1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sh_timer.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #ifdef CONFIG_SUPERH
30 #include <asm/platform_early.h>
31 #endif
32 
33 struct sh_cmt_device;
34 
35 /*
36  * The CMT comes in 5 different identified flavours, depending not only on the
37  * SoC but also on the particular instance. The following table lists the main
38  * characteristics of those flavours.
39  *
40  *			16B	32B	32B-F	48B	R-Car Gen2
41  * -----------------------------------------------------------------------------
42  * Channels		2	1/4	1	6	2/8
43  * Control Width	16	16	16	16	32
44  * Counter Width	16	32	32	32/48	32/48
45  * Shared Start/Stop	Y	Y	Y	Y	N
46  *
47  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48  * located in the channel registers block. All other versions have a shared
49  * start/stop register located in the global space.
50  *
51  * Channels are indexed from 0 to N-1 in the documentation. The channel index
52  * infers the start/stop bit position in the control register and the channel
53  * registers block address. Some CMT instances have a subset of channels
54  * available, in which case the index in the documentation doesn't match the
55  * "real" index as implemented in hardware. This is for instance the case with
56  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57  * in the documentation but using start/stop bit 5 and having its registers
58  * block at 0x60.
59  *
60  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62  */
63 
64 enum sh_cmt_model {
65 	SH_CMT_16BIT,
66 	SH_CMT_32BIT,
67 	SH_CMT_48BIT,
68 	SH_CMT0_RCAR_GEN2,
69 	SH_CMT1_RCAR_GEN2,
70 };
71 
72 struct sh_cmt_info {
73 	enum sh_cmt_model model;
74 
75 	unsigned int channels_mask;
76 
77 	unsigned long width; /* 16 or 32 bit version of hardware block */
78 	u32 overflow_bit;
79 	u32 clear_bits;
80 
81 	/* callbacks for CMSTR and CMCSR access */
82 	u32 (*read_control)(void __iomem *base, unsigned long offs);
83 	void (*write_control)(void __iomem *base, unsigned long offs,
84 			      u32 value);
85 
86 	/* callbacks for CMCNT and CMCOR access */
87 	u32 (*read_count)(void __iomem *base, unsigned long offs);
88 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90 
91 struct sh_cmt_channel {
92 	struct sh_cmt_device *cmt;
93 
94 	unsigned int index;	/* Index in the documentation */
95 	unsigned int hwidx;	/* Real hardware index */
96 
97 	void __iomem *iostart;
98 	void __iomem *ioctrl;
99 
100 	unsigned int timer_bit;
101 	unsigned long flags;
102 	u32 match_value;
103 	u32 next_match_value;
104 	u32 max_match_value;
105 	raw_spinlock_t lock;
106 	struct clock_event_device ced;
107 	struct clocksource cs;
108 	u64 total_cycles;
109 	bool cs_enabled;
110 };
111 
112 struct sh_cmt_device {
113 	struct platform_device *pdev;
114 
115 	const struct sh_cmt_info *info;
116 
117 	void __iomem *mapbase;
118 	struct clk *clk;
119 	unsigned long rate;
120 	unsigned int reg_delay;
121 
122 	raw_spinlock_t lock; /* Protect the shared start/stop register */
123 
124 	struct sh_cmt_channel *channels;
125 	unsigned int num_channels;
126 	unsigned int hw_channels;
127 
128 	bool has_clockevent;
129 	bool has_clocksource;
130 };
131 
132 #define SH_CMT16_CMCSR_CMF		(1 << 7)
133 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
134 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
135 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
136 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
137 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139 
140 #define SH_CMT32_CMCSR_CMF		(1 << 15)
141 #define SH_CMT32_CMCSR_OVF		(1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143 #define SH_CMT32_CMCSR_STTF		(1 << 12)
144 #define SH_CMT32_CMCSR_STPF		(1 << 11)
145 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
146 #define SH_CMT32_CMCSR_CMS		(1 << 9)
147 #define SH_CMT32_CMCSR_CMM		(1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159 
sh_cmt_read16(void __iomem *base, unsigned long offs)160 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 	return ioread16(base + (offs << 1));
163 }
164 
sh_cmt_read32(void __iomem *base, unsigned long offs)165 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 	return ioread32(base + (offs << 2));
168 }
169 
sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)170 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 {
172 	iowrite16(value, base + (offs << 1));
173 }
174 
sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)175 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 {
177 	iowrite32(value, base + (offs << 2));
178 }
179 
180 static const struct sh_cmt_info sh_cmt_info[] = {
181 	[SH_CMT_16BIT] = {
182 		.model = SH_CMT_16BIT,
183 		.width = 16,
184 		.overflow_bit = SH_CMT16_CMCSR_CMF,
185 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
186 		.read_control = sh_cmt_read16,
187 		.write_control = sh_cmt_write16,
188 		.read_count = sh_cmt_read16,
189 		.write_count = sh_cmt_write16,
190 	},
191 	[SH_CMT_32BIT] = {
192 		.model = SH_CMT_32BIT,
193 		.width = 32,
194 		.overflow_bit = SH_CMT32_CMCSR_CMF,
195 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 		.read_control = sh_cmt_read16,
197 		.write_control = sh_cmt_write16,
198 		.read_count = sh_cmt_read32,
199 		.write_count = sh_cmt_write32,
200 	},
201 	[SH_CMT_48BIT] = {
202 		.model = SH_CMT_48BIT,
203 		.channels_mask = 0x3f,
204 		.width = 32,
205 		.overflow_bit = SH_CMT32_CMCSR_CMF,
206 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207 		.read_control = sh_cmt_read32,
208 		.write_control = sh_cmt_write32,
209 		.read_count = sh_cmt_read32,
210 		.write_count = sh_cmt_write32,
211 	},
212 	[SH_CMT0_RCAR_GEN2] = {
213 		.model = SH_CMT0_RCAR_GEN2,
214 		.channels_mask = 0x60,
215 		.width = 32,
216 		.overflow_bit = SH_CMT32_CMCSR_CMF,
217 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 		.read_control = sh_cmt_read32,
219 		.write_control = sh_cmt_write32,
220 		.read_count = sh_cmt_read32,
221 		.write_count = sh_cmt_write32,
222 	},
223 	[SH_CMT1_RCAR_GEN2] = {
224 		.model = SH_CMT1_RCAR_GEN2,
225 		.channels_mask = 0xff,
226 		.width = 32,
227 		.overflow_bit = SH_CMT32_CMCSR_CMF,
228 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229 		.read_control = sh_cmt_read32,
230 		.write_control = sh_cmt_write32,
231 		.read_count = sh_cmt_read32,
232 		.write_count = sh_cmt_write32,
233 	},
234 };
235 
236 #define CMCSR 0 /* channel register */
237 #define CMCNT 1 /* channel register */
238 #define CMCOR 2 /* channel register */
239 
240 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
241 
sh_cmt_read_cmstr(struct sh_cmt_channel *ch)242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244 	if (ch->iostart)
245 		return ch->cmt->info->read_control(ch->iostart, 0);
246 	else
247 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249 
sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252 	u32 old_value = sh_cmt_read_cmstr(ch);
253 
254 	if (value != old_value) {
255 		if (ch->iostart) {
256 			ch->cmt->info->write_control(ch->iostart, 0, value);
257 			udelay(ch->cmt->reg_delay);
258 		} else {
259 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 			udelay(ch->cmt->reg_delay);
261 		}
262 	}
263 }
264 
sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)265 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 {
267 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268 }
269 
sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)270 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 {
272 	u32 old_value = sh_cmt_read_cmcsr(ch);
273 
274 	if (value != old_value) {
275 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 		udelay(ch->cmt->reg_delay);
277 	}
278 }
279 
sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)280 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 {
282 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283 }
284 
sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)285 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 {
287 	/* Tests showed that we need to wait 3 clocks here */
288 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289 	u32 reg;
290 
291 	if (ch->cmt->info->model > SH_CMT_16BIT) {
292 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 						   !(reg & SH_CMT32_CMCSR_WRFLG),
294 						   1, cmcnt_delay, false, ch);
295 		if (ret < 0)
296 			return ret;
297 	}
298 
299 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300 	udelay(cmcnt_delay);
301 	return 0;
302 }
303 
sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)304 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 {
306 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307 
308 	if (value != old_value) {
309 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 		udelay(ch->cmt->reg_delay);
311 	}
312 }
313 
sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)314 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315 {
316 	u32 v1, v2, v3;
317 	u32 o1, o2;
318 
319 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320 
321 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
322 	do {
323 		o2 = o1;
324 		v1 = sh_cmt_read_cmcnt(ch);
325 		v2 = sh_cmt_read_cmcnt(ch);
326 		v3 = sh_cmt_read_cmcnt(ch);
327 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330 
331 	*has_wrapped = o1;
332 	return v2;
333 }
334 
sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)335 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336 {
337 	unsigned long flags;
338 	u32 value;
339 
340 	/* start stop register shared by multiple timer channels */
341 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342 	value = sh_cmt_read_cmstr(ch);
343 
344 	if (start)
345 		value |= 1 << ch->timer_bit;
346 	else
347 		value &= ~(1 << ch->timer_bit);
348 
349 	sh_cmt_write_cmstr(ch, value);
350 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351 }
352 
sh_cmt_enable(struct sh_cmt_channel *ch)353 static int sh_cmt_enable(struct sh_cmt_channel *ch)
354 {
355 	int ret;
356 
357 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
358 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
359 
360 	/* enable clock */
361 	ret = clk_enable(ch->cmt->clk);
362 	if (ret) {
363 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
364 			ch->index);
365 		goto err0;
366 	}
367 
368 	/* make sure channel is disabled */
369 	sh_cmt_start_stop_ch(ch, 0);
370 
371 	/* configure channel, periodic mode and maximum timeout */
372 	if (ch->cmt->info->width == 16) {
373 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
374 				   SH_CMT16_CMCSR_CKS512);
375 	} else {
376 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
377 				   SH_CMT32_CMCSR_CMTOUT_IE |
378 				   SH_CMT32_CMCSR_CMR_IRQ |
379 				   SH_CMT32_CMCSR_CKS_RCLK8);
380 	}
381 
382 	sh_cmt_write_cmcor(ch, 0xffffffff);
383 	ret = sh_cmt_write_cmcnt(ch, 0);
384 
385 	if (ret || sh_cmt_read_cmcnt(ch)) {
386 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387 			ch->index);
388 		ret = -ETIMEDOUT;
389 		goto err1;
390 	}
391 
392 	/* enable channel */
393 	sh_cmt_start_stop_ch(ch, 1);
394 	return 0;
395  err1:
396 	/* stop clock */
397 	clk_disable(ch->cmt->clk);
398 
399  err0:
400 	return ret;
401 }
402 
sh_cmt_disable(struct sh_cmt_channel *ch)403 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 {
405 	/* disable channel */
406 	sh_cmt_start_stop_ch(ch, 0);
407 
408 	/* disable interrupts in CMT block */
409 	sh_cmt_write_cmcsr(ch, 0);
410 
411 	/* stop clock */
412 	clk_disable(ch->cmt->clk);
413 
414 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415 	pm_runtime_put(&ch->cmt->pdev->dev);
416 }
417 
418 /* private flags */
419 #define FLAG_CLOCKEVENT (1 << 0)
420 #define FLAG_CLOCKSOURCE (1 << 1)
421 #define FLAG_REPROGRAM (1 << 2)
422 #define FLAG_SKIPEVENT (1 << 3)
423 #define FLAG_IRQCONTEXT (1 << 4)
424 
sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, int absolute)425 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
426 					      int absolute)
427 {
428 	u32 value = ch->next_match_value;
429 	u32 new_match;
430 	u32 delay = 0;
431 	u32 now = 0;
432 	u32 has_wrapped;
433 
434 	now = sh_cmt_get_counter(ch, &has_wrapped);
435 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
436 
437 	if (has_wrapped) {
438 		/* we're competing with the interrupt handler.
439 		 *  -> let the interrupt handler reprogram the timer.
440 		 *  -> interrupt number two handles the event.
441 		 */
442 		ch->flags |= FLAG_SKIPEVENT;
443 		return;
444 	}
445 
446 	if (absolute)
447 		now = 0;
448 
449 	do {
450 		/* reprogram the timer hardware,
451 		 * but don't save the new match value yet.
452 		 */
453 		new_match = now + value + delay;
454 		if (new_match > ch->max_match_value)
455 			new_match = ch->max_match_value;
456 
457 		sh_cmt_write_cmcor(ch, new_match);
458 
459 		now = sh_cmt_get_counter(ch, &has_wrapped);
460 		if (has_wrapped && (new_match > ch->match_value)) {
461 			/* we are changing to a greater match value,
462 			 * so this wrap must be caused by the counter
463 			 * matching the old value.
464 			 * -> first interrupt reprograms the timer.
465 			 * -> interrupt number two handles the event.
466 			 */
467 			ch->flags |= FLAG_SKIPEVENT;
468 			break;
469 		}
470 
471 		if (has_wrapped) {
472 			/* we are changing to a smaller match value,
473 			 * so the wrap must be caused by the counter
474 			 * matching the new value.
475 			 * -> save programmed match value.
476 			 * -> let isr handle the event.
477 			 */
478 			ch->match_value = new_match;
479 			break;
480 		}
481 
482 		/* be safe: verify hardware settings */
483 		if (now < new_match) {
484 			/* timer value is below match value, all good.
485 			 * this makes sure we won't miss any match events.
486 			 * -> save programmed match value.
487 			 * -> let isr handle the event.
488 			 */
489 			ch->match_value = new_match;
490 			break;
491 		}
492 
493 		/* the counter has reached a value greater
494 		 * than our new match value. and since the
495 		 * has_wrapped flag isn't set we must have
496 		 * programmed a too close event.
497 		 * -> increase delay and retry.
498 		 */
499 		if (delay)
500 			delay <<= 1;
501 		else
502 			delay = 1;
503 
504 		if (!delay)
505 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
506 				 ch->index);
507 
508 	} while (delay);
509 }
510 
__sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)511 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
512 {
513 	if (delta > ch->max_match_value)
514 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
515 			 ch->index);
516 
517 	ch->next_match_value = delta;
518 	sh_cmt_clock_event_program_verify(ch, 0);
519 }
520 
sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)521 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
522 {
523 	unsigned long flags;
524 
525 	raw_spin_lock_irqsave(&ch->lock, flags);
526 	__sh_cmt_set_next(ch, delta);
527 	raw_spin_unlock_irqrestore(&ch->lock, flags);
528 }
529 
sh_cmt_interrupt(int irq, void *dev_id)530 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
531 {
532 	struct sh_cmt_channel *ch = dev_id;
533 
534 	/* clear flags */
535 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
536 			   ch->cmt->info->clear_bits);
537 
538 	/* update clock source counter to begin with if enabled
539 	 * the wrap flag should be cleared by the timer specific
540 	 * isr before we end up here.
541 	 */
542 	if (ch->flags & FLAG_CLOCKSOURCE)
543 		ch->total_cycles += ch->match_value + 1;
544 
545 	if (!(ch->flags & FLAG_REPROGRAM))
546 		ch->next_match_value = ch->max_match_value;
547 
548 	ch->flags |= FLAG_IRQCONTEXT;
549 
550 	if (ch->flags & FLAG_CLOCKEVENT) {
551 		if (!(ch->flags & FLAG_SKIPEVENT)) {
552 			if (clockevent_state_oneshot(&ch->ced)) {
553 				ch->next_match_value = ch->max_match_value;
554 				ch->flags |= FLAG_REPROGRAM;
555 			}
556 
557 			ch->ced.event_handler(&ch->ced);
558 		}
559 	}
560 
561 	ch->flags &= ~FLAG_SKIPEVENT;
562 
563 	if (ch->flags & FLAG_REPROGRAM) {
564 		ch->flags &= ~FLAG_REPROGRAM;
565 		sh_cmt_clock_event_program_verify(ch, 1);
566 
567 		if (ch->flags & FLAG_CLOCKEVENT)
568 			if ((clockevent_state_shutdown(&ch->ced))
569 			    || (ch->match_value == ch->next_match_value))
570 				ch->flags &= ~FLAG_REPROGRAM;
571 	}
572 
573 	ch->flags &= ~FLAG_IRQCONTEXT;
574 
575 	return IRQ_HANDLED;
576 }
577 
sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)578 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
579 {
580 	int ret = 0;
581 	unsigned long flags;
582 
583 	raw_spin_lock_irqsave(&ch->lock, flags);
584 
585 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
586 		ret = sh_cmt_enable(ch);
587 
588 	if (ret)
589 		goto out;
590 	ch->flags |= flag;
591 
592 	/* setup timeout if no clockevent */
593 	if (ch->cmt->num_channels == 1 &&
594 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
595 		__sh_cmt_set_next(ch, ch->max_match_value);
596  out:
597 	raw_spin_unlock_irqrestore(&ch->lock, flags);
598 
599 	return ret;
600 }
601 
sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)602 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
603 {
604 	unsigned long flags;
605 	unsigned long f;
606 
607 	raw_spin_lock_irqsave(&ch->lock, flags);
608 
609 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
610 	ch->flags &= ~flag;
611 
612 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
613 		sh_cmt_disable(ch);
614 
615 	/* adjust the timeout to maximum if only clocksource left */
616 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
617 		__sh_cmt_set_next(ch, ch->max_match_value);
618 
619 	raw_spin_unlock_irqrestore(&ch->lock, flags);
620 }
621 
cs_to_sh_cmt(struct clocksource *cs)622 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
623 {
624 	return container_of(cs, struct sh_cmt_channel, cs);
625 }
626 
sh_cmt_clocksource_read(struct clocksource *cs)627 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
628 {
629 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
630 	u32 has_wrapped;
631 
632 	if (ch->cmt->num_channels == 1) {
633 		unsigned long flags;
634 		u64 value;
635 		u32 raw;
636 
637 		raw_spin_lock_irqsave(&ch->lock, flags);
638 		value = ch->total_cycles;
639 		raw = sh_cmt_get_counter(ch, &has_wrapped);
640 
641 		if (unlikely(has_wrapped))
642 			raw += ch->match_value + 1;
643 		raw_spin_unlock_irqrestore(&ch->lock, flags);
644 
645 		return value + raw;
646 	}
647 
648 	return sh_cmt_get_counter(ch, &has_wrapped);
649 }
650 
sh_cmt_clocksource_enable(struct clocksource *cs)651 static int sh_cmt_clocksource_enable(struct clocksource *cs)
652 {
653 	int ret;
654 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
655 
656 	WARN_ON(ch->cs_enabled);
657 
658 	ch->total_cycles = 0;
659 
660 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
661 	if (!ret)
662 		ch->cs_enabled = true;
663 
664 	return ret;
665 }
666 
sh_cmt_clocksource_disable(struct clocksource *cs)667 static void sh_cmt_clocksource_disable(struct clocksource *cs)
668 {
669 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
670 
671 	WARN_ON(!ch->cs_enabled);
672 
673 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
674 	ch->cs_enabled = false;
675 }
676 
sh_cmt_clocksource_suspend(struct clocksource *cs)677 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
678 {
679 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680 
681 	if (!ch->cs_enabled)
682 		return;
683 
684 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
686 }
687 
sh_cmt_clocksource_resume(struct clocksource *cs)688 static void sh_cmt_clocksource_resume(struct clocksource *cs)
689 {
690 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691 
692 	if (!ch->cs_enabled)
693 		return;
694 
695 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
696 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
697 }
698 
sh_cmt_register_clocksource(struct sh_cmt_channel *ch, const char *name)699 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
700 				       const char *name)
701 {
702 	struct clocksource *cs = &ch->cs;
703 
704 	cs->name = name;
705 	cs->rating = 125;
706 	cs->read = sh_cmt_clocksource_read;
707 	cs->enable = sh_cmt_clocksource_enable;
708 	cs->disable = sh_cmt_clocksource_disable;
709 	cs->suspend = sh_cmt_clocksource_suspend;
710 	cs->resume = sh_cmt_clocksource_resume;
711 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
712 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
713 
714 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
715 		 ch->index);
716 
717 	clocksource_register_hz(cs, ch->cmt->rate);
718 	return 0;
719 }
720 
ced_to_sh_cmt(struct clock_event_device *ced)721 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
722 {
723 	return container_of(ced, struct sh_cmt_channel, ced);
724 }
725 
sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)726 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
727 {
728 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
729 
730 	if (periodic)
731 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
732 	else
733 		sh_cmt_set_next(ch, ch->max_match_value);
734 }
735 
sh_cmt_clock_event_shutdown(struct clock_event_device *ced)736 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
737 {
738 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
739 
740 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
741 	return 0;
742 }
743 
sh_cmt_clock_event_set_state(struct clock_event_device *ced, int periodic)744 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
745 					int periodic)
746 {
747 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
748 
749 	/* deal with old setting first */
750 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
751 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 
753 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
754 		 ch->index, periodic ? "periodic" : "oneshot");
755 	sh_cmt_clock_event_start(ch, periodic);
756 	return 0;
757 }
758 
sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)759 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
760 {
761 	return sh_cmt_clock_event_set_state(ced, 0);
762 }
763 
sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)764 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
765 {
766 	return sh_cmt_clock_event_set_state(ced, 1);
767 }
768 
sh_cmt_clock_event_next(unsigned long delta, struct clock_event_device *ced)769 static int sh_cmt_clock_event_next(unsigned long delta,
770 				   struct clock_event_device *ced)
771 {
772 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
773 
774 	BUG_ON(!clockevent_state_oneshot(ced));
775 	if (likely(ch->flags & FLAG_IRQCONTEXT))
776 		ch->next_match_value = delta - 1;
777 	else
778 		sh_cmt_set_next(ch, delta - 1);
779 
780 	return 0;
781 }
782 
sh_cmt_clock_event_suspend(struct clock_event_device *ced)783 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
784 {
785 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
786 
787 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
788 	clk_unprepare(ch->cmt->clk);
789 }
790 
sh_cmt_clock_event_resume(struct clock_event_device *ced)791 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
792 {
793 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
794 
795 	clk_prepare(ch->cmt->clk);
796 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
797 }
798 
sh_cmt_register_clockevent(struct sh_cmt_channel *ch, const char *name)799 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
800 				      const char *name)
801 {
802 	struct clock_event_device *ced = &ch->ced;
803 	int irq;
804 	int ret;
805 
806 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
807 	if (irq < 0)
808 		return irq;
809 
810 	ret = request_irq(irq, sh_cmt_interrupt,
811 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
812 			  dev_name(&ch->cmt->pdev->dev), ch);
813 	if (ret) {
814 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
815 			ch->index, irq);
816 		return ret;
817 	}
818 
819 	ced->name = name;
820 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
821 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
822 	ced->rating = 125;
823 	ced->cpumask = cpu_possible_mask;
824 	ced->set_next_event = sh_cmt_clock_event_next;
825 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
826 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
827 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
828 	ced->suspend = sh_cmt_clock_event_suspend;
829 	ced->resume = sh_cmt_clock_event_resume;
830 
831 	/* TODO: calculate good shift from rate and counter bit width */
832 	ced->shift = 32;
833 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
834 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
835 	ced->max_delta_ticks = ch->max_match_value;
836 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
837 	ced->min_delta_ticks = 0x1f;
838 
839 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
840 		 ch->index);
841 	clockevents_register_device(ced);
842 
843 	return 0;
844 }
845 
sh_cmt_register(struct sh_cmt_channel *ch, const char *name, bool clockevent, bool clocksource)846 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
847 			   bool clockevent, bool clocksource)
848 {
849 	int ret;
850 
851 	if (clockevent) {
852 		ch->cmt->has_clockevent = true;
853 		ret = sh_cmt_register_clockevent(ch, name);
854 		if (ret < 0)
855 			return ret;
856 	}
857 
858 	if (clocksource) {
859 		ch->cmt->has_clocksource = true;
860 		sh_cmt_register_clocksource(ch, name);
861 	}
862 
863 	return 0;
864 }
865 
sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, unsigned int hwidx, bool clockevent, bool clocksource, struct sh_cmt_device *cmt)866 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
867 				unsigned int hwidx, bool clockevent,
868 				bool clocksource, struct sh_cmt_device *cmt)
869 {
870 	u32 value;
871 	int ret;
872 
873 	/* Skip unused channels. */
874 	if (!clockevent && !clocksource)
875 		return 0;
876 
877 	ch->cmt = cmt;
878 	ch->index = index;
879 	ch->hwidx = hwidx;
880 	ch->timer_bit = hwidx;
881 
882 	/*
883 	 * Compute the address of the channel control register block. For the
884 	 * timers with a per-channel start/stop register, compute its address
885 	 * as well.
886 	 */
887 	switch (cmt->info->model) {
888 	case SH_CMT_16BIT:
889 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
890 		break;
891 	case SH_CMT_32BIT:
892 	case SH_CMT_48BIT:
893 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
894 		break;
895 	case SH_CMT0_RCAR_GEN2:
896 	case SH_CMT1_RCAR_GEN2:
897 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
898 		ch->ioctrl = ch->iostart + 0x10;
899 		ch->timer_bit = 0;
900 
901 		/* Enable the clock supply to the channel */
902 		value = ioread32(cmt->mapbase + CMCLKE);
903 		value |= BIT(hwidx);
904 		iowrite32(value, cmt->mapbase + CMCLKE);
905 		break;
906 	}
907 
908 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
909 		ch->max_match_value = ~0;
910 	else
911 		ch->max_match_value = (1 << cmt->info->width) - 1;
912 
913 	ch->match_value = ch->max_match_value;
914 	raw_spin_lock_init(&ch->lock);
915 
916 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
917 			      clockevent, clocksource);
918 	if (ret) {
919 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
920 			ch->index);
921 		return ret;
922 	}
923 	ch->cs_enabled = false;
924 
925 	return 0;
926 }
927 
sh_cmt_map_memory(struct sh_cmt_device *cmt)928 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
929 {
930 	struct resource *mem;
931 
932 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
933 	if (!mem) {
934 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
935 		return -ENXIO;
936 	}
937 
938 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
939 	if (cmt->mapbase == NULL) {
940 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
941 		return -ENXIO;
942 	}
943 
944 	return 0;
945 }
946 
947 static const struct platform_device_id sh_cmt_id_table[] = {
948 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
949 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
950 	{ }
951 };
952 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
953 
954 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
955 	{
956 		/* deprecated, preserved for backward compatibility */
957 		.compatible = "renesas,cmt-48",
958 		.data = &sh_cmt_info[SH_CMT_48BIT]
959 	},
960 	{
961 		/* deprecated, preserved for backward compatibility */
962 		.compatible = "renesas,cmt-48-gen2",
963 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964 	},
965 	{
966 		.compatible = "renesas,r8a7740-cmt1",
967 		.data = &sh_cmt_info[SH_CMT_48BIT]
968 	},
969 	{
970 		.compatible = "renesas,sh73a0-cmt1",
971 		.data = &sh_cmt_info[SH_CMT_48BIT]
972 	},
973 	{
974 		.compatible = "renesas,rcar-gen2-cmt0",
975 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
976 	},
977 	{
978 		.compatible = "renesas,rcar-gen2-cmt1",
979 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
980 	},
981 	{
982 		.compatible = "renesas,rcar-gen3-cmt0",
983 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
984 	},
985 	{
986 		.compatible = "renesas,rcar-gen3-cmt1",
987 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
988 	},
989 	{ }
990 };
991 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
992 
sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)993 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
994 {
995 	unsigned int mask, i;
996 	unsigned long rate;
997 	int ret;
998 
999 	cmt->pdev = pdev;
1000 	raw_spin_lock_init(&cmt->lock);
1001 
1002 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1003 		cmt->info = of_device_get_match_data(&pdev->dev);
1004 		cmt->hw_channels = cmt->info->channels_mask;
1005 	} else if (pdev->dev.platform_data) {
1006 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1007 		const struct platform_device_id *id = pdev->id_entry;
1008 
1009 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1010 		cmt->hw_channels = cfg->channels_mask;
1011 	} else {
1012 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1013 		return -ENXIO;
1014 	}
1015 
1016 	/* Get hold of clock. */
1017 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1018 	if (IS_ERR(cmt->clk)) {
1019 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1020 		return PTR_ERR(cmt->clk);
1021 	}
1022 
1023 	ret = clk_prepare(cmt->clk);
1024 	if (ret < 0)
1025 		goto err_clk_put;
1026 
1027 	/* Determine clock rate. */
1028 	ret = clk_enable(cmt->clk);
1029 	if (ret < 0)
1030 		goto err_clk_unprepare;
1031 
1032 	rate = clk_get_rate(cmt->clk);
1033 	if (!rate) {
1034 		ret = -EINVAL;
1035 		goto err_clk_disable;
1036 	}
1037 
1038 	/* We shall wait 2 input clks after register writes */
1039 	if (cmt->info->model >= SH_CMT_48BIT)
1040 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1041 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1042 
1043 	/* Map the memory resource(s). */
1044 	ret = sh_cmt_map_memory(cmt);
1045 	if (ret < 0)
1046 		goto err_clk_disable;
1047 
1048 	/* Allocate and setup the channels. */
1049 	cmt->num_channels = hweight8(cmt->hw_channels);
1050 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1051 				GFP_KERNEL);
1052 	if (cmt->channels == NULL) {
1053 		ret = -ENOMEM;
1054 		goto err_unmap;
1055 	}
1056 
1057 	/*
1058 	 * Use the first channel as a clock event device and the second channel
1059 	 * as a clock source. If only one channel is available use it for both.
1060 	 */
1061 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1062 		unsigned int hwidx = ffs(mask) - 1;
1063 		bool clocksource = i == 1 || cmt->num_channels == 1;
1064 		bool clockevent = i == 0;
1065 
1066 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1067 					   clockevent, clocksource, cmt);
1068 		if (ret < 0)
1069 			goto err_unmap;
1070 
1071 		mask &= ~(1 << hwidx);
1072 	}
1073 
1074 	clk_disable(cmt->clk);
1075 
1076 	platform_set_drvdata(pdev, cmt);
1077 
1078 	return 0;
1079 
1080 err_unmap:
1081 	kfree(cmt->channels);
1082 	iounmap(cmt->mapbase);
1083 err_clk_disable:
1084 	clk_disable(cmt->clk);
1085 err_clk_unprepare:
1086 	clk_unprepare(cmt->clk);
1087 err_clk_put:
1088 	clk_put(cmt->clk);
1089 	return ret;
1090 }
1091 
sh_cmt_probe(struct platform_device *pdev)1092 static int sh_cmt_probe(struct platform_device *pdev)
1093 {
1094 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1095 	int ret;
1096 
1097 	if (!is_sh_early_platform_device(pdev)) {
1098 		pm_runtime_set_active(&pdev->dev);
1099 		pm_runtime_enable(&pdev->dev);
1100 	}
1101 
1102 	if (cmt) {
1103 		dev_info(&pdev->dev, "kept as earlytimer\n");
1104 		goto out;
1105 	}
1106 
1107 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1108 	if (cmt == NULL)
1109 		return -ENOMEM;
1110 
1111 	ret = sh_cmt_setup(cmt, pdev);
1112 	if (ret) {
1113 		kfree(cmt);
1114 		pm_runtime_idle(&pdev->dev);
1115 		return ret;
1116 	}
1117 	if (is_sh_early_platform_device(pdev))
1118 		return 0;
1119 
1120  out:
1121 	if (cmt->has_clockevent || cmt->has_clocksource)
1122 		pm_runtime_irq_safe(&pdev->dev);
1123 	else
1124 		pm_runtime_idle(&pdev->dev);
1125 
1126 	return 0;
1127 }
1128 
sh_cmt_remove(struct platform_device *pdev)1129 static int sh_cmt_remove(struct platform_device *pdev)
1130 {
1131 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1132 }
1133 
1134 static struct platform_driver sh_cmt_device_driver = {
1135 	.probe		= sh_cmt_probe,
1136 	.remove		= sh_cmt_remove,
1137 	.driver		= {
1138 		.name	= "sh_cmt",
1139 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1140 	},
1141 	.id_table	= sh_cmt_id_table,
1142 };
1143 
sh_cmt_init(void)1144 static int __init sh_cmt_init(void)
1145 {
1146 	return platform_driver_register(&sh_cmt_device_driver);
1147 }
1148 
sh_cmt_exit(void)1149 static void __exit sh_cmt_exit(void)
1150 {
1151 	platform_driver_unregister(&sh_cmt_device_driver);
1152 }
1153 
1154 #ifdef CONFIG_SUPERH
1155 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1156 #endif
1157 
1158 subsys_initcall(sh_cmt_init);
1159 module_exit(sh_cmt_exit);
1160 
1161 MODULE_AUTHOR("Magnus Damm");
1162 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1163 MODULE_LICENSE("GPL v2");
1164