xref: /kernel/linux/linux-5.10/drivers/clk/clk.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/clk/clk-conf.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/spinlock.h>
15#include <linux/err.h>
16#include <linux/list.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/pm_runtime.h>
22#include <linux/sched.h>
23#include <linux/clkdev.h>
24
25#include "clk.h"
26
27static DEFINE_SPINLOCK(enable_lock);
28static DEFINE_MUTEX(prepare_lock);
29
30static struct task_struct *prepare_owner;
31static struct task_struct *enable_owner;
32
33static int prepare_refcnt;
34static int enable_refcnt;
35
36static HLIST_HEAD(clk_root_list);
37static HLIST_HEAD(clk_orphan_list);
38static LIST_HEAD(clk_notifier_list);
39
40/* List of registered clks that use runtime PM */
41static HLIST_HEAD(clk_rpm_list);
42static DEFINE_MUTEX(clk_rpm_list_lock);
43
44static const struct hlist_head *all_lists[] = {
45	&clk_root_list,
46	&clk_orphan_list,
47	NULL,
48};
49
50/***    private data structures    ***/
51
52struct clk_parent_map {
53	const struct clk_hw	*hw;
54	struct clk_core		*core;
55	const char		*fw_name;
56	const char		*name;
57	int			index;
58};
59
60struct clk_core {
61	const char		*name;
62	const struct clk_ops	*ops;
63	struct clk_hw		*hw;
64	struct module		*owner;
65	struct device		*dev;
66	struct hlist_node	rpm_node;
67	struct device_node	*of_node;
68	struct clk_core		*parent;
69	struct clk_parent_map	*parents;
70	u8			num_parents;
71	u8			new_parent_index;
72	unsigned long		rate;
73	unsigned long		req_rate;
74	unsigned long		new_rate;
75	struct clk_core		*new_parent;
76	struct clk_core		*new_child;
77	unsigned long		flags;
78	bool			orphan;
79	bool			rpm_enabled;
80	unsigned int		enable_count;
81	unsigned int		prepare_count;
82	unsigned int		protect_count;
83	unsigned long		min_rate;
84	unsigned long		max_rate;
85	unsigned long		accuracy;
86	int			phase;
87	struct clk_duty		duty;
88	struct hlist_head	children;
89	struct hlist_node	child_node;
90	struct hlist_head	clks;
91	unsigned int		notifier_count;
92#ifdef CONFIG_DEBUG_FS
93	struct dentry		*dentry;
94	struct hlist_node	debug_node;
95#endif
96	struct kref		ref;
97};
98
99#define CREATE_TRACE_POINTS
100#include <trace/events/clk.h>
101
102struct clk {
103	struct clk_core	*core;
104	struct device *dev;
105	const char *dev_id;
106	const char *con_id;
107	unsigned long min_rate;
108	unsigned long max_rate;
109	unsigned int exclusive_count;
110	struct hlist_node clks_node;
111};
112
113/***           runtime pm          ***/
114static int clk_pm_runtime_get(struct clk_core *core)
115{
116	int ret;
117
118	if (!core->rpm_enabled)
119		return 0;
120
121	ret = pm_runtime_get_sync(core->dev);
122	if (ret < 0) {
123		pm_runtime_put_noidle(core->dev);
124		return ret;
125	}
126	return 0;
127}
128
129static void clk_pm_runtime_put(struct clk_core *core)
130{
131	if (!core->rpm_enabled)
132		return;
133
134	pm_runtime_put_sync(core->dev);
135}
136
137/**
138 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
139 *
140 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
141 * that disabling unused clks avoids a deadlock where a device is runtime PM
142 * resuming/suspending and the runtime PM callback is trying to grab the
143 * prepare_lock for something like clk_prepare_enable() while
144 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
145 * PM resume/suspend the device as well.
146 *
147 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
148 * success. Otherwise the lock is released on failure.
149 *
150 * Return: 0 on success, negative errno otherwise.
151 */
152static int clk_pm_runtime_get_all(void)
153{
154	int ret;
155	struct clk_core *core, *failed;
156
157	/*
158	 * Grab the list lock to prevent any new clks from being registered
159	 * or unregistered until clk_pm_runtime_put_all().
160	 */
161	mutex_lock(&clk_rpm_list_lock);
162
163	/*
164	 * Runtime PM "get" all the devices that are needed for the clks
165	 * currently registered. Do this without holding the prepare_lock, to
166	 * avoid the deadlock.
167	 */
168	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
169		ret = clk_pm_runtime_get(core);
170		if (ret) {
171			failed = core;
172			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
173			       dev_name(failed->dev), failed->name);
174			goto err;
175		}
176	}
177
178	return 0;
179
180err:
181	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
182		if (core == failed)
183			break;
184
185		clk_pm_runtime_put(core);
186	}
187	mutex_unlock(&clk_rpm_list_lock);
188
189	return ret;
190}
191
192/**
193 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
194 *
195 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
196 * the 'clk_rpm_list_lock'.
197 */
198static void clk_pm_runtime_put_all(void)
199{
200	struct clk_core *core;
201
202	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
203		clk_pm_runtime_put(core);
204	mutex_unlock(&clk_rpm_list_lock);
205}
206
207static void clk_pm_runtime_init(struct clk_core *core)
208{
209	struct device *dev = core->dev;
210
211	if (dev && pm_runtime_enabled(dev)) {
212		core->rpm_enabled = true;
213
214		mutex_lock(&clk_rpm_list_lock);
215		hlist_add_head(&core->rpm_node, &clk_rpm_list);
216		mutex_unlock(&clk_rpm_list_lock);
217	}
218}
219
220/***           locking             ***/
221static void clk_prepare_lock(void)
222{
223	if (!mutex_trylock(&prepare_lock)) {
224		if (prepare_owner == current) {
225			prepare_refcnt++;
226			return;
227		}
228		mutex_lock(&prepare_lock);
229	}
230	WARN_ON_ONCE(prepare_owner != NULL);
231	WARN_ON_ONCE(prepare_refcnt != 0);
232	prepare_owner = current;
233	prepare_refcnt = 1;
234}
235
236static void clk_prepare_unlock(void)
237{
238	WARN_ON_ONCE(prepare_owner != current);
239	WARN_ON_ONCE(prepare_refcnt == 0);
240
241	if (--prepare_refcnt)
242		return;
243	prepare_owner = NULL;
244	mutex_unlock(&prepare_lock);
245}
246
247static unsigned long clk_enable_lock(void)
248	__acquires(enable_lock)
249{
250	unsigned long flags;
251
252	/*
253	 * On UP systems, spin_trylock_irqsave() always returns true, even if
254	 * we already hold the lock. So, in that case, we rely only on
255	 * reference counting.
256	 */
257	if (!IS_ENABLED(CONFIG_SMP) ||
258	    !spin_trylock_irqsave(&enable_lock, flags)) {
259		if (enable_owner == current) {
260			enable_refcnt++;
261			__acquire(enable_lock);
262			if (!IS_ENABLED(CONFIG_SMP))
263				local_save_flags(flags);
264			return flags;
265		}
266		spin_lock_irqsave(&enable_lock, flags);
267	}
268	WARN_ON_ONCE(enable_owner != NULL);
269	WARN_ON_ONCE(enable_refcnt != 0);
270	enable_owner = current;
271	enable_refcnt = 1;
272	return flags;
273}
274
275static void clk_enable_unlock(unsigned long flags)
276	__releases(enable_lock)
277{
278	WARN_ON_ONCE(enable_owner != current);
279	WARN_ON_ONCE(enable_refcnt == 0);
280
281	if (--enable_refcnt) {
282		__release(enable_lock);
283		return;
284	}
285	enable_owner = NULL;
286	spin_unlock_irqrestore(&enable_lock, flags);
287}
288
289static bool clk_core_rate_is_protected(struct clk_core *core)
290{
291	return core->protect_count;
292}
293
294static bool clk_core_is_prepared(struct clk_core *core)
295{
296	bool ret = false;
297
298	/*
299	 * .is_prepared is optional for clocks that can prepare
300	 * fall back to software usage counter if it is missing
301	 */
302	if (!core->ops->is_prepared)
303		return core->prepare_count;
304
305	if (!clk_pm_runtime_get(core)) {
306		ret = core->ops->is_prepared(core->hw);
307		clk_pm_runtime_put(core);
308	}
309
310	return ret;
311}
312
313static bool clk_core_is_enabled(struct clk_core *core)
314{
315	bool ret = false;
316
317	/*
318	 * .is_enabled is only mandatory for clocks that gate
319	 * fall back to software usage counter if .is_enabled is missing
320	 */
321	if (!core->ops->is_enabled)
322		return core->enable_count;
323
324	/*
325	 * Check if clock controller's device is runtime active before
326	 * calling .is_enabled callback. If not, assume that clock is
327	 * disabled, because we might be called from atomic context, from
328	 * which pm_runtime_get() is not allowed.
329	 * This function is called mainly from clk_disable_unused_subtree,
330	 * which ensures proper runtime pm activation of controller before
331	 * taking enable spinlock, but the below check is needed if one tries
332	 * to call it from other places.
333	 */
334	if (core->rpm_enabled) {
335		pm_runtime_get_noresume(core->dev);
336		if (!pm_runtime_active(core->dev)) {
337			ret = false;
338			goto done;
339		}
340	}
341
342	/*
343	 * This could be called with the enable lock held, or from atomic
344	 * context. If the parent isn't enabled already, we can't do
345	 * anything here. We can also assume this clock isn't enabled.
346	 */
347	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
348		if (!clk_core_is_enabled(core->parent)) {
349			ret = false;
350			goto done;
351		}
352
353	ret = core->ops->is_enabled(core->hw);
354done:
355	if (core->rpm_enabled)
356		pm_runtime_put(core->dev);
357
358	return ret;
359}
360
361/***    helper functions   ***/
362
363const char *__clk_get_name(const struct clk *clk)
364{
365	return !clk ? NULL : clk->core->name;
366}
367EXPORT_SYMBOL_GPL(__clk_get_name);
368
369const char *clk_hw_get_name(const struct clk_hw *hw)
370{
371	return hw->core->name;
372}
373EXPORT_SYMBOL_GPL(clk_hw_get_name);
374
375struct clk_hw *__clk_get_hw(struct clk *clk)
376{
377	return !clk ? NULL : clk->core->hw;
378}
379EXPORT_SYMBOL_GPL(__clk_get_hw);
380
381unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
382{
383	return hw->core->num_parents;
384}
385EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
386
387struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
388{
389	return hw->core->parent ? hw->core->parent->hw : NULL;
390}
391EXPORT_SYMBOL_GPL(clk_hw_get_parent);
392
393static struct clk_core *__clk_lookup_subtree(const char *name,
394					     struct clk_core *core)
395{
396	struct clk_core *child;
397	struct clk_core *ret;
398
399	if (!strcmp(core->name, name))
400		return core;
401
402	hlist_for_each_entry(child, &core->children, child_node) {
403		ret = __clk_lookup_subtree(name, child);
404		if (ret)
405			return ret;
406	}
407
408	return NULL;
409}
410
411static struct clk_core *clk_core_lookup(const char *name)
412{
413	struct clk_core *root_clk;
414	struct clk_core *ret;
415
416	if (!name)
417		return NULL;
418
419	/* search the 'proper' clk tree first */
420	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
421		ret = __clk_lookup_subtree(name, root_clk);
422		if (ret)
423			return ret;
424	}
425
426	/* if not found, then search the orphan tree */
427	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
428		ret = __clk_lookup_subtree(name, root_clk);
429		if (ret)
430			return ret;
431	}
432
433	return NULL;
434}
435
436#ifdef CONFIG_OF
437static int of_parse_clkspec(const struct device_node *np, int index,
438			    const char *name, struct of_phandle_args *out_args);
439static struct clk_hw *
440of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
441#else
442static inline int of_parse_clkspec(const struct device_node *np, int index,
443				   const char *name,
444				   struct of_phandle_args *out_args)
445{
446	return -ENOENT;
447}
448static inline struct clk_hw *
449of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
450{
451	return ERR_PTR(-ENOENT);
452}
453#endif
454
455/**
456 * clk_core_get - Find the clk_core parent of a clk
457 * @core: clk to find parent of
458 * @p_index: parent index to search for
459 *
460 * This is the preferred method for clk providers to find the parent of a
461 * clk when that parent is external to the clk controller. The parent_names
462 * array is indexed and treated as a local name matching a string in the device
463 * node's 'clock-names' property or as the 'con_id' matching the device's
464 * dev_name() in a clk_lookup. This allows clk providers to use their own
465 * namespace instead of looking for a globally unique parent string.
466 *
467 * For example the following DT snippet would allow a clock registered by the
468 * clock-controller@c001 that has a clk_init_data::parent_data array
469 * with 'xtal' in the 'name' member to find the clock provided by the
470 * clock-controller@f00abcd without needing to get the globally unique name of
471 * the xtal clk.
472 *
473 *      parent: clock-controller@f00abcd {
474 *              reg = <0xf00abcd 0xabcd>;
475 *              #clock-cells = <0>;
476 *      };
477 *
478 *      clock-controller@c001 {
479 *              reg = <0xc001 0xf00d>;
480 *              clocks = <&parent>;
481 *              clock-names = "xtal";
482 *              #clock-cells = <1>;
483 *      };
484 *
485 * Returns: -ENOENT when the provider can't be found or the clk doesn't
486 * exist in the provider or the name can't be found in the DT node or
487 * in a clkdev lookup. NULL when the provider knows about the clk but it
488 * isn't provided on this system.
489 * A valid clk_core pointer when the clk can be found in the provider.
490 */
491static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
492{
493	const char *name = core->parents[p_index].fw_name;
494	int index = core->parents[p_index].index;
495	struct clk_hw *hw = ERR_PTR(-ENOENT);
496	struct device *dev = core->dev;
497	const char *dev_id = dev ? dev_name(dev) : NULL;
498	struct device_node *np = core->of_node;
499	struct of_phandle_args clkspec;
500
501	if (np && (name || index >= 0) &&
502	    !of_parse_clkspec(np, index, name, &clkspec)) {
503		hw = of_clk_get_hw_from_clkspec(&clkspec);
504		of_node_put(clkspec.np);
505	} else if (name) {
506		/*
507		 * If the DT search above couldn't find the provider fallback to
508		 * looking up via clkdev based clk_lookups.
509		 */
510		hw = clk_find_hw(dev_id, name);
511	}
512
513	if (IS_ERR(hw))
514		return ERR_CAST(hw);
515
516	if (!hw)
517		return NULL;
518
519	return hw->core;
520}
521
522static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
523{
524	struct clk_parent_map *entry = &core->parents[index];
525	struct clk_core *parent = ERR_PTR(-ENOENT);
526
527	if (entry->hw) {
528		parent = entry->hw->core;
529		/*
530		 * We have a direct reference but it isn't registered yet?
531		 * Orphan it and let clk_reparent() update the orphan status
532		 * when the parent is registered.
533		 */
534		if (!parent)
535			parent = ERR_PTR(-EPROBE_DEFER);
536	} else {
537		parent = clk_core_get(core, index);
538		if (PTR_ERR(parent) == -ENOENT && entry->name)
539			parent = clk_core_lookup(entry->name);
540	}
541
542	/* Only cache it if it's not an error */
543	if (!IS_ERR(parent))
544		entry->core = parent;
545}
546
547static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
548							 u8 index)
549{
550	if (!core || index >= core->num_parents || !core->parents)
551		return NULL;
552
553	if (!core->parents[index].core)
554		clk_core_fill_parent_index(core, index);
555
556	return core->parents[index].core;
557}
558
559struct clk_hw *
560clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
561{
562	struct clk_core *parent;
563
564	parent = clk_core_get_parent_by_index(hw->core, index);
565
566	return !parent ? NULL : parent->hw;
567}
568EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
569
570unsigned int __clk_get_enable_count(struct clk *clk)
571{
572	return !clk ? 0 : clk->core->enable_count;
573}
574
575static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
576{
577	if (!core)
578		return 0;
579
580	if (!core->num_parents || core->parent)
581		return core->rate;
582
583	/*
584	 * Clk must have a parent because num_parents > 0 but the parent isn't
585	 * known yet. Best to return 0 as the rate of this clk until we can
586	 * properly recalc the rate based on the parent's rate.
587	 */
588	return 0;
589}
590
591unsigned long clk_hw_get_rate(const struct clk_hw *hw)
592{
593	return clk_core_get_rate_nolock(hw->core);
594}
595EXPORT_SYMBOL_GPL(clk_hw_get_rate);
596
597static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
598{
599	if (!core)
600		return 0;
601
602	return core->accuracy;
603}
604
605unsigned long clk_hw_get_flags(const struct clk_hw *hw)
606{
607	return hw->core->flags;
608}
609EXPORT_SYMBOL_GPL(clk_hw_get_flags);
610
611bool clk_hw_is_prepared(const struct clk_hw *hw)
612{
613	return clk_core_is_prepared(hw->core);
614}
615EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
616
617bool clk_hw_rate_is_protected(const struct clk_hw *hw)
618{
619	return clk_core_rate_is_protected(hw->core);
620}
621EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
622
623bool clk_hw_is_enabled(const struct clk_hw *hw)
624{
625	return clk_core_is_enabled(hw->core);
626}
627EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
628
629bool __clk_is_enabled(struct clk *clk)
630{
631	if (!clk)
632		return false;
633
634	return clk_core_is_enabled(clk->core);
635}
636EXPORT_SYMBOL_GPL(__clk_is_enabled);
637
638static bool mux_is_better_rate(unsigned long rate, unsigned long now,
639			   unsigned long best, unsigned long flags)
640{
641	if (flags & CLK_MUX_ROUND_CLOSEST)
642		return abs(now - rate) < abs(best - rate);
643
644	return now <= rate && now > best;
645}
646
647int clk_mux_determine_rate_flags(struct clk_hw *hw,
648				 struct clk_rate_request *req,
649				 unsigned long flags)
650{
651	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
652	int i, num_parents, ret;
653	unsigned long best = 0;
654	struct clk_rate_request parent_req = *req;
655
656	/* if NO_REPARENT flag set, pass through to current parent */
657	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
658		parent = core->parent;
659		if (core->flags & CLK_SET_RATE_PARENT) {
660			ret = __clk_determine_rate(parent ? parent->hw : NULL,
661						   &parent_req);
662			if (ret)
663				return ret;
664
665			best = parent_req.rate;
666		} else if (parent) {
667			best = clk_core_get_rate_nolock(parent);
668		} else {
669			best = clk_core_get_rate_nolock(core);
670		}
671
672		goto out;
673	}
674
675	/* find the parent that can provide the fastest rate <= rate */
676	num_parents = core->num_parents;
677	for (i = 0; i < num_parents; i++) {
678		parent = clk_core_get_parent_by_index(core, i);
679		if (!parent)
680			continue;
681
682		if (core->flags & CLK_SET_RATE_PARENT) {
683			parent_req = *req;
684			ret = __clk_determine_rate(parent->hw, &parent_req);
685			if (ret)
686				continue;
687		} else {
688			parent_req.rate = clk_core_get_rate_nolock(parent);
689		}
690
691		if (mux_is_better_rate(req->rate, parent_req.rate,
692				       best, flags)) {
693			best_parent = parent;
694			best = parent_req.rate;
695		}
696	}
697
698	if (!best_parent)
699		return -EINVAL;
700
701out:
702	if (best_parent)
703		req->best_parent_hw = best_parent->hw;
704	req->best_parent_rate = best;
705	req->rate = best;
706
707	return 0;
708}
709EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
710
711struct clk *__clk_lookup(const char *name)
712{
713	struct clk_core *core = clk_core_lookup(name);
714
715	return !core ? NULL : core->hw->clk;
716}
717
718static void clk_core_get_boundaries(struct clk_core *core,
719				    unsigned long *min_rate,
720				    unsigned long *max_rate)
721{
722	struct clk *clk_user;
723
724	lockdep_assert_held(&prepare_lock);
725
726	*min_rate = core->min_rate;
727	*max_rate = core->max_rate;
728
729	hlist_for_each_entry(clk_user, &core->clks, clks_node)
730		*min_rate = max(*min_rate, clk_user->min_rate);
731
732	hlist_for_each_entry(clk_user, &core->clks, clks_node)
733		*max_rate = min(*max_rate, clk_user->max_rate);
734}
735
736static bool clk_core_check_boundaries(struct clk_core *core,
737				      unsigned long min_rate,
738				      unsigned long max_rate)
739{
740	struct clk *user;
741
742	lockdep_assert_held(&prepare_lock);
743
744	if (min_rate > core->max_rate || max_rate < core->min_rate)
745		return false;
746
747	hlist_for_each_entry(user, &core->clks, clks_node)
748		if (min_rate > user->max_rate || max_rate < user->min_rate)
749			return false;
750
751	return true;
752}
753
754void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
755			   unsigned long max_rate)
756{
757	hw->core->min_rate = min_rate;
758	hw->core->max_rate = max_rate;
759}
760EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
761
762/*
763 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
764 * @hw: mux type clk to determine rate on
765 * @req: rate request, also used to return preferred parent and frequencies
766 *
767 * Helper for finding best parent to provide a given frequency. This can be used
768 * directly as a determine_rate callback (e.g. for a mux), or from a more
769 * complex clock that may combine a mux with other operations.
770 *
771 * Returns: 0 on success, -EERROR value on error
772 */
773int __clk_mux_determine_rate(struct clk_hw *hw,
774			     struct clk_rate_request *req)
775{
776	return clk_mux_determine_rate_flags(hw, req, 0);
777}
778EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
779
780int __clk_mux_determine_rate_closest(struct clk_hw *hw,
781				     struct clk_rate_request *req)
782{
783	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
784}
785EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
786
787/***        clk api        ***/
788
789static void clk_core_rate_unprotect(struct clk_core *core)
790{
791	lockdep_assert_held(&prepare_lock);
792
793	if (!core)
794		return;
795
796	if (WARN(core->protect_count == 0,
797	    "%s already unprotected\n", core->name))
798		return;
799
800	if (--core->protect_count > 0)
801		return;
802
803	clk_core_rate_unprotect(core->parent);
804}
805
806static int clk_core_rate_nuke_protect(struct clk_core *core)
807{
808	int ret;
809
810	lockdep_assert_held(&prepare_lock);
811
812	if (!core)
813		return -EINVAL;
814
815	if (core->protect_count == 0)
816		return 0;
817
818	ret = core->protect_count;
819	core->protect_count = 1;
820	clk_core_rate_unprotect(core);
821
822	return ret;
823}
824
825/**
826 * clk_rate_exclusive_put - release exclusivity over clock rate control
827 * @clk: the clk over which the exclusivity is released
828 *
829 * clk_rate_exclusive_put() completes a critical section during which a clock
830 * consumer cannot tolerate any other consumer making any operation on the
831 * clock which could result in a rate change or rate glitch. Exclusive clocks
832 * cannot have their rate changed, either directly or indirectly due to changes
833 * further up the parent chain of clocks. As a result, clocks up parent chain
834 * also get under exclusive control of the calling consumer.
835 *
836 * If exlusivity is claimed more than once on clock, even by the same consumer,
837 * the rate effectively gets locked as exclusivity can't be preempted.
838 *
839 * Calls to clk_rate_exclusive_put() must be balanced with calls to
840 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
841 * error status.
842 */
843void clk_rate_exclusive_put(struct clk *clk)
844{
845	if (!clk)
846		return;
847
848	clk_prepare_lock();
849
850	/*
851	 * if there is something wrong with this consumer protect count, stop
852	 * here before messing with the provider
853	 */
854	if (WARN_ON(clk->exclusive_count <= 0))
855		goto out;
856
857	clk_core_rate_unprotect(clk->core);
858	clk->exclusive_count--;
859out:
860	clk_prepare_unlock();
861}
862EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
863
864static void clk_core_rate_protect(struct clk_core *core)
865{
866	lockdep_assert_held(&prepare_lock);
867
868	if (!core)
869		return;
870
871	if (core->protect_count == 0)
872		clk_core_rate_protect(core->parent);
873
874	core->protect_count++;
875}
876
877static void clk_core_rate_restore_protect(struct clk_core *core, int count)
878{
879	lockdep_assert_held(&prepare_lock);
880
881	if (!core)
882		return;
883
884	if (count == 0)
885		return;
886
887	clk_core_rate_protect(core);
888	core->protect_count = count;
889}
890
891/**
892 * clk_rate_exclusive_get - get exclusivity over the clk rate control
893 * @clk: the clk over which the exclusity of rate control is requested
894 *
895 * clk_rate_exclusive_get() begins a critical section during which a clock
896 * consumer cannot tolerate any other consumer making any operation on the
897 * clock which could result in a rate change or rate glitch. Exclusive clocks
898 * cannot have their rate changed, either directly or indirectly due to changes
899 * further up the parent chain of clocks. As a result, clocks up parent chain
900 * also get under exclusive control of the calling consumer.
901 *
902 * If exlusivity is claimed more than once on clock, even by the same consumer,
903 * the rate effectively gets locked as exclusivity can't be preempted.
904 *
905 * Calls to clk_rate_exclusive_get() should be balanced with calls to
906 * clk_rate_exclusive_put(). Calls to this function may sleep.
907 * Returns 0 on success, -EERROR otherwise
908 */
909int clk_rate_exclusive_get(struct clk *clk)
910{
911	if (!clk)
912		return 0;
913
914	clk_prepare_lock();
915	clk_core_rate_protect(clk->core);
916	clk->exclusive_count++;
917	clk_prepare_unlock();
918
919	return 0;
920}
921EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
922
923static void clk_core_unprepare(struct clk_core *core)
924{
925	lockdep_assert_held(&prepare_lock);
926
927	if (!core)
928		return;
929
930	if (WARN(core->prepare_count == 0,
931	    "%s already unprepared\n", core->name))
932		return;
933
934	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
935	    "Unpreparing critical %s\n", core->name))
936		return;
937
938	if (core->flags & CLK_SET_RATE_GATE)
939		clk_core_rate_unprotect(core);
940
941	if (--core->prepare_count > 0)
942		return;
943
944	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
945
946	trace_clk_unprepare(core);
947
948	if (core->ops->unprepare)
949		core->ops->unprepare(core->hw);
950
951	trace_clk_unprepare_complete(core);
952	clk_core_unprepare(core->parent);
953	clk_pm_runtime_put(core);
954}
955
956static void clk_core_unprepare_lock(struct clk_core *core)
957{
958	clk_prepare_lock();
959	clk_core_unprepare(core);
960	clk_prepare_unlock();
961}
962
963/**
964 * clk_unprepare - undo preparation of a clock source
965 * @clk: the clk being unprepared
966 *
967 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
968 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
969 * if the operation may sleep.  One example is a clk which is accessed over
970 * I2c.  In the complex case a clk gate operation may require a fast and a slow
971 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
972 * exclusive.  In fact clk_disable must be called before clk_unprepare.
973 */
974void clk_unprepare(struct clk *clk)
975{
976	if (IS_ERR_OR_NULL(clk))
977		return;
978
979	clk_core_unprepare_lock(clk->core);
980}
981EXPORT_SYMBOL_GPL(clk_unprepare);
982
983static int clk_core_prepare(struct clk_core *core)
984{
985	int ret = 0;
986
987	lockdep_assert_held(&prepare_lock);
988
989	if (!core)
990		return 0;
991
992	if (core->prepare_count == 0) {
993		ret = clk_pm_runtime_get(core);
994		if (ret)
995			return ret;
996
997		ret = clk_core_prepare(core->parent);
998		if (ret)
999			goto runtime_put;
1000
1001		trace_clk_prepare(core);
1002
1003		if (core->ops->prepare)
1004			ret = core->ops->prepare(core->hw);
1005
1006		trace_clk_prepare_complete(core);
1007
1008		if (ret)
1009			goto unprepare;
1010	}
1011
1012	core->prepare_count++;
1013
1014	/*
1015	 * CLK_SET_RATE_GATE is a special case of clock protection
1016	 * Instead of a consumer claiming exclusive rate control, it is
1017	 * actually the provider which prevents any consumer from making any
1018	 * operation which could result in a rate change or rate glitch while
1019	 * the clock is prepared.
1020	 */
1021	if (core->flags & CLK_SET_RATE_GATE)
1022		clk_core_rate_protect(core);
1023
1024	return 0;
1025unprepare:
1026	clk_core_unprepare(core->parent);
1027runtime_put:
1028	clk_pm_runtime_put(core);
1029	return ret;
1030}
1031
1032static int clk_core_prepare_lock(struct clk_core *core)
1033{
1034	int ret;
1035
1036	clk_prepare_lock();
1037	ret = clk_core_prepare(core);
1038	clk_prepare_unlock();
1039
1040	return ret;
1041}
1042
1043/**
1044 * clk_prepare - prepare a clock source
1045 * @clk: the clk being prepared
1046 *
1047 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1048 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1049 * operation may sleep.  One example is a clk which is accessed over I2c.  In
1050 * the complex case a clk ungate operation may require a fast and a slow part.
1051 * It is this reason that clk_prepare and clk_enable are not mutually
1052 * exclusive.  In fact clk_prepare must be called before clk_enable.
1053 * Returns 0 on success, -EERROR otherwise.
1054 */
1055int clk_prepare(struct clk *clk)
1056{
1057	if (!clk)
1058		return 0;
1059
1060	return clk_core_prepare_lock(clk->core);
1061}
1062EXPORT_SYMBOL_GPL(clk_prepare);
1063
1064static void clk_core_disable(struct clk_core *core)
1065{
1066	lockdep_assert_held(&enable_lock);
1067
1068	if (!core)
1069		return;
1070
1071	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1072		return;
1073
1074	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1075	    "Disabling critical %s\n", core->name))
1076		return;
1077
1078	if (--core->enable_count > 0)
1079		return;
1080
1081	trace_clk_disable_rcuidle(core);
1082
1083	if (core->ops->disable)
1084		core->ops->disable(core->hw);
1085
1086	trace_clk_disable_complete_rcuidle(core);
1087
1088	clk_core_disable(core->parent);
1089}
1090
1091static void clk_core_disable_lock(struct clk_core *core)
1092{
1093	unsigned long flags;
1094
1095	flags = clk_enable_lock();
1096	clk_core_disable(core);
1097	clk_enable_unlock(flags);
1098}
1099
1100/**
1101 * clk_disable - gate a clock
1102 * @clk: the clk being gated
1103 *
1104 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1105 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1106 * clk if the operation is fast and will never sleep.  One example is a
1107 * SoC-internal clk which is controlled via simple register writes.  In the
1108 * complex case a clk gate operation may require a fast and a slow part.  It is
1109 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1110 * In fact clk_disable must be called before clk_unprepare.
1111 */
1112void clk_disable(struct clk *clk)
1113{
1114	if (IS_ERR_OR_NULL(clk))
1115		return;
1116
1117	clk_core_disable_lock(clk->core);
1118}
1119EXPORT_SYMBOL_GPL(clk_disable);
1120
1121static int clk_core_enable(struct clk_core *core)
1122{
1123	int ret = 0;
1124
1125	lockdep_assert_held(&enable_lock);
1126
1127	if (!core)
1128		return 0;
1129
1130	if (WARN(core->prepare_count == 0,
1131	    "Enabling unprepared %s\n", core->name))
1132		return -ESHUTDOWN;
1133
1134	if (core->enable_count == 0) {
1135		ret = clk_core_enable(core->parent);
1136
1137		if (ret)
1138			return ret;
1139
1140		trace_clk_enable_rcuidle(core);
1141
1142		if (core->ops->enable)
1143			ret = core->ops->enable(core->hw);
1144
1145		trace_clk_enable_complete_rcuidle(core);
1146
1147		if (ret) {
1148			clk_core_disable(core->parent);
1149			return ret;
1150		}
1151	}
1152
1153	core->enable_count++;
1154	return 0;
1155}
1156
1157static int clk_core_enable_lock(struct clk_core *core)
1158{
1159	unsigned long flags;
1160	int ret;
1161
1162	flags = clk_enable_lock();
1163	ret = clk_core_enable(core);
1164	clk_enable_unlock(flags);
1165
1166	return ret;
1167}
1168
1169/**
1170 * clk_gate_restore_context - restore context for poweroff
1171 * @hw: the clk_hw pointer of clock whose state is to be restored
1172 *
1173 * The clock gate restore context function enables or disables
1174 * the gate clocks based on the enable_count. This is done in cases
1175 * where the clock context is lost and based on the enable_count
1176 * the clock either needs to be enabled/disabled. This
1177 * helps restore the state of gate clocks.
1178 */
1179void clk_gate_restore_context(struct clk_hw *hw)
1180{
1181	struct clk_core *core = hw->core;
1182
1183	if (core->enable_count)
1184		core->ops->enable(hw);
1185	else
1186		core->ops->disable(hw);
1187}
1188EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1189
1190static int clk_core_save_context(struct clk_core *core)
1191{
1192	struct clk_core *child;
1193	int ret = 0;
1194
1195	hlist_for_each_entry(child, &core->children, child_node) {
1196		ret = clk_core_save_context(child);
1197		if (ret < 0)
1198			return ret;
1199	}
1200
1201	if (core->ops && core->ops->save_context)
1202		ret = core->ops->save_context(core->hw);
1203
1204	return ret;
1205}
1206
1207static void clk_core_restore_context(struct clk_core *core)
1208{
1209	struct clk_core *child;
1210
1211	if (core->ops && core->ops->restore_context)
1212		core->ops->restore_context(core->hw);
1213
1214	hlist_for_each_entry(child, &core->children, child_node)
1215		clk_core_restore_context(child);
1216}
1217
1218/**
1219 * clk_save_context - save clock context for poweroff
1220 *
1221 * Saves the context of the clock register for powerstates in which the
1222 * contents of the registers will be lost. Occurs deep within the suspend
1223 * code.  Returns 0 on success.
1224 */
1225int clk_save_context(void)
1226{
1227	struct clk_core *clk;
1228	int ret;
1229
1230	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1231		ret = clk_core_save_context(clk);
1232		if (ret < 0)
1233			return ret;
1234	}
1235
1236	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1237		ret = clk_core_save_context(clk);
1238		if (ret < 0)
1239			return ret;
1240	}
1241
1242	return 0;
1243}
1244EXPORT_SYMBOL_GPL(clk_save_context);
1245
1246/**
1247 * clk_restore_context - restore clock context after poweroff
1248 *
1249 * Restore the saved clock context upon resume.
1250 *
1251 */
1252void clk_restore_context(void)
1253{
1254	struct clk_core *core;
1255
1256	hlist_for_each_entry(core, &clk_root_list, child_node)
1257		clk_core_restore_context(core);
1258
1259	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1260		clk_core_restore_context(core);
1261}
1262EXPORT_SYMBOL_GPL(clk_restore_context);
1263
1264/**
1265 * clk_enable - ungate a clock
1266 * @clk: the clk being ungated
1267 *
1268 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1269 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1270 * if the operation will never sleep.  One example is a SoC-internal clk which
1271 * is controlled via simple register writes.  In the complex case a clk ungate
1272 * operation may require a fast and a slow part.  It is this reason that
1273 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1274 * must be called before clk_enable.  Returns 0 on success, -EERROR
1275 * otherwise.
1276 */
1277int clk_enable(struct clk *clk)
1278{
1279	if (!clk)
1280		return 0;
1281
1282	return clk_core_enable_lock(clk->core);
1283}
1284EXPORT_SYMBOL_GPL(clk_enable);
1285
1286static int clk_core_prepare_enable(struct clk_core *core)
1287{
1288	int ret;
1289
1290	ret = clk_core_prepare_lock(core);
1291	if (ret)
1292		return ret;
1293
1294	ret = clk_core_enable_lock(core);
1295	if (ret)
1296		clk_core_unprepare_lock(core);
1297
1298	return ret;
1299}
1300
1301static void clk_core_disable_unprepare(struct clk_core *core)
1302{
1303	clk_core_disable_lock(core);
1304	clk_core_unprepare_lock(core);
1305}
1306
1307static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1308{
1309	struct clk_core *child;
1310
1311	lockdep_assert_held(&prepare_lock);
1312
1313	hlist_for_each_entry(child, &core->children, child_node)
1314		clk_unprepare_unused_subtree(child);
1315
1316	if (core->prepare_count)
1317		return;
1318
1319	if (core->flags & CLK_IGNORE_UNUSED)
1320		return;
1321
1322	if (clk_core_is_prepared(core)) {
1323		trace_clk_unprepare(core);
1324		if (core->ops->unprepare_unused)
1325			core->ops->unprepare_unused(core->hw);
1326		else if (core->ops->unprepare)
1327			core->ops->unprepare(core->hw);
1328		trace_clk_unprepare_complete(core);
1329	}
1330}
1331
1332static void __init clk_disable_unused_subtree(struct clk_core *core)
1333{
1334	struct clk_core *child;
1335	unsigned long flags;
1336
1337	lockdep_assert_held(&prepare_lock);
1338
1339	hlist_for_each_entry(child, &core->children, child_node)
1340		clk_disable_unused_subtree(child);
1341
1342	if (core->flags & CLK_OPS_PARENT_ENABLE)
1343		clk_core_prepare_enable(core->parent);
1344
1345	flags = clk_enable_lock();
1346
1347	if (core->enable_count)
1348		goto unlock_out;
1349
1350	if (core->flags & CLK_IGNORE_UNUSED)
1351		goto unlock_out;
1352
1353	/*
1354	 * some gate clocks have special needs during the disable-unused
1355	 * sequence.  call .disable_unused if available, otherwise fall
1356	 * back to .disable
1357	 */
1358	if (clk_core_is_enabled(core)) {
1359		trace_clk_disable(core);
1360		if (core->ops->disable_unused)
1361			core->ops->disable_unused(core->hw);
1362		else if (core->ops->disable)
1363			core->ops->disable(core->hw);
1364		trace_clk_disable_complete(core);
1365	}
1366
1367unlock_out:
1368	clk_enable_unlock(flags);
1369	if (core->flags & CLK_OPS_PARENT_ENABLE)
1370		clk_core_disable_unprepare(core->parent);
1371}
1372
1373static bool clk_ignore_unused __initdata;
1374static int __init clk_ignore_unused_setup(char *__unused)
1375{
1376	clk_ignore_unused = true;
1377	return 1;
1378}
1379__setup("clk_ignore_unused", clk_ignore_unused_setup);
1380
1381static int __init clk_disable_unused(void)
1382{
1383	struct clk_core *core;
1384	int ret;
1385
1386	if (clk_ignore_unused) {
1387		pr_warn("clk: Not disabling unused clocks\n");
1388		return 0;
1389	}
1390
1391	pr_info("clk: Disabling unused clocks\n");
1392
1393	ret = clk_pm_runtime_get_all();
1394	if (ret)
1395		return ret;
1396	/*
1397	 * Grab the prepare lock to keep the clk topology stable while iterating
1398	 * over clks.
1399	 */
1400	clk_prepare_lock();
1401
1402	hlist_for_each_entry(core, &clk_root_list, child_node)
1403		clk_disable_unused_subtree(core);
1404
1405	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1406		clk_disable_unused_subtree(core);
1407
1408	hlist_for_each_entry(core, &clk_root_list, child_node)
1409		clk_unprepare_unused_subtree(core);
1410
1411	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1412		clk_unprepare_unused_subtree(core);
1413
1414	clk_prepare_unlock();
1415
1416	clk_pm_runtime_put_all();
1417
1418	return 0;
1419}
1420late_initcall_sync(clk_disable_unused);
1421
1422static int clk_core_determine_round_nolock(struct clk_core *core,
1423					   struct clk_rate_request *req)
1424{
1425	long rate;
1426
1427	lockdep_assert_held(&prepare_lock);
1428
1429	if (!core)
1430		return 0;
1431
1432	/*
1433	 * At this point, core protection will be disabled if
1434	 * - if the provider is not protected at all
1435	 * - if the calling consumer is the only one which has exclusivity
1436	 *   over the provider
1437	 */
1438	if (clk_core_rate_is_protected(core)) {
1439		req->rate = core->rate;
1440	} else if (core->ops->determine_rate) {
1441		return core->ops->determine_rate(core->hw, req);
1442	} else if (core->ops->round_rate) {
1443		rate = core->ops->round_rate(core->hw, req->rate,
1444					     &req->best_parent_rate);
1445		if (rate < 0)
1446			return rate;
1447
1448		req->rate = rate;
1449	} else {
1450		return -EINVAL;
1451	}
1452
1453	return 0;
1454}
1455
1456static void clk_core_init_rate_req(struct clk_core * const core,
1457				   struct clk_rate_request *req)
1458{
1459	struct clk_core *parent;
1460
1461	if (WARN_ON(!core || !req))
1462		return;
1463
1464	parent = core->parent;
1465	if (parent) {
1466		req->best_parent_hw = parent->hw;
1467		req->best_parent_rate = parent->rate;
1468	} else {
1469		req->best_parent_hw = NULL;
1470		req->best_parent_rate = 0;
1471	}
1472}
1473
1474static bool clk_core_can_round(struct clk_core * const core)
1475{
1476	return core->ops->determine_rate || core->ops->round_rate;
1477}
1478
1479static int clk_core_round_rate_nolock(struct clk_core *core,
1480				      struct clk_rate_request *req)
1481{
1482	lockdep_assert_held(&prepare_lock);
1483
1484	if (!core) {
1485		req->rate = 0;
1486		return 0;
1487	}
1488
1489	clk_core_init_rate_req(core, req);
1490
1491	if (clk_core_can_round(core))
1492		return clk_core_determine_round_nolock(core, req);
1493	else if (core->flags & CLK_SET_RATE_PARENT)
1494		return clk_core_round_rate_nolock(core->parent, req);
1495
1496	req->rate = core->rate;
1497	return 0;
1498}
1499
1500/**
1501 * __clk_determine_rate - get the closest rate actually supported by a clock
1502 * @hw: determine the rate of this clock
1503 * @req: target rate request
1504 *
1505 * Useful for clk_ops such as .set_rate and .determine_rate.
1506 */
1507int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1508{
1509	if (!hw) {
1510		req->rate = 0;
1511		return 0;
1512	}
1513
1514	return clk_core_round_rate_nolock(hw->core, req);
1515}
1516EXPORT_SYMBOL_GPL(__clk_determine_rate);
1517
1518/**
1519 * clk_hw_round_rate() - round the given rate for a hw clk
1520 * @hw: the hw clk for which we are rounding a rate
1521 * @rate: the rate which is to be rounded
1522 *
1523 * Takes in a rate as input and rounds it to a rate that the clk can actually
1524 * use.
1525 *
1526 * Context: prepare_lock must be held.
1527 *          For clk providers to call from within clk_ops such as .round_rate,
1528 *          .determine_rate.
1529 *
1530 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1531 *         else returns the parent rate.
1532 */
1533unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1534{
1535	int ret;
1536	struct clk_rate_request req;
1537
1538	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1539	req.rate = rate;
1540
1541	ret = clk_core_round_rate_nolock(hw->core, &req);
1542	if (ret)
1543		return 0;
1544
1545	return req.rate;
1546}
1547EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1548
1549/**
1550 * clk_round_rate - round the given rate for a clk
1551 * @clk: the clk for which we are rounding a rate
1552 * @rate: the rate which is to be rounded
1553 *
1554 * Takes in a rate as input and rounds it to a rate that the clk can actually
1555 * use which is then returned.  If clk doesn't support round_rate operation
1556 * then the parent rate is returned.
1557 */
1558long clk_round_rate(struct clk *clk, unsigned long rate)
1559{
1560	struct clk_rate_request req;
1561	int ret;
1562
1563	if (!clk)
1564		return 0;
1565
1566	clk_prepare_lock();
1567
1568	if (clk->exclusive_count)
1569		clk_core_rate_unprotect(clk->core);
1570
1571	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1572	req.rate = rate;
1573
1574	ret = clk_core_round_rate_nolock(clk->core, &req);
1575
1576	if (clk->exclusive_count)
1577		clk_core_rate_protect(clk->core);
1578
1579	clk_prepare_unlock();
1580
1581	if (ret)
1582		return ret;
1583
1584	return req.rate;
1585}
1586EXPORT_SYMBOL_GPL(clk_round_rate);
1587
1588/**
1589 * __clk_notify - call clk notifier chain
1590 * @core: clk that is changing rate
1591 * @msg: clk notifier type (see include/linux/clk.h)
1592 * @old_rate: old clk rate
1593 * @new_rate: new clk rate
1594 *
1595 * Triggers a notifier call chain on the clk rate-change notification
1596 * for 'clk'.  Passes a pointer to the struct clk and the previous
1597 * and current rates to the notifier callback.  Intended to be called by
1598 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1599 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1600 * a driver returns that.
1601 */
1602static int __clk_notify(struct clk_core *core, unsigned long msg,
1603		unsigned long old_rate, unsigned long new_rate)
1604{
1605	struct clk_notifier *cn;
1606	struct clk_notifier_data cnd;
1607	int ret = NOTIFY_DONE;
1608
1609	cnd.old_rate = old_rate;
1610	cnd.new_rate = new_rate;
1611
1612	list_for_each_entry(cn, &clk_notifier_list, node) {
1613		if (cn->clk->core == core) {
1614			cnd.clk = cn->clk;
1615			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1616					&cnd);
1617			if (ret & NOTIFY_STOP_MASK)
1618				return ret;
1619		}
1620	}
1621
1622	return ret;
1623}
1624
1625/**
1626 * __clk_recalc_accuracies
1627 * @core: first clk in the subtree
1628 *
1629 * Walks the subtree of clks starting with clk and recalculates accuracies as
1630 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1631 * callback then it is assumed that the clock will take on the accuracy of its
1632 * parent.
1633 */
1634static void __clk_recalc_accuracies(struct clk_core *core)
1635{
1636	unsigned long parent_accuracy = 0;
1637	struct clk_core *child;
1638
1639	lockdep_assert_held(&prepare_lock);
1640
1641	if (core->parent)
1642		parent_accuracy = core->parent->accuracy;
1643
1644	if (core->ops->recalc_accuracy)
1645		core->accuracy = core->ops->recalc_accuracy(core->hw,
1646							  parent_accuracy);
1647	else
1648		core->accuracy = parent_accuracy;
1649
1650	hlist_for_each_entry(child, &core->children, child_node)
1651		__clk_recalc_accuracies(child);
1652}
1653
1654static long clk_core_get_accuracy_recalc(struct clk_core *core)
1655{
1656	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1657		__clk_recalc_accuracies(core);
1658
1659	return clk_core_get_accuracy_no_lock(core);
1660}
1661
1662/**
1663 * clk_get_accuracy - return the accuracy of clk
1664 * @clk: the clk whose accuracy is being returned
1665 *
1666 * Simply returns the cached accuracy of the clk, unless
1667 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1668 * issued.
1669 * If clk is NULL then returns 0.
1670 */
1671long clk_get_accuracy(struct clk *clk)
1672{
1673	long accuracy;
1674
1675	if (!clk)
1676		return 0;
1677
1678	clk_prepare_lock();
1679	accuracy = clk_core_get_accuracy_recalc(clk->core);
1680	clk_prepare_unlock();
1681
1682	return accuracy;
1683}
1684EXPORT_SYMBOL_GPL(clk_get_accuracy);
1685
1686static unsigned long clk_recalc(struct clk_core *core,
1687				unsigned long parent_rate)
1688{
1689	unsigned long rate = parent_rate;
1690
1691	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1692		rate = core->ops->recalc_rate(core->hw, parent_rate);
1693		clk_pm_runtime_put(core);
1694	}
1695	return rate;
1696}
1697
1698/**
1699 * __clk_recalc_rates
1700 * @core: first clk in the subtree
1701 * @msg: notification type (see include/linux/clk.h)
1702 *
1703 * Walks the subtree of clks starting with clk and recalculates rates as it
1704 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1705 * it is assumed that the clock will take on the rate of its parent.
1706 *
1707 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1708 * if necessary.
1709 */
1710static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1711{
1712	unsigned long old_rate;
1713	unsigned long parent_rate = 0;
1714	struct clk_core *child;
1715
1716	lockdep_assert_held(&prepare_lock);
1717
1718	old_rate = core->rate;
1719
1720	if (core->parent)
1721		parent_rate = core->parent->rate;
1722
1723	core->rate = clk_recalc(core, parent_rate);
1724
1725	/*
1726	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1727	 * & ABORT_RATE_CHANGE notifiers
1728	 */
1729	if (core->notifier_count && msg)
1730		__clk_notify(core, msg, old_rate, core->rate);
1731
1732	hlist_for_each_entry(child, &core->children, child_node)
1733		__clk_recalc_rates(child, msg);
1734}
1735
1736static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1737{
1738	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1739		__clk_recalc_rates(core, 0);
1740
1741	return clk_core_get_rate_nolock(core);
1742}
1743
1744/**
1745 * clk_get_rate - return the rate of clk
1746 * @clk: the clk whose rate is being returned
1747 *
1748 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1749 * is set, which means a recalc_rate will be issued.
1750 * If clk is NULL then returns 0.
1751 */
1752unsigned long clk_get_rate(struct clk *clk)
1753{
1754	unsigned long rate;
1755
1756	if (!clk)
1757		return 0;
1758
1759	clk_prepare_lock();
1760	rate = clk_core_get_rate_recalc(clk->core);
1761	clk_prepare_unlock();
1762
1763	return rate;
1764}
1765EXPORT_SYMBOL_GPL(clk_get_rate);
1766
1767static int clk_fetch_parent_index(struct clk_core *core,
1768				  struct clk_core *parent)
1769{
1770	int i;
1771
1772	if (!parent)
1773		return -EINVAL;
1774
1775	for (i = 0; i < core->num_parents; i++) {
1776		/* Found it first try! */
1777		if (core->parents[i].core == parent)
1778			return i;
1779
1780		/* Something else is here, so keep looking */
1781		if (core->parents[i].core)
1782			continue;
1783
1784		/* Maybe core hasn't been cached but the hw is all we know? */
1785		if (core->parents[i].hw) {
1786			if (core->parents[i].hw == parent->hw)
1787				break;
1788
1789			/* Didn't match, but we're expecting a clk_hw */
1790			continue;
1791		}
1792
1793		/* Maybe it hasn't been cached (clk_set_parent() path) */
1794		if (parent == clk_core_get(core, i))
1795			break;
1796
1797		/* Fallback to comparing globally unique names */
1798		if (core->parents[i].name &&
1799		    !strcmp(parent->name, core->parents[i].name))
1800			break;
1801	}
1802
1803	if (i == core->num_parents)
1804		return -EINVAL;
1805
1806	core->parents[i].core = parent;
1807	return i;
1808}
1809
1810/**
1811 * clk_hw_get_parent_index - return the index of the parent clock
1812 * @hw: clk_hw associated with the clk being consumed
1813 *
1814 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1815 * clock does not have a current parent.
1816 */
1817int clk_hw_get_parent_index(struct clk_hw *hw)
1818{
1819	struct clk_hw *parent = clk_hw_get_parent(hw);
1820
1821	if (WARN_ON(parent == NULL))
1822		return -EINVAL;
1823
1824	return clk_fetch_parent_index(hw->core, parent->core);
1825}
1826EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1827
1828/*
1829 * Update the orphan status of @core and all its children.
1830 */
1831static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1832{
1833	struct clk_core *child;
1834
1835	core->orphan = is_orphan;
1836
1837	hlist_for_each_entry(child, &core->children, child_node)
1838		clk_core_update_orphan_status(child, is_orphan);
1839}
1840
1841static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1842{
1843	bool was_orphan = core->orphan;
1844
1845	hlist_del(&core->child_node);
1846
1847	if (new_parent) {
1848		bool becomes_orphan = new_parent->orphan;
1849
1850		/* avoid duplicate POST_RATE_CHANGE notifications */
1851		if (new_parent->new_child == core)
1852			new_parent->new_child = NULL;
1853
1854		hlist_add_head(&core->child_node, &new_parent->children);
1855
1856		if (was_orphan != becomes_orphan)
1857			clk_core_update_orphan_status(core, becomes_orphan);
1858	} else {
1859		hlist_add_head(&core->child_node, &clk_orphan_list);
1860		if (!was_orphan)
1861			clk_core_update_orphan_status(core, true);
1862	}
1863
1864	core->parent = new_parent;
1865}
1866
1867static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1868					   struct clk_core *parent)
1869{
1870	unsigned long flags;
1871	struct clk_core *old_parent = core->parent;
1872
1873	/*
1874	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1875	 *
1876	 * 2. Migrate prepare state between parents and prevent race with
1877	 * clk_enable().
1878	 *
1879	 * If the clock is not prepared, then a race with
1880	 * clk_enable/disable() is impossible since we already have the
1881	 * prepare lock (future calls to clk_enable() need to be preceded by
1882	 * a clk_prepare()).
1883	 *
1884	 * If the clock is prepared, migrate the prepared state to the new
1885	 * parent and also protect against a race with clk_enable() by
1886	 * forcing the clock and the new parent on.  This ensures that all
1887	 * future calls to clk_enable() are practically NOPs with respect to
1888	 * hardware and software states.
1889	 *
1890	 * See also: Comment for clk_set_parent() below.
1891	 */
1892
1893	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1894	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1895		clk_core_prepare_enable(old_parent);
1896		clk_core_prepare_enable(parent);
1897	}
1898
1899	/* migrate prepare count if > 0 */
1900	if (core->prepare_count) {
1901		clk_core_prepare_enable(parent);
1902		clk_core_enable_lock(core);
1903	}
1904
1905	/* update the clk tree topology */
1906	flags = clk_enable_lock();
1907	clk_reparent(core, parent);
1908	clk_enable_unlock(flags);
1909
1910	return old_parent;
1911}
1912
1913static void __clk_set_parent_after(struct clk_core *core,
1914				   struct clk_core *parent,
1915				   struct clk_core *old_parent)
1916{
1917	/*
1918	 * Finish the migration of prepare state and undo the changes done
1919	 * for preventing a race with clk_enable().
1920	 */
1921	if (core->prepare_count) {
1922		clk_core_disable_lock(core);
1923		clk_core_disable_unprepare(old_parent);
1924	}
1925
1926	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1927	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1928		clk_core_disable_unprepare(parent);
1929		clk_core_disable_unprepare(old_parent);
1930	}
1931}
1932
1933static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1934			    u8 p_index)
1935{
1936	unsigned long flags;
1937	int ret = 0;
1938	struct clk_core *old_parent;
1939
1940	old_parent = __clk_set_parent_before(core, parent);
1941
1942	trace_clk_set_parent(core, parent);
1943
1944	/* change clock input source */
1945	if (parent && core->ops->set_parent)
1946		ret = core->ops->set_parent(core->hw, p_index);
1947
1948	trace_clk_set_parent_complete(core, parent);
1949
1950	if (ret) {
1951		flags = clk_enable_lock();
1952		clk_reparent(core, old_parent);
1953		clk_enable_unlock(flags);
1954		__clk_set_parent_after(core, old_parent, parent);
1955
1956		return ret;
1957	}
1958
1959	__clk_set_parent_after(core, parent, old_parent);
1960
1961	return 0;
1962}
1963
1964/**
1965 * __clk_speculate_rates
1966 * @core: first clk in the subtree
1967 * @parent_rate: the "future" rate of clk's parent
1968 *
1969 * Walks the subtree of clks starting with clk, speculating rates as it
1970 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1971 *
1972 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1973 * pre-rate change notifications and returns early if no clks in the
1974 * subtree have subscribed to the notifications.  Note that if a clk does not
1975 * implement the .recalc_rate callback then it is assumed that the clock will
1976 * take on the rate of its parent.
1977 */
1978static int __clk_speculate_rates(struct clk_core *core,
1979				 unsigned long parent_rate)
1980{
1981	struct clk_core *child;
1982	unsigned long new_rate;
1983	int ret = NOTIFY_DONE;
1984
1985	lockdep_assert_held(&prepare_lock);
1986
1987	new_rate = clk_recalc(core, parent_rate);
1988
1989	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1990	if (core->notifier_count)
1991		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1992
1993	if (ret & NOTIFY_STOP_MASK) {
1994		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1995				__func__, core->name, ret);
1996		goto out;
1997	}
1998
1999	hlist_for_each_entry(child, &core->children, child_node) {
2000		ret = __clk_speculate_rates(child, new_rate);
2001		if (ret & NOTIFY_STOP_MASK)
2002			break;
2003	}
2004
2005out:
2006	return ret;
2007}
2008
2009static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2010			     struct clk_core *new_parent, u8 p_index)
2011{
2012	struct clk_core *child;
2013
2014	core->new_rate = new_rate;
2015	core->new_parent = new_parent;
2016	core->new_parent_index = p_index;
2017	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2018	core->new_child = NULL;
2019	if (new_parent && new_parent != core->parent)
2020		new_parent->new_child = core;
2021
2022	hlist_for_each_entry(child, &core->children, child_node) {
2023		child->new_rate = clk_recalc(child, new_rate);
2024		clk_calc_subtree(child, child->new_rate, NULL, 0);
2025	}
2026}
2027
2028/*
2029 * calculate the new rates returning the topmost clock that has to be
2030 * changed.
2031 */
2032static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2033					   unsigned long rate)
2034{
2035	struct clk_core *top = core;
2036	struct clk_core *old_parent, *parent;
2037	unsigned long best_parent_rate = 0;
2038	unsigned long new_rate;
2039	unsigned long min_rate;
2040	unsigned long max_rate;
2041	int p_index = 0;
2042	long ret;
2043
2044	/* sanity */
2045	if (IS_ERR_OR_NULL(core))
2046		return NULL;
2047
2048	/* save parent rate, if it exists */
2049	parent = old_parent = core->parent;
2050	if (parent)
2051		best_parent_rate = parent->rate;
2052
2053	clk_core_get_boundaries(core, &min_rate, &max_rate);
2054
2055	/* find the closest rate and parent clk/rate */
2056	if (clk_core_can_round(core)) {
2057		struct clk_rate_request req;
2058
2059		req.rate = rate;
2060		req.min_rate = min_rate;
2061		req.max_rate = max_rate;
2062
2063		clk_core_init_rate_req(core, &req);
2064
2065		ret = clk_core_determine_round_nolock(core, &req);
2066		if (ret < 0)
2067			return NULL;
2068
2069		best_parent_rate = req.best_parent_rate;
2070		new_rate = req.rate;
2071		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2072
2073		if (new_rate < min_rate || new_rate > max_rate)
2074			return NULL;
2075	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2076		/* pass-through clock without adjustable parent */
2077		core->new_rate = core->rate;
2078		return NULL;
2079	} else {
2080		/* pass-through clock with adjustable parent */
2081		top = clk_calc_new_rates(parent, rate);
2082		new_rate = parent->new_rate;
2083		goto out;
2084	}
2085
2086	/* some clocks must be gated to change parent */
2087	if (parent != old_parent &&
2088	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2089		pr_debug("%s: %s not gated but wants to reparent\n",
2090			 __func__, core->name);
2091		return NULL;
2092	}
2093
2094	/* try finding the new parent index */
2095	if (parent && core->num_parents > 1) {
2096		p_index = clk_fetch_parent_index(core, parent);
2097		if (p_index < 0) {
2098			pr_debug("%s: clk %s can not be parent of clk %s\n",
2099				 __func__, parent->name, core->name);
2100			return NULL;
2101		}
2102	}
2103
2104	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2105	    best_parent_rate != parent->rate)
2106		top = clk_calc_new_rates(parent, best_parent_rate);
2107
2108out:
2109	clk_calc_subtree(core, new_rate, parent, p_index);
2110
2111	return top;
2112}
2113
2114/*
2115 * Notify about rate changes in a subtree. Always walk down the whole tree
2116 * so that in case of an error we can walk down the whole tree again and
2117 * abort the change.
2118 */
2119static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2120						  unsigned long event)
2121{
2122	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2123	int ret = NOTIFY_DONE;
2124
2125	if (core->rate == core->new_rate)
2126		return NULL;
2127
2128	if (core->notifier_count) {
2129		ret = __clk_notify(core, event, core->rate, core->new_rate);
2130		if (ret & NOTIFY_STOP_MASK)
2131			fail_clk = core;
2132	}
2133
2134	hlist_for_each_entry(child, &core->children, child_node) {
2135		/* Skip children who will be reparented to another clock */
2136		if (child->new_parent && child->new_parent != core)
2137			continue;
2138		tmp_clk = clk_propagate_rate_change(child, event);
2139		if (tmp_clk)
2140			fail_clk = tmp_clk;
2141	}
2142
2143	/* handle the new child who might not be in core->children yet */
2144	if (core->new_child) {
2145		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2146		if (tmp_clk)
2147			fail_clk = tmp_clk;
2148	}
2149
2150	return fail_clk;
2151}
2152
2153/*
2154 * walk down a subtree and set the new rates notifying the rate
2155 * change on the way
2156 */
2157static void clk_change_rate(struct clk_core *core)
2158{
2159	struct clk_core *child;
2160	struct hlist_node *tmp;
2161	unsigned long old_rate;
2162	unsigned long best_parent_rate = 0;
2163	bool skip_set_rate = false;
2164	struct clk_core *old_parent;
2165	struct clk_core *parent = NULL;
2166
2167	old_rate = core->rate;
2168
2169	if (core->new_parent) {
2170		parent = core->new_parent;
2171		best_parent_rate = core->new_parent->rate;
2172	} else if (core->parent) {
2173		parent = core->parent;
2174		best_parent_rate = core->parent->rate;
2175	}
2176
2177	if (clk_pm_runtime_get(core))
2178		return;
2179
2180	if (core->flags & CLK_SET_RATE_UNGATE) {
2181		unsigned long flags;
2182
2183		clk_core_prepare(core);
2184		flags = clk_enable_lock();
2185		clk_core_enable(core);
2186		clk_enable_unlock(flags);
2187	}
2188
2189	if (core->new_parent && core->new_parent != core->parent) {
2190		old_parent = __clk_set_parent_before(core, core->new_parent);
2191		trace_clk_set_parent(core, core->new_parent);
2192
2193		if (core->ops->set_rate_and_parent) {
2194			skip_set_rate = true;
2195			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2196					best_parent_rate,
2197					core->new_parent_index);
2198		} else if (core->ops->set_parent) {
2199			core->ops->set_parent(core->hw, core->new_parent_index);
2200		}
2201
2202		trace_clk_set_parent_complete(core, core->new_parent);
2203		__clk_set_parent_after(core, core->new_parent, old_parent);
2204	}
2205
2206	if (core->flags & CLK_OPS_PARENT_ENABLE)
2207		clk_core_prepare_enable(parent);
2208
2209	trace_clk_set_rate(core, core->new_rate);
2210
2211	if (!skip_set_rate && core->ops->set_rate)
2212		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2213
2214	trace_clk_set_rate_complete(core, core->new_rate);
2215
2216	core->rate = clk_recalc(core, best_parent_rate);
2217
2218	if (core->flags & CLK_SET_RATE_UNGATE) {
2219		unsigned long flags;
2220
2221		flags = clk_enable_lock();
2222		clk_core_disable(core);
2223		clk_enable_unlock(flags);
2224		clk_core_unprepare(core);
2225	}
2226
2227	if (core->flags & CLK_OPS_PARENT_ENABLE)
2228		clk_core_disable_unprepare(parent);
2229
2230	if (core->notifier_count && old_rate != core->rate)
2231		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2232
2233	if (core->flags & CLK_RECALC_NEW_RATES)
2234		(void)clk_calc_new_rates(core, core->new_rate);
2235
2236	/*
2237	 * Use safe iteration, as change_rate can actually swap parents
2238	 * for certain clock types.
2239	 */
2240	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2241		/* Skip children who will be reparented to another clock */
2242		if (child->new_parent && child->new_parent != core)
2243			continue;
2244		clk_change_rate(child);
2245	}
2246
2247	/* handle the new child who might not be in core->children yet */
2248	if (core->new_child)
2249		clk_change_rate(core->new_child);
2250
2251	clk_pm_runtime_put(core);
2252}
2253
2254static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2255						     unsigned long req_rate)
2256{
2257	int ret, cnt;
2258	struct clk_rate_request req;
2259
2260	lockdep_assert_held(&prepare_lock);
2261
2262	if (!core)
2263		return 0;
2264
2265	/* simulate what the rate would be if it could be freely set */
2266	cnt = clk_core_rate_nuke_protect(core);
2267	if (cnt < 0)
2268		return cnt;
2269
2270	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2271	req.rate = req_rate;
2272
2273	ret = clk_core_round_rate_nolock(core, &req);
2274
2275	/* restore the protection */
2276	clk_core_rate_restore_protect(core, cnt);
2277
2278	return ret ? 0 : req.rate;
2279}
2280
2281static int clk_core_set_rate_nolock(struct clk_core *core,
2282				    unsigned long req_rate)
2283{
2284	struct clk_core *top, *fail_clk;
2285	unsigned long rate;
2286	int ret = 0;
2287
2288	if (!core)
2289		return 0;
2290
2291	rate = clk_core_req_round_rate_nolock(core, req_rate);
2292
2293	/* bail early if nothing to do */
2294	if (rate == clk_core_get_rate_nolock(core))
2295		return 0;
2296
2297	/* fail on a direct rate set of a protected provider */
2298	if (clk_core_rate_is_protected(core))
2299		return -EBUSY;
2300
2301	/* calculate new rates and get the topmost changed clock */
2302	top = clk_calc_new_rates(core, req_rate);
2303	if (!top)
2304		return -EINVAL;
2305
2306	ret = clk_pm_runtime_get(core);
2307	if (ret)
2308		return ret;
2309
2310	/* notify that we are about to change rates */
2311	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2312	if (fail_clk) {
2313		pr_debug("%s: failed to set %s rate\n", __func__,
2314				fail_clk->name);
2315		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2316		ret = -EBUSY;
2317		goto err;
2318	}
2319
2320	/* change the rates */
2321	clk_change_rate(top);
2322
2323	core->req_rate = req_rate;
2324err:
2325	clk_pm_runtime_put(core);
2326
2327	return ret;
2328}
2329
2330/**
2331 * clk_set_rate - specify a new rate for clk
2332 * @clk: the clk whose rate is being changed
2333 * @rate: the new rate for clk
2334 *
2335 * In the simplest case clk_set_rate will only adjust the rate of clk.
2336 *
2337 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2338 * propagate up to clk's parent; whether or not this happens depends on the
2339 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2340 * after calling .round_rate then upstream parent propagation is ignored.  If
2341 * *parent_rate comes back with a new rate for clk's parent then we propagate
2342 * up to clk's parent and set its rate.  Upward propagation will continue
2343 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2344 * .round_rate stops requesting changes to clk's parent_rate.
2345 *
2346 * Rate changes are accomplished via tree traversal that also recalculates the
2347 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2348 *
2349 * Returns 0 on success, -EERROR otherwise.
2350 */
2351int clk_set_rate(struct clk *clk, unsigned long rate)
2352{
2353	int ret;
2354
2355	if (!clk)
2356		return 0;
2357
2358	/* prevent racing with updates to the clock topology */
2359	clk_prepare_lock();
2360
2361	if (clk->exclusive_count)
2362		clk_core_rate_unprotect(clk->core);
2363
2364	ret = clk_core_set_rate_nolock(clk->core, rate);
2365
2366	if (clk->exclusive_count)
2367		clk_core_rate_protect(clk->core);
2368
2369	clk_prepare_unlock();
2370
2371	return ret;
2372}
2373EXPORT_SYMBOL_GPL(clk_set_rate);
2374
2375/**
2376 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2377 * @clk: the clk whose rate is being changed
2378 * @rate: the new rate for clk
2379 *
2380 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2381 * within a critical section
2382 *
2383 * This can be used initially to ensure that at least 1 consumer is
2384 * satisfied when several consumers are competing for exclusivity over the
2385 * same clock provider.
2386 *
2387 * The exclusivity is not applied if setting the rate failed.
2388 *
2389 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2390 * clk_rate_exclusive_put().
2391 *
2392 * Returns 0 on success, -EERROR otherwise.
2393 */
2394int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2395{
2396	int ret;
2397
2398	if (!clk)
2399		return 0;
2400
2401	/* prevent racing with updates to the clock topology */
2402	clk_prepare_lock();
2403
2404	/*
2405	 * The temporary protection removal is not here, on purpose
2406	 * This function is meant to be used instead of clk_rate_protect,
2407	 * so before the consumer code path protect the clock provider
2408	 */
2409
2410	ret = clk_core_set_rate_nolock(clk->core, rate);
2411	if (!ret) {
2412		clk_core_rate_protect(clk->core);
2413		clk->exclusive_count++;
2414	}
2415
2416	clk_prepare_unlock();
2417
2418	return ret;
2419}
2420EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2421
2422/**
2423 * clk_set_rate_range - set a rate range for a clock source
2424 * @clk: clock source
2425 * @min: desired minimum clock rate in Hz, inclusive
2426 * @max: desired maximum clock rate in Hz, inclusive
2427 *
2428 * Returns success (0) or negative errno.
2429 */
2430int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2431{
2432	int ret = 0;
2433	unsigned long old_min, old_max, rate;
2434
2435	if (!clk)
2436		return 0;
2437
2438	if (min > max) {
2439		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2440		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2441		       min, max);
2442		return -EINVAL;
2443	}
2444
2445	clk_prepare_lock();
2446
2447	if (clk->exclusive_count)
2448		clk_core_rate_unprotect(clk->core);
2449
2450	/* Save the current values in case we need to rollback the change */
2451	old_min = clk->min_rate;
2452	old_max = clk->max_rate;
2453	clk->min_rate = min;
2454	clk->max_rate = max;
2455
2456	if (!clk_core_check_boundaries(clk->core, min, max)) {
2457		ret = -EINVAL;
2458		goto out;
2459	}
2460
2461	rate = clk_core_get_rate_nolock(clk->core);
2462	if (rate < min || rate > max) {
2463		/*
2464		 * FIXME:
2465		 * We are in bit of trouble here, current rate is outside the
2466		 * the requested range. We are going try to request appropriate
2467		 * range boundary but there is a catch. It may fail for the
2468		 * usual reason (clock broken, clock protected, etc) but also
2469		 * because:
2470		 * - round_rate() was not favorable and fell on the wrong
2471		 *   side of the boundary
2472		 * - the determine_rate() callback does not really check for
2473		 *   this corner case when determining the rate
2474		 */
2475
2476		if (rate < min)
2477			rate = min;
2478		else
2479			rate = max;
2480
2481		ret = clk_core_set_rate_nolock(clk->core, rate);
2482		if (ret) {
2483			/* rollback the changes */
2484			clk->min_rate = old_min;
2485			clk->max_rate = old_max;
2486		}
2487	}
2488
2489out:
2490	if (clk->exclusive_count)
2491		clk_core_rate_protect(clk->core);
2492
2493	clk_prepare_unlock();
2494
2495	return ret;
2496}
2497EXPORT_SYMBOL_GPL(clk_set_rate_range);
2498
2499/**
2500 * clk_set_min_rate - set a minimum clock rate for a clock source
2501 * @clk: clock source
2502 * @rate: desired minimum clock rate in Hz, inclusive
2503 *
2504 * Returns success (0) or negative errno.
2505 */
2506int clk_set_min_rate(struct clk *clk, unsigned long rate)
2507{
2508	if (!clk)
2509		return 0;
2510
2511	return clk_set_rate_range(clk, rate, clk->max_rate);
2512}
2513EXPORT_SYMBOL_GPL(clk_set_min_rate);
2514
2515/**
2516 * clk_set_max_rate - set a maximum clock rate for a clock source
2517 * @clk: clock source
2518 * @rate: desired maximum clock rate in Hz, inclusive
2519 *
2520 * Returns success (0) or negative errno.
2521 */
2522int clk_set_max_rate(struct clk *clk, unsigned long rate)
2523{
2524	if (!clk)
2525		return 0;
2526
2527	return clk_set_rate_range(clk, clk->min_rate, rate);
2528}
2529EXPORT_SYMBOL_GPL(clk_set_max_rate);
2530
2531/**
2532 * clk_get_parent - return the parent of a clk
2533 * @clk: the clk whose parent gets returned
2534 *
2535 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2536 */
2537struct clk *clk_get_parent(struct clk *clk)
2538{
2539	struct clk *parent;
2540
2541	if (!clk)
2542		return NULL;
2543
2544	clk_prepare_lock();
2545	/* TODO: Create a per-user clk and change callers to call clk_put */
2546	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2547	clk_prepare_unlock();
2548
2549	return parent;
2550}
2551EXPORT_SYMBOL_GPL(clk_get_parent);
2552
2553static struct clk_core *__clk_init_parent(struct clk_core *core)
2554{
2555	u8 index = 0;
2556
2557	if (core->num_parents > 1 && core->ops->get_parent)
2558		index = core->ops->get_parent(core->hw);
2559
2560	return clk_core_get_parent_by_index(core, index);
2561}
2562
2563static void clk_core_reparent(struct clk_core *core,
2564				  struct clk_core *new_parent)
2565{
2566	clk_reparent(core, new_parent);
2567	__clk_recalc_accuracies(core);
2568	__clk_recalc_rates(core, POST_RATE_CHANGE);
2569}
2570
2571void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2572{
2573	if (!hw)
2574		return;
2575
2576	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2577}
2578
2579/**
2580 * clk_has_parent - check if a clock is a possible parent for another
2581 * @clk: clock source
2582 * @parent: parent clock source
2583 *
2584 * This function can be used in drivers that need to check that a clock can be
2585 * the parent of another without actually changing the parent.
2586 *
2587 * Returns true if @parent is a possible parent for @clk, false otherwise.
2588 */
2589bool clk_has_parent(struct clk *clk, struct clk *parent)
2590{
2591	struct clk_core *core, *parent_core;
2592	int i;
2593
2594	/* NULL clocks should be nops, so return success if either is NULL. */
2595	if (!clk || !parent)
2596		return true;
2597
2598	core = clk->core;
2599	parent_core = parent->core;
2600
2601	/* Optimize for the case where the parent is already the parent. */
2602	if (core->parent == parent_core)
2603		return true;
2604
2605	for (i = 0; i < core->num_parents; i++)
2606		if (!strcmp(core->parents[i].name, parent_core->name))
2607			return true;
2608
2609	return false;
2610}
2611EXPORT_SYMBOL_GPL(clk_has_parent);
2612
2613static int clk_core_set_parent_nolock(struct clk_core *core,
2614				      struct clk_core *parent)
2615{
2616	int ret = 0;
2617	int p_index = 0;
2618	unsigned long p_rate = 0;
2619
2620	lockdep_assert_held(&prepare_lock);
2621
2622	if (!core)
2623		return 0;
2624
2625	if (core->parent == parent)
2626		return 0;
2627
2628	/* verify ops for multi-parent clks */
2629	if (core->num_parents > 1 && !core->ops->set_parent)
2630		return -EPERM;
2631
2632	/* check that we are allowed to re-parent if the clock is in use */
2633	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2634		return -EBUSY;
2635
2636	if (clk_core_rate_is_protected(core))
2637		return -EBUSY;
2638
2639	/* try finding the new parent index */
2640	if (parent) {
2641		p_index = clk_fetch_parent_index(core, parent);
2642		if (p_index < 0) {
2643			pr_debug("%s: clk %s can not be parent of clk %s\n",
2644					__func__, parent->name, core->name);
2645			return p_index;
2646		}
2647		p_rate = parent->rate;
2648	}
2649
2650	ret = clk_pm_runtime_get(core);
2651	if (ret)
2652		return ret;
2653
2654	/* propagate PRE_RATE_CHANGE notifications */
2655	ret = __clk_speculate_rates(core, p_rate);
2656
2657	/* abort if a driver objects */
2658	if (ret & NOTIFY_STOP_MASK)
2659		goto runtime_put;
2660
2661	/* do the re-parent */
2662	ret = __clk_set_parent(core, parent, p_index);
2663
2664	/* propagate rate an accuracy recalculation accordingly */
2665	if (ret) {
2666		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2667	} else {
2668		__clk_recalc_rates(core, POST_RATE_CHANGE);
2669		__clk_recalc_accuracies(core);
2670	}
2671
2672runtime_put:
2673	clk_pm_runtime_put(core);
2674
2675	return ret;
2676}
2677
2678int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2679{
2680	return clk_core_set_parent_nolock(hw->core, parent->core);
2681}
2682EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2683
2684/**
2685 * clk_set_parent - switch the parent of a mux clk
2686 * @clk: the mux clk whose input we are switching
2687 * @parent: the new input to clk
2688 *
2689 * Re-parent clk to use parent as its new input source.  If clk is in
2690 * prepared state, the clk will get enabled for the duration of this call. If
2691 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2692 * that, the reparenting is glitchy in hardware, etc), use the
2693 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2694 *
2695 * After successfully changing clk's parent clk_set_parent will update the
2696 * clk topology, sysfs topology and propagate rate recalculation via
2697 * __clk_recalc_rates.
2698 *
2699 * Returns 0 on success, -EERROR otherwise.
2700 */
2701int clk_set_parent(struct clk *clk, struct clk *parent)
2702{
2703	int ret;
2704
2705	if (!clk)
2706		return 0;
2707
2708	clk_prepare_lock();
2709
2710	if (clk->exclusive_count)
2711		clk_core_rate_unprotect(clk->core);
2712
2713	ret = clk_core_set_parent_nolock(clk->core,
2714					 parent ? parent->core : NULL);
2715
2716	if (clk->exclusive_count)
2717		clk_core_rate_protect(clk->core);
2718
2719	clk_prepare_unlock();
2720
2721	return ret;
2722}
2723EXPORT_SYMBOL_GPL(clk_set_parent);
2724
2725static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2726{
2727	int ret = -EINVAL;
2728
2729	lockdep_assert_held(&prepare_lock);
2730
2731	if (!core)
2732		return 0;
2733
2734	if (clk_core_rate_is_protected(core))
2735		return -EBUSY;
2736
2737	trace_clk_set_phase(core, degrees);
2738
2739	if (core->ops->set_phase) {
2740		ret = core->ops->set_phase(core->hw, degrees);
2741		if (!ret)
2742			core->phase = degrees;
2743	}
2744
2745	trace_clk_set_phase_complete(core, degrees);
2746
2747	return ret;
2748}
2749
2750/**
2751 * clk_set_phase - adjust the phase shift of a clock signal
2752 * @clk: clock signal source
2753 * @degrees: number of degrees the signal is shifted
2754 *
2755 * Shifts the phase of a clock signal by the specified
2756 * degrees. Returns 0 on success, -EERROR otherwise.
2757 *
2758 * This function makes no distinction about the input or reference
2759 * signal that we adjust the clock signal phase against. For example
2760 * phase locked-loop clock signal generators we may shift phase with
2761 * respect to feedback clock signal input, but for other cases the
2762 * clock phase may be shifted with respect to some other, unspecified
2763 * signal.
2764 *
2765 * Additionally the concept of phase shift does not propagate through
2766 * the clock tree hierarchy, which sets it apart from clock rates and
2767 * clock accuracy. A parent clock phase attribute does not have an
2768 * impact on the phase attribute of a child clock.
2769 */
2770int clk_set_phase(struct clk *clk, int degrees)
2771{
2772	int ret;
2773
2774	if (!clk)
2775		return 0;
2776
2777	/* sanity check degrees */
2778	degrees %= 360;
2779	if (degrees < 0)
2780		degrees += 360;
2781
2782	clk_prepare_lock();
2783
2784	if (clk->exclusive_count)
2785		clk_core_rate_unprotect(clk->core);
2786
2787	ret = clk_core_set_phase_nolock(clk->core, degrees);
2788
2789	if (clk->exclusive_count)
2790		clk_core_rate_protect(clk->core);
2791
2792	clk_prepare_unlock();
2793
2794	return ret;
2795}
2796EXPORT_SYMBOL_GPL(clk_set_phase);
2797
2798static int clk_core_get_phase(struct clk_core *core)
2799{
2800	int ret;
2801
2802	lockdep_assert_held(&prepare_lock);
2803	if (!core->ops->get_phase)
2804		return 0;
2805
2806	/* Always try to update cached phase if possible */
2807	ret = core->ops->get_phase(core->hw);
2808	if (ret >= 0)
2809		core->phase = ret;
2810
2811	return ret;
2812}
2813
2814/**
2815 * clk_get_phase - return the phase shift of a clock signal
2816 * @clk: clock signal source
2817 *
2818 * Returns the phase shift of a clock node in degrees, otherwise returns
2819 * -EERROR.
2820 */
2821int clk_get_phase(struct clk *clk)
2822{
2823	int ret;
2824
2825	if (!clk)
2826		return 0;
2827
2828	clk_prepare_lock();
2829	ret = clk_core_get_phase(clk->core);
2830	clk_prepare_unlock();
2831
2832	return ret;
2833}
2834EXPORT_SYMBOL_GPL(clk_get_phase);
2835
2836static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2837{
2838	/* Assume a default value of 50% */
2839	core->duty.num = 1;
2840	core->duty.den = 2;
2841}
2842
2843static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2844
2845static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2846{
2847	struct clk_duty *duty = &core->duty;
2848	int ret = 0;
2849
2850	if (!core->ops->get_duty_cycle)
2851		return clk_core_update_duty_cycle_parent_nolock(core);
2852
2853	ret = core->ops->get_duty_cycle(core->hw, duty);
2854	if (ret)
2855		goto reset;
2856
2857	/* Don't trust the clock provider too much */
2858	if (duty->den == 0 || duty->num > duty->den) {
2859		ret = -EINVAL;
2860		goto reset;
2861	}
2862
2863	return 0;
2864
2865reset:
2866	clk_core_reset_duty_cycle_nolock(core);
2867	return ret;
2868}
2869
2870static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2871{
2872	int ret = 0;
2873
2874	if (core->parent &&
2875	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2876		ret = clk_core_update_duty_cycle_nolock(core->parent);
2877		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2878	} else {
2879		clk_core_reset_duty_cycle_nolock(core);
2880	}
2881
2882	return ret;
2883}
2884
2885static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2886						 struct clk_duty *duty);
2887
2888static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2889					  struct clk_duty *duty)
2890{
2891	int ret;
2892
2893	lockdep_assert_held(&prepare_lock);
2894
2895	if (clk_core_rate_is_protected(core))
2896		return -EBUSY;
2897
2898	trace_clk_set_duty_cycle(core, duty);
2899
2900	if (!core->ops->set_duty_cycle)
2901		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2902
2903	ret = core->ops->set_duty_cycle(core->hw, duty);
2904	if (!ret)
2905		memcpy(&core->duty, duty, sizeof(*duty));
2906
2907	trace_clk_set_duty_cycle_complete(core, duty);
2908
2909	return ret;
2910}
2911
2912static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2913						 struct clk_duty *duty)
2914{
2915	int ret = 0;
2916
2917	if (core->parent &&
2918	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2919		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2920		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2921	}
2922
2923	return ret;
2924}
2925
2926/**
2927 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2928 * @clk: clock signal source
2929 * @num: numerator of the duty cycle ratio to be applied
2930 * @den: denominator of the duty cycle ratio to be applied
2931 *
2932 * Apply the duty cycle ratio if the ratio is valid and the clock can
2933 * perform this operation
2934 *
2935 * Returns (0) on success, a negative errno otherwise.
2936 */
2937int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2938{
2939	int ret;
2940	struct clk_duty duty;
2941
2942	if (!clk)
2943		return 0;
2944
2945	/* sanity check the ratio */
2946	if (den == 0 || num > den)
2947		return -EINVAL;
2948
2949	duty.num = num;
2950	duty.den = den;
2951
2952	clk_prepare_lock();
2953
2954	if (clk->exclusive_count)
2955		clk_core_rate_unprotect(clk->core);
2956
2957	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2958
2959	if (clk->exclusive_count)
2960		clk_core_rate_protect(clk->core);
2961
2962	clk_prepare_unlock();
2963
2964	return ret;
2965}
2966EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2967
2968static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2969					  unsigned int scale)
2970{
2971	struct clk_duty *duty = &core->duty;
2972	int ret;
2973
2974	clk_prepare_lock();
2975
2976	ret = clk_core_update_duty_cycle_nolock(core);
2977	if (!ret)
2978		ret = mult_frac(scale, duty->num, duty->den);
2979
2980	clk_prepare_unlock();
2981
2982	return ret;
2983}
2984
2985/**
2986 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2987 * @clk: clock signal source
2988 * @scale: scaling factor to be applied to represent the ratio as an integer
2989 *
2990 * Returns the duty cycle ratio of a clock node multiplied by the provided
2991 * scaling factor, or negative errno on error.
2992 */
2993int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2994{
2995	if (!clk)
2996		return 0;
2997
2998	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2999}
3000EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3001
3002/**
3003 * clk_is_match - check if two clk's point to the same hardware clock
3004 * @p: clk compared against q
3005 * @q: clk compared against p
3006 *
3007 * Returns true if the two struct clk pointers both point to the same hardware
3008 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3009 * share the same struct clk_core object.
3010 *
3011 * Returns false otherwise. Note that two NULL clks are treated as matching.
3012 */
3013bool clk_is_match(const struct clk *p, const struct clk *q)
3014{
3015	/* trivial case: identical struct clk's or both NULL */
3016	if (p == q)
3017		return true;
3018
3019	/* true if clk->core pointers match. Avoid dereferencing garbage */
3020	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3021		if (p->core == q->core)
3022			return true;
3023
3024	return false;
3025}
3026EXPORT_SYMBOL_GPL(clk_is_match);
3027
3028/***        debugfs support        ***/
3029
3030#ifdef CONFIG_DEBUG_FS
3031#include <linux/debugfs.h>
3032
3033static struct dentry *rootdir;
3034static int inited = 0;
3035static DEFINE_MUTEX(clk_debug_lock);
3036static HLIST_HEAD(clk_debug_list);
3037
3038static struct hlist_head *orphan_list[] = {
3039	&clk_orphan_list,
3040	NULL,
3041};
3042
3043static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3044				 int level)
3045{
3046	int phase;
3047
3048	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3049		   level * 3 + 1, "",
3050		   30 - level * 3, c->name,
3051		   c->enable_count, c->prepare_count, c->protect_count,
3052		   clk_core_get_rate_recalc(c),
3053		   clk_core_get_accuracy_recalc(c));
3054
3055	phase = clk_core_get_phase(c);
3056	if (phase >= 0)
3057		seq_printf(s, "%5d", phase);
3058	else
3059		seq_puts(s, "-----");
3060
3061	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
3062}
3063
3064static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3065				     int level)
3066{
3067	struct clk_core *child;
3068
3069	clk_summary_show_one(s, c, level);
3070
3071	hlist_for_each_entry(child, &c->children, child_node)
3072		clk_summary_show_subtree(s, child, level + 1);
3073}
3074
3075static int clk_summary_show(struct seq_file *s, void *data)
3076{
3077	struct clk_core *c;
3078	struct hlist_head **lists = (struct hlist_head **)s->private;
3079
3080	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
3081	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
3082	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
3083
3084	clk_prepare_lock();
3085
3086	for (; *lists; lists++)
3087		hlist_for_each_entry(c, *lists, child_node)
3088			clk_summary_show_subtree(s, c, 0);
3089
3090	clk_prepare_unlock();
3091
3092	return 0;
3093}
3094DEFINE_SHOW_ATTRIBUTE(clk_summary);
3095
3096static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3097{
3098	int phase;
3099	unsigned long min_rate, max_rate;
3100
3101	clk_core_get_boundaries(c, &min_rate, &max_rate);
3102
3103	/* This should be JSON format, i.e. elements separated with a comma */
3104	seq_printf(s, "\"%s\": { ", c->name);
3105	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3106	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3107	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3108	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3109	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3110	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3111	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3112	phase = clk_core_get_phase(c);
3113	if (phase >= 0)
3114		seq_printf(s, "\"phase\": %d,", phase);
3115	seq_printf(s, "\"duty_cycle\": %u",
3116		   clk_core_get_scaled_duty_cycle(c, 100000));
3117}
3118
3119static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3120{
3121	struct clk_core *child;
3122
3123	clk_dump_one(s, c, level);
3124
3125	hlist_for_each_entry(child, &c->children, child_node) {
3126		seq_putc(s, ',');
3127		clk_dump_subtree(s, child, level + 1);
3128	}
3129
3130	seq_putc(s, '}');
3131}
3132
3133static int clk_dump_show(struct seq_file *s, void *data)
3134{
3135	struct clk_core *c;
3136	bool first_node = true;
3137	struct hlist_head **lists = (struct hlist_head **)s->private;
3138
3139	seq_putc(s, '{');
3140	clk_prepare_lock();
3141
3142	for (; *lists; lists++) {
3143		hlist_for_each_entry(c, *lists, child_node) {
3144			if (!first_node)
3145				seq_putc(s, ',');
3146			first_node = false;
3147			clk_dump_subtree(s, c, 0);
3148		}
3149	}
3150
3151	clk_prepare_unlock();
3152
3153	seq_puts(s, "}\n");
3154	return 0;
3155}
3156DEFINE_SHOW_ATTRIBUTE(clk_dump);
3157
3158#undef CLOCK_ALLOW_WRITE_DEBUGFS
3159#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3160/*
3161 * This can be dangerous, therefore don't provide any real compile time
3162 * configuration option for this feature.
3163 * People who want to use this will need to modify the source code directly.
3164 */
3165static int clk_rate_set(void *data, u64 val)
3166{
3167	struct clk_core *core = data;
3168	int ret;
3169
3170	clk_prepare_lock();
3171	ret = clk_core_set_rate_nolock(core, val);
3172	clk_prepare_unlock();
3173
3174	return ret;
3175}
3176
3177#define clk_rate_mode	0644
3178
3179static int clk_prepare_enable_set(void *data, u64 val)
3180{
3181	struct clk_core *core = data;
3182	int ret = 0;
3183
3184	if (val)
3185		ret = clk_prepare_enable(core->hw->clk);
3186	else
3187		clk_disable_unprepare(core->hw->clk);
3188
3189	return ret;
3190}
3191
3192static int clk_prepare_enable_get(void *data, u64 *val)
3193{
3194	struct clk_core *core = data;
3195
3196	*val = core->enable_count && core->prepare_count;
3197	return 0;
3198}
3199
3200DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3201			 clk_prepare_enable_set, "%llu\n");
3202
3203#else
3204#define clk_rate_set	NULL
3205#define clk_rate_mode	0444
3206#endif
3207
3208static int clk_rate_get(void *data, u64 *val)
3209{
3210	struct clk_core *core = data;
3211
3212	*val = core->rate;
3213	return 0;
3214}
3215
3216DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3217
3218static const struct {
3219	unsigned long flag;
3220	const char *name;
3221} clk_flags[] = {
3222#define ENTRY(f) { f, #f }
3223	ENTRY(CLK_SET_RATE_GATE),
3224	ENTRY(CLK_SET_PARENT_GATE),
3225	ENTRY(CLK_SET_RATE_PARENT),
3226	ENTRY(CLK_IGNORE_UNUSED),
3227	ENTRY(CLK_GET_RATE_NOCACHE),
3228	ENTRY(CLK_SET_RATE_NO_REPARENT),
3229	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3230	ENTRY(CLK_RECALC_NEW_RATES),
3231	ENTRY(CLK_SET_RATE_UNGATE),
3232	ENTRY(CLK_IS_CRITICAL),
3233	ENTRY(CLK_OPS_PARENT_ENABLE),
3234	ENTRY(CLK_DUTY_CYCLE_PARENT),
3235#undef ENTRY
3236};
3237
3238static int clk_flags_show(struct seq_file *s, void *data)
3239{
3240	struct clk_core *core = s->private;
3241	unsigned long flags = core->flags;
3242	unsigned int i;
3243
3244	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3245		if (flags & clk_flags[i].flag) {
3246			seq_printf(s, "%s\n", clk_flags[i].name);
3247			flags &= ~clk_flags[i].flag;
3248		}
3249	}
3250	if (flags) {
3251		/* Unknown flags */
3252		seq_printf(s, "0x%lx\n", flags);
3253	}
3254
3255	return 0;
3256}
3257DEFINE_SHOW_ATTRIBUTE(clk_flags);
3258
3259static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3260				 unsigned int i, char terminator)
3261{
3262	struct clk_core *parent;
3263	const char *name = NULL;
3264
3265	/*
3266	 * Go through the following options to fetch a parent's name.
3267	 *
3268	 * 1. Fetch the registered parent clock and use its name
3269	 * 2. Use the global (fallback) name if specified
3270	 * 3. Use the local fw_name if provided
3271	 * 4. Fetch parent clock's clock-output-name if DT index was set
3272	 *
3273	 * This may still fail in some cases, such as when the parent is
3274	 * specified directly via a struct clk_hw pointer, but it isn't
3275	 * registered (yet).
3276	 */
3277	parent = clk_core_get_parent_by_index(core, i);
3278	if (parent) {
3279		seq_puts(s, parent->name);
3280	} else if (core->parents[i].name) {
3281		seq_puts(s, core->parents[i].name);
3282	} else if (core->parents[i].fw_name) {
3283		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3284	} else {
3285		if (core->parents[i].index >= 0)
3286			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3287		if (!name)
3288			name = "(missing)";
3289
3290		seq_puts(s, name);
3291	}
3292
3293	seq_putc(s, terminator);
3294}
3295
3296static int possible_parents_show(struct seq_file *s, void *data)
3297{
3298	struct clk_core *core = s->private;
3299	int i;
3300
3301	for (i = 0; i < core->num_parents - 1; i++)
3302		possible_parent_show(s, core, i, ' ');
3303
3304	possible_parent_show(s, core, i, '\n');
3305
3306	return 0;
3307}
3308DEFINE_SHOW_ATTRIBUTE(possible_parents);
3309
3310static int current_parent_show(struct seq_file *s, void *data)
3311{
3312	struct clk_core *core = s->private;
3313
3314	if (core->parent)
3315		seq_printf(s, "%s\n", core->parent->name);
3316
3317	return 0;
3318}
3319DEFINE_SHOW_ATTRIBUTE(current_parent);
3320
3321static int clk_duty_cycle_show(struct seq_file *s, void *data)
3322{
3323	struct clk_core *core = s->private;
3324	struct clk_duty *duty = &core->duty;
3325
3326	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3327
3328	return 0;
3329}
3330DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3331
3332static int clk_min_rate_show(struct seq_file *s, void *data)
3333{
3334	struct clk_core *core = s->private;
3335	unsigned long min_rate, max_rate;
3336
3337	clk_prepare_lock();
3338	clk_core_get_boundaries(core, &min_rate, &max_rate);
3339	clk_prepare_unlock();
3340	seq_printf(s, "%lu\n", min_rate);
3341
3342	return 0;
3343}
3344DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3345
3346static int clk_max_rate_show(struct seq_file *s, void *data)
3347{
3348	struct clk_core *core = s->private;
3349	unsigned long min_rate, max_rate;
3350
3351	clk_prepare_lock();
3352	clk_core_get_boundaries(core, &min_rate, &max_rate);
3353	clk_prepare_unlock();
3354	seq_printf(s, "%lu\n", max_rate);
3355
3356	return 0;
3357}
3358DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3359
3360static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3361{
3362	struct dentry *root;
3363
3364	if (!core || !pdentry)
3365		return;
3366
3367	root = debugfs_create_dir(core->name, pdentry);
3368	core->dentry = root;
3369
3370	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3371			    &clk_rate_fops);
3372	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3373	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3374	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3375	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3376	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3377	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3378	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3379	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3380	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3381	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3382			    &clk_duty_cycle_fops);
3383#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3384	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3385			    &clk_prepare_enable_fops);
3386#endif
3387
3388	if (core->num_parents > 0)
3389		debugfs_create_file("clk_parent", 0444, root, core,
3390				    &current_parent_fops);
3391
3392	if (core->num_parents > 1)
3393		debugfs_create_file("clk_possible_parents", 0444, root, core,
3394				    &possible_parents_fops);
3395
3396	if (core->ops->debug_init)
3397		core->ops->debug_init(core->hw, core->dentry);
3398}
3399
3400/**
3401 * clk_debug_register - add a clk node to the debugfs clk directory
3402 * @core: the clk being added to the debugfs clk directory
3403 *
3404 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3405 * initialized.  Otherwise it bails out early since the debugfs clk directory
3406 * will be created lazily by clk_debug_init as part of a late_initcall.
3407 */
3408static void clk_debug_register(struct clk_core *core)
3409{
3410	mutex_lock(&clk_debug_lock);
3411	hlist_add_head(&core->debug_node, &clk_debug_list);
3412	if (inited)
3413		clk_debug_create_one(core, rootdir);
3414	mutex_unlock(&clk_debug_lock);
3415}
3416
3417 /**
3418 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3419 * @core: the clk being removed from the debugfs clk directory
3420 *
3421 * Dynamically removes a clk and all its child nodes from the
3422 * debugfs clk directory if clk->dentry points to debugfs created by
3423 * clk_debug_register in __clk_core_init.
3424 */
3425static void clk_debug_unregister(struct clk_core *core)
3426{
3427	mutex_lock(&clk_debug_lock);
3428	hlist_del_init(&core->debug_node);
3429	debugfs_remove_recursive(core->dentry);
3430	core->dentry = NULL;
3431	mutex_unlock(&clk_debug_lock);
3432}
3433
3434/**
3435 * clk_debug_init - lazily populate the debugfs clk directory
3436 *
3437 * clks are often initialized very early during boot before memory can be
3438 * dynamically allocated and well before debugfs is setup. This function
3439 * populates the debugfs clk directory once at boot-time when we know that
3440 * debugfs is setup. It should only be called once at boot-time, all other clks
3441 * added dynamically will be done so with clk_debug_register.
3442 */
3443static int __init clk_debug_init(void)
3444{
3445	struct clk_core *core;
3446
3447#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3448	pr_warn("\n");
3449	pr_warn("********************************************************************\n");
3450	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3451	pr_warn("**                                                                **\n");
3452	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3453	pr_warn("**                                                                **\n");
3454	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3455	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3456	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3457	pr_warn("**                                                                **\n");
3458	pr_warn("** If you see this message and you are not debugging the          **\n");
3459	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3460	pr_warn("**                                                                **\n");
3461	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3462	pr_warn("********************************************************************\n");
3463#endif
3464
3465	rootdir = debugfs_create_dir("clk", NULL);
3466
3467	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3468			    &clk_summary_fops);
3469	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3470			    &clk_dump_fops);
3471	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3472			    &clk_summary_fops);
3473	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3474			    &clk_dump_fops);
3475
3476	mutex_lock(&clk_debug_lock);
3477	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3478		clk_debug_create_one(core, rootdir);
3479
3480	inited = 1;
3481	mutex_unlock(&clk_debug_lock);
3482
3483	return 0;
3484}
3485late_initcall(clk_debug_init);
3486#else
3487static inline void clk_debug_register(struct clk_core *core) { }
3488static inline void clk_debug_unregister(struct clk_core *core)
3489{
3490}
3491#endif
3492
3493static void clk_core_reparent_orphans_nolock(void)
3494{
3495	struct clk_core *orphan;
3496	struct hlist_node *tmp2;
3497
3498	/*
3499	 * walk the list of orphan clocks and reparent any that newly finds a
3500	 * parent.
3501	 */
3502	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3503		struct clk_core *parent = __clk_init_parent(orphan);
3504
3505		/*
3506		 * We need to use __clk_set_parent_before() and _after() to
3507		 * to properly migrate any prepare/enable count of the orphan
3508		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3509		 * are enabled during init but might not have a parent yet.
3510		 */
3511		if (parent) {
3512			/* update the clk tree topology */
3513			__clk_set_parent_before(orphan, parent);
3514			__clk_set_parent_after(orphan, parent, NULL);
3515			__clk_recalc_accuracies(orphan);
3516			__clk_recalc_rates(orphan, 0);
3517
3518			/*
3519			 * __clk_init_parent() will set the initial req_rate to
3520			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3521			 * is an orphan when it's registered.
3522			 *
3523			 * 'req_rate' is used by clk_set_rate_range() and
3524			 * clk_put() to trigger a clk_set_rate() call whenever
3525			 * the boundaries are modified. Let's make sure
3526			 * 'req_rate' is set to something non-zero so that
3527			 * clk_set_rate_range() doesn't drop the frequency.
3528			 */
3529			orphan->req_rate = orphan->rate;
3530		}
3531	}
3532}
3533
3534/**
3535 * __clk_core_init - initialize the data structures in a struct clk_core
3536 * @core:	clk_core being initialized
3537 *
3538 * Initializes the lists in struct clk_core, queries the hardware for the
3539 * parent and rate and sets them both.
3540 */
3541static int __clk_core_init(struct clk_core *core)
3542{
3543	int ret;
3544	struct clk_core *parent;
3545	unsigned long rate;
3546	int phase;
3547
3548	if (!core)
3549		return -EINVAL;
3550
3551	clk_prepare_lock();
3552
3553	/*
3554	 * Set hw->core after grabbing the prepare_lock to synchronize with
3555	 * callers of clk_core_fill_parent_index() where we treat hw->core
3556	 * being NULL as the clk not being registered yet. This is crucial so
3557	 * that clks aren't parented until their parent is fully registered.
3558	 */
3559	core->hw->core = core;
3560
3561	ret = clk_pm_runtime_get(core);
3562	if (ret)
3563		goto unlock;
3564
3565	/* check to see if a clock with this name is already registered */
3566	if (clk_core_lookup(core->name)) {
3567		pr_debug("%s: clk %s already initialized\n",
3568				__func__, core->name);
3569		ret = -EEXIST;
3570		goto out;
3571	}
3572
3573	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3574	if (core->ops->set_rate &&
3575	    !((core->ops->round_rate || core->ops->determine_rate) &&
3576	      core->ops->recalc_rate)) {
3577		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3578		       __func__, core->name);
3579		ret = -EINVAL;
3580		goto out;
3581	}
3582
3583	if (core->ops->set_parent && !core->ops->get_parent) {
3584		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3585		       __func__, core->name);
3586		ret = -EINVAL;
3587		goto out;
3588	}
3589
3590	if (core->num_parents > 1 && !core->ops->get_parent) {
3591		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3592		       __func__, core->name);
3593		ret = -EINVAL;
3594		goto out;
3595	}
3596
3597	if (core->ops->set_rate_and_parent &&
3598			!(core->ops->set_parent && core->ops->set_rate)) {
3599		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3600				__func__, core->name);
3601		ret = -EINVAL;
3602		goto out;
3603	}
3604
3605	/*
3606	 * optional platform-specific magic
3607	 *
3608	 * The .init callback is not used by any of the basic clock types, but
3609	 * exists for weird hardware that must perform initialization magic for
3610	 * CCF to get an accurate view of clock for any other callbacks. It may
3611	 * also be used needs to perform dynamic allocations. Such allocation
3612	 * must be freed in the terminate() callback.
3613	 * This callback shall not be used to initialize the parameters state,
3614	 * such as rate, parent, etc ...
3615	 *
3616	 * If it exist, this callback should called before any other callback of
3617	 * the clock
3618	 */
3619	if (core->ops->init) {
3620		ret = core->ops->init(core->hw);
3621		if (ret)
3622			goto out;
3623	}
3624
3625	parent = core->parent = __clk_init_parent(core);
3626
3627	/*
3628	 * Populate core->parent if parent has already been clk_core_init'd. If
3629	 * parent has not yet been clk_core_init'd then place clk in the orphan
3630	 * list.  If clk doesn't have any parents then place it in the root
3631	 * clk list.
3632	 *
3633	 * Every time a new clk is clk_init'd then we walk the list of orphan
3634	 * clocks and re-parent any that are children of the clock currently
3635	 * being clk_init'd.
3636	 */
3637	if (parent) {
3638		hlist_add_head(&core->child_node, &parent->children);
3639		core->orphan = parent->orphan;
3640	} else if (!core->num_parents) {
3641		hlist_add_head(&core->child_node, &clk_root_list);
3642		core->orphan = false;
3643	} else {
3644		hlist_add_head(&core->child_node, &clk_orphan_list);
3645		core->orphan = true;
3646	}
3647
3648	/*
3649	 * Set clk's accuracy.  The preferred method is to use
3650	 * .recalc_accuracy. For simple clocks and lazy developers the default
3651	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3652	 * parent (or is orphaned) then accuracy is set to zero (perfect
3653	 * clock).
3654	 */
3655	if (core->ops->recalc_accuracy)
3656		core->accuracy = core->ops->recalc_accuracy(core->hw,
3657					clk_core_get_accuracy_no_lock(parent));
3658	else if (parent)
3659		core->accuracy = parent->accuracy;
3660	else
3661		core->accuracy = 0;
3662
3663	/*
3664	 * Set clk's phase by clk_core_get_phase() caching the phase.
3665	 * Since a phase is by definition relative to its parent, just
3666	 * query the current clock phase, or just assume it's in phase.
3667	 */
3668	phase = clk_core_get_phase(core);
3669	if (phase < 0) {
3670		ret = phase;
3671		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3672			core->name);
3673		goto out;
3674	}
3675
3676	/*
3677	 * Set clk's duty cycle.
3678	 */
3679	clk_core_update_duty_cycle_nolock(core);
3680
3681	/*
3682	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3683	 * simple clocks and lazy developers the default fallback is to use the
3684	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3685	 * then rate is set to zero.
3686	 */
3687	if (core->ops->recalc_rate)
3688		rate = core->ops->recalc_rate(core->hw,
3689				clk_core_get_rate_nolock(parent));
3690	else if (parent)
3691		rate = parent->rate;
3692	else
3693		rate = 0;
3694	core->rate = core->req_rate = rate;
3695
3696	/*
3697	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3698	 * don't get accidentally disabled when walking the orphan tree and
3699	 * reparenting clocks
3700	 */
3701	if (core->flags & CLK_IS_CRITICAL) {
3702		unsigned long flags;
3703
3704		ret = clk_core_prepare(core);
3705		if (ret) {
3706			pr_warn("%s: critical clk '%s' failed to prepare\n",
3707			       __func__, core->name);
3708			goto out;
3709		}
3710
3711		flags = clk_enable_lock();
3712		ret = clk_core_enable(core);
3713		clk_enable_unlock(flags);
3714		if (ret) {
3715			pr_warn("%s: critical clk '%s' failed to enable\n",
3716			       __func__, core->name);
3717			clk_core_unprepare(core);
3718			goto out;
3719		}
3720	}
3721
3722	clk_core_reparent_orphans_nolock();
3723out:
3724	clk_pm_runtime_put(core);
3725unlock:
3726	if (ret) {
3727		hlist_del_init(&core->child_node);
3728		core->hw->core = NULL;
3729	}
3730
3731	clk_prepare_unlock();
3732
3733	if (!ret)
3734		clk_debug_register(core);
3735
3736	return ret;
3737}
3738
3739/**
3740 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3741 * @core: clk to add consumer to
3742 * @clk: consumer to link to a clk
3743 */
3744static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3745{
3746	clk_prepare_lock();
3747	hlist_add_head(&clk->clks_node, &core->clks);
3748	clk_prepare_unlock();
3749}
3750
3751/**
3752 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3753 * @clk: consumer to unlink
3754 */
3755static void clk_core_unlink_consumer(struct clk *clk)
3756{
3757	lockdep_assert_held(&prepare_lock);
3758	hlist_del(&clk->clks_node);
3759}
3760
3761/**
3762 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3763 * @core: clk to allocate a consumer for
3764 * @dev_id: string describing device name
3765 * @con_id: connection ID string on device
3766 *
3767 * Returns: clk consumer left unlinked from the consumer list
3768 */
3769static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3770			     const char *con_id)
3771{
3772	struct clk *clk;
3773
3774	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3775	if (!clk)
3776		return ERR_PTR(-ENOMEM);
3777
3778	clk->core = core;
3779	clk->dev_id = dev_id;
3780	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3781	clk->max_rate = ULONG_MAX;
3782
3783	return clk;
3784}
3785
3786/**
3787 * free_clk - Free a clk consumer
3788 * @clk: clk consumer to free
3789 *
3790 * Note, this assumes the clk has been unlinked from the clk_core consumer
3791 * list.
3792 */
3793static void free_clk(struct clk *clk)
3794{
3795	kfree_const(clk->con_id);
3796	kfree(clk);
3797}
3798
3799/**
3800 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3801 * a clk_hw
3802 * @dev: clk consumer device
3803 * @hw: clk_hw associated with the clk being consumed
3804 * @dev_id: string describing device name
3805 * @con_id: connection ID string on device
3806 *
3807 * This is the main function used to create a clk pointer for use by clk
3808 * consumers. It connects a consumer to the clk_core and clk_hw structures
3809 * used by the framework and clk provider respectively.
3810 */
3811struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3812			      const char *dev_id, const char *con_id)
3813{
3814	struct clk *clk;
3815	struct clk_core *core;
3816
3817	/* This is to allow this function to be chained to others */
3818	if (IS_ERR_OR_NULL(hw))
3819		return ERR_CAST(hw);
3820
3821	core = hw->core;
3822	clk = alloc_clk(core, dev_id, con_id);
3823	if (IS_ERR(clk))
3824		return clk;
3825	clk->dev = dev;
3826
3827	if (!try_module_get(core->owner)) {
3828		free_clk(clk);
3829		return ERR_PTR(-ENOENT);
3830	}
3831
3832	kref_get(&core->ref);
3833	clk_core_link_consumer(core, clk);
3834
3835	return clk;
3836}
3837
3838static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3839{
3840	const char *dst;
3841
3842	if (!src) {
3843		if (must_exist)
3844			return -EINVAL;
3845		return 0;
3846	}
3847
3848	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3849	if (!dst)
3850		return -ENOMEM;
3851
3852	return 0;
3853}
3854
3855static int clk_core_populate_parent_map(struct clk_core *core,
3856					const struct clk_init_data *init)
3857{
3858	u8 num_parents = init->num_parents;
3859	const char * const *parent_names = init->parent_names;
3860	const struct clk_hw **parent_hws = init->parent_hws;
3861	const struct clk_parent_data *parent_data = init->parent_data;
3862	int i, ret = 0;
3863	struct clk_parent_map *parents, *parent;
3864
3865	if (!num_parents)
3866		return 0;
3867
3868	/*
3869	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3870	 * having a cache of names/clk_hw pointers to clk_core pointers.
3871	 */
3872	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3873	core->parents = parents;
3874	if (!parents)
3875		return -ENOMEM;
3876
3877	/* Copy everything over because it might be __initdata */
3878	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3879		parent->index = -1;
3880		if (parent_names) {
3881			/* throw a WARN if any entries are NULL */
3882			WARN(!parent_names[i],
3883				"%s: invalid NULL in %s's .parent_names\n",
3884				__func__, core->name);
3885			ret = clk_cpy_name(&parent->name, parent_names[i],
3886					   true);
3887		} else if (parent_data) {
3888			parent->hw = parent_data[i].hw;
3889			parent->index = parent_data[i].index;
3890			ret = clk_cpy_name(&parent->fw_name,
3891					   parent_data[i].fw_name, false);
3892			if (!ret)
3893				ret = clk_cpy_name(&parent->name,
3894						   parent_data[i].name,
3895						   false);
3896		} else if (parent_hws) {
3897			parent->hw = parent_hws[i];
3898		} else {
3899			ret = -EINVAL;
3900			WARN(1, "Must specify parents if num_parents > 0\n");
3901		}
3902
3903		if (ret) {
3904			do {
3905				kfree_const(parents[i].name);
3906				kfree_const(parents[i].fw_name);
3907			} while (--i >= 0);
3908			kfree(parents);
3909
3910			return ret;
3911		}
3912	}
3913
3914	return 0;
3915}
3916
3917static void clk_core_free_parent_map(struct clk_core *core)
3918{
3919	int i = core->num_parents;
3920
3921	if (!core->num_parents)
3922		return;
3923
3924	while (--i >= 0) {
3925		kfree_const(core->parents[i].name);
3926		kfree_const(core->parents[i].fw_name);
3927	}
3928
3929	kfree(core->parents);
3930}
3931
3932/* Free memory allocated for a struct clk_core */
3933static void __clk_release(struct kref *ref)
3934{
3935	struct clk_core *core = container_of(ref, struct clk_core, ref);
3936
3937	if (core->rpm_enabled) {
3938		mutex_lock(&clk_rpm_list_lock);
3939		hlist_del(&core->rpm_node);
3940		mutex_unlock(&clk_rpm_list_lock);
3941	}
3942
3943	clk_core_free_parent_map(core);
3944	kfree_const(core->name);
3945	kfree(core);
3946}
3947
3948static struct clk *
3949__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3950{
3951	int ret;
3952	struct clk_core *core;
3953	const struct clk_init_data *init = hw->init;
3954
3955	/*
3956	 * The init data is not supposed to be used outside of registration path.
3957	 * Set it to NULL so that provider drivers can't use it either and so that
3958	 * we catch use of hw->init early on in the core.
3959	 */
3960	hw->init = NULL;
3961
3962	core = kzalloc(sizeof(*core), GFP_KERNEL);
3963	if (!core) {
3964		ret = -ENOMEM;
3965		goto fail_out;
3966	}
3967
3968	kref_init(&core->ref);
3969
3970	core->name = kstrdup_const(init->name, GFP_KERNEL);
3971	if (!core->name) {
3972		ret = -ENOMEM;
3973		goto fail_name;
3974	}
3975
3976	if (WARN_ON(!init->ops)) {
3977		ret = -EINVAL;
3978		goto fail_ops;
3979	}
3980	core->ops = init->ops;
3981
3982	core->dev = dev;
3983	clk_pm_runtime_init(core);
3984	core->of_node = np;
3985	if (dev && dev->driver)
3986		core->owner = dev->driver->owner;
3987	core->hw = hw;
3988	core->flags = init->flags;
3989	core->num_parents = init->num_parents;
3990	core->min_rate = 0;
3991	core->max_rate = ULONG_MAX;
3992
3993	ret = clk_core_populate_parent_map(core, init);
3994	if (ret)
3995		goto fail_parents;
3996
3997	INIT_HLIST_HEAD(&core->clks);
3998
3999	/*
4000	 * Don't call clk_hw_create_clk() here because that would pin the
4001	 * provider module to itself and prevent it from ever being removed.
4002	 */
4003	hw->clk = alloc_clk(core, NULL, NULL);
4004	if (IS_ERR(hw->clk)) {
4005		ret = PTR_ERR(hw->clk);
4006		goto fail_create_clk;
4007	}
4008
4009	clk_core_link_consumer(core, hw->clk);
4010
4011	ret = __clk_core_init(core);
4012	if (!ret)
4013		return hw->clk;
4014
4015	clk_prepare_lock();
4016	clk_core_unlink_consumer(hw->clk);
4017	clk_prepare_unlock();
4018
4019	free_clk(hw->clk);
4020	hw->clk = NULL;
4021
4022fail_create_clk:
4023fail_parents:
4024fail_ops:
4025fail_name:
4026	kref_put(&core->ref, __clk_release);
4027fail_out:
4028	return ERR_PTR(ret);
4029}
4030
4031/**
4032 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4033 * @dev: Device to get device node of
4034 *
4035 * Return: device node pointer of @dev, or the device node pointer of
4036 * @dev->parent if dev doesn't have a device node, or NULL if neither
4037 * @dev or @dev->parent have a device node.
4038 */
4039static struct device_node *dev_or_parent_of_node(struct device *dev)
4040{
4041	struct device_node *np;
4042
4043	if (!dev)
4044		return NULL;
4045
4046	np = dev_of_node(dev);
4047	if (!np)
4048		np = dev_of_node(dev->parent);
4049
4050	return np;
4051}
4052
4053/**
4054 * clk_register - allocate a new clock, register it and return an opaque cookie
4055 * @dev: device that is registering this clock
4056 * @hw: link to hardware-specific clock data
4057 *
4058 * clk_register is the *deprecated* interface for populating the clock tree with
4059 * new clock nodes. Use clk_hw_register() instead.
4060 *
4061 * Returns: a pointer to the newly allocated struct clk which
4062 * cannot be dereferenced by driver code but may be used in conjunction with the
4063 * rest of the clock API.  In the event of an error clk_register will return an
4064 * error code; drivers must test for an error code after calling clk_register.
4065 */
4066struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4067{
4068	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4069}
4070EXPORT_SYMBOL_GPL(clk_register);
4071
4072/**
4073 * clk_hw_register - register a clk_hw and return an error code
4074 * @dev: device that is registering this clock
4075 * @hw: link to hardware-specific clock data
4076 *
4077 * clk_hw_register is the primary interface for populating the clock tree with
4078 * new clock nodes. It returns an integer equal to zero indicating success or
4079 * less than zero indicating failure. Drivers must test for an error code after
4080 * calling clk_hw_register().
4081 */
4082int clk_hw_register(struct device *dev, struct clk_hw *hw)
4083{
4084	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4085			       hw));
4086}
4087EXPORT_SYMBOL_GPL(clk_hw_register);
4088
4089/*
4090 * of_clk_hw_register - register a clk_hw and return an error code
4091 * @node: device_node of device that is registering this clock
4092 * @hw: link to hardware-specific clock data
4093 *
4094 * of_clk_hw_register() is the primary interface for populating the clock tree
4095 * with new clock nodes when a struct device is not available, but a struct
4096 * device_node is. It returns an integer equal to zero indicating success or
4097 * less than zero indicating failure. Drivers must test for an error code after
4098 * calling of_clk_hw_register().
4099 */
4100int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4101{
4102	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4103}
4104EXPORT_SYMBOL_GPL(of_clk_hw_register);
4105
4106/*
4107 * Empty clk_ops for unregistered clocks. These are used temporarily
4108 * after clk_unregister() was called on a clock and until last clock
4109 * consumer calls clk_put() and the struct clk object is freed.
4110 */
4111static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4112{
4113	return -ENXIO;
4114}
4115
4116static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4117{
4118	WARN_ON_ONCE(1);
4119}
4120
4121static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4122					unsigned long parent_rate)
4123{
4124	return -ENXIO;
4125}
4126
4127static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4128{
4129	return -ENXIO;
4130}
4131
4132static const struct clk_ops clk_nodrv_ops = {
4133	.enable		= clk_nodrv_prepare_enable,
4134	.disable	= clk_nodrv_disable_unprepare,
4135	.prepare	= clk_nodrv_prepare_enable,
4136	.unprepare	= clk_nodrv_disable_unprepare,
4137	.set_rate	= clk_nodrv_set_rate,
4138	.set_parent	= clk_nodrv_set_parent,
4139};
4140
4141static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4142						struct clk_core *target)
4143{
4144	int i;
4145	struct clk_core *child;
4146
4147	for (i = 0; i < root->num_parents; i++)
4148		if (root->parents[i].core == target)
4149			root->parents[i].core = NULL;
4150
4151	hlist_for_each_entry(child, &root->children, child_node)
4152		clk_core_evict_parent_cache_subtree(child, target);
4153}
4154
4155/* Remove this clk from all parent caches */
4156static void clk_core_evict_parent_cache(struct clk_core *core)
4157{
4158	const struct hlist_head **lists;
4159	struct clk_core *root;
4160
4161	lockdep_assert_held(&prepare_lock);
4162
4163	for (lists = all_lists; *lists; lists++)
4164		hlist_for_each_entry(root, *lists, child_node)
4165			clk_core_evict_parent_cache_subtree(root, core);
4166
4167}
4168
4169/**
4170 * clk_unregister - unregister a currently registered clock
4171 * @clk: clock to unregister
4172 */
4173void clk_unregister(struct clk *clk)
4174{
4175	unsigned long flags;
4176	const struct clk_ops *ops;
4177
4178	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4179		return;
4180
4181	clk_debug_unregister(clk->core);
4182
4183	clk_prepare_lock();
4184
4185	ops = clk->core->ops;
4186	if (ops == &clk_nodrv_ops) {
4187		pr_err("%s: unregistered clock: %s\n", __func__,
4188		       clk->core->name);
4189		goto unlock;
4190	}
4191	/*
4192	 * Assign empty clock ops for consumers that might still hold
4193	 * a reference to this clock.
4194	 */
4195	flags = clk_enable_lock();
4196	clk->core->ops = &clk_nodrv_ops;
4197	clk_enable_unlock(flags);
4198
4199	if (ops->terminate)
4200		ops->terminate(clk->core->hw);
4201
4202	if (!hlist_empty(&clk->core->children)) {
4203		struct clk_core *child;
4204		struct hlist_node *t;
4205
4206		/* Reparent all children to the orphan list. */
4207		hlist_for_each_entry_safe(child, t, &clk->core->children,
4208					  child_node)
4209			clk_core_set_parent_nolock(child, NULL);
4210	}
4211
4212	clk_core_evict_parent_cache(clk->core);
4213
4214	hlist_del_init(&clk->core->child_node);
4215
4216	if (clk->core->prepare_count)
4217		pr_warn("%s: unregistering prepared clock: %s\n",
4218					__func__, clk->core->name);
4219
4220	if (clk->core->protect_count)
4221		pr_warn("%s: unregistering protected clock: %s\n",
4222					__func__, clk->core->name);
4223
4224	kref_put(&clk->core->ref, __clk_release);
4225	free_clk(clk);
4226unlock:
4227	clk_prepare_unlock();
4228}
4229EXPORT_SYMBOL_GPL(clk_unregister);
4230
4231/**
4232 * clk_hw_unregister - unregister a currently registered clk_hw
4233 * @hw: hardware-specific clock data to unregister
4234 */
4235void clk_hw_unregister(struct clk_hw *hw)
4236{
4237	clk_unregister(hw->clk);
4238}
4239EXPORT_SYMBOL_GPL(clk_hw_unregister);
4240
4241static void devm_clk_release(struct device *dev, void *res)
4242{
4243	clk_unregister(*(struct clk **)res);
4244}
4245
4246static void devm_clk_hw_release(struct device *dev, void *res)
4247{
4248	clk_hw_unregister(*(struct clk_hw **)res);
4249}
4250
4251/**
4252 * devm_clk_register - resource managed clk_register()
4253 * @dev: device that is registering this clock
4254 * @hw: link to hardware-specific clock data
4255 *
4256 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4257 *
4258 * Clocks returned from this function are automatically clk_unregister()ed on
4259 * driver detach. See clk_register() for more information.
4260 */
4261struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4262{
4263	struct clk *clk;
4264	struct clk **clkp;
4265
4266	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4267	if (!clkp)
4268		return ERR_PTR(-ENOMEM);
4269
4270	clk = clk_register(dev, hw);
4271	if (!IS_ERR(clk)) {
4272		*clkp = clk;
4273		devres_add(dev, clkp);
4274	} else {
4275		devres_free(clkp);
4276	}
4277
4278	return clk;
4279}
4280EXPORT_SYMBOL_GPL(devm_clk_register);
4281
4282/**
4283 * devm_clk_hw_register - resource managed clk_hw_register()
4284 * @dev: device that is registering this clock
4285 * @hw: link to hardware-specific clock data
4286 *
4287 * Managed clk_hw_register(). Clocks registered by this function are
4288 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4289 * for more information.
4290 */
4291int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4292{
4293	struct clk_hw **hwp;
4294	int ret;
4295
4296	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4297	if (!hwp)
4298		return -ENOMEM;
4299
4300	ret = clk_hw_register(dev, hw);
4301	if (!ret) {
4302		*hwp = hw;
4303		devres_add(dev, hwp);
4304	} else {
4305		devres_free(hwp);
4306	}
4307
4308	return ret;
4309}
4310EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4311
4312static int devm_clk_match(struct device *dev, void *res, void *data)
4313{
4314	struct clk *c = res;
4315	if (WARN_ON(!c))
4316		return 0;
4317	return c == data;
4318}
4319
4320static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4321{
4322	struct clk_hw *hw = res;
4323
4324	if (WARN_ON(!hw))
4325		return 0;
4326	return hw == data;
4327}
4328
4329/**
4330 * devm_clk_unregister - resource managed clk_unregister()
4331 * @dev: device that is unregistering the clock data
4332 * @clk: clock to unregister
4333 *
4334 * Deallocate a clock allocated with devm_clk_register(). Normally
4335 * this function will not need to be called and the resource management
4336 * code will ensure that the resource is freed.
4337 */
4338void devm_clk_unregister(struct device *dev, struct clk *clk)
4339{
4340	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4341}
4342EXPORT_SYMBOL_GPL(devm_clk_unregister);
4343
4344/**
4345 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4346 * @dev: device that is unregistering the hardware-specific clock data
4347 * @hw: link to hardware-specific clock data
4348 *
4349 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4350 * this function will not need to be called and the resource management
4351 * code will ensure that the resource is freed.
4352 */
4353void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4354{
4355	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4356				hw));
4357}
4358EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4359
4360/*
4361 * clkdev helpers
4362 */
4363
4364void __clk_put(struct clk *clk)
4365{
4366	struct module *owner;
4367
4368	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4369		return;
4370
4371	clk_prepare_lock();
4372
4373	/*
4374	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4375	 * given user should be balanced with calls to clk_rate_exclusive_put()
4376	 * and by that same consumer
4377	 */
4378	if (WARN_ON(clk->exclusive_count)) {
4379		/* We voiced our concern, let's sanitize the situation */
4380		clk->core->protect_count -= (clk->exclusive_count - 1);
4381		clk_core_rate_unprotect(clk->core);
4382		clk->exclusive_count = 0;
4383	}
4384
4385	hlist_del(&clk->clks_node);
4386	if (clk->min_rate > clk->core->req_rate ||
4387	    clk->max_rate < clk->core->req_rate)
4388		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4389
4390	owner = clk->core->owner;
4391	kref_put(&clk->core->ref, __clk_release);
4392
4393	clk_prepare_unlock();
4394
4395	module_put(owner);
4396
4397	free_clk(clk);
4398}
4399
4400/***        clk rate change notifiers        ***/
4401
4402/**
4403 * clk_notifier_register - add a clk rate change notifier
4404 * @clk: struct clk * to watch
4405 * @nb: struct notifier_block * with callback info
4406 *
4407 * Request notification when clk's rate changes.  This uses an SRCU
4408 * notifier because we want it to block and notifier unregistrations are
4409 * uncommon.  The callbacks associated with the notifier must not
4410 * re-enter into the clk framework by calling any top-level clk APIs;
4411 * this will cause a nested prepare_lock mutex.
4412 *
4413 * In all notification cases (pre, post and abort rate change) the original
4414 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4415 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4416 *
4417 * clk_notifier_register() must be called from non-atomic context.
4418 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4419 * allocation failure; otherwise, passes along the return value of
4420 * srcu_notifier_chain_register().
4421 */
4422int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4423{
4424	struct clk_notifier *cn;
4425	int ret = -ENOMEM;
4426
4427	if (!clk || !nb)
4428		return -EINVAL;
4429
4430	clk_prepare_lock();
4431
4432	/* search the list of notifiers for this clk */
4433	list_for_each_entry(cn, &clk_notifier_list, node)
4434		if (cn->clk == clk)
4435			goto found;
4436
4437	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4438	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4439	if (!cn)
4440		goto out;
4441
4442	cn->clk = clk;
4443	srcu_init_notifier_head(&cn->notifier_head);
4444
4445	list_add(&cn->node, &clk_notifier_list);
4446
4447found:
4448	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4449
4450	clk->core->notifier_count++;
4451
4452out:
4453	clk_prepare_unlock();
4454
4455	return ret;
4456}
4457EXPORT_SYMBOL_GPL(clk_notifier_register);
4458
4459/**
4460 * clk_notifier_unregister - remove a clk rate change notifier
4461 * @clk: struct clk *
4462 * @nb: struct notifier_block * with callback info
4463 *
4464 * Request no further notification for changes to 'clk' and frees memory
4465 * allocated in clk_notifier_register.
4466 *
4467 * Returns -EINVAL if called with null arguments; otherwise, passes
4468 * along the return value of srcu_notifier_chain_unregister().
4469 */
4470int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4471{
4472	struct clk_notifier *cn;
4473	int ret = -ENOENT;
4474
4475	if (!clk || !nb)
4476		return -EINVAL;
4477
4478	clk_prepare_lock();
4479
4480	list_for_each_entry(cn, &clk_notifier_list, node) {
4481		if (cn->clk == clk) {
4482			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4483
4484			clk->core->notifier_count--;
4485
4486			/* XXX the notifier code should handle this better */
4487			if (!cn->notifier_head.head) {
4488				srcu_cleanup_notifier_head(&cn->notifier_head);
4489				list_del(&cn->node);
4490				kfree(cn);
4491			}
4492			break;
4493		}
4494	}
4495
4496	clk_prepare_unlock();
4497
4498	return ret;
4499}
4500EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4501
4502#ifdef CONFIG_OF
4503static void clk_core_reparent_orphans(void)
4504{
4505	clk_prepare_lock();
4506	clk_core_reparent_orphans_nolock();
4507	clk_prepare_unlock();
4508}
4509
4510/**
4511 * struct of_clk_provider - Clock provider registration structure
4512 * @link: Entry in global list of clock providers
4513 * @node: Pointer to device tree node of clock provider
4514 * @get: Get clock callback.  Returns NULL or a struct clk for the
4515 *       given clock specifier
4516 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4517 *       struct clk_hw for the given clock specifier
4518 * @data: context pointer to be passed into @get callback
4519 */
4520struct of_clk_provider {
4521	struct list_head link;
4522
4523	struct device_node *node;
4524	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4525	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4526	void *data;
4527};
4528
4529extern struct of_device_id __clk_of_table;
4530static const struct of_device_id __clk_of_table_sentinel
4531	__used __section("__clk_of_table_end");
4532
4533static LIST_HEAD(of_clk_providers);
4534static DEFINE_MUTEX(of_clk_mutex);
4535
4536struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4537				     void *data)
4538{
4539	return data;
4540}
4541EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4542
4543struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4544{
4545	return data;
4546}
4547EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4548
4549struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4550{
4551	struct clk_onecell_data *clk_data = data;
4552	unsigned int idx = clkspec->args[0];
4553
4554	if (idx >= clk_data->clk_num) {
4555		pr_err("%s: invalid clock index %u\n", __func__, idx);
4556		return ERR_PTR(-EINVAL);
4557	}
4558
4559	return clk_data->clks[idx];
4560}
4561EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4562
4563struct clk_hw *
4564of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4565{
4566	struct clk_hw_onecell_data *hw_data = data;
4567	unsigned int idx = clkspec->args[0];
4568
4569	if (idx >= hw_data->num) {
4570		pr_err("%s: invalid index %u\n", __func__, idx);
4571		return ERR_PTR(-EINVAL);
4572	}
4573
4574	return hw_data->hws[idx];
4575}
4576EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4577
4578/**
4579 * of_clk_add_provider() - Register a clock provider for a node
4580 * @np: Device node pointer associated with clock provider
4581 * @clk_src_get: callback for decoding clock
4582 * @data: context pointer for @clk_src_get callback.
4583 *
4584 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4585 */
4586int of_clk_add_provider(struct device_node *np,
4587			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4588						   void *data),
4589			void *data)
4590{
4591	struct of_clk_provider *cp;
4592	int ret;
4593
4594	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4595	if (!cp)
4596		return -ENOMEM;
4597
4598	cp->node = of_node_get(np);
4599	cp->data = data;
4600	cp->get = clk_src_get;
4601
4602	mutex_lock(&of_clk_mutex);
4603	list_add(&cp->link, &of_clk_providers);
4604	mutex_unlock(&of_clk_mutex);
4605	pr_debug("Added clock from %pOF\n", np);
4606
4607	clk_core_reparent_orphans();
4608
4609	ret = of_clk_set_defaults(np, true);
4610	if (ret < 0)
4611		of_clk_del_provider(np);
4612
4613	return ret;
4614}
4615EXPORT_SYMBOL_GPL(of_clk_add_provider);
4616
4617/**
4618 * of_clk_add_hw_provider() - Register a clock provider for a node
4619 * @np: Device node pointer associated with clock provider
4620 * @get: callback for decoding clk_hw
4621 * @data: context pointer for @get callback.
4622 */
4623int of_clk_add_hw_provider(struct device_node *np,
4624			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4625						 void *data),
4626			   void *data)
4627{
4628	struct of_clk_provider *cp;
4629	int ret;
4630
4631	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4632	if (!cp)
4633		return -ENOMEM;
4634
4635	cp->node = of_node_get(np);
4636	cp->data = data;
4637	cp->get_hw = get;
4638
4639	mutex_lock(&of_clk_mutex);
4640	list_add(&cp->link, &of_clk_providers);
4641	mutex_unlock(&of_clk_mutex);
4642	pr_debug("Added clk_hw provider from %pOF\n", np);
4643
4644	clk_core_reparent_orphans();
4645
4646	ret = of_clk_set_defaults(np, true);
4647	if (ret < 0)
4648		of_clk_del_provider(np);
4649
4650	return ret;
4651}
4652EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4653
4654static void devm_of_clk_release_provider(struct device *dev, void *res)
4655{
4656	of_clk_del_provider(*(struct device_node **)res);
4657}
4658
4659/*
4660 * We allow a child device to use its parent device as the clock provider node
4661 * for cases like MFD sub-devices where the child device driver wants to use
4662 * devm_*() APIs but not list the device in DT as a sub-node.
4663 */
4664static struct device_node *get_clk_provider_node(struct device *dev)
4665{
4666	struct device_node *np, *parent_np;
4667
4668	np = dev->of_node;
4669	parent_np = dev->parent ? dev->parent->of_node : NULL;
4670
4671	if (!of_find_property(np, "#clock-cells", NULL))
4672		if (of_find_property(parent_np, "#clock-cells", NULL))
4673			np = parent_np;
4674
4675	return np;
4676}
4677
4678/**
4679 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4680 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4681 * @get: callback for decoding clk_hw
4682 * @data: context pointer for @get callback
4683 *
4684 * Registers clock provider for given device's node. If the device has no DT
4685 * node or if the device node lacks of clock provider information (#clock-cells)
4686 * then the parent device's node is scanned for this information. If parent node
4687 * has the #clock-cells then it is used in registration. Provider is
4688 * automatically released at device exit.
4689 *
4690 * Return: 0 on success or an errno on failure.
4691 */
4692int devm_of_clk_add_hw_provider(struct device *dev,
4693			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4694					      void *data),
4695			void *data)
4696{
4697	struct device_node **ptr, *np;
4698	int ret;
4699
4700	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4701			   GFP_KERNEL);
4702	if (!ptr)
4703		return -ENOMEM;
4704
4705	np = get_clk_provider_node(dev);
4706	ret = of_clk_add_hw_provider(np, get, data);
4707	if (!ret) {
4708		*ptr = np;
4709		devres_add(dev, ptr);
4710	} else {
4711		devres_free(ptr);
4712	}
4713
4714	return ret;
4715}
4716EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4717
4718/**
4719 * of_clk_del_provider() - Remove a previously registered clock provider
4720 * @np: Device node pointer associated with clock provider
4721 */
4722void of_clk_del_provider(struct device_node *np)
4723{
4724	struct of_clk_provider *cp;
4725
4726	mutex_lock(&of_clk_mutex);
4727	list_for_each_entry(cp, &of_clk_providers, link) {
4728		if (cp->node == np) {
4729			list_del(&cp->link);
4730			of_node_put(cp->node);
4731			kfree(cp);
4732			break;
4733		}
4734	}
4735	mutex_unlock(&of_clk_mutex);
4736}
4737EXPORT_SYMBOL_GPL(of_clk_del_provider);
4738
4739static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4740{
4741	struct device_node **np = res;
4742
4743	if (WARN_ON(!np || !*np))
4744		return 0;
4745
4746	return *np == data;
4747}
4748
4749/**
4750 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4751 * @dev: Device to whose lifetime the clock provider was bound
4752 */
4753void devm_of_clk_del_provider(struct device *dev)
4754{
4755	int ret;
4756	struct device_node *np = get_clk_provider_node(dev);
4757
4758	ret = devres_release(dev, devm_of_clk_release_provider,
4759			     devm_clk_provider_match, np);
4760
4761	WARN_ON(ret);
4762}
4763EXPORT_SYMBOL(devm_of_clk_del_provider);
4764
4765/**
4766 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4767 * @np: device node to parse clock specifier from
4768 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4769 * @name: clock name to find and parse. If name is NULL, the index is used
4770 * @out_args: Result of parsing the clock specifier
4771 *
4772 * Parses a device node's "clocks" and "clock-names" properties to find the
4773 * phandle and cells for the index or name that is desired. The resulting clock
4774 * specifier is placed into @out_args, or an errno is returned when there's a
4775 * parsing error. The @index argument is ignored if @name is non-NULL.
4776 *
4777 * Example:
4778 *
4779 * phandle1: clock-controller@1 {
4780 *	#clock-cells = <2>;
4781 * }
4782 *
4783 * phandle2: clock-controller@2 {
4784 *	#clock-cells = <1>;
4785 * }
4786 *
4787 * clock-consumer@3 {
4788 *	clocks = <&phandle1 1 2 &phandle2 3>;
4789 *	clock-names = "name1", "name2";
4790 * }
4791 *
4792 * To get a device_node for `clock-controller@2' node you may call this
4793 * function a few different ways:
4794 *
4795 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4796 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4797 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4798 *
4799 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4800 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4801 * the "clock-names" property of @np.
4802 */
4803static int of_parse_clkspec(const struct device_node *np, int index,
4804			    const char *name, struct of_phandle_args *out_args)
4805{
4806	int ret = -ENOENT;
4807
4808	/* Walk up the tree of devices looking for a clock property that matches */
4809	while (np) {
4810		/*
4811		 * For named clocks, first look up the name in the
4812		 * "clock-names" property.  If it cannot be found, then index
4813		 * will be an error code and of_parse_phandle_with_args() will
4814		 * return -EINVAL.
4815		 */
4816		if (name)
4817			index = of_property_match_string(np, "clock-names", name);
4818		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4819						 index, out_args);
4820		if (!ret)
4821			break;
4822		if (name && index >= 0)
4823			break;
4824
4825		/*
4826		 * No matching clock found on this node.  If the parent node
4827		 * has a "clock-ranges" property, then we can try one of its
4828		 * clocks.
4829		 */
4830		np = np->parent;
4831		if (np && !of_get_property(np, "clock-ranges", NULL))
4832			break;
4833		index = 0;
4834	}
4835
4836	return ret;
4837}
4838
4839static struct clk_hw *
4840__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4841			      struct of_phandle_args *clkspec)
4842{
4843	struct clk *clk;
4844
4845	if (provider->get_hw)
4846		return provider->get_hw(clkspec, provider->data);
4847
4848	clk = provider->get(clkspec, provider->data);
4849	if (IS_ERR(clk))
4850		return ERR_CAST(clk);
4851	return __clk_get_hw(clk);
4852}
4853
4854static struct clk_hw *
4855of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4856{
4857	struct of_clk_provider *provider;
4858	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4859
4860	if (!clkspec)
4861		return ERR_PTR(-EINVAL);
4862
4863	mutex_lock(&of_clk_mutex);
4864	list_for_each_entry(provider, &of_clk_providers, link) {
4865		if (provider->node == clkspec->np) {
4866			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4867			if (!IS_ERR(hw))
4868				break;
4869		}
4870	}
4871	mutex_unlock(&of_clk_mutex);
4872
4873	return hw;
4874}
4875
4876/**
4877 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4878 * @clkspec: pointer to a clock specifier data structure
4879 *
4880 * This function looks up a struct clk from the registered list of clock
4881 * providers, an input is a clock specifier data structure as returned
4882 * from the of_parse_phandle_with_args() function call.
4883 */
4884struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4885{
4886	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4887
4888	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4889}
4890EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4891
4892struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4893			     const char *con_id)
4894{
4895	int ret;
4896	struct clk_hw *hw;
4897	struct of_phandle_args clkspec;
4898
4899	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4900	if (ret)
4901		return ERR_PTR(ret);
4902
4903	hw = of_clk_get_hw_from_clkspec(&clkspec);
4904	of_node_put(clkspec.np);
4905
4906	return hw;
4907}
4908
4909static struct clk *__of_clk_get(struct device_node *np,
4910				int index, const char *dev_id,
4911				const char *con_id)
4912{
4913	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4914
4915	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4916}
4917
4918struct clk *of_clk_get(struct device_node *np, int index)
4919{
4920	return __of_clk_get(np, index, np->full_name, NULL);
4921}
4922EXPORT_SYMBOL(of_clk_get);
4923
4924/**
4925 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4926 * @np: pointer to clock consumer node
4927 * @name: name of consumer's clock input, or NULL for the first clock reference
4928 *
4929 * This function parses the clocks and clock-names properties,
4930 * and uses them to look up the struct clk from the registered list of clock
4931 * providers.
4932 */
4933struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4934{
4935	if (!np)
4936		return ERR_PTR(-ENOENT);
4937
4938	return __of_clk_get(np, 0, np->full_name, name);
4939}
4940EXPORT_SYMBOL(of_clk_get_by_name);
4941
4942/**
4943 * of_clk_get_parent_count() - Count the number of clocks a device node has
4944 * @np: device node to count
4945 *
4946 * Returns: The number of clocks that are possible parents of this node
4947 */
4948unsigned int of_clk_get_parent_count(const struct device_node *np)
4949{
4950	int count;
4951
4952	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4953	if (count < 0)
4954		return 0;
4955
4956	return count;
4957}
4958EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4959
4960const char *of_clk_get_parent_name(const struct device_node *np, int index)
4961{
4962	struct of_phandle_args clkspec;
4963	struct property *prop;
4964	const char *clk_name;
4965	const __be32 *vp;
4966	u32 pv;
4967	int rc;
4968	int count;
4969	struct clk *clk;
4970
4971	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4972					&clkspec);
4973	if (rc)
4974		return NULL;
4975
4976	index = clkspec.args_count ? clkspec.args[0] : 0;
4977	count = 0;
4978
4979	/* if there is an indices property, use it to transfer the index
4980	 * specified into an array offset for the clock-output-names property.
4981	 */
4982	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4983		if (index == pv) {
4984			index = count;
4985			break;
4986		}
4987		count++;
4988	}
4989	/* We went off the end of 'clock-indices' without finding it */
4990	if (prop && !vp)
4991		return NULL;
4992
4993	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4994					  index,
4995					  &clk_name) < 0) {
4996		/*
4997		 * Best effort to get the name if the clock has been
4998		 * registered with the framework. If the clock isn't
4999		 * registered, we return the node name as the name of
5000		 * the clock as long as #clock-cells = 0.
5001		 */
5002		clk = of_clk_get_from_provider(&clkspec);
5003		if (IS_ERR(clk)) {
5004			if (clkspec.args_count == 0)
5005				clk_name = clkspec.np->name;
5006			else
5007				clk_name = NULL;
5008		} else {
5009			clk_name = __clk_get_name(clk);
5010			clk_put(clk);
5011		}
5012	}
5013
5014
5015	of_node_put(clkspec.np);
5016	return clk_name;
5017}
5018EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5019
5020/**
5021 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5022 * number of parents
5023 * @np: Device node pointer associated with clock provider
5024 * @parents: pointer to char array that hold the parents' names
5025 * @size: size of the @parents array
5026 *
5027 * Return: number of parents for the clock node.
5028 */
5029int of_clk_parent_fill(struct device_node *np, const char **parents,
5030		       unsigned int size)
5031{
5032	unsigned int i = 0;
5033
5034	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5035		i++;
5036
5037	return i;
5038}
5039EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5040
5041struct clock_provider {
5042	void (*clk_init_cb)(struct device_node *);
5043	struct device_node *np;
5044	struct list_head node;
5045};
5046
5047/*
5048 * This function looks for a parent clock. If there is one, then it
5049 * checks that the provider for this parent clock was initialized, in
5050 * this case the parent clock will be ready.
5051 */
5052static int parent_ready(struct device_node *np)
5053{
5054	int i = 0;
5055
5056	while (true) {
5057		struct clk *clk = of_clk_get(np, i);
5058
5059		/* this parent is ready we can check the next one */
5060		if (!IS_ERR(clk)) {
5061			clk_put(clk);
5062			i++;
5063			continue;
5064		}
5065
5066		/* at least one parent is not ready, we exit now */
5067		if (PTR_ERR(clk) == -EPROBE_DEFER)
5068			return 0;
5069
5070		/*
5071		 * Here we make assumption that the device tree is
5072		 * written correctly. So an error means that there is
5073		 * no more parent. As we didn't exit yet, then the
5074		 * previous parent are ready. If there is no clock
5075		 * parent, no need to wait for them, then we can
5076		 * consider their absence as being ready
5077		 */
5078		return 1;
5079	}
5080}
5081
5082/**
5083 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5084 * @np: Device node pointer associated with clock provider
5085 * @index: clock index
5086 * @flags: pointer to top-level framework flags
5087 *
5088 * Detects if the clock-critical property exists and, if so, sets the
5089 * corresponding CLK_IS_CRITICAL flag.
5090 *
5091 * Do not use this function. It exists only for legacy Device Tree
5092 * bindings, such as the one-clock-per-node style that are outdated.
5093 * Those bindings typically put all clock data into .dts and the Linux
5094 * driver has no clock data, thus making it impossible to set this flag
5095 * correctly from the driver. Only those drivers may call
5096 * of_clk_detect_critical from their setup functions.
5097 *
5098 * Return: error code or zero on success
5099 */
5100int of_clk_detect_critical(struct device_node *np, int index,
5101			   unsigned long *flags)
5102{
5103	struct property *prop;
5104	const __be32 *cur;
5105	uint32_t idx;
5106
5107	if (!np || !flags)
5108		return -EINVAL;
5109
5110	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5111		if (index == idx)
5112			*flags |= CLK_IS_CRITICAL;
5113
5114	return 0;
5115}
5116
5117/**
5118 * of_clk_init() - Scan and init clock providers from the DT
5119 * @matches: array of compatible values and init functions for providers.
5120 *
5121 * This function scans the device tree for matching clock providers
5122 * and calls their initialization functions. It also does it by trying
5123 * to follow the dependencies.
5124 */
5125void __init of_clk_init(const struct of_device_id *matches)
5126{
5127	const struct of_device_id *match;
5128	struct device_node *np;
5129	struct clock_provider *clk_provider, *next;
5130	bool is_init_done;
5131	bool force = false;
5132	LIST_HEAD(clk_provider_list);
5133
5134	if (!matches)
5135		matches = &__clk_of_table;
5136
5137	/* First prepare the list of the clocks providers */
5138	for_each_matching_node_and_match(np, matches, &match) {
5139		struct clock_provider *parent;
5140
5141		if (!of_device_is_available(np))
5142			continue;
5143
5144		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5145		if (!parent) {
5146			list_for_each_entry_safe(clk_provider, next,
5147						 &clk_provider_list, node) {
5148				list_del(&clk_provider->node);
5149				of_node_put(clk_provider->np);
5150				kfree(clk_provider);
5151			}
5152			of_node_put(np);
5153			return;
5154		}
5155
5156		parent->clk_init_cb = match->data;
5157		parent->np = of_node_get(np);
5158		list_add_tail(&parent->node, &clk_provider_list);
5159	}
5160
5161	while (!list_empty(&clk_provider_list)) {
5162		is_init_done = false;
5163		list_for_each_entry_safe(clk_provider, next,
5164					&clk_provider_list, node) {
5165			if (force || parent_ready(clk_provider->np)) {
5166
5167				/* Don't populate platform devices */
5168				of_node_set_flag(clk_provider->np,
5169						 OF_POPULATED);
5170
5171				clk_provider->clk_init_cb(clk_provider->np);
5172				of_clk_set_defaults(clk_provider->np, true);
5173
5174				list_del(&clk_provider->node);
5175				of_node_put(clk_provider->np);
5176				kfree(clk_provider);
5177				is_init_done = true;
5178			}
5179		}
5180
5181		/*
5182		 * We didn't manage to initialize any of the
5183		 * remaining providers during the last loop, so now we
5184		 * initialize all the remaining ones unconditionally
5185		 * in case the clock parent was not mandatory
5186		 */
5187		if (!is_init_done)
5188			force = true;
5189	}
5190}
5191#endif
5192