1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	unsigned int		enable_count;
81 	unsigned int		prepare_count;
82 	unsigned int		protect_count;
83 	unsigned long		min_rate;
84 	unsigned long		max_rate;
85 	unsigned long		accuracy;
86 	int			phase;
87 	struct clk_duty		duty;
88 	struct hlist_head	children;
89 	struct hlist_node	child_node;
90 	struct hlist_head	clks;
91 	unsigned int		notifier_count;
92 #ifdef CONFIG_DEBUG_FS
93 	struct dentry		*dentry;
94 	struct hlist_node	debug_node;
95 #endif
96 	struct kref		ref;
97 };
98 
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/clk.h>
101 
102 struct clk {
103 	struct clk_core	*core;
104 	struct device *dev;
105 	const char *dev_id;
106 	const char *con_id;
107 	unsigned long min_rate;
108 	unsigned long max_rate;
109 	unsigned int exclusive_count;
110 	struct hlist_node clks_node;
111 };
112 
113 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core *core)114 static int clk_pm_runtime_get(struct clk_core *core)
115 {
116 	int ret;
117 
118 	if (!core->rpm_enabled)
119 		return 0;
120 
121 	ret = pm_runtime_get_sync(core->dev);
122 	if (ret < 0) {
123 		pm_runtime_put_noidle(core->dev);
124 		return ret;
125 	}
126 	return 0;
127 }
128 
clk_pm_runtime_put(struct clk_core *core)129 static void clk_pm_runtime_put(struct clk_core *core)
130 {
131 	if (!core->rpm_enabled)
132 		return;
133 
134 	pm_runtime_put_sync(core->dev);
135 }
136 
137 /**
138  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
139  *
140  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
141  * that disabling unused clks avoids a deadlock where a device is runtime PM
142  * resuming/suspending and the runtime PM callback is trying to grab the
143  * prepare_lock for something like clk_prepare_enable() while
144  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
145  * PM resume/suspend the device as well.
146  *
147  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
148  * success. Otherwise the lock is released on failure.
149  *
150  * Return: 0 on success, negative errno otherwise.
151  */
clk_pm_runtime_get_all(void)152 static int clk_pm_runtime_get_all(void)
153 {
154 	int ret;
155 	struct clk_core *core, *failed;
156 
157 	/*
158 	 * Grab the list lock to prevent any new clks from being registered
159 	 * or unregistered until clk_pm_runtime_put_all().
160 	 */
161 	mutex_lock(&clk_rpm_list_lock);
162 
163 	/*
164 	 * Runtime PM "get" all the devices that are needed for the clks
165 	 * currently registered. Do this without holding the prepare_lock, to
166 	 * avoid the deadlock.
167 	 */
168 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
169 		ret = clk_pm_runtime_get(core);
170 		if (ret) {
171 			failed = core;
172 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
173 			       dev_name(failed->dev), failed->name);
174 			goto err;
175 		}
176 	}
177 
178 	return 0;
179 
180 err:
181 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
182 		if (core == failed)
183 			break;
184 
185 		clk_pm_runtime_put(core);
186 	}
187 	mutex_unlock(&clk_rpm_list_lock);
188 
189 	return ret;
190 }
191 
192 /**
193  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
194  *
195  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
196  * the 'clk_rpm_list_lock'.
197  */
clk_pm_runtime_put_all(void)198 static void clk_pm_runtime_put_all(void)
199 {
200 	struct clk_core *core;
201 
202 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
203 		clk_pm_runtime_put(core);
204 	mutex_unlock(&clk_rpm_list_lock);
205 }
206 
clk_pm_runtime_init(struct clk_core *core)207 static void clk_pm_runtime_init(struct clk_core *core)
208 {
209 	struct device *dev = core->dev;
210 
211 	if (dev && pm_runtime_enabled(dev)) {
212 		core->rpm_enabled = true;
213 
214 		mutex_lock(&clk_rpm_list_lock);
215 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
216 		mutex_unlock(&clk_rpm_list_lock);
217 	}
218 }
219 
220 /***           locking             ***/
clk_prepare_lock(void)221 static void clk_prepare_lock(void)
222 {
223 	if (!mutex_trylock(&prepare_lock)) {
224 		if (prepare_owner == current) {
225 			prepare_refcnt++;
226 			return;
227 		}
228 		mutex_lock(&prepare_lock);
229 	}
230 	WARN_ON_ONCE(prepare_owner != NULL);
231 	WARN_ON_ONCE(prepare_refcnt != 0);
232 	prepare_owner = current;
233 	prepare_refcnt = 1;
234 }
235 
clk_prepare_unlock(void)236 static void clk_prepare_unlock(void)
237 {
238 	WARN_ON_ONCE(prepare_owner != current);
239 	WARN_ON_ONCE(prepare_refcnt == 0);
240 
241 	if (--prepare_refcnt)
242 		return;
243 	prepare_owner = NULL;
244 	mutex_unlock(&prepare_lock);
245 }
246 
247 static unsigned long clk_enable_lock(void)
__acquiresnull248 	__acquires(enable_lock)
249 {
250 	unsigned long flags;
251 
252 	/*
253 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
254 	 * we already hold the lock. So, in that case, we rely only on
255 	 * reference counting.
256 	 */
257 	if (!IS_ENABLED(CONFIG_SMP) ||
258 	    !spin_trylock_irqsave(&enable_lock, flags)) {
259 		if (enable_owner == current) {
260 			enable_refcnt++;
261 			__acquire(enable_lock);
262 			if (!IS_ENABLED(CONFIG_SMP))
263 				local_save_flags(flags);
264 			return flags;
265 		}
266 		spin_lock_irqsave(&enable_lock, flags);
267 	}
268 	WARN_ON_ONCE(enable_owner != NULL);
269 	WARN_ON_ONCE(enable_refcnt != 0);
270 	enable_owner = current;
271 	enable_refcnt = 1;
272 	return flags;
273 }
274 
275 static void clk_enable_unlock(unsigned long flags)
__releasesnull276 	__releases(enable_lock)
277 {
278 	WARN_ON_ONCE(enable_owner != current);
279 	WARN_ON_ONCE(enable_refcnt == 0);
280 
281 	if (--enable_refcnt) {
282 		__release(enable_lock);
283 		return;
284 	}
285 	enable_owner = NULL;
286 	spin_unlock_irqrestore(&enable_lock, flags);
287 }
288 
clk_core_rate_is_protected(struct clk_core *core)289 static bool clk_core_rate_is_protected(struct clk_core *core)
290 {
291 	return core->protect_count;
292 }
293 
clk_core_is_prepared(struct clk_core *core)294 static bool clk_core_is_prepared(struct clk_core *core)
295 {
296 	bool ret = false;
297 
298 	/*
299 	 * .is_prepared is optional for clocks that can prepare
300 	 * fall back to software usage counter if it is missing
301 	 */
302 	if (!core->ops->is_prepared)
303 		return core->prepare_count;
304 
305 	if (!clk_pm_runtime_get(core)) {
306 		ret = core->ops->is_prepared(core->hw);
307 		clk_pm_runtime_put(core);
308 	}
309 
310 	return ret;
311 }
312 
clk_core_is_enabled(struct clk_core *core)313 static bool clk_core_is_enabled(struct clk_core *core)
314 {
315 	bool ret = false;
316 
317 	/*
318 	 * .is_enabled is only mandatory for clocks that gate
319 	 * fall back to software usage counter if .is_enabled is missing
320 	 */
321 	if (!core->ops->is_enabled)
322 		return core->enable_count;
323 
324 	/*
325 	 * Check if clock controller's device is runtime active before
326 	 * calling .is_enabled callback. If not, assume that clock is
327 	 * disabled, because we might be called from atomic context, from
328 	 * which pm_runtime_get() is not allowed.
329 	 * This function is called mainly from clk_disable_unused_subtree,
330 	 * which ensures proper runtime pm activation of controller before
331 	 * taking enable spinlock, but the below check is needed if one tries
332 	 * to call it from other places.
333 	 */
334 	if (core->rpm_enabled) {
335 		pm_runtime_get_noresume(core->dev);
336 		if (!pm_runtime_active(core->dev)) {
337 			ret = false;
338 			goto done;
339 		}
340 	}
341 
342 	/*
343 	 * This could be called with the enable lock held, or from atomic
344 	 * context. If the parent isn't enabled already, we can't do
345 	 * anything here. We can also assume this clock isn't enabled.
346 	 */
347 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
348 		if (!clk_core_is_enabled(core->parent)) {
349 			ret = false;
350 			goto done;
351 		}
352 
353 	ret = core->ops->is_enabled(core->hw);
354 done:
355 	if (core->rpm_enabled)
356 		pm_runtime_put(core->dev);
357 
358 	return ret;
359 }
360 
361 /***    helper functions   ***/
362 
__clk_get_name(const struct clk *clk)363 const char *__clk_get_name(const struct clk *clk)
364 {
365 	return !clk ? NULL : clk->core->name;
366 }
367 EXPORT_SYMBOL_GPL(__clk_get_name);
368 
clk_hw_get_name(const struct clk_hw *hw)369 const char *clk_hw_get_name(const struct clk_hw *hw)
370 {
371 	return hw->core->name;
372 }
373 EXPORT_SYMBOL_GPL(clk_hw_get_name);
374 
__clk_get_hw(struct clk *clk)375 struct clk_hw *__clk_get_hw(struct clk *clk)
376 {
377 	return !clk ? NULL : clk->core->hw;
378 }
379 EXPORT_SYMBOL_GPL(__clk_get_hw);
380 
clk_hw_get_num_parents(const struct clk_hw *hw)381 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
382 {
383 	return hw->core->num_parents;
384 }
385 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
386 
clk_hw_get_parent(const struct clk_hw *hw)387 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
388 {
389 	return hw->core->parent ? hw->core->parent->hw : NULL;
390 }
391 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
392 
__clk_lookup_subtree(const char *name, struct clk_core *core)393 static struct clk_core *__clk_lookup_subtree(const char *name,
394 					     struct clk_core *core)
395 {
396 	struct clk_core *child;
397 	struct clk_core *ret;
398 
399 	if (!strcmp(core->name, name))
400 		return core;
401 
402 	hlist_for_each_entry(child, &core->children, child_node) {
403 		ret = __clk_lookup_subtree(name, child);
404 		if (ret)
405 			return ret;
406 	}
407 
408 	return NULL;
409 }
410 
clk_core_lookup(const char *name)411 static struct clk_core *clk_core_lookup(const char *name)
412 {
413 	struct clk_core *root_clk;
414 	struct clk_core *ret;
415 
416 	if (!name)
417 		return NULL;
418 
419 	/* search the 'proper' clk tree first */
420 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
421 		ret = __clk_lookup_subtree(name, root_clk);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	/* if not found, then search the orphan tree */
427 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
428 		ret = __clk_lookup_subtree(name, root_clk);
429 		if (ret)
430 			return ret;
431 	}
432 
433 	return NULL;
434 }
435 
436 #ifdef CONFIG_OF
437 static int of_parse_clkspec(const struct device_node *np, int index,
438 			    const char *name, struct of_phandle_args *out_args);
439 static struct clk_hw *
440 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
441 #else
of_parse_clkspec(const struct device_node *np, int index, const char *name, struct of_phandle_args *out_args)442 static inline int of_parse_clkspec(const struct device_node *np, int index,
443 				   const char *name,
444 				   struct of_phandle_args *out_args)
445 {
446 	return -ENOENT;
447 }
448 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)449 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
450 {
451 	return ERR_PTR(-ENOENT);
452 }
453 #endif
454 
455 /**
456  * clk_core_get - Find the clk_core parent of a clk
457  * @core: clk to find parent of
458  * @p_index: parent index to search for
459  *
460  * This is the preferred method for clk providers to find the parent of a
461  * clk when that parent is external to the clk controller. The parent_names
462  * array is indexed and treated as a local name matching a string in the device
463  * node's 'clock-names' property or as the 'con_id' matching the device's
464  * dev_name() in a clk_lookup. This allows clk providers to use their own
465  * namespace instead of looking for a globally unique parent string.
466  *
467  * For example the following DT snippet would allow a clock registered by the
468  * clock-controller@c001 that has a clk_init_data::parent_data array
469  * with 'xtal' in the 'name' member to find the clock provided by the
470  * clock-controller@f00abcd without needing to get the globally unique name of
471  * the xtal clk.
472  *
473  *      parent: clock-controller@f00abcd {
474  *              reg = <0xf00abcd 0xabcd>;
475  *              #clock-cells = <0>;
476  *      };
477  *
478  *      clock-controller@c001 {
479  *              reg = <0xc001 0xf00d>;
480  *              clocks = <&parent>;
481  *              clock-names = "xtal";
482  *              #clock-cells = <1>;
483  *      };
484  *
485  * Returns: -ENOENT when the provider can't be found or the clk doesn't
486  * exist in the provider or the name can't be found in the DT node or
487  * in a clkdev lookup. NULL when the provider knows about the clk but it
488  * isn't provided on this system.
489  * A valid clk_core pointer when the clk can be found in the provider.
490  */
clk_core_get(struct clk_core *core, u8 p_index)491 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
492 {
493 	const char *name = core->parents[p_index].fw_name;
494 	int index = core->parents[p_index].index;
495 	struct clk_hw *hw = ERR_PTR(-ENOENT);
496 	struct device *dev = core->dev;
497 	const char *dev_id = dev ? dev_name(dev) : NULL;
498 	struct device_node *np = core->of_node;
499 	struct of_phandle_args clkspec;
500 
501 	if (np && (name || index >= 0) &&
502 	    !of_parse_clkspec(np, index, name, &clkspec)) {
503 		hw = of_clk_get_hw_from_clkspec(&clkspec);
504 		of_node_put(clkspec.np);
505 	} else if (name) {
506 		/*
507 		 * If the DT search above couldn't find the provider fallback to
508 		 * looking up via clkdev based clk_lookups.
509 		 */
510 		hw = clk_find_hw(dev_id, name);
511 	}
512 
513 	if (IS_ERR(hw))
514 		return ERR_CAST(hw);
515 
516 	if (!hw)
517 		return NULL;
518 
519 	return hw->core;
520 }
521 
clk_core_fill_parent_index(struct clk_core *core, u8 index)522 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
523 {
524 	struct clk_parent_map *entry = &core->parents[index];
525 	struct clk_core *parent = ERR_PTR(-ENOENT);
526 
527 	if (entry->hw) {
528 		parent = entry->hw->core;
529 		/*
530 		 * We have a direct reference but it isn't registered yet?
531 		 * Orphan it and let clk_reparent() update the orphan status
532 		 * when the parent is registered.
533 		 */
534 		if (!parent)
535 			parent = ERR_PTR(-EPROBE_DEFER);
536 	} else {
537 		parent = clk_core_get(core, index);
538 		if (PTR_ERR(parent) == -ENOENT && entry->name)
539 			parent = clk_core_lookup(entry->name);
540 	}
541 
542 	/* Only cache it if it's not an error */
543 	if (!IS_ERR(parent))
544 		entry->core = parent;
545 }
546 
clk_core_get_parent_by_index(struct clk_core *core, u8 index)547 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
548 							 u8 index)
549 {
550 	if (!core || index >= core->num_parents || !core->parents)
551 		return NULL;
552 
553 	if (!core->parents[index].core)
554 		clk_core_fill_parent_index(core, index);
555 
556 	return core->parents[index].core;
557 }
558 
559 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)560 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
561 {
562 	struct clk_core *parent;
563 
564 	parent = clk_core_get_parent_by_index(hw->core, index);
565 
566 	return !parent ? NULL : parent->hw;
567 }
568 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
569 
__clk_get_enable_count(struct clk *clk)570 unsigned int __clk_get_enable_count(struct clk *clk)
571 {
572 	return !clk ? 0 : clk->core->enable_count;
573 }
574 
clk_core_get_rate_nolock(struct clk_core *core)575 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
576 {
577 	if (!core)
578 		return 0;
579 
580 	if (!core->num_parents || core->parent)
581 		return core->rate;
582 
583 	/*
584 	 * Clk must have a parent because num_parents > 0 but the parent isn't
585 	 * known yet. Best to return 0 as the rate of this clk until we can
586 	 * properly recalc the rate based on the parent's rate.
587 	 */
588 	return 0;
589 }
590 
clk_hw_get_rate(const struct clk_hw *hw)591 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
592 {
593 	return clk_core_get_rate_nolock(hw->core);
594 }
595 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
596 
clk_core_get_accuracy_no_lock(struct clk_core *core)597 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
598 {
599 	if (!core)
600 		return 0;
601 
602 	return core->accuracy;
603 }
604 
clk_hw_get_flags(const struct clk_hw *hw)605 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
606 {
607 	return hw->core->flags;
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
610 
clk_hw_is_prepared(const struct clk_hw *hw)611 bool clk_hw_is_prepared(const struct clk_hw *hw)
612 {
613 	return clk_core_is_prepared(hw->core);
614 }
615 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
616 
clk_hw_rate_is_protected(const struct clk_hw *hw)617 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
618 {
619 	return clk_core_rate_is_protected(hw->core);
620 }
621 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
622 
clk_hw_is_enabled(const struct clk_hw *hw)623 bool clk_hw_is_enabled(const struct clk_hw *hw)
624 {
625 	return clk_core_is_enabled(hw->core);
626 }
627 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
628 
__clk_is_enabled(struct clk *clk)629 bool __clk_is_enabled(struct clk *clk)
630 {
631 	if (!clk)
632 		return false;
633 
634 	return clk_core_is_enabled(clk->core);
635 }
636 EXPORT_SYMBOL_GPL(__clk_is_enabled);
637 
mux_is_better_rate(unsigned long rate, unsigned long now, unsigned long best, unsigned long flags)638 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
639 			   unsigned long best, unsigned long flags)
640 {
641 	if (flags & CLK_MUX_ROUND_CLOSEST)
642 		return abs(now - rate) < abs(best - rate);
643 
644 	return now <= rate && now > best;
645 }
646 
clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, unsigned long flags)647 int clk_mux_determine_rate_flags(struct clk_hw *hw,
648 				 struct clk_rate_request *req,
649 				 unsigned long flags)
650 {
651 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
652 	int i, num_parents, ret;
653 	unsigned long best = 0;
654 	struct clk_rate_request parent_req = *req;
655 
656 	/* if NO_REPARENT flag set, pass through to current parent */
657 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
658 		parent = core->parent;
659 		if (core->flags & CLK_SET_RATE_PARENT) {
660 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
661 						   &parent_req);
662 			if (ret)
663 				return ret;
664 
665 			best = parent_req.rate;
666 		} else if (parent) {
667 			best = clk_core_get_rate_nolock(parent);
668 		} else {
669 			best = clk_core_get_rate_nolock(core);
670 		}
671 
672 		goto out;
673 	}
674 
675 	/* find the parent that can provide the fastest rate <= rate */
676 	num_parents = core->num_parents;
677 	for (i = 0; i < num_parents; i++) {
678 		parent = clk_core_get_parent_by_index(core, i);
679 		if (!parent)
680 			continue;
681 
682 		if (core->flags & CLK_SET_RATE_PARENT) {
683 			parent_req = *req;
684 			ret = __clk_determine_rate(parent->hw, &parent_req);
685 			if (ret)
686 				continue;
687 		} else {
688 			parent_req.rate = clk_core_get_rate_nolock(parent);
689 		}
690 
691 		if (mux_is_better_rate(req->rate, parent_req.rate,
692 				       best, flags)) {
693 			best_parent = parent;
694 			best = parent_req.rate;
695 		}
696 	}
697 
698 	if (!best_parent)
699 		return -EINVAL;
700 
701 out:
702 	if (best_parent)
703 		req->best_parent_hw = best_parent->hw;
704 	req->best_parent_rate = best;
705 	req->rate = best;
706 
707 	return 0;
708 }
709 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
710 
__clk_lookup(const char *name)711 struct clk *__clk_lookup(const char *name)
712 {
713 	struct clk_core *core = clk_core_lookup(name);
714 
715 	return !core ? NULL : core->hw->clk;
716 }
717 
clk_core_get_boundaries(struct clk_core *core, unsigned long *min_rate, unsigned long *max_rate)718 static void clk_core_get_boundaries(struct clk_core *core,
719 				    unsigned long *min_rate,
720 				    unsigned long *max_rate)
721 {
722 	struct clk *clk_user;
723 
724 	lockdep_assert_held(&prepare_lock);
725 
726 	*min_rate = core->min_rate;
727 	*max_rate = core->max_rate;
728 
729 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
730 		*min_rate = max(*min_rate, clk_user->min_rate);
731 
732 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
733 		*max_rate = min(*max_rate, clk_user->max_rate);
734 }
735 
clk_core_check_boundaries(struct clk_core *core, unsigned long min_rate, unsigned long max_rate)736 static bool clk_core_check_boundaries(struct clk_core *core,
737 				      unsigned long min_rate,
738 				      unsigned long max_rate)
739 {
740 	struct clk *user;
741 
742 	lockdep_assert_held(&prepare_lock);
743 
744 	if (min_rate > core->max_rate || max_rate < core->min_rate)
745 		return false;
746 
747 	hlist_for_each_entry(user, &core->clks, clks_node)
748 		if (min_rate > user->max_rate || max_rate < user->min_rate)
749 			return false;
750 
751 	return true;
752 }
753 
clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, unsigned long max_rate)754 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
755 			   unsigned long max_rate)
756 {
757 	hw->core->min_rate = min_rate;
758 	hw->core->max_rate = max_rate;
759 }
760 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
761 
762 /*
763  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
764  * @hw: mux type clk to determine rate on
765  * @req: rate request, also used to return preferred parent and frequencies
766  *
767  * Helper for finding best parent to provide a given frequency. This can be used
768  * directly as a determine_rate callback (e.g. for a mux), or from a more
769  * complex clock that may combine a mux with other operations.
770  *
771  * Returns: 0 on success, -EERROR value on error
772  */
__clk_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)773 int __clk_mux_determine_rate(struct clk_hw *hw,
774 			     struct clk_rate_request *req)
775 {
776 	return clk_mux_determine_rate_flags(hw, req, 0);
777 }
778 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
779 
__clk_mux_determine_rate_closest(struct clk_hw *hw, struct clk_rate_request *req)780 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
781 				     struct clk_rate_request *req)
782 {
783 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
784 }
785 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
786 
787 /***        clk api        ***/
788 
clk_core_rate_unprotect(struct clk_core *core)789 static void clk_core_rate_unprotect(struct clk_core *core)
790 {
791 	lockdep_assert_held(&prepare_lock);
792 
793 	if (!core)
794 		return;
795 
796 	if (WARN(core->protect_count == 0,
797 	    "%s already unprotected\n", core->name))
798 		return;
799 
800 	if (--core->protect_count > 0)
801 		return;
802 
803 	clk_core_rate_unprotect(core->parent);
804 }
805 
clk_core_rate_nuke_protect(struct clk_core *core)806 static int clk_core_rate_nuke_protect(struct clk_core *core)
807 {
808 	int ret;
809 
810 	lockdep_assert_held(&prepare_lock);
811 
812 	if (!core)
813 		return -EINVAL;
814 
815 	if (core->protect_count == 0)
816 		return 0;
817 
818 	ret = core->protect_count;
819 	core->protect_count = 1;
820 	clk_core_rate_unprotect(core);
821 
822 	return ret;
823 }
824 
825 /**
826  * clk_rate_exclusive_put - release exclusivity over clock rate control
827  * @clk: the clk over which the exclusivity is released
828  *
829  * clk_rate_exclusive_put() completes a critical section during which a clock
830  * consumer cannot tolerate any other consumer making any operation on the
831  * clock which could result in a rate change or rate glitch. Exclusive clocks
832  * cannot have their rate changed, either directly or indirectly due to changes
833  * further up the parent chain of clocks. As a result, clocks up parent chain
834  * also get under exclusive control of the calling consumer.
835  *
836  * If exlusivity is claimed more than once on clock, even by the same consumer,
837  * the rate effectively gets locked as exclusivity can't be preempted.
838  *
839  * Calls to clk_rate_exclusive_put() must be balanced with calls to
840  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
841  * error status.
842  */
clk_rate_exclusive_put(struct clk *clk)843 void clk_rate_exclusive_put(struct clk *clk)
844 {
845 	if (!clk)
846 		return;
847 
848 	clk_prepare_lock();
849 
850 	/*
851 	 * if there is something wrong with this consumer protect count, stop
852 	 * here before messing with the provider
853 	 */
854 	if (WARN_ON(clk->exclusive_count <= 0))
855 		goto out;
856 
857 	clk_core_rate_unprotect(clk->core);
858 	clk->exclusive_count--;
859 out:
860 	clk_prepare_unlock();
861 }
862 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
863 
clk_core_rate_protect(struct clk_core *core)864 static void clk_core_rate_protect(struct clk_core *core)
865 {
866 	lockdep_assert_held(&prepare_lock);
867 
868 	if (!core)
869 		return;
870 
871 	if (core->protect_count == 0)
872 		clk_core_rate_protect(core->parent);
873 
874 	core->protect_count++;
875 }
876 
clk_core_rate_restore_protect(struct clk_core *core, int count)877 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
878 {
879 	lockdep_assert_held(&prepare_lock);
880 
881 	if (!core)
882 		return;
883 
884 	if (count == 0)
885 		return;
886 
887 	clk_core_rate_protect(core);
888 	core->protect_count = count;
889 }
890 
891 /**
892  * clk_rate_exclusive_get - get exclusivity over the clk rate control
893  * @clk: the clk over which the exclusity of rate control is requested
894  *
895  * clk_rate_exclusive_get() begins a critical section during which a clock
896  * consumer cannot tolerate any other consumer making any operation on the
897  * clock which could result in a rate change or rate glitch. Exclusive clocks
898  * cannot have their rate changed, either directly or indirectly due to changes
899  * further up the parent chain of clocks. As a result, clocks up parent chain
900  * also get under exclusive control of the calling consumer.
901  *
902  * If exlusivity is claimed more than once on clock, even by the same consumer,
903  * the rate effectively gets locked as exclusivity can't be preempted.
904  *
905  * Calls to clk_rate_exclusive_get() should be balanced with calls to
906  * clk_rate_exclusive_put(). Calls to this function may sleep.
907  * Returns 0 on success, -EERROR otherwise
908  */
clk_rate_exclusive_get(struct clk *clk)909 int clk_rate_exclusive_get(struct clk *clk)
910 {
911 	if (!clk)
912 		return 0;
913 
914 	clk_prepare_lock();
915 	clk_core_rate_protect(clk->core);
916 	clk->exclusive_count++;
917 	clk_prepare_unlock();
918 
919 	return 0;
920 }
921 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
922 
clk_core_unprepare(struct clk_core *core)923 static void clk_core_unprepare(struct clk_core *core)
924 {
925 	lockdep_assert_held(&prepare_lock);
926 
927 	if (!core)
928 		return;
929 
930 	if (WARN(core->prepare_count == 0,
931 	    "%s already unprepared\n", core->name))
932 		return;
933 
934 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
935 	    "Unpreparing critical %s\n", core->name))
936 		return;
937 
938 	if (core->flags & CLK_SET_RATE_GATE)
939 		clk_core_rate_unprotect(core);
940 
941 	if (--core->prepare_count > 0)
942 		return;
943 
944 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
945 
946 	trace_clk_unprepare(core);
947 
948 	if (core->ops->unprepare)
949 		core->ops->unprepare(core->hw);
950 
951 	trace_clk_unprepare_complete(core);
952 	clk_core_unprepare(core->parent);
953 	clk_pm_runtime_put(core);
954 }
955 
clk_core_unprepare_lock(struct clk_core *core)956 static void clk_core_unprepare_lock(struct clk_core *core)
957 {
958 	clk_prepare_lock();
959 	clk_core_unprepare(core);
960 	clk_prepare_unlock();
961 }
962 
963 /**
964  * clk_unprepare - undo preparation of a clock source
965  * @clk: the clk being unprepared
966  *
967  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
968  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
969  * if the operation may sleep.  One example is a clk which is accessed over
970  * I2c.  In the complex case a clk gate operation may require a fast and a slow
971  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
972  * exclusive.  In fact clk_disable must be called before clk_unprepare.
973  */
clk_unprepare(struct clk *clk)974 void clk_unprepare(struct clk *clk)
975 {
976 	if (IS_ERR_OR_NULL(clk))
977 		return;
978 
979 	clk_core_unprepare_lock(clk->core);
980 }
981 EXPORT_SYMBOL_GPL(clk_unprepare);
982 
clk_core_prepare(struct clk_core *core)983 static int clk_core_prepare(struct clk_core *core)
984 {
985 	int ret = 0;
986 
987 	lockdep_assert_held(&prepare_lock);
988 
989 	if (!core)
990 		return 0;
991 
992 	if (core->prepare_count == 0) {
993 		ret = clk_pm_runtime_get(core);
994 		if (ret)
995 			return ret;
996 
997 		ret = clk_core_prepare(core->parent);
998 		if (ret)
999 			goto runtime_put;
1000 
1001 		trace_clk_prepare(core);
1002 
1003 		if (core->ops->prepare)
1004 			ret = core->ops->prepare(core->hw);
1005 
1006 		trace_clk_prepare_complete(core);
1007 
1008 		if (ret)
1009 			goto unprepare;
1010 	}
1011 
1012 	core->prepare_count++;
1013 
1014 	/*
1015 	 * CLK_SET_RATE_GATE is a special case of clock protection
1016 	 * Instead of a consumer claiming exclusive rate control, it is
1017 	 * actually the provider which prevents any consumer from making any
1018 	 * operation which could result in a rate change or rate glitch while
1019 	 * the clock is prepared.
1020 	 */
1021 	if (core->flags & CLK_SET_RATE_GATE)
1022 		clk_core_rate_protect(core);
1023 
1024 	return 0;
1025 unprepare:
1026 	clk_core_unprepare(core->parent);
1027 runtime_put:
1028 	clk_pm_runtime_put(core);
1029 	return ret;
1030 }
1031 
clk_core_prepare_lock(struct clk_core *core)1032 static int clk_core_prepare_lock(struct clk_core *core)
1033 {
1034 	int ret;
1035 
1036 	clk_prepare_lock();
1037 	ret = clk_core_prepare(core);
1038 	clk_prepare_unlock();
1039 
1040 	return ret;
1041 }
1042 
1043 /**
1044  * clk_prepare - prepare a clock source
1045  * @clk: the clk being prepared
1046  *
1047  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1048  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1049  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1050  * the complex case a clk ungate operation may require a fast and a slow part.
1051  * It is this reason that clk_prepare and clk_enable are not mutually
1052  * exclusive.  In fact clk_prepare must be called before clk_enable.
1053  * Returns 0 on success, -EERROR otherwise.
1054  */
clk_prepare(struct clk *clk)1055 int clk_prepare(struct clk *clk)
1056 {
1057 	if (!clk)
1058 		return 0;
1059 
1060 	return clk_core_prepare_lock(clk->core);
1061 }
1062 EXPORT_SYMBOL_GPL(clk_prepare);
1063 
clk_core_disable(struct clk_core *core)1064 static void clk_core_disable(struct clk_core *core)
1065 {
1066 	lockdep_assert_held(&enable_lock);
1067 
1068 	if (!core)
1069 		return;
1070 
1071 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1072 		return;
1073 
1074 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1075 	    "Disabling critical %s\n", core->name))
1076 		return;
1077 
1078 	if (--core->enable_count > 0)
1079 		return;
1080 
1081 	trace_clk_disable_rcuidle(core);
1082 
1083 	if (core->ops->disable)
1084 		core->ops->disable(core->hw);
1085 
1086 	trace_clk_disable_complete_rcuidle(core);
1087 
1088 	clk_core_disable(core->parent);
1089 }
1090 
clk_core_disable_lock(struct clk_core *core)1091 static void clk_core_disable_lock(struct clk_core *core)
1092 {
1093 	unsigned long flags;
1094 
1095 	flags = clk_enable_lock();
1096 	clk_core_disable(core);
1097 	clk_enable_unlock(flags);
1098 }
1099 
1100 /**
1101  * clk_disable - gate a clock
1102  * @clk: the clk being gated
1103  *
1104  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1105  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1106  * clk if the operation is fast and will never sleep.  One example is a
1107  * SoC-internal clk which is controlled via simple register writes.  In the
1108  * complex case a clk gate operation may require a fast and a slow part.  It is
1109  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1110  * In fact clk_disable must be called before clk_unprepare.
1111  */
clk_disable(struct clk *clk)1112 void clk_disable(struct clk *clk)
1113 {
1114 	if (IS_ERR_OR_NULL(clk))
1115 		return;
1116 
1117 	clk_core_disable_lock(clk->core);
1118 }
1119 EXPORT_SYMBOL_GPL(clk_disable);
1120 
clk_core_enable(struct clk_core *core)1121 static int clk_core_enable(struct clk_core *core)
1122 {
1123 	int ret = 0;
1124 
1125 	lockdep_assert_held(&enable_lock);
1126 
1127 	if (!core)
1128 		return 0;
1129 
1130 	if (WARN(core->prepare_count == 0,
1131 	    "Enabling unprepared %s\n", core->name))
1132 		return -ESHUTDOWN;
1133 
1134 	if (core->enable_count == 0) {
1135 		ret = clk_core_enable(core->parent);
1136 
1137 		if (ret)
1138 			return ret;
1139 
1140 		trace_clk_enable_rcuidle(core);
1141 
1142 		if (core->ops->enable)
1143 			ret = core->ops->enable(core->hw);
1144 
1145 		trace_clk_enable_complete_rcuidle(core);
1146 
1147 		if (ret) {
1148 			clk_core_disable(core->parent);
1149 			return ret;
1150 		}
1151 	}
1152 
1153 	core->enable_count++;
1154 	return 0;
1155 }
1156 
clk_core_enable_lock(struct clk_core *core)1157 static int clk_core_enable_lock(struct clk_core *core)
1158 {
1159 	unsigned long flags;
1160 	int ret;
1161 
1162 	flags = clk_enable_lock();
1163 	ret = clk_core_enable(core);
1164 	clk_enable_unlock(flags);
1165 
1166 	return ret;
1167 }
1168 
1169 /**
1170  * clk_gate_restore_context - restore context for poweroff
1171  * @hw: the clk_hw pointer of clock whose state is to be restored
1172  *
1173  * The clock gate restore context function enables or disables
1174  * the gate clocks based on the enable_count. This is done in cases
1175  * where the clock context is lost and based on the enable_count
1176  * the clock either needs to be enabled/disabled. This
1177  * helps restore the state of gate clocks.
1178  */
clk_gate_restore_context(struct clk_hw *hw)1179 void clk_gate_restore_context(struct clk_hw *hw)
1180 {
1181 	struct clk_core *core = hw->core;
1182 
1183 	if (core->enable_count)
1184 		core->ops->enable(hw);
1185 	else
1186 		core->ops->disable(hw);
1187 }
1188 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1189 
clk_core_save_context(struct clk_core *core)1190 static int clk_core_save_context(struct clk_core *core)
1191 {
1192 	struct clk_core *child;
1193 	int ret = 0;
1194 
1195 	hlist_for_each_entry(child, &core->children, child_node) {
1196 		ret = clk_core_save_context(child);
1197 		if (ret < 0)
1198 			return ret;
1199 	}
1200 
1201 	if (core->ops && core->ops->save_context)
1202 		ret = core->ops->save_context(core->hw);
1203 
1204 	return ret;
1205 }
1206 
clk_core_restore_context(struct clk_core *core)1207 static void clk_core_restore_context(struct clk_core *core)
1208 {
1209 	struct clk_core *child;
1210 
1211 	if (core->ops && core->ops->restore_context)
1212 		core->ops->restore_context(core->hw);
1213 
1214 	hlist_for_each_entry(child, &core->children, child_node)
1215 		clk_core_restore_context(child);
1216 }
1217 
1218 /**
1219  * clk_save_context - save clock context for poweroff
1220  *
1221  * Saves the context of the clock register for powerstates in which the
1222  * contents of the registers will be lost. Occurs deep within the suspend
1223  * code.  Returns 0 on success.
1224  */
clk_save_context(void)1225 int clk_save_context(void)
1226 {
1227 	struct clk_core *clk;
1228 	int ret;
1229 
1230 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1231 		ret = clk_core_save_context(clk);
1232 		if (ret < 0)
1233 			return ret;
1234 	}
1235 
1236 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1237 		ret = clk_core_save_context(clk);
1238 		if (ret < 0)
1239 			return ret;
1240 	}
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(clk_save_context);
1245 
1246 /**
1247  * clk_restore_context - restore clock context after poweroff
1248  *
1249  * Restore the saved clock context upon resume.
1250  *
1251  */
clk_restore_context(void)1252 void clk_restore_context(void)
1253 {
1254 	struct clk_core *core;
1255 
1256 	hlist_for_each_entry(core, &clk_root_list, child_node)
1257 		clk_core_restore_context(core);
1258 
1259 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1260 		clk_core_restore_context(core);
1261 }
1262 EXPORT_SYMBOL_GPL(clk_restore_context);
1263 
1264 /**
1265  * clk_enable - ungate a clock
1266  * @clk: the clk being ungated
1267  *
1268  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1269  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1270  * if the operation will never sleep.  One example is a SoC-internal clk which
1271  * is controlled via simple register writes.  In the complex case a clk ungate
1272  * operation may require a fast and a slow part.  It is this reason that
1273  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1274  * must be called before clk_enable.  Returns 0 on success, -EERROR
1275  * otherwise.
1276  */
clk_enable(struct clk *clk)1277 int clk_enable(struct clk *clk)
1278 {
1279 	if (!clk)
1280 		return 0;
1281 
1282 	return clk_core_enable_lock(clk->core);
1283 }
1284 EXPORT_SYMBOL_GPL(clk_enable);
1285 
clk_core_prepare_enable(struct clk_core *core)1286 static int clk_core_prepare_enable(struct clk_core *core)
1287 {
1288 	int ret;
1289 
1290 	ret = clk_core_prepare_lock(core);
1291 	if (ret)
1292 		return ret;
1293 
1294 	ret = clk_core_enable_lock(core);
1295 	if (ret)
1296 		clk_core_unprepare_lock(core);
1297 
1298 	return ret;
1299 }
1300 
clk_core_disable_unprepare(struct clk_core *core)1301 static void clk_core_disable_unprepare(struct clk_core *core)
1302 {
1303 	clk_core_disable_lock(core);
1304 	clk_core_unprepare_lock(core);
1305 }
1306 
clk_unprepare_unused_subtree(struct clk_core *core)1307 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1308 {
1309 	struct clk_core *child;
1310 
1311 	lockdep_assert_held(&prepare_lock);
1312 
1313 	hlist_for_each_entry(child, &core->children, child_node)
1314 		clk_unprepare_unused_subtree(child);
1315 
1316 	if (core->prepare_count)
1317 		return;
1318 
1319 	if (core->flags & CLK_IGNORE_UNUSED)
1320 		return;
1321 
1322 	if (clk_core_is_prepared(core)) {
1323 		trace_clk_unprepare(core);
1324 		if (core->ops->unprepare_unused)
1325 			core->ops->unprepare_unused(core->hw);
1326 		else if (core->ops->unprepare)
1327 			core->ops->unprepare(core->hw);
1328 		trace_clk_unprepare_complete(core);
1329 	}
1330 }
1331 
clk_disable_unused_subtree(struct clk_core *core)1332 static void __init clk_disable_unused_subtree(struct clk_core *core)
1333 {
1334 	struct clk_core *child;
1335 	unsigned long flags;
1336 
1337 	lockdep_assert_held(&prepare_lock);
1338 
1339 	hlist_for_each_entry(child, &core->children, child_node)
1340 		clk_disable_unused_subtree(child);
1341 
1342 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1343 		clk_core_prepare_enable(core->parent);
1344 
1345 	flags = clk_enable_lock();
1346 
1347 	if (core->enable_count)
1348 		goto unlock_out;
1349 
1350 	if (core->flags & CLK_IGNORE_UNUSED)
1351 		goto unlock_out;
1352 
1353 	/*
1354 	 * some gate clocks have special needs during the disable-unused
1355 	 * sequence.  call .disable_unused if available, otherwise fall
1356 	 * back to .disable
1357 	 */
1358 	if (clk_core_is_enabled(core)) {
1359 		trace_clk_disable(core);
1360 		if (core->ops->disable_unused)
1361 			core->ops->disable_unused(core->hw);
1362 		else if (core->ops->disable)
1363 			core->ops->disable(core->hw);
1364 		trace_clk_disable_complete(core);
1365 	}
1366 
1367 unlock_out:
1368 	clk_enable_unlock(flags);
1369 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1370 		clk_core_disable_unprepare(core->parent);
1371 }
1372 
1373 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char *__unused)1374 static int __init clk_ignore_unused_setup(char *__unused)
1375 {
1376 	clk_ignore_unused = true;
1377 	return 1;
1378 }
1379 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1380 
clk_disable_unused(void)1381 static int __init clk_disable_unused(void)
1382 {
1383 	struct clk_core *core;
1384 	int ret;
1385 
1386 	if (clk_ignore_unused) {
1387 		pr_warn("clk: Not disabling unused clocks\n");
1388 		return 0;
1389 	}
1390 
1391 	pr_info("clk: Disabling unused clocks\n");
1392 
1393 	ret = clk_pm_runtime_get_all();
1394 	if (ret)
1395 		return ret;
1396 	/*
1397 	 * Grab the prepare lock to keep the clk topology stable while iterating
1398 	 * over clks.
1399 	 */
1400 	clk_prepare_lock();
1401 
1402 	hlist_for_each_entry(core, &clk_root_list, child_node)
1403 		clk_disable_unused_subtree(core);
1404 
1405 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1406 		clk_disable_unused_subtree(core);
1407 
1408 	hlist_for_each_entry(core, &clk_root_list, child_node)
1409 		clk_unprepare_unused_subtree(core);
1410 
1411 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1412 		clk_unprepare_unused_subtree(core);
1413 
1414 	clk_prepare_unlock();
1415 
1416 	clk_pm_runtime_put_all();
1417 
1418 	return 0;
1419 }
1420 late_initcall_sync(clk_disable_unused);
1421 
clk_core_determine_round_nolock(struct clk_core *core, struct clk_rate_request *req)1422 static int clk_core_determine_round_nolock(struct clk_core *core,
1423 					   struct clk_rate_request *req)
1424 {
1425 	long rate;
1426 
1427 	lockdep_assert_held(&prepare_lock);
1428 
1429 	if (!core)
1430 		return 0;
1431 
1432 	/*
1433 	 * At this point, core protection will be disabled if
1434 	 * - if the provider is not protected at all
1435 	 * - if the calling consumer is the only one which has exclusivity
1436 	 *   over the provider
1437 	 */
1438 	if (clk_core_rate_is_protected(core)) {
1439 		req->rate = core->rate;
1440 	} else if (core->ops->determine_rate) {
1441 		return core->ops->determine_rate(core->hw, req);
1442 	} else if (core->ops->round_rate) {
1443 		rate = core->ops->round_rate(core->hw, req->rate,
1444 					     &req->best_parent_rate);
1445 		if (rate < 0)
1446 			return rate;
1447 
1448 		req->rate = rate;
1449 	} else {
1450 		return -EINVAL;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
clk_core_init_rate_req(struct clk_core * const core, struct clk_rate_request *req)1456 static void clk_core_init_rate_req(struct clk_core * const core,
1457 				   struct clk_rate_request *req)
1458 {
1459 	struct clk_core *parent;
1460 
1461 	if (WARN_ON(!core || !req))
1462 		return;
1463 
1464 	parent = core->parent;
1465 	if (parent) {
1466 		req->best_parent_hw = parent->hw;
1467 		req->best_parent_rate = parent->rate;
1468 	} else {
1469 		req->best_parent_hw = NULL;
1470 		req->best_parent_rate = 0;
1471 	}
1472 }
1473 
clk_core_can_round(struct clk_core * const core)1474 static bool clk_core_can_round(struct clk_core * const core)
1475 {
1476 	return core->ops->determine_rate || core->ops->round_rate;
1477 }
1478 
clk_core_round_rate_nolock(struct clk_core *core, struct clk_rate_request *req)1479 static int clk_core_round_rate_nolock(struct clk_core *core,
1480 				      struct clk_rate_request *req)
1481 {
1482 	lockdep_assert_held(&prepare_lock);
1483 
1484 	if (!core) {
1485 		req->rate = 0;
1486 		return 0;
1487 	}
1488 
1489 	clk_core_init_rate_req(core, req);
1490 
1491 	if (clk_core_can_round(core))
1492 		return clk_core_determine_round_nolock(core, req);
1493 	else if (core->flags & CLK_SET_RATE_PARENT)
1494 		return clk_core_round_rate_nolock(core->parent, req);
1495 
1496 	req->rate = core->rate;
1497 	return 0;
1498 }
1499 
1500 /**
1501  * __clk_determine_rate - get the closest rate actually supported by a clock
1502  * @hw: determine the rate of this clock
1503  * @req: target rate request
1504  *
1505  * Useful for clk_ops such as .set_rate and .determine_rate.
1506  */
__clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)1507 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1508 {
1509 	if (!hw) {
1510 		req->rate = 0;
1511 		return 0;
1512 	}
1513 
1514 	return clk_core_round_rate_nolock(hw->core, req);
1515 }
1516 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1517 
1518 /**
1519  * clk_hw_round_rate() - round the given rate for a hw clk
1520  * @hw: the hw clk for which we are rounding a rate
1521  * @rate: the rate which is to be rounded
1522  *
1523  * Takes in a rate as input and rounds it to a rate that the clk can actually
1524  * use.
1525  *
1526  * Context: prepare_lock must be held.
1527  *          For clk providers to call from within clk_ops such as .round_rate,
1528  *          .determine_rate.
1529  *
1530  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1531  *         else returns the parent rate.
1532  */
clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)1533 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1534 {
1535 	int ret;
1536 	struct clk_rate_request req;
1537 
1538 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1539 	req.rate = rate;
1540 
1541 	ret = clk_core_round_rate_nolock(hw->core, &req);
1542 	if (ret)
1543 		return 0;
1544 
1545 	return req.rate;
1546 }
1547 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1548 
1549 /**
1550  * clk_round_rate - round the given rate for a clk
1551  * @clk: the clk for which we are rounding a rate
1552  * @rate: the rate which is to be rounded
1553  *
1554  * Takes in a rate as input and rounds it to a rate that the clk can actually
1555  * use which is then returned.  If clk doesn't support round_rate operation
1556  * then the parent rate is returned.
1557  */
clk_round_rate(struct clk *clk, unsigned long rate)1558 long clk_round_rate(struct clk *clk, unsigned long rate)
1559 {
1560 	struct clk_rate_request req;
1561 	int ret;
1562 
1563 	if (!clk)
1564 		return 0;
1565 
1566 	clk_prepare_lock();
1567 
1568 	if (clk->exclusive_count)
1569 		clk_core_rate_unprotect(clk->core);
1570 
1571 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1572 	req.rate = rate;
1573 
1574 	ret = clk_core_round_rate_nolock(clk->core, &req);
1575 
1576 	if (clk->exclusive_count)
1577 		clk_core_rate_protect(clk->core);
1578 
1579 	clk_prepare_unlock();
1580 
1581 	if (ret)
1582 		return ret;
1583 
1584 	return req.rate;
1585 }
1586 EXPORT_SYMBOL_GPL(clk_round_rate);
1587 
1588 /**
1589  * __clk_notify - call clk notifier chain
1590  * @core: clk that is changing rate
1591  * @msg: clk notifier type (see include/linux/clk.h)
1592  * @old_rate: old clk rate
1593  * @new_rate: new clk rate
1594  *
1595  * Triggers a notifier call chain on the clk rate-change notification
1596  * for 'clk'.  Passes a pointer to the struct clk and the previous
1597  * and current rates to the notifier callback.  Intended to be called by
1598  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1599  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1600  * a driver returns that.
1601  */
__clk_notify(struct clk_core *core, unsigned long msg, unsigned long old_rate, unsigned long new_rate)1602 static int __clk_notify(struct clk_core *core, unsigned long msg,
1603 		unsigned long old_rate, unsigned long new_rate)
1604 {
1605 	struct clk_notifier *cn;
1606 	struct clk_notifier_data cnd;
1607 	int ret = NOTIFY_DONE;
1608 
1609 	cnd.old_rate = old_rate;
1610 	cnd.new_rate = new_rate;
1611 
1612 	list_for_each_entry(cn, &clk_notifier_list, node) {
1613 		if (cn->clk->core == core) {
1614 			cnd.clk = cn->clk;
1615 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1616 					&cnd);
1617 			if (ret & NOTIFY_STOP_MASK)
1618 				return ret;
1619 		}
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  * __clk_recalc_accuracies
1627  * @core: first clk in the subtree
1628  *
1629  * Walks the subtree of clks starting with clk and recalculates accuracies as
1630  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1631  * callback then it is assumed that the clock will take on the accuracy of its
1632  * parent.
1633  */
__clk_recalc_accuracies(struct clk_core *core)1634 static void __clk_recalc_accuracies(struct clk_core *core)
1635 {
1636 	unsigned long parent_accuracy = 0;
1637 	struct clk_core *child;
1638 
1639 	lockdep_assert_held(&prepare_lock);
1640 
1641 	if (core->parent)
1642 		parent_accuracy = core->parent->accuracy;
1643 
1644 	if (core->ops->recalc_accuracy)
1645 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1646 							  parent_accuracy);
1647 	else
1648 		core->accuracy = parent_accuracy;
1649 
1650 	hlist_for_each_entry(child, &core->children, child_node)
1651 		__clk_recalc_accuracies(child);
1652 }
1653 
clk_core_get_accuracy_recalc(struct clk_core *core)1654 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1655 {
1656 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1657 		__clk_recalc_accuracies(core);
1658 
1659 	return clk_core_get_accuracy_no_lock(core);
1660 }
1661 
1662 /**
1663  * clk_get_accuracy - return the accuracy of clk
1664  * @clk: the clk whose accuracy is being returned
1665  *
1666  * Simply returns the cached accuracy of the clk, unless
1667  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1668  * issued.
1669  * If clk is NULL then returns 0.
1670  */
clk_get_accuracy(struct clk *clk)1671 long clk_get_accuracy(struct clk *clk)
1672 {
1673 	long accuracy;
1674 
1675 	if (!clk)
1676 		return 0;
1677 
1678 	clk_prepare_lock();
1679 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1680 	clk_prepare_unlock();
1681 
1682 	return accuracy;
1683 }
1684 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1685 
clk_recalc(struct clk_core *core, unsigned long parent_rate)1686 static unsigned long clk_recalc(struct clk_core *core,
1687 				unsigned long parent_rate)
1688 {
1689 	unsigned long rate = parent_rate;
1690 
1691 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1692 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1693 		clk_pm_runtime_put(core);
1694 	}
1695 	return rate;
1696 }
1697 
1698 /**
1699  * __clk_recalc_rates
1700  * @core: first clk in the subtree
1701  * @msg: notification type (see include/linux/clk.h)
1702  *
1703  * Walks the subtree of clks starting with clk and recalculates rates as it
1704  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1705  * it is assumed that the clock will take on the rate of its parent.
1706  *
1707  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1708  * if necessary.
1709  */
__clk_recalc_rates(struct clk_core *core, unsigned long msg)1710 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1711 {
1712 	unsigned long old_rate;
1713 	unsigned long parent_rate = 0;
1714 	struct clk_core *child;
1715 
1716 	lockdep_assert_held(&prepare_lock);
1717 
1718 	old_rate = core->rate;
1719 
1720 	if (core->parent)
1721 		parent_rate = core->parent->rate;
1722 
1723 	core->rate = clk_recalc(core, parent_rate);
1724 
1725 	/*
1726 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1727 	 * & ABORT_RATE_CHANGE notifiers
1728 	 */
1729 	if (core->notifier_count && msg)
1730 		__clk_notify(core, msg, old_rate, core->rate);
1731 
1732 	hlist_for_each_entry(child, &core->children, child_node)
1733 		__clk_recalc_rates(child, msg);
1734 }
1735 
clk_core_get_rate_recalc(struct clk_core *core)1736 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1737 {
1738 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1739 		__clk_recalc_rates(core, 0);
1740 
1741 	return clk_core_get_rate_nolock(core);
1742 }
1743 
1744 /**
1745  * clk_get_rate - return the rate of clk
1746  * @clk: the clk whose rate is being returned
1747  *
1748  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1749  * is set, which means a recalc_rate will be issued.
1750  * If clk is NULL then returns 0.
1751  */
clk_get_rate(struct clk *clk)1752 unsigned long clk_get_rate(struct clk *clk)
1753 {
1754 	unsigned long rate;
1755 
1756 	if (!clk)
1757 		return 0;
1758 
1759 	clk_prepare_lock();
1760 	rate = clk_core_get_rate_recalc(clk->core);
1761 	clk_prepare_unlock();
1762 
1763 	return rate;
1764 }
1765 EXPORT_SYMBOL_GPL(clk_get_rate);
1766 
clk_fetch_parent_index(struct clk_core *core, struct clk_core *parent)1767 static int clk_fetch_parent_index(struct clk_core *core,
1768 				  struct clk_core *parent)
1769 {
1770 	int i;
1771 
1772 	if (!parent)
1773 		return -EINVAL;
1774 
1775 	for (i = 0; i < core->num_parents; i++) {
1776 		/* Found it first try! */
1777 		if (core->parents[i].core == parent)
1778 			return i;
1779 
1780 		/* Something else is here, so keep looking */
1781 		if (core->parents[i].core)
1782 			continue;
1783 
1784 		/* Maybe core hasn't been cached but the hw is all we know? */
1785 		if (core->parents[i].hw) {
1786 			if (core->parents[i].hw == parent->hw)
1787 				break;
1788 
1789 			/* Didn't match, but we're expecting a clk_hw */
1790 			continue;
1791 		}
1792 
1793 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1794 		if (parent == clk_core_get(core, i))
1795 			break;
1796 
1797 		/* Fallback to comparing globally unique names */
1798 		if (core->parents[i].name &&
1799 		    !strcmp(parent->name, core->parents[i].name))
1800 			break;
1801 	}
1802 
1803 	if (i == core->num_parents)
1804 		return -EINVAL;
1805 
1806 	core->parents[i].core = parent;
1807 	return i;
1808 }
1809 
1810 /**
1811  * clk_hw_get_parent_index - return the index of the parent clock
1812  * @hw: clk_hw associated with the clk being consumed
1813  *
1814  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1815  * clock does not have a current parent.
1816  */
clk_hw_get_parent_index(struct clk_hw *hw)1817 int clk_hw_get_parent_index(struct clk_hw *hw)
1818 {
1819 	struct clk_hw *parent = clk_hw_get_parent(hw);
1820 
1821 	if (WARN_ON(parent == NULL))
1822 		return -EINVAL;
1823 
1824 	return clk_fetch_parent_index(hw->core, parent->core);
1825 }
1826 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1827 
1828 /*
1829  * Update the orphan status of @core and all its children.
1830  */
clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)1831 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1832 {
1833 	struct clk_core *child;
1834 
1835 	core->orphan = is_orphan;
1836 
1837 	hlist_for_each_entry(child, &core->children, child_node)
1838 		clk_core_update_orphan_status(child, is_orphan);
1839 }
1840 
clk_reparent(struct clk_core *core, struct clk_core *new_parent)1841 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1842 {
1843 	bool was_orphan = core->orphan;
1844 
1845 	hlist_del(&core->child_node);
1846 
1847 	if (new_parent) {
1848 		bool becomes_orphan = new_parent->orphan;
1849 
1850 		/* avoid duplicate POST_RATE_CHANGE notifications */
1851 		if (new_parent->new_child == core)
1852 			new_parent->new_child = NULL;
1853 
1854 		hlist_add_head(&core->child_node, &new_parent->children);
1855 
1856 		if (was_orphan != becomes_orphan)
1857 			clk_core_update_orphan_status(core, becomes_orphan);
1858 	} else {
1859 		hlist_add_head(&core->child_node, &clk_orphan_list);
1860 		if (!was_orphan)
1861 			clk_core_update_orphan_status(core, true);
1862 	}
1863 
1864 	core->parent = new_parent;
1865 }
1866 
__clk_set_parent_before(struct clk_core *core, struct clk_core *parent)1867 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1868 					   struct clk_core *parent)
1869 {
1870 	unsigned long flags;
1871 	struct clk_core *old_parent = core->parent;
1872 
1873 	/*
1874 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1875 	 *
1876 	 * 2. Migrate prepare state between parents and prevent race with
1877 	 * clk_enable().
1878 	 *
1879 	 * If the clock is not prepared, then a race with
1880 	 * clk_enable/disable() is impossible since we already have the
1881 	 * prepare lock (future calls to clk_enable() need to be preceded by
1882 	 * a clk_prepare()).
1883 	 *
1884 	 * If the clock is prepared, migrate the prepared state to the new
1885 	 * parent and also protect against a race with clk_enable() by
1886 	 * forcing the clock and the new parent on.  This ensures that all
1887 	 * future calls to clk_enable() are practically NOPs with respect to
1888 	 * hardware and software states.
1889 	 *
1890 	 * See also: Comment for clk_set_parent() below.
1891 	 */
1892 
1893 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1894 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1895 		clk_core_prepare_enable(old_parent);
1896 		clk_core_prepare_enable(parent);
1897 	}
1898 
1899 	/* migrate prepare count if > 0 */
1900 	if (core->prepare_count) {
1901 		clk_core_prepare_enable(parent);
1902 		clk_core_enable_lock(core);
1903 	}
1904 
1905 	/* update the clk tree topology */
1906 	flags = clk_enable_lock();
1907 	clk_reparent(core, parent);
1908 	clk_enable_unlock(flags);
1909 
1910 	return old_parent;
1911 }
1912 
__clk_set_parent_after(struct clk_core *core, struct clk_core *parent, struct clk_core *old_parent)1913 static void __clk_set_parent_after(struct clk_core *core,
1914 				   struct clk_core *parent,
1915 				   struct clk_core *old_parent)
1916 {
1917 	/*
1918 	 * Finish the migration of prepare state and undo the changes done
1919 	 * for preventing a race with clk_enable().
1920 	 */
1921 	if (core->prepare_count) {
1922 		clk_core_disable_lock(core);
1923 		clk_core_disable_unprepare(old_parent);
1924 	}
1925 
1926 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1927 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1928 		clk_core_disable_unprepare(parent);
1929 		clk_core_disable_unprepare(old_parent);
1930 	}
1931 }
1932 
__clk_set_parent(struct clk_core *core, struct clk_core *parent, u8 p_index)1933 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1934 			    u8 p_index)
1935 {
1936 	unsigned long flags;
1937 	int ret = 0;
1938 	struct clk_core *old_parent;
1939 
1940 	old_parent = __clk_set_parent_before(core, parent);
1941 
1942 	trace_clk_set_parent(core, parent);
1943 
1944 	/* change clock input source */
1945 	if (parent && core->ops->set_parent)
1946 		ret = core->ops->set_parent(core->hw, p_index);
1947 
1948 	trace_clk_set_parent_complete(core, parent);
1949 
1950 	if (ret) {
1951 		flags = clk_enable_lock();
1952 		clk_reparent(core, old_parent);
1953 		clk_enable_unlock(flags);
1954 		__clk_set_parent_after(core, old_parent, parent);
1955 
1956 		return ret;
1957 	}
1958 
1959 	__clk_set_parent_after(core, parent, old_parent);
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  * __clk_speculate_rates
1966  * @core: first clk in the subtree
1967  * @parent_rate: the "future" rate of clk's parent
1968  *
1969  * Walks the subtree of clks starting with clk, speculating rates as it
1970  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1971  *
1972  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1973  * pre-rate change notifications and returns early if no clks in the
1974  * subtree have subscribed to the notifications.  Note that if a clk does not
1975  * implement the .recalc_rate callback then it is assumed that the clock will
1976  * take on the rate of its parent.
1977  */
__clk_speculate_rates(struct clk_core *core, unsigned long parent_rate)1978 static int __clk_speculate_rates(struct clk_core *core,
1979 				 unsigned long parent_rate)
1980 {
1981 	struct clk_core *child;
1982 	unsigned long new_rate;
1983 	int ret = NOTIFY_DONE;
1984 
1985 	lockdep_assert_held(&prepare_lock);
1986 
1987 	new_rate = clk_recalc(core, parent_rate);
1988 
1989 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1990 	if (core->notifier_count)
1991 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1992 
1993 	if (ret & NOTIFY_STOP_MASK) {
1994 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1995 				__func__, core->name, ret);
1996 		goto out;
1997 	}
1998 
1999 	hlist_for_each_entry(child, &core->children, child_node) {
2000 		ret = __clk_speculate_rates(child, new_rate);
2001 		if (ret & NOTIFY_STOP_MASK)
2002 			break;
2003 	}
2004 
2005 out:
2006 	return ret;
2007 }
2008 
clk_calc_subtree(struct clk_core *core, unsigned long new_rate, struct clk_core *new_parent, u8 p_index)2009 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2010 			     struct clk_core *new_parent, u8 p_index)
2011 {
2012 	struct clk_core *child;
2013 
2014 	core->new_rate = new_rate;
2015 	core->new_parent = new_parent;
2016 	core->new_parent_index = p_index;
2017 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2018 	core->new_child = NULL;
2019 	if (new_parent && new_parent != core->parent)
2020 		new_parent->new_child = core;
2021 
2022 	hlist_for_each_entry(child, &core->children, child_node) {
2023 		child->new_rate = clk_recalc(child, new_rate);
2024 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2025 	}
2026 }
2027 
2028 /*
2029  * calculate the new rates returning the topmost clock that has to be
2030  * changed.
2031  */
clk_calc_new_rates(struct clk_core *core, unsigned long rate)2032 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2033 					   unsigned long rate)
2034 {
2035 	struct clk_core *top = core;
2036 	struct clk_core *old_parent, *parent;
2037 	unsigned long best_parent_rate = 0;
2038 	unsigned long new_rate;
2039 	unsigned long min_rate;
2040 	unsigned long max_rate;
2041 	int p_index = 0;
2042 	long ret;
2043 
2044 	/* sanity */
2045 	if (IS_ERR_OR_NULL(core))
2046 		return NULL;
2047 
2048 	/* save parent rate, if it exists */
2049 	parent = old_parent = core->parent;
2050 	if (parent)
2051 		best_parent_rate = parent->rate;
2052 
2053 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2054 
2055 	/* find the closest rate and parent clk/rate */
2056 	if (clk_core_can_round(core)) {
2057 		struct clk_rate_request req;
2058 
2059 		req.rate = rate;
2060 		req.min_rate = min_rate;
2061 		req.max_rate = max_rate;
2062 
2063 		clk_core_init_rate_req(core, &req);
2064 
2065 		ret = clk_core_determine_round_nolock(core, &req);
2066 		if (ret < 0)
2067 			return NULL;
2068 
2069 		best_parent_rate = req.best_parent_rate;
2070 		new_rate = req.rate;
2071 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2072 
2073 		if (new_rate < min_rate || new_rate > max_rate)
2074 			return NULL;
2075 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2076 		/* pass-through clock without adjustable parent */
2077 		core->new_rate = core->rate;
2078 		return NULL;
2079 	} else {
2080 		/* pass-through clock with adjustable parent */
2081 		top = clk_calc_new_rates(parent, rate);
2082 		new_rate = parent->new_rate;
2083 		goto out;
2084 	}
2085 
2086 	/* some clocks must be gated to change parent */
2087 	if (parent != old_parent &&
2088 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2089 		pr_debug("%s: %s not gated but wants to reparent\n",
2090 			 __func__, core->name);
2091 		return NULL;
2092 	}
2093 
2094 	/* try finding the new parent index */
2095 	if (parent && core->num_parents > 1) {
2096 		p_index = clk_fetch_parent_index(core, parent);
2097 		if (p_index < 0) {
2098 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2099 				 __func__, parent->name, core->name);
2100 			return NULL;
2101 		}
2102 	}
2103 
2104 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2105 	    best_parent_rate != parent->rate)
2106 		top = clk_calc_new_rates(parent, best_parent_rate);
2107 
2108 out:
2109 	clk_calc_subtree(core, new_rate, parent, p_index);
2110 
2111 	return top;
2112 }
2113 
2114 /*
2115  * Notify about rate changes in a subtree. Always walk down the whole tree
2116  * so that in case of an error we can walk down the whole tree again and
2117  * abort the change.
2118  */
clk_propagate_rate_change(struct clk_core *core, unsigned long event)2119 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2120 						  unsigned long event)
2121 {
2122 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2123 	int ret = NOTIFY_DONE;
2124 
2125 	if (core->rate == core->new_rate)
2126 		return NULL;
2127 
2128 	if (core->notifier_count) {
2129 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2130 		if (ret & NOTIFY_STOP_MASK)
2131 			fail_clk = core;
2132 	}
2133 
2134 	hlist_for_each_entry(child, &core->children, child_node) {
2135 		/* Skip children who will be reparented to another clock */
2136 		if (child->new_parent && child->new_parent != core)
2137 			continue;
2138 		tmp_clk = clk_propagate_rate_change(child, event);
2139 		if (tmp_clk)
2140 			fail_clk = tmp_clk;
2141 	}
2142 
2143 	/* handle the new child who might not be in core->children yet */
2144 	if (core->new_child) {
2145 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2146 		if (tmp_clk)
2147 			fail_clk = tmp_clk;
2148 	}
2149 
2150 	return fail_clk;
2151 }
2152 
2153 /*
2154  * walk down a subtree and set the new rates notifying the rate
2155  * change on the way
2156  */
clk_change_rate(struct clk_core *core)2157 static void clk_change_rate(struct clk_core *core)
2158 {
2159 	struct clk_core *child;
2160 	struct hlist_node *tmp;
2161 	unsigned long old_rate;
2162 	unsigned long best_parent_rate = 0;
2163 	bool skip_set_rate = false;
2164 	struct clk_core *old_parent;
2165 	struct clk_core *parent = NULL;
2166 
2167 	old_rate = core->rate;
2168 
2169 	if (core->new_parent) {
2170 		parent = core->new_parent;
2171 		best_parent_rate = core->new_parent->rate;
2172 	} else if (core->parent) {
2173 		parent = core->parent;
2174 		best_parent_rate = core->parent->rate;
2175 	}
2176 
2177 	if (clk_pm_runtime_get(core))
2178 		return;
2179 
2180 	if (core->flags & CLK_SET_RATE_UNGATE) {
2181 		unsigned long flags;
2182 
2183 		clk_core_prepare(core);
2184 		flags = clk_enable_lock();
2185 		clk_core_enable(core);
2186 		clk_enable_unlock(flags);
2187 	}
2188 
2189 	if (core->new_parent && core->new_parent != core->parent) {
2190 		old_parent = __clk_set_parent_before(core, core->new_parent);
2191 		trace_clk_set_parent(core, core->new_parent);
2192 
2193 		if (core->ops->set_rate_and_parent) {
2194 			skip_set_rate = true;
2195 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2196 					best_parent_rate,
2197 					core->new_parent_index);
2198 		} else if (core->ops->set_parent) {
2199 			core->ops->set_parent(core->hw, core->new_parent_index);
2200 		}
2201 
2202 		trace_clk_set_parent_complete(core, core->new_parent);
2203 		__clk_set_parent_after(core, core->new_parent, old_parent);
2204 	}
2205 
2206 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2207 		clk_core_prepare_enable(parent);
2208 
2209 	trace_clk_set_rate(core, core->new_rate);
2210 
2211 	if (!skip_set_rate && core->ops->set_rate)
2212 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2213 
2214 	trace_clk_set_rate_complete(core, core->new_rate);
2215 
2216 	core->rate = clk_recalc(core, best_parent_rate);
2217 
2218 	if (core->flags & CLK_SET_RATE_UNGATE) {
2219 		unsigned long flags;
2220 
2221 		flags = clk_enable_lock();
2222 		clk_core_disable(core);
2223 		clk_enable_unlock(flags);
2224 		clk_core_unprepare(core);
2225 	}
2226 
2227 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2228 		clk_core_disable_unprepare(parent);
2229 
2230 	if (core->notifier_count && old_rate != core->rate)
2231 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2232 
2233 	if (core->flags & CLK_RECALC_NEW_RATES)
2234 		(void)clk_calc_new_rates(core, core->new_rate);
2235 
2236 	/*
2237 	 * Use safe iteration, as change_rate can actually swap parents
2238 	 * for certain clock types.
2239 	 */
2240 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2241 		/* Skip children who will be reparented to another clock */
2242 		if (child->new_parent && child->new_parent != core)
2243 			continue;
2244 		clk_change_rate(child);
2245 	}
2246 
2247 	/* handle the new child who might not be in core->children yet */
2248 	if (core->new_child)
2249 		clk_change_rate(core->new_child);
2250 
2251 	clk_pm_runtime_put(core);
2252 }
2253 
clk_core_req_round_rate_nolock(struct clk_core *core, unsigned long req_rate)2254 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2255 						     unsigned long req_rate)
2256 {
2257 	int ret, cnt;
2258 	struct clk_rate_request req;
2259 
2260 	lockdep_assert_held(&prepare_lock);
2261 
2262 	if (!core)
2263 		return 0;
2264 
2265 	/* simulate what the rate would be if it could be freely set */
2266 	cnt = clk_core_rate_nuke_protect(core);
2267 	if (cnt < 0)
2268 		return cnt;
2269 
2270 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2271 	req.rate = req_rate;
2272 
2273 	ret = clk_core_round_rate_nolock(core, &req);
2274 
2275 	/* restore the protection */
2276 	clk_core_rate_restore_protect(core, cnt);
2277 
2278 	return ret ? 0 : req.rate;
2279 }
2280 
clk_core_set_rate_nolock(struct clk_core *core, unsigned long req_rate)2281 static int clk_core_set_rate_nolock(struct clk_core *core,
2282 				    unsigned long req_rate)
2283 {
2284 	struct clk_core *top, *fail_clk;
2285 	unsigned long rate;
2286 	int ret = 0;
2287 
2288 	if (!core)
2289 		return 0;
2290 
2291 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2292 
2293 	/* bail early if nothing to do */
2294 	if (rate == clk_core_get_rate_nolock(core))
2295 		return 0;
2296 
2297 	/* fail on a direct rate set of a protected provider */
2298 	if (clk_core_rate_is_protected(core))
2299 		return -EBUSY;
2300 
2301 	/* calculate new rates and get the topmost changed clock */
2302 	top = clk_calc_new_rates(core, req_rate);
2303 	if (!top)
2304 		return -EINVAL;
2305 
2306 	ret = clk_pm_runtime_get(core);
2307 	if (ret)
2308 		return ret;
2309 
2310 	/* notify that we are about to change rates */
2311 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2312 	if (fail_clk) {
2313 		pr_debug("%s: failed to set %s rate\n", __func__,
2314 				fail_clk->name);
2315 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2316 		ret = -EBUSY;
2317 		goto err;
2318 	}
2319 
2320 	/* change the rates */
2321 	clk_change_rate(top);
2322 
2323 	core->req_rate = req_rate;
2324 err:
2325 	clk_pm_runtime_put(core);
2326 
2327 	return ret;
2328 }
2329 
2330 /**
2331  * clk_set_rate - specify a new rate for clk
2332  * @clk: the clk whose rate is being changed
2333  * @rate: the new rate for clk
2334  *
2335  * In the simplest case clk_set_rate will only adjust the rate of clk.
2336  *
2337  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2338  * propagate up to clk's parent; whether or not this happens depends on the
2339  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2340  * after calling .round_rate then upstream parent propagation is ignored.  If
2341  * *parent_rate comes back with a new rate for clk's parent then we propagate
2342  * up to clk's parent and set its rate.  Upward propagation will continue
2343  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2344  * .round_rate stops requesting changes to clk's parent_rate.
2345  *
2346  * Rate changes are accomplished via tree traversal that also recalculates the
2347  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2348  *
2349  * Returns 0 on success, -EERROR otherwise.
2350  */
clk_set_rate(struct clk *clk, unsigned long rate)2351 int clk_set_rate(struct clk *clk, unsigned long rate)
2352 {
2353 	int ret;
2354 
2355 	if (!clk)
2356 		return 0;
2357 
2358 	/* prevent racing with updates to the clock topology */
2359 	clk_prepare_lock();
2360 
2361 	if (clk->exclusive_count)
2362 		clk_core_rate_unprotect(clk->core);
2363 
2364 	ret = clk_core_set_rate_nolock(clk->core, rate);
2365 
2366 	if (clk->exclusive_count)
2367 		clk_core_rate_protect(clk->core);
2368 
2369 	clk_prepare_unlock();
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(clk_set_rate);
2374 
2375 /**
2376  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2377  * @clk: the clk whose rate is being changed
2378  * @rate: the new rate for clk
2379  *
2380  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2381  * within a critical section
2382  *
2383  * This can be used initially to ensure that at least 1 consumer is
2384  * satisfied when several consumers are competing for exclusivity over the
2385  * same clock provider.
2386  *
2387  * The exclusivity is not applied if setting the rate failed.
2388  *
2389  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2390  * clk_rate_exclusive_put().
2391  *
2392  * Returns 0 on success, -EERROR otherwise.
2393  */
clk_set_rate_exclusive(struct clk *clk, unsigned long rate)2394 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2395 {
2396 	int ret;
2397 
2398 	if (!clk)
2399 		return 0;
2400 
2401 	/* prevent racing with updates to the clock topology */
2402 	clk_prepare_lock();
2403 
2404 	/*
2405 	 * The temporary protection removal is not here, on purpose
2406 	 * This function is meant to be used instead of clk_rate_protect,
2407 	 * so before the consumer code path protect the clock provider
2408 	 */
2409 
2410 	ret = clk_core_set_rate_nolock(clk->core, rate);
2411 	if (!ret) {
2412 		clk_core_rate_protect(clk->core);
2413 		clk->exclusive_count++;
2414 	}
2415 
2416 	clk_prepare_unlock();
2417 
2418 	return ret;
2419 }
2420 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2421 
2422 /**
2423  * clk_set_rate_range - set a rate range for a clock source
2424  * @clk: clock source
2425  * @min: desired minimum clock rate in Hz, inclusive
2426  * @max: desired maximum clock rate in Hz, inclusive
2427  *
2428  * Returns success (0) or negative errno.
2429  */
clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)2430 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2431 {
2432 	int ret = 0;
2433 	unsigned long old_min, old_max, rate;
2434 
2435 	if (!clk)
2436 		return 0;
2437 
2438 	if (min > max) {
2439 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2440 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2441 		       min, max);
2442 		return -EINVAL;
2443 	}
2444 
2445 	clk_prepare_lock();
2446 
2447 	if (clk->exclusive_count)
2448 		clk_core_rate_unprotect(clk->core);
2449 
2450 	/* Save the current values in case we need to rollback the change */
2451 	old_min = clk->min_rate;
2452 	old_max = clk->max_rate;
2453 	clk->min_rate = min;
2454 	clk->max_rate = max;
2455 
2456 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2457 		ret = -EINVAL;
2458 		goto out;
2459 	}
2460 
2461 	rate = clk_core_get_rate_nolock(clk->core);
2462 	if (rate < min || rate > max) {
2463 		/*
2464 		 * FIXME:
2465 		 * We are in bit of trouble here, current rate is outside the
2466 		 * the requested range. We are going try to request appropriate
2467 		 * range boundary but there is a catch. It may fail for the
2468 		 * usual reason (clock broken, clock protected, etc) but also
2469 		 * because:
2470 		 * - round_rate() was not favorable and fell on the wrong
2471 		 *   side of the boundary
2472 		 * - the determine_rate() callback does not really check for
2473 		 *   this corner case when determining the rate
2474 		 */
2475 
2476 		if (rate < min)
2477 			rate = min;
2478 		else
2479 			rate = max;
2480 
2481 		ret = clk_core_set_rate_nolock(clk->core, rate);
2482 		if (ret) {
2483 			/* rollback the changes */
2484 			clk->min_rate = old_min;
2485 			clk->max_rate = old_max;
2486 		}
2487 	}
2488 
2489 out:
2490 	if (clk->exclusive_count)
2491 		clk_core_rate_protect(clk->core);
2492 
2493 	clk_prepare_unlock();
2494 
2495 	return ret;
2496 }
2497 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2498 
2499 /**
2500  * clk_set_min_rate - set a minimum clock rate for a clock source
2501  * @clk: clock source
2502  * @rate: desired minimum clock rate in Hz, inclusive
2503  *
2504  * Returns success (0) or negative errno.
2505  */
clk_set_min_rate(struct clk *clk, unsigned long rate)2506 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2507 {
2508 	if (!clk)
2509 		return 0;
2510 
2511 	return clk_set_rate_range(clk, rate, clk->max_rate);
2512 }
2513 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2514 
2515 /**
2516  * clk_set_max_rate - set a maximum clock rate for a clock source
2517  * @clk: clock source
2518  * @rate: desired maximum clock rate in Hz, inclusive
2519  *
2520  * Returns success (0) or negative errno.
2521  */
clk_set_max_rate(struct clk *clk, unsigned long rate)2522 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2523 {
2524 	if (!clk)
2525 		return 0;
2526 
2527 	return clk_set_rate_range(clk, clk->min_rate, rate);
2528 }
2529 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2530 
2531 /**
2532  * clk_get_parent - return the parent of a clk
2533  * @clk: the clk whose parent gets returned
2534  *
2535  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2536  */
clk_get_parent(struct clk *clk)2537 struct clk *clk_get_parent(struct clk *clk)
2538 {
2539 	struct clk *parent;
2540 
2541 	if (!clk)
2542 		return NULL;
2543 
2544 	clk_prepare_lock();
2545 	/* TODO: Create a per-user clk and change callers to call clk_put */
2546 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2547 	clk_prepare_unlock();
2548 
2549 	return parent;
2550 }
2551 EXPORT_SYMBOL_GPL(clk_get_parent);
2552 
__clk_init_parent(struct clk_core *core)2553 static struct clk_core *__clk_init_parent(struct clk_core *core)
2554 {
2555 	u8 index = 0;
2556 
2557 	if (core->num_parents > 1 && core->ops->get_parent)
2558 		index = core->ops->get_parent(core->hw);
2559 
2560 	return clk_core_get_parent_by_index(core, index);
2561 }
2562 
clk_core_reparent(struct clk_core *core, struct clk_core *new_parent)2563 static void clk_core_reparent(struct clk_core *core,
2564 				  struct clk_core *new_parent)
2565 {
2566 	clk_reparent(core, new_parent);
2567 	__clk_recalc_accuracies(core);
2568 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2569 }
2570 
clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)2571 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2572 {
2573 	if (!hw)
2574 		return;
2575 
2576 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2577 }
2578 
2579 /**
2580  * clk_has_parent - check if a clock is a possible parent for another
2581  * @clk: clock source
2582  * @parent: parent clock source
2583  *
2584  * This function can be used in drivers that need to check that a clock can be
2585  * the parent of another without actually changing the parent.
2586  *
2587  * Returns true if @parent is a possible parent for @clk, false otherwise.
2588  */
clk_has_parent(struct clk *clk, struct clk *parent)2589 bool clk_has_parent(struct clk *clk, struct clk *parent)
2590 {
2591 	struct clk_core *core, *parent_core;
2592 	int i;
2593 
2594 	/* NULL clocks should be nops, so return success if either is NULL. */
2595 	if (!clk || !parent)
2596 		return true;
2597 
2598 	core = clk->core;
2599 	parent_core = parent->core;
2600 
2601 	/* Optimize for the case where the parent is already the parent. */
2602 	if (core->parent == parent_core)
2603 		return true;
2604 
2605 	for (i = 0; i < core->num_parents; i++)
2606 		if (!strcmp(core->parents[i].name, parent_core->name))
2607 			return true;
2608 
2609 	return false;
2610 }
2611 EXPORT_SYMBOL_GPL(clk_has_parent);
2612 
clk_core_set_parent_nolock(struct clk_core *core, struct clk_core *parent)2613 static int clk_core_set_parent_nolock(struct clk_core *core,
2614 				      struct clk_core *parent)
2615 {
2616 	int ret = 0;
2617 	int p_index = 0;
2618 	unsigned long p_rate = 0;
2619 
2620 	lockdep_assert_held(&prepare_lock);
2621 
2622 	if (!core)
2623 		return 0;
2624 
2625 	if (core->parent == parent)
2626 		return 0;
2627 
2628 	/* verify ops for multi-parent clks */
2629 	if (core->num_parents > 1 && !core->ops->set_parent)
2630 		return -EPERM;
2631 
2632 	/* check that we are allowed to re-parent if the clock is in use */
2633 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2634 		return -EBUSY;
2635 
2636 	if (clk_core_rate_is_protected(core))
2637 		return -EBUSY;
2638 
2639 	/* try finding the new parent index */
2640 	if (parent) {
2641 		p_index = clk_fetch_parent_index(core, parent);
2642 		if (p_index < 0) {
2643 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2644 					__func__, parent->name, core->name);
2645 			return p_index;
2646 		}
2647 		p_rate = parent->rate;
2648 	}
2649 
2650 	ret = clk_pm_runtime_get(core);
2651 	if (ret)
2652 		return ret;
2653 
2654 	/* propagate PRE_RATE_CHANGE notifications */
2655 	ret = __clk_speculate_rates(core, p_rate);
2656 
2657 	/* abort if a driver objects */
2658 	if (ret & NOTIFY_STOP_MASK)
2659 		goto runtime_put;
2660 
2661 	/* do the re-parent */
2662 	ret = __clk_set_parent(core, parent, p_index);
2663 
2664 	/* propagate rate an accuracy recalculation accordingly */
2665 	if (ret) {
2666 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2667 	} else {
2668 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2669 		__clk_recalc_accuracies(core);
2670 	}
2671 
2672 runtime_put:
2673 	clk_pm_runtime_put(core);
2674 
2675 	return ret;
2676 }
2677 
clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)2678 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2679 {
2680 	return clk_core_set_parent_nolock(hw->core, parent->core);
2681 }
2682 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2683 
2684 /**
2685  * clk_set_parent - switch the parent of a mux clk
2686  * @clk: the mux clk whose input we are switching
2687  * @parent: the new input to clk
2688  *
2689  * Re-parent clk to use parent as its new input source.  If clk is in
2690  * prepared state, the clk will get enabled for the duration of this call. If
2691  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2692  * that, the reparenting is glitchy in hardware, etc), use the
2693  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2694  *
2695  * After successfully changing clk's parent clk_set_parent will update the
2696  * clk topology, sysfs topology and propagate rate recalculation via
2697  * __clk_recalc_rates.
2698  *
2699  * Returns 0 on success, -EERROR otherwise.
2700  */
clk_set_parent(struct clk *clk, struct clk *parent)2701 int clk_set_parent(struct clk *clk, struct clk *parent)
2702 {
2703 	int ret;
2704 
2705 	if (!clk)
2706 		return 0;
2707 
2708 	clk_prepare_lock();
2709 
2710 	if (clk->exclusive_count)
2711 		clk_core_rate_unprotect(clk->core);
2712 
2713 	ret = clk_core_set_parent_nolock(clk->core,
2714 					 parent ? parent->core : NULL);
2715 
2716 	if (clk->exclusive_count)
2717 		clk_core_rate_protect(clk->core);
2718 
2719 	clk_prepare_unlock();
2720 
2721 	return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(clk_set_parent);
2724 
clk_core_set_phase_nolock(struct clk_core *core, int degrees)2725 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2726 {
2727 	int ret = -EINVAL;
2728 
2729 	lockdep_assert_held(&prepare_lock);
2730 
2731 	if (!core)
2732 		return 0;
2733 
2734 	if (clk_core_rate_is_protected(core))
2735 		return -EBUSY;
2736 
2737 	trace_clk_set_phase(core, degrees);
2738 
2739 	if (core->ops->set_phase) {
2740 		ret = core->ops->set_phase(core->hw, degrees);
2741 		if (!ret)
2742 			core->phase = degrees;
2743 	}
2744 
2745 	trace_clk_set_phase_complete(core, degrees);
2746 
2747 	return ret;
2748 }
2749 
2750 /**
2751  * clk_set_phase - adjust the phase shift of a clock signal
2752  * @clk: clock signal source
2753  * @degrees: number of degrees the signal is shifted
2754  *
2755  * Shifts the phase of a clock signal by the specified
2756  * degrees. Returns 0 on success, -EERROR otherwise.
2757  *
2758  * This function makes no distinction about the input or reference
2759  * signal that we adjust the clock signal phase against. For example
2760  * phase locked-loop clock signal generators we may shift phase with
2761  * respect to feedback clock signal input, but for other cases the
2762  * clock phase may be shifted with respect to some other, unspecified
2763  * signal.
2764  *
2765  * Additionally the concept of phase shift does not propagate through
2766  * the clock tree hierarchy, which sets it apart from clock rates and
2767  * clock accuracy. A parent clock phase attribute does not have an
2768  * impact on the phase attribute of a child clock.
2769  */
clk_set_phase(struct clk *clk, int degrees)2770 int clk_set_phase(struct clk *clk, int degrees)
2771 {
2772 	int ret;
2773 
2774 	if (!clk)
2775 		return 0;
2776 
2777 	/* sanity check degrees */
2778 	degrees %= 360;
2779 	if (degrees < 0)
2780 		degrees += 360;
2781 
2782 	clk_prepare_lock();
2783 
2784 	if (clk->exclusive_count)
2785 		clk_core_rate_unprotect(clk->core);
2786 
2787 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2788 
2789 	if (clk->exclusive_count)
2790 		clk_core_rate_protect(clk->core);
2791 
2792 	clk_prepare_unlock();
2793 
2794 	return ret;
2795 }
2796 EXPORT_SYMBOL_GPL(clk_set_phase);
2797 
clk_core_get_phase(struct clk_core *core)2798 static int clk_core_get_phase(struct clk_core *core)
2799 {
2800 	int ret;
2801 
2802 	lockdep_assert_held(&prepare_lock);
2803 	if (!core->ops->get_phase)
2804 		return 0;
2805 
2806 	/* Always try to update cached phase if possible */
2807 	ret = core->ops->get_phase(core->hw);
2808 	if (ret >= 0)
2809 		core->phase = ret;
2810 
2811 	return ret;
2812 }
2813 
2814 /**
2815  * clk_get_phase - return the phase shift of a clock signal
2816  * @clk: clock signal source
2817  *
2818  * Returns the phase shift of a clock node in degrees, otherwise returns
2819  * -EERROR.
2820  */
clk_get_phase(struct clk *clk)2821 int clk_get_phase(struct clk *clk)
2822 {
2823 	int ret;
2824 
2825 	if (!clk)
2826 		return 0;
2827 
2828 	clk_prepare_lock();
2829 	ret = clk_core_get_phase(clk->core);
2830 	clk_prepare_unlock();
2831 
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL_GPL(clk_get_phase);
2835 
clk_core_reset_duty_cycle_nolock(struct clk_core *core)2836 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2837 {
2838 	/* Assume a default value of 50% */
2839 	core->duty.num = 1;
2840 	core->duty.den = 2;
2841 }
2842 
2843 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2844 
clk_core_update_duty_cycle_nolock(struct clk_core *core)2845 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2846 {
2847 	struct clk_duty *duty = &core->duty;
2848 	int ret = 0;
2849 
2850 	if (!core->ops->get_duty_cycle)
2851 		return clk_core_update_duty_cycle_parent_nolock(core);
2852 
2853 	ret = core->ops->get_duty_cycle(core->hw, duty);
2854 	if (ret)
2855 		goto reset;
2856 
2857 	/* Don't trust the clock provider too much */
2858 	if (duty->den == 0 || duty->num > duty->den) {
2859 		ret = -EINVAL;
2860 		goto reset;
2861 	}
2862 
2863 	return 0;
2864 
2865 reset:
2866 	clk_core_reset_duty_cycle_nolock(core);
2867 	return ret;
2868 }
2869 
clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)2870 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2871 {
2872 	int ret = 0;
2873 
2874 	if (core->parent &&
2875 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2876 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2877 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2878 	} else {
2879 		clk_core_reset_duty_cycle_nolock(core);
2880 	}
2881 
2882 	return ret;
2883 }
2884 
2885 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2886 						 struct clk_duty *duty);
2887 
clk_core_set_duty_cycle_nolock(struct clk_core *core, struct clk_duty *duty)2888 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2889 					  struct clk_duty *duty)
2890 {
2891 	int ret;
2892 
2893 	lockdep_assert_held(&prepare_lock);
2894 
2895 	if (clk_core_rate_is_protected(core))
2896 		return -EBUSY;
2897 
2898 	trace_clk_set_duty_cycle(core, duty);
2899 
2900 	if (!core->ops->set_duty_cycle)
2901 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2902 
2903 	ret = core->ops->set_duty_cycle(core->hw, duty);
2904 	if (!ret)
2905 		memcpy(&core->duty, duty, sizeof(*duty));
2906 
2907 	trace_clk_set_duty_cycle_complete(core, duty);
2908 
2909 	return ret;
2910 }
2911 
clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, struct clk_duty *duty)2912 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2913 						 struct clk_duty *duty)
2914 {
2915 	int ret = 0;
2916 
2917 	if (core->parent &&
2918 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2919 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2920 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2921 	}
2922 
2923 	return ret;
2924 }
2925 
2926 /**
2927  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2928  * @clk: clock signal source
2929  * @num: numerator of the duty cycle ratio to be applied
2930  * @den: denominator of the duty cycle ratio to be applied
2931  *
2932  * Apply the duty cycle ratio if the ratio is valid and the clock can
2933  * perform this operation
2934  *
2935  * Returns (0) on success, a negative errno otherwise.
2936  */
clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)2937 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2938 {
2939 	int ret;
2940 	struct clk_duty duty;
2941 
2942 	if (!clk)
2943 		return 0;
2944 
2945 	/* sanity check the ratio */
2946 	if (den == 0 || num > den)
2947 		return -EINVAL;
2948 
2949 	duty.num = num;
2950 	duty.den = den;
2951 
2952 	clk_prepare_lock();
2953 
2954 	if (clk->exclusive_count)
2955 		clk_core_rate_unprotect(clk->core);
2956 
2957 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2958 
2959 	if (clk->exclusive_count)
2960 		clk_core_rate_protect(clk->core);
2961 
2962 	clk_prepare_unlock();
2963 
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2967 
clk_core_get_scaled_duty_cycle(struct clk_core *core, unsigned int scale)2968 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2969 					  unsigned int scale)
2970 {
2971 	struct clk_duty *duty = &core->duty;
2972 	int ret;
2973 
2974 	clk_prepare_lock();
2975 
2976 	ret = clk_core_update_duty_cycle_nolock(core);
2977 	if (!ret)
2978 		ret = mult_frac(scale, duty->num, duty->den);
2979 
2980 	clk_prepare_unlock();
2981 
2982 	return ret;
2983 }
2984 
2985 /**
2986  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2987  * @clk: clock signal source
2988  * @scale: scaling factor to be applied to represent the ratio as an integer
2989  *
2990  * Returns the duty cycle ratio of a clock node multiplied by the provided
2991  * scaling factor, or negative errno on error.
2992  */
clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)2993 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2994 {
2995 	if (!clk)
2996 		return 0;
2997 
2998 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2999 }
3000 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3001 
3002 /**
3003  * clk_is_match - check if two clk's point to the same hardware clock
3004  * @p: clk compared against q
3005  * @q: clk compared against p
3006  *
3007  * Returns true if the two struct clk pointers both point to the same hardware
3008  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3009  * share the same struct clk_core object.
3010  *
3011  * Returns false otherwise. Note that two NULL clks are treated as matching.
3012  */
clk_is_match(const struct clk *p, const struct clk *q)3013 bool clk_is_match(const struct clk *p, const struct clk *q)
3014 {
3015 	/* trivial case: identical struct clk's or both NULL */
3016 	if (p == q)
3017 		return true;
3018 
3019 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3020 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3021 		if (p->core == q->core)
3022 			return true;
3023 
3024 	return false;
3025 }
3026 EXPORT_SYMBOL_GPL(clk_is_match);
3027 
3028 /***        debugfs support        ***/
3029 
3030 #ifdef CONFIG_DEBUG_FS
3031 #include <linux/debugfs.h>
3032 
3033 static struct dentry *rootdir;
3034 static int inited = 0;
3035 static DEFINE_MUTEX(clk_debug_lock);
3036 static HLIST_HEAD(clk_debug_list);
3037 
3038 static struct hlist_head *orphan_list[] = {
3039 	&clk_orphan_list,
3040 	NULL,
3041 };
3042 
clk_summary_show_one(struct seq_file *s, struct clk_core *c, int level)3043 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3044 				 int level)
3045 {
3046 	int phase;
3047 
3048 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3049 		   level * 3 + 1, "",
3050 		   30 - level * 3, c->name,
3051 		   c->enable_count, c->prepare_count, c->protect_count,
3052 		   clk_core_get_rate_recalc(c),
3053 		   clk_core_get_accuracy_recalc(c));
3054 
3055 	phase = clk_core_get_phase(c);
3056 	if (phase >= 0)
3057 		seq_printf(s, "%5d", phase);
3058 	else
3059 		seq_puts(s, "-----");
3060 
3061 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
3062 }
3063 
clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, int level)3064 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3065 				     int level)
3066 {
3067 	struct clk_core *child;
3068 
3069 	clk_summary_show_one(s, c, level);
3070 
3071 	hlist_for_each_entry(child, &c->children, child_node)
3072 		clk_summary_show_subtree(s, child, level + 1);
3073 }
3074 
clk_summary_show(struct seq_file *s, void *data)3075 static int clk_summary_show(struct seq_file *s, void *data)
3076 {
3077 	struct clk_core *c;
3078 	struct hlist_head **lists = (struct hlist_head **)s->private;
3079 
3080 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
3081 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
3082 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
3083 
3084 	clk_prepare_lock();
3085 
3086 	for (; *lists; lists++)
3087 		hlist_for_each_entry(c, *lists, child_node)
3088 			clk_summary_show_subtree(s, c, 0);
3089 
3090 	clk_prepare_unlock();
3091 
3092 	return 0;
3093 }
3094 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3095 
clk_dump_one(struct seq_file *s, struct clk_core *c, int level)3096 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3097 {
3098 	int phase;
3099 	unsigned long min_rate, max_rate;
3100 
3101 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3102 
3103 	/* This should be JSON format, i.e. elements separated with a comma */
3104 	seq_printf(s, "\"%s\": { ", c->name);
3105 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3106 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3107 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3108 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3109 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3110 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3111 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3112 	phase = clk_core_get_phase(c);
3113 	if (phase >= 0)
3114 		seq_printf(s, "\"phase\": %d,", phase);
3115 	seq_printf(s, "\"duty_cycle\": %u",
3116 		   clk_core_get_scaled_duty_cycle(c, 100000));
3117 }
3118 
clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)3119 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3120 {
3121 	struct clk_core *child;
3122 
3123 	clk_dump_one(s, c, level);
3124 
3125 	hlist_for_each_entry(child, &c->children, child_node) {
3126 		seq_putc(s, ',');
3127 		clk_dump_subtree(s, child, level + 1);
3128 	}
3129 
3130 	seq_putc(s, '}');
3131 }
3132 
clk_dump_show(struct seq_file *s, void *data)3133 static int clk_dump_show(struct seq_file *s, void *data)
3134 {
3135 	struct clk_core *c;
3136 	bool first_node = true;
3137 	struct hlist_head **lists = (struct hlist_head **)s->private;
3138 
3139 	seq_putc(s, '{');
3140 	clk_prepare_lock();
3141 
3142 	for (; *lists; lists++) {
3143 		hlist_for_each_entry(c, *lists, child_node) {
3144 			if (!first_node)
3145 				seq_putc(s, ',');
3146 			first_node = false;
3147 			clk_dump_subtree(s, c, 0);
3148 		}
3149 	}
3150 
3151 	clk_prepare_unlock();
3152 
3153 	seq_puts(s, "}\n");
3154 	return 0;
3155 }
3156 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3157 
3158 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3159 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3160 /*
3161  * This can be dangerous, therefore don't provide any real compile time
3162  * configuration option for this feature.
3163  * People who want to use this will need to modify the source code directly.
3164  */
clk_rate_set(void *data, u64 val)3165 static int clk_rate_set(void *data, u64 val)
3166 {
3167 	struct clk_core *core = data;
3168 	int ret;
3169 
3170 	clk_prepare_lock();
3171 	ret = clk_core_set_rate_nolock(core, val);
3172 	clk_prepare_unlock();
3173 
3174 	return ret;
3175 }
3176 
3177 #define clk_rate_mode	0644
3178 
clk_prepare_enable_set(void *data, u64 val)3179 static int clk_prepare_enable_set(void *data, u64 val)
3180 {
3181 	struct clk_core *core = data;
3182 	int ret = 0;
3183 
3184 	if (val)
3185 		ret = clk_prepare_enable(core->hw->clk);
3186 	else
3187 		clk_disable_unprepare(core->hw->clk);
3188 
3189 	return ret;
3190 }
3191 
clk_prepare_enable_get(void *data, u64 *val)3192 static int clk_prepare_enable_get(void *data, u64 *val)
3193 {
3194 	struct clk_core *core = data;
3195 
3196 	*val = core->enable_count && core->prepare_count;
3197 	return 0;
3198 }
3199 
3200 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3201 			 clk_prepare_enable_set, "%llu\n");
3202 
3203 #else
3204 #define clk_rate_set	NULL
3205 #define clk_rate_mode	0444
3206 #endif
3207 
clk_rate_get(void *data, u64 *val)3208 static int clk_rate_get(void *data, u64 *val)
3209 {
3210 	struct clk_core *core = data;
3211 
3212 	*val = core->rate;
3213 	return 0;
3214 }
3215 
3216 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3217 
3218 static const struct {
3219 	unsigned long flag;
3220 	const char *name;
3221 } clk_flags[] = {
3222 #define ENTRY(f) { f, #f }
3223 	ENTRY(CLK_SET_RATE_GATE),
3224 	ENTRY(CLK_SET_PARENT_GATE),
3225 	ENTRY(CLK_SET_RATE_PARENT),
3226 	ENTRY(CLK_IGNORE_UNUSED),
3227 	ENTRY(CLK_GET_RATE_NOCACHE),
3228 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3229 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3230 	ENTRY(CLK_RECALC_NEW_RATES),
3231 	ENTRY(CLK_SET_RATE_UNGATE),
3232 	ENTRY(CLK_IS_CRITICAL),
3233 	ENTRY(CLK_OPS_PARENT_ENABLE),
3234 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3235 #undef ENTRY
3236 };
3237 
clk_flags_show(struct seq_file *s, void *data)3238 static int clk_flags_show(struct seq_file *s, void *data)
3239 {
3240 	struct clk_core *core = s->private;
3241 	unsigned long flags = core->flags;
3242 	unsigned int i;
3243 
3244 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3245 		if (flags & clk_flags[i].flag) {
3246 			seq_printf(s, "%s\n", clk_flags[i].name);
3247 			flags &= ~clk_flags[i].flag;
3248 		}
3249 	}
3250 	if (flags) {
3251 		/* Unknown flags */
3252 		seq_printf(s, "0x%lx\n", flags);
3253 	}
3254 
3255 	return 0;
3256 }
3257 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3258 
possible_parent_show(struct seq_file *s, struct clk_core *core, unsigned int i, char terminator)3259 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3260 				 unsigned int i, char terminator)
3261 {
3262 	struct clk_core *parent;
3263 	const char *name = NULL;
3264 
3265 	/*
3266 	 * Go through the following options to fetch a parent's name.
3267 	 *
3268 	 * 1. Fetch the registered parent clock and use its name
3269 	 * 2. Use the global (fallback) name if specified
3270 	 * 3. Use the local fw_name if provided
3271 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3272 	 *
3273 	 * This may still fail in some cases, such as when the parent is
3274 	 * specified directly via a struct clk_hw pointer, but it isn't
3275 	 * registered (yet).
3276 	 */
3277 	parent = clk_core_get_parent_by_index(core, i);
3278 	if (parent) {
3279 		seq_puts(s, parent->name);
3280 	} else if (core->parents[i].name) {
3281 		seq_puts(s, core->parents[i].name);
3282 	} else if (core->parents[i].fw_name) {
3283 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3284 	} else {
3285 		if (core->parents[i].index >= 0)
3286 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3287 		if (!name)
3288 			name = "(missing)";
3289 
3290 		seq_puts(s, name);
3291 	}
3292 
3293 	seq_putc(s, terminator);
3294 }
3295 
possible_parents_show(struct seq_file *s, void *data)3296 static int possible_parents_show(struct seq_file *s, void *data)
3297 {
3298 	struct clk_core *core = s->private;
3299 	int i;
3300 
3301 	for (i = 0; i < core->num_parents - 1; i++)
3302 		possible_parent_show(s, core, i, ' ');
3303 
3304 	possible_parent_show(s, core, i, '\n');
3305 
3306 	return 0;
3307 }
3308 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3309 
current_parent_show(struct seq_file *s, void *data)3310 static int current_parent_show(struct seq_file *s, void *data)
3311 {
3312 	struct clk_core *core = s->private;
3313 
3314 	if (core->parent)
3315 		seq_printf(s, "%s\n", core->parent->name);
3316 
3317 	return 0;
3318 }
3319 DEFINE_SHOW_ATTRIBUTE(current_parent);
3320 
clk_duty_cycle_show(struct seq_file *s, void *data)3321 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3322 {
3323 	struct clk_core *core = s->private;
3324 	struct clk_duty *duty = &core->duty;
3325 
3326 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3327 
3328 	return 0;
3329 }
3330 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3331 
clk_min_rate_show(struct seq_file *s, void *data)3332 static int clk_min_rate_show(struct seq_file *s, void *data)
3333 {
3334 	struct clk_core *core = s->private;
3335 	unsigned long min_rate, max_rate;
3336 
3337 	clk_prepare_lock();
3338 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3339 	clk_prepare_unlock();
3340 	seq_printf(s, "%lu\n", min_rate);
3341 
3342 	return 0;
3343 }
3344 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3345 
clk_max_rate_show(struct seq_file *s, void *data)3346 static int clk_max_rate_show(struct seq_file *s, void *data)
3347 {
3348 	struct clk_core *core = s->private;
3349 	unsigned long min_rate, max_rate;
3350 
3351 	clk_prepare_lock();
3352 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3353 	clk_prepare_unlock();
3354 	seq_printf(s, "%lu\n", max_rate);
3355 
3356 	return 0;
3357 }
3358 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3359 
clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)3360 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3361 {
3362 	struct dentry *root;
3363 
3364 	if (!core || !pdentry)
3365 		return;
3366 
3367 	root = debugfs_create_dir(core->name, pdentry);
3368 	core->dentry = root;
3369 
3370 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3371 			    &clk_rate_fops);
3372 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3373 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3374 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3375 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3376 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3377 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3378 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3379 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3380 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3381 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3382 			    &clk_duty_cycle_fops);
3383 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3384 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3385 			    &clk_prepare_enable_fops);
3386 #endif
3387 
3388 	if (core->num_parents > 0)
3389 		debugfs_create_file("clk_parent", 0444, root, core,
3390 				    &current_parent_fops);
3391 
3392 	if (core->num_parents > 1)
3393 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3394 				    &possible_parents_fops);
3395 
3396 	if (core->ops->debug_init)
3397 		core->ops->debug_init(core->hw, core->dentry);
3398 }
3399 
3400 /**
3401  * clk_debug_register - add a clk node to the debugfs clk directory
3402  * @core: the clk being added to the debugfs clk directory
3403  *
3404  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3405  * initialized.  Otherwise it bails out early since the debugfs clk directory
3406  * will be created lazily by clk_debug_init as part of a late_initcall.
3407  */
clk_debug_register(struct clk_core *core)3408 static void clk_debug_register(struct clk_core *core)
3409 {
3410 	mutex_lock(&clk_debug_lock);
3411 	hlist_add_head(&core->debug_node, &clk_debug_list);
3412 	if (inited)
3413 		clk_debug_create_one(core, rootdir);
3414 	mutex_unlock(&clk_debug_lock);
3415 }
3416 
3417  /**
3418  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3419  * @core: the clk being removed from the debugfs clk directory
3420  *
3421  * Dynamically removes a clk and all its child nodes from the
3422  * debugfs clk directory if clk->dentry points to debugfs created by
3423  * clk_debug_register in __clk_core_init.
3424  */
clk_debug_unregister(struct clk_core *core)3425 static void clk_debug_unregister(struct clk_core *core)
3426 {
3427 	mutex_lock(&clk_debug_lock);
3428 	hlist_del_init(&core->debug_node);
3429 	debugfs_remove_recursive(core->dentry);
3430 	core->dentry = NULL;
3431 	mutex_unlock(&clk_debug_lock);
3432 }
3433 
3434 /**
3435  * clk_debug_init - lazily populate the debugfs clk directory
3436  *
3437  * clks are often initialized very early during boot before memory can be
3438  * dynamically allocated and well before debugfs is setup. This function
3439  * populates the debugfs clk directory once at boot-time when we know that
3440  * debugfs is setup. It should only be called once at boot-time, all other clks
3441  * added dynamically will be done so with clk_debug_register.
3442  */
clk_debug_init(void)3443 static int __init clk_debug_init(void)
3444 {
3445 	struct clk_core *core;
3446 
3447 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3448 	pr_warn("\n");
3449 	pr_warn("********************************************************************\n");
3450 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3451 	pr_warn("**                                                                **\n");
3452 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3453 	pr_warn("**                                                                **\n");
3454 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3455 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3456 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3457 	pr_warn("**                                                                **\n");
3458 	pr_warn("** If you see this message and you are not debugging the          **\n");
3459 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3460 	pr_warn("**                                                                **\n");
3461 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3462 	pr_warn("********************************************************************\n");
3463 #endif
3464 
3465 	rootdir = debugfs_create_dir("clk", NULL);
3466 
3467 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3468 			    &clk_summary_fops);
3469 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3470 			    &clk_dump_fops);
3471 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3472 			    &clk_summary_fops);
3473 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3474 			    &clk_dump_fops);
3475 
3476 	mutex_lock(&clk_debug_lock);
3477 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3478 		clk_debug_create_one(core, rootdir);
3479 
3480 	inited = 1;
3481 	mutex_unlock(&clk_debug_lock);
3482 
3483 	return 0;
3484 }
3485 late_initcall(clk_debug_init);
3486 #else
clk_debug_register(struct clk_core *core)3487 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core *core)3488 static inline void clk_debug_unregister(struct clk_core *core)
3489 {
3490 }
3491 #endif
3492 
clk_core_reparent_orphans_nolock(void)3493 static void clk_core_reparent_orphans_nolock(void)
3494 {
3495 	struct clk_core *orphan;
3496 	struct hlist_node *tmp2;
3497 
3498 	/*
3499 	 * walk the list of orphan clocks and reparent any that newly finds a
3500 	 * parent.
3501 	 */
3502 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3503 		struct clk_core *parent = __clk_init_parent(orphan);
3504 
3505 		/*
3506 		 * We need to use __clk_set_parent_before() and _after() to
3507 		 * to properly migrate any prepare/enable count of the orphan
3508 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3509 		 * are enabled during init but might not have a parent yet.
3510 		 */
3511 		if (parent) {
3512 			/* update the clk tree topology */
3513 			__clk_set_parent_before(orphan, parent);
3514 			__clk_set_parent_after(orphan, parent, NULL);
3515 			__clk_recalc_accuracies(orphan);
3516 			__clk_recalc_rates(orphan, 0);
3517 
3518 			/*
3519 			 * __clk_init_parent() will set the initial req_rate to
3520 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3521 			 * is an orphan when it's registered.
3522 			 *
3523 			 * 'req_rate' is used by clk_set_rate_range() and
3524 			 * clk_put() to trigger a clk_set_rate() call whenever
3525 			 * the boundaries are modified. Let's make sure
3526 			 * 'req_rate' is set to something non-zero so that
3527 			 * clk_set_rate_range() doesn't drop the frequency.
3528 			 */
3529 			orphan->req_rate = orphan->rate;
3530 		}
3531 	}
3532 }
3533 
3534 /**
3535  * __clk_core_init - initialize the data structures in a struct clk_core
3536  * @core:	clk_core being initialized
3537  *
3538  * Initializes the lists in struct clk_core, queries the hardware for the
3539  * parent and rate and sets them both.
3540  */
__clk_core_init(struct clk_core *core)3541 static int __clk_core_init(struct clk_core *core)
3542 {
3543 	int ret;
3544 	struct clk_core *parent;
3545 	unsigned long rate;
3546 	int phase;
3547 
3548 	if (!core)
3549 		return -EINVAL;
3550 
3551 	clk_prepare_lock();
3552 
3553 	/*
3554 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3555 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3556 	 * being NULL as the clk not being registered yet. This is crucial so
3557 	 * that clks aren't parented until their parent is fully registered.
3558 	 */
3559 	core->hw->core = core;
3560 
3561 	ret = clk_pm_runtime_get(core);
3562 	if (ret)
3563 		goto unlock;
3564 
3565 	/* check to see if a clock with this name is already registered */
3566 	if (clk_core_lookup(core->name)) {
3567 		pr_debug("%s: clk %s already initialized\n",
3568 				__func__, core->name);
3569 		ret = -EEXIST;
3570 		goto out;
3571 	}
3572 
3573 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3574 	if (core->ops->set_rate &&
3575 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3576 	      core->ops->recalc_rate)) {
3577 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3578 		       __func__, core->name);
3579 		ret = -EINVAL;
3580 		goto out;
3581 	}
3582 
3583 	if (core->ops->set_parent && !core->ops->get_parent) {
3584 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3585 		       __func__, core->name);
3586 		ret = -EINVAL;
3587 		goto out;
3588 	}
3589 
3590 	if (core->num_parents > 1 && !core->ops->get_parent) {
3591 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3592 		       __func__, core->name);
3593 		ret = -EINVAL;
3594 		goto out;
3595 	}
3596 
3597 	if (core->ops->set_rate_and_parent &&
3598 			!(core->ops->set_parent && core->ops->set_rate)) {
3599 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3600 				__func__, core->name);
3601 		ret = -EINVAL;
3602 		goto out;
3603 	}
3604 
3605 	/*
3606 	 * optional platform-specific magic
3607 	 *
3608 	 * The .init callback is not used by any of the basic clock types, but
3609 	 * exists for weird hardware that must perform initialization magic for
3610 	 * CCF to get an accurate view of clock for any other callbacks. It may
3611 	 * also be used needs to perform dynamic allocations. Such allocation
3612 	 * must be freed in the terminate() callback.
3613 	 * This callback shall not be used to initialize the parameters state,
3614 	 * such as rate, parent, etc ...
3615 	 *
3616 	 * If it exist, this callback should called before any other callback of
3617 	 * the clock
3618 	 */
3619 	if (core->ops->init) {
3620 		ret = core->ops->init(core->hw);
3621 		if (ret)
3622 			goto out;
3623 	}
3624 
3625 	parent = core->parent = __clk_init_parent(core);
3626 
3627 	/*
3628 	 * Populate core->parent if parent has already been clk_core_init'd. If
3629 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3630 	 * list.  If clk doesn't have any parents then place it in the root
3631 	 * clk list.
3632 	 *
3633 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3634 	 * clocks and re-parent any that are children of the clock currently
3635 	 * being clk_init'd.
3636 	 */
3637 	if (parent) {
3638 		hlist_add_head(&core->child_node, &parent->children);
3639 		core->orphan = parent->orphan;
3640 	} else if (!core->num_parents) {
3641 		hlist_add_head(&core->child_node, &clk_root_list);
3642 		core->orphan = false;
3643 	} else {
3644 		hlist_add_head(&core->child_node, &clk_orphan_list);
3645 		core->orphan = true;
3646 	}
3647 
3648 	/*
3649 	 * Set clk's accuracy.  The preferred method is to use
3650 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3651 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3652 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3653 	 * clock).
3654 	 */
3655 	if (core->ops->recalc_accuracy)
3656 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3657 					clk_core_get_accuracy_no_lock(parent));
3658 	else if (parent)
3659 		core->accuracy = parent->accuracy;
3660 	else
3661 		core->accuracy = 0;
3662 
3663 	/*
3664 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3665 	 * Since a phase is by definition relative to its parent, just
3666 	 * query the current clock phase, or just assume it's in phase.
3667 	 */
3668 	phase = clk_core_get_phase(core);
3669 	if (phase < 0) {
3670 		ret = phase;
3671 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3672 			core->name);
3673 		goto out;
3674 	}
3675 
3676 	/*
3677 	 * Set clk's duty cycle.
3678 	 */
3679 	clk_core_update_duty_cycle_nolock(core);
3680 
3681 	/*
3682 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3683 	 * simple clocks and lazy developers the default fallback is to use the
3684 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3685 	 * then rate is set to zero.
3686 	 */
3687 	if (core->ops->recalc_rate)
3688 		rate = core->ops->recalc_rate(core->hw,
3689 				clk_core_get_rate_nolock(parent));
3690 	else if (parent)
3691 		rate = parent->rate;
3692 	else
3693 		rate = 0;
3694 	core->rate = core->req_rate = rate;
3695 
3696 	/*
3697 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3698 	 * don't get accidentally disabled when walking the orphan tree and
3699 	 * reparenting clocks
3700 	 */
3701 	if (core->flags & CLK_IS_CRITICAL) {
3702 		unsigned long flags;
3703 
3704 		ret = clk_core_prepare(core);
3705 		if (ret) {
3706 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3707 			       __func__, core->name);
3708 			goto out;
3709 		}
3710 
3711 		flags = clk_enable_lock();
3712 		ret = clk_core_enable(core);
3713 		clk_enable_unlock(flags);
3714 		if (ret) {
3715 			pr_warn("%s: critical clk '%s' failed to enable\n",
3716 			       __func__, core->name);
3717 			clk_core_unprepare(core);
3718 			goto out;
3719 		}
3720 	}
3721 
3722 	clk_core_reparent_orphans_nolock();
3723 out:
3724 	clk_pm_runtime_put(core);
3725 unlock:
3726 	if (ret) {
3727 		hlist_del_init(&core->child_node);
3728 		core->hw->core = NULL;
3729 	}
3730 
3731 	clk_prepare_unlock();
3732 
3733 	if (!ret)
3734 		clk_debug_register(core);
3735 
3736 	return ret;
3737 }
3738 
3739 /**
3740  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3741  * @core: clk to add consumer to
3742  * @clk: consumer to link to a clk
3743  */
clk_core_link_consumer(struct clk_core *core, struct clk *clk)3744 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3745 {
3746 	clk_prepare_lock();
3747 	hlist_add_head(&clk->clks_node, &core->clks);
3748 	clk_prepare_unlock();
3749 }
3750 
3751 /**
3752  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3753  * @clk: consumer to unlink
3754  */
clk_core_unlink_consumer(struct clk *clk)3755 static void clk_core_unlink_consumer(struct clk *clk)
3756 {
3757 	lockdep_assert_held(&prepare_lock);
3758 	hlist_del(&clk->clks_node);
3759 }
3760 
3761 /**
3762  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3763  * @core: clk to allocate a consumer for
3764  * @dev_id: string describing device name
3765  * @con_id: connection ID string on device
3766  *
3767  * Returns: clk consumer left unlinked from the consumer list
3768  */
alloc_clk(struct clk_core *core, const char *dev_id, const char *con_id)3769 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3770 			     const char *con_id)
3771 {
3772 	struct clk *clk;
3773 
3774 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3775 	if (!clk)
3776 		return ERR_PTR(-ENOMEM);
3777 
3778 	clk->core = core;
3779 	clk->dev_id = dev_id;
3780 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3781 	clk->max_rate = ULONG_MAX;
3782 
3783 	return clk;
3784 }
3785 
3786 /**
3787  * free_clk - Free a clk consumer
3788  * @clk: clk consumer to free
3789  *
3790  * Note, this assumes the clk has been unlinked from the clk_core consumer
3791  * list.
3792  */
free_clk(struct clk *clk)3793 static void free_clk(struct clk *clk)
3794 {
3795 	kfree_const(clk->con_id);
3796 	kfree(clk);
3797 }
3798 
3799 /**
3800  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3801  * a clk_hw
3802  * @dev: clk consumer device
3803  * @hw: clk_hw associated with the clk being consumed
3804  * @dev_id: string describing device name
3805  * @con_id: connection ID string on device
3806  *
3807  * This is the main function used to create a clk pointer for use by clk
3808  * consumers. It connects a consumer to the clk_core and clk_hw structures
3809  * used by the framework and clk provider respectively.
3810  */
clk_hw_create_clk(struct device *dev, struct clk_hw *hw, const char *dev_id, const char *con_id)3811 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3812 			      const char *dev_id, const char *con_id)
3813 {
3814 	struct clk *clk;
3815 	struct clk_core *core;
3816 
3817 	/* This is to allow this function to be chained to others */
3818 	if (IS_ERR_OR_NULL(hw))
3819 		return ERR_CAST(hw);
3820 
3821 	core = hw->core;
3822 	clk = alloc_clk(core, dev_id, con_id);
3823 	if (IS_ERR(clk))
3824 		return clk;
3825 	clk->dev = dev;
3826 
3827 	if (!try_module_get(core->owner)) {
3828 		free_clk(clk);
3829 		return ERR_PTR(-ENOENT);
3830 	}
3831 
3832 	kref_get(&core->ref);
3833 	clk_core_link_consumer(core, clk);
3834 
3835 	return clk;
3836 }
3837 
clk_cpy_name(const char **dst_p, const char *src, bool must_exist)3838 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3839 {
3840 	const char *dst;
3841 
3842 	if (!src) {
3843 		if (must_exist)
3844 			return -EINVAL;
3845 		return 0;
3846 	}
3847 
3848 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3849 	if (!dst)
3850 		return -ENOMEM;
3851 
3852 	return 0;
3853 }
3854 
clk_core_populate_parent_map(struct clk_core *core, const struct clk_init_data *init)3855 static int clk_core_populate_parent_map(struct clk_core *core,
3856 					const struct clk_init_data *init)
3857 {
3858 	u8 num_parents = init->num_parents;
3859 	const char * const *parent_names = init->parent_names;
3860 	const struct clk_hw **parent_hws = init->parent_hws;
3861 	const struct clk_parent_data *parent_data = init->parent_data;
3862 	int i, ret = 0;
3863 	struct clk_parent_map *parents, *parent;
3864 
3865 	if (!num_parents)
3866 		return 0;
3867 
3868 	/*
3869 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3870 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3871 	 */
3872 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3873 	core->parents = parents;
3874 	if (!parents)
3875 		return -ENOMEM;
3876 
3877 	/* Copy everything over because it might be __initdata */
3878 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3879 		parent->index = -1;
3880 		if (parent_names) {
3881 			/* throw a WARN if any entries are NULL */
3882 			WARN(!parent_names[i],
3883 				"%s: invalid NULL in %s's .parent_names\n",
3884 				__func__, core->name);
3885 			ret = clk_cpy_name(&parent->name, parent_names[i],
3886 					   true);
3887 		} else if (parent_data) {
3888 			parent->hw = parent_data[i].hw;
3889 			parent->index = parent_data[i].index;
3890 			ret = clk_cpy_name(&parent->fw_name,
3891 					   parent_data[i].fw_name, false);
3892 			if (!ret)
3893 				ret = clk_cpy_name(&parent->name,
3894 						   parent_data[i].name,
3895 						   false);
3896 		} else if (parent_hws) {
3897 			parent->hw = parent_hws[i];
3898 		} else {
3899 			ret = -EINVAL;
3900 			WARN(1, "Must specify parents if num_parents > 0\n");
3901 		}
3902 
3903 		if (ret) {
3904 			do {
3905 				kfree_const(parents[i].name);
3906 				kfree_const(parents[i].fw_name);
3907 			} while (--i >= 0);
3908 			kfree(parents);
3909 
3910 			return ret;
3911 		}
3912 	}
3913 
3914 	return 0;
3915 }
3916 
clk_core_free_parent_map(struct clk_core *core)3917 static void clk_core_free_parent_map(struct clk_core *core)
3918 {
3919 	int i = core->num_parents;
3920 
3921 	if (!core->num_parents)
3922 		return;
3923 
3924 	while (--i >= 0) {
3925 		kfree_const(core->parents[i].name);
3926 		kfree_const(core->parents[i].fw_name);
3927 	}
3928 
3929 	kfree(core->parents);
3930 }
3931 
3932 /* Free memory allocated for a struct clk_core */
__clk_release(struct kref *ref)3933 static void __clk_release(struct kref *ref)
3934 {
3935 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3936 
3937 	if (core->rpm_enabled) {
3938 		mutex_lock(&clk_rpm_list_lock);
3939 		hlist_del(&core->rpm_node);
3940 		mutex_unlock(&clk_rpm_list_lock);
3941 	}
3942 
3943 	clk_core_free_parent_map(core);
3944 	kfree_const(core->name);
3945 	kfree(core);
3946 }
3947 
3948 static struct clk *
__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)3949 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3950 {
3951 	int ret;
3952 	struct clk_core *core;
3953 	const struct clk_init_data *init = hw->init;
3954 
3955 	/*
3956 	 * The init data is not supposed to be used outside of registration path.
3957 	 * Set it to NULL so that provider drivers can't use it either and so that
3958 	 * we catch use of hw->init early on in the core.
3959 	 */
3960 	hw->init = NULL;
3961 
3962 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3963 	if (!core) {
3964 		ret = -ENOMEM;
3965 		goto fail_out;
3966 	}
3967 
3968 	kref_init(&core->ref);
3969 
3970 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3971 	if (!core->name) {
3972 		ret = -ENOMEM;
3973 		goto fail_name;
3974 	}
3975 
3976 	if (WARN_ON(!init->ops)) {
3977 		ret = -EINVAL;
3978 		goto fail_ops;
3979 	}
3980 	core->ops = init->ops;
3981 
3982 	core->dev = dev;
3983 	clk_pm_runtime_init(core);
3984 	core->of_node = np;
3985 	if (dev && dev->driver)
3986 		core->owner = dev->driver->owner;
3987 	core->hw = hw;
3988 	core->flags = init->flags;
3989 	core->num_parents = init->num_parents;
3990 	core->min_rate = 0;
3991 	core->max_rate = ULONG_MAX;
3992 
3993 	ret = clk_core_populate_parent_map(core, init);
3994 	if (ret)
3995 		goto fail_parents;
3996 
3997 	INIT_HLIST_HEAD(&core->clks);
3998 
3999 	/*
4000 	 * Don't call clk_hw_create_clk() here because that would pin the
4001 	 * provider module to itself and prevent it from ever being removed.
4002 	 */
4003 	hw->clk = alloc_clk(core, NULL, NULL);
4004 	if (IS_ERR(hw->clk)) {
4005 		ret = PTR_ERR(hw->clk);
4006 		goto fail_create_clk;
4007 	}
4008 
4009 	clk_core_link_consumer(core, hw->clk);
4010 
4011 	ret = __clk_core_init(core);
4012 	if (!ret)
4013 		return hw->clk;
4014 
4015 	clk_prepare_lock();
4016 	clk_core_unlink_consumer(hw->clk);
4017 	clk_prepare_unlock();
4018 
4019 	free_clk(hw->clk);
4020 	hw->clk = NULL;
4021 
4022 fail_create_clk:
4023 fail_parents:
4024 fail_ops:
4025 fail_name:
4026 	kref_put(&core->ref, __clk_release);
4027 fail_out:
4028 	return ERR_PTR(ret);
4029 }
4030 
4031 /**
4032  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4033  * @dev: Device to get device node of
4034  *
4035  * Return: device node pointer of @dev, or the device node pointer of
4036  * @dev->parent if dev doesn't have a device node, or NULL if neither
4037  * @dev or @dev->parent have a device node.
4038  */
dev_or_parent_of_node(struct device *dev)4039 static struct device_node *dev_or_parent_of_node(struct device *dev)
4040 {
4041 	struct device_node *np;
4042 
4043 	if (!dev)
4044 		return NULL;
4045 
4046 	np = dev_of_node(dev);
4047 	if (!np)
4048 		np = dev_of_node(dev->parent);
4049 
4050 	return np;
4051 }
4052 
4053 /**
4054  * clk_register - allocate a new clock, register it and return an opaque cookie
4055  * @dev: device that is registering this clock
4056  * @hw: link to hardware-specific clock data
4057  *
4058  * clk_register is the *deprecated* interface for populating the clock tree with
4059  * new clock nodes. Use clk_hw_register() instead.
4060  *
4061  * Returns: a pointer to the newly allocated struct clk which
4062  * cannot be dereferenced by driver code but may be used in conjunction with the
4063  * rest of the clock API.  In the event of an error clk_register will return an
4064  * error code; drivers must test for an error code after calling clk_register.
4065  */
clk_register(struct device *dev, struct clk_hw *hw)4066 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4067 {
4068 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4069 }
4070 EXPORT_SYMBOL_GPL(clk_register);
4071 
4072 /**
4073  * clk_hw_register - register a clk_hw and return an error code
4074  * @dev: device that is registering this clock
4075  * @hw: link to hardware-specific clock data
4076  *
4077  * clk_hw_register is the primary interface for populating the clock tree with
4078  * new clock nodes. It returns an integer equal to zero indicating success or
4079  * less than zero indicating failure. Drivers must test for an error code after
4080  * calling clk_hw_register().
4081  */
clk_hw_register(struct device *dev, struct clk_hw *hw)4082 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4083 {
4084 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4085 			       hw));
4086 }
4087 EXPORT_SYMBOL_GPL(clk_hw_register);
4088 
4089 /*
4090  * of_clk_hw_register - register a clk_hw and return an error code
4091  * @node: device_node of device that is registering this clock
4092  * @hw: link to hardware-specific clock data
4093  *
4094  * of_clk_hw_register() is the primary interface for populating the clock tree
4095  * with new clock nodes when a struct device is not available, but a struct
4096  * device_node is. It returns an integer equal to zero indicating success or
4097  * less than zero indicating failure. Drivers must test for an error code after
4098  * calling of_clk_hw_register().
4099  */
of_clk_hw_register(struct device_node *node, struct clk_hw *hw)4100 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4101 {
4102 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4103 }
4104 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4105 
4106 /*
4107  * Empty clk_ops for unregistered clocks. These are used temporarily
4108  * after clk_unregister() was called on a clock and until last clock
4109  * consumer calls clk_put() and the struct clk object is freed.
4110  */
clk_nodrv_prepare_enable(struct clk_hw *hw)4111 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4112 {
4113 	return -ENXIO;
4114 }
4115 
clk_nodrv_disable_unprepare(struct clk_hw *hw)4116 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4117 {
4118 	WARN_ON_ONCE(1);
4119 }
4120 
clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)4121 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4122 					unsigned long parent_rate)
4123 {
4124 	return -ENXIO;
4125 }
4126 
clk_nodrv_set_parent(struct clk_hw *hw, u8 index)4127 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4128 {
4129 	return -ENXIO;
4130 }
4131 
4132 static const struct clk_ops clk_nodrv_ops = {
4133 	.enable		= clk_nodrv_prepare_enable,
4134 	.disable	= clk_nodrv_disable_unprepare,
4135 	.prepare	= clk_nodrv_prepare_enable,
4136 	.unprepare	= clk_nodrv_disable_unprepare,
4137 	.set_rate	= clk_nodrv_set_rate,
4138 	.set_parent	= clk_nodrv_set_parent,
4139 };
4140 
clk_core_evict_parent_cache_subtree(struct clk_core *root, struct clk_core *target)4141 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4142 						struct clk_core *target)
4143 {
4144 	int i;
4145 	struct clk_core *child;
4146 
4147 	for (i = 0; i < root->num_parents; i++)
4148 		if (root->parents[i].core == target)
4149 			root->parents[i].core = NULL;
4150 
4151 	hlist_for_each_entry(child, &root->children, child_node)
4152 		clk_core_evict_parent_cache_subtree(child, target);
4153 }
4154 
4155 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core *core)4156 static void clk_core_evict_parent_cache(struct clk_core *core)
4157 {
4158 	const struct hlist_head **lists;
4159 	struct clk_core *root;
4160 
4161 	lockdep_assert_held(&prepare_lock);
4162 
4163 	for (lists = all_lists; *lists; lists++)
4164 		hlist_for_each_entry(root, *lists, child_node)
4165 			clk_core_evict_parent_cache_subtree(root, core);
4166 
4167 }
4168 
4169 /**
4170  * clk_unregister - unregister a currently registered clock
4171  * @clk: clock to unregister
4172  */
clk_unregister(struct clk *clk)4173 void clk_unregister(struct clk *clk)
4174 {
4175 	unsigned long flags;
4176 	const struct clk_ops *ops;
4177 
4178 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4179 		return;
4180 
4181 	clk_debug_unregister(clk->core);
4182 
4183 	clk_prepare_lock();
4184 
4185 	ops = clk->core->ops;
4186 	if (ops == &clk_nodrv_ops) {
4187 		pr_err("%s: unregistered clock: %s\n", __func__,
4188 		       clk->core->name);
4189 		goto unlock;
4190 	}
4191 	/*
4192 	 * Assign empty clock ops for consumers that might still hold
4193 	 * a reference to this clock.
4194 	 */
4195 	flags = clk_enable_lock();
4196 	clk->core->ops = &clk_nodrv_ops;
4197 	clk_enable_unlock(flags);
4198 
4199 	if (ops->terminate)
4200 		ops->terminate(clk->core->hw);
4201 
4202 	if (!hlist_empty(&clk->core->children)) {
4203 		struct clk_core *child;
4204 		struct hlist_node *t;
4205 
4206 		/* Reparent all children to the orphan list. */
4207 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4208 					  child_node)
4209 			clk_core_set_parent_nolock(child, NULL);
4210 	}
4211 
4212 	clk_core_evict_parent_cache(clk->core);
4213 
4214 	hlist_del_init(&clk->core->child_node);
4215 
4216 	if (clk->core->prepare_count)
4217 		pr_warn("%s: unregistering prepared clock: %s\n",
4218 					__func__, clk->core->name);
4219 
4220 	if (clk->core->protect_count)
4221 		pr_warn("%s: unregistering protected clock: %s\n",
4222 					__func__, clk->core->name);
4223 
4224 	kref_put(&clk->core->ref, __clk_release);
4225 	free_clk(clk);
4226 unlock:
4227 	clk_prepare_unlock();
4228 }
4229 EXPORT_SYMBOL_GPL(clk_unregister);
4230 
4231 /**
4232  * clk_hw_unregister - unregister a currently registered clk_hw
4233  * @hw: hardware-specific clock data to unregister
4234  */
clk_hw_unregister(struct clk_hw *hw)4235 void clk_hw_unregister(struct clk_hw *hw)
4236 {
4237 	clk_unregister(hw->clk);
4238 }
4239 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4240 
devm_clk_release(struct device *dev, void *res)4241 static void devm_clk_release(struct device *dev, void *res)
4242 {
4243 	clk_unregister(*(struct clk **)res);
4244 }
4245 
devm_clk_hw_release(struct device *dev, void *res)4246 static void devm_clk_hw_release(struct device *dev, void *res)
4247 {
4248 	clk_hw_unregister(*(struct clk_hw **)res);
4249 }
4250 
4251 /**
4252  * devm_clk_register - resource managed clk_register()
4253  * @dev: device that is registering this clock
4254  * @hw: link to hardware-specific clock data
4255  *
4256  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4257  *
4258  * Clocks returned from this function are automatically clk_unregister()ed on
4259  * driver detach. See clk_register() for more information.
4260  */
devm_clk_register(struct device *dev, struct clk_hw *hw)4261 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4262 {
4263 	struct clk *clk;
4264 	struct clk **clkp;
4265 
4266 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4267 	if (!clkp)
4268 		return ERR_PTR(-ENOMEM);
4269 
4270 	clk = clk_register(dev, hw);
4271 	if (!IS_ERR(clk)) {
4272 		*clkp = clk;
4273 		devres_add(dev, clkp);
4274 	} else {
4275 		devres_free(clkp);
4276 	}
4277 
4278 	return clk;
4279 }
4280 EXPORT_SYMBOL_GPL(devm_clk_register);
4281 
4282 /**
4283  * devm_clk_hw_register - resource managed clk_hw_register()
4284  * @dev: device that is registering this clock
4285  * @hw: link to hardware-specific clock data
4286  *
4287  * Managed clk_hw_register(). Clocks registered by this function are
4288  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4289  * for more information.
4290  */
devm_clk_hw_register(struct device *dev, struct clk_hw *hw)4291 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4292 {
4293 	struct clk_hw **hwp;
4294 	int ret;
4295 
4296 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4297 	if (!hwp)
4298 		return -ENOMEM;
4299 
4300 	ret = clk_hw_register(dev, hw);
4301 	if (!ret) {
4302 		*hwp = hw;
4303 		devres_add(dev, hwp);
4304 	} else {
4305 		devres_free(hwp);
4306 	}
4307 
4308 	return ret;
4309 }
4310 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4311 
devm_clk_match(struct device *dev, void *res, void *data)4312 static int devm_clk_match(struct device *dev, void *res, void *data)
4313 {
4314 	struct clk *c = res;
4315 	if (WARN_ON(!c))
4316 		return 0;
4317 	return c == data;
4318 }
4319 
devm_clk_hw_match(struct device *dev, void *res, void *data)4320 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4321 {
4322 	struct clk_hw *hw = res;
4323 
4324 	if (WARN_ON(!hw))
4325 		return 0;
4326 	return hw == data;
4327 }
4328 
4329 /**
4330  * devm_clk_unregister - resource managed clk_unregister()
4331  * @dev: device that is unregistering the clock data
4332  * @clk: clock to unregister
4333  *
4334  * Deallocate a clock allocated with devm_clk_register(). Normally
4335  * this function will not need to be called and the resource management
4336  * code will ensure that the resource is freed.
4337  */
devm_clk_unregister(struct device *dev, struct clk *clk)4338 void devm_clk_unregister(struct device *dev, struct clk *clk)
4339 {
4340 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4341 }
4342 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4343 
4344 /**
4345  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4346  * @dev: device that is unregistering the hardware-specific clock data
4347  * @hw: link to hardware-specific clock data
4348  *
4349  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4350  * this function will not need to be called and the resource management
4351  * code will ensure that the resource is freed.
4352  */
devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)4353 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4354 {
4355 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4356 				hw));
4357 }
4358 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4359 
4360 /*
4361  * clkdev helpers
4362  */
4363 
__clk_put(struct clk *clk)4364 void __clk_put(struct clk *clk)
4365 {
4366 	struct module *owner;
4367 
4368 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4369 		return;
4370 
4371 	clk_prepare_lock();
4372 
4373 	/*
4374 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4375 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4376 	 * and by that same consumer
4377 	 */
4378 	if (WARN_ON(clk->exclusive_count)) {
4379 		/* We voiced our concern, let's sanitize the situation */
4380 		clk->core->protect_count -= (clk->exclusive_count - 1);
4381 		clk_core_rate_unprotect(clk->core);
4382 		clk->exclusive_count = 0;
4383 	}
4384 
4385 	hlist_del(&clk->clks_node);
4386 	if (clk->min_rate > clk->core->req_rate ||
4387 	    clk->max_rate < clk->core->req_rate)
4388 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4389 
4390 	owner = clk->core->owner;
4391 	kref_put(&clk->core->ref, __clk_release);
4392 
4393 	clk_prepare_unlock();
4394 
4395 	module_put(owner);
4396 
4397 	free_clk(clk);
4398 }
4399 
4400 /***        clk rate change notifiers        ***/
4401 
4402 /**
4403  * clk_notifier_register - add a clk rate change notifier
4404  * @clk: struct clk * to watch
4405  * @nb: struct notifier_block * with callback info
4406  *
4407  * Request notification when clk's rate changes.  This uses an SRCU
4408  * notifier because we want it to block and notifier unregistrations are
4409  * uncommon.  The callbacks associated with the notifier must not
4410  * re-enter into the clk framework by calling any top-level clk APIs;
4411  * this will cause a nested prepare_lock mutex.
4412  *
4413  * In all notification cases (pre, post and abort rate change) the original
4414  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4415  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4416  *
4417  * clk_notifier_register() must be called from non-atomic context.
4418  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4419  * allocation failure; otherwise, passes along the return value of
4420  * srcu_notifier_chain_register().
4421  */
clk_notifier_register(struct clk *clk, struct notifier_block *nb)4422 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4423 {
4424 	struct clk_notifier *cn;
4425 	int ret = -ENOMEM;
4426 
4427 	if (!clk || !nb)
4428 		return -EINVAL;
4429 
4430 	clk_prepare_lock();
4431 
4432 	/* search the list of notifiers for this clk */
4433 	list_for_each_entry(cn, &clk_notifier_list, node)
4434 		if (cn->clk == clk)
4435 			goto found;
4436 
4437 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4438 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4439 	if (!cn)
4440 		goto out;
4441 
4442 	cn->clk = clk;
4443 	srcu_init_notifier_head(&cn->notifier_head);
4444 
4445 	list_add(&cn->node, &clk_notifier_list);
4446 
4447 found:
4448 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4449 
4450 	clk->core->notifier_count++;
4451 
4452 out:
4453 	clk_prepare_unlock();
4454 
4455 	return ret;
4456 }
4457 EXPORT_SYMBOL_GPL(clk_notifier_register);
4458 
4459 /**
4460  * clk_notifier_unregister - remove a clk rate change notifier
4461  * @clk: struct clk *
4462  * @nb: struct notifier_block * with callback info
4463  *
4464  * Request no further notification for changes to 'clk' and frees memory
4465  * allocated in clk_notifier_register.
4466  *
4467  * Returns -EINVAL if called with null arguments; otherwise, passes
4468  * along the return value of srcu_notifier_chain_unregister().
4469  */
clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)4470 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4471 {
4472 	struct clk_notifier *cn;
4473 	int ret = -ENOENT;
4474 
4475 	if (!clk || !nb)
4476 		return -EINVAL;
4477 
4478 	clk_prepare_lock();
4479 
4480 	list_for_each_entry(cn, &clk_notifier_list, node) {
4481 		if (cn->clk == clk) {
4482 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4483 
4484 			clk->core->notifier_count--;
4485 
4486 			/* XXX the notifier code should handle this better */
4487 			if (!cn->notifier_head.head) {
4488 				srcu_cleanup_notifier_head(&cn->notifier_head);
4489 				list_del(&cn->node);
4490 				kfree(cn);
4491 			}
4492 			break;
4493 		}
4494 	}
4495 
4496 	clk_prepare_unlock();
4497 
4498 	return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4501 
4502 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4503 static void clk_core_reparent_orphans(void)
4504 {
4505 	clk_prepare_lock();
4506 	clk_core_reparent_orphans_nolock();
4507 	clk_prepare_unlock();
4508 }
4509 
4510 /**
4511  * struct of_clk_provider - Clock provider registration structure
4512  * @link: Entry in global list of clock providers
4513  * @node: Pointer to device tree node of clock provider
4514  * @get: Get clock callback.  Returns NULL or a struct clk for the
4515  *       given clock specifier
4516  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4517  *       struct clk_hw for the given clock specifier
4518  * @data: context pointer to be passed into @get callback
4519  */
4520 struct of_clk_provider {
4521 	struct list_head link;
4522 
4523 	struct device_node *node;
4524 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4525 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4526 	void *data;
4527 };
4528 
4529 extern struct of_device_id __clk_of_table;
4530 static const struct of_device_id __clk_of_table_sentinel
4531 	__used __section("__clk_of_table_end");
4532 
4533 static LIST_HEAD(of_clk_providers);
4534 static DEFINE_MUTEX(of_clk_mutex);
4535 
of_clk_src_simple_get(struct of_phandle_args *clkspec, void *data)4536 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4537 				     void *data)
4538 {
4539 	return data;
4540 }
4541 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4542 
of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)4543 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4544 {
4545 	return data;
4546 }
4547 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4548 
of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)4549 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4550 {
4551 	struct clk_onecell_data *clk_data = data;
4552 	unsigned int idx = clkspec->args[0];
4553 
4554 	if (idx >= clk_data->clk_num) {
4555 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4556 		return ERR_PTR(-EINVAL);
4557 	}
4558 
4559 	return clk_data->clks[idx];
4560 }
4561 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4562 
4563 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)4564 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4565 {
4566 	struct clk_hw_onecell_data *hw_data = data;
4567 	unsigned int idx = clkspec->args[0];
4568 
4569 	if (idx >= hw_data->num) {
4570 		pr_err("%s: invalid index %u\n", __func__, idx);
4571 		return ERR_PTR(-EINVAL);
4572 	}
4573 
4574 	return hw_data->hws[idx];
4575 }
4576 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4577 
4578 /**
4579  * of_clk_add_provider() - Register a clock provider for a node
4580  * @np: Device node pointer associated with clock provider
4581  * @clk_src_get: callback for decoding clock
4582  * @data: context pointer for @clk_src_get callback.
4583  *
4584  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4585  */
of_clk_add_provider(struct device_node *np, struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, void *data), void *data)4586 int of_clk_add_provider(struct device_node *np,
4587 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4588 						   void *data),
4589 			void *data)
4590 {
4591 	struct of_clk_provider *cp;
4592 	int ret;
4593 
4594 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4595 	if (!cp)
4596 		return -ENOMEM;
4597 
4598 	cp->node = of_node_get(np);
4599 	cp->data = data;
4600 	cp->get = clk_src_get;
4601 
4602 	mutex_lock(&of_clk_mutex);
4603 	list_add(&cp->link, &of_clk_providers);
4604 	mutex_unlock(&of_clk_mutex);
4605 	pr_debug("Added clock from %pOF\n", np);
4606 
4607 	clk_core_reparent_orphans();
4608 
4609 	ret = of_clk_set_defaults(np, true);
4610 	if (ret < 0)
4611 		of_clk_del_provider(np);
4612 
4613 	return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4616 
4617 /**
4618  * of_clk_add_hw_provider() - Register a clock provider for a node
4619  * @np: Device node pointer associated with clock provider
4620  * @get: callback for decoding clk_hw
4621  * @data: context pointer for @get callback.
4622  */
of_clk_add_hw_provider(struct device_node *np, struct clk_hw *(*get)(struct of_phandle_args *clkspec, void *data), void *data)4623 int of_clk_add_hw_provider(struct device_node *np,
4624 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4625 						 void *data),
4626 			   void *data)
4627 {
4628 	struct of_clk_provider *cp;
4629 	int ret;
4630 
4631 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4632 	if (!cp)
4633 		return -ENOMEM;
4634 
4635 	cp->node = of_node_get(np);
4636 	cp->data = data;
4637 	cp->get_hw = get;
4638 
4639 	mutex_lock(&of_clk_mutex);
4640 	list_add(&cp->link, &of_clk_providers);
4641 	mutex_unlock(&of_clk_mutex);
4642 	pr_debug("Added clk_hw provider from %pOF\n", np);
4643 
4644 	clk_core_reparent_orphans();
4645 
4646 	ret = of_clk_set_defaults(np, true);
4647 	if (ret < 0)
4648 		of_clk_del_provider(np);
4649 
4650 	return ret;
4651 }
4652 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4653 
devm_of_clk_release_provider(struct device *dev, void *res)4654 static void devm_of_clk_release_provider(struct device *dev, void *res)
4655 {
4656 	of_clk_del_provider(*(struct device_node **)res);
4657 }
4658 
4659 /*
4660  * We allow a child device to use its parent device as the clock provider node
4661  * for cases like MFD sub-devices where the child device driver wants to use
4662  * devm_*() APIs but not list the device in DT as a sub-node.
4663  */
get_clk_provider_node(struct device *dev)4664 static struct device_node *get_clk_provider_node(struct device *dev)
4665 {
4666 	struct device_node *np, *parent_np;
4667 
4668 	np = dev->of_node;
4669 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4670 
4671 	if (!of_find_property(np, "#clock-cells", NULL))
4672 		if (of_find_property(parent_np, "#clock-cells", NULL))
4673 			np = parent_np;
4674 
4675 	return np;
4676 }
4677 
4678 /**
4679  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4680  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4681  * @get: callback for decoding clk_hw
4682  * @data: context pointer for @get callback
4683  *
4684  * Registers clock provider for given device's node. If the device has no DT
4685  * node or if the device node lacks of clock provider information (#clock-cells)
4686  * then the parent device's node is scanned for this information. If parent node
4687  * has the #clock-cells then it is used in registration. Provider is
4688  * automatically released at device exit.
4689  *
4690  * Return: 0 on success or an errno on failure.
4691  */
devm_of_clk_add_hw_provider(struct device *dev, struct clk_hw *(*get)(struct of_phandle_args *clkspec, void *data), void *data)4692 int devm_of_clk_add_hw_provider(struct device *dev,
4693 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4694 					      void *data),
4695 			void *data)
4696 {
4697 	struct device_node **ptr, *np;
4698 	int ret;
4699 
4700 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4701 			   GFP_KERNEL);
4702 	if (!ptr)
4703 		return -ENOMEM;
4704 
4705 	np = get_clk_provider_node(dev);
4706 	ret = of_clk_add_hw_provider(np, get, data);
4707 	if (!ret) {
4708 		*ptr = np;
4709 		devres_add(dev, ptr);
4710 	} else {
4711 		devres_free(ptr);
4712 	}
4713 
4714 	return ret;
4715 }
4716 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4717 
4718 /**
4719  * of_clk_del_provider() - Remove a previously registered clock provider
4720  * @np: Device node pointer associated with clock provider
4721  */
of_clk_del_provider(struct device_node *np)4722 void of_clk_del_provider(struct device_node *np)
4723 {
4724 	struct of_clk_provider *cp;
4725 
4726 	mutex_lock(&of_clk_mutex);
4727 	list_for_each_entry(cp, &of_clk_providers, link) {
4728 		if (cp->node == np) {
4729 			list_del(&cp->link);
4730 			of_node_put(cp->node);
4731 			kfree(cp);
4732 			break;
4733 		}
4734 	}
4735 	mutex_unlock(&of_clk_mutex);
4736 }
4737 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4738 
devm_clk_provider_match(struct device *dev, void *res, void *data)4739 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4740 {
4741 	struct device_node **np = res;
4742 
4743 	if (WARN_ON(!np || !*np))
4744 		return 0;
4745 
4746 	return *np == data;
4747 }
4748 
4749 /**
4750  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4751  * @dev: Device to whose lifetime the clock provider was bound
4752  */
devm_of_clk_del_provider(struct device *dev)4753 void devm_of_clk_del_provider(struct device *dev)
4754 {
4755 	int ret;
4756 	struct device_node *np = get_clk_provider_node(dev);
4757 
4758 	ret = devres_release(dev, devm_of_clk_release_provider,
4759 			     devm_clk_provider_match, np);
4760 
4761 	WARN_ON(ret);
4762 }
4763 EXPORT_SYMBOL(devm_of_clk_del_provider);
4764 
4765 /**
4766  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4767  * @np: device node to parse clock specifier from
4768  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4769  * @name: clock name to find and parse. If name is NULL, the index is used
4770  * @out_args: Result of parsing the clock specifier
4771  *
4772  * Parses a device node's "clocks" and "clock-names" properties to find the
4773  * phandle and cells for the index or name that is desired. The resulting clock
4774  * specifier is placed into @out_args, or an errno is returned when there's a
4775  * parsing error. The @index argument is ignored if @name is non-NULL.
4776  *
4777  * Example:
4778  *
4779  * phandle1: clock-controller@1 {
4780  *	#clock-cells = <2>;
4781  * }
4782  *
4783  * phandle2: clock-controller@2 {
4784  *	#clock-cells = <1>;
4785  * }
4786  *
4787  * clock-consumer@3 {
4788  *	clocks = <&phandle1 1 2 &phandle2 3>;
4789  *	clock-names = "name1", "name2";
4790  * }
4791  *
4792  * To get a device_node for `clock-controller@2' node you may call this
4793  * function a few different ways:
4794  *
4795  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4796  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4797  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4798  *
4799  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4800  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4801  * the "clock-names" property of @np.
4802  */
of_parse_clkspec(const struct device_node *np, int index, const char *name, struct of_phandle_args *out_args)4803 static int of_parse_clkspec(const struct device_node *np, int index,
4804 			    const char *name, struct of_phandle_args *out_args)
4805 {
4806 	int ret = -ENOENT;
4807 
4808 	/* Walk up the tree of devices looking for a clock property that matches */
4809 	while (np) {
4810 		/*
4811 		 * For named clocks, first look up the name in the
4812 		 * "clock-names" property.  If it cannot be found, then index
4813 		 * will be an error code and of_parse_phandle_with_args() will
4814 		 * return -EINVAL.
4815 		 */
4816 		if (name)
4817 			index = of_property_match_string(np, "clock-names", name);
4818 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4819 						 index, out_args);
4820 		if (!ret)
4821 			break;
4822 		if (name && index >= 0)
4823 			break;
4824 
4825 		/*
4826 		 * No matching clock found on this node.  If the parent node
4827 		 * has a "clock-ranges" property, then we can try one of its
4828 		 * clocks.
4829 		 */
4830 		np = np->parent;
4831 		if (np && !of_get_property(np, "clock-ranges", NULL))
4832 			break;
4833 		index = 0;
4834 	}
4835 
4836 	return ret;
4837 }
4838 
4839 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider *provider, struct of_phandle_args *clkspec)4840 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4841 			      struct of_phandle_args *clkspec)
4842 {
4843 	struct clk *clk;
4844 
4845 	if (provider->get_hw)
4846 		return provider->get_hw(clkspec, provider->data);
4847 
4848 	clk = provider->get(clkspec, provider->data);
4849 	if (IS_ERR(clk))
4850 		return ERR_CAST(clk);
4851 	return __clk_get_hw(clk);
4852 }
4853 
4854 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)4855 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4856 {
4857 	struct of_clk_provider *provider;
4858 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4859 
4860 	if (!clkspec)
4861 		return ERR_PTR(-EINVAL);
4862 
4863 	mutex_lock(&of_clk_mutex);
4864 	list_for_each_entry(provider, &of_clk_providers, link) {
4865 		if (provider->node == clkspec->np) {
4866 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4867 			if (!IS_ERR(hw))
4868 				break;
4869 		}
4870 	}
4871 	mutex_unlock(&of_clk_mutex);
4872 
4873 	return hw;
4874 }
4875 
4876 /**
4877  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4878  * @clkspec: pointer to a clock specifier data structure
4879  *
4880  * This function looks up a struct clk from the registered list of clock
4881  * providers, an input is a clock specifier data structure as returned
4882  * from the of_parse_phandle_with_args() function call.
4883  */
of_clk_get_from_provider(struct of_phandle_args *clkspec)4884 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4885 {
4886 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4887 
4888 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4889 }
4890 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4891 
of_clk_get_hw(struct device_node *np, int index, const char *con_id)4892 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4893 			     const char *con_id)
4894 {
4895 	int ret;
4896 	struct clk_hw *hw;
4897 	struct of_phandle_args clkspec;
4898 
4899 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4900 	if (ret)
4901 		return ERR_PTR(ret);
4902 
4903 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4904 	of_node_put(clkspec.np);
4905 
4906 	return hw;
4907 }
4908 
__of_clk_get(struct device_node *np, int index, const char *dev_id, const char *con_id)4909 static struct clk *__of_clk_get(struct device_node *np,
4910 				int index, const char *dev_id,
4911 				const char *con_id)
4912 {
4913 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4914 
4915 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4916 }
4917 
of_clk_get(struct device_node *np, int index)4918 struct clk *of_clk_get(struct device_node *np, int index)
4919 {
4920 	return __of_clk_get(np, index, np->full_name, NULL);
4921 }
4922 EXPORT_SYMBOL(of_clk_get);
4923 
4924 /**
4925  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4926  * @np: pointer to clock consumer node
4927  * @name: name of consumer's clock input, or NULL for the first clock reference
4928  *
4929  * This function parses the clocks and clock-names properties,
4930  * and uses them to look up the struct clk from the registered list of clock
4931  * providers.
4932  */
of_clk_get_by_name(struct device_node *np, const char *name)4933 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4934 {
4935 	if (!np)
4936 		return ERR_PTR(-ENOENT);
4937 
4938 	return __of_clk_get(np, 0, np->full_name, name);
4939 }
4940 EXPORT_SYMBOL(of_clk_get_by_name);
4941 
4942 /**
4943  * of_clk_get_parent_count() - Count the number of clocks a device node has
4944  * @np: device node to count
4945  *
4946  * Returns: The number of clocks that are possible parents of this node
4947  */
of_clk_get_parent_count(const struct device_node *np)4948 unsigned int of_clk_get_parent_count(const struct device_node *np)
4949 {
4950 	int count;
4951 
4952 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4953 	if (count < 0)
4954 		return 0;
4955 
4956 	return count;
4957 }
4958 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4959 
of_clk_get_parent_name(const struct device_node *np, int index)4960 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4961 {
4962 	struct of_phandle_args clkspec;
4963 	struct property *prop;
4964 	const char *clk_name;
4965 	const __be32 *vp;
4966 	u32 pv;
4967 	int rc;
4968 	int count;
4969 	struct clk *clk;
4970 
4971 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4972 					&clkspec);
4973 	if (rc)
4974 		return NULL;
4975 
4976 	index = clkspec.args_count ? clkspec.args[0] : 0;
4977 	count = 0;
4978 
4979 	/* if there is an indices property, use it to transfer the index
4980 	 * specified into an array offset for the clock-output-names property.
4981 	 */
4982 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4983 		if (index == pv) {
4984 			index = count;
4985 			break;
4986 		}
4987 		count++;
4988 	}
4989 	/* We went off the end of 'clock-indices' without finding it */
4990 	if (prop && !vp)
4991 		return NULL;
4992 
4993 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4994 					  index,
4995 					  &clk_name) < 0) {
4996 		/*
4997 		 * Best effort to get the name if the clock has been
4998 		 * registered with the framework. If the clock isn't
4999 		 * registered, we return the node name as the name of
5000 		 * the clock as long as #clock-cells = 0.
5001 		 */
5002 		clk = of_clk_get_from_provider(&clkspec);
5003 		if (IS_ERR(clk)) {
5004 			if (clkspec.args_count == 0)
5005 				clk_name = clkspec.np->name;
5006 			else
5007 				clk_name = NULL;
5008 		} else {
5009 			clk_name = __clk_get_name(clk);
5010 			clk_put(clk);
5011 		}
5012 	}
5013 
5014 
5015 	of_node_put(clkspec.np);
5016 	return clk_name;
5017 }
5018 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5019 
5020 /**
5021  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5022  * number of parents
5023  * @np: Device node pointer associated with clock provider
5024  * @parents: pointer to char array that hold the parents' names
5025  * @size: size of the @parents array
5026  *
5027  * Return: number of parents for the clock node.
5028  */
of_clk_parent_fill(struct device_node *np, const char **parents, unsigned int size)5029 int of_clk_parent_fill(struct device_node *np, const char **parents,
5030 		       unsigned int size)
5031 {
5032 	unsigned int i = 0;
5033 
5034 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5035 		i++;
5036 
5037 	return i;
5038 }
5039 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5040 
5041 struct clock_provider {
5042 	void (*clk_init_cb)(struct device_node *);
5043 	struct device_node *np;
5044 	struct list_head node;
5045 };
5046 
5047 /*
5048  * This function looks for a parent clock. If there is one, then it
5049  * checks that the provider for this parent clock was initialized, in
5050  * this case the parent clock will be ready.
5051  */
parent_ready(struct device_node *np)5052 static int parent_ready(struct device_node *np)
5053 {
5054 	int i = 0;
5055 
5056 	while (true) {
5057 		struct clk *clk = of_clk_get(np, i);
5058 
5059 		/* this parent is ready we can check the next one */
5060 		if (!IS_ERR(clk)) {
5061 			clk_put(clk);
5062 			i++;
5063 			continue;
5064 		}
5065 
5066 		/* at least one parent is not ready, we exit now */
5067 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5068 			return 0;
5069 
5070 		/*
5071 		 * Here we make assumption that the device tree is
5072 		 * written correctly. So an error means that there is
5073 		 * no more parent. As we didn't exit yet, then the
5074 		 * previous parent are ready. If there is no clock
5075 		 * parent, no need to wait for them, then we can
5076 		 * consider their absence as being ready
5077 		 */
5078 		return 1;
5079 	}
5080 }
5081 
5082 /**
5083  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5084  * @np: Device node pointer associated with clock provider
5085  * @index: clock index
5086  * @flags: pointer to top-level framework flags
5087  *
5088  * Detects if the clock-critical property exists and, if so, sets the
5089  * corresponding CLK_IS_CRITICAL flag.
5090  *
5091  * Do not use this function. It exists only for legacy Device Tree
5092  * bindings, such as the one-clock-per-node style that are outdated.
5093  * Those bindings typically put all clock data into .dts and the Linux
5094  * driver has no clock data, thus making it impossible to set this flag
5095  * correctly from the driver. Only those drivers may call
5096  * of_clk_detect_critical from their setup functions.
5097  *
5098  * Return: error code or zero on success
5099  */
of_clk_detect_critical(struct device_node *np, int index, unsigned long *flags)5100 int of_clk_detect_critical(struct device_node *np, int index,
5101 			   unsigned long *flags)
5102 {
5103 	struct property *prop;
5104 	const __be32 *cur;
5105 	uint32_t idx;
5106 
5107 	if (!np || !flags)
5108 		return -EINVAL;
5109 
5110 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5111 		if (index == idx)
5112 			*flags |= CLK_IS_CRITICAL;
5113 
5114 	return 0;
5115 }
5116 
5117 /**
5118  * of_clk_init() - Scan and init clock providers from the DT
5119  * @matches: array of compatible values and init functions for providers.
5120  *
5121  * This function scans the device tree for matching clock providers
5122  * and calls their initialization functions. It also does it by trying
5123  * to follow the dependencies.
5124  */
of_clk_init(const struct of_device_id *matches)5125 void __init of_clk_init(const struct of_device_id *matches)
5126 {
5127 	const struct of_device_id *match;
5128 	struct device_node *np;
5129 	struct clock_provider *clk_provider, *next;
5130 	bool is_init_done;
5131 	bool force = false;
5132 	LIST_HEAD(clk_provider_list);
5133 
5134 	if (!matches)
5135 		matches = &__clk_of_table;
5136 
5137 	/* First prepare the list of the clocks providers */
5138 	for_each_matching_node_and_match(np, matches, &match) {
5139 		struct clock_provider *parent;
5140 
5141 		if (!of_device_is_available(np))
5142 			continue;
5143 
5144 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5145 		if (!parent) {
5146 			list_for_each_entry_safe(clk_provider, next,
5147 						 &clk_provider_list, node) {
5148 				list_del(&clk_provider->node);
5149 				of_node_put(clk_provider->np);
5150 				kfree(clk_provider);
5151 			}
5152 			of_node_put(np);
5153 			return;
5154 		}
5155 
5156 		parent->clk_init_cb = match->data;
5157 		parent->np = of_node_get(np);
5158 		list_add_tail(&parent->node, &clk_provider_list);
5159 	}
5160 
5161 	while (!list_empty(&clk_provider_list)) {
5162 		is_init_done = false;
5163 		list_for_each_entry_safe(clk_provider, next,
5164 					&clk_provider_list, node) {
5165 			if (force || parent_ready(clk_provider->np)) {
5166 
5167 				/* Don't populate platform devices */
5168 				of_node_set_flag(clk_provider->np,
5169 						 OF_POPULATED);
5170 
5171 				clk_provider->clk_init_cb(clk_provider->np);
5172 				of_clk_set_defaults(clk_provider->np, true);
5173 
5174 				list_del(&clk_provider->node);
5175 				of_node_put(clk_provider->np);
5176 				kfree(clk_provider);
5177 				is_init_done = true;
5178 			}
5179 		}
5180 
5181 		/*
5182 		 * We didn't manage to initialize any of the
5183 		 * remaining providers during the last loop, so now we
5184 		 * initialize all the remaining ones unconditionally
5185 		 * in case the clock parent was not mandatory
5186 		 */
5187 		if (!is_init_done)
5188 			force = true;
5189 	}
5190 }
5191 #endif
5192