1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_ssif.c
4 *
5 * The interface to the IPMI driver for SMBus access to a SMBus
6 * compliant device. Called SSIF by the IPMI spec.
7 *
8 * Author: Intel Corporation
9 * Todd Davis <todd.c.davis@intel.com>
10 *
11 * Rewritten by Corey Minyard <minyard@acm.org> to support the
12 * non-blocking I2C interface, add support for multi-part
13 * transactions, add PEC support, and general clenaup.
14 *
15 * Copyright 2003 Intel Corporation
16 * Copyright 2005 MontaVista Software
17 */
18
19 /*
20 * This file holds the "policy" for the interface to the SSIF state
21 * machine. It does the configuration, handles timers and interrupts,
22 * and drives the real SSIF state machine.
23 */
24
25 #define pr_fmt(fmt) "ipmi_ssif: " fmt
26 #define dev_fmt(fmt) "ipmi_ssif: " fmt
27
28 #if defined(MODVERSIONS)
29 #include <linux/modversions.h>
30 #endif
31
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/timer.h>
37 #include <linux/delay.h>
38 #include <linux/errno.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/i2c.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/init.h>
45 #include <linux/dmi.h>
46 #include <linux/kthread.h>
47 #include <linux/acpi.h>
48 #include <linux/ctype.h>
49 #include <linux/time64.h>
50 #include "ipmi_dmi.h"
51
52 #define DEVICE_NAME "ipmi_ssif"
53
54 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57
55
56 #define SSIF_IPMI_REQUEST 2
57 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6
58 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7
59 #define SSIF_IPMI_MULTI_PART_REQUEST_END 8
60 #define SSIF_IPMI_RESPONSE 3
61 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9
62
63 /* ssif_debug is a bit-field
64 * SSIF_DEBUG_MSG - commands and their responses
65 * SSIF_DEBUG_STATES - message states
66 * SSIF_DEBUG_TIMING - Measure times between events in the driver
67 */
68 #define SSIF_DEBUG_TIMING 4
69 #define SSIF_DEBUG_STATE 2
70 #define SSIF_DEBUG_MSG 1
71 #define SSIF_NODEBUG 0
72 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG)
73
74 /*
75 * Timer values
76 */
77 #define SSIF_MSG_USEC 60000 /* 60ms between message tries (T3). */
78 #define SSIF_REQ_RETRY_USEC 60000 /* 60ms between send retries (T6). */
79 #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */
80
81 /* How many times to we retry sending/receiving the message. */
82 #define SSIF_SEND_RETRIES 5
83 #define SSIF_RECV_RETRIES 250
84
85 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000)
86 #define SSIF_REQ_RETRY_MSEC (SSIF_REQ_RETRY_USEC / 1000)
87 #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC)
88 #define SSIF_REQ_RETRY_JIFFIES ((SSIF_REQ_RETRY_USEC * 1000) / TICK_NSEC)
89 #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC)
90
91 /*
92 * Timeout for the watch, only used for get flag timer.
93 */
94 #define SSIF_WATCH_MSG_TIMEOUT msecs_to_jiffies(10)
95 #define SSIF_WATCH_WATCHDOG_TIMEOUT msecs_to_jiffies(250)
96
97 enum ssif_intf_state {
98 SSIF_IDLE,
99 SSIF_GETTING_FLAGS,
100 SSIF_GETTING_EVENTS,
101 SSIF_CLEARING_FLAGS,
102 SSIF_GETTING_MESSAGES,
103 /* FIXME - add watchdog stuff. */
104 };
105
106 #define IS_SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_IDLE \
107 && (ssif)->curr_msg == NULL)
108
109 /*
110 * Indexes into stats[] in ssif_info below.
111 */
112 enum ssif_stat_indexes {
113 /* Number of total messages sent. */
114 SSIF_STAT_sent_messages = 0,
115
116 /*
117 * Number of message parts sent. Messages may be broken into
118 * parts if they are long.
119 */
120 SSIF_STAT_sent_messages_parts,
121
122 /*
123 * Number of time a message was retried.
124 */
125 SSIF_STAT_send_retries,
126
127 /*
128 * Number of times the send of a message failed.
129 */
130 SSIF_STAT_send_errors,
131
132 /*
133 * Number of message responses received.
134 */
135 SSIF_STAT_received_messages,
136
137 /*
138 * Number of message fragments received.
139 */
140 SSIF_STAT_received_message_parts,
141
142 /*
143 * Number of times the receive of a message was retried.
144 */
145 SSIF_STAT_receive_retries,
146
147 /*
148 * Number of errors receiving messages.
149 */
150 SSIF_STAT_receive_errors,
151
152 /*
153 * Number of times a flag fetch was requested.
154 */
155 SSIF_STAT_flag_fetches,
156
157 /*
158 * Number of times the hardware didn't follow the state machine.
159 */
160 SSIF_STAT_hosed,
161
162 /*
163 * Number of received events.
164 */
165 SSIF_STAT_events,
166
167 /* Number of asyncronous messages received. */
168 SSIF_STAT_incoming_messages,
169
170 /* Number of watchdog pretimeouts. */
171 SSIF_STAT_watchdog_pretimeouts,
172
173 /* Number of alers received. */
174 SSIF_STAT_alerts,
175
176 /* Always add statistics before this value, it must be last. */
177 SSIF_NUM_STATS
178 };
179
180 struct ssif_addr_info {
181 struct i2c_board_info binfo;
182 char *adapter_name;
183 int debug;
184 int slave_addr;
185 enum ipmi_addr_src addr_src;
186 union ipmi_smi_info_union addr_info;
187 struct device *dev;
188 struct i2c_client *client;
189
190 struct mutex clients_mutex;
191 struct list_head clients;
192
193 struct list_head link;
194 };
195
196 struct ssif_info;
197
198 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result,
199 unsigned char *data, unsigned int len);
200
201 struct ssif_info {
202 struct ipmi_smi *intf;
203 spinlock_t lock;
204 struct ipmi_smi_msg *waiting_msg;
205 struct ipmi_smi_msg *curr_msg;
206 enum ssif_intf_state ssif_state;
207 unsigned long ssif_debug;
208
209 struct ipmi_smi_handlers handlers;
210
211 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
212 union ipmi_smi_info_union addr_info;
213
214 /*
215 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
216 * is set to hold the flags until we are done handling everything
217 * from the flags.
218 */
219 #define RECEIVE_MSG_AVAIL 0x01
220 #define EVENT_MSG_BUFFER_FULL 0x02
221 #define WDT_PRE_TIMEOUT_INT 0x08
222 unsigned char msg_flags;
223
224 u8 global_enables;
225 bool has_event_buffer;
226 bool supports_alert;
227
228 /*
229 * Used to tell what we should do with alerts. If we are
230 * waiting on a response, read the data immediately.
231 */
232 bool got_alert;
233 bool waiting_alert;
234
235 /* Used to inform the timeout that it should do a resend. */
236 bool do_resend;
237
238 /*
239 * If set to true, this will request events the next time the
240 * state machine is idle.
241 */
242 bool req_events;
243
244 /*
245 * If set to true, this will request flags the next time the
246 * state machine is idle.
247 */
248 bool req_flags;
249
250 /*
251 * Used to perform timer operations when run-to-completion
252 * mode is on. This is a countdown timer.
253 */
254 int rtc_us_timer;
255
256 /* Used for sending/receiving data. +1 for the length. */
257 unsigned char data[IPMI_MAX_MSG_LENGTH + 1];
258 unsigned int data_len;
259
260 /* Temp receive buffer, gets copied into data. */
261 unsigned char recv[I2C_SMBUS_BLOCK_MAX];
262
263 struct i2c_client *client;
264 ssif_i2c_done done_handler;
265
266 /* Thread interface handling */
267 struct task_struct *thread;
268 struct completion wake_thread;
269 bool stopping;
270 int i2c_read_write;
271 int i2c_command;
272 unsigned char *i2c_data;
273 unsigned int i2c_size;
274
275 struct timer_list retry_timer;
276 int retries_left;
277
278 long watch_timeout; /* Timeout for flags check, 0 if off. */
279 struct timer_list watch_timer; /* Flag fetch timer. */
280
281 /* Info from SSIF cmd */
282 unsigned char max_xmit_msg_size;
283 unsigned char max_recv_msg_size;
284 bool cmd8_works; /* See test_multipart_messages() for details. */
285 unsigned int multi_support;
286 int supports_pec;
287
288 #define SSIF_NO_MULTI 0
289 #define SSIF_MULTI_2_PART 1
290 #define SSIF_MULTI_n_PART 2
291 unsigned char *multi_data;
292 unsigned int multi_len;
293 unsigned int multi_pos;
294
295 atomic_t stats[SSIF_NUM_STATS];
296 };
297
298 #define ssif_inc_stat(ssif, stat) \
299 atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat])
300 #define ssif_get_stat(ssif, stat) \
301 ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat]))
302
303 static bool initialized;
304 static bool platform_registered;
305
306 static void return_hosed_msg(struct ssif_info *ssif_info,
307 struct ipmi_smi_msg *msg);
308 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags);
309 static int start_send(struct ssif_info *ssif_info,
310 unsigned char *data,
311 unsigned int len);
312
313 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info,
314 unsigned long *flags)
315 __acquires(&ssif_info->lock)
316 {
317 spin_lock_irqsave(&ssif_info->lock, *flags);
318 return flags;
319 }
320
321 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info,
322 unsigned long *flags)
323 __releases(&ssif_info->lock)
324 {
325 spin_unlock_irqrestore(&ssif_info->lock, *flags);
326 }
327
deliver_recv_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg)328 static void deliver_recv_msg(struct ssif_info *ssif_info,
329 struct ipmi_smi_msg *msg)
330 {
331 if (msg->rsp_size < 0) {
332 return_hosed_msg(ssif_info, msg);
333 dev_err(&ssif_info->client->dev,
334 "%s: Malformed message: rsp_size = %d\n",
335 __func__, msg->rsp_size);
336 } else {
337 ipmi_smi_msg_received(ssif_info->intf, msg);
338 }
339 }
340
return_hosed_msg(struct ssif_info *ssif_info, struct ipmi_smi_msg *msg)341 static void return_hosed_msg(struct ssif_info *ssif_info,
342 struct ipmi_smi_msg *msg)
343 {
344 ssif_inc_stat(ssif_info, hosed);
345
346 /* Make it a response */
347 msg->rsp[0] = msg->data[0] | 4;
348 msg->rsp[1] = msg->data[1];
349 msg->rsp[2] = 0xFF; /* Unknown error. */
350 msg->rsp_size = 3;
351
352 deliver_recv_msg(ssif_info, msg);
353 }
354
355 /*
356 * Must be called with the message lock held. This will release the
357 * message lock. Note that the caller will check IS_SSIF_IDLE and
358 * start a new operation, so there is no need to check for new
359 * messages to start in here.
360 */
start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags)361 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags)
362 {
363 unsigned char msg[3];
364
365 ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
366 ssif_info->ssif_state = SSIF_CLEARING_FLAGS;
367 ipmi_ssif_unlock_cond(ssif_info, flags);
368
369 /* Make sure the watchdog pre-timeout flag is not set at startup. */
370 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
371 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
372 msg[2] = WDT_PRE_TIMEOUT_INT;
373
374 if (start_send(ssif_info, msg, 3) != 0) {
375 /* Error, just go to normal state. */
376 ssif_info->ssif_state = SSIF_IDLE;
377 }
378 }
379
start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags)380 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags)
381 {
382 unsigned char mb[2];
383
384 ssif_info->req_flags = false;
385 ssif_info->ssif_state = SSIF_GETTING_FLAGS;
386 ipmi_ssif_unlock_cond(ssif_info, flags);
387
388 mb[0] = (IPMI_NETFN_APP_REQUEST << 2);
389 mb[1] = IPMI_GET_MSG_FLAGS_CMD;
390 if (start_send(ssif_info, mb, 2) != 0)
391 ssif_info->ssif_state = SSIF_IDLE;
392 }
393
check_start_send(struct ssif_info *ssif_info, unsigned long *flags, struct ipmi_smi_msg *msg)394 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags,
395 struct ipmi_smi_msg *msg)
396 {
397 if (start_send(ssif_info, msg->data, msg->data_size) != 0) {
398 unsigned long oflags;
399
400 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
401 ssif_info->curr_msg = NULL;
402 ssif_info->ssif_state = SSIF_IDLE;
403 ipmi_ssif_unlock_cond(ssif_info, flags);
404 ipmi_free_smi_msg(msg);
405 }
406 }
407
start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags)408 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags)
409 {
410 struct ipmi_smi_msg *msg;
411
412 ssif_info->req_events = false;
413
414 msg = ipmi_alloc_smi_msg();
415 if (!msg) {
416 ssif_info->ssif_state = SSIF_IDLE;
417 ipmi_ssif_unlock_cond(ssif_info, flags);
418 return;
419 }
420
421 ssif_info->curr_msg = msg;
422 ssif_info->ssif_state = SSIF_GETTING_EVENTS;
423 ipmi_ssif_unlock_cond(ssif_info, flags);
424
425 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
427 msg->data_size = 2;
428
429 check_start_send(ssif_info, flags, msg);
430 }
431
start_recv_msg_fetch(struct ssif_info *ssif_info, unsigned long *flags)432 static void start_recv_msg_fetch(struct ssif_info *ssif_info,
433 unsigned long *flags)
434 {
435 struct ipmi_smi_msg *msg;
436
437 msg = ipmi_alloc_smi_msg();
438 if (!msg) {
439 ssif_info->ssif_state = SSIF_IDLE;
440 ipmi_ssif_unlock_cond(ssif_info, flags);
441 return;
442 }
443
444 ssif_info->curr_msg = msg;
445 ssif_info->ssif_state = SSIF_GETTING_MESSAGES;
446 ipmi_ssif_unlock_cond(ssif_info, flags);
447
448 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
449 msg->data[1] = IPMI_GET_MSG_CMD;
450 msg->data_size = 2;
451
452 check_start_send(ssif_info, flags, msg);
453 }
454
455 /*
456 * Must be called with the message lock held. This will release the
457 * message lock. Note that the caller will check IS_SSIF_IDLE and
458 * start a new operation, so there is no need to check for new
459 * messages to start in here.
460 */
handle_flags(struct ssif_info *ssif_info, unsigned long *flags)461 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags)
462 {
463 if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
464 /* Watchdog pre-timeout */
465 ssif_inc_stat(ssif_info, watchdog_pretimeouts);
466 start_clear_flags(ssif_info, flags);
467 ipmi_smi_watchdog_pretimeout(ssif_info->intf);
468 } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL)
469 /* Messages available. */
470 start_recv_msg_fetch(ssif_info, flags);
471 else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL)
472 /* Events available. */
473 start_event_fetch(ssif_info, flags);
474 else {
475 ssif_info->ssif_state = SSIF_IDLE;
476 ipmi_ssif_unlock_cond(ssif_info, flags);
477 }
478 }
479
ipmi_ssif_thread(void *data)480 static int ipmi_ssif_thread(void *data)
481 {
482 struct ssif_info *ssif_info = data;
483
484 while (!kthread_should_stop()) {
485 int result;
486
487 /* Wait for something to do */
488 result = wait_for_completion_interruptible(
489 &ssif_info->wake_thread);
490 if (ssif_info->stopping)
491 break;
492 if (result == -ERESTARTSYS)
493 continue;
494 init_completion(&ssif_info->wake_thread);
495
496 if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) {
497 result = i2c_smbus_write_block_data(
498 ssif_info->client, ssif_info->i2c_command,
499 ssif_info->i2c_data[0],
500 ssif_info->i2c_data + 1);
501 ssif_info->done_handler(ssif_info, result, NULL, 0);
502 } else {
503 result = i2c_smbus_read_block_data(
504 ssif_info->client, ssif_info->i2c_command,
505 ssif_info->i2c_data);
506 if (result < 0)
507 ssif_info->done_handler(ssif_info, result,
508 NULL, 0);
509 else
510 ssif_info->done_handler(ssif_info, 0,
511 ssif_info->i2c_data,
512 result);
513 }
514 }
515
516 return 0;
517 }
518
ssif_i2c_send(struct ssif_info *ssif_info, ssif_i2c_done handler, int read_write, int command, unsigned char *data, unsigned int size)519 static void ssif_i2c_send(struct ssif_info *ssif_info,
520 ssif_i2c_done handler,
521 int read_write, int command,
522 unsigned char *data, unsigned int size)
523 {
524 ssif_info->done_handler = handler;
525
526 ssif_info->i2c_read_write = read_write;
527 ssif_info->i2c_command = command;
528 ssif_info->i2c_data = data;
529 ssif_info->i2c_size = size;
530 complete(&ssif_info->wake_thread);
531 }
532
533
534 static void msg_done_handler(struct ssif_info *ssif_info, int result,
535 unsigned char *data, unsigned int len);
536
start_get(struct ssif_info *ssif_info)537 static void start_get(struct ssif_info *ssif_info)
538 {
539 ssif_info->rtc_us_timer = 0;
540 ssif_info->multi_pos = 0;
541
542 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
543 SSIF_IPMI_RESPONSE,
544 ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
545 }
546
547 static void start_resend(struct ssif_info *ssif_info);
548
retry_timeout(struct timer_list *t)549 static void retry_timeout(struct timer_list *t)
550 {
551 struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer);
552 unsigned long oflags, *flags;
553 bool waiting, resend;
554
555 if (ssif_info->stopping)
556 return;
557
558 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
559 resend = ssif_info->do_resend;
560 ssif_info->do_resend = false;
561 waiting = ssif_info->waiting_alert;
562 ssif_info->waiting_alert = false;
563 ipmi_ssif_unlock_cond(ssif_info, flags);
564
565 if (waiting)
566 start_get(ssif_info);
567 if (resend) {
568 start_resend(ssif_info);
569 ssif_inc_stat(ssif_info, send_retries);
570 }
571 }
572
watch_timeout(struct timer_list *t)573 static void watch_timeout(struct timer_list *t)
574 {
575 struct ssif_info *ssif_info = from_timer(ssif_info, t, watch_timer);
576 unsigned long oflags, *flags;
577
578 if (ssif_info->stopping)
579 return;
580
581 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
582 if (ssif_info->watch_timeout) {
583 mod_timer(&ssif_info->watch_timer,
584 jiffies + ssif_info->watch_timeout);
585 if (IS_SSIF_IDLE(ssif_info)) {
586 start_flag_fetch(ssif_info, flags); /* Releases lock */
587 return;
588 }
589 ssif_info->req_flags = true;
590 }
591 ipmi_ssif_unlock_cond(ssif_info, flags);
592 }
593
ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, unsigned int data)594 static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type,
595 unsigned int data)
596 {
597 struct ssif_info *ssif_info = i2c_get_clientdata(client);
598 unsigned long oflags, *flags;
599 bool do_get = false;
600
601 if (type != I2C_PROTOCOL_SMBUS_ALERT)
602 return;
603
604 ssif_inc_stat(ssif_info, alerts);
605
606 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
607 if (ssif_info->waiting_alert) {
608 ssif_info->waiting_alert = false;
609 del_timer(&ssif_info->retry_timer);
610 do_get = true;
611 } else if (ssif_info->curr_msg) {
612 ssif_info->got_alert = true;
613 }
614 ipmi_ssif_unlock_cond(ssif_info, flags);
615 if (do_get)
616 start_get(ssif_info);
617 }
618
msg_done_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len)619 static void msg_done_handler(struct ssif_info *ssif_info, int result,
620 unsigned char *data, unsigned int len)
621 {
622 struct ipmi_smi_msg *msg;
623 unsigned long oflags, *flags;
624
625 /*
626 * We are single-threaded here, so no need for a lock until we
627 * start messing with driver states or the queues.
628 */
629
630 if (result < 0) {
631 ssif_info->retries_left--;
632 if (ssif_info->retries_left > 0) {
633 ssif_inc_stat(ssif_info, receive_retries);
634
635 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
636 ssif_info->waiting_alert = true;
637 ssif_info->rtc_us_timer = SSIF_MSG_USEC;
638 if (!ssif_info->stopping)
639 mod_timer(&ssif_info->retry_timer,
640 jiffies + SSIF_MSG_JIFFIES);
641 ipmi_ssif_unlock_cond(ssif_info, flags);
642 return;
643 }
644
645 ssif_inc_stat(ssif_info, receive_errors);
646
647 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
648 dev_dbg(&ssif_info->client->dev,
649 "%s: Error %d\n", __func__, result);
650 len = 0;
651 goto continue_op;
652 }
653
654 if ((len > 1) && (ssif_info->multi_pos == 0)
655 && (data[0] == 0x00) && (data[1] == 0x01)) {
656 /* Start of multi-part read. Start the next transaction. */
657 int i;
658
659 ssif_inc_stat(ssif_info, received_message_parts);
660
661 /* Remove the multi-part read marker. */
662 len -= 2;
663 data += 2;
664 for (i = 0; i < len; i++)
665 ssif_info->data[i] = data[i];
666 ssif_info->multi_len = len;
667 ssif_info->multi_pos = 1;
668
669 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
670 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
671 ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
672 return;
673 } else if (ssif_info->multi_pos) {
674 /* Middle of multi-part read. Start the next transaction. */
675 int i;
676 unsigned char blocknum;
677
678 if (len == 0) {
679 result = -EIO;
680 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
681 dev_dbg(&ssif_info->client->dev,
682 "Middle message with no data\n");
683
684 goto continue_op;
685 }
686
687 blocknum = data[0];
688 len--;
689 data++;
690
691 if (blocknum != 0xff && len != 31) {
692 /* All blocks but the last must have 31 data bytes. */
693 result = -EIO;
694 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
695 dev_dbg(&ssif_info->client->dev,
696 "Received middle message <31\n");
697
698 goto continue_op;
699 }
700
701 if (ssif_info->multi_len + len > IPMI_MAX_MSG_LENGTH) {
702 /* Received message too big, abort the operation. */
703 result = -E2BIG;
704 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
705 dev_dbg(&ssif_info->client->dev,
706 "Received message too big\n");
707
708 goto continue_op;
709 }
710
711 for (i = 0; i < len; i++)
712 ssif_info->data[i + ssif_info->multi_len] = data[i];
713 ssif_info->multi_len += len;
714 if (blocknum == 0xff) {
715 /* End of read */
716 len = ssif_info->multi_len;
717 data = ssif_info->data;
718 } else if (blocknum + 1 != ssif_info->multi_pos) {
719 /*
720 * Out of sequence block, just abort. Block
721 * numbers start at zero for the second block,
722 * but multi_pos starts at one, so the +1.
723 */
724 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
725 dev_dbg(&ssif_info->client->dev,
726 "Received message out of sequence, expected %u, got %u\n",
727 ssif_info->multi_pos - 1, blocknum);
728 result = -EIO;
729 } else {
730 ssif_inc_stat(ssif_info, received_message_parts);
731
732 ssif_info->multi_pos++;
733
734 ssif_i2c_send(ssif_info, msg_done_handler,
735 I2C_SMBUS_READ,
736 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
737 ssif_info->recv,
738 I2C_SMBUS_BLOCK_DATA);
739 return;
740 }
741 }
742
743 continue_op:
744 if (result < 0) {
745 ssif_inc_stat(ssif_info, receive_errors);
746 } else {
747 ssif_inc_stat(ssif_info, received_messages);
748 ssif_inc_stat(ssif_info, received_message_parts);
749 }
750
751 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
752 dev_dbg(&ssif_info->client->dev,
753 "DONE 1: state = %d, result=%d\n",
754 ssif_info->ssif_state, result);
755
756 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
757 msg = ssif_info->curr_msg;
758 if (msg) {
759 if (data) {
760 if (len > IPMI_MAX_MSG_LENGTH)
761 len = IPMI_MAX_MSG_LENGTH;
762 memcpy(msg->rsp, data, len);
763 } else {
764 len = 0;
765 }
766 msg->rsp_size = len;
767 ssif_info->curr_msg = NULL;
768 }
769
770 switch (ssif_info->ssif_state) {
771 case SSIF_IDLE:
772 ipmi_ssif_unlock_cond(ssif_info, flags);
773 if (!msg)
774 break;
775
776 if (result < 0)
777 return_hosed_msg(ssif_info, msg);
778 else
779 deliver_recv_msg(ssif_info, msg);
780 break;
781
782 case SSIF_GETTING_FLAGS:
783 /* We got the flags from the SSIF, now handle them. */
784 if ((result < 0) || (len < 4) || (data[2] != 0)) {
785 /*
786 * Error fetching flags, or invalid length,
787 * just give up for now.
788 */
789 ssif_info->ssif_state = SSIF_IDLE;
790 ipmi_ssif_unlock_cond(ssif_info, flags);
791 dev_warn(&ssif_info->client->dev,
792 "Error getting flags: %d %d, %x\n",
793 result, len, (len >= 3) ? data[2] : 0);
794 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
795 || data[1] != IPMI_GET_MSG_FLAGS_CMD) {
796 /*
797 * Recv error response, give up.
798 */
799 ssif_info->ssif_state = SSIF_IDLE;
800 ipmi_ssif_unlock_cond(ssif_info, flags);
801 dev_warn(&ssif_info->client->dev,
802 "Invalid response getting flags: %x %x\n",
803 data[0], data[1]);
804 } else {
805 ssif_inc_stat(ssif_info, flag_fetches);
806 ssif_info->msg_flags = data[3];
807 handle_flags(ssif_info, flags);
808 }
809 break;
810
811 case SSIF_CLEARING_FLAGS:
812 /* We cleared the flags. */
813 if ((result < 0) || (len < 3) || (data[2] != 0)) {
814 /* Error clearing flags */
815 dev_warn(&ssif_info->client->dev,
816 "Error clearing flags: %d %d, %x\n",
817 result, len, (len >= 3) ? data[2] : 0);
818 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
819 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) {
820 dev_warn(&ssif_info->client->dev,
821 "Invalid response clearing flags: %x %x\n",
822 data[0], data[1]);
823 }
824 ssif_info->ssif_state = SSIF_IDLE;
825 ipmi_ssif_unlock_cond(ssif_info, flags);
826 break;
827
828 case SSIF_GETTING_EVENTS:
829 if (!msg) {
830 /* Should never happen, but just in case. */
831 dev_warn(&ssif_info->client->dev,
832 "No message set while getting events\n");
833 ipmi_ssif_unlock_cond(ssif_info, flags);
834 break;
835 }
836
837 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
838 /* Error getting event, probably done. */
839 msg->done(msg);
840
841 /* Take off the event flag. */
842 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
843 handle_flags(ssif_info, flags);
844 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
845 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) {
846 dev_warn(&ssif_info->client->dev,
847 "Invalid response getting events: %x %x\n",
848 msg->rsp[0], msg->rsp[1]);
849 msg->done(msg);
850 /* Take off the event flag. */
851 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
852 handle_flags(ssif_info, flags);
853 } else {
854 handle_flags(ssif_info, flags);
855 ssif_inc_stat(ssif_info, events);
856 deliver_recv_msg(ssif_info, msg);
857 }
858 break;
859
860 case SSIF_GETTING_MESSAGES:
861 if (!msg) {
862 /* Should never happen, but just in case. */
863 dev_warn(&ssif_info->client->dev,
864 "No message set while getting messages\n");
865 ipmi_ssif_unlock_cond(ssif_info, flags);
866 break;
867 }
868
869 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
870 /* Error getting event, probably done. */
871 msg->done(msg);
872
873 /* Take off the msg flag. */
874 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
875 handle_flags(ssif_info, flags);
876 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
877 || msg->rsp[1] != IPMI_GET_MSG_CMD) {
878 dev_warn(&ssif_info->client->dev,
879 "Invalid response clearing flags: %x %x\n",
880 msg->rsp[0], msg->rsp[1]);
881 msg->done(msg);
882
883 /* Take off the msg flag. */
884 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
885 handle_flags(ssif_info, flags);
886 } else {
887 ssif_inc_stat(ssif_info, incoming_messages);
888 handle_flags(ssif_info, flags);
889 deliver_recv_msg(ssif_info, msg);
890 }
891 break;
892
893 default:
894 /* Should never happen, but just in case. */
895 dev_warn(&ssif_info->client->dev,
896 "Invalid state in message done handling: %d\n",
897 ssif_info->ssif_state);
898 ipmi_ssif_unlock_cond(ssif_info, flags);
899 }
900
901 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
902 if (IS_SSIF_IDLE(ssif_info) && !ssif_info->stopping) {
903 if (ssif_info->req_events)
904 start_event_fetch(ssif_info, flags);
905 else if (ssif_info->req_flags)
906 start_flag_fetch(ssif_info, flags);
907 else
908 start_next_msg(ssif_info, flags);
909 } else
910 ipmi_ssif_unlock_cond(ssif_info, flags);
911
912 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
913 dev_dbg(&ssif_info->client->dev,
914 "DONE 2: state = %d.\n", ssif_info->ssif_state);
915 }
916
msg_written_handler(struct ssif_info *ssif_info, int result, unsigned char *data, unsigned int len)917 static void msg_written_handler(struct ssif_info *ssif_info, int result,
918 unsigned char *data, unsigned int len)
919 {
920 /* We are single-threaded here, so no need for a lock. */
921 if (result < 0) {
922 ssif_info->retries_left--;
923 if (ssif_info->retries_left > 0) {
924 /*
925 * Wait the retry timeout time per the spec,
926 * then redo the send.
927 */
928 ssif_info->do_resend = true;
929 mod_timer(&ssif_info->retry_timer,
930 jiffies + SSIF_REQ_RETRY_JIFFIES);
931 return;
932 }
933
934 ssif_inc_stat(ssif_info, send_errors);
935
936 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
937 dev_dbg(&ssif_info->client->dev,
938 "%s: Out of retries\n", __func__);
939
940 msg_done_handler(ssif_info, -EIO, NULL, 0);
941 return;
942 }
943
944 if (ssif_info->multi_data) {
945 /*
946 * In the middle of a multi-data write. See the comment
947 * in the SSIF_MULTI_n_PART case in the probe function
948 * for details on the intricacies of this.
949 */
950 int left, to_write;
951 unsigned char *data_to_send;
952 unsigned char cmd;
953
954 ssif_inc_stat(ssif_info, sent_messages_parts);
955
956 left = ssif_info->multi_len - ssif_info->multi_pos;
957 to_write = left;
958 if (to_write > 32)
959 to_write = 32;
960 /* Length byte. */
961 ssif_info->multi_data[ssif_info->multi_pos] = to_write;
962 data_to_send = ssif_info->multi_data + ssif_info->multi_pos;
963 ssif_info->multi_pos += to_write;
964 cmd = SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE;
965 if (ssif_info->cmd8_works) {
966 if (left == to_write) {
967 cmd = SSIF_IPMI_MULTI_PART_REQUEST_END;
968 ssif_info->multi_data = NULL;
969 }
970 } else if (to_write < 32) {
971 ssif_info->multi_data = NULL;
972 }
973
974 ssif_i2c_send(ssif_info, msg_written_handler,
975 I2C_SMBUS_WRITE, cmd,
976 data_to_send, I2C_SMBUS_BLOCK_DATA);
977 } else {
978 /* Ready to request the result. */
979 unsigned long oflags, *flags;
980
981 ssif_inc_stat(ssif_info, sent_messages);
982 ssif_inc_stat(ssif_info, sent_messages_parts);
983
984 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
985 if (ssif_info->got_alert) {
986 /* The result is already ready, just start it. */
987 ssif_info->got_alert = false;
988 ipmi_ssif_unlock_cond(ssif_info, flags);
989 start_get(ssif_info);
990 } else {
991 /* Wait a jiffie then request the next message */
992 ssif_info->waiting_alert = true;
993 ssif_info->retries_left = SSIF_RECV_RETRIES;
994 ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC;
995 if (!ssif_info->stopping)
996 mod_timer(&ssif_info->retry_timer,
997 jiffies + SSIF_MSG_PART_JIFFIES);
998 ipmi_ssif_unlock_cond(ssif_info, flags);
999 }
1000 }
1001 }
1002
start_resend(struct ssif_info *ssif_info)1003 static void start_resend(struct ssif_info *ssif_info)
1004 {
1005 int command;
1006
1007 ssif_info->got_alert = false;
1008
1009 if (ssif_info->data_len > 32) {
1010 command = SSIF_IPMI_MULTI_PART_REQUEST_START;
1011 ssif_info->multi_data = ssif_info->data;
1012 ssif_info->multi_len = ssif_info->data_len;
1013 /*
1014 * Subtle thing, this is 32, not 33, because we will
1015 * overwrite the thing at position 32 (which was just
1016 * transmitted) with the new length.
1017 */
1018 ssif_info->multi_pos = 32;
1019 ssif_info->data[0] = 32;
1020 } else {
1021 ssif_info->multi_data = NULL;
1022 command = SSIF_IPMI_REQUEST;
1023 ssif_info->data[0] = ssif_info->data_len;
1024 }
1025
1026 ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE,
1027 command, ssif_info->data, I2C_SMBUS_BLOCK_DATA);
1028 }
1029
start_send(struct ssif_info *ssif_info, unsigned char *data, unsigned int len)1030 static int start_send(struct ssif_info *ssif_info,
1031 unsigned char *data,
1032 unsigned int len)
1033 {
1034 if (len > IPMI_MAX_MSG_LENGTH)
1035 return -E2BIG;
1036 if (len > ssif_info->max_xmit_msg_size)
1037 return -E2BIG;
1038
1039 ssif_info->retries_left = SSIF_SEND_RETRIES;
1040 memcpy(ssif_info->data + 1, data, len);
1041 ssif_info->data_len = len;
1042 start_resend(ssif_info);
1043 return 0;
1044 }
1045
1046 /* Must be called with the message lock held. */
start_next_msg(struct ssif_info *ssif_info, unsigned long *flags)1047 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags)
1048 {
1049 struct ipmi_smi_msg *msg;
1050 unsigned long oflags;
1051
1052 restart:
1053 if (!IS_SSIF_IDLE(ssif_info)) {
1054 ipmi_ssif_unlock_cond(ssif_info, flags);
1055 return;
1056 }
1057
1058 if (!ssif_info->waiting_msg) {
1059 ssif_info->curr_msg = NULL;
1060 ipmi_ssif_unlock_cond(ssif_info, flags);
1061 } else {
1062 int rv;
1063
1064 ssif_info->curr_msg = ssif_info->waiting_msg;
1065 ssif_info->waiting_msg = NULL;
1066 ipmi_ssif_unlock_cond(ssif_info, flags);
1067 rv = start_send(ssif_info,
1068 ssif_info->curr_msg->data,
1069 ssif_info->curr_msg->data_size);
1070 if (rv) {
1071 msg = ssif_info->curr_msg;
1072 ssif_info->curr_msg = NULL;
1073 return_hosed_msg(ssif_info, msg);
1074 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1075 goto restart;
1076 }
1077 }
1078 }
1079
sender(void *send_info, struct ipmi_smi_msg *msg)1080 static void sender(void *send_info,
1081 struct ipmi_smi_msg *msg)
1082 {
1083 struct ssif_info *ssif_info = (struct ssif_info *) send_info;
1084 unsigned long oflags, *flags;
1085
1086 BUG_ON(ssif_info->waiting_msg);
1087 ssif_info->waiting_msg = msg;
1088
1089 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1090 start_next_msg(ssif_info, flags);
1091
1092 if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) {
1093 struct timespec64 t;
1094
1095 ktime_get_real_ts64(&t);
1096 dev_dbg(&ssif_info->client->dev,
1097 "**Enqueue %02x %02x: %lld.%6.6ld\n",
1098 msg->data[0], msg->data[1],
1099 (long long)t.tv_sec, (long)t.tv_nsec / NSEC_PER_USEC);
1100 }
1101 }
1102
get_smi_info(void *send_info, struct ipmi_smi_info *data)1103 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1104 {
1105 struct ssif_info *ssif_info = send_info;
1106
1107 data->addr_src = ssif_info->addr_source;
1108 data->dev = &ssif_info->client->dev;
1109 data->addr_info = ssif_info->addr_info;
1110 get_device(data->dev);
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * Upper layer wants us to request events.
1117 */
request_events(void *send_info)1118 static void request_events(void *send_info)
1119 {
1120 struct ssif_info *ssif_info = (struct ssif_info *) send_info;
1121 unsigned long oflags, *flags;
1122
1123 if (!ssif_info->has_event_buffer)
1124 return;
1125
1126 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1127 ssif_info->req_events = true;
1128 ipmi_ssif_unlock_cond(ssif_info, flags);
1129 }
1130
1131 /*
1132 * Upper layer is changing the flag saying whether we need to request
1133 * flags periodically or not.
1134 */
ssif_set_need_watch(void *send_info, unsigned int watch_mask)1135 static void ssif_set_need_watch(void *send_info, unsigned int watch_mask)
1136 {
1137 struct ssif_info *ssif_info = (struct ssif_info *) send_info;
1138 unsigned long oflags, *flags;
1139 long timeout = 0;
1140
1141 if (watch_mask & IPMI_WATCH_MASK_CHECK_MESSAGES)
1142 timeout = SSIF_WATCH_MSG_TIMEOUT;
1143 else if (watch_mask)
1144 timeout = SSIF_WATCH_WATCHDOG_TIMEOUT;
1145
1146 flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1147 if (timeout != ssif_info->watch_timeout) {
1148 ssif_info->watch_timeout = timeout;
1149 if (ssif_info->watch_timeout)
1150 mod_timer(&ssif_info->watch_timer,
1151 jiffies + ssif_info->watch_timeout);
1152 }
1153 ipmi_ssif_unlock_cond(ssif_info, flags);
1154 }
1155
ssif_start_processing(void *send_info, struct ipmi_smi *intf)1156 static int ssif_start_processing(void *send_info,
1157 struct ipmi_smi *intf)
1158 {
1159 struct ssif_info *ssif_info = send_info;
1160
1161 ssif_info->intf = intf;
1162
1163 return 0;
1164 }
1165
1166 #define MAX_SSIF_BMCS 4
1167
1168 static unsigned short addr[MAX_SSIF_BMCS];
1169 static int num_addrs;
1170 module_param_array(addr, ushort, &num_addrs, 0);
1171 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs.");
1172
1173 static char *adapter_name[MAX_SSIF_BMCS];
1174 static int num_adapter_names;
1175 module_param_array(adapter_name, charp, &num_adapter_names, 0);
1176 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned.");
1177
1178 static int slave_addrs[MAX_SSIF_BMCS];
1179 static int num_slave_addrs;
1180 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1181 MODULE_PARM_DESC(slave_addrs,
1182 "The default IPMB slave address for the controller.");
1183
1184 static bool alerts_broken;
1185 module_param(alerts_broken, bool, 0);
1186 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller.");
1187
1188 /*
1189 * Bit 0 enables message debugging, bit 1 enables state debugging, and
1190 * bit 2 enables timing debugging. This is an array indexed by
1191 * interface number"
1192 */
1193 static int dbg[MAX_SSIF_BMCS];
1194 static int num_dbg;
1195 module_param_array(dbg, int, &num_dbg, 0);
1196 MODULE_PARM_DESC(dbg, "Turn on debugging.");
1197
1198 static bool ssif_dbg_probe;
1199 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0);
1200 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters.");
1201
1202 static bool ssif_tryacpi = true;
1203 module_param_named(tryacpi, ssif_tryacpi, bool, 0);
1204 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI");
1205
1206 static bool ssif_trydmi = true;
1207 module_param_named(trydmi, ssif_trydmi, bool, 0);
1208 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)");
1209
1210 static DEFINE_MUTEX(ssif_infos_mutex);
1211 static LIST_HEAD(ssif_infos);
1212
1213 #define IPMI_SSIF_ATTR(name) \
1214 static ssize_t ipmi_##name##_show(struct device *dev, \
1215 struct device_attribute *attr, \
1216 char *buf) \
1217 { \
1218 struct ssif_info *ssif_info = dev_get_drvdata(dev); \
1219 \
1220 return snprintf(buf, 10, "%u\n", ssif_get_stat(ssif_info, name));\
1221 } \
1222 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1223
ipmi_type_show(struct device *dev, struct device_attribute *attr, char *buf)1224 static ssize_t ipmi_type_show(struct device *dev,
1225 struct device_attribute *attr,
1226 char *buf)
1227 {
1228 return snprintf(buf, 10, "ssif\n");
1229 }
1230 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1231
1232 IPMI_SSIF_ATTR(sent_messages);
1233 IPMI_SSIF_ATTR(sent_messages_parts);
1234 IPMI_SSIF_ATTR(send_retries);
1235 IPMI_SSIF_ATTR(send_errors);
1236 IPMI_SSIF_ATTR(received_messages);
1237 IPMI_SSIF_ATTR(received_message_parts);
1238 IPMI_SSIF_ATTR(receive_retries);
1239 IPMI_SSIF_ATTR(receive_errors);
1240 IPMI_SSIF_ATTR(flag_fetches);
1241 IPMI_SSIF_ATTR(hosed);
1242 IPMI_SSIF_ATTR(events);
1243 IPMI_SSIF_ATTR(watchdog_pretimeouts);
1244 IPMI_SSIF_ATTR(alerts);
1245
1246 static struct attribute *ipmi_ssif_dev_attrs[] = {
1247 &dev_attr_type.attr,
1248 &dev_attr_sent_messages.attr,
1249 &dev_attr_sent_messages_parts.attr,
1250 &dev_attr_send_retries.attr,
1251 &dev_attr_send_errors.attr,
1252 &dev_attr_received_messages.attr,
1253 &dev_attr_received_message_parts.attr,
1254 &dev_attr_receive_retries.attr,
1255 &dev_attr_receive_errors.attr,
1256 &dev_attr_flag_fetches.attr,
1257 &dev_attr_hosed.attr,
1258 &dev_attr_events.attr,
1259 &dev_attr_watchdog_pretimeouts.attr,
1260 &dev_attr_alerts.attr,
1261 NULL
1262 };
1263
1264 static const struct attribute_group ipmi_ssif_dev_attr_group = {
1265 .attrs = ipmi_ssif_dev_attrs,
1266 };
1267
shutdown_ssif(void *send_info)1268 static void shutdown_ssif(void *send_info)
1269 {
1270 struct ssif_info *ssif_info = send_info;
1271
1272 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
1273 dev_set_drvdata(&ssif_info->client->dev, NULL);
1274
1275 /* make sure the driver is not looking for flags any more. */
1276 while (ssif_info->ssif_state != SSIF_IDLE)
1277 schedule_timeout(1);
1278
1279 ssif_info->stopping = true;
1280 del_timer_sync(&ssif_info->watch_timer);
1281 del_timer_sync(&ssif_info->retry_timer);
1282 if (ssif_info->thread) {
1283 complete(&ssif_info->wake_thread);
1284 kthread_stop(ssif_info->thread);
1285 }
1286 }
1287
ssif_remove(struct i2c_client *client)1288 static int ssif_remove(struct i2c_client *client)
1289 {
1290 struct ssif_info *ssif_info = i2c_get_clientdata(client);
1291 struct ssif_addr_info *addr_info;
1292
1293 if (!ssif_info)
1294 return 0;
1295
1296 /*
1297 * After this point, we won't deliver anything asychronously
1298 * to the message handler. We can unregister ourself.
1299 */
1300 ipmi_unregister_smi(ssif_info->intf);
1301
1302 list_for_each_entry(addr_info, &ssif_infos, link) {
1303 if (addr_info->client == client) {
1304 addr_info->client = NULL;
1305 break;
1306 }
1307 }
1308
1309 kfree(ssif_info);
1310
1311 return 0;
1312 }
1313
read_response(struct i2c_client *client, unsigned char *resp)1314 static int read_response(struct i2c_client *client, unsigned char *resp)
1315 {
1316 int ret = -ENODEV, retry_cnt = SSIF_RECV_RETRIES;
1317
1318 while (retry_cnt > 0) {
1319 ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE,
1320 resp);
1321 if (ret > 0)
1322 break;
1323 msleep(SSIF_MSG_MSEC);
1324 retry_cnt--;
1325 if (retry_cnt <= 0)
1326 break;
1327 }
1328
1329 return ret;
1330 }
1331
do_cmd(struct i2c_client *client, int len, unsigned char *msg, int *resp_len, unsigned char *resp)1332 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg,
1333 int *resp_len, unsigned char *resp)
1334 {
1335 int retry_cnt;
1336 int ret;
1337
1338 retry_cnt = SSIF_SEND_RETRIES;
1339 retry1:
1340 ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg);
1341 if (ret) {
1342 retry_cnt--;
1343 if (retry_cnt > 0) {
1344 msleep(SSIF_REQ_RETRY_MSEC);
1345 goto retry1;
1346 }
1347 return -ENODEV;
1348 }
1349
1350 ret = read_response(client, resp);
1351 if (ret > 0) {
1352 /* Validate that the response is correct. */
1353 if (ret < 3 ||
1354 (resp[0] != (msg[0] | (1 << 2))) ||
1355 (resp[1] != msg[1]))
1356 ret = -EINVAL;
1357 else if (ret > IPMI_MAX_MSG_LENGTH) {
1358 ret = -E2BIG;
1359 } else {
1360 *resp_len = ret;
1361 ret = 0;
1362 }
1363 }
1364
1365 return ret;
1366 }
1367
ssif_detect(struct i2c_client *client, struct i2c_board_info *info)1368 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info)
1369 {
1370 unsigned char *resp;
1371 unsigned char msg[3];
1372 int rv;
1373 int len;
1374
1375 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1376 if (!resp)
1377 return -ENOMEM;
1378
1379 /* Do a Get Device ID command, since it is required. */
1380 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1381 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1382 rv = do_cmd(client, 2, msg, &len, resp);
1383 if (rv)
1384 rv = -ENODEV;
1385 else
1386 strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE);
1387 kfree(resp);
1388 return rv;
1389 }
1390
strcmp_nospace(char *s1, char *s2)1391 static int strcmp_nospace(char *s1, char *s2)
1392 {
1393 while (*s1 && *s2) {
1394 while (isspace(*s1))
1395 s1++;
1396 while (isspace(*s2))
1397 s2++;
1398 if (*s1 > *s2)
1399 return 1;
1400 if (*s1 < *s2)
1401 return -1;
1402 s1++;
1403 s2++;
1404 }
1405 return 0;
1406 }
1407
ssif_info_find(unsigned short addr, char *adapter_name, bool match_null_name)1408 static struct ssif_addr_info *ssif_info_find(unsigned short addr,
1409 char *adapter_name,
1410 bool match_null_name)
1411 {
1412 struct ssif_addr_info *info, *found = NULL;
1413
1414 restart:
1415 list_for_each_entry(info, &ssif_infos, link) {
1416 if (info->binfo.addr == addr) {
1417 if (info->addr_src == SI_SMBIOS && !info->adapter_name)
1418 info->adapter_name = kstrdup(adapter_name,
1419 GFP_KERNEL);
1420
1421 if (info->adapter_name || adapter_name) {
1422 if (!info->adapter_name != !adapter_name) {
1423 /* One is NULL and one is not */
1424 continue;
1425 }
1426 if (adapter_name &&
1427 strcmp_nospace(info->adapter_name,
1428 adapter_name))
1429 /* Names do not match */
1430 continue;
1431 }
1432 found = info;
1433 break;
1434 }
1435 }
1436
1437 if (!found && match_null_name) {
1438 /* Try to get an exact match first, then try with a NULL name */
1439 adapter_name = NULL;
1440 match_null_name = false;
1441 goto restart;
1442 }
1443
1444 return found;
1445 }
1446
check_acpi(struct ssif_info *ssif_info, struct device *dev)1447 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev)
1448 {
1449 #ifdef CONFIG_ACPI
1450 acpi_handle acpi_handle;
1451
1452 acpi_handle = ACPI_HANDLE(dev);
1453 if (acpi_handle) {
1454 ssif_info->addr_source = SI_ACPI;
1455 ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle;
1456 request_module("acpi_ipmi");
1457 return true;
1458 }
1459 #endif
1460 return false;
1461 }
1462
find_slave_address(struct i2c_client *client, int slave_addr)1463 static int find_slave_address(struct i2c_client *client, int slave_addr)
1464 {
1465 #ifdef CONFIG_IPMI_DMI_DECODE
1466 if (!slave_addr)
1467 slave_addr = ipmi_dmi_get_slave_addr(
1468 SI_TYPE_INVALID,
1469 i2c_adapter_id(client->adapter),
1470 client->addr);
1471 #endif
1472
1473 return slave_addr;
1474 }
1475
start_multipart_test(struct i2c_client *client, unsigned char *msg, bool do_middle)1476 static int start_multipart_test(struct i2c_client *client,
1477 unsigned char *msg, bool do_middle)
1478 {
1479 int retry_cnt = SSIF_SEND_RETRIES, ret;
1480
1481 retry_write:
1482 ret = i2c_smbus_write_block_data(client,
1483 SSIF_IPMI_MULTI_PART_REQUEST_START,
1484 32, msg);
1485 if (ret) {
1486 retry_cnt--;
1487 if (retry_cnt > 0) {
1488 msleep(SSIF_REQ_RETRY_MSEC);
1489 goto retry_write;
1490 }
1491 dev_err(&client->dev, "Could not write multi-part start, though the BMC said it could handle it. Just limit sends to one part.\n");
1492 return ret;
1493 }
1494
1495 if (!do_middle)
1496 return 0;
1497
1498 ret = i2c_smbus_write_block_data(client,
1499 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE,
1500 32, msg + 32);
1501 if (ret) {
1502 dev_err(&client->dev, "Could not write multi-part middle, though the BMC said it could handle it. Just limit sends to one part.\n");
1503 return ret;
1504 }
1505
1506 return 0;
1507 }
1508
test_multipart_messages(struct i2c_client *client, struct ssif_info *ssif_info, unsigned char *resp)1509 static void test_multipart_messages(struct i2c_client *client,
1510 struct ssif_info *ssif_info,
1511 unsigned char *resp)
1512 {
1513 unsigned char msg[65];
1514 int ret;
1515 bool do_middle;
1516
1517 if (ssif_info->max_xmit_msg_size <= 32)
1518 return;
1519
1520 do_middle = ssif_info->max_xmit_msg_size > 63;
1521
1522 memset(msg, 0, sizeof(msg));
1523 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1524 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1525
1526 /*
1527 * The specification is all messed up dealing with sending
1528 * multi-part messages. Per what the specification says, it
1529 * is impossible to send a message that is a multiple of 32
1530 * bytes, except for 32 itself. It talks about a "start"
1531 * transaction (cmd=6) that must be 32 bytes, "middle"
1532 * transaction (cmd=7) that must be 32 bytes, and an "end"
1533 * transaction. The "end" transaction is shown as cmd=7 in
1534 * the text, but if that's the case there is no way to
1535 * differentiate between a middle and end part except the
1536 * length being less than 32. But there is a table at the far
1537 * end of the section (that I had never noticed until someone
1538 * pointed it out to me) that mentions it as cmd=8.
1539 *
1540 * After some thought, I think the example is wrong and the
1541 * end transaction should be cmd=8. But some systems don't
1542 * implement cmd=8, they use a zero-length end transaction,
1543 * even though that violates the SMBus specification.
1544 *
1545 * So, to work around this, this code tests if cmd=8 works.
1546 * If it does, then we use that. If not, it tests zero-
1547 * byte end transactions. If that works, good. If not,
1548 * we only allow 63-byte transactions max.
1549 */
1550
1551 ret = start_multipart_test(client, msg, do_middle);
1552 if (ret)
1553 goto out_no_multi_part;
1554
1555 ret = i2c_smbus_write_block_data(client,
1556 SSIF_IPMI_MULTI_PART_REQUEST_END,
1557 1, msg + 64);
1558
1559 if (!ret)
1560 ret = read_response(client, resp);
1561
1562 if (ret > 0) {
1563 /* End transactions work, we are good. */
1564 ssif_info->cmd8_works = true;
1565 return;
1566 }
1567
1568 ret = start_multipart_test(client, msg, do_middle);
1569 if (ret) {
1570 dev_err(&client->dev, "Second multipart test failed.\n");
1571 goto out_no_multi_part;
1572 }
1573
1574 ret = i2c_smbus_write_block_data(client,
1575 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE,
1576 0, msg + 64);
1577 if (!ret)
1578 ret = read_response(client, resp);
1579 if (ret > 0)
1580 /* Zero-size end parts work, use those. */
1581 return;
1582
1583 /* Limit to 63 bytes and use a short middle command to mark the end. */
1584 if (ssif_info->max_xmit_msg_size > 63)
1585 ssif_info->max_xmit_msg_size = 63;
1586 return;
1587
1588 out_no_multi_part:
1589 ssif_info->max_xmit_msg_size = 32;
1590 return;
1591 }
1592
1593 /*
1594 * Global enables we care about.
1595 */
1596 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
1597 IPMI_BMC_EVT_MSG_INTR)
1598
ssif_remove_dup(struct i2c_client *client)1599 static void ssif_remove_dup(struct i2c_client *client)
1600 {
1601 struct ssif_info *ssif_info = i2c_get_clientdata(client);
1602
1603 ipmi_unregister_smi(ssif_info->intf);
1604 kfree(ssif_info);
1605 }
1606
ssif_add_infos(struct i2c_client *client)1607 static int ssif_add_infos(struct i2c_client *client)
1608 {
1609 struct ssif_addr_info *info;
1610
1611 info = kzalloc(sizeof(*info), GFP_KERNEL);
1612 if (!info)
1613 return -ENOMEM;
1614 info->addr_src = SI_ACPI;
1615 info->client = client;
1616 info->adapter_name = kstrdup(client->adapter->name, GFP_KERNEL);
1617 if (!info->adapter_name) {
1618 kfree(info);
1619 return -ENOMEM;
1620 }
1621
1622 info->binfo.addr = client->addr;
1623 list_add_tail(&info->link, &ssif_infos);
1624 return 0;
1625 }
1626
1627 /*
1628 * Prefer ACPI over SMBIOS, if both are available.
1629 * So if we get an ACPI interface and have already registered a SMBIOS
1630 * interface at the same address, remove the SMBIOS and add the ACPI one.
1631 */
ssif_check_and_remove(struct i2c_client *client, struct ssif_info *ssif_info)1632 static int ssif_check_and_remove(struct i2c_client *client,
1633 struct ssif_info *ssif_info)
1634 {
1635 struct ssif_addr_info *info;
1636
1637 list_for_each_entry(info, &ssif_infos, link) {
1638 if (!info->client)
1639 return 0;
1640 if (!strcmp(info->adapter_name, client->adapter->name) &&
1641 info->binfo.addr == client->addr) {
1642 if (info->addr_src == SI_ACPI)
1643 return -EEXIST;
1644
1645 if (ssif_info->addr_source == SI_ACPI &&
1646 info->addr_src == SI_SMBIOS) {
1647 dev_info(&client->dev,
1648 "Removing %s-specified SSIF interface in favor of ACPI\n",
1649 ipmi_addr_src_to_str(info->addr_src));
1650 ssif_remove_dup(info->client);
1651 return 0;
1652 }
1653 }
1654 }
1655 return 0;
1656 }
1657
ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)1658 static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
1659 {
1660 unsigned char msg[3];
1661 unsigned char *resp;
1662 struct ssif_info *ssif_info;
1663 int rv = 0;
1664 int len;
1665 int i;
1666 u8 slave_addr = 0;
1667 struct ssif_addr_info *addr_info = NULL;
1668
1669 mutex_lock(&ssif_infos_mutex);
1670 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1671 if (!resp) {
1672 mutex_unlock(&ssif_infos_mutex);
1673 return -ENOMEM;
1674 }
1675
1676 ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL);
1677 if (!ssif_info) {
1678 kfree(resp);
1679 mutex_unlock(&ssif_infos_mutex);
1680 return -ENOMEM;
1681 }
1682
1683 if (!check_acpi(ssif_info, &client->dev)) {
1684 addr_info = ssif_info_find(client->addr, client->adapter->name,
1685 true);
1686 if (!addr_info) {
1687 /* Must have come in through sysfs. */
1688 ssif_info->addr_source = SI_HOTMOD;
1689 } else {
1690 ssif_info->addr_source = addr_info->addr_src;
1691 ssif_info->ssif_debug = addr_info->debug;
1692 ssif_info->addr_info = addr_info->addr_info;
1693 addr_info->client = client;
1694 slave_addr = addr_info->slave_addr;
1695 }
1696 }
1697
1698 ssif_info->client = client;
1699 i2c_set_clientdata(client, ssif_info);
1700
1701 rv = ssif_check_and_remove(client, ssif_info);
1702 /* If rv is 0 and addr source is not SI_ACPI, continue probing */
1703 if (!rv && ssif_info->addr_source == SI_ACPI) {
1704 rv = ssif_add_infos(client);
1705 if (rv) {
1706 dev_err(&client->dev, "Out of memory!, exiting ..\n");
1707 goto out;
1708 }
1709 } else if (rv) {
1710 dev_err(&client->dev, "Not probing, Interface already present\n");
1711 goto out;
1712 }
1713
1714 slave_addr = find_slave_address(client, slave_addr);
1715
1716 dev_info(&client->dev,
1717 "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n",
1718 ipmi_addr_src_to_str(ssif_info->addr_source),
1719 client->addr, client->adapter->name, slave_addr);
1720
1721 /* Now check for system interface capabilities */
1722 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1723 msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD;
1724 msg[2] = 0; /* SSIF */
1725 rv = do_cmd(client, 3, msg, &len, resp);
1726 if (!rv && (len >= 3) && (resp[2] == 0)) {
1727 if (len < 7) {
1728 if (ssif_dbg_probe)
1729 dev_dbg(&ssif_info->client->dev,
1730 "SSIF info too short: %d\n", len);
1731 goto no_support;
1732 }
1733
1734 /* Got a good SSIF response, handle it. */
1735 ssif_info->max_xmit_msg_size = resp[5];
1736 ssif_info->max_recv_msg_size = resp[6];
1737 ssif_info->multi_support = (resp[4] >> 6) & 0x3;
1738 ssif_info->supports_pec = (resp[4] >> 3) & 0x1;
1739
1740 /* Sanitize the data */
1741 switch (ssif_info->multi_support) {
1742 case SSIF_NO_MULTI:
1743 if (ssif_info->max_xmit_msg_size > 32)
1744 ssif_info->max_xmit_msg_size = 32;
1745 if (ssif_info->max_recv_msg_size > 32)
1746 ssif_info->max_recv_msg_size = 32;
1747 break;
1748
1749 case SSIF_MULTI_2_PART:
1750 if (ssif_info->max_xmit_msg_size > 63)
1751 ssif_info->max_xmit_msg_size = 63;
1752 if (ssif_info->max_recv_msg_size > 62)
1753 ssif_info->max_recv_msg_size = 62;
1754 break;
1755
1756 case SSIF_MULTI_n_PART:
1757 /* We take whatever size given, but do some testing. */
1758 break;
1759
1760 default:
1761 /* Data is not sane, just give up. */
1762 goto no_support;
1763 }
1764 } else {
1765 no_support:
1766 /* Assume no multi-part or PEC support */
1767 dev_info(&ssif_info->client->dev,
1768 "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n",
1769 rv, len, resp[2]);
1770
1771 ssif_info->max_xmit_msg_size = 32;
1772 ssif_info->max_recv_msg_size = 32;
1773 ssif_info->multi_support = SSIF_NO_MULTI;
1774 ssif_info->supports_pec = 0;
1775 }
1776
1777 test_multipart_messages(client, ssif_info, resp);
1778
1779 /* Make sure the NMI timeout is cleared. */
1780 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1781 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
1782 msg[2] = WDT_PRE_TIMEOUT_INT;
1783 rv = do_cmd(client, 3, msg, &len, resp);
1784 if (rv || (len < 3) || (resp[2] != 0))
1785 dev_warn(&ssif_info->client->dev,
1786 "Unable to clear message flags: %d %d %2.2x\n",
1787 rv, len, resp[2]);
1788
1789 /* Attempt to enable the event buffer. */
1790 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1791 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1792 rv = do_cmd(client, 2, msg, &len, resp);
1793 if (rv || (len < 4) || (resp[2] != 0)) {
1794 dev_warn(&ssif_info->client->dev,
1795 "Error getting global enables: %d %d %2.2x\n",
1796 rv, len, resp[2]);
1797 rv = 0; /* Not fatal */
1798 goto found;
1799 }
1800
1801 ssif_info->global_enables = resp[3];
1802
1803 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1804 ssif_info->has_event_buffer = true;
1805 /* buffer is already enabled, nothing to do. */
1806 goto found;
1807 }
1808
1809 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1810 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1811 msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF;
1812 rv = do_cmd(client, 3, msg, &len, resp);
1813 if (rv || (len < 2)) {
1814 dev_warn(&ssif_info->client->dev,
1815 "Error setting global enables: %d %d %2.2x\n",
1816 rv, len, resp[2]);
1817 rv = 0; /* Not fatal */
1818 goto found;
1819 }
1820
1821 if (resp[2] == 0) {
1822 /* A successful return means the event buffer is supported. */
1823 ssif_info->has_event_buffer = true;
1824 ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF;
1825 }
1826
1827 /* Some systems don't behave well if you enable alerts. */
1828 if (alerts_broken)
1829 goto found;
1830
1831 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1832 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1833 msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR;
1834 rv = do_cmd(client, 3, msg, &len, resp);
1835 if (rv || (len < 2)) {
1836 dev_warn(&ssif_info->client->dev,
1837 "Error setting global enables: %d %d %2.2x\n",
1838 rv, len, resp[2]);
1839 rv = 0; /* Not fatal */
1840 goto found;
1841 }
1842
1843 if (resp[2] == 0) {
1844 /* A successful return means the alert is supported. */
1845 ssif_info->supports_alert = true;
1846 ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR;
1847 }
1848
1849 found:
1850 if (ssif_dbg_probe) {
1851 dev_dbg(&ssif_info->client->dev,
1852 "%s: i2c_probe found device at i2c address %x\n",
1853 __func__, client->addr);
1854 }
1855
1856 spin_lock_init(&ssif_info->lock);
1857 ssif_info->ssif_state = SSIF_IDLE;
1858 timer_setup(&ssif_info->retry_timer, retry_timeout, 0);
1859 timer_setup(&ssif_info->watch_timer, watch_timeout, 0);
1860
1861 for (i = 0; i < SSIF_NUM_STATS; i++)
1862 atomic_set(&ssif_info->stats[i], 0);
1863
1864 if (ssif_info->supports_pec)
1865 ssif_info->client->flags |= I2C_CLIENT_PEC;
1866
1867 ssif_info->handlers.owner = THIS_MODULE;
1868 ssif_info->handlers.start_processing = ssif_start_processing;
1869 ssif_info->handlers.shutdown = shutdown_ssif;
1870 ssif_info->handlers.get_smi_info = get_smi_info;
1871 ssif_info->handlers.sender = sender;
1872 ssif_info->handlers.request_events = request_events;
1873 ssif_info->handlers.set_need_watch = ssif_set_need_watch;
1874
1875 {
1876 unsigned int thread_num;
1877
1878 thread_num = ((i2c_adapter_id(ssif_info->client->adapter)
1879 << 8) |
1880 ssif_info->client->addr);
1881 init_completion(&ssif_info->wake_thread);
1882 ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info,
1883 "kssif%4.4x", thread_num);
1884 if (IS_ERR(ssif_info->thread)) {
1885 rv = PTR_ERR(ssif_info->thread);
1886 dev_notice(&ssif_info->client->dev,
1887 "Could not start kernel thread: error %d\n",
1888 rv);
1889 goto out;
1890 }
1891 }
1892
1893 dev_set_drvdata(&ssif_info->client->dev, ssif_info);
1894 rv = device_add_group(&ssif_info->client->dev,
1895 &ipmi_ssif_dev_attr_group);
1896 if (rv) {
1897 dev_err(&ssif_info->client->dev,
1898 "Unable to add device attributes: error %d\n",
1899 rv);
1900 goto out;
1901 }
1902
1903 rv = ipmi_register_smi(&ssif_info->handlers,
1904 ssif_info,
1905 &ssif_info->client->dev,
1906 slave_addr);
1907 if (rv) {
1908 dev_err(&ssif_info->client->dev,
1909 "Unable to register device: error %d\n", rv);
1910 goto out_remove_attr;
1911 }
1912
1913 out:
1914 if (rv) {
1915 if (addr_info)
1916 addr_info->client = NULL;
1917
1918 dev_err(&ssif_info->client->dev,
1919 "Unable to start IPMI SSIF: %d\n", rv);
1920 i2c_set_clientdata(client, NULL);
1921 kfree(ssif_info);
1922 }
1923 kfree(resp);
1924 mutex_unlock(&ssif_infos_mutex);
1925 return rv;
1926
1927 out_remove_attr:
1928 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
1929 dev_set_drvdata(&ssif_info->client->dev, NULL);
1930 goto out;
1931 }
1932
new_ssif_client(int addr, char *adapter_name, int debug, int slave_addr, enum ipmi_addr_src addr_src, struct device *dev)1933 static int new_ssif_client(int addr, char *adapter_name,
1934 int debug, int slave_addr,
1935 enum ipmi_addr_src addr_src,
1936 struct device *dev)
1937 {
1938 struct ssif_addr_info *addr_info;
1939 int rv = 0;
1940
1941 mutex_lock(&ssif_infos_mutex);
1942 if (ssif_info_find(addr, adapter_name, false)) {
1943 rv = -EEXIST;
1944 goto out_unlock;
1945 }
1946
1947 addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL);
1948 if (!addr_info) {
1949 rv = -ENOMEM;
1950 goto out_unlock;
1951 }
1952
1953 if (adapter_name) {
1954 addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL);
1955 if (!addr_info->adapter_name) {
1956 kfree(addr_info);
1957 rv = -ENOMEM;
1958 goto out_unlock;
1959 }
1960 }
1961
1962 strncpy(addr_info->binfo.type, DEVICE_NAME,
1963 sizeof(addr_info->binfo.type));
1964 addr_info->binfo.addr = addr;
1965 addr_info->binfo.platform_data = addr_info;
1966 addr_info->debug = debug;
1967 addr_info->slave_addr = slave_addr;
1968 addr_info->addr_src = addr_src;
1969 addr_info->dev = dev;
1970
1971 if (dev)
1972 dev_set_drvdata(dev, addr_info);
1973
1974 list_add_tail(&addr_info->link, &ssif_infos);
1975
1976 /* Address list will get it */
1977
1978 out_unlock:
1979 mutex_unlock(&ssif_infos_mutex);
1980 return rv;
1981 }
1982
free_ssif_clients(void)1983 static void free_ssif_clients(void)
1984 {
1985 struct ssif_addr_info *info, *tmp;
1986
1987 mutex_lock(&ssif_infos_mutex);
1988 list_for_each_entry_safe(info, tmp, &ssif_infos, link) {
1989 list_del(&info->link);
1990 kfree(info->adapter_name);
1991 kfree(info);
1992 }
1993 mutex_unlock(&ssif_infos_mutex);
1994 }
1995
ssif_address_list(void)1996 static unsigned short *ssif_address_list(void)
1997 {
1998 struct ssif_addr_info *info;
1999 unsigned int count = 0, i = 0;
2000 unsigned short *address_list;
2001
2002 list_for_each_entry(info, &ssif_infos, link)
2003 count++;
2004
2005 address_list = kcalloc(count + 1, sizeof(*address_list),
2006 GFP_KERNEL);
2007 if (!address_list)
2008 return NULL;
2009
2010 list_for_each_entry(info, &ssif_infos, link) {
2011 unsigned short addr = info->binfo.addr;
2012 int j;
2013
2014 for (j = 0; j < i; j++) {
2015 if (address_list[j] == addr)
2016 /* Found a dup. */
2017 break;
2018 }
2019 if (j == i) /* Didn't find it in the list. */
2020 address_list[i++] = addr;
2021 }
2022 address_list[i] = I2C_CLIENT_END;
2023
2024 return address_list;
2025 }
2026
2027 #ifdef CONFIG_ACPI
2028 static const struct acpi_device_id ssif_acpi_match[] = {
2029 { "IPI0001", 0 },
2030 { },
2031 };
2032 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match);
2033 #endif
2034
2035 #ifdef CONFIG_DMI
dmi_ipmi_probe(struct platform_device *pdev)2036 static int dmi_ipmi_probe(struct platform_device *pdev)
2037 {
2038 u8 slave_addr = 0;
2039 u16 i2c_addr;
2040 int rv;
2041
2042 if (!ssif_trydmi)
2043 return -ENODEV;
2044
2045 rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr);
2046 if (rv) {
2047 dev_warn(&pdev->dev, "No i2c-addr property\n");
2048 return -ENODEV;
2049 }
2050
2051 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2052 if (rv)
2053 slave_addr = 0x20;
2054
2055 return new_ssif_client(i2c_addr, NULL, 0,
2056 slave_addr, SI_SMBIOS, &pdev->dev);
2057 }
2058 #else
dmi_ipmi_probe(struct platform_device *pdev)2059 static int dmi_ipmi_probe(struct platform_device *pdev)
2060 {
2061 return -ENODEV;
2062 }
2063 #endif
2064
2065 static const struct i2c_device_id ssif_id[] = {
2066 { DEVICE_NAME, 0 },
2067 { }
2068 };
2069 MODULE_DEVICE_TABLE(i2c, ssif_id);
2070
2071 static struct i2c_driver ssif_i2c_driver = {
2072 .class = I2C_CLASS_HWMON,
2073 .driver = {
2074 .name = DEVICE_NAME
2075 },
2076 .probe = ssif_probe,
2077 .remove = ssif_remove,
2078 .alert = ssif_alert,
2079 .id_table = ssif_id,
2080 .detect = ssif_detect
2081 };
2082
ssif_platform_probe(struct platform_device *dev)2083 static int ssif_platform_probe(struct platform_device *dev)
2084 {
2085 return dmi_ipmi_probe(dev);
2086 }
2087
ssif_platform_remove(struct platform_device *dev)2088 static int ssif_platform_remove(struct platform_device *dev)
2089 {
2090 struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev);
2091
2092 if (!addr_info)
2093 return 0;
2094
2095 mutex_lock(&ssif_infos_mutex);
2096 list_del(&addr_info->link);
2097 kfree(addr_info);
2098 mutex_unlock(&ssif_infos_mutex);
2099 return 0;
2100 }
2101
2102 static const struct platform_device_id ssif_plat_ids[] = {
2103 { "dmi-ipmi-ssif", 0 },
2104 { }
2105 };
2106
2107 static struct platform_driver ipmi_driver = {
2108 .driver = {
2109 .name = DEVICE_NAME,
2110 },
2111 .probe = ssif_platform_probe,
2112 .remove = ssif_platform_remove,
2113 .id_table = ssif_plat_ids
2114 };
2115
init_ipmi_ssif(void)2116 static int init_ipmi_ssif(void)
2117 {
2118 int i;
2119 int rv;
2120
2121 if (initialized)
2122 return 0;
2123
2124 pr_info("IPMI SSIF Interface driver\n");
2125
2126 /* build list for i2c from addr list */
2127 for (i = 0; i < num_addrs; i++) {
2128 rv = new_ssif_client(addr[i], adapter_name[i],
2129 dbg[i], slave_addrs[i],
2130 SI_HARDCODED, NULL);
2131 if (rv)
2132 pr_err("Couldn't add hardcoded device at addr 0x%x\n",
2133 addr[i]);
2134 }
2135
2136 if (ssif_tryacpi)
2137 ssif_i2c_driver.driver.acpi_match_table =
2138 ACPI_PTR(ssif_acpi_match);
2139
2140 if (ssif_trydmi) {
2141 rv = platform_driver_register(&ipmi_driver);
2142 if (rv)
2143 pr_err("Unable to register driver: %d\n", rv);
2144 else
2145 platform_registered = true;
2146 }
2147
2148 ssif_i2c_driver.address_list = ssif_address_list();
2149
2150 rv = i2c_add_driver(&ssif_i2c_driver);
2151 if (!rv)
2152 initialized = true;
2153
2154 return rv;
2155 }
2156 module_init(init_ipmi_ssif);
2157
cleanup_ipmi_ssif(void)2158 static void cleanup_ipmi_ssif(void)
2159 {
2160 if (!initialized)
2161 return;
2162
2163 initialized = false;
2164
2165 i2c_del_driver(&ssif_i2c_driver);
2166
2167 kfree(ssif_i2c_driver.address_list);
2168
2169 if (ssif_trydmi && platform_registered)
2170 platform_driver_unregister(&ipmi_driver);
2171
2172 free_ssif_clients();
2173 }
2174 module_exit(cleanup_ipmi_ssif);
2175
2176 MODULE_ALIAS("platform:dmi-ipmi-ssif");
2177 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>");
2178 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus");
2179 MODULE_LICENSE("GPL");
2180