1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9#include <linux/clk.h> 10#include <linux/clk-provider.h> 11#include <linux/clk/clk-conf.h> 12#include <linux/module.h> 13#include <linux/mutex.h> 14#include <linux/spinlock.h> 15#include <linux/err.h> 16#include <linux/list.h> 17#include <linux/slab.h> 18#include <linux/of.h> 19#include <linux/device.h> 20#include <linux/init.h> 21#include <linux/pm_runtime.h> 22#include <linux/sched.h> 23#include <linux/clkdev.h> 24 25#include "clk.h" 26 27static DEFINE_SPINLOCK(enable_lock); 28static DEFINE_MUTEX(prepare_lock); 29 30static struct task_struct *prepare_owner; 31static struct task_struct *enable_owner; 32 33static int prepare_refcnt; 34static int enable_refcnt; 35 36static HLIST_HEAD(clk_root_list); 37static HLIST_HEAD(clk_orphan_list); 38static LIST_HEAD(clk_notifier_list); 39 40/* List of registered clks that use runtime PM */ 41static HLIST_HEAD(clk_rpm_list); 42static DEFINE_MUTEX(clk_rpm_list_lock); 43 44static const struct hlist_head *all_lists[] = { 45 &clk_root_list, 46 &clk_orphan_list, 47 NULL, 48}; 49 50/*** private data structures ***/ 51 52struct clk_parent_map { 53 const struct clk_hw *hw; 54 struct clk_core *core; 55 const char *fw_name; 56 const char *name; 57 int index; 58}; 59 60struct clk_core { 61 const char *name; 62 const struct clk_ops *ops; 63 struct clk_hw *hw; 64 struct module *owner; 65 struct device *dev; 66 struct hlist_node rpm_node; 67 struct device_node *of_node; 68 struct clk_core *parent; 69 struct clk_parent_map *parents; 70 u8 num_parents; 71 u8 new_parent_index; 72 unsigned long rate; 73 unsigned long req_rate; 74 unsigned long new_rate; 75 struct clk_core *new_parent; 76 struct clk_core *new_child; 77 unsigned long flags; 78 bool orphan; 79 bool rpm_enabled; 80 unsigned int enable_count; 81 unsigned int prepare_count; 82 unsigned int protect_count; 83 unsigned long min_rate; 84 unsigned long max_rate; 85 unsigned long accuracy; 86 int phase; 87 struct clk_duty duty; 88 struct hlist_head children; 89 struct hlist_node child_node; 90 struct hlist_head clks; 91 unsigned int notifier_count; 92#ifdef CONFIG_DEBUG_FS 93 struct dentry *dentry; 94 struct hlist_node debug_node; 95#endif 96 struct kref ref; 97}; 98 99#define CREATE_TRACE_POINTS 100#include <trace/events/clk.h> 101 102struct clk { 103 struct clk_core *core; 104 struct device *dev; 105 const char *dev_id; 106 const char *con_id; 107 unsigned long min_rate; 108 unsigned long max_rate; 109 unsigned int exclusive_count; 110 struct hlist_node clks_node; 111}; 112 113/*** runtime pm ***/ 114static int clk_pm_runtime_get(struct clk_core *core) 115{ 116 int ret; 117 118 if (!core->rpm_enabled) 119 return 0; 120 121 ret = pm_runtime_get_sync(core->dev); 122 if (ret < 0) { 123 pm_runtime_put_noidle(core->dev); 124 return ret; 125 } 126 return 0; 127} 128 129static void clk_pm_runtime_put(struct clk_core *core) 130{ 131 if (!core->rpm_enabled) 132 return; 133 134 pm_runtime_put_sync(core->dev); 135} 136 137/** 138 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices 139 * 140 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so 141 * that disabling unused clks avoids a deadlock where a device is runtime PM 142 * resuming/suspending and the runtime PM callback is trying to grab the 143 * prepare_lock for something like clk_prepare_enable() while 144 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime 145 * PM resume/suspend the device as well. 146 * 147 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on 148 * success. Otherwise the lock is released on failure. 149 * 150 * Return: 0 on success, negative errno otherwise. 151 */ 152static int clk_pm_runtime_get_all(void) 153{ 154 int ret; 155 struct clk_core *core, *failed; 156 157 /* 158 * Grab the list lock to prevent any new clks from being registered 159 * or unregistered until clk_pm_runtime_put_all(). 160 */ 161 mutex_lock(&clk_rpm_list_lock); 162 163 /* 164 * Runtime PM "get" all the devices that are needed for the clks 165 * currently registered. Do this without holding the prepare_lock, to 166 * avoid the deadlock. 167 */ 168 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 169 ret = clk_pm_runtime_get(core); 170 if (ret) { 171 failed = core; 172 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n", 173 dev_name(failed->dev), failed->name); 174 goto err; 175 } 176 } 177 178 return 0; 179 180err: 181 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 182 if (core == failed) 183 break; 184 185 clk_pm_runtime_put(core); 186 } 187 mutex_unlock(&clk_rpm_list_lock); 188 189 return ret; 190} 191 192/** 193 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices 194 * 195 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release 196 * the 'clk_rpm_list_lock'. 197 */ 198static void clk_pm_runtime_put_all(void) 199{ 200 struct clk_core *core; 201 202 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) 203 clk_pm_runtime_put(core); 204 mutex_unlock(&clk_rpm_list_lock); 205} 206 207static void clk_pm_runtime_init(struct clk_core *core) 208{ 209 struct device *dev = core->dev; 210 211 if (dev && pm_runtime_enabled(dev)) { 212 core->rpm_enabled = true; 213 214 mutex_lock(&clk_rpm_list_lock); 215 hlist_add_head(&core->rpm_node, &clk_rpm_list); 216 mutex_unlock(&clk_rpm_list_lock); 217 } 218} 219 220/*** locking ***/ 221static void clk_prepare_lock(void) 222{ 223 if (!mutex_trylock(&prepare_lock)) { 224 if (prepare_owner == current) { 225 prepare_refcnt++; 226 return; 227 } 228 mutex_lock(&prepare_lock); 229 } 230 WARN_ON_ONCE(prepare_owner != NULL); 231 WARN_ON_ONCE(prepare_refcnt != 0); 232 prepare_owner = current; 233 prepare_refcnt = 1; 234} 235 236static void clk_prepare_unlock(void) 237{ 238 WARN_ON_ONCE(prepare_owner != current); 239 WARN_ON_ONCE(prepare_refcnt == 0); 240 241 if (--prepare_refcnt) 242 return; 243 prepare_owner = NULL; 244 mutex_unlock(&prepare_lock); 245} 246 247static unsigned long clk_enable_lock(void) 248 __acquires(enable_lock) 249{ 250 unsigned long flags; 251 252 /* 253 * On UP systems, spin_trylock_irqsave() always returns true, even if 254 * we already hold the lock. So, in that case, we rely only on 255 * reference counting. 256 */ 257 if (!IS_ENABLED(CONFIG_SMP) || 258 !spin_trylock_irqsave(&enable_lock, flags)) { 259 if (enable_owner == current) { 260 enable_refcnt++; 261 __acquire(enable_lock); 262 if (!IS_ENABLED(CONFIG_SMP)) 263 local_save_flags(flags); 264 return flags; 265 } 266 spin_lock_irqsave(&enable_lock, flags); 267 } 268 WARN_ON_ONCE(enable_owner != NULL); 269 WARN_ON_ONCE(enable_refcnt != 0); 270 enable_owner = current; 271 enable_refcnt = 1; 272 return flags; 273} 274 275static void clk_enable_unlock(unsigned long flags) 276 __releases(enable_lock) 277{ 278 WARN_ON_ONCE(enable_owner != current); 279 WARN_ON_ONCE(enable_refcnt == 0); 280 281 if (--enable_refcnt) { 282 __release(enable_lock); 283 return; 284 } 285 enable_owner = NULL; 286 spin_unlock_irqrestore(&enable_lock, flags); 287} 288 289static bool clk_core_rate_is_protected(struct clk_core *core) 290{ 291 return core->protect_count; 292} 293 294static bool clk_core_is_prepared(struct clk_core *core) 295{ 296 bool ret = false; 297 298 /* 299 * .is_prepared is optional for clocks that can prepare 300 * fall back to software usage counter if it is missing 301 */ 302 if (!core->ops->is_prepared) 303 return core->prepare_count; 304 305 if (!clk_pm_runtime_get(core)) { 306 ret = core->ops->is_prepared(core->hw); 307 clk_pm_runtime_put(core); 308 } 309 310 return ret; 311} 312 313static bool clk_core_is_enabled(struct clk_core *core) 314{ 315 bool ret = false; 316 317 /* 318 * .is_enabled is only mandatory for clocks that gate 319 * fall back to software usage counter if .is_enabled is missing 320 */ 321 if (!core->ops->is_enabled) 322 return core->enable_count; 323 324 /* 325 * Check if clock controller's device is runtime active before 326 * calling .is_enabled callback. If not, assume that clock is 327 * disabled, because we might be called from atomic context, from 328 * which pm_runtime_get() is not allowed. 329 * This function is called mainly from clk_disable_unused_subtree, 330 * which ensures proper runtime pm activation of controller before 331 * taking enable spinlock, but the below check is needed if one tries 332 * to call it from other places. 333 */ 334 if (core->rpm_enabled) { 335 pm_runtime_get_noresume(core->dev); 336 if (!pm_runtime_active(core->dev)) { 337 ret = false; 338 goto done; 339 } 340 } 341 342 /* 343 * This could be called with the enable lock held, or from atomic 344 * context. If the parent isn't enabled already, we can't do 345 * anything here. We can also assume this clock isn't enabled. 346 */ 347 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 348 if (!clk_core_is_enabled(core->parent)) { 349 ret = false; 350 goto done; 351 } 352 353 ret = core->ops->is_enabled(core->hw); 354done: 355 if (core->rpm_enabled) 356 pm_runtime_put(core->dev); 357 358 return ret; 359} 360 361/*** helper functions ***/ 362 363const char *__clk_get_name(const struct clk *clk) 364{ 365 return !clk ? NULL : clk->core->name; 366} 367EXPORT_SYMBOL_GPL(__clk_get_name); 368 369const char *clk_hw_get_name(const struct clk_hw *hw) 370{ 371 return hw->core->name; 372} 373EXPORT_SYMBOL_GPL(clk_hw_get_name); 374 375struct clk_hw *__clk_get_hw(struct clk *clk) 376{ 377 return !clk ? NULL : clk->core->hw; 378} 379EXPORT_SYMBOL_GPL(__clk_get_hw); 380 381unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 382{ 383 return hw->core->num_parents; 384} 385EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 386 387struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 388{ 389 return hw->core->parent ? hw->core->parent->hw : NULL; 390} 391EXPORT_SYMBOL_GPL(clk_hw_get_parent); 392 393static struct clk_core *__clk_lookup_subtree(const char *name, 394 struct clk_core *core) 395{ 396 struct clk_core *child; 397 struct clk_core *ret; 398 399 if (!strcmp(core->name, name)) 400 return core; 401 402 hlist_for_each_entry(child, &core->children, child_node) { 403 ret = __clk_lookup_subtree(name, child); 404 if (ret) 405 return ret; 406 } 407 408 return NULL; 409} 410 411static struct clk_core *clk_core_lookup(const char *name) 412{ 413 struct clk_core *root_clk; 414 struct clk_core *ret; 415 416 if (!name) 417 return NULL; 418 419 /* search the 'proper' clk tree first */ 420 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 421 ret = __clk_lookup_subtree(name, root_clk); 422 if (ret) 423 return ret; 424 } 425 426 /* if not found, then search the orphan tree */ 427 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 428 ret = __clk_lookup_subtree(name, root_clk); 429 if (ret) 430 return ret; 431 } 432 433 return NULL; 434} 435 436#ifdef CONFIG_OF 437static int of_parse_clkspec(const struct device_node *np, int index, 438 const char *name, struct of_phandle_args *out_args); 439static struct clk_hw * 440of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 441#else 442static inline int of_parse_clkspec(const struct device_node *np, int index, 443 const char *name, 444 struct of_phandle_args *out_args) 445{ 446 return -ENOENT; 447} 448static inline struct clk_hw * 449of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 450{ 451 return ERR_PTR(-ENOENT); 452} 453#endif 454 455/** 456 * clk_core_get - Find the clk_core parent of a clk 457 * @core: clk to find parent of 458 * @p_index: parent index to search for 459 * 460 * This is the preferred method for clk providers to find the parent of a 461 * clk when that parent is external to the clk controller. The parent_names 462 * array is indexed and treated as a local name matching a string in the device 463 * node's 'clock-names' property or as the 'con_id' matching the device's 464 * dev_name() in a clk_lookup. This allows clk providers to use their own 465 * namespace instead of looking for a globally unique parent string. 466 * 467 * For example the following DT snippet would allow a clock registered by the 468 * clock-controller@c001 that has a clk_init_data::parent_data array 469 * with 'xtal' in the 'name' member to find the clock provided by the 470 * clock-controller@f00abcd without needing to get the globally unique name of 471 * the xtal clk. 472 * 473 * parent: clock-controller@f00abcd { 474 * reg = <0xf00abcd 0xabcd>; 475 * #clock-cells = <0>; 476 * }; 477 * 478 * clock-controller@c001 { 479 * reg = <0xc001 0xf00d>; 480 * clocks = <&parent>; 481 * clock-names = "xtal"; 482 * #clock-cells = <1>; 483 * }; 484 * 485 * Returns: -ENOENT when the provider can't be found or the clk doesn't 486 * exist in the provider or the name can't be found in the DT node or 487 * in a clkdev lookup. NULL when the provider knows about the clk but it 488 * isn't provided on this system. 489 * A valid clk_core pointer when the clk can be found in the provider. 490 */ 491static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 492{ 493 const char *name = core->parents[p_index].fw_name; 494 int index = core->parents[p_index].index; 495 struct clk_hw *hw = ERR_PTR(-ENOENT); 496 struct device *dev = core->dev; 497 const char *dev_id = dev ? dev_name(dev) : NULL; 498 struct device_node *np = core->of_node; 499 struct of_phandle_args clkspec; 500 501 if (np && (name || index >= 0) && 502 !of_parse_clkspec(np, index, name, &clkspec)) { 503 hw = of_clk_get_hw_from_clkspec(&clkspec); 504 of_node_put(clkspec.np); 505 } else if (name) { 506 /* 507 * If the DT search above couldn't find the provider fallback to 508 * looking up via clkdev based clk_lookups. 509 */ 510 hw = clk_find_hw(dev_id, name); 511 } 512 513 if (IS_ERR(hw)) 514 return ERR_CAST(hw); 515 516 if (!hw) 517 return NULL; 518 519 return hw->core; 520} 521 522static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 523{ 524 struct clk_parent_map *entry = &core->parents[index]; 525 struct clk_core *parent = ERR_PTR(-ENOENT); 526 527 if (entry->hw) { 528 parent = entry->hw->core; 529 /* 530 * We have a direct reference but it isn't registered yet? 531 * Orphan it and let clk_reparent() update the orphan status 532 * when the parent is registered. 533 */ 534 if (!parent) 535 parent = ERR_PTR(-EPROBE_DEFER); 536 } else { 537 parent = clk_core_get(core, index); 538 if (PTR_ERR(parent) == -ENOENT && entry->name) 539 parent = clk_core_lookup(entry->name); 540 } 541 542 /* Only cache it if it's not an error */ 543 if (!IS_ERR(parent)) 544 entry->core = parent; 545} 546 547static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 548 u8 index) 549{ 550 if (!core || index >= core->num_parents || !core->parents) 551 return NULL; 552 553 if (!core->parents[index].core) 554 clk_core_fill_parent_index(core, index); 555 556 return core->parents[index].core; 557} 558 559struct clk_hw * 560clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 561{ 562 struct clk_core *parent; 563 564 parent = clk_core_get_parent_by_index(hw->core, index); 565 566 return !parent ? NULL : parent->hw; 567} 568EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 569 570unsigned int __clk_get_enable_count(struct clk *clk) 571{ 572 return !clk ? 0 : clk->core->enable_count; 573} 574 575static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 576{ 577 if (!core) 578 return 0; 579 580 if (!core->num_parents || core->parent) 581 return core->rate; 582 583 /* 584 * Clk must have a parent because num_parents > 0 but the parent isn't 585 * known yet. Best to return 0 as the rate of this clk until we can 586 * properly recalc the rate based on the parent's rate. 587 */ 588 return 0; 589} 590 591unsigned long clk_hw_get_rate(const struct clk_hw *hw) 592{ 593 return clk_core_get_rate_nolock(hw->core); 594} 595EXPORT_SYMBOL_GPL(clk_hw_get_rate); 596 597static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 598{ 599 if (!core) 600 return 0; 601 602 return core->accuracy; 603} 604 605unsigned long clk_hw_get_flags(const struct clk_hw *hw) 606{ 607 return hw->core->flags; 608} 609EXPORT_SYMBOL_GPL(clk_hw_get_flags); 610 611bool clk_hw_is_prepared(const struct clk_hw *hw) 612{ 613 return clk_core_is_prepared(hw->core); 614} 615EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 616 617bool clk_hw_rate_is_protected(const struct clk_hw *hw) 618{ 619 return clk_core_rate_is_protected(hw->core); 620} 621EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 622 623bool clk_hw_is_enabled(const struct clk_hw *hw) 624{ 625 return clk_core_is_enabled(hw->core); 626} 627EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 628 629bool __clk_is_enabled(struct clk *clk) 630{ 631 if (!clk) 632 return false; 633 634 return clk_core_is_enabled(clk->core); 635} 636EXPORT_SYMBOL_GPL(__clk_is_enabled); 637 638static bool mux_is_better_rate(unsigned long rate, unsigned long now, 639 unsigned long best, unsigned long flags) 640{ 641 if (flags & CLK_MUX_ROUND_CLOSEST) 642 return abs(now - rate) < abs(best - rate); 643 644 return now <= rate && now > best; 645} 646 647int clk_mux_determine_rate_flags(struct clk_hw *hw, 648 struct clk_rate_request *req, 649 unsigned long flags) 650{ 651 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 652 int i, num_parents, ret; 653 unsigned long best = 0; 654 struct clk_rate_request parent_req = *req; 655 656 /* if NO_REPARENT flag set, pass through to current parent */ 657 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 658 parent = core->parent; 659 if (core->flags & CLK_SET_RATE_PARENT) { 660 ret = __clk_determine_rate(parent ? parent->hw : NULL, 661 &parent_req); 662 if (ret) 663 return ret; 664 665 best = parent_req.rate; 666 } else if (parent) { 667 best = clk_core_get_rate_nolock(parent); 668 } else { 669 best = clk_core_get_rate_nolock(core); 670 } 671 672 goto out; 673 } 674 675 /* find the parent that can provide the fastest rate <= rate */ 676 num_parents = core->num_parents; 677 for (i = 0; i < num_parents; i++) { 678 parent = clk_core_get_parent_by_index(core, i); 679 if (!parent) 680 continue; 681 682 if (core->flags & CLK_SET_RATE_PARENT) { 683 parent_req = *req; 684 ret = __clk_determine_rate(parent->hw, &parent_req); 685 if (ret) 686 continue; 687 } else { 688 parent_req.rate = clk_core_get_rate_nolock(parent); 689 } 690 691 if (mux_is_better_rate(req->rate, parent_req.rate, 692 best, flags)) { 693 best_parent = parent; 694 best = parent_req.rate; 695 } 696 } 697 698 if (!best_parent) 699 return -EINVAL; 700 701out: 702 if (best_parent) 703 req->best_parent_hw = best_parent->hw; 704 req->best_parent_rate = best; 705 req->rate = best; 706 707 return 0; 708} 709EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 710 711struct clk *__clk_lookup(const char *name) 712{ 713 struct clk_core *core = clk_core_lookup(name); 714 715 return !core ? NULL : core->hw->clk; 716} 717 718static void clk_core_get_boundaries(struct clk_core *core, 719 unsigned long *min_rate, 720 unsigned long *max_rate) 721{ 722 struct clk *clk_user; 723 724 lockdep_assert_held(&prepare_lock); 725 726 *min_rate = core->min_rate; 727 *max_rate = core->max_rate; 728 729 hlist_for_each_entry(clk_user, &core->clks, clks_node) 730 *min_rate = max(*min_rate, clk_user->min_rate); 731 732 hlist_for_each_entry(clk_user, &core->clks, clks_node) 733 *max_rate = min(*max_rate, clk_user->max_rate); 734} 735 736static bool clk_core_check_boundaries(struct clk_core *core, 737 unsigned long min_rate, 738 unsigned long max_rate) 739{ 740 struct clk *user; 741 742 lockdep_assert_held(&prepare_lock); 743 744 if (min_rate > core->max_rate || max_rate < core->min_rate) 745 return false; 746 747 hlist_for_each_entry(user, &core->clks, clks_node) 748 if (min_rate > user->max_rate || max_rate < user->min_rate) 749 return false; 750 751 return true; 752} 753 754void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 755 unsigned long max_rate) 756{ 757 hw->core->min_rate = min_rate; 758 hw->core->max_rate = max_rate; 759} 760EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 761 762/* 763 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 764 * @hw: mux type clk to determine rate on 765 * @req: rate request, also used to return preferred parent and frequencies 766 * 767 * Helper for finding best parent to provide a given frequency. This can be used 768 * directly as a determine_rate callback (e.g. for a mux), or from a more 769 * complex clock that may combine a mux with other operations. 770 * 771 * Returns: 0 on success, -EERROR value on error 772 */ 773int __clk_mux_determine_rate(struct clk_hw *hw, 774 struct clk_rate_request *req) 775{ 776 return clk_mux_determine_rate_flags(hw, req, 0); 777} 778EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 779 780int __clk_mux_determine_rate_closest(struct clk_hw *hw, 781 struct clk_rate_request *req) 782{ 783 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 784} 785EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 786 787/*** clk api ***/ 788 789static void clk_core_rate_unprotect(struct clk_core *core) 790{ 791 lockdep_assert_held(&prepare_lock); 792 793 if (!core) 794 return; 795 796 if (WARN(core->protect_count == 0, 797 "%s already unprotected\n", core->name)) 798 return; 799 800 if (--core->protect_count > 0) 801 return; 802 803 clk_core_rate_unprotect(core->parent); 804} 805 806static int clk_core_rate_nuke_protect(struct clk_core *core) 807{ 808 int ret; 809 810 lockdep_assert_held(&prepare_lock); 811 812 if (!core) 813 return -EINVAL; 814 815 if (core->protect_count == 0) 816 return 0; 817 818 ret = core->protect_count; 819 core->protect_count = 1; 820 clk_core_rate_unprotect(core); 821 822 return ret; 823} 824 825/** 826 * clk_rate_exclusive_put - release exclusivity over clock rate control 827 * @clk: the clk over which the exclusivity is released 828 * 829 * clk_rate_exclusive_put() completes a critical section during which a clock 830 * consumer cannot tolerate any other consumer making any operation on the 831 * clock which could result in a rate change or rate glitch. Exclusive clocks 832 * cannot have their rate changed, either directly or indirectly due to changes 833 * further up the parent chain of clocks. As a result, clocks up parent chain 834 * also get under exclusive control of the calling consumer. 835 * 836 * If exlusivity is claimed more than once on clock, even by the same consumer, 837 * the rate effectively gets locked as exclusivity can't be preempted. 838 * 839 * Calls to clk_rate_exclusive_put() must be balanced with calls to 840 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 841 * error status. 842 */ 843void clk_rate_exclusive_put(struct clk *clk) 844{ 845 if (!clk) 846 return; 847 848 clk_prepare_lock(); 849 850 /* 851 * if there is something wrong with this consumer protect count, stop 852 * here before messing with the provider 853 */ 854 if (WARN_ON(clk->exclusive_count <= 0)) 855 goto out; 856 857 clk_core_rate_unprotect(clk->core); 858 clk->exclusive_count--; 859out: 860 clk_prepare_unlock(); 861} 862EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 863 864static void clk_core_rate_protect(struct clk_core *core) 865{ 866 lockdep_assert_held(&prepare_lock); 867 868 if (!core) 869 return; 870 871 if (core->protect_count == 0) 872 clk_core_rate_protect(core->parent); 873 874 core->protect_count++; 875} 876 877static void clk_core_rate_restore_protect(struct clk_core *core, int count) 878{ 879 lockdep_assert_held(&prepare_lock); 880 881 if (!core) 882 return; 883 884 if (count == 0) 885 return; 886 887 clk_core_rate_protect(core); 888 core->protect_count = count; 889} 890 891/** 892 * clk_rate_exclusive_get - get exclusivity over the clk rate control 893 * @clk: the clk over which the exclusity of rate control is requested 894 * 895 * clk_rate_exclusive_get() begins a critical section during which a clock 896 * consumer cannot tolerate any other consumer making any operation on the 897 * clock which could result in a rate change or rate glitch. Exclusive clocks 898 * cannot have their rate changed, either directly or indirectly due to changes 899 * further up the parent chain of clocks. As a result, clocks up parent chain 900 * also get under exclusive control of the calling consumer. 901 * 902 * If exlusivity is claimed more than once on clock, even by the same consumer, 903 * the rate effectively gets locked as exclusivity can't be preempted. 904 * 905 * Calls to clk_rate_exclusive_get() should be balanced with calls to 906 * clk_rate_exclusive_put(). Calls to this function may sleep. 907 * Returns 0 on success, -EERROR otherwise 908 */ 909int clk_rate_exclusive_get(struct clk *clk) 910{ 911 if (!clk) 912 return 0; 913 914 clk_prepare_lock(); 915 clk_core_rate_protect(clk->core); 916 clk->exclusive_count++; 917 clk_prepare_unlock(); 918 919 return 0; 920} 921EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 922 923static void clk_core_unprepare(struct clk_core *core) 924{ 925 lockdep_assert_held(&prepare_lock); 926 927 if (!core) 928 return; 929 930 if (WARN(core->prepare_count == 0, 931 "%s already unprepared\n", core->name)) 932 return; 933 934 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 935 "Unpreparing critical %s\n", core->name)) 936 return; 937 938 if (core->flags & CLK_SET_RATE_GATE) 939 clk_core_rate_unprotect(core); 940 941 if (--core->prepare_count > 0) 942 return; 943 944 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 945 946 trace_clk_unprepare(core); 947 948 if (core->ops->unprepare) 949 core->ops->unprepare(core->hw); 950 951 trace_clk_unprepare_complete(core); 952 clk_core_unprepare(core->parent); 953 clk_pm_runtime_put(core); 954} 955 956static void clk_core_unprepare_lock(struct clk_core *core) 957{ 958 clk_prepare_lock(); 959 clk_core_unprepare(core); 960 clk_prepare_unlock(); 961} 962 963/** 964 * clk_unprepare - undo preparation of a clock source 965 * @clk: the clk being unprepared 966 * 967 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 968 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 969 * if the operation may sleep. One example is a clk which is accessed over 970 * I2c. In the complex case a clk gate operation may require a fast and a slow 971 * part. It is this reason that clk_unprepare and clk_disable are not mutually 972 * exclusive. In fact clk_disable must be called before clk_unprepare. 973 */ 974void clk_unprepare(struct clk *clk) 975{ 976 if (IS_ERR_OR_NULL(clk)) 977 return; 978 979 clk_core_unprepare_lock(clk->core); 980} 981EXPORT_SYMBOL_GPL(clk_unprepare); 982 983static int clk_core_prepare(struct clk_core *core) 984{ 985 int ret = 0; 986 987 lockdep_assert_held(&prepare_lock); 988 989 if (!core) 990 return 0; 991 992 if (core->prepare_count == 0) { 993 ret = clk_pm_runtime_get(core); 994 if (ret) 995 return ret; 996 997 ret = clk_core_prepare(core->parent); 998 if (ret) 999 goto runtime_put; 1000 1001 trace_clk_prepare(core); 1002 1003 if (core->ops->prepare) 1004 ret = core->ops->prepare(core->hw); 1005 1006 trace_clk_prepare_complete(core); 1007 1008 if (ret) 1009 goto unprepare; 1010 } 1011 1012 core->prepare_count++; 1013 1014 /* 1015 * CLK_SET_RATE_GATE is a special case of clock protection 1016 * Instead of a consumer claiming exclusive rate control, it is 1017 * actually the provider which prevents any consumer from making any 1018 * operation which could result in a rate change or rate glitch while 1019 * the clock is prepared. 1020 */ 1021 if (core->flags & CLK_SET_RATE_GATE) 1022 clk_core_rate_protect(core); 1023 1024 return 0; 1025unprepare: 1026 clk_core_unprepare(core->parent); 1027runtime_put: 1028 clk_pm_runtime_put(core); 1029 return ret; 1030} 1031 1032static int clk_core_prepare_lock(struct clk_core *core) 1033{ 1034 int ret; 1035 1036 clk_prepare_lock(); 1037 ret = clk_core_prepare(core); 1038 clk_prepare_unlock(); 1039 1040 return ret; 1041} 1042 1043/** 1044 * clk_prepare - prepare a clock source 1045 * @clk: the clk being prepared 1046 * 1047 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1048 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1049 * operation may sleep. One example is a clk which is accessed over I2c. In 1050 * the complex case a clk ungate operation may require a fast and a slow part. 1051 * It is this reason that clk_prepare and clk_enable are not mutually 1052 * exclusive. In fact clk_prepare must be called before clk_enable. 1053 * Returns 0 on success, -EERROR otherwise. 1054 */ 1055int clk_prepare(struct clk *clk) 1056{ 1057 if (!clk) 1058 return 0; 1059 1060 return clk_core_prepare_lock(clk->core); 1061} 1062EXPORT_SYMBOL_GPL(clk_prepare); 1063 1064static void clk_core_disable(struct clk_core *core) 1065{ 1066 lockdep_assert_held(&enable_lock); 1067 1068 if (!core) 1069 return; 1070 1071 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1072 return; 1073 1074 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1075 "Disabling critical %s\n", core->name)) 1076 return; 1077 1078 if (--core->enable_count > 0) 1079 return; 1080 1081 trace_clk_disable_rcuidle(core); 1082 1083 if (core->ops->disable) 1084 core->ops->disable(core->hw); 1085 1086 trace_clk_disable_complete_rcuidle(core); 1087 1088 clk_core_disable(core->parent); 1089} 1090 1091static void clk_core_disable_lock(struct clk_core *core) 1092{ 1093 unsigned long flags; 1094 1095 flags = clk_enable_lock(); 1096 clk_core_disable(core); 1097 clk_enable_unlock(flags); 1098} 1099 1100/** 1101 * clk_disable - gate a clock 1102 * @clk: the clk being gated 1103 * 1104 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1105 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1106 * clk if the operation is fast and will never sleep. One example is a 1107 * SoC-internal clk which is controlled via simple register writes. In the 1108 * complex case a clk gate operation may require a fast and a slow part. It is 1109 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1110 * In fact clk_disable must be called before clk_unprepare. 1111 */ 1112void clk_disable(struct clk *clk) 1113{ 1114 if (IS_ERR_OR_NULL(clk)) 1115 return; 1116 1117 clk_core_disable_lock(clk->core); 1118} 1119EXPORT_SYMBOL_GPL(clk_disable); 1120 1121static int clk_core_enable(struct clk_core *core) 1122{ 1123 int ret = 0; 1124 1125 lockdep_assert_held(&enable_lock); 1126 1127 if (!core) 1128 return 0; 1129 1130 if (WARN(core->prepare_count == 0, 1131 "Enabling unprepared %s\n", core->name)) 1132 return -ESHUTDOWN; 1133 1134 if (core->enable_count == 0) { 1135 ret = clk_core_enable(core->parent); 1136 1137 if (ret) 1138 return ret; 1139 1140 trace_clk_enable_rcuidle(core); 1141 1142 if (core->ops->enable) 1143 ret = core->ops->enable(core->hw); 1144 1145 trace_clk_enable_complete_rcuidle(core); 1146 1147 if (ret) { 1148 clk_core_disable(core->parent); 1149 return ret; 1150 } 1151 } 1152 1153 core->enable_count++; 1154 return 0; 1155} 1156 1157static int clk_core_enable_lock(struct clk_core *core) 1158{ 1159 unsigned long flags; 1160 int ret; 1161 1162 flags = clk_enable_lock(); 1163 ret = clk_core_enable(core); 1164 clk_enable_unlock(flags); 1165 1166 return ret; 1167} 1168 1169/** 1170 * clk_gate_restore_context - restore context for poweroff 1171 * @hw: the clk_hw pointer of clock whose state is to be restored 1172 * 1173 * The clock gate restore context function enables or disables 1174 * the gate clocks based on the enable_count. This is done in cases 1175 * where the clock context is lost and based on the enable_count 1176 * the clock either needs to be enabled/disabled. This 1177 * helps restore the state of gate clocks. 1178 */ 1179void clk_gate_restore_context(struct clk_hw *hw) 1180{ 1181 struct clk_core *core = hw->core; 1182 1183 if (core->enable_count) 1184 core->ops->enable(hw); 1185 else 1186 core->ops->disable(hw); 1187} 1188EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1189 1190static int clk_core_save_context(struct clk_core *core) 1191{ 1192 struct clk_core *child; 1193 int ret = 0; 1194 1195 hlist_for_each_entry(child, &core->children, child_node) { 1196 ret = clk_core_save_context(child); 1197 if (ret < 0) 1198 return ret; 1199 } 1200 1201 if (core->ops && core->ops->save_context) 1202 ret = core->ops->save_context(core->hw); 1203 1204 return ret; 1205} 1206 1207static void clk_core_restore_context(struct clk_core *core) 1208{ 1209 struct clk_core *child; 1210 1211 if (core->ops && core->ops->restore_context) 1212 core->ops->restore_context(core->hw); 1213 1214 hlist_for_each_entry(child, &core->children, child_node) 1215 clk_core_restore_context(child); 1216} 1217 1218/** 1219 * clk_save_context - save clock context for poweroff 1220 * 1221 * Saves the context of the clock register for powerstates in which the 1222 * contents of the registers will be lost. Occurs deep within the suspend 1223 * code. Returns 0 on success. 1224 */ 1225int clk_save_context(void) 1226{ 1227 struct clk_core *clk; 1228 int ret; 1229 1230 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1231 ret = clk_core_save_context(clk); 1232 if (ret < 0) 1233 return ret; 1234 } 1235 1236 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1237 ret = clk_core_save_context(clk); 1238 if (ret < 0) 1239 return ret; 1240 } 1241 1242 return 0; 1243} 1244EXPORT_SYMBOL_GPL(clk_save_context); 1245 1246/** 1247 * clk_restore_context - restore clock context after poweroff 1248 * 1249 * Restore the saved clock context upon resume. 1250 * 1251 */ 1252void clk_restore_context(void) 1253{ 1254 struct clk_core *core; 1255 1256 hlist_for_each_entry(core, &clk_root_list, child_node) 1257 clk_core_restore_context(core); 1258 1259 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1260 clk_core_restore_context(core); 1261} 1262EXPORT_SYMBOL_GPL(clk_restore_context); 1263 1264/** 1265 * clk_enable - ungate a clock 1266 * @clk: the clk being ungated 1267 * 1268 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1269 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1270 * if the operation will never sleep. One example is a SoC-internal clk which 1271 * is controlled via simple register writes. In the complex case a clk ungate 1272 * operation may require a fast and a slow part. It is this reason that 1273 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1274 * must be called before clk_enable. Returns 0 on success, -EERROR 1275 * otherwise. 1276 */ 1277int clk_enable(struct clk *clk) 1278{ 1279 if (!clk) 1280 return 0; 1281 1282 return clk_core_enable_lock(clk->core); 1283} 1284EXPORT_SYMBOL_GPL(clk_enable); 1285 1286static int clk_core_prepare_enable(struct clk_core *core) 1287{ 1288 int ret; 1289 1290 ret = clk_core_prepare_lock(core); 1291 if (ret) 1292 return ret; 1293 1294 ret = clk_core_enable_lock(core); 1295 if (ret) 1296 clk_core_unprepare_lock(core); 1297 1298 return ret; 1299} 1300 1301static void clk_core_disable_unprepare(struct clk_core *core) 1302{ 1303 clk_core_disable_lock(core); 1304 clk_core_unprepare_lock(core); 1305} 1306 1307static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1308{ 1309 struct clk_core *child; 1310 1311 lockdep_assert_held(&prepare_lock); 1312 1313 hlist_for_each_entry(child, &core->children, child_node) 1314 clk_unprepare_unused_subtree(child); 1315 1316 if (core->prepare_count) 1317 return; 1318 1319 if (core->flags & CLK_IGNORE_UNUSED) 1320 return; 1321 1322 if (clk_core_is_prepared(core)) { 1323 trace_clk_unprepare(core); 1324 if (core->ops->unprepare_unused) 1325 core->ops->unprepare_unused(core->hw); 1326 else if (core->ops->unprepare) 1327 core->ops->unprepare(core->hw); 1328 trace_clk_unprepare_complete(core); 1329 } 1330} 1331 1332static void __init clk_disable_unused_subtree(struct clk_core *core) 1333{ 1334 struct clk_core *child; 1335 unsigned long flags; 1336 1337 lockdep_assert_held(&prepare_lock); 1338 1339 hlist_for_each_entry(child, &core->children, child_node) 1340 clk_disable_unused_subtree(child); 1341 1342 if (core->flags & CLK_OPS_PARENT_ENABLE) 1343 clk_core_prepare_enable(core->parent); 1344 1345 flags = clk_enable_lock(); 1346 1347 if (core->enable_count) 1348 goto unlock_out; 1349 1350 if (core->flags & CLK_IGNORE_UNUSED) 1351 goto unlock_out; 1352 1353 /* 1354 * some gate clocks have special needs during the disable-unused 1355 * sequence. call .disable_unused if available, otherwise fall 1356 * back to .disable 1357 */ 1358 if (clk_core_is_enabled(core)) { 1359 trace_clk_disable(core); 1360 if (core->ops->disable_unused) 1361 core->ops->disable_unused(core->hw); 1362 else if (core->ops->disable) 1363 core->ops->disable(core->hw); 1364 trace_clk_disable_complete(core); 1365 } 1366 1367unlock_out: 1368 clk_enable_unlock(flags); 1369 if (core->flags & CLK_OPS_PARENT_ENABLE) 1370 clk_core_disable_unprepare(core->parent); 1371} 1372 1373static bool clk_ignore_unused __initdata; 1374static int __init clk_ignore_unused_setup(char *__unused) 1375{ 1376 clk_ignore_unused = true; 1377 return 1; 1378} 1379__setup("clk_ignore_unused", clk_ignore_unused_setup); 1380 1381static int __init clk_disable_unused(void) 1382{ 1383 struct clk_core *core; 1384 int ret; 1385 1386 if (clk_ignore_unused) { 1387 pr_warn("clk: Not disabling unused clocks\n"); 1388 return 0; 1389 } 1390 1391 pr_info("clk: Disabling unused clocks\n"); 1392 1393 ret = clk_pm_runtime_get_all(); 1394 if (ret) 1395 return ret; 1396 /* 1397 * Grab the prepare lock to keep the clk topology stable while iterating 1398 * over clks. 1399 */ 1400 clk_prepare_lock(); 1401 1402 hlist_for_each_entry(core, &clk_root_list, child_node) 1403 clk_disable_unused_subtree(core); 1404 1405 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1406 clk_disable_unused_subtree(core); 1407 1408 hlist_for_each_entry(core, &clk_root_list, child_node) 1409 clk_unprepare_unused_subtree(core); 1410 1411 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1412 clk_unprepare_unused_subtree(core); 1413 1414 clk_prepare_unlock(); 1415 1416 clk_pm_runtime_put_all(); 1417 1418 return 0; 1419} 1420late_initcall_sync(clk_disable_unused); 1421 1422static int clk_core_determine_round_nolock(struct clk_core *core, 1423 struct clk_rate_request *req) 1424{ 1425 long rate; 1426 1427 lockdep_assert_held(&prepare_lock); 1428 1429 if (!core) 1430 return 0; 1431 1432 /* 1433 * At this point, core protection will be disabled if 1434 * - if the provider is not protected at all 1435 * - if the calling consumer is the only one which has exclusivity 1436 * over the provider 1437 */ 1438 if (clk_core_rate_is_protected(core)) { 1439 req->rate = core->rate; 1440 } else if (core->ops->determine_rate) { 1441 return core->ops->determine_rate(core->hw, req); 1442 } else if (core->ops->round_rate) { 1443 rate = core->ops->round_rate(core->hw, req->rate, 1444 &req->best_parent_rate); 1445 if (rate < 0) 1446 return rate; 1447 1448 req->rate = rate; 1449 } else { 1450 return -EINVAL; 1451 } 1452 1453 return 0; 1454} 1455 1456static void clk_core_init_rate_req(struct clk_core * const core, 1457 struct clk_rate_request *req) 1458{ 1459 struct clk_core *parent; 1460 1461 if (WARN_ON(!core || !req)) 1462 return; 1463 1464 parent = core->parent; 1465 if (parent) { 1466 req->best_parent_hw = parent->hw; 1467 req->best_parent_rate = parent->rate; 1468 } else { 1469 req->best_parent_hw = NULL; 1470 req->best_parent_rate = 0; 1471 } 1472} 1473 1474static bool clk_core_can_round(struct clk_core * const core) 1475{ 1476 return core->ops->determine_rate || core->ops->round_rate; 1477} 1478 1479static int clk_core_round_rate_nolock(struct clk_core *core, 1480 struct clk_rate_request *req) 1481{ 1482 lockdep_assert_held(&prepare_lock); 1483 1484 if (!core) { 1485 req->rate = 0; 1486 return 0; 1487 } 1488 1489 clk_core_init_rate_req(core, req); 1490 1491 if (clk_core_can_round(core)) 1492 return clk_core_determine_round_nolock(core, req); 1493 else if (core->flags & CLK_SET_RATE_PARENT) 1494 return clk_core_round_rate_nolock(core->parent, req); 1495 1496 req->rate = core->rate; 1497 return 0; 1498} 1499 1500/** 1501 * __clk_determine_rate - get the closest rate actually supported by a clock 1502 * @hw: determine the rate of this clock 1503 * @req: target rate request 1504 * 1505 * Useful for clk_ops such as .set_rate and .determine_rate. 1506 */ 1507int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1508{ 1509 if (!hw) { 1510 req->rate = 0; 1511 return 0; 1512 } 1513 1514 return clk_core_round_rate_nolock(hw->core, req); 1515} 1516EXPORT_SYMBOL_GPL(__clk_determine_rate); 1517 1518/** 1519 * clk_hw_round_rate() - round the given rate for a hw clk 1520 * @hw: the hw clk for which we are rounding a rate 1521 * @rate: the rate which is to be rounded 1522 * 1523 * Takes in a rate as input and rounds it to a rate that the clk can actually 1524 * use. 1525 * 1526 * Context: prepare_lock must be held. 1527 * For clk providers to call from within clk_ops such as .round_rate, 1528 * .determine_rate. 1529 * 1530 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1531 * else returns the parent rate. 1532 */ 1533unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1534{ 1535 int ret; 1536 struct clk_rate_request req; 1537 1538 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1539 req.rate = rate; 1540 1541 ret = clk_core_round_rate_nolock(hw->core, &req); 1542 if (ret) 1543 return 0; 1544 1545 return req.rate; 1546} 1547EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1548 1549/** 1550 * clk_round_rate - round the given rate for a clk 1551 * @clk: the clk for which we are rounding a rate 1552 * @rate: the rate which is to be rounded 1553 * 1554 * Takes in a rate as input and rounds it to a rate that the clk can actually 1555 * use which is then returned. If clk doesn't support round_rate operation 1556 * then the parent rate is returned. 1557 */ 1558long clk_round_rate(struct clk *clk, unsigned long rate) 1559{ 1560 struct clk_rate_request req; 1561 int ret; 1562 1563 if (!clk) 1564 return 0; 1565 1566 clk_prepare_lock(); 1567 1568 if (clk->exclusive_count) 1569 clk_core_rate_unprotect(clk->core); 1570 1571 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1572 req.rate = rate; 1573 1574 ret = clk_core_round_rate_nolock(clk->core, &req); 1575 1576 if (clk->exclusive_count) 1577 clk_core_rate_protect(clk->core); 1578 1579 clk_prepare_unlock(); 1580 1581 if (ret) 1582 return ret; 1583 1584 return req.rate; 1585} 1586EXPORT_SYMBOL_GPL(clk_round_rate); 1587 1588/** 1589 * __clk_notify - call clk notifier chain 1590 * @core: clk that is changing rate 1591 * @msg: clk notifier type (see include/linux/clk.h) 1592 * @old_rate: old clk rate 1593 * @new_rate: new clk rate 1594 * 1595 * Triggers a notifier call chain on the clk rate-change notification 1596 * for 'clk'. Passes a pointer to the struct clk and the previous 1597 * and current rates to the notifier callback. Intended to be called by 1598 * internal clock code only. Returns NOTIFY_DONE from the last driver 1599 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1600 * a driver returns that. 1601 */ 1602static int __clk_notify(struct clk_core *core, unsigned long msg, 1603 unsigned long old_rate, unsigned long new_rate) 1604{ 1605 struct clk_notifier *cn; 1606 struct clk_notifier_data cnd; 1607 int ret = NOTIFY_DONE; 1608 1609 cnd.old_rate = old_rate; 1610 cnd.new_rate = new_rate; 1611 1612 list_for_each_entry(cn, &clk_notifier_list, node) { 1613 if (cn->clk->core == core) { 1614 cnd.clk = cn->clk; 1615 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1616 &cnd); 1617 if (ret & NOTIFY_STOP_MASK) 1618 return ret; 1619 } 1620 } 1621 1622 return ret; 1623} 1624 1625/** 1626 * __clk_recalc_accuracies 1627 * @core: first clk in the subtree 1628 * 1629 * Walks the subtree of clks starting with clk and recalculates accuracies as 1630 * it goes. Note that if a clk does not implement the .recalc_accuracy 1631 * callback then it is assumed that the clock will take on the accuracy of its 1632 * parent. 1633 */ 1634static void __clk_recalc_accuracies(struct clk_core *core) 1635{ 1636 unsigned long parent_accuracy = 0; 1637 struct clk_core *child; 1638 1639 lockdep_assert_held(&prepare_lock); 1640 1641 if (core->parent) 1642 parent_accuracy = core->parent->accuracy; 1643 1644 if (core->ops->recalc_accuracy) 1645 core->accuracy = core->ops->recalc_accuracy(core->hw, 1646 parent_accuracy); 1647 else 1648 core->accuracy = parent_accuracy; 1649 1650 hlist_for_each_entry(child, &core->children, child_node) 1651 __clk_recalc_accuracies(child); 1652} 1653 1654static long clk_core_get_accuracy_recalc(struct clk_core *core) 1655{ 1656 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1657 __clk_recalc_accuracies(core); 1658 1659 return clk_core_get_accuracy_no_lock(core); 1660} 1661 1662/** 1663 * clk_get_accuracy - return the accuracy of clk 1664 * @clk: the clk whose accuracy is being returned 1665 * 1666 * Simply returns the cached accuracy of the clk, unless 1667 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1668 * issued. 1669 * If clk is NULL then returns 0. 1670 */ 1671long clk_get_accuracy(struct clk *clk) 1672{ 1673 long accuracy; 1674 1675 if (!clk) 1676 return 0; 1677 1678 clk_prepare_lock(); 1679 accuracy = clk_core_get_accuracy_recalc(clk->core); 1680 clk_prepare_unlock(); 1681 1682 return accuracy; 1683} 1684EXPORT_SYMBOL_GPL(clk_get_accuracy); 1685 1686static unsigned long clk_recalc(struct clk_core *core, 1687 unsigned long parent_rate) 1688{ 1689 unsigned long rate = parent_rate; 1690 1691 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1692 rate = core->ops->recalc_rate(core->hw, parent_rate); 1693 clk_pm_runtime_put(core); 1694 } 1695 return rate; 1696} 1697 1698/** 1699 * __clk_recalc_rates 1700 * @core: first clk in the subtree 1701 * @msg: notification type (see include/linux/clk.h) 1702 * 1703 * Walks the subtree of clks starting with clk and recalculates rates as it 1704 * goes. Note that if a clk does not implement the .recalc_rate callback then 1705 * it is assumed that the clock will take on the rate of its parent. 1706 * 1707 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1708 * if necessary. 1709 */ 1710static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1711{ 1712 unsigned long old_rate; 1713 unsigned long parent_rate = 0; 1714 struct clk_core *child; 1715 1716 lockdep_assert_held(&prepare_lock); 1717 1718 old_rate = core->rate; 1719 1720 if (core->parent) 1721 parent_rate = core->parent->rate; 1722 1723 core->rate = clk_recalc(core, parent_rate); 1724 1725 /* 1726 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1727 * & ABORT_RATE_CHANGE notifiers 1728 */ 1729 if (core->notifier_count && msg) 1730 __clk_notify(core, msg, old_rate, core->rate); 1731 1732 hlist_for_each_entry(child, &core->children, child_node) 1733 __clk_recalc_rates(child, msg); 1734} 1735 1736static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1737{ 1738 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1739 __clk_recalc_rates(core, 0); 1740 1741 return clk_core_get_rate_nolock(core); 1742} 1743 1744/** 1745 * clk_get_rate - return the rate of clk 1746 * @clk: the clk whose rate is being returned 1747 * 1748 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1749 * is set, which means a recalc_rate will be issued. 1750 * If clk is NULL then returns 0. 1751 */ 1752unsigned long clk_get_rate(struct clk *clk) 1753{ 1754 unsigned long rate; 1755 1756 if (!clk) 1757 return 0; 1758 1759 clk_prepare_lock(); 1760 rate = clk_core_get_rate_recalc(clk->core); 1761 clk_prepare_unlock(); 1762 1763 return rate; 1764} 1765EXPORT_SYMBOL_GPL(clk_get_rate); 1766 1767static int clk_fetch_parent_index(struct clk_core *core, 1768 struct clk_core *parent) 1769{ 1770 int i; 1771 1772 if (!parent) 1773 return -EINVAL; 1774 1775 for (i = 0; i < core->num_parents; i++) { 1776 /* Found it first try! */ 1777 if (core->parents[i].core == parent) 1778 return i; 1779 1780 /* Something else is here, so keep looking */ 1781 if (core->parents[i].core) 1782 continue; 1783 1784 /* Maybe core hasn't been cached but the hw is all we know? */ 1785 if (core->parents[i].hw) { 1786 if (core->parents[i].hw == parent->hw) 1787 break; 1788 1789 /* Didn't match, but we're expecting a clk_hw */ 1790 continue; 1791 } 1792 1793 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1794 if (parent == clk_core_get(core, i)) 1795 break; 1796 1797 /* Fallback to comparing globally unique names */ 1798 if (core->parents[i].name && 1799 !strcmp(parent->name, core->parents[i].name)) 1800 break; 1801 } 1802 1803 if (i == core->num_parents) 1804 return -EINVAL; 1805 1806 core->parents[i].core = parent; 1807 return i; 1808} 1809 1810/** 1811 * clk_hw_get_parent_index - return the index of the parent clock 1812 * @hw: clk_hw associated with the clk being consumed 1813 * 1814 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1815 * clock does not have a current parent. 1816 */ 1817int clk_hw_get_parent_index(struct clk_hw *hw) 1818{ 1819 struct clk_hw *parent = clk_hw_get_parent(hw); 1820 1821 if (WARN_ON(parent == NULL)) 1822 return -EINVAL; 1823 1824 return clk_fetch_parent_index(hw->core, parent->core); 1825} 1826EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1827 1828/* 1829 * Update the orphan status of @core and all its children. 1830 */ 1831static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1832{ 1833 struct clk_core *child; 1834 1835 core->orphan = is_orphan; 1836 1837 hlist_for_each_entry(child, &core->children, child_node) 1838 clk_core_update_orphan_status(child, is_orphan); 1839} 1840 1841static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1842{ 1843 bool was_orphan = core->orphan; 1844 1845 hlist_del(&core->child_node); 1846 1847 if (new_parent) { 1848 bool becomes_orphan = new_parent->orphan; 1849 1850 /* avoid duplicate POST_RATE_CHANGE notifications */ 1851 if (new_parent->new_child == core) 1852 new_parent->new_child = NULL; 1853 1854 hlist_add_head(&core->child_node, &new_parent->children); 1855 1856 if (was_orphan != becomes_orphan) 1857 clk_core_update_orphan_status(core, becomes_orphan); 1858 } else { 1859 hlist_add_head(&core->child_node, &clk_orphan_list); 1860 if (!was_orphan) 1861 clk_core_update_orphan_status(core, true); 1862 } 1863 1864 core->parent = new_parent; 1865} 1866 1867static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1868 struct clk_core *parent) 1869{ 1870 unsigned long flags; 1871 struct clk_core *old_parent = core->parent; 1872 1873 /* 1874 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1875 * 1876 * 2. Migrate prepare state between parents and prevent race with 1877 * clk_enable(). 1878 * 1879 * If the clock is not prepared, then a race with 1880 * clk_enable/disable() is impossible since we already have the 1881 * prepare lock (future calls to clk_enable() need to be preceded by 1882 * a clk_prepare()). 1883 * 1884 * If the clock is prepared, migrate the prepared state to the new 1885 * parent and also protect against a race with clk_enable() by 1886 * forcing the clock and the new parent on. This ensures that all 1887 * future calls to clk_enable() are practically NOPs with respect to 1888 * hardware and software states. 1889 * 1890 * See also: Comment for clk_set_parent() below. 1891 */ 1892 1893 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1894 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1895 clk_core_prepare_enable(old_parent); 1896 clk_core_prepare_enable(parent); 1897 } 1898 1899 /* migrate prepare count if > 0 */ 1900 if (core->prepare_count) { 1901 clk_core_prepare_enable(parent); 1902 clk_core_enable_lock(core); 1903 } 1904 1905 /* update the clk tree topology */ 1906 flags = clk_enable_lock(); 1907 clk_reparent(core, parent); 1908 clk_enable_unlock(flags); 1909 1910 return old_parent; 1911} 1912 1913static void __clk_set_parent_after(struct clk_core *core, 1914 struct clk_core *parent, 1915 struct clk_core *old_parent) 1916{ 1917 /* 1918 * Finish the migration of prepare state and undo the changes done 1919 * for preventing a race with clk_enable(). 1920 */ 1921 if (core->prepare_count) { 1922 clk_core_disable_lock(core); 1923 clk_core_disable_unprepare(old_parent); 1924 } 1925 1926 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1927 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1928 clk_core_disable_unprepare(parent); 1929 clk_core_disable_unprepare(old_parent); 1930 } 1931} 1932 1933static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1934 u8 p_index) 1935{ 1936 unsigned long flags; 1937 int ret = 0; 1938 struct clk_core *old_parent; 1939 1940 old_parent = __clk_set_parent_before(core, parent); 1941 1942 trace_clk_set_parent(core, parent); 1943 1944 /* change clock input source */ 1945 if (parent && core->ops->set_parent) 1946 ret = core->ops->set_parent(core->hw, p_index); 1947 1948 trace_clk_set_parent_complete(core, parent); 1949 1950 if (ret) { 1951 flags = clk_enable_lock(); 1952 clk_reparent(core, old_parent); 1953 clk_enable_unlock(flags); 1954 __clk_set_parent_after(core, old_parent, parent); 1955 1956 return ret; 1957 } 1958 1959 __clk_set_parent_after(core, parent, old_parent); 1960 1961 return 0; 1962} 1963 1964/** 1965 * __clk_speculate_rates 1966 * @core: first clk in the subtree 1967 * @parent_rate: the "future" rate of clk's parent 1968 * 1969 * Walks the subtree of clks starting with clk, speculating rates as it 1970 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1971 * 1972 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1973 * pre-rate change notifications and returns early if no clks in the 1974 * subtree have subscribed to the notifications. Note that if a clk does not 1975 * implement the .recalc_rate callback then it is assumed that the clock will 1976 * take on the rate of its parent. 1977 */ 1978static int __clk_speculate_rates(struct clk_core *core, 1979 unsigned long parent_rate) 1980{ 1981 struct clk_core *child; 1982 unsigned long new_rate; 1983 int ret = NOTIFY_DONE; 1984 1985 lockdep_assert_held(&prepare_lock); 1986 1987 new_rate = clk_recalc(core, parent_rate); 1988 1989 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1990 if (core->notifier_count) 1991 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1992 1993 if (ret & NOTIFY_STOP_MASK) { 1994 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1995 __func__, core->name, ret); 1996 goto out; 1997 } 1998 1999 hlist_for_each_entry(child, &core->children, child_node) { 2000 ret = __clk_speculate_rates(child, new_rate); 2001 if (ret & NOTIFY_STOP_MASK) 2002 break; 2003 } 2004 2005out: 2006 return ret; 2007} 2008 2009static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2010 struct clk_core *new_parent, u8 p_index) 2011{ 2012 struct clk_core *child; 2013 2014 core->new_rate = new_rate; 2015 core->new_parent = new_parent; 2016 core->new_parent_index = p_index; 2017 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2018 core->new_child = NULL; 2019 if (new_parent && new_parent != core->parent) 2020 new_parent->new_child = core; 2021 2022 hlist_for_each_entry(child, &core->children, child_node) { 2023 child->new_rate = clk_recalc(child, new_rate); 2024 clk_calc_subtree(child, child->new_rate, NULL, 0); 2025 } 2026} 2027 2028/* 2029 * calculate the new rates returning the topmost clock that has to be 2030 * changed. 2031 */ 2032static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2033 unsigned long rate) 2034{ 2035 struct clk_core *top = core; 2036 struct clk_core *old_parent, *parent; 2037 unsigned long best_parent_rate = 0; 2038 unsigned long new_rate; 2039 unsigned long min_rate; 2040 unsigned long max_rate; 2041 int p_index = 0; 2042 long ret; 2043 2044 /* sanity */ 2045 if (IS_ERR_OR_NULL(core)) 2046 return NULL; 2047 2048 /* save parent rate, if it exists */ 2049 parent = old_parent = core->parent; 2050 if (parent) 2051 best_parent_rate = parent->rate; 2052 2053 clk_core_get_boundaries(core, &min_rate, &max_rate); 2054 2055 /* find the closest rate and parent clk/rate */ 2056 if (clk_core_can_round(core)) { 2057 struct clk_rate_request req; 2058 2059 req.rate = rate; 2060 req.min_rate = min_rate; 2061 req.max_rate = max_rate; 2062 2063 clk_core_init_rate_req(core, &req); 2064 2065 ret = clk_core_determine_round_nolock(core, &req); 2066 if (ret < 0) 2067 return NULL; 2068 2069 best_parent_rate = req.best_parent_rate; 2070 new_rate = req.rate; 2071 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2072 2073 if (new_rate < min_rate || new_rate > max_rate) 2074 return NULL; 2075 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2076 /* pass-through clock without adjustable parent */ 2077 core->new_rate = core->rate; 2078 return NULL; 2079 } else { 2080 /* pass-through clock with adjustable parent */ 2081 top = clk_calc_new_rates(parent, rate); 2082 new_rate = parent->new_rate; 2083 goto out; 2084 } 2085 2086 /* some clocks must be gated to change parent */ 2087 if (parent != old_parent && 2088 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2089 pr_debug("%s: %s not gated but wants to reparent\n", 2090 __func__, core->name); 2091 return NULL; 2092 } 2093 2094 /* try finding the new parent index */ 2095 if (parent && core->num_parents > 1) { 2096 p_index = clk_fetch_parent_index(core, parent); 2097 if (p_index < 0) { 2098 pr_debug("%s: clk %s can not be parent of clk %s\n", 2099 __func__, parent->name, core->name); 2100 return NULL; 2101 } 2102 } 2103 2104 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2105 best_parent_rate != parent->rate) 2106 top = clk_calc_new_rates(parent, best_parent_rate); 2107 2108out: 2109 clk_calc_subtree(core, new_rate, parent, p_index); 2110 2111 return top; 2112} 2113 2114/* 2115 * Notify about rate changes in a subtree. Always walk down the whole tree 2116 * so that in case of an error we can walk down the whole tree again and 2117 * abort the change. 2118 */ 2119static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2120 unsigned long event) 2121{ 2122 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2123 int ret = NOTIFY_DONE; 2124 2125 if (core->rate == core->new_rate) 2126 return NULL; 2127 2128 if (core->notifier_count) { 2129 ret = __clk_notify(core, event, core->rate, core->new_rate); 2130 if (ret & NOTIFY_STOP_MASK) 2131 fail_clk = core; 2132 } 2133 2134 hlist_for_each_entry(child, &core->children, child_node) { 2135 /* Skip children who will be reparented to another clock */ 2136 if (child->new_parent && child->new_parent != core) 2137 continue; 2138 tmp_clk = clk_propagate_rate_change(child, event); 2139 if (tmp_clk) 2140 fail_clk = tmp_clk; 2141 } 2142 2143 /* handle the new child who might not be in core->children yet */ 2144 if (core->new_child) { 2145 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2146 if (tmp_clk) 2147 fail_clk = tmp_clk; 2148 } 2149 2150 return fail_clk; 2151} 2152 2153/* 2154 * walk down a subtree and set the new rates notifying the rate 2155 * change on the way 2156 */ 2157static void clk_change_rate(struct clk_core *core) 2158{ 2159 struct clk_core *child; 2160 struct hlist_node *tmp; 2161 unsigned long old_rate; 2162 unsigned long best_parent_rate = 0; 2163 bool skip_set_rate = false; 2164 struct clk_core *old_parent; 2165 struct clk_core *parent = NULL; 2166 2167 old_rate = core->rate; 2168 2169 if (core->new_parent) { 2170 parent = core->new_parent; 2171 best_parent_rate = core->new_parent->rate; 2172 } else if (core->parent) { 2173 parent = core->parent; 2174 best_parent_rate = core->parent->rate; 2175 } 2176 2177 if (clk_pm_runtime_get(core)) 2178 return; 2179 2180 if (core->flags & CLK_SET_RATE_UNGATE) { 2181 unsigned long flags; 2182 2183 clk_core_prepare(core); 2184 flags = clk_enable_lock(); 2185 clk_core_enable(core); 2186 clk_enable_unlock(flags); 2187 } 2188 2189 if (core->new_parent && core->new_parent != core->parent) { 2190 old_parent = __clk_set_parent_before(core, core->new_parent); 2191 trace_clk_set_parent(core, core->new_parent); 2192 2193 if (core->ops->set_rate_and_parent) { 2194 skip_set_rate = true; 2195 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2196 best_parent_rate, 2197 core->new_parent_index); 2198 } else if (core->ops->set_parent) { 2199 core->ops->set_parent(core->hw, core->new_parent_index); 2200 } 2201 2202 trace_clk_set_parent_complete(core, core->new_parent); 2203 __clk_set_parent_after(core, core->new_parent, old_parent); 2204 } 2205 2206 if (core->flags & CLK_OPS_PARENT_ENABLE) 2207 clk_core_prepare_enable(parent); 2208 2209 trace_clk_set_rate(core, core->new_rate); 2210 2211 if (!skip_set_rate && core->ops->set_rate) 2212 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2213 2214 trace_clk_set_rate_complete(core, core->new_rate); 2215 2216 core->rate = clk_recalc(core, best_parent_rate); 2217 2218 if (core->flags & CLK_SET_RATE_UNGATE) { 2219 unsigned long flags; 2220 2221 flags = clk_enable_lock(); 2222 clk_core_disable(core); 2223 clk_enable_unlock(flags); 2224 clk_core_unprepare(core); 2225 } 2226 2227 if (core->flags & CLK_OPS_PARENT_ENABLE) 2228 clk_core_disable_unprepare(parent); 2229 2230 if (core->notifier_count && old_rate != core->rate) 2231 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2232 2233 if (core->flags & CLK_RECALC_NEW_RATES) 2234 (void)clk_calc_new_rates(core, core->new_rate); 2235 2236 /* 2237 * Use safe iteration, as change_rate can actually swap parents 2238 * for certain clock types. 2239 */ 2240 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2241 /* Skip children who will be reparented to another clock */ 2242 if (child->new_parent && child->new_parent != core) 2243 continue; 2244 clk_change_rate(child); 2245 } 2246 2247 /* handle the new child who might not be in core->children yet */ 2248 if (core->new_child) 2249 clk_change_rate(core->new_child); 2250 2251 clk_pm_runtime_put(core); 2252} 2253 2254static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2255 unsigned long req_rate) 2256{ 2257 int ret, cnt; 2258 struct clk_rate_request req; 2259 2260 lockdep_assert_held(&prepare_lock); 2261 2262 if (!core) 2263 return 0; 2264 2265 /* simulate what the rate would be if it could be freely set */ 2266 cnt = clk_core_rate_nuke_protect(core); 2267 if (cnt < 0) 2268 return cnt; 2269 2270 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2271 req.rate = req_rate; 2272 2273 ret = clk_core_round_rate_nolock(core, &req); 2274 2275 /* restore the protection */ 2276 clk_core_rate_restore_protect(core, cnt); 2277 2278 return ret ? 0 : req.rate; 2279} 2280 2281static int clk_core_set_rate_nolock(struct clk_core *core, 2282 unsigned long req_rate) 2283{ 2284 struct clk_core *top, *fail_clk; 2285 unsigned long rate; 2286 int ret = 0; 2287 2288 if (!core) 2289 return 0; 2290 2291 rate = clk_core_req_round_rate_nolock(core, req_rate); 2292 2293 /* bail early if nothing to do */ 2294 if (rate == clk_core_get_rate_nolock(core)) 2295 return 0; 2296 2297 /* fail on a direct rate set of a protected provider */ 2298 if (clk_core_rate_is_protected(core)) 2299 return -EBUSY; 2300 2301 /* calculate new rates and get the topmost changed clock */ 2302 top = clk_calc_new_rates(core, req_rate); 2303 if (!top) 2304 return -EINVAL; 2305 2306 ret = clk_pm_runtime_get(core); 2307 if (ret) 2308 return ret; 2309 2310 /* notify that we are about to change rates */ 2311 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2312 if (fail_clk) { 2313 pr_debug("%s: failed to set %s rate\n", __func__, 2314 fail_clk->name); 2315 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2316 ret = -EBUSY; 2317 goto err; 2318 } 2319 2320 /* change the rates */ 2321 clk_change_rate(top); 2322 2323 core->req_rate = req_rate; 2324err: 2325 clk_pm_runtime_put(core); 2326 2327 return ret; 2328} 2329 2330/** 2331 * clk_set_rate - specify a new rate for clk 2332 * @clk: the clk whose rate is being changed 2333 * @rate: the new rate for clk 2334 * 2335 * In the simplest case clk_set_rate will only adjust the rate of clk. 2336 * 2337 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2338 * propagate up to clk's parent; whether or not this happens depends on the 2339 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2340 * after calling .round_rate then upstream parent propagation is ignored. If 2341 * *parent_rate comes back with a new rate for clk's parent then we propagate 2342 * up to clk's parent and set its rate. Upward propagation will continue 2343 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2344 * .round_rate stops requesting changes to clk's parent_rate. 2345 * 2346 * Rate changes are accomplished via tree traversal that also recalculates the 2347 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2348 * 2349 * Returns 0 on success, -EERROR otherwise. 2350 */ 2351int clk_set_rate(struct clk *clk, unsigned long rate) 2352{ 2353 int ret; 2354 2355 if (!clk) 2356 return 0; 2357 2358 /* prevent racing with updates to the clock topology */ 2359 clk_prepare_lock(); 2360 2361 if (clk->exclusive_count) 2362 clk_core_rate_unprotect(clk->core); 2363 2364 ret = clk_core_set_rate_nolock(clk->core, rate); 2365 2366 if (clk->exclusive_count) 2367 clk_core_rate_protect(clk->core); 2368 2369 clk_prepare_unlock(); 2370 2371 return ret; 2372} 2373EXPORT_SYMBOL_GPL(clk_set_rate); 2374 2375/** 2376 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2377 * @clk: the clk whose rate is being changed 2378 * @rate: the new rate for clk 2379 * 2380 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2381 * within a critical section 2382 * 2383 * This can be used initially to ensure that at least 1 consumer is 2384 * satisfied when several consumers are competing for exclusivity over the 2385 * same clock provider. 2386 * 2387 * The exclusivity is not applied if setting the rate failed. 2388 * 2389 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2390 * clk_rate_exclusive_put(). 2391 * 2392 * Returns 0 on success, -EERROR otherwise. 2393 */ 2394int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2395{ 2396 int ret; 2397 2398 if (!clk) 2399 return 0; 2400 2401 /* prevent racing with updates to the clock topology */ 2402 clk_prepare_lock(); 2403 2404 /* 2405 * The temporary protection removal is not here, on purpose 2406 * This function is meant to be used instead of clk_rate_protect, 2407 * so before the consumer code path protect the clock provider 2408 */ 2409 2410 ret = clk_core_set_rate_nolock(clk->core, rate); 2411 if (!ret) { 2412 clk_core_rate_protect(clk->core); 2413 clk->exclusive_count++; 2414 } 2415 2416 clk_prepare_unlock(); 2417 2418 return ret; 2419} 2420EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2421 2422/** 2423 * clk_set_rate_range - set a rate range for a clock source 2424 * @clk: clock source 2425 * @min: desired minimum clock rate in Hz, inclusive 2426 * @max: desired maximum clock rate in Hz, inclusive 2427 * 2428 * Returns success (0) or negative errno. 2429 */ 2430int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2431{ 2432 int ret = 0; 2433 unsigned long old_min, old_max, rate; 2434 2435 if (!clk) 2436 return 0; 2437 2438 if (min > max) { 2439 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2440 __func__, clk->core->name, clk->dev_id, clk->con_id, 2441 min, max); 2442 return -EINVAL; 2443 } 2444 2445 clk_prepare_lock(); 2446 2447 if (clk->exclusive_count) 2448 clk_core_rate_unprotect(clk->core); 2449 2450 /* Save the current values in case we need to rollback the change */ 2451 old_min = clk->min_rate; 2452 old_max = clk->max_rate; 2453 clk->min_rate = min; 2454 clk->max_rate = max; 2455 2456 if (!clk_core_check_boundaries(clk->core, min, max)) { 2457 ret = -EINVAL; 2458 goto out; 2459 } 2460 2461 rate = clk_core_get_rate_nolock(clk->core); 2462 if (rate < min || rate > max) { 2463 /* 2464 * FIXME: 2465 * We are in bit of trouble here, current rate is outside the 2466 * the requested range. We are going try to request appropriate 2467 * range boundary but there is a catch. It may fail for the 2468 * usual reason (clock broken, clock protected, etc) but also 2469 * because: 2470 * - round_rate() was not favorable and fell on the wrong 2471 * side of the boundary 2472 * - the determine_rate() callback does not really check for 2473 * this corner case when determining the rate 2474 */ 2475 2476 if (rate < min) 2477 rate = min; 2478 else 2479 rate = max; 2480 2481 ret = clk_core_set_rate_nolock(clk->core, rate); 2482 if (ret) { 2483 /* rollback the changes */ 2484 clk->min_rate = old_min; 2485 clk->max_rate = old_max; 2486 } 2487 } 2488 2489out: 2490 if (clk->exclusive_count) 2491 clk_core_rate_protect(clk->core); 2492 2493 clk_prepare_unlock(); 2494 2495 return ret; 2496} 2497EXPORT_SYMBOL_GPL(clk_set_rate_range); 2498 2499/** 2500 * clk_set_min_rate - set a minimum clock rate for a clock source 2501 * @clk: clock source 2502 * @rate: desired minimum clock rate in Hz, inclusive 2503 * 2504 * Returns success (0) or negative errno. 2505 */ 2506int clk_set_min_rate(struct clk *clk, unsigned long rate) 2507{ 2508 if (!clk) 2509 return 0; 2510 2511 return clk_set_rate_range(clk, rate, clk->max_rate); 2512} 2513EXPORT_SYMBOL_GPL(clk_set_min_rate); 2514 2515/** 2516 * clk_set_max_rate - set a maximum clock rate for a clock source 2517 * @clk: clock source 2518 * @rate: desired maximum clock rate in Hz, inclusive 2519 * 2520 * Returns success (0) or negative errno. 2521 */ 2522int clk_set_max_rate(struct clk *clk, unsigned long rate) 2523{ 2524 if (!clk) 2525 return 0; 2526 2527 return clk_set_rate_range(clk, clk->min_rate, rate); 2528} 2529EXPORT_SYMBOL_GPL(clk_set_max_rate); 2530 2531/** 2532 * clk_get_parent - return the parent of a clk 2533 * @clk: the clk whose parent gets returned 2534 * 2535 * Simply returns clk->parent. Returns NULL if clk is NULL. 2536 */ 2537struct clk *clk_get_parent(struct clk *clk) 2538{ 2539 struct clk *parent; 2540 2541 if (!clk) 2542 return NULL; 2543 2544 clk_prepare_lock(); 2545 /* TODO: Create a per-user clk and change callers to call clk_put */ 2546 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2547 clk_prepare_unlock(); 2548 2549 return parent; 2550} 2551EXPORT_SYMBOL_GPL(clk_get_parent); 2552 2553static struct clk_core *__clk_init_parent(struct clk_core *core) 2554{ 2555 u8 index = 0; 2556 2557 if (core->num_parents > 1 && core->ops->get_parent) 2558 index = core->ops->get_parent(core->hw); 2559 2560 return clk_core_get_parent_by_index(core, index); 2561} 2562 2563static void clk_core_reparent(struct clk_core *core, 2564 struct clk_core *new_parent) 2565{ 2566 clk_reparent(core, new_parent); 2567 __clk_recalc_accuracies(core); 2568 __clk_recalc_rates(core, POST_RATE_CHANGE); 2569} 2570 2571void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2572{ 2573 if (!hw) 2574 return; 2575 2576 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2577} 2578 2579/** 2580 * clk_has_parent - check if a clock is a possible parent for another 2581 * @clk: clock source 2582 * @parent: parent clock source 2583 * 2584 * This function can be used in drivers that need to check that a clock can be 2585 * the parent of another without actually changing the parent. 2586 * 2587 * Returns true if @parent is a possible parent for @clk, false otherwise. 2588 */ 2589bool clk_has_parent(struct clk *clk, struct clk *parent) 2590{ 2591 struct clk_core *core, *parent_core; 2592 int i; 2593 2594 /* NULL clocks should be nops, so return success if either is NULL. */ 2595 if (!clk || !parent) 2596 return true; 2597 2598 core = clk->core; 2599 parent_core = parent->core; 2600 2601 /* Optimize for the case where the parent is already the parent. */ 2602 if (core->parent == parent_core) 2603 return true; 2604 2605 for (i = 0; i < core->num_parents; i++) 2606 if (!strcmp(core->parents[i].name, parent_core->name)) 2607 return true; 2608 2609 return false; 2610} 2611EXPORT_SYMBOL_GPL(clk_has_parent); 2612 2613static int clk_core_set_parent_nolock(struct clk_core *core, 2614 struct clk_core *parent) 2615{ 2616 int ret = 0; 2617 int p_index = 0; 2618 unsigned long p_rate = 0; 2619 2620 lockdep_assert_held(&prepare_lock); 2621 2622 if (!core) 2623 return 0; 2624 2625 if (core->parent == parent) 2626 return 0; 2627 2628 /* verify ops for multi-parent clks */ 2629 if (core->num_parents > 1 && !core->ops->set_parent) 2630 return -EPERM; 2631 2632 /* check that we are allowed to re-parent if the clock is in use */ 2633 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2634 return -EBUSY; 2635 2636 if (clk_core_rate_is_protected(core)) 2637 return -EBUSY; 2638 2639 /* try finding the new parent index */ 2640 if (parent) { 2641 p_index = clk_fetch_parent_index(core, parent); 2642 if (p_index < 0) { 2643 pr_debug("%s: clk %s can not be parent of clk %s\n", 2644 __func__, parent->name, core->name); 2645 return p_index; 2646 } 2647 p_rate = parent->rate; 2648 } 2649 2650 ret = clk_pm_runtime_get(core); 2651 if (ret) 2652 return ret; 2653 2654 /* propagate PRE_RATE_CHANGE notifications */ 2655 ret = __clk_speculate_rates(core, p_rate); 2656 2657 /* abort if a driver objects */ 2658 if (ret & NOTIFY_STOP_MASK) 2659 goto runtime_put; 2660 2661 /* do the re-parent */ 2662 ret = __clk_set_parent(core, parent, p_index); 2663 2664 /* propagate rate an accuracy recalculation accordingly */ 2665 if (ret) { 2666 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2667 } else { 2668 __clk_recalc_rates(core, POST_RATE_CHANGE); 2669 __clk_recalc_accuracies(core); 2670 } 2671 2672runtime_put: 2673 clk_pm_runtime_put(core); 2674 2675 return ret; 2676} 2677 2678int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2679{ 2680 return clk_core_set_parent_nolock(hw->core, parent->core); 2681} 2682EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2683 2684/** 2685 * clk_set_parent - switch the parent of a mux clk 2686 * @clk: the mux clk whose input we are switching 2687 * @parent: the new input to clk 2688 * 2689 * Re-parent clk to use parent as its new input source. If clk is in 2690 * prepared state, the clk will get enabled for the duration of this call. If 2691 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2692 * that, the reparenting is glitchy in hardware, etc), use the 2693 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2694 * 2695 * After successfully changing clk's parent clk_set_parent will update the 2696 * clk topology, sysfs topology and propagate rate recalculation via 2697 * __clk_recalc_rates. 2698 * 2699 * Returns 0 on success, -EERROR otherwise. 2700 */ 2701int clk_set_parent(struct clk *clk, struct clk *parent) 2702{ 2703 int ret; 2704 2705 if (!clk) 2706 return 0; 2707 2708 clk_prepare_lock(); 2709 2710 if (clk->exclusive_count) 2711 clk_core_rate_unprotect(clk->core); 2712 2713 ret = clk_core_set_parent_nolock(clk->core, 2714 parent ? parent->core : NULL); 2715 2716 if (clk->exclusive_count) 2717 clk_core_rate_protect(clk->core); 2718 2719 clk_prepare_unlock(); 2720 2721 return ret; 2722} 2723EXPORT_SYMBOL_GPL(clk_set_parent); 2724 2725static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2726{ 2727 int ret = -EINVAL; 2728 2729 lockdep_assert_held(&prepare_lock); 2730 2731 if (!core) 2732 return 0; 2733 2734 if (clk_core_rate_is_protected(core)) 2735 return -EBUSY; 2736 2737 trace_clk_set_phase(core, degrees); 2738 2739 if (core->ops->set_phase) { 2740 ret = core->ops->set_phase(core->hw, degrees); 2741 if (!ret) 2742 core->phase = degrees; 2743 } 2744 2745 trace_clk_set_phase_complete(core, degrees); 2746 2747 return ret; 2748} 2749 2750/** 2751 * clk_set_phase - adjust the phase shift of a clock signal 2752 * @clk: clock signal source 2753 * @degrees: number of degrees the signal is shifted 2754 * 2755 * Shifts the phase of a clock signal by the specified 2756 * degrees. Returns 0 on success, -EERROR otherwise. 2757 * 2758 * This function makes no distinction about the input or reference 2759 * signal that we adjust the clock signal phase against. For example 2760 * phase locked-loop clock signal generators we may shift phase with 2761 * respect to feedback clock signal input, but for other cases the 2762 * clock phase may be shifted with respect to some other, unspecified 2763 * signal. 2764 * 2765 * Additionally the concept of phase shift does not propagate through 2766 * the clock tree hierarchy, which sets it apart from clock rates and 2767 * clock accuracy. A parent clock phase attribute does not have an 2768 * impact on the phase attribute of a child clock. 2769 */ 2770int clk_set_phase(struct clk *clk, int degrees) 2771{ 2772 int ret; 2773 2774 if (!clk) 2775 return 0; 2776 2777 /* sanity check degrees */ 2778 degrees %= 360; 2779 if (degrees < 0) 2780 degrees += 360; 2781 2782 clk_prepare_lock(); 2783 2784 if (clk->exclusive_count) 2785 clk_core_rate_unprotect(clk->core); 2786 2787 ret = clk_core_set_phase_nolock(clk->core, degrees); 2788 2789 if (clk->exclusive_count) 2790 clk_core_rate_protect(clk->core); 2791 2792 clk_prepare_unlock(); 2793 2794 return ret; 2795} 2796EXPORT_SYMBOL_GPL(clk_set_phase); 2797 2798static int clk_core_get_phase(struct clk_core *core) 2799{ 2800 int ret; 2801 2802 lockdep_assert_held(&prepare_lock); 2803 if (!core->ops->get_phase) 2804 return 0; 2805 2806 /* Always try to update cached phase if possible */ 2807 ret = core->ops->get_phase(core->hw); 2808 if (ret >= 0) 2809 core->phase = ret; 2810 2811 return ret; 2812} 2813 2814/** 2815 * clk_get_phase - return the phase shift of a clock signal 2816 * @clk: clock signal source 2817 * 2818 * Returns the phase shift of a clock node in degrees, otherwise returns 2819 * -EERROR. 2820 */ 2821int clk_get_phase(struct clk *clk) 2822{ 2823 int ret; 2824 2825 if (!clk) 2826 return 0; 2827 2828 clk_prepare_lock(); 2829 ret = clk_core_get_phase(clk->core); 2830 clk_prepare_unlock(); 2831 2832 return ret; 2833} 2834EXPORT_SYMBOL_GPL(clk_get_phase); 2835 2836static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2837{ 2838 /* Assume a default value of 50% */ 2839 core->duty.num = 1; 2840 core->duty.den = 2; 2841} 2842 2843static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2844 2845static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2846{ 2847 struct clk_duty *duty = &core->duty; 2848 int ret = 0; 2849 2850 if (!core->ops->get_duty_cycle) 2851 return clk_core_update_duty_cycle_parent_nolock(core); 2852 2853 ret = core->ops->get_duty_cycle(core->hw, duty); 2854 if (ret) 2855 goto reset; 2856 2857 /* Don't trust the clock provider too much */ 2858 if (duty->den == 0 || duty->num > duty->den) { 2859 ret = -EINVAL; 2860 goto reset; 2861 } 2862 2863 return 0; 2864 2865reset: 2866 clk_core_reset_duty_cycle_nolock(core); 2867 return ret; 2868} 2869 2870static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2871{ 2872 int ret = 0; 2873 2874 if (core->parent && 2875 core->flags & CLK_DUTY_CYCLE_PARENT) { 2876 ret = clk_core_update_duty_cycle_nolock(core->parent); 2877 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2878 } else { 2879 clk_core_reset_duty_cycle_nolock(core); 2880 } 2881 2882 return ret; 2883} 2884 2885static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2886 struct clk_duty *duty); 2887 2888static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2889 struct clk_duty *duty) 2890{ 2891 int ret; 2892 2893 lockdep_assert_held(&prepare_lock); 2894 2895 if (clk_core_rate_is_protected(core)) 2896 return -EBUSY; 2897 2898 trace_clk_set_duty_cycle(core, duty); 2899 2900 if (!core->ops->set_duty_cycle) 2901 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2902 2903 ret = core->ops->set_duty_cycle(core->hw, duty); 2904 if (!ret) 2905 memcpy(&core->duty, duty, sizeof(*duty)); 2906 2907 trace_clk_set_duty_cycle_complete(core, duty); 2908 2909 return ret; 2910} 2911 2912static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2913 struct clk_duty *duty) 2914{ 2915 int ret = 0; 2916 2917 if (core->parent && 2918 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2919 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2920 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2921 } 2922 2923 return ret; 2924} 2925 2926/** 2927 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2928 * @clk: clock signal source 2929 * @num: numerator of the duty cycle ratio to be applied 2930 * @den: denominator of the duty cycle ratio to be applied 2931 * 2932 * Apply the duty cycle ratio if the ratio is valid and the clock can 2933 * perform this operation 2934 * 2935 * Returns (0) on success, a negative errno otherwise. 2936 */ 2937int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2938{ 2939 int ret; 2940 struct clk_duty duty; 2941 2942 if (!clk) 2943 return 0; 2944 2945 /* sanity check the ratio */ 2946 if (den == 0 || num > den) 2947 return -EINVAL; 2948 2949 duty.num = num; 2950 duty.den = den; 2951 2952 clk_prepare_lock(); 2953 2954 if (clk->exclusive_count) 2955 clk_core_rate_unprotect(clk->core); 2956 2957 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2958 2959 if (clk->exclusive_count) 2960 clk_core_rate_protect(clk->core); 2961 2962 clk_prepare_unlock(); 2963 2964 return ret; 2965} 2966EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2967 2968static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2969 unsigned int scale) 2970{ 2971 struct clk_duty *duty = &core->duty; 2972 int ret; 2973 2974 clk_prepare_lock(); 2975 2976 ret = clk_core_update_duty_cycle_nolock(core); 2977 if (!ret) 2978 ret = mult_frac(scale, duty->num, duty->den); 2979 2980 clk_prepare_unlock(); 2981 2982 return ret; 2983} 2984 2985/** 2986 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2987 * @clk: clock signal source 2988 * @scale: scaling factor to be applied to represent the ratio as an integer 2989 * 2990 * Returns the duty cycle ratio of a clock node multiplied by the provided 2991 * scaling factor, or negative errno on error. 2992 */ 2993int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2994{ 2995 if (!clk) 2996 return 0; 2997 2998 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2999} 3000EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3001 3002/** 3003 * clk_is_match - check if two clk's point to the same hardware clock 3004 * @p: clk compared against q 3005 * @q: clk compared against p 3006 * 3007 * Returns true if the two struct clk pointers both point to the same hardware 3008 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3009 * share the same struct clk_core object. 3010 * 3011 * Returns false otherwise. Note that two NULL clks are treated as matching. 3012 */ 3013bool clk_is_match(const struct clk *p, const struct clk *q) 3014{ 3015 /* trivial case: identical struct clk's or both NULL */ 3016 if (p == q) 3017 return true; 3018 3019 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3020 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3021 if (p->core == q->core) 3022 return true; 3023 3024 return false; 3025} 3026EXPORT_SYMBOL_GPL(clk_is_match); 3027 3028/*** debugfs support ***/ 3029 3030#ifdef CONFIG_DEBUG_FS 3031#include <linux/debugfs.h> 3032 3033static struct dentry *rootdir; 3034static int inited = 0; 3035static DEFINE_MUTEX(clk_debug_lock); 3036static HLIST_HEAD(clk_debug_list); 3037 3038static struct hlist_head *orphan_list[] = { 3039 &clk_orphan_list, 3040 NULL, 3041}; 3042 3043static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3044 int level) 3045{ 3046 int phase; 3047 3048 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 3049 level * 3 + 1, "", 3050 30 - level * 3, c->name, 3051 c->enable_count, c->prepare_count, c->protect_count, 3052 clk_core_get_rate_recalc(c), 3053 clk_core_get_accuracy_recalc(c)); 3054 3055 phase = clk_core_get_phase(c); 3056 if (phase >= 0) 3057 seq_printf(s, "%5d", phase); 3058 else 3059 seq_puts(s, "-----"); 3060 3061 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000)); 3062} 3063 3064static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3065 int level) 3066{ 3067 struct clk_core *child; 3068 3069 clk_summary_show_one(s, c, level); 3070 3071 hlist_for_each_entry(child, &c->children, child_node) 3072 clk_summary_show_subtree(s, child, level + 1); 3073} 3074 3075static int clk_summary_show(struct seq_file *s, void *data) 3076{ 3077 struct clk_core *c; 3078 struct hlist_head **lists = (struct hlist_head **)s->private; 3079 3080 seq_puts(s, " enable prepare protect duty\n"); 3081 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 3082 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 3083 3084 clk_prepare_lock(); 3085 3086 for (; *lists; lists++) 3087 hlist_for_each_entry(c, *lists, child_node) 3088 clk_summary_show_subtree(s, c, 0); 3089 3090 clk_prepare_unlock(); 3091 3092 return 0; 3093} 3094DEFINE_SHOW_ATTRIBUTE(clk_summary); 3095 3096static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3097{ 3098 int phase; 3099 unsigned long min_rate, max_rate; 3100 3101 clk_core_get_boundaries(c, &min_rate, &max_rate); 3102 3103 /* This should be JSON format, i.e. elements separated with a comma */ 3104 seq_printf(s, "\"%s\": { ", c->name); 3105 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3106 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3107 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3108 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3109 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3110 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3111 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3112 phase = clk_core_get_phase(c); 3113 if (phase >= 0) 3114 seq_printf(s, "\"phase\": %d,", phase); 3115 seq_printf(s, "\"duty_cycle\": %u", 3116 clk_core_get_scaled_duty_cycle(c, 100000)); 3117} 3118 3119static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3120{ 3121 struct clk_core *child; 3122 3123 clk_dump_one(s, c, level); 3124 3125 hlist_for_each_entry(child, &c->children, child_node) { 3126 seq_putc(s, ','); 3127 clk_dump_subtree(s, child, level + 1); 3128 } 3129 3130 seq_putc(s, '}'); 3131} 3132 3133static int clk_dump_show(struct seq_file *s, void *data) 3134{ 3135 struct clk_core *c; 3136 bool first_node = true; 3137 struct hlist_head **lists = (struct hlist_head **)s->private; 3138 3139 seq_putc(s, '{'); 3140 clk_prepare_lock(); 3141 3142 for (; *lists; lists++) { 3143 hlist_for_each_entry(c, *lists, child_node) { 3144 if (!first_node) 3145 seq_putc(s, ','); 3146 first_node = false; 3147 clk_dump_subtree(s, c, 0); 3148 } 3149 } 3150 3151 clk_prepare_unlock(); 3152 3153 seq_puts(s, "}\n"); 3154 return 0; 3155} 3156DEFINE_SHOW_ATTRIBUTE(clk_dump); 3157 3158#undef CLOCK_ALLOW_WRITE_DEBUGFS 3159#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3160/* 3161 * This can be dangerous, therefore don't provide any real compile time 3162 * configuration option for this feature. 3163 * People who want to use this will need to modify the source code directly. 3164 */ 3165static int clk_rate_set(void *data, u64 val) 3166{ 3167 struct clk_core *core = data; 3168 int ret; 3169 3170 clk_prepare_lock(); 3171 ret = clk_core_set_rate_nolock(core, val); 3172 clk_prepare_unlock(); 3173 3174 return ret; 3175} 3176 3177#define clk_rate_mode 0644 3178 3179static int clk_prepare_enable_set(void *data, u64 val) 3180{ 3181 struct clk_core *core = data; 3182 int ret = 0; 3183 3184 if (val) 3185 ret = clk_prepare_enable(core->hw->clk); 3186 else 3187 clk_disable_unprepare(core->hw->clk); 3188 3189 return ret; 3190} 3191 3192static int clk_prepare_enable_get(void *data, u64 *val) 3193{ 3194 struct clk_core *core = data; 3195 3196 *val = core->enable_count && core->prepare_count; 3197 return 0; 3198} 3199 3200DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3201 clk_prepare_enable_set, "%llu\n"); 3202 3203#else 3204#define clk_rate_set NULL 3205#define clk_rate_mode 0444 3206#endif 3207 3208static int clk_rate_get(void *data, u64 *val) 3209{ 3210 struct clk_core *core = data; 3211 3212 *val = core->rate; 3213 return 0; 3214} 3215 3216DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3217 3218static const struct { 3219 unsigned long flag; 3220 const char *name; 3221} clk_flags[] = { 3222#define ENTRY(f) { f, #f } 3223 ENTRY(CLK_SET_RATE_GATE), 3224 ENTRY(CLK_SET_PARENT_GATE), 3225 ENTRY(CLK_SET_RATE_PARENT), 3226 ENTRY(CLK_IGNORE_UNUSED), 3227 ENTRY(CLK_GET_RATE_NOCACHE), 3228 ENTRY(CLK_SET_RATE_NO_REPARENT), 3229 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3230 ENTRY(CLK_RECALC_NEW_RATES), 3231 ENTRY(CLK_SET_RATE_UNGATE), 3232 ENTRY(CLK_IS_CRITICAL), 3233 ENTRY(CLK_OPS_PARENT_ENABLE), 3234 ENTRY(CLK_DUTY_CYCLE_PARENT), 3235#undef ENTRY 3236}; 3237 3238static int clk_flags_show(struct seq_file *s, void *data) 3239{ 3240 struct clk_core *core = s->private; 3241 unsigned long flags = core->flags; 3242 unsigned int i; 3243 3244 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3245 if (flags & clk_flags[i].flag) { 3246 seq_printf(s, "%s\n", clk_flags[i].name); 3247 flags &= ~clk_flags[i].flag; 3248 } 3249 } 3250 if (flags) { 3251 /* Unknown flags */ 3252 seq_printf(s, "0x%lx\n", flags); 3253 } 3254 3255 return 0; 3256} 3257DEFINE_SHOW_ATTRIBUTE(clk_flags); 3258 3259static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3260 unsigned int i, char terminator) 3261{ 3262 struct clk_core *parent; 3263 const char *name = NULL; 3264 3265 /* 3266 * Go through the following options to fetch a parent's name. 3267 * 3268 * 1. Fetch the registered parent clock and use its name 3269 * 2. Use the global (fallback) name if specified 3270 * 3. Use the local fw_name if provided 3271 * 4. Fetch parent clock's clock-output-name if DT index was set 3272 * 3273 * This may still fail in some cases, such as when the parent is 3274 * specified directly via a struct clk_hw pointer, but it isn't 3275 * registered (yet). 3276 */ 3277 parent = clk_core_get_parent_by_index(core, i); 3278 if (parent) { 3279 seq_puts(s, parent->name); 3280 } else if (core->parents[i].name) { 3281 seq_puts(s, core->parents[i].name); 3282 } else if (core->parents[i].fw_name) { 3283 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3284 } else { 3285 if (core->parents[i].index >= 0) 3286 name = of_clk_get_parent_name(core->of_node, core->parents[i].index); 3287 if (!name) 3288 name = "(missing)"; 3289 3290 seq_puts(s, name); 3291 } 3292 3293 seq_putc(s, terminator); 3294} 3295 3296static int possible_parents_show(struct seq_file *s, void *data) 3297{ 3298 struct clk_core *core = s->private; 3299 int i; 3300 3301 for (i = 0; i < core->num_parents - 1; i++) 3302 possible_parent_show(s, core, i, ' '); 3303 3304 possible_parent_show(s, core, i, '\n'); 3305 3306 return 0; 3307} 3308DEFINE_SHOW_ATTRIBUTE(possible_parents); 3309 3310static int current_parent_show(struct seq_file *s, void *data) 3311{ 3312 struct clk_core *core = s->private; 3313 3314 if (core->parent) 3315 seq_printf(s, "%s\n", core->parent->name); 3316 3317 return 0; 3318} 3319DEFINE_SHOW_ATTRIBUTE(current_parent); 3320 3321static int clk_duty_cycle_show(struct seq_file *s, void *data) 3322{ 3323 struct clk_core *core = s->private; 3324 struct clk_duty *duty = &core->duty; 3325 3326 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3327 3328 return 0; 3329} 3330DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3331 3332static int clk_min_rate_show(struct seq_file *s, void *data) 3333{ 3334 struct clk_core *core = s->private; 3335 unsigned long min_rate, max_rate; 3336 3337 clk_prepare_lock(); 3338 clk_core_get_boundaries(core, &min_rate, &max_rate); 3339 clk_prepare_unlock(); 3340 seq_printf(s, "%lu\n", min_rate); 3341 3342 return 0; 3343} 3344DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3345 3346static int clk_max_rate_show(struct seq_file *s, void *data) 3347{ 3348 struct clk_core *core = s->private; 3349 unsigned long min_rate, max_rate; 3350 3351 clk_prepare_lock(); 3352 clk_core_get_boundaries(core, &min_rate, &max_rate); 3353 clk_prepare_unlock(); 3354 seq_printf(s, "%lu\n", max_rate); 3355 3356 return 0; 3357} 3358DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3359 3360static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3361{ 3362 struct dentry *root; 3363 3364 if (!core || !pdentry) 3365 return; 3366 3367 root = debugfs_create_dir(core->name, pdentry); 3368 core->dentry = root; 3369 3370 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3371 &clk_rate_fops); 3372 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3373 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3374 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3375 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3376 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3377 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3378 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3379 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3380 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3381 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3382 &clk_duty_cycle_fops); 3383#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3384 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3385 &clk_prepare_enable_fops); 3386#endif 3387 3388 if (core->num_parents > 0) 3389 debugfs_create_file("clk_parent", 0444, root, core, 3390 ¤t_parent_fops); 3391 3392 if (core->num_parents > 1) 3393 debugfs_create_file("clk_possible_parents", 0444, root, core, 3394 &possible_parents_fops); 3395 3396 if (core->ops->debug_init) 3397 core->ops->debug_init(core->hw, core->dentry); 3398} 3399 3400/** 3401 * clk_debug_register - add a clk node to the debugfs clk directory 3402 * @core: the clk being added to the debugfs clk directory 3403 * 3404 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3405 * initialized. Otherwise it bails out early since the debugfs clk directory 3406 * will be created lazily by clk_debug_init as part of a late_initcall. 3407 */ 3408static void clk_debug_register(struct clk_core *core) 3409{ 3410 mutex_lock(&clk_debug_lock); 3411 hlist_add_head(&core->debug_node, &clk_debug_list); 3412 if (inited) 3413 clk_debug_create_one(core, rootdir); 3414 mutex_unlock(&clk_debug_lock); 3415} 3416 3417 /** 3418 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3419 * @core: the clk being removed from the debugfs clk directory 3420 * 3421 * Dynamically removes a clk and all its child nodes from the 3422 * debugfs clk directory if clk->dentry points to debugfs created by 3423 * clk_debug_register in __clk_core_init. 3424 */ 3425static void clk_debug_unregister(struct clk_core *core) 3426{ 3427 mutex_lock(&clk_debug_lock); 3428 hlist_del_init(&core->debug_node); 3429 debugfs_remove_recursive(core->dentry); 3430 core->dentry = NULL; 3431 mutex_unlock(&clk_debug_lock); 3432} 3433 3434/** 3435 * clk_debug_init - lazily populate the debugfs clk directory 3436 * 3437 * clks are often initialized very early during boot before memory can be 3438 * dynamically allocated and well before debugfs is setup. This function 3439 * populates the debugfs clk directory once at boot-time when we know that 3440 * debugfs is setup. It should only be called once at boot-time, all other clks 3441 * added dynamically will be done so with clk_debug_register. 3442 */ 3443static int __init clk_debug_init(void) 3444{ 3445 struct clk_core *core; 3446 3447#ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3448 pr_warn("\n"); 3449 pr_warn("********************************************************************\n"); 3450 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3451 pr_warn("** **\n"); 3452 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3453 pr_warn("** **\n"); 3454 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3455 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3456 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3457 pr_warn("** **\n"); 3458 pr_warn("** If you see this message and you are not debugging the **\n"); 3459 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3460 pr_warn("** **\n"); 3461 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3462 pr_warn("********************************************************************\n"); 3463#endif 3464 3465 rootdir = debugfs_create_dir("clk", NULL); 3466 3467 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3468 &clk_summary_fops); 3469 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3470 &clk_dump_fops); 3471 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3472 &clk_summary_fops); 3473 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3474 &clk_dump_fops); 3475 3476 mutex_lock(&clk_debug_lock); 3477 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3478 clk_debug_create_one(core, rootdir); 3479 3480 inited = 1; 3481 mutex_unlock(&clk_debug_lock); 3482 3483 return 0; 3484} 3485late_initcall(clk_debug_init); 3486#else 3487static inline void clk_debug_register(struct clk_core *core) { } 3488static inline void clk_debug_unregister(struct clk_core *core) 3489{ 3490} 3491#endif 3492 3493static void clk_core_reparent_orphans_nolock(void) 3494{ 3495 struct clk_core *orphan; 3496 struct hlist_node *tmp2; 3497 3498 /* 3499 * walk the list of orphan clocks and reparent any that newly finds a 3500 * parent. 3501 */ 3502 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3503 struct clk_core *parent = __clk_init_parent(orphan); 3504 3505 /* 3506 * We need to use __clk_set_parent_before() and _after() to 3507 * to properly migrate any prepare/enable count of the orphan 3508 * clock. This is important for CLK_IS_CRITICAL clocks, which 3509 * are enabled during init but might not have a parent yet. 3510 */ 3511 if (parent) { 3512 /* update the clk tree topology */ 3513 __clk_set_parent_before(orphan, parent); 3514 __clk_set_parent_after(orphan, parent, NULL); 3515 __clk_recalc_accuracies(orphan); 3516 __clk_recalc_rates(orphan, 0); 3517 3518 /* 3519 * __clk_init_parent() will set the initial req_rate to 3520 * 0 if the clock doesn't have clk_ops::recalc_rate and 3521 * is an orphan when it's registered. 3522 * 3523 * 'req_rate' is used by clk_set_rate_range() and 3524 * clk_put() to trigger a clk_set_rate() call whenever 3525 * the boundaries are modified. Let's make sure 3526 * 'req_rate' is set to something non-zero so that 3527 * clk_set_rate_range() doesn't drop the frequency. 3528 */ 3529 orphan->req_rate = orphan->rate; 3530 } 3531 } 3532} 3533 3534/** 3535 * __clk_core_init - initialize the data structures in a struct clk_core 3536 * @core: clk_core being initialized 3537 * 3538 * Initializes the lists in struct clk_core, queries the hardware for the 3539 * parent and rate and sets them both. 3540 */ 3541static int __clk_core_init(struct clk_core *core) 3542{ 3543 int ret; 3544 struct clk_core *parent; 3545 unsigned long rate; 3546 int phase; 3547 3548 if (!core) 3549 return -EINVAL; 3550 3551 clk_prepare_lock(); 3552 3553 /* 3554 * Set hw->core after grabbing the prepare_lock to synchronize with 3555 * callers of clk_core_fill_parent_index() where we treat hw->core 3556 * being NULL as the clk not being registered yet. This is crucial so 3557 * that clks aren't parented until their parent is fully registered. 3558 */ 3559 core->hw->core = core; 3560 3561 ret = clk_pm_runtime_get(core); 3562 if (ret) 3563 goto unlock; 3564 3565 /* check to see if a clock with this name is already registered */ 3566 if (clk_core_lookup(core->name)) { 3567 pr_debug("%s: clk %s already initialized\n", 3568 __func__, core->name); 3569 ret = -EEXIST; 3570 goto out; 3571 } 3572 3573 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3574 if (core->ops->set_rate && 3575 !((core->ops->round_rate || core->ops->determine_rate) && 3576 core->ops->recalc_rate)) { 3577 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3578 __func__, core->name); 3579 ret = -EINVAL; 3580 goto out; 3581 } 3582 3583 if (core->ops->set_parent && !core->ops->get_parent) { 3584 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3585 __func__, core->name); 3586 ret = -EINVAL; 3587 goto out; 3588 } 3589 3590 if (core->num_parents > 1 && !core->ops->get_parent) { 3591 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3592 __func__, core->name); 3593 ret = -EINVAL; 3594 goto out; 3595 } 3596 3597 if (core->ops->set_rate_and_parent && 3598 !(core->ops->set_parent && core->ops->set_rate)) { 3599 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3600 __func__, core->name); 3601 ret = -EINVAL; 3602 goto out; 3603 } 3604 3605 /* 3606 * optional platform-specific magic 3607 * 3608 * The .init callback is not used by any of the basic clock types, but 3609 * exists for weird hardware that must perform initialization magic for 3610 * CCF to get an accurate view of clock for any other callbacks. It may 3611 * also be used needs to perform dynamic allocations. Such allocation 3612 * must be freed in the terminate() callback. 3613 * This callback shall not be used to initialize the parameters state, 3614 * such as rate, parent, etc ... 3615 * 3616 * If it exist, this callback should called before any other callback of 3617 * the clock 3618 */ 3619 if (core->ops->init) { 3620 ret = core->ops->init(core->hw); 3621 if (ret) 3622 goto out; 3623 } 3624 3625 parent = core->parent = __clk_init_parent(core); 3626 3627 /* 3628 * Populate core->parent if parent has already been clk_core_init'd. If 3629 * parent has not yet been clk_core_init'd then place clk in the orphan 3630 * list. If clk doesn't have any parents then place it in the root 3631 * clk list. 3632 * 3633 * Every time a new clk is clk_init'd then we walk the list of orphan 3634 * clocks and re-parent any that are children of the clock currently 3635 * being clk_init'd. 3636 */ 3637 if (parent) { 3638 hlist_add_head(&core->child_node, &parent->children); 3639 core->orphan = parent->orphan; 3640 } else if (!core->num_parents) { 3641 hlist_add_head(&core->child_node, &clk_root_list); 3642 core->orphan = false; 3643 } else { 3644 hlist_add_head(&core->child_node, &clk_orphan_list); 3645 core->orphan = true; 3646 } 3647 3648 /* 3649 * Set clk's accuracy. The preferred method is to use 3650 * .recalc_accuracy. For simple clocks and lazy developers the default 3651 * fallback is to use the parent's accuracy. If a clock doesn't have a 3652 * parent (or is orphaned) then accuracy is set to zero (perfect 3653 * clock). 3654 */ 3655 if (core->ops->recalc_accuracy) 3656 core->accuracy = core->ops->recalc_accuracy(core->hw, 3657 clk_core_get_accuracy_no_lock(parent)); 3658 else if (parent) 3659 core->accuracy = parent->accuracy; 3660 else 3661 core->accuracy = 0; 3662 3663 /* 3664 * Set clk's phase by clk_core_get_phase() caching the phase. 3665 * Since a phase is by definition relative to its parent, just 3666 * query the current clock phase, or just assume it's in phase. 3667 */ 3668 phase = clk_core_get_phase(core); 3669 if (phase < 0) { 3670 ret = phase; 3671 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3672 core->name); 3673 goto out; 3674 } 3675 3676 /* 3677 * Set clk's duty cycle. 3678 */ 3679 clk_core_update_duty_cycle_nolock(core); 3680 3681 /* 3682 * Set clk's rate. The preferred method is to use .recalc_rate. For 3683 * simple clocks and lazy developers the default fallback is to use the 3684 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3685 * then rate is set to zero. 3686 */ 3687 if (core->ops->recalc_rate) 3688 rate = core->ops->recalc_rate(core->hw, 3689 clk_core_get_rate_nolock(parent)); 3690 else if (parent) 3691 rate = parent->rate; 3692 else 3693 rate = 0; 3694 core->rate = core->req_rate = rate; 3695 3696 /* 3697 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3698 * don't get accidentally disabled when walking the orphan tree and 3699 * reparenting clocks 3700 */ 3701 if (core->flags & CLK_IS_CRITICAL) { 3702 unsigned long flags; 3703 3704 ret = clk_core_prepare(core); 3705 if (ret) { 3706 pr_warn("%s: critical clk '%s' failed to prepare\n", 3707 __func__, core->name); 3708 goto out; 3709 } 3710 3711 flags = clk_enable_lock(); 3712 ret = clk_core_enable(core); 3713 clk_enable_unlock(flags); 3714 if (ret) { 3715 pr_warn("%s: critical clk '%s' failed to enable\n", 3716 __func__, core->name); 3717 clk_core_unprepare(core); 3718 goto out; 3719 } 3720 } 3721 3722 clk_core_reparent_orphans_nolock(); 3723out: 3724 clk_pm_runtime_put(core); 3725unlock: 3726 if (ret) { 3727 hlist_del_init(&core->child_node); 3728 core->hw->core = NULL; 3729 } 3730 3731 clk_prepare_unlock(); 3732 3733 if (!ret) 3734 clk_debug_register(core); 3735 3736 return ret; 3737} 3738 3739/** 3740 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3741 * @core: clk to add consumer to 3742 * @clk: consumer to link to a clk 3743 */ 3744static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3745{ 3746 clk_prepare_lock(); 3747 hlist_add_head(&clk->clks_node, &core->clks); 3748 clk_prepare_unlock(); 3749} 3750 3751/** 3752 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3753 * @clk: consumer to unlink 3754 */ 3755static void clk_core_unlink_consumer(struct clk *clk) 3756{ 3757 lockdep_assert_held(&prepare_lock); 3758 hlist_del(&clk->clks_node); 3759} 3760 3761/** 3762 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3763 * @core: clk to allocate a consumer for 3764 * @dev_id: string describing device name 3765 * @con_id: connection ID string on device 3766 * 3767 * Returns: clk consumer left unlinked from the consumer list 3768 */ 3769static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3770 const char *con_id) 3771{ 3772 struct clk *clk; 3773 3774 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3775 if (!clk) 3776 return ERR_PTR(-ENOMEM); 3777 3778 clk->core = core; 3779 clk->dev_id = dev_id; 3780 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3781 clk->max_rate = ULONG_MAX; 3782 3783 return clk; 3784} 3785 3786/** 3787 * free_clk - Free a clk consumer 3788 * @clk: clk consumer to free 3789 * 3790 * Note, this assumes the clk has been unlinked from the clk_core consumer 3791 * list. 3792 */ 3793static void free_clk(struct clk *clk) 3794{ 3795 kfree_const(clk->con_id); 3796 kfree(clk); 3797} 3798 3799/** 3800 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3801 * a clk_hw 3802 * @dev: clk consumer device 3803 * @hw: clk_hw associated with the clk being consumed 3804 * @dev_id: string describing device name 3805 * @con_id: connection ID string on device 3806 * 3807 * This is the main function used to create a clk pointer for use by clk 3808 * consumers. It connects a consumer to the clk_core and clk_hw structures 3809 * used by the framework and clk provider respectively. 3810 */ 3811struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3812 const char *dev_id, const char *con_id) 3813{ 3814 struct clk *clk; 3815 struct clk_core *core; 3816 3817 /* This is to allow this function to be chained to others */ 3818 if (IS_ERR_OR_NULL(hw)) 3819 return ERR_CAST(hw); 3820 3821 core = hw->core; 3822 clk = alloc_clk(core, dev_id, con_id); 3823 if (IS_ERR(clk)) 3824 return clk; 3825 clk->dev = dev; 3826 3827 if (!try_module_get(core->owner)) { 3828 free_clk(clk); 3829 return ERR_PTR(-ENOENT); 3830 } 3831 3832 kref_get(&core->ref); 3833 clk_core_link_consumer(core, clk); 3834 3835 return clk; 3836} 3837 3838static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3839{ 3840 const char *dst; 3841 3842 if (!src) { 3843 if (must_exist) 3844 return -EINVAL; 3845 return 0; 3846 } 3847 3848 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3849 if (!dst) 3850 return -ENOMEM; 3851 3852 return 0; 3853} 3854 3855static int clk_core_populate_parent_map(struct clk_core *core, 3856 const struct clk_init_data *init) 3857{ 3858 u8 num_parents = init->num_parents; 3859 const char * const *parent_names = init->parent_names; 3860 const struct clk_hw **parent_hws = init->parent_hws; 3861 const struct clk_parent_data *parent_data = init->parent_data; 3862 int i, ret = 0; 3863 struct clk_parent_map *parents, *parent; 3864 3865 if (!num_parents) 3866 return 0; 3867 3868 /* 3869 * Avoid unnecessary string look-ups of clk_core's possible parents by 3870 * having a cache of names/clk_hw pointers to clk_core pointers. 3871 */ 3872 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3873 core->parents = parents; 3874 if (!parents) 3875 return -ENOMEM; 3876 3877 /* Copy everything over because it might be __initdata */ 3878 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3879 parent->index = -1; 3880 if (parent_names) { 3881 /* throw a WARN if any entries are NULL */ 3882 WARN(!parent_names[i], 3883 "%s: invalid NULL in %s's .parent_names\n", 3884 __func__, core->name); 3885 ret = clk_cpy_name(&parent->name, parent_names[i], 3886 true); 3887 } else if (parent_data) { 3888 parent->hw = parent_data[i].hw; 3889 parent->index = parent_data[i].index; 3890 ret = clk_cpy_name(&parent->fw_name, 3891 parent_data[i].fw_name, false); 3892 if (!ret) 3893 ret = clk_cpy_name(&parent->name, 3894 parent_data[i].name, 3895 false); 3896 } else if (parent_hws) { 3897 parent->hw = parent_hws[i]; 3898 } else { 3899 ret = -EINVAL; 3900 WARN(1, "Must specify parents if num_parents > 0\n"); 3901 } 3902 3903 if (ret) { 3904 do { 3905 kfree_const(parents[i].name); 3906 kfree_const(parents[i].fw_name); 3907 } while (--i >= 0); 3908 kfree(parents); 3909 3910 return ret; 3911 } 3912 } 3913 3914 return 0; 3915} 3916 3917static void clk_core_free_parent_map(struct clk_core *core) 3918{ 3919 int i = core->num_parents; 3920 3921 if (!core->num_parents) 3922 return; 3923 3924 while (--i >= 0) { 3925 kfree_const(core->parents[i].name); 3926 kfree_const(core->parents[i].fw_name); 3927 } 3928 3929 kfree(core->parents); 3930} 3931 3932/* Free memory allocated for a struct clk_core */ 3933static void __clk_release(struct kref *ref) 3934{ 3935 struct clk_core *core = container_of(ref, struct clk_core, ref); 3936 3937 if (core->rpm_enabled) { 3938 mutex_lock(&clk_rpm_list_lock); 3939 hlist_del(&core->rpm_node); 3940 mutex_unlock(&clk_rpm_list_lock); 3941 } 3942 3943 clk_core_free_parent_map(core); 3944 kfree_const(core->name); 3945 kfree(core); 3946} 3947 3948static struct clk * 3949__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3950{ 3951 int ret; 3952 struct clk_core *core; 3953 const struct clk_init_data *init = hw->init; 3954 3955 /* 3956 * The init data is not supposed to be used outside of registration path. 3957 * Set it to NULL so that provider drivers can't use it either and so that 3958 * we catch use of hw->init early on in the core. 3959 */ 3960 hw->init = NULL; 3961 3962 core = kzalloc(sizeof(*core), GFP_KERNEL); 3963 if (!core) { 3964 ret = -ENOMEM; 3965 goto fail_out; 3966 } 3967 3968 kref_init(&core->ref); 3969 3970 core->name = kstrdup_const(init->name, GFP_KERNEL); 3971 if (!core->name) { 3972 ret = -ENOMEM; 3973 goto fail_name; 3974 } 3975 3976 if (WARN_ON(!init->ops)) { 3977 ret = -EINVAL; 3978 goto fail_ops; 3979 } 3980 core->ops = init->ops; 3981 3982 core->dev = dev; 3983 clk_pm_runtime_init(core); 3984 core->of_node = np; 3985 if (dev && dev->driver) 3986 core->owner = dev->driver->owner; 3987 core->hw = hw; 3988 core->flags = init->flags; 3989 core->num_parents = init->num_parents; 3990 core->min_rate = 0; 3991 core->max_rate = ULONG_MAX; 3992 3993 ret = clk_core_populate_parent_map(core, init); 3994 if (ret) 3995 goto fail_parents; 3996 3997 INIT_HLIST_HEAD(&core->clks); 3998 3999 /* 4000 * Don't call clk_hw_create_clk() here because that would pin the 4001 * provider module to itself and prevent it from ever being removed. 4002 */ 4003 hw->clk = alloc_clk(core, NULL, NULL); 4004 if (IS_ERR(hw->clk)) { 4005 ret = PTR_ERR(hw->clk); 4006 goto fail_create_clk; 4007 } 4008 4009 clk_core_link_consumer(core, hw->clk); 4010 4011 ret = __clk_core_init(core); 4012 if (!ret) 4013 return hw->clk; 4014 4015 clk_prepare_lock(); 4016 clk_core_unlink_consumer(hw->clk); 4017 clk_prepare_unlock(); 4018 4019 free_clk(hw->clk); 4020 hw->clk = NULL; 4021 4022fail_create_clk: 4023fail_parents: 4024fail_ops: 4025fail_name: 4026 kref_put(&core->ref, __clk_release); 4027fail_out: 4028 return ERR_PTR(ret); 4029} 4030 4031/** 4032 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4033 * @dev: Device to get device node of 4034 * 4035 * Return: device node pointer of @dev, or the device node pointer of 4036 * @dev->parent if dev doesn't have a device node, or NULL if neither 4037 * @dev or @dev->parent have a device node. 4038 */ 4039static struct device_node *dev_or_parent_of_node(struct device *dev) 4040{ 4041 struct device_node *np; 4042 4043 if (!dev) 4044 return NULL; 4045 4046 np = dev_of_node(dev); 4047 if (!np) 4048 np = dev_of_node(dev->parent); 4049 4050 return np; 4051} 4052 4053/** 4054 * clk_register - allocate a new clock, register it and return an opaque cookie 4055 * @dev: device that is registering this clock 4056 * @hw: link to hardware-specific clock data 4057 * 4058 * clk_register is the *deprecated* interface for populating the clock tree with 4059 * new clock nodes. Use clk_hw_register() instead. 4060 * 4061 * Returns: a pointer to the newly allocated struct clk which 4062 * cannot be dereferenced by driver code but may be used in conjunction with the 4063 * rest of the clock API. In the event of an error clk_register will return an 4064 * error code; drivers must test for an error code after calling clk_register. 4065 */ 4066struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4067{ 4068 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4069} 4070EXPORT_SYMBOL_GPL(clk_register); 4071 4072/** 4073 * clk_hw_register - register a clk_hw and return an error code 4074 * @dev: device that is registering this clock 4075 * @hw: link to hardware-specific clock data 4076 * 4077 * clk_hw_register is the primary interface for populating the clock tree with 4078 * new clock nodes. It returns an integer equal to zero indicating success or 4079 * less than zero indicating failure. Drivers must test for an error code after 4080 * calling clk_hw_register(). 4081 */ 4082int clk_hw_register(struct device *dev, struct clk_hw *hw) 4083{ 4084 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4085 hw)); 4086} 4087EXPORT_SYMBOL_GPL(clk_hw_register); 4088 4089/* 4090 * of_clk_hw_register - register a clk_hw and return an error code 4091 * @node: device_node of device that is registering this clock 4092 * @hw: link to hardware-specific clock data 4093 * 4094 * of_clk_hw_register() is the primary interface for populating the clock tree 4095 * with new clock nodes when a struct device is not available, but a struct 4096 * device_node is. It returns an integer equal to zero indicating success or 4097 * less than zero indicating failure. Drivers must test for an error code after 4098 * calling of_clk_hw_register(). 4099 */ 4100int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4101{ 4102 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4103} 4104EXPORT_SYMBOL_GPL(of_clk_hw_register); 4105 4106/* 4107 * Empty clk_ops for unregistered clocks. These are used temporarily 4108 * after clk_unregister() was called on a clock and until last clock 4109 * consumer calls clk_put() and the struct clk object is freed. 4110 */ 4111static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4112{ 4113 return -ENXIO; 4114} 4115 4116static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4117{ 4118 WARN_ON_ONCE(1); 4119} 4120 4121static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4122 unsigned long parent_rate) 4123{ 4124 return -ENXIO; 4125} 4126 4127static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4128{ 4129 return -ENXIO; 4130} 4131 4132static const struct clk_ops clk_nodrv_ops = { 4133 .enable = clk_nodrv_prepare_enable, 4134 .disable = clk_nodrv_disable_unprepare, 4135 .prepare = clk_nodrv_prepare_enable, 4136 .unprepare = clk_nodrv_disable_unprepare, 4137 .set_rate = clk_nodrv_set_rate, 4138 .set_parent = clk_nodrv_set_parent, 4139}; 4140 4141static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4142 struct clk_core *target) 4143{ 4144 int i; 4145 struct clk_core *child; 4146 4147 for (i = 0; i < root->num_parents; i++) 4148 if (root->parents[i].core == target) 4149 root->parents[i].core = NULL; 4150 4151 hlist_for_each_entry(child, &root->children, child_node) 4152 clk_core_evict_parent_cache_subtree(child, target); 4153} 4154 4155/* Remove this clk from all parent caches */ 4156static void clk_core_evict_parent_cache(struct clk_core *core) 4157{ 4158 const struct hlist_head **lists; 4159 struct clk_core *root; 4160 4161 lockdep_assert_held(&prepare_lock); 4162 4163 for (lists = all_lists; *lists; lists++) 4164 hlist_for_each_entry(root, *lists, child_node) 4165 clk_core_evict_parent_cache_subtree(root, core); 4166 4167} 4168 4169/** 4170 * clk_unregister - unregister a currently registered clock 4171 * @clk: clock to unregister 4172 */ 4173void clk_unregister(struct clk *clk) 4174{ 4175 unsigned long flags; 4176 const struct clk_ops *ops; 4177 4178 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4179 return; 4180 4181 clk_debug_unregister(clk->core); 4182 4183 clk_prepare_lock(); 4184 4185 ops = clk->core->ops; 4186 if (ops == &clk_nodrv_ops) { 4187 pr_err("%s: unregistered clock: %s\n", __func__, 4188 clk->core->name); 4189 goto unlock; 4190 } 4191 /* 4192 * Assign empty clock ops for consumers that might still hold 4193 * a reference to this clock. 4194 */ 4195 flags = clk_enable_lock(); 4196 clk->core->ops = &clk_nodrv_ops; 4197 clk_enable_unlock(flags); 4198 4199 if (ops->terminate) 4200 ops->terminate(clk->core->hw); 4201 4202 if (!hlist_empty(&clk->core->children)) { 4203 struct clk_core *child; 4204 struct hlist_node *t; 4205 4206 /* Reparent all children to the orphan list. */ 4207 hlist_for_each_entry_safe(child, t, &clk->core->children, 4208 child_node) 4209 clk_core_set_parent_nolock(child, NULL); 4210 } 4211 4212 clk_core_evict_parent_cache(clk->core); 4213 4214 hlist_del_init(&clk->core->child_node); 4215 4216 if (clk->core->prepare_count) 4217 pr_warn("%s: unregistering prepared clock: %s\n", 4218 __func__, clk->core->name); 4219 4220 if (clk->core->protect_count) 4221 pr_warn("%s: unregistering protected clock: %s\n", 4222 __func__, clk->core->name); 4223 4224 kref_put(&clk->core->ref, __clk_release); 4225 free_clk(clk); 4226unlock: 4227 clk_prepare_unlock(); 4228} 4229EXPORT_SYMBOL_GPL(clk_unregister); 4230 4231/** 4232 * clk_hw_unregister - unregister a currently registered clk_hw 4233 * @hw: hardware-specific clock data to unregister 4234 */ 4235void clk_hw_unregister(struct clk_hw *hw) 4236{ 4237 clk_unregister(hw->clk); 4238} 4239EXPORT_SYMBOL_GPL(clk_hw_unregister); 4240 4241static void devm_clk_release(struct device *dev, void *res) 4242{ 4243 clk_unregister(*(struct clk **)res); 4244} 4245 4246static void devm_clk_hw_release(struct device *dev, void *res) 4247{ 4248 clk_hw_unregister(*(struct clk_hw **)res); 4249} 4250 4251/** 4252 * devm_clk_register - resource managed clk_register() 4253 * @dev: device that is registering this clock 4254 * @hw: link to hardware-specific clock data 4255 * 4256 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4257 * 4258 * Clocks returned from this function are automatically clk_unregister()ed on 4259 * driver detach. See clk_register() for more information. 4260 */ 4261struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4262{ 4263 struct clk *clk; 4264 struct clk **clkp; 4265 4266 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4267 if (!clkp) 4268 return ERR_PTR(-ENOMEM); 4269 4270 clk = clk_register(dev, hw); 4271 if (!IS_ERR(clk)) { 4272 *clkp = clk; 4273 devres_add(dev, clkp); 4274 } else { 4275 devres_free(clkp); 4276 } 4277 4278 return clk; 4279} 4280EXPORT_SYMBOL_GPL(devm_clk_register); 4281 4282/** 4283 * devm_clk_hw_register - resource managed clk_hw_register() 4284 * @dev: device that is registering this clock 4285 * @hw: link to hardware-specific clock data 4286 * 4287 * Managed clk_hw_register(). Clocks registered by this function are 4288 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4289 * for more information. 4290 */ 4291int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4292{ 4293 struct clk_hw **hwp; 4294 int ret; 4295 4296 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 4297 if (!hwp) 4298 return -ENOMEM; 4299 4300 ret = clk_hw_register(dev, hw); 4301 if (!ret) { 4302 *hwp = hw; 4303 devres_add(dev, hwp); 4304 } else { 4305 devres_free(hwp); 4306 } 4307 4308 return ret; 4309} 4310EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4311 4312static int devm_clk_match(struct device *dev, void *res, void *data) 4313{ 4314 struct clk *c = res; 4315 if (WARN_ON(!c)) 4316 return 0; 4317 return c == data; 4318} 4319 4320static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4321{ 4322 struct clk_hw *hw = res; 4323 4324 if (WARN_ON(!hw)) 4325 return 0; 4326 return hw == data; 4327} 4328 4329/** 4330 * devm_clk_unregister - resource managed clk_unregister() 4331 * @dev: device that is unregistering the clock data 4332 * @clk: clock to unregister 4333 * 4334 * Deallocate a clock allocated with devm_clk_register(). Normally 4335 * this function will not need to be called and the resource management 4336 * code will ensure that the resource is freed. 4337 */ 4338void devm_clk_unregister(struct device *dev, struct clk *clk) 4339{ 4340 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 4341} 4342EXPORT_SYMBOL_GPL(devm_clk_unregister); 4343 4344/** 4345 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4346 * @dev: device that is unregistering the hardware-specific clock data 4347 * @hw: link to hardware-specific clock data 4348 * 4349 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4350 * this function will not need to be called and the resource management 4351 * code will ensure that the resource is freed. 4352 */ 4353void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4354{ 4355 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4356 hw)); 4357} 4358EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4359 4360/* 4361 * clkdev helpers 4362 */ 4363 4364void __clk_put(struct clk *clk) 4365{ 4366 struct module *owner; 4367 4368 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4369 return; 4370 4371 clk_prepare_lock(); 4372 4373 /* 4374 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4375 * given user should be balanced with calls to clk_rate_exclusive_put() 4376 * and by that same consumer 4377 */ 4378 if (WARN_ON(clk->exclusive_count)) { 4379 /* We voiced our concern, let's sanitize the situation */ 4380 clk->core->protect_count -= (clk->exclusive_count - 1); 4381 clk_core_rate_unprotect(clk->core); 4382 clk->exclusive_count = 0; 4383 } 4384 4385 hlist_del(&clk->clks_node); 4386 if (clk->min_rate > clk->core->req_rate || 4387 clk->max_rate < clk->core->req_rate) 4388 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4389 4390 owner = clk->core->owner; 4391 kref_put(&clk->core->ref, __clk_release); 4392 4393 clk_prepare_unlock(); 4394 4395 module_put(owner); 4396 4397 free_clk(clk); 4398} 4399 4400/*** clk rate change notifiers ***/ 4401 4402/** 4403 * clk_notifier_register - add a clk rate change notifier 4404 * @clk: struct clk * to watch 4405 * @nb: struct notifier_block * with callback info 4406 * 4407 * Request notification when clk's rate changes. This uses an SRCU 4408 * notifier because we want it to block and notifier unregistrations are 4409 * uncommon. The callbacks associated with the notifier must not 4410 * re-enter into the clk framework by calling any top-level clk APIs; 4411 * this will cause a nested prepare_lock mutex. 4412 * 4413 * In all notification cases (pre, post and abort rate change) the original 4414 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4415 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4416 * 4417 * clk_notifier_register() must be called from non-atomic context. 4418 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4419 * allocation failure; otherwise, passes along the return value of 4420 * srcu_notifier_chain_register(). 4421 */ 4422int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4423{ 4424 struct clk_notifier *cn; 4425 int ret = -ENOMEM; 4426 4427 if (!clk || !nb) 4428 return -EINVAL; 4429 4430 clk_prepare_lock(); 4431 4432 /* search the list of notifiers for this clk */ 4433 list_for_each_entry(cn, &clk_notifier_list, node) 4434 if (cn->clk == clk) 4435 goto found; 4436 4437 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4438 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4439 if (!cn) 4440 goto out; 4441 4442 cn->clk = clk; 4443 srcu_init_notifier_head(&cn->notifier_head); 4444 4445 list_add(&cn->node, &clk_notifier_list); 4446 4447found: 4448 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4449 4450 clk->core->notifier_count++; 4451 4452out: 4453 clk_prepare_unlock(); 4454 4455 return ret; 4456} 4457EXPORT_SYMBOL_GPL(clk_notifier_register); 4458 4459/** 4460 * clk_notifier_unregister - remove a clk rate change notifier 4461 * @clk: struct clk * 4462 * @nb: struct notifier_block * with callback info 4463 * 4464 * Request no further notification for changes to 'clk' and frees memory 4465 * allocated in clk_notifier_register. 4466 * 4467 * Returns -EINVAL if called with null arguments; otherwise, passes 4468 * along the return value of srcu_notifier_chain_unregister(). 4469 */ 4470int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4471{ 4472 struct clk_notifier *cn; 4473 int ret = -ENOENT; 4474 4475 if (!clk || !nb) 4476 return -EINVAL; 4477 4478 clk_prepare_lock(); 4479 4480 list_for_each_entry(cn, &clk_notifier_list, node) { 4481 if (cn->clk == clk) { 4482 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4483 4484 clk->core->notifier_count--; 4485 4486 /* XXX the notifier code should handle this better */ 4487 if (!cn->notifier_head.head) { 4488 srcu_cleanup_notifier_head(&cn->notifier_head); 4489 list_del(&cn->node); 4490 kfree(cn); 4491 } 4492 break; 4493 } 4494 } 4495 4496 clk_prepare_unlock(); 4497 4498 return ret; 4499} 4500EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4501 4502#ifdef CONFIG_OF 4503static void clk_core_reparent_orphans(void) 4504{ 4505 clk_prepare_lock(); 4506 clk_core_reparent_orphans_nolock(); 4507 clk_prepare_unlock(); 4508} 4509 4510/** 4511 * struct of_clk_provider - Clock provider registration structure 4512 * @link: Entry in global list of clock providers 4513 * @node: Pointer to device tree node of clock provider 4514 * @get: Get clock callback. Returns NULL or a struct clk for the 4515 * given clock specifier 4516 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4517 * struct clk_hw for the given clock specifier 4518 * @data: context pointer to be passed into @get callback 4519 */ 4520struct of_clk_provider { 4521 struct list_head link; 4522 4523 struct device_node *node; 4524 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4525 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4526 void *data; 4527}; 4528 4529extern struct of_device_id __clk_of_table; 4530static const struct of_device_id __clk_of_table_sentinel 4531 __used __section("__clk_of_table_end"); 4532 4533static LIST_HEAD(of_clk_providers); 4534static DEFINE_MUTEX(of_clk_mutex); 4535 4536struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4537 void *data) 4538{ 4539 return data; 4540} 4541EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4542 4543struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4544{ 4545 return data; 4546} 4547EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4548 4549struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4550{ 4551 struct clk_onecell_data *clk_data = data; 4552 unsigned int idx = clkspec->args[0]; 4553 4554 if (idx >= clk_data->clk_num) { 4555 pr_err("%s: invalid clock index %u\n", __func__, idx); 4556 return ERR_PTR(-EINVAL); 4557 } 4558 4559 return clk_data->clks[idx]; 4560} 4561EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4562 4563struct clk_hw * 4564of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4565{ 4566 struct clk_hw_onecell_data *hw_data = data; 4567 unsigned int idx = clkspec->args[0]; 4568 4569 if (idx >= hw_data->num) { 4570 pr_err("%s: invalid index %u\n", __func__, idx); 4571 return ERR_PTR(-EINVAL); 4572 } 4573 4574 return hw_data->hws[idx]; 4575} 4576EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4577 4578/** 4579 * of_clk_add_provider() - Register a clock provider for a node 4580 * @np: Device node pointer associated with clock provider 4581 * @clk_src_get: callback for decoding clock 4582 * @data: context pointer for @clk_src_get callback. 4583 * 4584 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4585 */ 4586int of_clk_add_provider(struct device_node *np, 4587 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4588 void *data), 4589 void *data) 4590{ 4591 struct of_clk_provider *cp; 4592 int ret; 4593 4594 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4595 if (!cp) 4596 return -ENOMEM; 4597 4598 cp->node = of_node_get(np); 4599 cp->data = data; 4600 cp->get = clk_src_get; 4601 4602 mutex_lock(&of_clk_mutex); 4603 list_add(&cp->link, &of_clk_providers); 4604 mutex_unlock(&of_clk_mutex); 4605 pr_debug("Added clock from %pOF\n", np); 4606 4607 clk_core_reparent_orphans(); 4608 4609 ret = of_clk_set_defaults(np, true); 4610 if (ret < 0) 4611 of_clk_del_provider(np); 4612 4613 return ret; 4614} 4615EXPORT_SYMBOL_GPL(of_clk_add_provider); 4616 4617/** 4618 * of_clk_add_hw_provider() - Register a clock provider for a node 4619 * @np: Device node pointer associated with clock provider 4620 * @get: callback for decoding clk_hw 4621 * @data: context pointer for @get callback. 4622 */ 4623int of_clk_add_hw_provider(struct device_node *np, 4624 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4625 void *data), 4626 void *data) 4627{ 4628 struct of_clk_provider *cp; 4629 int ret; 4630 4631 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4632 if (!cp) 4633 return -ENOMEM; 4634 4635 cp->node = of_node_get(np); 4636 cp->data = data; 4637 cp->get_hw = get; 4638 4639 mutex_lock(&of_clk_mutex); 4640 list_add(&cp->link, &of_clk_providers); 4641 mutex_unlock(&of_clk_mutex); 4642 pr_debug("Added clk_hw provider from %pOF\n", np); 4643 4644 clk_core_reparent_orphans(); 4645 4646 ret = of_clk_set_defaults(np, true); 4647 if (ret < 0) 4648 of_clk_del_provider(np); 4649 4650 return ret; 4651} 4652EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4653 4654static void devm_of_clk_release_provider(struct device *dev, void *res) 4655{ 4656 of_clk_del_provider(*(struct device_node **)res); 4657} 4658 4659/* 4660 * We allow a child device to use its parent device as the clock provider node 4661 * for cases like MFD sub-devices where the child device driver wants to use 4662 * devm_*() APIs but not list the device in DT as a sub-node. 4663 */ 4664static struct device_node *get_clk_provider_node(struct device *dev) 4665{ 4666 struct device_node *np, *parent_np; 4667 4668 np = dev->of_node; 4669 parent_np = dev->parent ? dev->parent->of_node : NULL; 4670 4671 if (!of_find_property(np, "#clock-cells", NULL)) 4672 if (of_find_property(parent_np, "#clock-cells", NULL)) 4673 np = parent_np; 4674 4675 return np; 4676} 4677 4678/** 4679 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4680 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4681 * @get: callback for decoding clk_hw 4682 * @data: context pointer for @get callback 4683 * 4684 * Registers clock provider for given device's node. If the device has no DT 4685 * node or if the device node lacks of clock provider information (#clock-cells) 4686 * then the parent device's node is scanned for this information. If parent node 4687 * has the #clock-cells then it is used in registration. Provider is 4688 * automatically released at device exit. 4689 * 4690 * Return: 0 on success or an errno on failure. 4691 */ 4692int devm_of_clk_add_hw_provider(struct device *dev, 4693 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4694 void *data), 4695 void *data) 4696{ 4697 struct device_node **ptr, *np; 4698 int ret; 4699 4700 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4701 GFP_KERNEL); 4702 if (!ptr) 4703 return -ENOMEM; 4704 4705 np = get_clk_provider_node(dev); 4706 ret = of_clk_add_hw_provider(np, get, data); 4707 if (!ret) { 4708 *ptr = np; 4709 devres_add(dev, ptr); 4710 } else { 4711 devres_free(ptr); 4712 } 4713 4714 return ret; 4715} 4716EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4717 4718/** 4719 * of_clk_del_provider() - Remove a previously registered clock provider 4720 * @np: Device node pointer associated with clock provider 4721 */ 4722void of_clk_del_provider(struct device_node *np) 4723{ 4724 struct of_clk_provider *cp; 4725 4726 mutex_lock(&of_clk_mutex); 4727 list_for_each_entry(cp, &of_clk_providers, link) { 4728 if (cp->node == np) { 4729 list_del(&cp->link); 4730 of_node_put(cp->node); 4731 kfree(cp); 4732 break; 4733 } 4734 } 4735 mutex_unlock(&of_clk_mutex); 4736} 4737EXPORT_SYMBOL_GPL(of_clk_del_provider); 4738 4739static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4740{ 4741 struct device_node **np = res; 4742 4743 if (WARN_ON(!np || !*np)) 4744 return 0; 4745 4746 return *np == data; 4747} 4748 4749/** 4750 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4751 * @dev: Device to whose lifetime the clock provider was bound 4752 */ 4753void devm_of_clk_del_provider(struct device *dev) 4754{ 4755 int ret; 4756 struct device_node *np = get_clk_provider_node(dev); 4757 4758 ret = devres_release(dev, devm_of_clk_release_provider, 4759 devm_clk_provider_match, np); 4760 4761 WARN_ON(ret); 4762} 4763EXPORT_SYMBOL(devm_of_clk_del_provider); 4764 4765/** 4766 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4767 * @np: device node to parse clock specifier from 4768 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4769 * @name: clock name to find and parse. If name is NULL, the index is used 4770 * @out_args: Result of parsing the clock specifier 4771 * 4772 * Parses a device node's "clocks" and "clock-names" properties to find the 4773 * phandle and cells for the index or name that is desired. The resulting clock 4774 * specifier is placed into @out_args, or an errno is returned when there's a 4775 * parsing error. The @index argument is ignored if @name is non-NULL. 4776 * 4777 * Example: 4778 * 4779 * phandle1: clock-controller@1 { 4780 * #clock-cells = <2>; 4781 * } 4782 * 4783 * phandle2: clock-controller@2 { 4784 * #clock-cells = <1>; 4785 * } 4786 * 4787 * clock-consumer@3 { 4788 * clocks = <&phandle1 1 2 &phandle2 3>; 4789 * clock-names = "name1", "name2"; 4790 * } 4791 * 4792 * To get a device_node for `clock-controller@2' node you may call this 4793 * function a few different ways: 4794 * 4795 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4796 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4797 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4798 * 4799 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4800 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4801 * the "clock-names" property of @np. 4802 */ 4803static int of_parse_clkspec(const struct device_node *np, int index, 4804 const char *name, struct of_phandle_args *out_args) 4805{ 4806 int ret = -ENOENT; 4807 4808 /* Walk up the tree of devices looking for a clock property that matches */ 4809 while (np) { 4810 /* 4811 * For named clocks, first look up the name in the 4812 * "clock-names" property. If it cannot be found, then index 4813 * will be an error code and of_parse_phandle_with_args() will 4814 * return -EINVAL. 4815 */ 4816 if (name) 4817 index = of_property_match_string(np, "clock-names", name); 4818 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4819 index, out_args); 4820 if (!ret) 4821 break; 4822 if (name && index >= 0) 4823 break; 4824 4825 /* 4826 * No matching clock found on this node. If the parent node 4827 * has a "clock-ranges" property, then we can try one of its 4828 * clocks. 4829 */ 4830 np = np->parent; 4831 if (np && !of_get_property(np, "clock-ranges", NULL)) 4832 break; 4833 index = 0; 4834 } 4835 4836 return ret; 4837} 4838 4839static struct clk_hw * 4840__of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4841 struct of_phandle_args *clkspec) 4842{ 4843 struct clk *clk; 4844 4845 if (provider->get_hw) 4846 return provider->get_hw(clkspec, provider->data); 4847 4848 clk = provider->get(clkspec, provider->data); 4849 if (IS_ERR(clk)) 4850 return ERR_CAST(clk); 4851 return __clk_get_hw(clk); 4852} 4853 4854static struct clk_hw * 4855of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4856{ 4857 struct of_clk_provider *provider; 4858 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4859 4860 if (!clkspec) 4861 return ERR_PTR(-EINVAL); 4862 4863 mutex_lock(&of_clk_mutex); 4864 list_for_each_entry(provider, &of_clk_providers, link) { 4865 if (provider->node == clkspec->np) { 4866 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4867 if (!IS_ERR(hw)) 4868 break; 4869 } 4870 } 4871 mutex_unlock(&of_clk_mutex); 4872 4873 return hw; 4874} 4875 4876/** 4877 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4878 * @clkspec: pointer to a clock specifier data structure 4879 * 4880 * This function looks up a struct clk from the registered list of clock 4881 * providers, an input is a clock specifier data structure as returned 4882 * from the of_parse_phandle_with_args() function call. 4883 */ 4884struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4885{ 4886 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4887 4888 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4889} 4890EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4891 4892struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4893 const char *con_id) 4894{ 4895 int ret; 4896 struct clk_hw *hw; 4897 struct of_phandle_args clkspec; 4898 4899 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4900 if (ret) 4901 return ERR_PTR(ret); 4902 4903 hw = of_clk_get_hw_from_clkspec(&clkspec); 4904 of_node_put(clkspec.np); 4905 4906 return hw; 4907} 4908 4909static struct clk *__of_clk_get(struct device_node *np, 4910 int index, const char *dev_id, 4911 const char *con_id) 4912{ 4913 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4914 4915 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4916} 4917 4918struct clk *of_clk_get(struct device_node *np, int index) 4919{ 4920 return __of_clk_get(np, index, np->full_name, NULL); 4921} 4922EXPORT_SYMBOL(of_clk_get); 4923 4924/** 4925 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4926 * @np: pointer to clock consumer node 4927 * @name: name of consumer's clock input, or NULL for the first clock reference 4928 * 4929 * This function parses the clocks and clock-names properties, 4930 * and uses them to look up the struct clk from the registered list of clock 4931 * providers. 4932 */ 4933struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4934{ 4935 if (!np) 4936 return ERR_PTR(-ENOENT); 4937 4938 return __of_clk_get(np, 0, np->full_name, name); 4939} 4940EXPORT_SYMBOL(of_clk_get_by_name); 4941 4942/** 4943 * of_clk_get_parent_count() - Count the number of clocks a device node has 4944 * @np: device node to count 4945 * 4946 * Returns: The number of clocks that are possible parents of this node 4947 */ 4948unsigned int of_clk_get_parent_count(const struct device_node *np) 4949{ 4950 int count; 4951 4952 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4953 if (count < 0) 4954 return 0; 4955 4956 return count; 4957} 4958EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4959 4960const char *of_clk_get_parent_name(const struct device_node *np, int index) 4961{ 4962 struct of_phandle_args clkspec; 4963 struct property *prop; 4964 const char *clk_name; 4965 const __be32 *vp; 4966 u32 pv; 4967 int rc; 4968 int count; 4969 struct clk *clk; 4970 4971 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4972 &clkspec); 4973 if (rc) 4974 return NULL; 4975 4976 index = clkspec.args_count ? clkspec.args[0] : 0; 4977 count = 0; 4978 4979 /* if there is an indices property, use it to transfer the index 4980 * specified into an array offset for the clock-output-names property. 4981 */ 4982 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4983 if (index == pv) { 4984 index = count; 4985 break; 4986 } 4987 count++; 4988 } 4989 /* We went off the end of 'clock-indices' without finding it */ 4990 if (prop && !vp) 4991 return NULL; 4992 4993 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4994 index, 4995 &clk_name) < 0) { 4996 /* 4997 * Best effort to get the name if the clock has been 4998 * registered with the framework. If the clock isn't 4999 * registered, we return the node name as the name of 5000 * the clock as long as #clock-cells = 0. 5001 */ 5002 clk = of_clk_get_from_provider(&clkspec); 5003 if (IS_ERR(clk)) { 5004 if (clkspec.args_count == 0) 5005 clk_name = clkspec.np->name; 5006 else 5007 clk_name = NULL; 5008 } else { 5009 clk_name = __clk_get_name(clk); 5010 clk_put(clk); 5011 } 5012 } 5013 5014 5015 of_node_put(clkspec.np); 5016 return clk_name; 5017} 5018EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5019 5020/** 5021 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5022 * number of parents 5023 * @np: Device node pointer associated with clock provider 5024 * @parents: pointer to char array that hold the parents' names 5025 * @size: size of the @parents array 5026 * 5027 * Return: number of parents for the clock node. 5028 */ 5029int of_clk_parent_fill(struct device_node *np, const char **parents, 5030 unsigned int size) 5031{ 5032 unsigned int i = 0; 5033 5034 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5035 i++; 5036 5037 return i; 5038} 5039EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5040 5041struct clock_provider { 5042 void (*clk_init_cb)(struct device_node *); 5043 struct device_node *np; 5044 struct list_head node; 5045}; 5046 5047/* 5048 * This function looks for a parent clock. If there is one, then it 5049 * checks that the provider for this parent clock was initialized, in 5050 * this case the parent clock will be ready. 5051 */ 5052static int parent_ready(struct device_node *np) 5053{ 5054 int i = 0; 5055 5056 while (true) { 5057 struct clk *clk = of_clk_get(np, i); 5058 5059 /* this parent is ready we can check the next one */ 5060 if (!IS_ERR(clk)) { 5061 clk_put(clk); 5062 i++; 5063 continue; 5064 } 5065 5066 /* at least one parent is not ready, we exit now */ 5067 if (PTR_ERR(clk) == -EPROBE_DEFER) 5068 return 0; 5069 5070 /* 5071 * Here we make assumption that the device tree is 5072 * written correctly. So an error means that there is 5073 * no more parent. As we didn't exit yet, then the 5074 * previous parent are ready. If there is no clock 5075 * parent, no need to wait for them, then we can 5076 * consider their absence as being ready 5077 */ 5078 return 1; 5079 } 5080} 5081 5082/** 5083 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5084 * @np: Device node pointer associated with clock provider 5085 * @index: clock index 5086 * @flags: pointer to top-level framework flags 5087 * 5088 * Detects if the clock-critical property exists and, if so, sets the 5089 * corresponding CLK_IS_CRITICAL flag. 5090 * 5091 * Do not use this function. It exists only for legacy Device Tree 5092 * bindings, such as the one-clock-per-node style that are outdated. 5093 * Those bindings typically put all clock data into .dts and the Linux 5094 * driver has no clock data, thus making it impossible to set this flag 5095 * correctly from the driver. Only those drivers may call 5096 * of_clk_detect_critical from their setup functions. 5097 * 5098 * Return: error code or zero on success 5099 */ 5100int of_clk_detect_critical(struct device_node *np, int index, 5101 unsigned long *flags) 5102{ 5103 struct property *prop; 5104 const __be32 *cur; 5105 uint32_t idx; 5106 5107 if (!np || !flags) 5108 return -EINVAL; 5109 5110 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5111 if (index == idx) 5112 *flags |= CLK_IS_CRITICAL; 5113 5114 return 0; 5115} 5116 5117/** 5118 * of_clk_init() - Scan and init clock providers from the DT 5119 * @matches: array of compatible values and init functions for providers. 5120 * 5121 * This function scans the device tree for matching clock providers 5122 * and calls their initialization functions. It also does it by trying 5123 * to follow the dependencies. 5124 */ 5125void __init of_clk_init(const struct of_device_id *matches) 5126{ 5127 const struct of_device_id *match; 5128 struct device_node *np; 5129 struct clock_provider *clk_provider, *next; 5130 bool is_init_done; 5131 bool force = false; 5132 LIST_HEAD(clk_provider_list); 5133 5134 if (!matches) 5135 matches = &__clk_of_table; 5136 5137 /* First prepare the list of the clocks providers */ 5138 for_each_matching_node_and_match(np, matches, &match) { 5139 struct clock_provider *parent; 5140 5141 if (!of_device_is_available(np)) 5142 continue; 5143 5144 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5145 if (!parent) { 5146 list_for_each_entry_safe(clk_provider, next, 5147 &clk_provider_list, node) { 5148 list_del(&clk_provider->node); 5149 of_node_put(clk_provider->np); 5150 kfree(clk_provider); 5151 } 5152 of_node_put(np); 5153 return; 5154 } 5155 5156 parent->clk_init_cb = match->data; 5157 parent->np = of_node_get(np); 5158 list_add_tail(&parent->node, &clk_provider_list); 5159 } 5160 5161 while (!list_empty(&clk_provider_list)) { 5162 is_init_done = false; 5163 list_for_each_entry_safe(clk_provider, next, 5164 &clk_provider_list, node) { 5165 if (force || parent_ready(clk_provider->np)) { 5166 5167 /* Don't populate platform devices */ 5168 of_node_set_flag(clk_provider->np, 5169 OF_POPULATED); 5170 5171 clk_provider->clk_init_cb(clk_provider->np); 5172 of_clk_set_defaults(clk_provider->np, true); 5173 5174 list_del(&clk_provider->node); 5175 of_node_put(clk_provider->np); 5176 kfree(clk_provider); 5177 is_init_done = true; 5178 } 5179 } 5180 5181 /* 5182 * We didn't manage to initialize any of the 5183 * remaining providers during the last loop, so now we 5184 * initialize all the remaining ones unconditionally 5185 * in case the clock parent was not mandatory 5186 */ 5187 if (!is_init_done) 5188 force = true; 5189 } 5190} 5191#endif 5192