh_cmt_read32,
221		.write_count = sh_cmt_write32,
222	},
223	[SH_CMT1_RCAR_GEN2] = {
224		.model = SH_CMT1_RCAR_GEN2,
225		.channels_mask = 0xff,
226		.width = 32,
227		.overflow_bit = SH_CMT32_CMCSR_CMF,
228		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229		.read_control = sh_cmt_read32,
230		.write_control = sh_cmt_write32,
231		.read_count = sh_cmt_read32,
232		.write_count = sh_cmt_write32,
233	},
234};
235
236#define CMCSR 0 /* channel register */
237#define CMCNT 1 /* channel register */
238#define CMCOR 2 /* channel register */
239
240#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
241
242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243{
244	if (ch->iostart)
245		return ch->cmt->info->read_control(ch->iostart, 0);
246	else
247		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248}
249
250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251{
252	u32 old_value = sh_cmt_read_cmstr(ch);
253
254	if (value != old_value) {
255		if (ch->iostart) {
256			ch->cmt->info->write_control(ch->iostart, 0, value);
257			udelay(ch->cmt->reg_delay);
258		} else {
259			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260			udelay(ch->cmt->reg_delay);
261		}
262	}
263}
264
265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266{
267	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268}
269
270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271{
272	u32 old_value = sh_cmt_read_cmcsr(ch);
273
274	if (value != old_value) {
275		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276		udelay(ch->cmt->reg_delay);
277	}
278}
279
280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281{
282	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283}
284
285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286{
287	/* Tests showed that we need to wait 3 clocks here */
288	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289	u32 reg;
290
291	if (ch->cmt->info->model > SH_CMT_16BIT) {
292		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293						   !(reg & SH_CMT32_CMCSR_WRFLG),
294						   1, cmcnt_delay, false, ch);
295		if (ret < 0)
296			return ret;
297	}
298
299	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300	udelay(cmcnt_delay);
301	return 0;
302}
303
304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305{
306	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307
308	if (value != old_value) {
309		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310		udelay(ch->cmt->reg_delay);
311	}
312}
313
314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315{
316	u32 v1, v2, v3;
317	u32 o1, o2;
318
319	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320
321	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
322	do {
323		o2 = o1;
324		v1 = sh_cmt_read_cmcnt(ch);
325		v2 = sh_cmt_read_cmcnt(ch);
326		v3 = sh_cmt_read_cmcnt(ch);
327		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330
331	*has_wrapped = o1;
332	return v2;
333}
334
335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336{
337	unsigned long flags;
338	u32 value;
339
340	/* start stop register shared by multiple timer channels */
341	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342	value = sh_cmt_read_cmstr(ch);
343
344	if (start)
345		value |= 1 << ch->timer_bit;
346	else
347		value &= ~(1 << ch->timer_bit);
348
349	sh_cmt_write_cmstr(ch, value);
350	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351}
352
353static int sh_cmt_enable(struct sh_cmt_channel *ch)
354{
355	int ret;
356
357	pm_runtime_get_sync(&ch->cmt->pdev->dev);
358	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
359
360	/* enable clock */
361	ret = clk_enable(ch->cmt->clk);
362	if (ret) {
363		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
364			ch->index);
365		goto err0;
366	}
367
368	/* make sure channel is disabled */
369	sh_cmt_start_stop_ch(ch, 0);
370
371	/* configure channel, periodic mode and maximum timeout */
372	if (ch->cmt->info->width == 16) {
373		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
374				   SH_CMT16_CMCSR_CKS512);
375	} else {
376		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
377				   SH_CMT32_CMCSR_CMTOUT_IE |
378				   SH_CMT32_CMCSR_CMR_IRQ |
379				   SH_CMT32_CMCSR_CKS_RCLK8);
380	}
381
382	sh_cmt_write_cmcor(ch, 0xffffffff);
383	ret = sh_cmt_write_cmcnt(ch, 0);
384
385	if (ret || sh_cmt_read_cmcnt(ch)) {
386		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387			ch->index);
388		ret = -ETIMEDOUT;
389		goto err1;
390	}
391
392	/* enable channel */
393	sh_cmt_start_stop_ch(ch, 1);
394	return 0;
395 err1:
396	/* stop clock */
397	clk_disable(ch->cmt->clk);
398
399 err0:
400	return ret;
401}
402
403static void sh_cmt_disable(struct sh_cmt_channel *ch)
404{
405	/* disable channel */
406	sh_cmt_start_stop_ch(ch, 0);
407
408	/* disable interrupts in CMT block */
409	sh_cmt_write_cmcsr(ch, 0);
410
411	/* stop clock */
412	clk_disable(ch->cmt->clk);
413
414	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415	pm_runtime_put(&ch->cmt->pdev->dev);
416}
417
418/* private flags */
419#define FLAG_CLOCKEVENT (1 << 0)
420#define FLAG_CLOCKSOURCE (1 << 1)
421#define FLAG_REPROGRAM (1 << 2)
422#define FLAG_SKIPEVENT (1 << 3)
423#define FLAG_IRQCONTEXT (1 << 4)
424
425static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
426					      int absolute)
427{
428	u32 value = ch->next_match_value;
429	u32 new_match;
430	u32 delay = 0;
431	u32 now = 0;
432	u32 has_wrapped;
433
434	now = sh_cmt_get_counter(ch, &has_wrapped);
435	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
436
437	if (has_wrapped) {
438		/* we're competing with the interrupt handler.
439		 *  -> let the interrupt handler reprogram the timer.
440		 *  -> interrupt number two handles the event.
441		 */
442		ch->flags |= FLAG_SKIPEVENT;
443		return;
444	}
445
446	if (absolute)
447		now = 0;
448
449	do {
450		/* reprogram the timer hardware,
451		 * but don't save the new match value yet.
452		 */
453		new_match = now + value + delay;
454		if (new_match > ch->max_match_value)
455			new_match = ch->max_match_value;
456
457		sh_cmt_write_cmcor(ch, new_match);
458
459		now = sh_cmt_get_counter(ch, &has_wrapped);
460		if (has_wrapped && (new_match > ch->match_value)) {
461			/* we are changing to a greater match value,
462			 * so this wrap must be caused by the counter
463			 * matching the old value.
464			 * -> first interrupt reprograms the timer.
465			 * -> interrupt number two handles the event.
466			 */
467			ch->flags |= FLAG_SKIPEVENT;
468			break;
469		}
470
471		if (has_wrapped) {
472			/* we are changing to a smaller match value,
473			 * so the wrap must be caused by the counter
474			 * matching the new value.
475			 * -> save programmed match value.
476			 * -> let isr handle the event.
477			 */
478			ch->match_value = new_match;
479			break;
480		}
481
482		/* be safe: verify hardware settings */
483		if (now < new_match) {
484			/* timer value is below match value, all good.
485			 * this makes sure we won't miss any match events.
486			 * -> save programmed match value.
487			 * -> let isr handle the event.
488			 */
489			ch->match_value = new_match;
490			break;
491		}
492
493		/* the counter has reached a value greater
494		 * than our new match value. and since the
495		 * has_wrapped flag isn't set we must have
496		 * programmed a too close event.
497		 * -> increase delay and retry.
498		 */
499		if (delay)
500			delay <<= 1;
501		else
502			delay = 1;
503
504		if (!delay)
505			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
506				 ch->index);
507
508	} while (delay);
509}
510
511static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
512{
513	if (delta > ch->max_match_value)
514		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
515			 ch->index);
516
517	ch->next_match_value = delta;
518	sh_cmt_clock_event_program_verify(ch, 0);
519}
520
521static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
522{
523	unsigned long flags;
524
525	raw_spin_lock_irqsave(&ch->lock, flags);
526	__sh_cmt_set_next(ch, delta);
527	raw_spin_unlock_irqrestore(&ch->lock, flags);
528}
529
530static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
531{
532	struct sh_cmt_channel *ch = dev_id;
533
534	/* clear flags */
535	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
536			   ch->cmt->info->clear_bits);
537
538	/* update clock source counter to begin with if enabled
539	 * the wrap flag should be cleared by the timer specific
540	 * isr before we end up here.
541	 */
542	if (ch->flags & FLAG_CLOCKSOURCE)
543		ch->total_cycles += ch->match_value + 1;
544
545	if (!(ch->flags & FLAG_REPROGRAM))
546		ch->next_match_value = ch->max_match_value;
547
548	ch->flags |= FLAG_IRQCONTEXT;
549
550	if (ch->flags & FLAG_CLOCKEVENT) {
551		if (!(ch->flags & FLAG_SKIPEVENT)) {
552			if (clockevent_state_oneshot(&ch->ced)) {
553				ch->next_match_value = ch->max_match_value;
554				ch->flags |= FLAG_REPROGRAM;
555			}
556
557			ch->ced.event_handler(&ch->ced);
558		}
559	}
560
561	ch->flags &= ~FLAG_SKIPEVENT;
562
563	if (ch->flags & FLAG_REPROGRAM) {
564		ch->flags &= ~FLAG_REPROGRAM;
565		sh_cmt_clock_event_program_verify(ch, 1);
566
567		if (ch->flags & FLAG_CLOCKEVENT)
568			if ((clockevent_state_shutdown(&ch->ced))
569			    || (ch->match_value == ch->next_match_value))
570				ch->flags &= ~FLAG_REPROGRAM;
571	}
572
573	ch->flags &= ~FLAG_IRQCONTEXT;
574
575	return IRQ_HANDLED;
576}
577
578static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
579{
580	int ret = 0;
581	unsigned long flags;
582
583	raw_spin_lock_irqsave(&ch->lock, flags);
584
585	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
586		ret = sh_cmt_enable(ch);
587
588	if (ret)
589		goto out;
590	ch->flags |= flag;
591
592	/* setup timeout if no clockevent */
593	if (ch->cmt->num_channels == 1 &&
594	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
595		__sh_cmt_set_next(ch, ch->max_match_value);
596 out:
597	raw_spin_unlock_irqrestore(&ch->lock, flags);
598
599	return ret;
600}
601
602static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
603{
604	unsigned long flags;
605	unsigned long f;
606
607	raw_spin_lock_irqsave(&ch->lock, flags);
608
609	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
610	ch->flags &= ~flag;
611
612	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
613		sh_cmt_disable(ch);
614
615	/* adjust the timeout to maximum if only clocksource left */
616	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
617		__sh_cmt_set_next(ch, ch->max_match_value);
618
619	raw_spin_unlock_irqrestore(&ch->lock, flags);
620}
621
622static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
623{
624	return container_of(cs, struct sh_cmt_channel, cs);
625}
626
627static u64 sh_cmt_clocksource_read(struct clocksource *cs)
628{
629	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
630	u32 has_wrapped;
631
632	if (ch->cmt->num_channels == 1) {
633		unsigned long flags;
634		u64 value;
635		u32 raw;
636
637		raw_spin_lock_irqsave(&ch->lock, flags);
638		value = ch->total_cycles;
639		raw = sh_cmt_get_counter(ch, &has_wrapped);
640
641		if (unlikely(has_wrapped))
642			raw += ch->match_value + 1;
643		raw_spin_unlock_irqrestore(&ch->lock, flags);
644
645		return value + raw;
646	}
647
648	return sh_cmt_get_counter(ch, &has_wrapped);
649}
650
651static int sh_cmt_clocksource_enable(struct clocksource *cs)
652{
653	int ret;
654	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
655
656	WARN_ON(ch->cs_enabled);
657
658	ch->total_cycles = 0;
659
660	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
661	if (!ret)
662		ch->cs_enabled = true;
663
664	return ret;
665}
666
667static void sh_cmt_clocksource_disable(struct clocksource *cs)
668{
669	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
670
671	WARN_ON(!ch->cs_enabled);
672
673	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
674	ch->cs_enabled = false;
675}
676
677static void sh_cmt_clocksource_suspend(struct clocksource *cs)
678{
679	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680
681	if (!ch->cs_enabled)
682		return;
683
684	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
686}
687
688static void sh_cmt_clocksource_resume(struct clocksource *cs)
689{
690	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691
692	if (!ch->cs_enabled)
693		return;
694
695	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
696	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
697}
698
699static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
700				       const char *name)
701{
702	struct clocksource *cs = &ch->cs;
703
704	cs->name = name;
705	cs->rating = 125;
706	cs->read = sh_cmt_clocksource_read;
707	cs->enable = sh_cmt_clocksource_enable;
708	cs->disable = sh_cmt_clocksource_disable;
709	cs->suspend = sh_cmt_clocksource_suspend;
710	cs->resume = sh_cmt_clocksource_resume;
711	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
712	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
713
714	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
715		 ch->index);
716
717	clocksource_register_hz(cs, ch->cmt->rate);
718	return 0;
719}
720
721static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
722{
723	return container_of(ced, struct sh_cmt_channel, ced);
724}
725
726static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
727{
728	sh_cmt_start(ch, FLAG_CLOCKEVENT);
729
730	if (periodic)
731		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
732	else
733		sh_cmt_set_next(ch, ch->max_match_value);
734}
735
736static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
737{
738	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
739
740	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
741	return 0;
742}
743
744static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
745					int periodic)
746{
747	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
748
749	/* deal with old setting first */
750	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
751		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752
753	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
754		 ch->index, periodic ? "periodic" : "oneshot");
755	sh_cmt_clock_event_start(ch, periodic);
756	return 0;
757}
758
759static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
760{
761	return sh_cmt_clock_event_set_state(ced, 0);
762}
763
764static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
765{
766	return sh_cmt_clock_event_set_state(ced, 1);
767}
768
769static int sh_cmt_clock_event_next(unsigned long delta,
770				   struct clock_event_device *ced)
771{
772	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
773
774	BUG_ON(!clockevent_state_oneshot(ced));
775	if (likely(ch->flags & FLAG_IRQCONTEXT))
776		ch->next_match_value = delta - 1;
777	else
778		sh_cmt_set_next(ch, delta - 1);
779
780	return 0;
781}
782
783static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
784{
785	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
786
787	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
788	clk_unprepare(ch->cmt->clk);
789}
790
791static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
792{
793	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
794
795	clk_prepare(ch->cmt->clk);
796	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
797}
798
799static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
800				      const char *name)
801{
802	struct clock_event_device *ced = &ch->ced;
803	int irq;
804	int ret;
805
806	irq = platform_get_irq(ch->cmt->pdev, ch->index);
807	if (irq < 0)
808		return irq;
809
810	ret = request_irq(irq, sh_cmt_interrupt,
811			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
812			  dev_name(&ch->cmt->pdev->dev), ch);
813	if (ret) {
814		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
815			ch->index, irq);
816		return ret;
817	}
818
819	ced->name = name;
820	ced->features = CLOCK_EVT_FEAT_PERIODIC;
821	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
822	ced->rating = 125;
823	ced->cpumask = cpu_possible_mask;
824	ced->set_next_event = sh_cmt_clock_event_next;
825	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
826	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
827	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
828	ced->suspend = sh_cmt_clock_event_suspend;
829	ced->resume = sh_cmt_clock_event_resume;
830
831	/* TODO: calculate good shift from rate and counter bit width */
832	ced->shift = 32;
833	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
834	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
835	ced->max_delta_ticks = ch->max_match_value;
836	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
837	ced->min_delta_ticks = 0x1f;
838
839	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
840		 ch->index);
841	clockevents_register_device(ced);
842
843	return 0;
844}
845
846static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
847			   bool clockevent, bool clocksource)
848{
849	int ret;
850
851	if (clockevent) {
852		ch->cmt->has_clockevent = true;
853		ret = sh_cmt_register_clockevent(ch, name);
854		if (ret < 0)
855			return ret;
856	}
857
858	if (clocksource) {
859		ch->cmt->has_clocksource = true;
860		sh_cmt_register_clocksource(ch, name);
861	}
862
863	return 0;
864}
865
866static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
867				unsigned int hwidx, bool clockevent,
868				bool clocksource, struct sh_cmt_device *cmt)
869{
870	u32 value;
871	int ret;
872
873	/* Skip unused channels. */
874	if (!clockevent && !clocksource)
875		return 0;
876
877	ch->cmt = cmt;
878	ch->index = index;
879	ch->hwidx = hwidx;
880	ch->timer_bit = hwidx;
881
882	/*
883	 * Compute the address of the channel control register block. For the
884	 * timers with a per-channel start/stop register, compute its address
885	 * as well.
886	 */
887	switch (cmt->info->model) {
888	case SH_CMT_16BIT:
889		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
890		break;
891	case SH_CMT_32BIT:
892	case SH_CMT_48BIT:
893		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
894		break;
895	case SH_CMT0_RCAR_GEN2:
896	case SH_CMT1_RCAR_GEN2:
897		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
898		ch->ioctrl = ch->iostart + 0x10;
899		ch->timer_bit = 0;
900
901		/* Enable the clock supply to the channel */
902		value = ioread32(cmt->mapbase + CMCLKE);
903		value |= BIT(hwidx);
904		iowrite32(value, cmt->mapbase + CMCLKE);
905		break;
906	}
907
908	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
909		ch->max_match_value = ~0;
910	else
911		ch->max_match_value = (1 << cmt->info->width) - 1;
912
913	ch->match_value = ch->max_match_value;
914	raw_spin_lock_init(&ch->lock);
915
916	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
917			      clockevent, clocksource);
918	if (ret) {
919		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
920			ch->index);
921		return ret;
922	}
923	ch->cs_enabled = false;
924
925	return 0;
926}
927
928static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
929{
930	struct resource *mem;
931
932	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
933	if (!mem) {
934		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
935		return -ENXIO;
936	}
937
938	cmt->mapbase = ioremap(mem->start, resource_size(mem));
939	if (cmt->mapbase == NULL) {
940		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
941		return -ENXIO;
942	}
943
944	return 0;
945}
946
947static const struct platform_device_id sh_cmt_id_table[] = {
948	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
949	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
950	{ }
951};
952MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
953
954static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
955	{
956		/* deprecated, preserved for backward compatibility */
957		.compatible = "renesas,cmt-48",
958		.data = &sh_cmt_info[SH_CMT_48BIT]
959	},
960	{
961		/* deprecated, preserved for backward compatibility */
962		.compatible = "renesas,cmt-48-gen2",
963		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964	},
965	{
966		.compatible = "renesas,r8a7740-cmt1",
967		.data = &sh_cmt_info[SH_CMT_48BIT]
968	},
969	{
970		.compatible = "renesas,sh73a0-cmt1",
971		.data = &sh_cmt_info[SH_CMT_48BIT]
972	},
973	{
974		.compatible = "renesas,rcar-gen2-cmt0",
975		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
976	},
977	{
978		.compatible = "renesas,rcar-gen2-cmt1",
979		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
980	},
981	{
982		.compatible = "renesas,rcar-gen3-cmt0",
983		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
984	},
985	{
986		.compatible = "renesas,rcar-gen3-cmt1",
987		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
988	},
989	{ }
990};
991MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
992
993static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
994{
995	unsigned int mask, i;
996	unsigned long rate;
997	int ret;
998
999	cmt->pdev = pdev;
1000	raw_spin_lock_init(&cmt->lock);
1001
1002	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1003		cmt->info = of_device_get_match_data(&pdev->dev);
1004		cmt->hw_channels = cmt->info->channels_mask;
1005	} else if (pdev->dev.platform_data) {
1006		struct sh_timer_config *cfg = pdev->dev.platform_data;
1007		const struct platform_device_id *id = pdev->id_entry;
1008
1009		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1010		cmt->hw_channels = cfg->channels_mask;
1011	} else {
1012		dev_err(&cmt->pdev->dev, "missing platform data\n");
1013		return -ENXIO;
1014	}
1015
1016	/* Get hold of clock. */
1017	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1018	if (IS_ERR(cmt->clk)) {
1019		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1020		return PTR_ERR(cmt->clk);
1021	}
1022
1023	ret = clk_prepare(cmt->clk);
1024	if (ret < 0)
1025		goto err_clk_put;
1026
1027	/* Determine clock rate. */
1028	ret = clk_enable(cmt->clk);
1029	if (ret < 0)
1030		goto err_clk_unprepare;
1031
1032	rate = clk_get_rate(cmt->clk);
1033	if (!rate) {
1034		ret = -EINVAL;
1035		goto err_clk_disable;
1036	}
1037
1038	/* We shall wait 2 input clks after register writes */
1039	if (cmt->info->model >= SH_CMT_48BIT)
1040		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1041	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1042
1043	/* Map the memory resource(s). */
1044	ret = sh_cmt_map_memory(cmt);
1045	if (ret < 0)
1046		goto err_clk_disable;
1047
1048	/* Allocate and setup the channels. */
1049	cmt->num_channels = hweight8(cmt->hw_channels);
1050	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1051				GFP_KERNEL);
1052	if (cmt->channels == NULL) {
1053		ret = -ENOMEM;
1054		goto err_unmap;
1055	}
1056
1057	/*
1058	 * Use the first channel as a clock event device and the second channel
1059	 * as a clock source. If only one channel is available use it for both.
1060	 */
1061	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1062		unsigned int hwidx = ffs(mask) - 1;
1063		bool clocksource = i == 1 || cmt->num_channels == 1;
1064		bool clockevent = i == 0;
1065
1066		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1067					   clockevent, clocksource, cmt);
1068		if (ret < 0)
1069			goto err_unmap;
1070
1071		mask &= ~(1 << hwidx);
1072	}
1073
1074	clk_disable(cmt->clk);
1075
1076	platform_set_drvdata(pdev, cmt);
1077
1078	return 0;
1079
1080err_unmap:
1081	kfree(cmt->channels);
1082	iounmap(cmt->mapbase);
1083err_clk_disable:
1084	clk_disable(cmt->clk);
1085err_clk_unprepare:
1086	clk_unprepare(cmt->clk);
1087err_clk_put:
1088	clk_put(cmt->clk);
1089	return ret;
1090}
1091
1092static int sh_cmt_probe(struct platform_device *pdev)
1093{
1094	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1095	int ret;
1096
1097	if (!is_sh_early_platform_device(pdev)) {
1098		pm_runtime_set_active(&pdev->dev);
1099		pm_runtime_enable(&pdev->dev);
1100	}
1101
1102	if (cmt) {
1103		dev_info(&pdev->dev, "kept as earlytimer\n");
1104		goto out;
1105	}
1106
1107	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1108	if (cmt == NULL)
1109		return -ENOMEM;
1110
1111	ret = sh_cmt_setup(cmt, pdev);
1112	if (ret) {
1113		kfree(cmt);
1114		pm_runtime_idle(&pdev->dev);
1115		return ret;
1116	}
1117	if (is_sh_early_platform_device(pdev))
1118		return 0;
1119
1120 out:
1121	if (cmt->has_clockevent || cmt->has_clocksource)
1122		pm_runtime_irq_safe(&pdev->dev);
1123	else
1124		pm_runtime_idle(&pdev->dev);
1125
1126	return 0;
1127}
1128
1129static int sh_cmt_remove(struct platform_device *pdev)
1130{
1131	return -EBUSY; /* cannot unregister clockevent and clocksource */
1132}
1133
1134static struct platform_driver sh_cmt_device_driver = {
1135	.probe		= sh_cmt_probe,
1136	.remove		= sh_cmt_remove,
1137	.driver		= {
1138		.name	= "sh_cmt",
1139		.of_match_table = of_match_ptr(sh_cmt_of_table),
1140	},
1141	.id_table	= sh_cmt_id_table,
1142};
1143
1144static int __init sh_cmt_init(void)
1145{
1146	return platform_driver_register(&sh_cmt_device_driver);
1147}
1148
1149static void __exit sh_cmt_exit(void)
1150{
1151	platform_driver_unregister(&sh_cmt_device_driver);
1152}
1153
1154#ifdef CONFIG_SUPERH
1155sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1156#endif
1157
1158subsys_initcall(sh_cmt_init);
1159module_exit(sh_cmt_exit);
1160
1161MODULE_AUTHOR("Magnus Damm");
1162MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1163MODULE_LICENSE("GPL v2");
1164