1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License as
4 * published by the Free Software Foundation version 2.
5 *
6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7 * kind, whether express or implied; without even the implied warranty
8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/clk/ti.h>
21
22 #include "clock.h"
23
24 /* FAPLL Control Register PLL_CTRL */
25 #define FAPLL_MAIN_MULT_N_SHIFT 16
26 #define FAPLL_MAIN_DIV_P_SHIFT 8
27 #define FAPLL_MAIN_LOCK BIT(7)
28 #define FAPLL_MAIN_PLLEN BIT(3)
29 #define FAPLL_MAIN_BP BIT(2)
30 #define FAPLL_MAIN_LOC_CTL BIT(0)
31
32 #define FAPLL_MAIN_MAX_MULT_N 0xffff
33 #define FAPLL_MAIN_MAX_DIV_P 0xff
34 #define FAPLL_MAIN_CLEAR_MASK \
35 ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
36 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
37 FAPLL_MAIN_LOC_CTL)
38
39 /* FAPLL powerdown register PWD */
40 #define FAPLL_PWD_OFFSET 4
41
42 #define MAX_FAPLL_OUTPUTS 7
43 #define FAPLL_MAX_RETRIES 1000
44
45 #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
46 #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
47
48 /* The bypass bit is inverted on the ddr_pll.. */
49 #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
50
51 /*
52 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
53 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
54 */
55 #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
56 #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
57
58 /* Synthesizer divider register */
59 #define SYNTH_LDMDIV1 BIT(8)
60
61 /* Synthesizer frequency register */
62 #define SYNTH_LDFREQ BIT(31)
63
64 #define SYNTH_PHASE_K 8
65 #define SYNTH_MAX_INT_DIV 0xf
66 #define SYNTH_MAX_DIV_M 0xff
67
68 struct fapll_data {
69 struct clk_hw hw;
70 void __iomem *base;
71 const char *name;
72 struct clk *clk_ref;
73 struct clk *clk_bypass;
74 struct clk_onecell_data outputs;
75 bool bypass_bit_inverted;
76 };
77
78 struct fapll_synth {
79 struct clk_hw hw;
80 struct fapll_data *fd;
81 int index;
82 void __iomem *freq;
83 void __iomem *div;
84 const char *name;
85 struct clk *clk_pll;
86 };
87
ti_fapll_clock_is_bypass(struct fapll_data *fd)88 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
89 {
90 u32 v = readl_relaxed(fd->base);
91
92 if (fd->bypass_bit_inverted)
93 return !(v & FAPLL_MAIN_BP);
94 else
95 return !!(v & FAPLL_MAIN_BP);
96 }
97
ti_fapll_set_bypass(struct fapll_data *fd)98 static void ti_fapll_set_bypass(struct fapll_data *fd)
99 {
100 u32 v = readl_relaxed(fd->base);
101
102 if (fd->bypass_bit_inverted)
103 v &= ~FAPLL_MAIN_BP;
104 else
105 v |= FAPLL_MAIN_BP;
106 writel_relaxed(v, fd->base);
107 }
108
ti_fapll_clear_bypass(struct fapll_data *fd)109 static void ti_fapll_clear_bypass(struct fapll_data *fd)
110 {
111 u32 v = readl_relaxed(fd->base);
112
113 if (fd->bypass_bit_inverted)
114 v |= FAPLL_MAIN_BP;
115 else
116 v &= ~FAPLL_MAIN_BP;
117 writel_relaxed(v, fd->base);
118 }
119
ti_fapll_wait_lock(struct fapll_data *fd)120 static int ti_fapll_wait_lock(struct fapll_data *fd)
121 {
122 int retries = FAPLL_MAX_RETRIES;
123 u32 v;
124
125 while ((v = readl_relaxed(fd->base))) {
126 if (v & FAPLL_MAIN_LOCK)
127 return 0;
128
129 if (retries-- <= 0)
130 break;
131
132 udelay(1);
133 }
134
135 pr_err("%s failed to lock\n", fd->name);
136
137 return -ETIMEDOUT;
138 }
139
ti_fapll_enable(struct clk_hw *hw)140 static int ti_fapll_enable(struct clk_hw *hw)
141 {
142 struct fapll_data *fd = to_fapll(hw);
143 u32 v = readl_relaxed(fd->base);
144
145 v |= FAPLL_MAIN_PLLEN;
146 writel_relaxed(v, fd->base);
147 ti_fapll_wait_lock(fd);
148
149 return 0;
150 }
151
ti_fapll_disable(struct clk_hw *hw)152 static void ti_fapll_disable(struct clk_hw *hw)
153 {
154 struct fapll_data *fd = to_fapll(hw);
155 u32 v = readl_relaxed(fd->base);
156
157 v &= ~FAPLL_MAIN_PLLEN;
158 writel_relaxed(v, fd->base);
159 }
160
ti_fapll_is_enabled(struct clk_hw *hw)161 static int ti_fapll_is_enabled(struct clk_hw *hw)
162 {
163 struct fapll_data *fd = to_fapll(hw);
164 u32 v = readl_relaxed(fd->base);
165
166 return v & FAPLL_MAIN_PLLEN;
167 }
168
ti_fapll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)169 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
170 unsigned long parent_rate)
171 {
172 struct fapll_data *fd = to_fapll(hw);
173 u32 fapll_n, fapll_p, v;
174 u64 rate;
175
176 if (ti_fapll_clock_is_bypass(fd))
177 return parent_rate;
178
179 rate = parent_rate;
180
181 /* PLL pre-divider is P and multiplier is N */
182 v = readl_relaxed(fd->base);
183 fapll_p = (v >> 8) & 0xff;
184 if (fapll_p)
185 do_div(rate, fapll_p);
186 fapll_n = v >> 16;
187 if (fapll_n)
188 rate *= fapll_n;
189
190 return rate;
191 }
192
ti_fapll_get_parent(struct clk_hw *hw)193 static u8 ti_fapll_get_parent(struct clk_hw *hw)
194 {
195 struct fapll_data *fd = to_fapll(hw);
196
197 if (ti_fapll_clock_is_bypass(fd))
198 return 1;
199
200 return 0;
201 }
202
ti_fapll_set_div_mult(unsigned long rate, unsigned long parent_rate, u32 *pre_div_p, u32 *mult_n)203 static int ti_fapll_set_div_mult(unsigned long rate,
204 unsigned long parent_rate,
205 u32 *pre_div_p, u32 *mult_n)
206 {
207 /*
208 * So far no luck getting decent clock with PLL divider,
209 * PLL does not seem to lock and the signal does not look
210 * right. It seems the divider can only be used together
211 * with the multiplier?
212 */
213 if (rate < parent_rate) {
214 pr_warn("FAPLL main divider rates unsupported\n");
215 return -EINVAL;
216 }
217
218 *mult_n = rate / parent_rate;
219 if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
220 return -EINVAL;
221 *pre_div_p = 1;
222
223 return 0;
224 }
225
ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)226 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
227 unsigned long *parent_rate)
228 {
229 u32 pre_div_p, mult_n;
230 int error;
231
232 if (!rate)
233 return -EINVAL;
234
235 error = ti_fapll_set_div_mult(rate, *parent_rate,
236 &pre_div_p, &mult_n);
237 if (error)
238 return error;
239
240 rate = *parent_rate / pre_div_p;
241 rate *= mult_n;
242
243 return rate;
244 }
245
ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)246 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
247 unsigned long parent_rate)
248 {
249 struct fapll_data *fd = to_fapll(hw);
250 u32 pre_div_p, mult_n, v;
251 int error;
252
253 if (!rate)
254 return -EINVAL;
255
256 error = ti_fapll_set_div_mult(rate, parent_rate,
257 &pre_div_p, &mult_n);
258 if (error)
259 return error;
260
261 ti_fapll_set_bypass(fd);
262 v = readl_relaxed(fd->base);
263 v &= ~FAPLL_MAIN_CLEAR_MASK;
264 v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
265 v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
266 writel_relaxed(v, fd->base);
267 if (ti_fapll_is_enabled(hw))
268 ti_fapll_wait_lock(fd);
269 ti_fapll_clear_bypass(fd);
270
271 return 0;
272 }
273
274 static const struct clk_ops ti_fapll_ops = {
275 .enable = ti_fapll_enable,
276 .disable = ti_fapll_disable,
277 .is_enabled = ti_fapll_is_enabled,
278 .recalc_rate = ti_fapll_recalc_rate,
279 .get_parent = ti_fapll_get_parent,
280 .round_rate = ti_fapll_round_rate,
281 .set_rate = ti_fapll_set_rate,
282 };
283
ti_fapll_synth_enable(struct clk_hw *hw)284 static int ti_fapll_synth_enable(struct clk_hw *hw)
285 {
286 struct fapll_synth *synth = to_synth(hw);
287 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
288
289 v &= ~(1 << synth->index);
290 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
291
292 return 0;
293 }
294
ti_fapll_synth_disable(struct clk_hw *hw)295 static void ti_fapll_synth_disable(struct clk_hw *hw)
296 {
297 struct fapll_synth *synth = to_synth(hw);
298 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
299
300 v |= 1 << synth->index;
301 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
302 }
303
ti_fapll_synth_is_enabled(struct clk_hw *hw)304 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
305 {
306 struct fapll_synth *synth = to_synth(hw);
307 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
308
309 return !(v & (1 << synth->index));
310 }
311
312 /*
313 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
314 */
ti_fapll_synth_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)315 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
316 unsigned long parent_rate)
317 {
318 struct fapll_synth *synth = to_synth(hw);
319 u32 synth_div_m;
320 u64 rate;
321
322 /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
323 if (!synth->div)
324 return 32768;
325
326 /*
327 * PLL in bypass sets the synths in bypass mode too. The PLL rate
328 * can be also be set to 27MHz, so we can't use parent_rate to
329 * check for bypass mode.
330 */
331 if (ti_fapll_clock_is_bypass(synth->fd))
332 return parent_rate;
333
334 rate = parent_rate;
335
336 /*
337 * Synth frequency integer and fractional divider.
338 * Note that the phase output K is 8, so the result needs
339 * to be multiplied by SYNTH_PHASE_K.
340 */
341 if (synth->freq) {
342 u32 v, synth_int_div, synth_frac_div, synth_div_freq;
343
344 v = readl_relaxed(synth->freq);
345 synth_int_div = (v >> 24) & 0xf;
346 synth_frac_div = v & 0xffffff;
347 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
348 rate *= 10000000;
349 do_div(rate, synth_div_freq);
350 rate *= SYNTH_PHASE_K;
351 }
352
353 /* Synth post-divider M */
354 synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
355
356 return DIV_ROUND_UP_ULL(rate, synth_div_m);
357 }
358
ti_fapll_synth_get_frac_rate(struct clk_hw *hw, unsigned long parent_rate)359 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
360 unsigned long parent_rate)
361 {
362 struct fapll_synth *synth = to_synth(hw);
363 unsigned long current_rate, frac_rate;
364 u32 post_div_m;
365
366 current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
367 post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
368 frac_rate = current_rate * post_div_m;
369
370 return frac_rate;
371 }
372
ti_fapll_synth_set_frac_rate(struct fapll_synth *synth, unsigned long rate, unsigned long parent_rate)373 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
374 unsigned long rate,
375 unsigned long parent_rate)
376 {
377 u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
378
379 post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
380 post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
381 if (post_div_m > SYNTH_MAX_DIV_M)
382 return -EINVAL;
383 if (!post_div_m)
384 post_div_m = 1;
385
386 for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
387 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
388 SYNTH_PHASE_K *
389 10000000,
390 rate * post_div_m);
391 synth_frac_div = synth_int_div % 10000000;
392 synth_int_div /= 10000000;
393
394 if (synth_int_div <= SYNTH_MAX_INT_DIV)
395 break;
396 }
397
398 if (synth_int_div > SYNTH_MAX_INT_DIV)
399 return -EINVAL;
400
401 v = readl_relaxed(synth->freq);
402 v &= ~0x1fffffff;
403 v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
404 v |= (synth_frac_div & 0xffffff);
405 v |= SYNTH_LDFREQ;
406 writel_relaxed(v, synth->freq);
407
408 return post_div_m;
409 }
410
ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)411 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
412 unsigned long *parent_rate)
413 {
414 struct fapll_synth *synth = to_synth(hw);
415 struct fapll_data *fd = synth->fd;
416 unsigned long r;
417
418 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
419 return -EINVAL;
420
421 /* Only post divider m available with no fractional divider? */
422 if (!synth->freq) {
423 unsigned long frac_rate;
424 u32 synth_post_div_m;
425
426 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
427 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
428 r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
429 goto out;
430 }
431
432 r = *parent_rate * SYNTH_PHASE_K;
433 if (rate > r)
434 goto out;
435
436 r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
437 if (rate < r)
438 goto out;
439
440 r = rate;
441 out:
442 return r;
443 }
444
ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)445 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
446 unsigned long parent_rate)
447 {
448 struct fapll_synth *synth = to_synth(hw);
449 struct fapll_data *fd = synth->fd;
450 unsigned long frac_rate, post_rate = 0;
451 u32 post_div_m = 0, v;
452
453 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
454 return -EINVAL;
455
456 /* Produce the rate with just post divider M? */
457 frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
458 if (frac_rate < rate) {
459 if (!synth->freq)
460 return -EINVAL;
461 } else {
462 post_div_m = DIV_ROUND_UP(frac_rate, rate);
463 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
464 post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
465 if (!synth->freq && !post_rate)
466 return -EINVAL;
467 }
468
469 /* Need to recalculate the fractional divider? */
470 if ((post_rate != rate) && synth->freq)
471 post_div_m = ti_fapll_synth_set_frac_rate(synth,
472 rate,
473 parent_rate);
474
475 v = readl_relaxed(synth->div);
476 v &= ~SYNTH_MAX_DIV_M;
477 v |= post_div_m;
478 v |= SYNTH_LDMDIV1;
479 writel_relaxed(v, synth->div);
480
481 return 0;
482 }
483
484 static const struct clk_ops ti_fapll_synt_ops = {
485 .enable = ti_fapll_synth_enable,
486 .disable = ti_fapll_synth_disable,
487 .is_enabled = ti_fapll_synth_is_enabled,
488 .recalc_rate = ti_fapll_synth_recalc_rate,
489 .round_rate = ti_fapll_synth_round_rate,
490 .set_rate = ti_fapll_synth_set_rate,
491 };
492
ti_fapll_synth_setup(struct fapll_data *fd, void __iomem *freq, void __iomem *div, int index, const char *name, const char *parent, struct clk *pll_clk)493 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
494 void __iomem *freq,
495 void __iomem *div,
496 int index,
497 const char *name,
498 const char *parent,
499 struct clk *pll_clk)
500 {
501 struct clk_init_data *init;
502 struct fapll_synth *synth;
503 struct clk *clk = ERR_PTR(-ENOMEM);
504
505 init = kzalloc(sizeof(*init), GFP_KERNEL);
506 if (!init)
507 return ERR_PTR(-ENOMEM);
508
509 init->ops = &ti_fapll_synt_ops;
510 init->name = name;
511 init->parent_names = &parent;
512 init->num_parents = 1;
513
514 synth = kzalloc(sizeof(*synth), GFP_KERNEL);
515 if (!synth)
516 goto free;
517
518 synth->fd = fd;
519 synth->index = index;
520 synth->freq = freq;
521 synth->div = div;
522 synth->name = name;
523 synth->hw.init = init;
524 synth->clk_pll = pll_clk;
525
526 clk = clk_register(NULL, &synth->hw);
527 if (IS_ERR(clk)) {
528 pr_err("failed to register clock\n");
529 goto free;
530 }
531
532 return clk;
533
534 free:
535 kfree(synth);
536 kfree(init);
537
538 return clk;
539 }
540
ti_fapll_setup(struct device_node *node)541 static void __init ti_fapll_setup(struct device_node *node)
542 {
543 struct fapll_data *fd;
544 struct clk_init_data *init = NULL;
545 const char *parent_name[2];
546 struct clk *pll_clk;
547 const char *name;
548 int i;
549
550 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
551 if (!fd)
552 return;
553
554 fd->outputs.clks = kzalloc(sizeof(struct clk *) *
555 MAX_FAPLL_OUTPUTS + 1,
556 GFP_KERNEL);
557 if (!fd->outputs.clks)
558 goto free;
559
560 init = kzalloc(sizeof(*init), GFP_KERNEL);
561 if (!init)
562 goto free;
563
564 init->ops = &ti_fapll_ops;
565 name = ti_dt_clk_name(node);
566 init->name = name;
567
568 init->num_parents = of_clk_get_parent_count(node);
569 if (init->num_parents != 2) {
570 pr_err("%pOFn must have two parents\n", node);
571 goto free;
572 }
573
574 of_clk_parent_fill(node, parent_name, 2);
575 init->parent_names = parent_name;
576
577 fd->clk_ref = of_clk_get(node, 0);
578 if (IS_ERR(fd->clk_ref)) {
579 pr_err("%pOFn could not get clk_ref\n", node);
580 goto free;
581 }
582
583 fd->clk_bypass = of_clk_get(node, 1);
584 if (IS_ERR(fd->clk_bypass)) {
585 pr_err("%pOFn could not get clk_bypass\n", node);
586 goto free;
587 }
588
589 fd->base = of_iomap(node, 0);
590 if (!fd->base) {
591 pr_err("%pOFn could not get IO base\n", node);
592 goto free;
593 }
594
595 if (fapll_is_ddr_pll(fd->base))
596 fd->bypass_bit_inverted = true;
597
598 fd->name = name;
599 fd->hw.init = init;
600
601 /* Register the parent PLL */
602 pll_clk = clk_register(NULL, &fd->hw);
603 if (IS_ERR(pll_clk))
604 goto unmap;
605
606 fd->outputs.clks[0] = pll_clk;
607 fd->outputs.clk_num++;
608
609 /*
610 * Set up the child synthesizers starting at index 1 as the
611 * PLL output is at index 0. We need to check the clock-indices
612 * for numbering in case there are holes in the synth mapping,
613 * and then probe the synth register to see if it has a FREQ
614 * register available.
615 */
616 for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
617 const char *output_name;
618 void __iomem *freq, *div;
619 struct clk *synth_clk;
620 int output_instance;
621 u32 v;
622
623 if (of_property_read_string_index(node, "clock-output-names",
624 i, &output_name))
625 continue;
626
627 if (of_property_read_u32_index(node, "clock-indices", i,
628 &output_instance))
629 output_instance = i;
630
631 freq = fd->base + (output_instance * 8);
632 div = freq + 4;
633
634 /* Check for hardwired audio_pll_clk1 */
635 if (is_audio_pll_clk1(freq)) {
636 freq = NULL;
637 div = NULL;
638 } else {
639 /* Does the synthesizer have a FREQ register? */
640 v = readl_relaxed(freq);
641 if (!v)
642 freq = NULL;
643 }
644 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
645 output_name, name, pll_clk);
646 if (IS_ERR(synth_clk))
647 continue;
648
649 fd->outputs.clks[output_instance] = synth_clk;
650 fd->outputs.clk_num++;
651
652 clk_register_clkdev(synth_clk, output_name, NULL);
653 }
654
655 /* Register the child synthesizers as the FAPLL outputs */
656 of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
657 /* Add clock alias for the outputs */
658
659 kfree(init);
660
661 return;
662
663 unmap:
664 iounmap(fd->base);
665 free:
666 if (fd->clk_bypass)
667 clk_put(fd->clk_bypass);
668 if (fd->clk_ref)
669 clk_put(fd->clk_ref);
670 kfree(fd->outputs.clks);
671 kfree(fd);
672 kfree(init);
673 }
674
675 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
676