1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38
39 #define IPMI_DRIVER_VERSION "39.2"
40
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 struct ipmi_smi_msg *msg);
48
49 static bool initialized;
50 static bool drvregistered;
51
52 enum ipmi_panic_event_op {
53 IPMI_SEND_PANIC_EVENT_NONE,
54 IPMI_SEND_PANIC_EVENT,
55 IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66
panic_op_write_handler(const char *val, const struct kernel_param *kp)67 static int panic_op_write_handler(const char *val,
68 const struct kernel_param *kp)
69 {
70 char valcp[16];
71 char *s;
72
73 strncpy(valcp, val, 15);
74 valcp[15] = '\0';
75
76 s = strstrip(valcp);
77
78 if (strcmp(s, "none") == 0)
79 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 else if (strcmp(s, "event") == 0)
81 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 else if (strcmp(s, "string") == 0)
83 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 else
85 return -EINVAL;
86
87 return 0;
88 }
89
panic_op_read_handler(char *buffer, const struct kernel_param *kp)90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 switch (ipmi_send_panic_event) {
93 case IPMI_SEND_PANIC_EVENT_NONE:
94 strcpy(buffer, "none\n");
95 break;
96
97 case IPMI_SEND_PANIC_EVENT:
98 strcpy(buffer, "event\n");
99 break;
100
101 case IPMI_SEND_PANIC_EVENT_STRING:
102 strcpy(buffer, "string\n");
103 break;
104
105 default:
106 strcpy(buffer, "???\n");
107 break;
108 }
109
110 return strlen(buffer);
111 }
112
113 static const struct kernel_param_ops panic_op_ops = {
114 .set = panic_op_write_handler,
115 .get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119
120
121 #define MAX_EVENTS_IN_QUEUE 25
122
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128
129 /*
130 * Don't let a message sit in a queue forever, always time it with at lest
131 * the max message timer. This is in milliseconds.
132 */
133 #define MAX_MSG_TIMEOUT 60000
134
135 /*
136 * Timeout times below are in milliseconds, and are done off a 1
137 * second timer. So setting the value to 1000 would mean anything
138 * between 0 and 1000ms. So really the only reasonable minimum
139 * setting it 2000ms, which is between 1 and 2 seconds.
140 */
141
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 "The time (milliseconds) between retry sends");
147
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 "The time (milliseconds) between retry sends in maintenance mode");
153
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 "The time (milliseconds) between retry sends in maintenance mode");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
171 */
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
176
177 /*
178 * The main "user" data structure.
179 */
180 struct ipmi_user {
181 struct list_head link;
182
183 /*
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
186 */
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
189
190 struct kref refcount;
191
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
195
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
198
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
201
202 /* Free must run in process context for RCU cleanup. */
203 struct work_struct remove_work;
204 };
205
206 static struct workqueue_struct *remove_work_wq;
207
208 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
209 __acquires(user->release_barrier)
210 {
211 struct ipmi_user *ruser;
212
213 *index = srcu_read_lock(&user->release_barrier);
214 ruser = srcu_dereference(user->self, &user->release_barrier);
215 if (!ruser)
216 srcu_read_unlock(&user->release_barrier, *index);
217 return ruser;
218 }
219
release_ipmi_user(struct ipmi_user *user, int index)220 static void release_ipmi_user(struct ipmi_user *user, int index)
221 {
222 srcu_read_unlock(&user->release_barrier, index);
223 }
224
225 struct cmd_rcvr {
226 struct list_head link;
227
228 struct ipmi_user *user;
229 unsigned char netfn;
230 unsigned char cmd;
231 unsigned int chans;
232
233 /*
234 * This is used to form a linked lised during mass deletion.
235 * Since this is in an RCU list, we cannot use the link above
236 * or change any data until the RCU period completes. So we
237 * use this next variable during mass deletion so we can have
238 * a list and don't have to wait and restart the search on
239 * every individual deletion of a command.
240 */
241 struct cmd_rcvr *next;
242 };
243
244 struct seq_table {
245 unsigned int inuse : 1;
246 unsigned int broadcast : 1;
247
248 unsigned long timeout;
249 unsigned long orig_timeout;
250 unsigned int retries_left;
251
252 /*
253 * To verify on an incoming send message response that this is
254 * the message that the response is for, we keep a sequence id
255 * and increment it every time we send a message.
256 */
257 long seqid;
258
259 /*
260 * This is held so we can properly respond to the message on a
261 * timeout, and it is used to hold the temporary data for
262 * retransmission, too.
263 */
264 struct ipmi_recv_msg *recv_msg;
265 };
266
267 /*
268 * Store the information in a msgid (long) to allow us to find a
269 * sequence table entry from the msgid.
270 */
271 #define STORE_SEQ_IN_MSGID(seq, seqid) \
272 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
273
274 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
275 do { \
276 seq = (((msgid) >> 26) & 0x3f); \
277 seqid = ((msgid) & 0x3ffffff); \
278 } while (0)
279
280 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
281
282 #define IPMI_MAX_CHANNELS 16
283 struct ipmi_channel {
284 unsigned char medium;
285 unsigned char protocol;
286 };
287
288 struct ipmi_channel_set {
289 struct ipmi_channel c[IPMI_MAX_CHANNELS];
290 };
291
292 struct ipmi_my_addrinfo {
293 /*
294 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
295 * but may be changed by the user.
296 */
297 unsigned char address;
298
299 /*
300 * My LUN. This should generally stay the SMS LUN, but just in
301 * case...
302 */
303 unsigned char lun;
304 };
305
306 /*
307 * Note that the product id, manufacturer id, guid, and device id are
308 * immutable in this structure, so dyn_mutex is not required for
309 * accessing those. If those change on a BMC, a new BMC is allocated.
310 */
311 struct bmc_device {
312 struct platform_device pdev;
313 struct list_head intfs; /* Interfaces on this BMC. */
314 struct ipmi_device_id id;
315 struct ipmi_device_id fetch_id;
316 int dyn_id_set;
317 unsigned long dyn_id_expiry;
318 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
319 guid_t guid;
320 guid_t fetch_guid;
321 int dyn_guid_set;
322 struct kref usecount;
323 struct work_struct remove_work;
324 unsigned char cc; /* completion code */
325 };
326 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
327
328 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
329 struct ipmi_device_id *id,
330 bool *guid_set, guid_t *guid);
331
332 /*
333 * Various statistics for IPMI, these index stats[] in the ipmi_smi
334 * structure.
335 */
336 enum ipmi_stat_indexes {
337 /* Commands we got from the user that were invalid. */
338 IPMI_STAT_sent_invalid_commands = 0,
339
340 /* Commands we sent to the MC. */
341 IPMI_STAT_sent_local_commands,
342
343 /* Responses from the MC that were delivered to a user. */
344 IPMI_STAT_handled_local_responses,
345
346 /* Responses from the MC that were not delivered to a user. */
347 IPMI_STAT_unhandled_local_responses,
348
349 /* Commands we sent out to the IPMB bus. */
350 IPMI_STAT_sent_ipmb_commands,
351
352 /* Commands sent on the IPMB that had errors on the SEND CMD */
353 IPMI_STAT_sent_ipmb_command_errs,
354
355 /* Each retransmit increments this count. */
356 IPMI_STAT_retransmitted_ipmb_commands,
357
358 /*
359 * When a message times out (runs out of retransmits) this is
360 * incremented.
361 */
362 IPMI_STAT_timed_out_ipmb_commands,
363
364 /*
365 * This is like above, but for broadcasts. Broadcasts are
366 * *not* included in the above count (they are expected to
367 * time out).
368 */
369 IPMI_STAT_timed_out_ipmb_broadcasts,
370
371 /* Responses I have sent to the IPMB bus. */
372 IPMI_STAT_sent_ipmb_responses,
373
374 /* The response was delivered to the user. */
375 IPMI_STAT_handled_ipmb_responses,
376
377 /* The response had invalid data in it. */
378 IPMI_STAT_invalid_ipmb_responses,
379
380 /* The response didn't have anyone waiting for it. */
381 IPMI_STAT_unhandled_ipmb_responses,
382
383 /* Commands we sent out to the IPMB bus. */
384 IPMI_STAT_sent_lan_commands,
385
386 /* Commands sent on the IPMB that had errors on the SEND CMD */
387 IPMI_STAT_sent_lan_command_errs,
388
389 /* Each retransmit increments this count. */
390 IPMI_STAT_retransmitted_lan_commands,
391
392 /*
393 * When a message times out (runs out of retransmits) this is
394 * incremented.
395 */
396 IPMI_STAT_timed_out_lan_commands,
397
398 /* Responses I have sent to the IPMB bus. */
399 IPMI_STAT_sent_lan_responses,
400
401 /* The response was delivered to the user. */
402 IPMI_STAT_handled_lan_responses,
403
404 /* The response had invalid data in it. */
405 IPMI_STAT_invalid_lan_responses,
406
407 /* The response didn't have anyone waiting for it. */
408 IPMI_STAT_unhandled_lan_responses,
409
410 /* The command was delivered to the user. */
411 IPMI_STAT_handled_commands,
412
413 /* The command had invalid data in it. */
414 IPMI_STAT_invalid_commands,
415
416 /* The command didn't have anyone waiting for it. */
417 IPMI_STAT_unhandled_commands,
418
419 /* Invalid data in an event. */
420 IPMI_STAT_invalid_events,
421
422 /* Events that were received with the proper format. */
423 IPMI_STAT_events,
424
425 /* Retransmissions on IPMB that failed. */
426 IPMI_STAT_dropped_rexmit_ipmb_commands,
427
428 /* Retransmissions on LAN that failed. */
429 IPMI_STAT_dropped_rexmit_lan_commands,
430
431 /* This *must* remain last, add new values above this. */
432 IPMI_NUM_STATS
433 };
434
435
436 #define IPMI_IPMB_NUM_SEQ 64
437 struct ipmi_smi {
438 struct module *owner;
439
440 /* What interface number are we? */
441 int intf_num;
442
443 struct kref refcount;
444
445 /* Set when the interface is being unregistered. */
446 bool in_shutdown;
447
448 /* Used for a list of interfaces. */
449 struct list_head link;
450
451 /*
452 * The list of upper layers that are using me. seq_lock write
453 * protects this. Read protection is with srcu.
454 */
455 struct list_head users;
456 struct srcu_struct users_srcu;
457
458 /* Used for wake ups at startup. */
459 wait_queue_head_t waitq;
460
461 /*
462 * Prevents the interface from being unregistered when the
463 * interface is used by being looked up through the BMC
464 * structure.
465 */
466 struct mutex bmc_reg_mutex;
467
468 struct bmc_device tmp_bmc;
469 struct bmc_device *bmc;
470 bool bmc_registered;
471 struct list_head bmc_link;
472 char *my_dev_name;
473 bool in_bmc_register; /* Handle recursive situations. Yuck. */
474 struct work_struct bmc_reg_work;
475
476 const struct ipmi_smi_handlers *handlers;
477 void *send_info;
478
479 /* Driver-model device for the system interface. */
480 struct device *si_dev;
481
482 /*
483 * A table of sequence numbers for this interface. We use the
484 * sequence numbers for IPMB messages that go out of the
485 * interface to match them up with their responses. A routine
486 * is called periodically to time the items in this list.
487 */
488 spinlock_t seq_lock;
489 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
490 int curr_seq;
491
492 /*
493 * Messages queued for delivery. If delivery fails (out of memory
494 * for instance), They will stay in here to be processed later in a
495 * periodic timer interrupt. The tasklet is for handling received
496 * messages directly from the handler.
497 */
498 spinlock_t waiting_rcv_msgs_lock;
499 struct list_head waiting_rcv_msgs;
500 atomic_t watchdog_pretimeouts_to_deliver;
501 struct tasklet_struct recv_tasklet;
502
503 spinlock_t xmit_msgs_lock;
504 struct list_head xmit_msgs;
505 struct ipmi_smi_msg *curr_msg;
506 struct list_head hp_xmit_msgs;
507
508 /*
509 * The list of command receivers that are registered for commands
510 * on this interface.
511 */
512 struct mutex cmd_rcvrs_mutex;
513 struct list_head cmd_rcvrs;
514
515 /*
516 * Events that were queues because no one was there to receive
517 * them.
518 */
519 spinlock_t events_lock; /* For dealing with event stuff. */
520 struct list_head waiting_events;
521 unsigned int waiting_events_count; /* How many events in queue? */
522 char delivering_events;
523 char event_msg_printed;
524
525 /* How many users are waiting for events? */
526 atomic_t event_waiters;
527 unsigned int ticks_to_req_ev;
528
529 spinlock_t watch_lock; /* For dealing with watch stuff below. */
530
531 /* How many users are waiting for commands? */
532 unsigned int command_waiters;
533
534 /* How many users are waiting for watchdogs? */
535 unsigned int watchdog_waiters;
536
537 /* How many users are waiting for message responses? */
538 unsigned int response_waiters;
539
540 /*
541 * Tells what the lower layer has last been asked to watch for,
542 * messages and/or watchdogs. Protected by watch_lock.
543 */
544 unsigned int last_watch_mask;
545
546 /*
547 * The event receiver for my BMC, only really used at panic
548 * shutdown as a place to store this.
549 */
550 unsigned char event_receiver;
551 unsigned char event_receiver_lun;
552 unsigned char local_sel_device;
553 unsigned char local_event_generator;
554
555 /* For handling of maintenance mode. */
556 int maintenance_mode;
557 bool maintenance_mode_enable;
558 int auto_maintenance_timeout;
559 spinlock_t maintenance_mode_lock; /* Used in a timer... */
560
561 /*
562 * If we are doing maintenance on something on IPMB, extend
563 * the timeout time to avoid timeouts writing firmware and
564 * such.
565 */
566 int ipmb_maintenance_mode_timeout;
567
568 /*
569 * A cheap hack, if this is non-null and a message to an
570 * interface comes in with a NULL user, call this routine with
571 * it. Note that the message will still be freed by the
572 * caller. This only works on the system interface.
573 *
574 * Protected by bmc_reg_mutex.
575 */
576 void (*null_user_handler)(struct ipmi_smi *intf,
577 struct ipmi_recv_msg *msg);
578
579 /*
580 * When we are scanning the channels for an SMI, this will
581 * tell which channel we are scanning.
582 */
583 int curr_channel;
584
585 /* Channel information */
586 struct ipmi_channel_set *channel_list;
587 unsigned int curr_working_cset; /* First index into the following. */
588 struct ipmi_channel_set wchannels[2];
589 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
590 bool channels_ready;
591
592 atomic_t stats[IPMI_NUM_STATS];
593
594 /*
595 * run_to_completion duplicate of smb_info, smi_info
596 * and ipmi_serial_info structures. Used to decrease numbers of
597 * parameters passed by "low" level IPMI code.
598 */
599 int run_to_completion;
600 };
601 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
602
603 static void __get_guid(struct ipmi_smi *intf);
604 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
605 static int __ipmi_bmc_register(struct ipmi_smi *intf,
606 struct ipmi_device_id *id,
607 bool guid_set, guid_t *guid, int intf_num);
608 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
609
610
611 /**
612 * The driver model view of the IPMI messaging driver.
613 */
614 static struct platform_driver ipmidriver = {
615 .driver = {
616 .name = "ipmi",
617 .bus = &platform_bus_type
618 }
619 };
620 /*
621 * This mutex keeps us from adding the same BMC twice.
622 */
623 static DEFINE_MUTEX(ipmidriver_mutex);
624
625 static LIST_HEAD(ipmi_interfaces);
626 static DEFINE_MUTEX(ipmi_interfaces_mutex);
627 #define ipmi_interfaces_mutex_held() \
628 lockdep_is_held(&ipmi_interfaces_mutex)
629 static struct srcu_struct ipmi_interfaces_srcu;
630
631 /*
632 * List of watchers that want to know when smi's are added and deleted.
633 */
634 static LIST_HEAD(smi_watchers);
635 static DEFINE_MUTEX(smi_watchers_mutex);
636
637 #define ipmi_inc_stat(intf, stat) \
638 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
639 #define ipmi_get_stat(intf, stat) \
640 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
641
642 static const char * const addr_src_to_str[] = {
643 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
644 "device-tree", "platform"
645 };
646
ipmi_addr_src_to_str(enum ipmi_addr_src src)647 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
648 {
649 if (src >= SI_LAST)
650 src = 0; /* Invalid */
651 return addr_src_to_str[src];
652 }
653 EXPORT_SYMBOL(ipmi_addr_src_to_str);
654
is_lan_addr(struct ipmi_addr *addr)655 static int is_lan_addr(struct ipmi_addr *addr)
656 {
657 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
658 }
659
is_ipmb_addr(struct ipmi_addr *addr)660 static int is_ipmb_addr(struct ipmi_addr *addr)
661 {
662 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
663 }
664
is_ipmb_bcast_addr(struct ipmi_addr *addr)665 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
666 {
667 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
668 }
669
free_recv_msg_list(struct list_head *q)670 static void free_recv_msg_list(struct list_head *q)
671 {
672 struct ipmi_recv_msg *msg, *msg2;
673
674 list_for_each_entry_safe(msg, msg2, q, link) {
675 list_del(&msg->link);
676 ipmi_free_recv_msg(msg);
677 }
678 }
679
free_smi_msg_list(struct list_head *q)680 static void free_smi_msg_list(struct list_head *q)
681 {
682 struct ipmi_smi_msg *msg, *msg2;
683
684 list_for_each_entry_safe(msg, msg2, q, link) {
685 list_del(&msg->link);
686 ipmi_free_smi_msg(msg);
687 }
688 }
689
clean_up_interface_data(struct ipmi_smi *intf)690 static void clean_up_interface_data(struct ipmi_smi *intf)
691 {
692 int i;
693 struct cmd_rcvr *rcvr, *rcvr2;
694 struct list_head list;
695
696 tasklet_kill(&intf->recv_tasklet);
697
698 free_smi_msg_list(&intf->waiting_rcv_msgs);
699 free_recv_msg_list(&intf->waiting_events);
700
701 /*
702 * Wholesale remove all the entries from the list in the
703 * interface and wait for RCU to know that none are in use.
704 */
705 mutex_lock(&intf->cmd_rcvrs_mutex);
706 INIT_LIST_HEAD(&list);
707 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
708 mutex_unlock(&intf->cmd_rcvrs_mutex);
709
710 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
711 kfree(rcvr);
712
713 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
714 if ((intf->seq_table[i].inuse)
715 && (intf->seq_table[i].recv_msg))
716 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
717 }
718 }
719
intf_free(struct kref *ref)720 static void intf_free(struct kref *ref)
721 {
722 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
723
724 clean_up_interface_data(intf);
725 kfree(intf);
726 }
727
728 struct watcher_entry {
729 int intf_num;
730 struct ipmi_smi *intf;
731 struct list_head link;
732 };
733
ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 struct ipmi_smi *intf;
737 int index, rv;
738
739 /*
740 * Make sure the driver is actually initialized, this handles
741 * problems with initialization order.
742 */
743 rv = ipmi_init_msghandler();
744 if (rv)
745 return rv;
746
747 mutex_lock(&smi_watchers_mutex);
748
749 list_add(&watcher->link, &smi_watchers);
750
751 index = srcu_read_lock(&ipmi_interfaces_srcu);
752 list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
753 lockdep_is_held(&smi_watchers_mutex)) {
754 int intf_num = READ_ONCE(intf->intf_num);
755
756 if (intf_num == -1)
757 continue;
758 watcher->new_smi(intf_num, intf->si_dev);
759 }
760 srcu_read_unlock(&ipmi_interfaces_srcu, index);
761
762 mutex_unlock(&smi_watchers_mutex);
763
764 return 0;
765 }
766 EXPORT_SYMBOL(ipmi_smi_watcher_register);
767
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)768 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
769 {
770 mutex_lock(&smi_watchers_mutex);
771 list_del(&watcher->link);
772 mutex_unlock(&smi_watchers_mutex);
773 return 0;
774 }
775 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
776
777 /*
778 * Must be called with smi_watchers_mutex held.
779 */
780 static void
call_smi_watchers(int i, struct device *dev)781 call_smi_watchers(int i, struct device *dev)
782 {
783 struct ipmi_smi_watcher *w;
784
785 mutex_lock(&smi_watchers_mutex);
786 list_for_each_entry(w, &smi_watchers, link) {
787 if (try_module_get(w->owner)) {
788 w->new_smi(i, dev);
789 module_put(w->owner);
790 }
791 }
792 mutex_unlock(&smi_watchers_mutex);
793 }
794
795 static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)796 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
797 {
798 if (addr1->addr_type != addr2->addr_type)
799 return 0;
800
801 if (addr1->channel != addr2->channel)
802 return 0;
803
804 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
805 struct ipmi_system_interface_addr *smi_addr1
806 = (struct ipmi_system_interface_addr *) addr1;
807 struct ipmi_system_interface_addr *smi_addr2
808 = (struct ipmi_system_interface_addr *) addr2;
809 return (smi_addr1->lun == smi_addr2->lun);
810 }
811
812 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
813 struct ipmi_ipmb_addr *ipmb_addr1
814 = (struct ipmi_ipmb_addr *) addr1;
815 struct ipmi_ipmb_addr *ipmb_addr2
816 = (struct ipmi_ipmb_addr *) addr2;
817
818 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
819 && (ipmb_addr1->lun == ipmb_addr2->lun));
820 }
821
822 if (is_lan_addr(addr1)) {
823 struct ipmi_lan_addr *lan_addr1
824 = (struct ipmi_lan_addr *) addr1;
825 struct ipmi_lan_addr *lan_addr2
826 = (struct ipmi_lan_addr *) addr2;
827
828 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
829 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
830 && (lan_addr1->session_handle
831 == lan_addr2->session_handle)
832 && (lan_addr1->lun == lan_addr2->lun));
833 }
834
835 return 1;
836 }
837
ipmi_validate_addr(struct ipmi_addr *addr, int len)838 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
839 {
840 if (len < sizeof(struct ipmi_system_interface_addr))
841 return -EINVAL;
842
843 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
844 if (addr->channel != IPMI_BMC_CHANNEL)
845 return -EINVAL;
846 return 0;
847 }
848
849 if ((addr->channel == IPMI_BMC_CHANNEL)
850 || (addr->channel >= IPMI_MAX_CHANNELS)
851 || (addr->channel < 0))
852 return -EINVAL;
853
854 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
855 if (len < sizeof(struct ipmi_ipmb_addr))
856 return -EINVAL;
857 return 0;
858 }
859
860 if (is_lan_addr(addr)) {
861 if (len < sizeof(struct ipmi_lan_addr))
862 return -EINVAL;
863 return 0;
864 }
865
866 return -EINVAL;
867 }
868 EXPORT_SYMBOL(ipmi_validate_addr);
869
ipmi_addr_length(int addr_type)870 unsigned int ipmi_addr_length(int addr_type)
871 {
872 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
873 return sizeof(struct ipmi_system_interface_addr);
874
875 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
876 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
877 return sizeof(struct ipmi_ipmb_addr);
878
879 if (addr_type == IPMI_LAN_ADDR_TYPE)
880 return sizeof(struct ipmi_lan_addr);
881
882 return 0;
883 }
884 EXPORT_SYMBOL(ipmi_addr_length);
885
deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)886 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
887 {
888 int rv = 0;
889
890 if (!msg->user) {
891 /* Special handling for NULL users. */
892 if (intf->null_user_handler) {
893 intf->null_user_handler(intf, msg);
894 } else {
895 /* No handler, so give up. */
896 rv = -EINVAL;
897 }
898 ipmi_free_recv_msg(msg);
899 } else if (oops_in_progress) {
900 /*
901 * If we are running in the panic context, calling the
902 * receive handler doesn't much meaning and has a deadlock
903 * risk. At this moment, simply skip it in that case.
904 */
905 ipmi_free_recv_msg(msg);
906 } else {
907 int index;
908 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
909
910 if (user) {
911 user->handler->ipmi_recv_hndl(msg, user->handler_data);
912 release_ipmi_user(user, index);
913 } else {
914 /* User went away, give up. */
915 ipmi_free_recv_msg(msg);
916 rv = -EINVAL;
917 }
918 }
919
920 return rv;
921 }
922
deliver_local_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)923 static void deliver_local_response(struct ipmi_smi *intf,
924 struct ipmi_recv_msg *msg)
925 {
926 if (deliver_response(intf, msg))
927 ipmi_inc_stat(intf, unhandled_local_responses);
928 else
929 ipmi_inc_stat(intf, handled_local_responses);
930 }
931
deliver_err_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg, int err)932 static void deliver_err_response(struct ipmi_smi *intf,
933 struct ipmi_recv_msg *msg, int err)
934 {
935 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
936 msg->msg_data[0] = err;
937 msg->msg.netfn |= 1; /* Convert to a response. */
938 msg->msg.data_len = 1;
939 msg->msg.data = msg->msg_data;
940 deliver_local_response(intf, msg);
941 }
942
smi_add_watch(struct ipmi_smi *intf, unsigned int flags)943 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
944 {
945 unsigned long iflags;
946
947 if (!intf->handlers->set_need_watch)
948 return;
949
950 spin_lock_irqsave(&intf->watch_lock, iflags);
951 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
952 intf->response_waiters++;
953
954 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
955 intf->watchdog_waiters++;
956
957 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
958 intf->command_waiters++;
959
960 if ((intf->last_watch_mask & flags) != flags) {
961 intf->last_watch_mask |= flags;
962 intf->handlers->set_need_watch(intf->send_info,
963 intf->last_watch_mask);
964 }
965 spin_unlock_irqrestore(&intf->watch_lock, iflags);
966 }
967
smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)968 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
969 {
970 unsigned long iflags;
971
972 if (!intf->handlers->set_need_watch)
973 return;
974
975 spin_lock_irqsave(&intf->watch_lock, iflags);
976 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
977 intf->response_waiters--;
978
979 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
980 intf->watchdog_waiters--;
981
982 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
983 intf->command_waiters--;
984
985 flags = 0;
986 if (intf->response_waiters)
987 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
988 if (intf->watchdog_waiters)
989 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
990 if (intf->command_waiters)
991 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
992
993 if (intf->last_watch_mask != flags) {
994 intf->last_watch_mask = flags;
995 intf->handlers->set_need_watch(intf->send_info,
996 intf->last_watch_mask);
997 }
998 spin_unlock_irqrestore(&intf->watch_lock, iflags);
999 }
1000
1001 /*
1002 * Find the next sequence number not being used and add the given
1003 * message with the given timeout to the sequence table. This must be
1004 * called with the interface's seq_lock held.
1005 */
intf_next_seq(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, unsigned long timeout, int retries, int broadcast, unsigned char *seq, long *seqid)1006 static int intf_next_seq(struct ipmi_smi *intf,
1007 struct ipmi_recv_msg *recv_msg,
1008 unsigned long timeout,
1009 int retries,
1010 int broadcast,
1011 unsigned char *seq,
1012 long *seqid)
1013 {
1014 int rv = 0;
1015 unsigned int i;
1016
1017 if (timeout == 0)
1018 timeout = default_retry_ms;
1019 if (retries < 0)
1020 retries = default_max_retries;
1021
1022 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1023 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1024 if (!intf->seq_table[i].inuse)
1025 break;
1026 }
1027
1028 if (!intf->seq_table[i].inuse) {
1029 intf->seq_table[i].recv_msg = recv_msg;
1030
1031 /*
1032 * Start with the maximum timeout, when the send response
1033 * comes in we will start the real timer.
1034 */
1035 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1036 intf->seq_table[i].orig_timeout = timeout;
1037 intf->seq_table[i].retries_left = retries;
1038 intf->seq_table[i].broadcast = broadcast;
1039 intf->seq_table[i].inuse = 1;
1040 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1041 *seq = i;
1042 *seqid = intf->seq_table[i].seqid;
1043 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1044 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1045 need_waiter(intf);
1046 } else {
1047 rv = -EAGAIN;
1048 }
1049
1050 return rv;
1051 }
1052
1053 /*
1054 * Return the receive message for the given sequence number and
1055 * release the sequence number so it can be reused. Some other data
1056 * is passed in to be sure the message matches up correctly (to help
1057 * guard against message coming in after their timeout and the
1058 * sequence number being reused).
1059 */
intf_find_seq(struct ipmi_smi *intf, unsigned char seq, short channel, unsigned char cmd, unsigned char netfn, struct ipmi_addr *addr, struct ipmi_recv_msg **recv_msg)1060 static int intf_find_seq(struct ipmi_smi *intf,
1061 unsigned char seq,
1062 short channel,
1063 unsigned char cmd,
1064 unsigned char netfn,
1065 struct ipmi_addr *addr,
1066 struct ipmi_recv_msg **recv_msg)
1067 {
1068 int rv = -ENODEV;
1069 unsigned long flags;
1070
1071 if (seq >= IPMI_IPMB_NUM_SEQ)
1072 return -EINVAL;
1073
1074 spin_lock_irqsave(&intf->seq_lock, flags);
1075 if (intf->seq_table[seq].inuse) {
1076 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1077
1078 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1079 && (msg->msg.netfn == netfn)
1080 && (ipmi_addr_equal(addr, &msg->addr))) {
1081 *recv_msg = msg;
1082 intf->seq_table[seq].inuse = 0;
1083 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1084 rv = 0;
1085 }
1086 }
1087 spin_unlock_irqrestore(&intf->seq_lock, flags);
1088
1089 return rv;
1090 }
1091
1092
1093 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi *intf, long msgid)1094 static int intf_start_seq_timer(struct ipmi_smi *intf,
1095 long msgid)
1096 {
1097 int rv = -ENODEV;
1098 unsigned long flags;
1099 unsigned char seq;
1100 unsigned long seqid;
1101
1102
1103 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1104
1105 spin_lock_irqsave(&intf->seq_lock, flags);
1106 /*
1107 * We do this verification because the user can be deleted
1108 * while a message is outstanding.
1109 */
1110 if ((intf->seq_table[seq].inuse)
1111 && (intf->seq_table[seq].seqid == seqid)) {
1112 struct seq_table *ent = &intf->seq_table[seq];
1113 ent->timeout = ent->orig_timeout;
1114 rv = 0;
1115 }
1116 spin_unlock_irqrestore(&intf->seq_lock, flags);
1117
1118 return rv;
1119 }
1120
1121 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi *intf, long msgid, unsigned int err)1122 static int intf_err_seq(struct ipmi_smi *intf,
1123 long msgid,
1124 unsigned int err)
1125 {
1126 int rv = -ENODEV;
1127 unsigned long flags;
1128 unsigned char seq;
1129 unsigned long seqid;
1130 struct ipmi_recv_msg *msg = NULL;
1131
1132
1133 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1134
1135 spin_lock_irqsave(&intf->seq_lock, flags);
1136 /*
1137 * We do this verification because the user can be deleted
1138 * while a message is outstanding.
1139 */
1140 if ((intf->seq_table[seq].inuse)
1141 && (intf->seq_table[seq].seqid == seqid)) {
1142 struct seq_table *ent = &intf->seq_table[seq];
1143
1144 ent->inuse = 0;
1145 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1146 msg = ent->recv_msg;
1147 rv = 0;
1148 }
1149 spin_unlock_irqrestore(&intf->seq_lock, flags);
1150
1151 if (msg)
1152 deliver_err_response(intf, msg, err);
1153
1154 return rv;
1155 }
1156
free_user_work(struct work_struct *work)1157 static void free_user_work(struct work_struct *work)
1158 {
1159 struct ipmi_user *user = container_of(work, struct ipmi_user,
1160 remove_work);
1161
1162 cleanup_srcu_struct(&user->release_barrier);
1163 vfree(user);
1164 }
1165
ipmi_create_user(unsigned int if_num, const struct ipmi_user_hndl *handler, void *handler_data, struct ipmi_user **user)1166 int ipmi_create_user(unsigned int if_num,
1167 const struct ipmi_user_hndl *handler,
1168 void *handler_data,
1169 struct ipmi_user **user)
1170 {
1171 unsigned long flags;
1172 struct ipmi_user *new_user;
1173 int rv, index;
1174 struct ipmi_smi *intf;
1175
1176 /*
1177 * There is no module usecount here, because it's not
1178 * required. Since this can only be used by and called from
1179 * other modules, they will implicitly use this module, and
1180 * thus this can't be removed unless the other modules are
1181 * removed.
1182 */
1183
1184 if (handler == NULL)
1185 return -EINVAL;
1186
1187 /*
1188 * Make sure the driver is actually initialized, this handles
1189 * problems with initialization order.
1190 */
1191 rv = ipmi_init_msghandler();
1192 if (rv)
1193 return rv;
1194
1195 new_user = vzalloc(sizeof(*new_user));
1196 if (!new_user)
1197 return -ENOMEM;
1198
1199 index = srcu_read_lock(&ipmi_interfaces_srcu);
1200 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1201 if (intf->intf_num == if_num)
1202 goto found;
1203 }
1204 /* Not found, return an error */
1205 rv = -EINVAL;
1206 goto out_kfree;
1207
1208 found:
1209 INIT_WORK(&new_user->remove_work, free_user_work);
1210
1211 rv = init_srcu_struct(&new_user->release_barrier);
1212 if (rv)
1213 goto out_kfree;
1214
1215 if (!try_module_get(intf->owner)) {
1216 rv = -ENODEV;
1217 goto out_kfree;
1218 }
1219
1220 /* Note that each existing user holds a refcount to the interface. */
1221 kref_get(&intf->refcount);
1222
1223 kref_init(&new_user->refcount);
1224 new_user->handler = handler;
1225 new_user->handler_data = handler_data;
1226 new_user->intf = intf;
1227 new_user->gets_events = false;
1228
1229 rcu_assign_pointer(new_user->self, new_user);
1230 spin_lock_irqsave(&intf->seq_lock, flags);
1231 list_add_rcu(&new_user->link, &intf->users);
1232 spin_unlock_irqrestore(&intf->seq_lock, flags);
1233 if (handler->ipmi_watchdog_pretimeout)
1234 /* User wants pretimeouts, so make sure to watch for them. */
1235 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1236 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1237 *user = new_user;
1238 return 0;
1239
1240 out_kfree:
1241 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1242 vfree(new_user);
1243 return rv;
1244 }
1245 EXPORT_SYMBOL(ipmi_create_user);
1246
ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)1247 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1248 {
1249 int rv, index;
1250 struct ipmi_smi *intf;
1251
1252 index = srcu_read_lock(&ipmi_interfaces_srcu);
1253 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1254 if (intf->intf_num == if_num)
1255 goto found;
1256 }
1257 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1258
1259 /* Not found, return an error */
1260 return -EINVAL;
1261
1262 found:
1263 if (!intf->handlers->get_smi_info)
1264 rv = -ENOTTY;
1265 else
1266 rv = intf->handlers->get_smi_info(intf->send_info, data);
1267 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1268
1269 return rv;
1270 }
1271 EXPORT_SYMBOL(ipmi_get_smi_info);
1272
free_user(struct kref *ref)1273 static void free_user(struct kref *ref)
1274 {
1275 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1276
1277 /* SRCU cleanup must happen in task context. */
1278 queue_work(remove_work_wq, &user->remove_work);
1279 }
1280
_ipmi_destroy_user(struct ipmi_user *user)1281 static void _ipmi_destroy_user(struct ipmi_user *user)
1282 {
1283 struct ipmi_smi *intf = user->intf;
1284 int i;
1285 unsigned long flags;
1286 struct cmd_rcvr *rcvr;
1287 struct cmd_rcvr *rcvrs = NULL;
1288 struct module *owner;
1289
1290 if (!acquire_ipmi_user(user, &i)) {
1291 /*
1292 * The user has already been cleaned up, just make sure
1293 * nothing is using it and return.
1294 */
1295 synchronize_srcu(&user->release_barrier);
1296 return;
1297 }
1298
1299 rcu_assign_pointer(user->self, NULL);
1300 release_ipmi_user(user, i);
1301
1302 synchronize_srcu(&user->release_barrier);
1303
1304 if (user->handler->shutdown)
1305 user->handler->shutdown(user->handler_data);
1306
1307 if (user->handler->ipmi_watchdog_pretimeout)
1308 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1309
1310 if (user->gets_events)
1311 atomic_dec(&intf->event_waiters);
1312
1313 /* Remove the user from the interface's sequence table. */
1314 spin_lock_irqsave(&intf->seq_lock, flags);
1315 list_del_rcu(&user->link);
1316
1317 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1318 if (intf->seq_table[i].inuse
1319 && (intf->seq_table[i].recv_msg->user == user)) {
1320 intf->seq_table[i].inuse = 0;
1321 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1322 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1323 }
1324 }
1325 spin_unlock_irqrestore(&intf->seq_lock, flags);
1326
1327 /*
1328 * Remove the user from the command receiver's table. First
1329 * we build a list of everything (not using the standard link,
1330 * since other things may be using it till we do
1331 * synchronize_srcu()) then free everything in that list.
1332 */
1333 mutex_lock(&intf->cmd_rcvrs_mutex);
1334 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1335 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1336 if (rcvr->user == user) {
1337 list_del_rcu(&rcvr->link);
1338 rcvr->next = rcvrs;
1339 rcvrs = rcvr;
1340 }
1341 }
1342 mutex_unlock(&intf->cmd_rcvrs_mutex);
1343 synchronize_rcu();
1344 while (rcvrs) {
1345 rcvr = rcvrs;
1346 rcvrs = rcvr->next;
1347 kfree(rcvr);
1348 }
1349
1350 owner = intf->owner;
1351 kref_put(&intf->refcount, intf_free);
1352 module_put(owner);
1353 }
1354
ipmi_destroy_user(struct ipmi_user *user)1355 int ipmi_destroy_user(struct ipmi_user *user)
1356 {
1357 _ipmi_destroy_user(user);
1358
1359 kref_put(&user->refcount, free_user);
1360
1361 return 0;
1362 }
1363 EXPORT_SYMBOL(ipmi_destroy_user);
1364
ipmi_get_version(struct ipmi_user *user, unsigned char *major, unsigned char *minor)1365 int ipmi_get_version(struct ipmi_user *user,
1366 unsigned char *major,
1367 unsigned char *minor)
1368 {
1369 struct ipmi_device_id id;
1370 int rv, index;
1371
1372 user = acquire_ipmi_user(user, &index);
1373 if (!user)
1374 return -ENODEV;
1375
1376 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1377 if (!rv) {
1378 *major = ipmi_version_major(&id);
1379 *minor = ipmi_version_minor(&id);
1380 }
1381 release_ipmi_user(user, index);
1382
1383 return rv;
1384 }
1385 EXPORT_SYMBOL(ipmi_get_version);
1386
ipmi_set_my_address(struct ipmi_user *user, unsigned int channel, unsigned char address)1387 int ipmi_set_my_address(struct ipmi_user *user,
1388 unsigned int channel,
1389 unsigned char address)
1390 {
1391 int index, rv = 0;
1392
1393 user = acquire_ipmi_user(user, &index);
1394 if (!user)
1395 return -ENODEV;
1396
1397 if (channel >= IPMI_MAX_CHANNELS) {
1398 rv = -EINVAL;
1399 } else {
1400 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1401 user->intf->addrinfo[channel].address = address;
1402 }
1403 release_ipmi_user(user, index);
1404
1405 return rv;
1406 }
1407 EXPORT_SYMBOL(ipmi_set_my_address);
1408
ipmi_get_my_address(struct ipmi_user *user, unsigned int channel, unsigned char *address)1409 int ipmi_get_my_address(struct ipmi_user *user,
1410 unsigned int channel,
1411 unsigned char *address)
1412 {
1413 int index, rv = 0;
1414
1415 user = acquire_ipmi_user(user, &index);
1416 if (!user)
1417 return -ENODEV;
1418
1419 if (channel >= IPMI_MAX_CHANNELS) {
1420 rv = -EINVAL;
1421 } else {
1422 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1423 *address = user->intf->addrinfo[channel].address;
1424 }
1425 release_ipmi_user(user, index);
1426
1427 return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_get_my_address);
1430
ipmi_set_my_LUN(struct ipmi_user *user, unsigned int channel, unsigned char LUN)1431 int ipmi_set_my_LUN(struct ipmi_user *user,
1432 unsigned int channel,
1433 unsigned char LUN)
1434 {
1435 int index, rv = 0;
1436
1437 user = acquire_ipmi_user(user, &index);
1438 if (!user)
1439 return -ENODEV;
1440
1441 if (channel >= IPMI_MAX_CHANNELS) {
1442 rv = -EINVAL;
1443 } else {
1444 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 user->intf->addrinfo[channel].lun = LUN & 0x3;
1446 }
1447 release_ipmi_user(user, index);
1448
1449 return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_set_my_LUN);
1452
ipmi_get_my_LUN(struct ipmi_user *user, unsigned int channel, unsigned char *address)1453 int ipmi_get_my_LUN(struct ipmi_user *user,
1454 unsigned int channel,
1455 unsigned char *address)
1456 {
1457 int index, rv = 0;
1458
1459 user = acquire_ipmi_user(user, &index);
1460 if (!user)
1461 return -ENODEV;
1462
1463 if (channel >= IPMI_MAX_CHANNELS) {
1464 rv = -EINVAL;
1465 } else {
1466 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 *address = user->intf->addrinfo[channel].lun;
1468 }
1469 release_ipmi_user(user, index);
1470
1471 return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_my_LUN);
1474
ipmi_get_maintenance_mode(struct ipmi_user *user)1475 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1476 {
1477 int mode, index;
1478 unsigned long flags;
1479
1480 user = acquire_ipmi_user(user, &index);
1481 if (!user)
1482 return -ENODEV;
1483
1484 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1485 mode = user->intf->maintenance_mode;
1486 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1487 release_ipmi_user(user, index);
1488
1489 return mode;
1490 }
1491 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1492
maintenance_mode_update(struct ipmi_smi *intf)1493 static void maintenance_mode_update(struct ipmi_smi *intf)
1494 {
1495 if (intf->handlers->set_maintenance_mode)
1496 intf->handlers->set_maintenance_mode(
1497 intf->send_info, intf->maintenance_mode_enable);
1498 }
1499
ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)1500 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1501 {
1502 int rv = 0, index;
1503 unsigned long flags;
1504 struct ipmi_smi *intf = user->intf;
1505
1506 user = acquire_ipmi_user(user, &index);
1507 if (!user)
1508 return -ENODEV;
1509
1510 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1511 if (intf->maintenance_mode != mode) {
1512 switch (mode) {
1513 case IPMI_MAINTENANCE_MODE_AUTO:
1514 intf->maintenance_mode_enable
1515 = (intf->auto_maintenance_timeout > 0);
1516 break;
1517
1518 case IPMI_MAINTENANCE_MODE_OFF:
1519 intf->maintenance_mode_enable = false;
1520 break;
1521
1522 case IPMI_MAINTENANCE_MODE_ON:
1523 intf->maintenance_mode_enable = true;
1524 break;
1525
1526 default:
1527 rv = -EINVAL;
1528 goto out_unlock;
1529 }
1530 intf->maintenance_mode = mode;
1531
1532 maintenance_mode_update(intf);
1533 }
1534 out_unlock:
1535 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1536 release_ipmi_user(user, index);
1537
1538 return rv;
1539 }
1540 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1541
ipmi_set_gets_events(struct ipmi_user *user, bool val)1542 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1543 {
1544 unsigned long flags;
1545 struct ipmi_smi *intf = user->intf;
1546 struct ipmi_recv_msg *msg, *msg2;
1547 struct list_head msgs;
1548 int index;
1549
1550 user = acquire_ipmi_user(user, &index);
1551 if (!user)
1552 return -ENODEV;
1553
1554 INIT_LIST_HEAD(&msgs);
1555
1556 spin_lock_irqsave(&intf->events_lock, flags);
1557 if (user->gets_events == val)
1558 goto out;
1559
1560 user->gets_events = val;
1561
1562 if (val) {
1563 if (atomic_inc_return(&intf->event_waiters) == 1)
1564 need_waiter(intf);
1565 } else {
1566 atomic_dec(&intf->event_waiters);
1567 }
1568
1569 if (intf->delivering_events)
1570 /*
1571 * Another thread is delivering events for this, so
1572 * let it handle any new events.
1573 */
1574 goto out;
1575
1576 /* Deliver any queued events. */
1577 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1578 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1579 list_move_tail(&msg->link, &msgs);
1580 intf->waiting_events_count = 0;
1581 if (intf->event_msg_printed) {
1582 dev_warn(intf->si_dev, "Event queue no longer full\n");
1583 intf->event_msg_printed = 0;
1584 }
1585
1586 intf->delivering_events = 1;
1587 spin_unlock_irqrestore(&intf->events_lock, flags);
1588
1589 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1590 msg->user = user;
1591 kref_get(&user->refcount);
1592 deliver_local_response(intf, msg);
1593 }
1594
1595 spin_lock_irqsave(&intf->events_lock, flags);
1596 intf->delivering_events = 0;
1597 }
1598
1599 out:
1600 spin_unlock_irqrestore(&intf->events_lock, flags);
1601 release_ipmi_user(user, index);
1602
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(ipmi_set_gets_events);
1606
find_cmd_rcvr(struct ipmi_smi *intf, unsigned char netfn, unsigned char cmd, unsigned char chan)1607 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1608 unsigned char netfn,
1609 unsigned char cmd,
1610 unsigned char chan)
1611 {
1612 struct cmd_rcvr *rcvr;
1613
1614 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1615 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1616 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1617 && (rcvr->chans & (1 << chan)))
1618 return rcvr;
1619 }
1620 return NULL;
1621 }
1622
is_cmd_rcvr_exclusive(struct ipmi_smi *intf, unsigned char netfn, unsigned char cmd, unsigned int chans)1623 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1624 unsigned char netfn,
1625 unsigned char cmd,
1626 unsigned int chans)
1627 {
1628 struct cmd_rcvr *rcvr;
1629
1630 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1631 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1632 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1633 && (rcvr->chans & chans))
1634 return 0;
1635 }
1636 return 1;
1637 }
1638
ipmi_register_for_cmd(struct ipmi_user *user, unsigned char netfn, unsigned char cmd, unsigned int chans)1639 int ipmi_register_for_cmd(struct ipmi_user *user,
1640 unsigned char netfn,
1641 unsigned char cmd,
1642 unsigned int chans)
1643 {
1644 struct ipmi_smi *intf = user->intf;
1645 struct cmd_rcvr *rcvr;
1646 int rv = 0, index;
1647
1648 user = acquire_ipmi_user(user, &index);
1649 if (!user)
1650 return -ENODEV;
1651
1652 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1653 if (!rcvr) {
1654 rv = -ENOMEM;
1655 goto out_release;
1656 }
1657 rcvr->cmd = cmd;
1658 rcvr->netfn = netfn;
1659 rcvr->chans = chans;
1660 rcvr->user = user;
1661
1662 mutex_lock(&intf->cmd_rcvrs_mutex);
1663 /* Make sure the command/netfn is not already registered. */
1664 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1665 rv = -EBUSY;
1666 goto out_unlock;
1667 }
1668
1669 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1670
1671 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1672
1673 out_unlock:
1674 mutex_unlock(&intf->cmd_rcvrs_mutex);
1675 if (rv)
1676 kfree(rcvr);
1677 out_release:
1678 release_ipmi_user(user, index);
1679
1680 return rv;
1681 }
1682 EXPORT_SYMBOL(ipmi_register_for_cmd);
1683
ipmi_unregister_for_cmd(struct ipmi_user *user, unsigned char netfn, unsigned char cmd, unsigned int chans)1684 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1685 unsigned char netfn,
1686 unsigned char cmd,
1687 unsigned int chans)
1688 {
1689 struct ipmi_smi *intf = user->intf;
1690 struct cmd_rcvr *rcvr;
1691 struct cmd_rcvr *rcvrs = NULL;
1692 int i, rv = -ENOENT, index;
1693
1694 user = acquire_ipmi_user(user, &index);
1695 if (!user)
1696 return -ENODEV;
1697
1698 mutex_lock(&intf->cmd_rcvrs_mutex);
1699 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1700 if (((1 << i) & chans) == 0)
1701 continue;
1702 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1703 if (rcvr == NULL)
1704 continue;
1705 if (rcvr->user == user) {
1706 rv = 0;
1707 rcvr->chans &= ~chans;
1708 if (rcvr->chans == 0) {
1709 list_del_rcu(&rcvr->link);
1710 rcvr->next = rcvrs;
1711 rcvrs = rcvr;
1712 }
1713 }
1714 }
1715 mutex_unlock(&intf->cmd_rcvrs_mutex);
1716 synchronize_rcu();
1717 release_ipmi_user(user, index);
1718 while (rcvrs) {
1719 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1720 rcvr = rcvrs;
1721 rcvrs = rcvr->next;
1722 kfree(rcvr);
1723 }
1724
1725 return rv;
1726 }
1727 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1728
1729 static unsigned char
ipmb_checksum(unsigned char *data, int size)1730 ipmb_checksum(unsigned char *data, int size)
1731 {
1732 unsigned char csum = 0;
1733
1734 for (; size > 0; size--, data++)
1735 csum += *data;
1736
1737 return -csum;
1738 }
1739
format_ipmb_msg(struct ipmi_smi_msg *smi_msg, struct kernel_ipmi_msg *msg, struct ipmi_ipmb_addr *ipmb_addr, long msgid, unsigned char ipmb_seq, int broadcast, unsigned char source_address, unsigned char source_lun)1740 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1741 struct kernel_ipmi_msg *msg,
1742 struct ipmi_ipmb_addr *ipmb_addr,
1743 long msgid,
1744 unsigned char ipmb_seq,
1745 int broadcast,
1746 unsigned char source_address,
1747 unsigned char source_lun)
1748 {
1749 int i = broadcast;
1750
1751 /* Format the IPMB header data. */
1752 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1753 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1754 smi_msg->data[2] = ipmb_addr->channel;
1755 if (broadcast)
1756 smi_msg->data[3] = 0;
1757 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1758 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1759 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1760 smi_msg->data[i+6] = source_address;
1761 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1762 smi_msg->data[i+8] = msg->cmd;
1763
1764 /* Now tack on the data to the message. */
1765 if (msg->data_len > 0)
1766 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1767 smi_msg->data_size = msg->data_len + 9;
1768
1769 /* Now calculate the checksum and tack it on. */
1770 smi_msg->data[i+smi_msg->data_size]
1771 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1772
1773 /*
1774 * Add on the checksum size and the offset from the
1775 * broadcast.
1776 */
1777 smi_msg->data_size += 1 + i;
1778
1779 smi_msg->msgid = msgid;
1780 }
1781
format_lan_msg(struct ipmi_smi_msg *smi_msg, struct kernel_ipmi_msg *msg, struct ipmi_lan_addr *lan_addr, long msgid, unsigned char ipmb_seq, unsigned char source_lun)1782 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1783 struct kernel_ipmi_msg *msg,
1784 struct ipmi_lan_addr *lan_addr,
1785 long msgid,
1786 unsigned char ipmb_seq,
1787 unsigned char source_lun)
1788 {
1789 /* Format the IPMB header data. */
1790 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1791 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1792 smi_msg->data[2] = lan_addr->channel;
1793 smi_msg->data[3] = lan_addr->session_handle;
1794 smi_msg->data[4] = lan_addr->remote_SWID;
1795 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1796 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1797 smi_msg->data[7] = lan_addr->local_SWID;
1798 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1799 smi_msg->data[9] = msg->cmd;
1800
1801 /* Now tack on the data to the message. */
1802 if (msg->data_len > 0)
1803 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1804 smi_msg->data_size = msg->data_len + 10;
1805
1806 /* Now calculate the checksum and tack it on. */
1807 smi_msg->data[smi_msg->data_size]
1808 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1809
1810 /*
1811 * Add on the checksum size and the offset from the
1812 * broadcast.
1813 */
1814 smi_msg->data_size += 1;
1815
1816 smi_msg->msgid = msgid;
1817 }
1818
smi_add_send_msg(struct ipmi_smi *intf, struct ipmi_smi_msg *smi_msg, int priority)1819 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1820 struct ipmi_smi_msg *smi_msg,
1821 int priority)
1822 {
1823 if (intf->curr_msg) {
1824 if (priority > 0)
1825 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1826 else
1827 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1828 smi_msg = NULL;
1829 } else {
1830 intf->curr_msg = smi_msg;
1831 }
1832
1833 return smi_msg;
1834 }
1835
smi_send(struct ipmi_smi *intf, const struct ipmi_smi_handlers *handlers, struct ipmi_smi_msg *smi_msg, int priority)1836 static void smi_send(struct ipmi_smi *intf,
1837 const struct ipmi_smi_handlers *handlers,
1838 struct ipmi_smi_msg *smi_msg, int priority)
1839 {
1840 int run_to_completion = intf->run_to_completion;
1841 unsigned long flags = 0;
1842
1843 if (!run_to_completion)
1844 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1845 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1846
1847 if (!run_to_completion)
1848 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1849
1850 if (smi_msg)
1851 handlers->sender(intf->send_info, smi_msg);
1852 }
1853
is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)1854 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1855 {
1856 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1857 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1858 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1859 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1860 }
1861
i_ipmi_req_sysintf(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, int retries, unsigned int retry_time_ms)1862 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1863 struct ipmi_addr *addr,
1864 long msgid,
1865 struct kernel_ipmi_msg *msg,
1866 struct ipmi_smi_msg *smi_msg,
1867 struct ipmi_recv_msg *recv_msg,
1868 int retries,
1869 unsigned int retry_time_ms)
1870 {
1871 struct ipmi_system_interface_addr *smi_addr;
1872
1873 if (msg->netfn & 1)
1874 /* Responses are not allowed to the SMI. */
1875 return -EINVAL;
1876
1877 smi_addr = (struct ipmi_system_interface_addr *) addr;
1878 if (smi_addr->lun > 3) {
1879 ipmi_inc_stat(intf, sent_invalid_commands);
1880 return -EINVAL;
1881 }
1882
1883 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1884
1885 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1886 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1887 || (msg->cmd == IPMI_GET_MSG_CMD)
1888 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1889 /*
1890 * We don't let the user do these, since we manage
1891 * the sequence numbers.
1892 */
1893 ipmi_inc_stat(intf, sent_invalid_commands);
1894 return -EINVAL;
1895 }
1896
1897 if (is_maintenance_mode_cmd(msg)) {
1898 unsigned long flags;
1899
1900 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1901 intf->auto_maintenance_timeout
1902 = maintenance_mode_timeout_ms;
1903 if (!intf->maintenance_mode
1904 && !intf->maintenance_mode_enable) {
1905 intf->maintenance_mode_enable = true;
1906 maintenance_mode_update(intf);
1907 }
1908 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1909 flags);
1910 }
1911
1912 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1913 ipmi_inc_stat(intf, sent_invalid_commands);
1914 return -EMSGSIZE;
1915 }
1916
1917 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1918 smi_msg->data[1] = msg->cmd;
1919 smi_msg->msgid = msgid;
1920 smi_msg->user_data = recv_msg;
1921 if (msg->data_len > 0)
1922 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1923 smi_msg->data_size = msg->data_len + 2;
1924 ipmi_inc_stat(intf, sent_local_commands);
1925
1926 return 0;
1927 }
1928
i_ipmi_req_ipmb(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, unsigned char source_address, unsigned char source_lun, int retries, unsigned int retry_time_ms)1929 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1930 struct ipmi_addr *addr,
1931 long msgid,
1932 struct kernel_ipmi_msg *msg,
1933 struct ipmi_smi_msg *smi_msg,
1934 struct ipmi_recv_msg *recv_msg,
1935 unsigned char source_address,
1936 unsigned char source_lun,
1937 int retries,
1938 unsigned int retry_time_ms)
1939 {
1940 struct ipmi_ipmb_addr *ipmb_addr;
1941 unsigned char ipmb_seq;
1942 long seqid;
1943 int broadcast = 0;
1944 struct ipmi_channel *chans;
1945 int rv = 0;
1946
1947 if (addr->channel >= IPMI_MAX_CHANNELS) {
1948 ipmi_inc_stat(intf, sent_invalid_commands);
1949 return -EINVAL;
1950 }
1951
1952 chans = READ_ONCE(intf->channel_list)->c;
1953
1954 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1955 ipmi_inc_stat(intf, sent_invalid_commands);
1956 return -EINVAL;
1957 }
1958
1959 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1960 /*
1961 * Broadcasts add a zero at the beginning of the
1962 * message, but otherwise is the same as an IPMB
1963 * address.
1964 */
1965 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1966 broadcast = 1;
1967 retries = 0; /* Don't retry broadcasts. */
1968 }
1969
1970 /*
1971 * 9 for the header and 1 for the checksum, plus
1972 * possibly one for the broadcast.
1973 */
1974 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1975 ipmi_inc_stat(intf, sent_invalid_commands);
1976 return -EMSGSIZE;
1977 }
1978
1979 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1980 if (ipmb_addr->lun > 3) {
1981 ipmi_inc_stat(intf, sent_invalid_commands);
1982 return -EINVAL;
1983 }
1984
1985 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1986
1987 if (recv_msg->msg.netfn & 0x1) {
1988 /*
1989 * It's a response, so use the user's sequence
1990 * from msgid.
1991 */
1992 ipmi_inc_stat(intf, sent_ipmb_responses);
1993 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1994 msgid, broadcast,
1995 source_address, source_lun);
1996
1997 /*
1998 * Save the receive message so we can use it
1999 * to deliver the response.
2000 */
2001 smi_msg->user_data = recv_msg;
2002 } else {
2003 /* It's a command, so get a sequence for it. */
2004 unsigned long flags;
2005
2006 spin_lock_irqsave(&intf->seq_lock, flags);
2007
2008 if (is_maintenance_mode_cmd(msg))
2009 intf->ipmb_maintenance_mode_timeout =
2010 maintenance_mode_timeout_ms;
2011
2012 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2013 /* Different default in maintenance mode */
2014 retry_time_ms = default_maintenance_retry_ms;
2015
2016 /*
2017 * Create a sequence number with a 1 second
2018 * timeout and 4 retries.
2019 */
2020 rv = intf_next_seq(intf,
2021 recv_msg,
2022 retry_time_ms,
2023 retries,
2024 broadcast,
2025 &ipmb_seq,
2026 &seqid);
2027 if (rv)
2028 /*
2029 * We have used up all the sequence numbers,
2030 * probably, so abort.
2031 */
2032 goto out_err;
2033
2034 ipmi_inc_stat(intf, sent_ipmb_commands);
2035
2036 /*
2037 * Store the sequence number in the message,
2038 * so that when the send message response
2039 * comes back we can start the timer.
2040 */
2041 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2042 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2043 ipmb_seq, broadcast,
2044 source_address, source_lun);
2045
2046 /*
2047 * Copy the message into the recv message data, so we
2048 * can retransmit it later if necessary.
2049 */
2050 memcpy(recv_msg->msg_data, smi_msg->data,
2051 smi_msg->data_size);
2052 recv_msg->msg.data = recv_msg->msg_data;
2053 recv_msg->msg.data_len = smi_msg->data_size;
2054
2055 /*
2056 * We don't unlock until here, because we need
2057 * to copy the completed message into the
2058 * recv_msg before we release the lock.
2059 * Otherwise, race conditions may bite us. I
2060 * know that's pretty paranoid, but I prefer
2061 * to be correct.
2062 */
2063 out_err:
2064 spin_unlock_irqrestore(&intf->seq_lock, flags);
2065 }
2066
2067 return rv;
2068 }
2069
i_ipmi_req_lan(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, unsigned char source_lun, int retries, unsigned int retry_time_ms)2070 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2071 struct ipmi_addr *addr,
2072 long msgid,
2073 struct kernel_ipmi_msg *msg,
2074 struct ipmi_smi_msg *smi_msg,
2075 struct ipmi_recv_msg *recv_msg,
2076 unsigned char source_lun,
2077 int retries,
2078 unsigned int retry_time_ms)
2079 {
2080 struct ipmi_lan_addr *lan_addr;
2081 unsigned char ipmb_seq;
2082 long seqid;
2083 struct ipmi_channel *chans;
2084 int rv = 0;
2085
2086 if (addr->channel >= IPMI_MAX_CHANNELS) {
2087 ipmi_inc_stat(intf, sent_invalid_commands);
2088 return -EINVAL;
2089 }
2090
2091 chans = READ_ONCE(intf->channel_list)->c;
2092
2093 if ((chans[addr->channel].medium
2094 != IPMI_CHANNEL_MEDIUM_8023LAN)
2095 && (chans[addr->channel].medium
2096 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2097 ipmi_inc_stat(intf, sent_invalid_commands);
2098 return -EINVAL;
2099 }
2100
2101 /* 11 for the header and 1 for the checksum. */
2102 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2103 ipmi_inc_stat(intf, sent_invalid_commands);
2104 return -EMSGSIZE;
2105 }
2106
2107 lan_addr = (struct ipmi_lan_addr *) addr;
2108 if (lan_addr->lun > 3) {
2109 ipmi_inc_stat(intf, sent_invalid_commands);
2110 return -EINVAL;
2111 }
2112
2113 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2114
2115 if (recv_msg->msg.netfn & 0x1) {
2116 /*
2117 * It's a response, so use the user's sequence
2118 * from msgid.
2119 */
2120 ipmi_inc_stat(intf, sent_lan_responses);
2121 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2122 msgid, source_lun);
2123
2124 /*
2125 * Save the receive message so we can use it
2126 * to deliver the response.
2127 */
2128 smi_msg->user_data = recv_msg;
2129 } else {
2130 /* It's a command, so get a sequence for it. */
2131 unsigned long flags;
2132
2133 spin_lock_irqsave(&intf->seq_lock, flags);
2134
2135 /*
2136 * Create a sequence number with a 1 second
2137 * timeout and 4 retries.
2138 */
2139 rv = intf_next_seq(intf,
2140 recv_msg,
2141 retry_time_ms,
2142 retries,
2143 0,
2144 &ipmb_seq,
2145 &seqid);
2146 if (rv)
2147 /*
2148 * We have used up all the sequence numbers,
2149 * probably, so abort.
2150 */
2151 goto out_err;
2152
2153 ipmi_inc_stat(intf, sent_lan_commands);
2154
2155 /*
2156 * Store the sequence number in the message,
2157 * so that when the send message response
2158 * comes back we can start the timer.
2159 */
2160 format_lan_msg(smi_msg, msg, lan_addr,
2161 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2162 ipmb_seq, source_lun);
2163
2164 /*
2165 * Copy the message into the recv message data, so we
2166 * can retransmit it later if necessary.
2167 */
2168 memcpy(recv_msg->msg_data, smi_msg->data,
2169 smi_msg->data_size);
2170 recv_msg->msg.data = recv_msg->msg_data;
2171 recv_msg->msg.data_len = smi_msg->data_size;
2172
2173 /*
2174 * We don't unlock until here, because we need
2175 * to copy the completed message into the
2176 * recv_msg before we release the lock.
2177 * Otherwise, race conditions may bite us. I
2178 * know that's pretty paranoid, but I prefer
2179 * to be correct.
2180 */
2181 out_err:
2182 spin_unlock_irqrestore(&intf->seq_lock, flags);
2183 }
2184
2185 return rv;
2186 }
2187
2188 /*
2189 * Separate from ipmi_request so that the user does not have to be
2190 * supplied in certain circumstances (mainly at panic time). If
2191 * messages are supplied, they will be freed, even if an error
2192 * occurs.
2193 */
i_ipmi_request(struct ipmi_user *user, struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, void *supplied_smi, struct ipmi_recv_msg *supplied_recv, int priority, unsigned char source_address, unsigned char source_lun, int retries, unsigned int retry_time_ms)2194 static int i_ipmi_request(struct ipmi_user *user,
2195 struct ipmi_smi *intf,
2196 struct ipmi_addr *addr,
2197 long msgid,
2198 struct kernel_ipmi_msg *msg,
2199 void *user_msg_data,
2200 void *supplied_smi,
2201 struct ipmi_recv_msg *supplied_recv,
2202 int priority,
2203 unsigned char source_address,
2204 unsigned char source_lun,
2205 int retries,
2206 unsigned int retry_time_ms)
2207 {
2208 struct ipmi_smi_msg *smi_msg;
2209 struct ipmi_recv_msg *recv_msg;
2210 int rv = 0;
2211
2212 if (supplied_recv)
2213 recv_msg = supplied_recv;
2214 else {
2215 recv_msg = ipmi_alloc_recv_msg();
2216 if (recv_msg == NULL) {
2217 rv = -ENOMEM;
2218 goto out;
2219 }
2220 }
2221 recv_msg->user_msg_data = user_msg_data;
2222
2223 if (supplied_smi)
2224 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2225 else {
2226 smi_msg = ipmi_alloc_smi_msg();
2227 if (smi_msg == NULL) {
2228 if (!supplied_recv)
2229 ipmi_free_recv_msg(recv_msg);
2230 rv = -ENOMEM;
2231 goto out;
2232 }
2233 }
2234
2235 rcu_read_lock();
2236 if (intf->in_shutdown) {
2237 rv = -ENODEV;
2238 goto out_err;
2239 }
2240
2241 recv_msg->user = user;
2242 if (user)
2243 /* The put happens when the message is freed. */
2244 kref_get(&user->refcount);
2245 recv_msg->msgid = msgid;
2246 /*
2247 * Store the message to send in the receive message so timeout
2248 * responses can get the proper response data.
2249 */
2250 recv_msg->msg = *msg;
2251
2252 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2253 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2254 recv_msg, retries, retry_time_ms);
2255 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2256 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2257 source_address, source_lun,
2258 retries, retry_time_ms);
2259 } else if (is_lan_addr(addr)) {
2260 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2261 source_lun, retries, retry_time_ms);
2262 } else {
2263 /* Unknown address type. */
2264 ipmi_inc_stat(intf, sent_invalid_commands);
2265 rv = -EINVAL;
2266 }
2267
2268 if (rv) {
2269 out_err:
2270 ipmi_free_smi_msg(smi_msg);
2271 ipmi_free_recv_msg(recv_msg);
2272 } else {
2273 pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2274
2275 smi_send(intf, intf->handlers, smi_msg, priority);
2276 }
2277 rcu_read_unlock();
2278
2279 out:
2280 return rv;
2281 }
2282
check_addr(struct ipmi_smi *intf, struct ipmi_addr *addr, unsigned char *saddr, unsigned char *lun)2283 static int check_addr(struct ipmi_smi *intf,
2284 struct ipmi_addr *addr,
2285 unsigned char *saddr,
2286 unsigned char *lun)
2287 {
2288 if (addr->channel >= IPMI_MAX_CHANNELS)
2289 return -EINVAL;
2290 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2291 *lun = intf->addrinfo[addr->channel].lun;
2292 *saddr = intf->addrinfo[addr->channel].address;
2293 return 0;
2294 }
2295
ipmi_request_settime(struct ipmi_user *user, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, int priority, int retries, unsigned int retry_time_ms)2296 int ipmi_request_settime(struct ipmi_user *user,
2297 struct ipmi_addr *addr,
2298 long msgid,
2299 struct kernel_ipmi_msg *msg,
2300 void *user_msg_data,
2301 int priority,
2302 int retries,
2303 unsigned int retry_time_ms)
2304 {
2305 unsigned char saddr = 0, lun = 0;
2306 int rv, index;
2307
2308 if (!user)
2309 return -EINVAL;
2310
2311 user = acquire_ipmi_user(user, &index);
2312 if (!user)
2313 return -ENODEV;
2314
2315 rv = check_addr(user->intf, addr, &saddr, &lun);
2316 if (!rv)
2317 rv = i_ipmi_request(user,
2318 user->intf,
2319 addr,
2320 msgid,
2321 msg,
2322 user_msg_data,
2323 NULL, NULL,
2324 priority,
2325 saddr,
2326 lun,
2327 retries,
2328 retry_time_ms);
2329
2330 release_ipmi_user(user, index);
2331 return rv;
2332 }
2333 EXPORT_SYMBOL(ipmi_request_settime);
2334
ipmi_request_supply_msgs(struct ipmi_user *user, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, void *supplied_smi, struct ipmi_recv_msg *supplied_recv, int priority)2335 int ipmi_request_supply_msgs(struct ipmi_user *user,
2336 struct ipmi_addr *addr,
2337 long msgid,
2338 struct kernel_ipmi_msg *msg,
2339 void *user_msg_data,
2340 void *supplied_smi,
2341 struct ipmi_recv_msg *supplied_recv,
2342 int priority)
2343 {
2344 unsigned char saddr = 0, lun = 0;
2345 int rv, index;
2346
2347 if (!user)
2348 return -EINVAL;
2349
2350 user = acquire_ipmi_user(user, &index);
2351 if (!user)
2352 return -ENODEV;
2353
2354 rv = check_addr(user->intf, addr, &saddr, &lun);
2355 if (!rv)
2356 rv = i_ipmi_request(user,
2357 user->intf,
2358 addr,
2359 msgid,
2360 msg,
2361 user_msg_data,
2362 supplied_smi,
2363 supplied_recv,
2364 priority,
2365 saddr,
2366 lun,
2367 -1, 0);
2368
2369 release_ipmi_user(user, index);
2370 return rv;
2371 }
2372 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2373
bmc_device_id_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)2374 static void bmc_device_id_handler(struct ipmi_smi *intf,
2375 struct ipmi_recv_msg *msg)
2376 {
2377 int rv;
2378
2379 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2380 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2381 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2382 dev_warn(intf->si_dev,
2383 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2384 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2385 return;
2386 }
2387
2388 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2389 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2390 if (rv) {
2391 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2392 /* record completion code when error */
2393 intf->bmc->cc = msg->msg.data[0];
2394 intf->bmc->dyn_id_set = 0;
2395 } else {
2396 /*
2397 * Make sure the id data is available before setting
2398 * dyn_id_set.
2399 */
2400 smp_wmb();
2401 intf->bmc->dyn_id_set = 1;
2402 }
2403
2404 wake_up(&intf->waitq);
2405 }
2406
2407 static int
send_get_device_id_cmd(struct ipmi_smi *intf)2408 send_get_device_id_cmd(struct ipmi_smi *intf)
2409 {
2410 struct ipmi_system_interface_addr si;
2411 struct kernel_ipmi_msg msg;
2412
2413 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2414 si.channel = IPMI_BMC_CHANNEL;
2415 si.lun = 0;
2416
2417 msg.netfn = IPMI_NETFN_APP_REQUEST;
2418 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2419 msg.data = NULL;
2420 msg.data_len = 0;
2421
2422 return i_ipmi_request(NULL,
2423 intf,
2424 (struct ipmi_addr *) &si,
2425 0,
2426 &msg,
2427 intf,
2428 NULL,
2429 NULL,
2430 0,
2431 intf->addrinfo[0].address,
2432 intf->addrinfo[0].lun,
2433 -1, 0);
2434 }
2435
__get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)2436 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2437 {
2438 int rv;
2439 unsigned int retry_count = 0;
2440
2441 intf->null_user_handler = bmc_device_id_handler;
2442
2443 retry:
2444 bmc->cc = 0;
2445 bmc->dyn_id_set = 2;
2446
2447 rv = send_get_device_id_cmd(intf);
2448 if (rv)
2449 goto out_reset_handler;
2450
2451 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2452
2453 if (!bmc->dyn_id_set) {
2454 if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2455 || bmc->cc == IPMI_DEVICE_IN_INIT_ERR
2456 || bmc->cc == IPMI_NOT_IN_MY_STATE_ERR)
2457 && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2458 msleep(500);
2459 dev_warn(intf->si_dev,
2460 "BMC returned 0x%2.2x, retry get bmc device id\n",
2461 bmc->cc);
2462 goto retry;
2463 }
2464
2465 rv = -EIO; /* Something went wrong in the fetch. */
2466 }
2467
2468 /* dyn_id_set makes the id data available. */
2469 smp_rmb();
2470
2471 out_reset_handler:
2472 intf->null_user_handler = NULL;
2473
2474 return rv;
2475 }
2476
2477 /*
2478 * Fetch the device id for the bmc/interface. You must pass in either
2479 * bmc or intf, this code will get the other one. If the data has
2480 * been recently fetched, this will just use the cached data. Otherwise
2481 * it will run a new fetch.
2482 *
2483 * Except for the first time this is called (in ipmi_add_smi()),
2484 * this will always return good data;
2485 */
__bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, struct ipmi_device_id *id, bool *guid_set, guid_t *guid, int intf_num)2486 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2487 struct ipmi_device_id *id,
2488 bool *guid_set, guid_t *guid, int intf_num)
2489 {
2490 int rv = 0;
2491 int prev_dyn_id_set, prev_guid_set;
2492 bool intf_set = intf != NULL;
2493
2494 if (!intf) {
2495 mutex_lock(&bmc->dyn_mutex);
2496 retry_bmc_lock:
2497 if (list_empty(&bmc->intfs)) {
2498 mutex_unlock(&bmc->dyn_mutex);
2499 return -ENOENT;
2500 }
2501 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2502 bmc_link);
2503 kref_get(&intf->refcount);
2504 mutex_unlock(&bmc->dyn_mutex);
2505 mutex_lock(&intf->bmc_reg_mutex);
2506 mutex_lock(&bmc->dyn_mutex);
2507 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2508 bmc_link)) {
2509 mutex_unlock(&intf->bmc_reg_mutex);
2510 kref_put(&intf->refcount, intf_free);
2511 goto retry_bmc_lock;
2512 }
2513 } else {
2514 mutex_lock(&intf->bmc_reg_mutex);
2515 bmc = intf->bmc;
2516 mutex_lock(&bmc->dyn_mutex);
2517 kref_get(&intf->refcount);
2518 }
2519
2520 /* If we have a valid and current ID, just return that. */
2521 if (intf->in_bmc_register ||
2522 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2523 goto out_noprocessing;
2524
2525 prev_guid_set = bmc->dyn_guid_set;
2526 __get_guid(intf);
2527
2528 prev_dyn_id_set = bmc->dyn_id_set;
2529 rv = __get_device_id(intf, bmc);
2530 if (rv)
2531 goto out;
2532
2533 /*
2534 * The guid, device id, manufacturer id, and product id should
2535 * not change on a BMC. If it does we have to do some dancing.
2536 */
2537 if (!intf->bmc_registered
2538 || (!prev_guid_set && bmc->dyn_guid_set)
2539 || (!prev_dyn_id_set && bmc->dyn_id_set)
2540 || (prev_guid_set && bmc->dyn_guid_set
2541 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2542 || bmc->id.device_id != bmc->fetch_id.device_id
2543 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2544 || bmc->id.product_id != bmc->fetch_id.product_id) {
2545 struct ipmi_device_id id = bmc->fetch_id;
2546 int guid_set = bmc->dyn_guid_set;
2547 guid_t guid;
2548
2549 guid = bmc->fetch_guid;
2550 mutex_unlock(&bmc->dyn_mutex);
2551
2552 __ipmi_bmc_unregister(intf);
2553 /* Fill in the temporary BMC for good measure. */
2554 intf->bmc->id = id;
2555 intf->bmc->dyn_guid_set = guid_set;
2556 intf->bmc->guid = guid;
2557 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2558 need_waiter(intf); /* Retry later on an error. */
2559 else
2560 __scan_channels(intf, &id);
2561
2562
2563 if (!intf_set) {
2564 /*
2565 * We weren't given the interface on the
2566 * command line, so restart the operation on
2567 * the next interface for the BMC.
2568 */
2569 mutex_unlock(&intf->bmc_reg_mutex);
2570 mutex_lock(&bmc->dyn_mutex);
2571 goto retry_bmc_lock;
2572 }
2573
2574 /* We have a new BMC, set it up. */
2575 bmc = intf->bmc;
2576 mutex_lock(&bmc->dyn_mutex);
2577 goto out_noprocessing;
2578 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2579 /* Version info changes, scan the channels again. */
2580 __scan_channels(intf, &bmc->fetch_id);
2581
2582 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2583
2584 out:
2585 if (rv && prev_dyn_id_set) {
2586 rv = 0; /* Ignore failures if we have previous data. */
2587 bmc->dyn_id_set = prev_dyn_id_set;
2588 }
2589 if (!rv) {
2590 bmc->id = bmc->fetch_id;
2591 if (bmc->dyn_guid_set)
2592 bmc->guid = bmc->fetch_guid;
2593 else if (prev_guid_set)
2594 /*
2595 * The guid used to be valid and it failed to fetch,
2596 * just use the cached value.
2597 */
2598 bmc->dyn_guid_set = prev_guid_set;
2599 }
2600 out_noprocessing:
2601 if (!rv) {
2602 if (id)
2603 *id = bmc->id;
2604
2605 if (guid_set)
2606 *guid_set = bmc->dyn_guid_set;
2607
2608 if (guid && bmc->dyn_guid_set)
2609 *guid = bmc->guid;
2610 }
2611
2612 mutex_unlock(&bmc->dyn_mutex);
2613 mutex_unlock(&intf->bmc_reg_mutex);
2614
2615 kref_put(&intf->refcount, intf_free);
2616 return rv;
2617 }
2618
bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, struct ipmi_device_id *id, bool *guid_set, guid_t *guid)2619 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2620 struct ipmi_device_id *id,
2621 bool *guid_set, guid_t *guid)
2622 {
2623 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2624 }
2625
device_id_show(struct device *dev, struct device_attribute *attr, char *buf)2626 static ssize_t device_id_show(struct device *dev,
2627 struct device_attribute *attr,
2628 char *buf)
2629 {
2630 struct bmc_device *bmc = to_bmc_device(dev);
2631 struct ipmi_device_id id;
2632 int rv;
2633
2634 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2635 if (rv)
2636 return rv;
2637
2638 return snprintf(buf, 10, "%u\n", id.device_id);
2639 }
2640 static DEVICE_ATTR_RO(device_id);
2641
provides_device_sdrs_show(struct device *dev, struct device_attribute *attr, char *buf)2642 static ssize_t provides_device_sdrs_show(struct device *dev,
2643 struct device_attribute *attr,
2644 char *buf)
2645 {
2646 struct bmc_device *bmc = to_bmc_device(dev);
2647 struct ipmi_device_id id;
2648 int rv;
2649
2650 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2651 if (rv)
2652 return rv;
2653
2654 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2655 }
2656 static DEVICE_ATTR_RO(provides_device_sdrs);
2657
revision_show(struct device *dev, struct device_attribute *attr, char *buf)2658 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2659 char *buf)
2660 {
2661 struct bmc_device *bmc = to_bmc_device(dev);
2662 struct ipmi_device_id id;
2663 int rv;
2664
2665 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2666 if (rv)
2667 return rv;
2668
2669 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2670 }
2671 static DEVICE_ATTR_RO(revision);
2672
firmware_revision_show(struct device *dev, struct device_attribute *attr, char *buf)2673 static ssize_t firmware_revision_show(struct device *dev,
2674 struct device_attribute *attr,
2675 char *buf)
2676 {
2677 struct bmc_device *bmc = to_bmc_device(dev);
2678 struct ipmi_device_id id;
2679 int rv;
2680
2681 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2682 if (rv)
2683 return rv;
2684
2685 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2686 id.firmware_revision_2);
2687 }
2688 static DEVICE_ATTR_RO(firmware_revision);
2689
ipmi_version_show(struct device *dev, struct device_attribute *attr, char *buf)2690 static ssize_t ipmi_version_show(struct device *dev,
2691 struct device_attribute *attr,
2692 char *buf)
2693 {
2694 struct bmc_device *bmc = to_bmc_device(dev);
2695 struct ipmi_device_id id;
2696 int rv;
2697
2698 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2699 if (rv)
2700 return rv;
2701
2702 return snprintf(buf, 20, "%u.%u\n",
2703 ipmi_version_major(&id),
2704 ipmi_version_minor(&id));
2705 }
2706 static DEVICE_ATTR_RO(ipmi_version);
2707
add_dev_support_show(struct device *dev, struct device_attribute *attr, char *buf)2708 static ssize_t add_dev_support_show(struct device *dev,
2709 struct device_attribute *attr,
2710 char *buf)
2711 {
2712 struct bmc_device *bmc = to_bmc_device(dev);
2713 struct ipmi_device_id id;
2714 int rv;
2715
2716 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2717 if (rv)
2718 return rv;
2719
2720 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2721 }
2722 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2723 NULL);
2724
manufacturer_id_show(struct device *dev, struct device_attribute *attr, char *buf)2725 static ssize_t manufacturer_id_show(struct device *dev,
2726 struct device_attribute *attr,
2727 char *buf)
2728 {
2729 struct bmc_device *bmc = to_bmc_device(dev);
2730 struct ipmi_device_id id;
2731 int rv;
2732
2733 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2734 if (rv)
2735 return rv;
2736
2737 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2738 }
2739 static DEVICE_ATTR_RO(manufacturer_id);
2740
product_id_show(struct device *dev, struct device_attribute *attr, char *buf)2741 static ssize_t product_id_show(struct device *dev,
2742 struct device_attribute *attr,
2743 char *buf)
2744 {
2745 struct bmc_device *bmc = to_bmc_device(dev);
2746 struct ipmi_device_id id;
2747 int rv;
2748
2749 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2750 if (rv)
2751 return rv;
2752
2753 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2754 }
2755 static DEVICE_ATTR_RO(product_id);
2756
aux_firmware_rev_show(struct device *dev, struct device_attribute *attr, char *buf)2757 static ssize_t aux_firmware_rev_show(struct device *dev,
2758 struct device_attribute *attr,
2759 char *buf)
2760 {
2761 struct bmc_device *bmc = to_bmc_device(dev);
2762 struct ipmi_device_id id;
2763 int rv;
2764
2765 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2766 if (rv)
2767 return rv;
2768
2769 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2770 id.aux_firmware_revision[3],
2771 id.aux_firmware_revision[2],
2772 id.aux_firmware_revision[1],
2773 id.aux_firmware_revision[0]);
2774 }
2775 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2776
guid_show(struct device *dev, struct device_attribute *attr, char *buf)2777 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2778 char *buf)
2779 {
2780 struct bmc_device *bmc = to_bmc_device(dev);
2781 bool guid_set;
2782 guid_t guid;
2783 int rv;
2784
2785 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2786 if (rv)
2787 return rv;
2788 if (!guid_set)
2789 return -ENOENT;
2790
2791 return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2792 }
2793 static DEVICE_ATTR_RO(guid);
2794
2795 static struct attribute *bmc_dev_attrs[] = {
2796 &dev_attr_device_id.attr,
2797 &dev_attr_provides_device_sdrs.attr,
2798 &dev_attr_revision.attr,
2799 &dev_attr_firmware_revision.attr,
2800 &dev_attr_ipmi_version.attr,
2801 &dev_attr_additional_device_support.attr,
2802 &dev_attr_manufacturer_id.attr,
2803 &dev_attr_product_id.attr,
2804 &dev_attr_aux_firmware_revision.attr,
2805 &dev_attr_guid.attr,
2806 NULL
2807 };
2808
bmc_dev_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)2809 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2810 struct attribute *attr, int idx)
2811 {
2812 struct device *dev = kobj_to_dev(kobj);
2813 struct bmc_device *bmc = to_bmc_device(dev);
2814 umode_t mode = attr->mode;
2815 int rv;
2816
2817 if (attr == &dev_attr_aux_firmware_revision.attr) {
2818 struct ipmi_device_id id;
2819
2820 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2821 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2822 }
2823 if (attr == &dev_attr_guid.attr) {
2824 bool guid_set;
2825
2826 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2827 return (!rv && guid_set) ? mode : 0;
2828 }
2829 return mode;
2830 }
2831
2832 static const struct attribute_group bmc_dev_attr_group = {
2833 .attrs = bmc_dev_attrs,
2834 .is_visible = bmc_dev_attr_is_visible,
2835 };
2836
2837 static const struct attribute_group *bmc_dev_attr_groups[] = {
2838 &bmc_dev_attr_group,
2839 NULL
2840 };
2841
2842 static const struct device_type bmc_device_type = {
2843 .groups = bmc_dev_attr_groups,
2844 };
2845
__find_bmc_guid(struct device *dev, const void *data)2846 static int __find_bmc_guid(struct device *dev, const void *data)
2847 {
2848 const guid_t *guid = data;
2849 struct bmc_device *bmc;
2850 int rv;
2851
2852 if (dev->type != &bmc_device_type)
2853 return 0;
2854
2855 bmc = to_bmc_device(dev);
2856 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2857 if (rv)
2858 rv = kref_get_unless_zero(&bmc->usecount);
2859 return rv;
2860 }
2861
2862 /*
2863 * Returns with the bmc's usecount incremented, if it is non-NULL.
2864 */
ipmi_find_bmc_guid(struct device_driver *drv, guid_t *guid)2865 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2866 guid_t *guid)
2867 {
2868 struct device *dev;
2869 struct bmc_device *bmc = NULL;
2870
2871 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2872 if (dev) {
2873 bmc = to_bmc_device(dev);
2874 put_device(dev);
2875 }
2876 return bmc;
2877 }
2878
2879 struct prod_dev_id {
2880 unsigned int product_id;
2881 unsigned char device_id;
2882 };
2883
__find_bmc_prod_dev_id(struct device *dev, const void *data)2884 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2885 {
2886 const struct prod_dev_id *cid = data;
2887 struct bmc_device *bmc;
2888 int rv;
2889
2890 if (dev->type != &bmc_device_type)
2891 return 0;
2892
2893 bmc = to_bmc_device(dev);
2894 rv = (bmc->id.product_id == cid->product_id
2895 && bmc->id.device_id == cid->device_id);
2896 if (rv)
2897 rv = kref_get_unless_zero(&bmc->usecount);
2898 return rv;
2899 }
2900
2901 /*
2902 * Returns with the bmc's usecount incremented, if it is non-NULL.
2903 */
ipmi_find_bmc_prod_dev_id( struct device_driver *drv, unsigned int product_id, unsigned char device_id)2904 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2905 struct device_driver *drv,
2906 unsigned int product_id, unsigned char device_id)
2907 {
2908 struct prod_dev_id id = {
2909 .product_id = product_id,
2910 .device_id = device_id,
2911 };
2912 struct device *dev;
2913 struct bmc_device *bmc = NULL;
2914
2915 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2916 if (dev) {
2917 bmc = to_bmc_device(dev);
2918 put_device(dev);
2919 }
2920 return bmc;
2921 }
2922
2923 static DEFINE_IDA(ipmi_bmc_ida);
2924
2925 static void
release_bmc_device(struct device *dev)2926 release_bmc_device(struct device *dev)
2927 {
2928 kfree(to_bmc_device(dev));
2929 }
2930
cleanup_bmc_work(struct work_struct *work)2931 static void cleanup_bmc_work(struct work_struct *work)
2932 {
2933 struct bmc_device *bmc = container_of(work, struct bmc_device,
2934 remove_work);
2935 int id = bmc->pdev.id; /* Unregister overwrites id */
2936
2937 platform_device_unregister(&bmc->pdev);
2938 ida_simple_remove(&ipmi_bmc_ida, id);
2939 }
2940
2941 static void
cleanup_bmc_device(struct kref *ref)2942 cleanup_bmc_device(struct kref *ref)
2943 {
2944 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2945
2946 /*
2947 * Remove the platform device in a work queue to avoid issues
2948 * with removing the device attributes while reading a device
2949 * attribute.
2950 */
2951 queue_work(remove_work_wq, &bmc->remove_work);
2952 }
2953
2954 /*
2955 * Must be called with intf->bmc_reg_mutex held.
2956 */
__ipmi_bmc_unregister(struct ipmi_smi *intf)2957 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2958 {
2959 struct bmc_device *bmc = intf->bmc;
2960
2961 if (!intf->bmc_registered)
2962 return;
2963
2964 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2965 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2966 kfree(intf->my_dev_name);
2967 intf->my_dev_name = NULL;
2968
2969 mutex_lock(&bmc->dyn_mutex);
2970 list_del(&intf->bmc_link);
2971 mutex_unlock(&bmc->dyn_mutex);
2972 intf->bmc = &intf->tmp_bmc;
2973 kref_put(&bmc->usecount, cleanup_bmc_device);
2974 intf->bmc_registered = false;
2975 }
2976
ipmi_bmc_unregister(struct ipmi_smi *intf)2977 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2978 {
2979 mutex_lock(&intf->bmc_reg_mutex);
2980 __ipmi_bmc_unregister(intf);
2981 mutex_unlock(&intf->bmc_reg_mutex);
2982 }
2983
2984 /*
2985 * Must be called with intf->bmc_reg_mutex held.
2986 */
__ipmi_bmc_register(struct ipmi_smi *intf, struct ipmi_device_id *id, bool guid_set, guid_t *guid, int intf_num)2987 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2988 struct ipmi_device_id *id,
2989 bool guid_set, guid_t *guid, int intf_num)
2990 {
2991 int rv;
2992 struct bmc_device *bmc;
2993 struct bmc_device *old_bmc;
2994
2995 /*
2996 * platform_device_register() can cause bmc_reg_mutex to
2997 * be claimed because of the is_visible functions of
2998 * the attributes. Eliminate possible recursion and
2999 * release the lock.
3000 */
3001 intf->in_bmc_register = true;
3002 mutex_unlock(&intf->bmc_reg_mutex);
3003
3004 /*
3005 * Try to find if there is an bmc_device struct
3006 * representing the interfaced BMC already
3007 */
3008 mutex_lock(&ipmidriver_mutex);
3009 if (guid_set)
3010 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3011 else
3012 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3013 id->product_id,
3014 id->device_id);
3015
3016 /*
3017 * If there is already an bmc_device, free the new one,
3018 * otherwise register the new BMC device
3019 */
3020 if (old_bmc) {
3021 bmc = old_bmc;
3022 /*
3023 * Note: old_bmc already has usecount incremented by
3024 * the BMC find functions.
3025 */
3026 intf->bmc = old_bmc;
3027 mutex_lock(&bmc->dyn_mutex);
3028 list_add_tail(&intf->bmc_link, &bmc->intfs);
3029 mutex_unlock(&bmc->dyn_mutex);
3030
3031 dev_info(intf->si_dev,
3032 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3033 bmc->id.manufacturer_id,
3034 bmc->id.product_id,
3035 bmc->id.device_id);
3036 } else {
3037 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3038 if (!bmc) {
3039 rv = -ENOMEM;
3040 goto out;
3041 }
3042 INIT_LIST_HEAD(&bmc->intfs);
3043 mutex_init(&bmc->dyn_mutex);
3044 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3045
3046 bmc->id = *id;
3047 bmc->dyn_id_set = 1;
3048 bmc->dyn_guid_set = guid_set;
3049 bmc->guid = *guid;
3050 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3051
3052 bmc->pdev.name = "ipmi_bmc";
3053
3054 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3055 if (rv < 0) {
3056 kfree(bmc);
3057 goto out;
3058 }
3059
3060 bmc->pdev.dev.driver = &ipmidriver.driver;
3061 bmc->pdev.id = rv;
3062 bmc->pdev.dev.release = release_bmc_device;
3063 bmc->pdev.dev.type = &bmc_device_type;
3064 kref_init(&bmc->usecount);
3065
3066 intf->bmc = bmc;
3067 mutex_lock(&bmc->dyn_mutex);
3068 list_add_tail(&intf->bmc_link, &bmc->intfs);
3069 mutex_unlock(&bmc->dyn_mutex);
3070
3071 rv = platform_device_register(&bmc->pdev);
3072 if (rv) {
3073 dev_err(intf->si_dev,
3074 "Unable to register bmc device: %d\n",
3075 rv);
3076 goto out_list_del;
3077 }
3078
3079 dev_info(intf->si_dev,
3080 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3081 bmc->id.manufacturer_id,
3082 bmc->id.product_id,
3083 bmc->id.device_id);
3084 }
3085
3086 /*
3087 * create symlink from system interface device to bmc device
3088 * and back.
3089 */
3090 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3091 if (rv) {
3092 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3093 goto out_put_bmc;
3094 }
3095
3096 if (intf_num == -1)
3097 intf_num = intf->intf_num;
3098 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3099 if (!intf->my_dev_name) {
3100 rv = -ENOMEM;
3101 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3102 rv);
3103 goto out_unlink1;
3104 }
3105
3106 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3107 intf->my_dev_name);
3108 if (rv) {
3109 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3110 rv);
3111 goto out_free_my_dev_name;
3112 }
3113
3114 intf->bmc_registered = true;
3115
3116 out:
3117 mutex_unlock(&ipmidriver_mutex);
3118 mutex_lock(&intf->bmc_reg_mutex);
3119 intf->in_bmc_register = false;
3120 return rv;
3121
3122
3123 out_free_my_dev_name:
3124 kfree(intf->my_dev_name);
3125 intf->my_dev_name = NULL;
3126
3127 out_unlink1:
3128 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3129
3130 out_put_bmc:
3131 mutex_lock(&bmc->dyn_mutex);
3132 list_del(&intf->bmc_link);
3133 mutex_unlock(&bmc->dyn_mutex);
3134 intf->bmc = &intf->tmp_bmc;
3135 kref_put(&bmc->usecount, cleanup_bmc_device);
3136 goto out;
3137
3138 out_list_del:
3139 mutex_lock(&bmc->dyn_mutex);
3140 list_del(&intf->bmc_link);
3141 mutex_unlock(&bmc->dyn_mutex);
3142 intf->bmc = &intf->tmp_bmc;
3143 put_device(&bmc->pdev.dev);
3144 goto out;
3145 }
3146
3147 static int
send_guid_cmd(struct ipmi_smi *intf, int chan)3148 send_guid_cmd(struct ipmi_smi *intf, int chan)
3149 {
3150 struct kernel_ipmi_msg msg;
3151 struct ipmi_system_interface_addr si;
3152
3153 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3154 si.channel = IPMI_BMC_CHANNEL;
3155 si.lun = 0;
3156
3157 msg.netfn = IPMI_NETFN_APP_REQUEST;
3158 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3159 msg.data = NULL;
3160 msg.data_len = 0;
3161 return i_ipmi_request(NULL,
3162 intf,
3163 (struct ipmi_addr *) &si,
3164 0,
3165 &msg,
3166 intf,
3167 NULL,
3168 NULL,
3169 0,
3170 intf->addrinfo[0].address,
3171 intf->addrinfo[0].lun,
3172 -1, 0);
3173 }
3174
guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)3175 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3176 {
3177 struct bmc_device *bmc = intf->bmc;
3178
3179 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3180 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3181 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3182 /* Not for me */
3183 return;
3184
3185 if (msg->msg.data[0] != 0) {
3186 /* Error from getting the GUID, the BMC doesn't have one. */
3187 bmc->dyn_guid_set = 0;
3188 goto out;
3189 }
3190
3191 if (msg->msg.data_len < UUID_SIZE + 1) {
3192 bmc->dyn_guid_set = 0;
3193 dev_warn(intf->si_dev,
3194 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3195 msg->msg.data_len, UUID_SIZE + 1);
3196 goto out;
3197 }
3198
3199 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3200 /*
3201 * Make sure the guid data is available before setting
3202 * dyn_guid_set.
3203 */
3204 smp_wmb();
3205 bmc->dyn_guid_set = 1;
3206 out:
3207 wake_up(&intf->waitq);
3208 }
3209
__get_guid(struct ipmi_smi *intf)3210 static void __get_guid(struct ipmi_smi *intf)
3211 {
3212 int rv;
3213 struct bmc_device *bmc = intf->bmc;
3214
3215 bmc->dyn_guid_set = 2;
3216 intf->null_user_handler = guid_handler;
3217 rv = send_guid_cmd(intf, 0);
3218 if (rv)
3219 /* Send failed, no GUID available. */
3220 bmc->dyn_guid_set = 0;
3221 else
3222 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3223
3224 /* dyn_guid_set makes the guid data available. */
3225 smp_rmb();
3226
3227 intf->null_user_handler = NULL;
3228 }
3229
3230 static int
send_channel_info_cmd(struct ipmi_smi *intf, int chan)3231 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3232 {
3233 struct kernel_ipmi_msg msg;
3234 unsigned char data[1];
3235 struct ipmi_system_interface_addr si;
3236
3237 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3238 si.channel = IPMI_BMC_CHANNEL;
3239 si.lun = 0;
3240
3241 msg.netfn = IPMI_NETFN_APP_REQUEST;
3242 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3243 msg.data = data;
3244 msg.data_len = 1;
3245 data[0] = chan;
3246 return i_ipmi_request(NULL,
3247 intf,
3248 (struct ipmi_addr *) &si,
3249 0,
3250 &msg,
3251 intf,
3252 NULL,
3253 NULL,
3254 0,
3255 intf->addrinfo[0].address,
3256 intf->addrinfo[0].lun,
3257 -1, 0);
3258 }
3259
3260 static void
channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)3261 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3262 {
3263 int rv = 0;
3264 int ch;
3265 unsigned int set = intf->curr_working_cset;
3266 struct ipmi_channel *chans;
3267
3268 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3269 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3270 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3271 /* It's the one we want */
3272 if (msg->msg.data[0] != 0) {
3273 /* Got an error from the channel, just go on. */
3274 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3275 /*
3276 * If the MC does not support this
3277 * command, that is legal. We just
3278 * assume it has one IPMB at channel
3279 * zero.
3280 */
3281 intf->wchannels[set].c[0].medium
3282 = IPMI_CHANNEL_MEDIUM_IPMB;
3283 intf->wchannels[set].c[0].protocol
3284 = IPMI_CHANNEL_PROTOCOL_IPMB;
3285
3286 intf->channel_list = intf->wchannels + set;
3287 intf->channels_ready = true;
3288 wake_up(&intf->waitq);
3289 goto out;
3290 }
3291 goto next_channel;
3292 }
3293 if (msg->msg.data_len < 4) {
3294 /* Message not big enough, just go on. */
3295 goto next_channel;
3296 }
3297 ch = intf->curr_channel;
3298 chans = intf->wchannels[set].c;
3299 chans[ch].medium = msg->msg.data[2] & 0x7f;
3300 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3301
3302 next_channel:
3303 intf->curr_channel++;
3304 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3305 intf->channel_list = intf->wchannels + set;
3306 intf->channels_ready = true;
3307 wake_up(&intf->waitq);
3308 } else {
3309 intf->channel_list = intf->wchannels + set;
3310 intf->channels_ready = true;
3311 rv = send_channel_info_cmd(intf, intf->curr_channel);
3312 }
3313
3314 if (rv) {
3315 /* Got an error somehow, just give up. */
3316 dev_warn(intf->si_dev,
3317 "Error sending channel information for channel %d: %d\n",
3318 intf->curr_channel, rv);
3319
3320 intf->channel_list = intf->wchannels + set;
3321 intf->channels_ready = true;
3322 wake_up(&intf->waitq);
3323 }
3324 }
3325 out:
3326 return;
3327 }
3328
3329 /*
3330 * Must be holding intf->bmc_reg_mutex to call this.
3331 */
__scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)3332 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3333 {
3334 int rv;
3335
3336 if (ipmi_version_major(id) > 1
3337 || (ipmi_version_major(id) == 1
3338 && ipmi_version_minor(id) >= 5)) {
3339 unsigned int set;
3340
3341 /*
3342 * Start scanning the channels to see what is
3343 * available.
3344 */
3345 set = !intf->curr_working_cset;
3346 intf->curr_working_cset = set;
3347 memset(&intf->wchannels[set], 0,
3348 sizeof(struct ipmi_channel_set));
3349
3350 intf->null_user_handler = channel_handler;
3351 intf->curr_channel = 0;
3352 rv = send_channel_info_cmd(intf, 0);
3353 if (rv) {
3354 dev_warn(intf->si_dev,
3355 "Error sending channel information for channel 0, %d\n",
3356 rv);
3357 intf->null_user_handler = NULL;
3358 return -EIO;
3359 }
3360
3361 /* Wait for the channel info to be read. */
3362 wait_event(intf->waitq, intf->channels_ready);
3363 intf->null_user_handler = NULL;
3364 } else {
3365 unsigned int set = intf->curr_working_cset;
3366
3367 /* Assume a single IPMB channel at zero. */
3368 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3369 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3370 intf->channel_list = intf->wchannels + set;
3371 intf->channels_ready = true;
3372 }
3373
3374 return 0;
3375 }
3376
ipmi_poll(struct ipmi_smi *intf)3377 static void ipmi_poll(struct ipmi_smi *intf)
3378 {
3379 if (intf->handlers->poll)
3380 intf->handlers->poll(intf->send_info);
3381 /* In case something came in */
3382 handle_new_recv_msgs(intf);
3383 }
3384
ipmi_poll_interface(struct ipmi_user *user)3385 void ipmi_poll_interface(struct ipmi_user *user)
3386 {
3387 ipmi_poll(user->intf);
3388 }
3389 EXPORT_SYMBOL(ipmi_poll_interface);
3390
redo_bmc_reg(struct work_struct *work)3391 static void redo_bmc_reg(struct work_struct *work)
3392 {
3393 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3394 bmc_reg_work);
3395
3396 if (!intf->in_shutdown)
3397 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3398
3399 kref_put(&intf->refcount, intf_free);
3400 }
3401
ipmi_add_smi(struct module *owner, const struct ipmi_smi_handlers *handlers, void *send_info, struct device *si_dev, unsigned char slave_addr)3402 int ipmi_add_smi(struct module *owner,
3403 const struct ipmi_smi_handlers *handlers,
3404 void *send_info,
3405 struct device *si_dev,
3406 unsigned char slave_addr)
3407 {
3408 int i, j;
3409 int rv;
3410 struct ipmi_smi *intf, *tintf;
3411 struct list_head *link;
3412 struct ipmi_device_id id;
3413
3414 /*
3415 * Make sure the driver is actually initialized, this handles
3416 * problems with initialization order.
3417 */
3418 rv = ipmi_init_msghandler();
3419 if (rv)
3420 return rv;
3421
3422 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3423 if (!intf)
3424 return -ENOMEM;
3425
3426 rv = init_srcu_struct(&intf->users_srcu);
3427 if (rv) {
3428 kfree(intf);
3429 return rv;
3430 }
3431
3432 intf->owner = owner;
3433 intf->bmc = &intf->tmp_bmc;
3434 INIT_LIST_HEAD(&intf->bmc->intfs);
3435 mutex_init(&intf->bmc->dyn_mutex);
3436 INIT_LIST_HEAD(&intf->bmc_link);
3437 mutex_init(&intf->bmc_reg_mutex);
3438 intf->intf_num = -1; /* Mark it invalid for now. */
3439 kref_init(&intf->refcount);
3440 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3441 intf->si_dev = si_dev;
3442 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3443 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3444 intf->addrinfo[j].lun = 2;
3445 }
3446 if (slave_addr != 0)
3447 intf->addrinfo[0].address = slave_addr;
3448 INIT_LIST_HEAD(&intf->users);
3449 intf->handlers = handlers;
3450 intf->send_info = send_info;
3451 spin_lock_init(&intf->seq_lock);
3452 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3453 intf->seq_table[j].inuse = 0;
3454 intf->seq_table[j].seqid = 0;
3455 }
3456 intf->curr_seq = 0;
3457 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3458 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3459 tasklet_setup(&intf->recv_tasklet,
3460 smi_recv_tasklet);
3461 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3462 spin_lock_init(&intf->xmit_msgs_lock);
3463 INIT_LIST_HEAD(&intf->xmit_msgs);
3464 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3465 spin_lock_init(&intf->events_lock);
3466 spin_lock_init(&intf->watch_lock);
3467 atomic_set(&intf->event_waiters, 0);
3468 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3469 INIT_LIST_HEAD(&intf->waiting_events);
3470 intf->waiting_events_count = 0;
3471 mutex_init(&intf->cmd_rcvrs_mutex);
3472 spin_lock_init(&intf->maintenance_mode_lock);
3473 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3474 init_waitqueue_head(&intf->waitq);
3475 for (i = 0; i < IPMI_NUM_STATS; i++)
3476 atomic_set(&intf->stats[i], 0);
3477
3478 mutex_lock(&ipmi_interfaces_mutex);
3479 /* Look for a hole in the numbers. */
3480 i = 0;
3481 link = &ipmi_interfaces;
3482 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3483 ipmi_interfaces_mutex_held()) {
3484 if (tintf->intf_num != i) {
3485 link = &tintf->link;
3486 break;
3487 }
3488 i++;
3489 }
3490 /* Add the new interface in numeric order. */
3491 if (i == 0)
3492 list_add_rcu(&intf->link, &ipmi_interfaces);
3493 else
3494 list_add_tail_rcu(&intf->link, link);
3495
3496 rv = handlers->start_processing(send_info, intf);
3497 if (rv)
3498 goto out_err;
3499
3500 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3501 if (rv) {
3502 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3503 goto out_err_started;
3504 }
3505
3506 mutex_lock(&intf->bmc_reg_mutex);
3507 rv = __scan_channels(intf, &id);
3508 mutex_unlock(&intf->bmc_reg_mutex);
3509 if (rv)
3510 goto out_err_bmc_reg;
3511
3512 /*
3513 * Keep memory order straight for RCU readers. Make
3514 * sure everything else is committed to memory before
3515 * setting intf_num to mark the interface valid.
3516 */
3517 smp_wmb();
3518 intf->intf_num = i;
3519 mutex_unlock(&ipmi_interfaces_mutex);
3520
3521 /* After this point the interface is legal to use. */
3522 call_smi_watchers(i, intf->si_dev);
3523
3524 return 0;
3525
3526 out_err_bmc_reg:
3527 ipmi_bmc_unregister(intf);
3528 out_err_started:
3529 if (intf->handlers->shutdown)
3530 intf->handlers->shutdown(intf->send_info);
3531 out_err:
3532 list_del_rcu(&intf->link);
3533 mutex_unlock(&ipmi_interfaces_mutex);
3534 synchronize_srcu(&ipmi_interfaces_srcu);
3535 cleanup_srcu_struct(&intf->users_srcu);
3536 kref_put(&intf->refcount, intf_free);
3537
3538 return rv;
3539 }
3540 EXPORT_SYMBOL(ipmi_add_smi);
3541
deliver_smi_err_response(struct ipmi_smi *intf, struct ipmi_smi_msg *msg, unsigned char err)3542 static void deliver_smi_err_response(struct ipmi_smi *intf,
3543 struct ipmi_smi_msg *msg,
3544 unsigned char err)
3545 {
3546 int rv;
3547 msg->rsp[0] = msg->data[0] | 4;
3548 msg->rsp[1] = msg->data[1];
3549 msg->rsp[2] = err;
3550 msg->rsp_size = 3;
3551
3552 /* This will never requeue, but it may ask us to free the message. */
3553 rv = handle_one_recv_msg(intf, msg);
3554 if (rv == 0)
3555 ipmi_free_smi_msg(msg);
3556 }
3557
cleanup_smi_msgs(struct ipmi_smi *intf)3558 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3559 {
3560 int i;
3561 struct seq_table *ent;
3562 struct ipmi_smi_msg *msg;
3563 struct list_head *entry;
3564 struct list_head tmplist;
3565
3566 /* Clear out our transmit queues and hold the messages. */
3567 INIT_LIST_HEAD(&tmplist);
3568 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3569 list_splice_tail(&intf->xmit_msgs, &tmplist);
3570
3571 /* Current message first, to preserve order */
3572 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3573 /* Wait for the message to clear out. */
3574 schedule_timeout(1);
3575 }
3576
3577 /* No need for locks, the interface is down. */
3578
3579 /*
3580 * Return errors for all pending messages in queue and in the
3581 * tables waiting for remote responses.
3582 */
3583 while (!list_empty(&tmplist)) {
3584 entry = tmplist.next;
3585 list_del(entry);
3586 msg = list_entry(entry, struct ipmi_smi_msg, link);
3587 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3588 }
3589
3590 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3591 ent = &intf->seq_table[i];
3592 if (!ent->inuse)
3593 continue;
3594 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3595 }
3596 }
3597
ipmi_unregister_smi(struct ipmi_smi *intf)3598 void ipmi_unregister_smi(struct ipmi_smi *intf)
3599 {
3600 struct ipmi_smi_watcher *w;
3601 int intf_num = intf->intf_num, index;
3602
3603 mutex_lock(&ipmi_interfaces_mutex);
3604 intf->intf_num = -1;
3605 intf->in_shutdown = true;
3606 list_del_rcu(&intf->link);
3607 mutex_unlock(&ipmi_interfaces_mutex);
3608 synchronize_srcu(&ipmi_interfaces_srcu);
3609
3610 /* At this point no users can be added to the interface. */
3611
3612 /*
3613 * Call all the watcher interfaces to tell them that
3614 * an interface is going away.
3615 */
3616 mutex_lock(&smi_watchers_mutex);
3617 list_for_each_entry(w, &smi_watchers, link)
3618 w->smi_gone(intf_num);
3619 mutex_unlock(&smi_watchers_mutex);
3620
3621 index = srcu_read_lock(&intf->users_srcu);
3622 while (!list_empty(&intf->users)) {
3623 struct ipmi_user *user =
3624 container_of(list_next_rcu(&intf->users),
3625 struct ipmi_user, link);
3626
3627 _ipmi_destroy_user(user);
3628 }
3629 srcu_read_unlock(&intf->users_srcu, index);
3630
3631 if (intf->handlers->shutdown)
3632 intf->handlers->shutdown(intf->send_info);
3633
3634 cleanup_smi_msgs(intf);
3635
3636 ipmi_bmc_unregister(intf);
3637
3638 cleanup_srcu_struct(&intf->users_srcu);
3639 kref_put(&intf->refcount, intf_free);
3640 }
3641 EXPORT_SYMBOL(ipmi_unregister_smi);
3642
handle_ipmb_get_msg_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3643 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3644 struct ipmi_smi_msg *msg)
3645 {
3646 struct ipmi_ipmb_addr ipmb_addr;
3647 struct ipmi_recv_msg *recv_msg;
3648
3649 /*
3650 * This is 11, not 10, because the response must contain a
3651 * completion code.
3652 */
3653 if (msg->rsp_size < 11) {
3654 /* Message not big enough, just ignore it. */
3655 ipmi_inc_stat(intf, invalid_ipmb_responses);
3656 return 0;
3657 }
3658
3659 if (msg->rsp[2] != 0) {
3660 /* An error getting the response, just ignore it. */
3661 return 0;
3662 }
3663
3664 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3665 ipmb_addr.slave_addr = msg->rsp[6];
3666 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3667 ipmb_addr.lun = msg->rsp[7] & 3;
3668
3669 /*
3670 * It's a response from a remote entity. Look up the sequence
3671 * number and handle the response.
3672 */
3673 if (intf_find_seq(intf,
3674 msg->rsp[7] >> 2,
3675 msg->rsp[3] & 0x0f,
3676 msg->rsp[8],
3677 (msg->rsp[4] >> 2) & (~1),
3678 (struct ipmi_addr *) &ipmb_addr,
3679 &recv_msg)) {
3680 /*
3681 * We were unable to find the sequence number,
3682 * so just nuke the message.
3683 */
3684 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3685 return 0;
3686 }
3687
3688 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3689 /*
3690 * The other fields matched, so no need to set them, except
3691 * for netfn, which needs to be the response that was
3692 * returned, not the request value.
3693 */
3694 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3695 recv_msg->msg.data = recv_msg->msg_data;
3696 recv_msg->msg.data_len = msg->rsp_size - 10;
3697 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3698 if (deliver_response(intf, recv_msg))
3699 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3700 else
3701 ipmi_inc_stat(intf, handled_ipmb_responses);
3702
3703 return 0;
3704 }
3705
handle_ipmb_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3706 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3707 struct ipmi_smi_msg *msg)
3708 {
3709 struct cmd_rcvr *rcvr;
3710 int rv = 0;
3711 unsigned char netfn;
3712 unsigned char cmd;
3713 unsigned char chan;
3714 struct ipmi_user *user = NULL;
3715 struct ipmi_ipmb_addr *ipmb_addr;
3716 struct ipmi_recv_msg *recv_msg;
3717
3718 if (msg->rsp_size < 10) {
3719 /* Message not big enough, just ignore it. */
3720 ipmi_inc_stat(intf, invalid_commands);
3721 return 0;
3722 }
3723
3724 if (msg->rsp[2] != 0) {
3725 /* An error getting the response, just ignore it. */
3726 return 0;
3727 }
3728
3729 netfn = msg->rsp[4] >> 2;
3730 cmd = msg->rsp[8];
3731 chan = msg->rsp[3] & 0xf;
3732
3733 rcu_read_lock();
3734 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3735 if (rcvr) {
3736 user = rcvr->user;
3737 kref_get(&user->refcount);
3738 } else
3739 user = NULL;
3740 rcu_read_unlock();
3741
3742 if (user == NULL) {
3743 /* We didn't find a user, deliver an error response. */
3744 ipmi_inc_stat(intf, unhandled_commands);
3745
3746 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3747 msg->data[1] = IPMI_SEND_MSG_CMD;
3748 msg->data[2] = msg->rsp[3];
3749 msg->data[3] = msg->rsp[6];
3750 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3751 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3752 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3753 /* rqseq/lun */
3754 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3755 msg->data[8] = msg->rsp[8]; /* cmd */
3756 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3757 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3758 msg->data_size = 11;
3759
3760 pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3761
3762 rcu_read_lock();
3763 if (!intf->in_shutdown) {
3764 smi_send(intf, intf->handlers, msg, 0);
3765 /*
3766 * We used the message, so return the value
3767 * that causes it to not be freed or
3768 * queued.
3769 */
3770 rv = -1;
3771 }
3772 rcu_read_unlock();
3773 } else {
3774 recv_msg = ipmi_alloc_recv_msg();
3775 if (!recv_msg) {
3776 /*
3777 * We couldn't allocate memory for the
3778 * message, so requeue it for handling
3779 * later.
3780 */
3781 rv = 1;
3782 kref_put(&user->refcount, free_user);
3783 } else {
3784 /* Extract the source address from the data. */
3785 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3786 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3787 ipmb_addr->slave_addr = msg->rsp[6];
3788 ipmb_addr->lun = msg->rsp[7] & 3;
3789 ipmb_addr->channel = msg->rsp[3] & 0xf;
3790
3791 /*
3792 * Extract the rest of the message information
3793 * from the IPMB header.
3794 */
3795 recv_msg->user = user;
3796 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3797 recv_msg->msgid = msg->rsp[7] >> 2;
3798 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3799 recv_msg->msg.cmd = msg->rsp[8];
3800 recv_msg->msg.data = recv_msg->msg_data;
3801
3802 /*
3803 * We chop off 10, not 9 bytes because the checksum
3804 * at the end also needs to be removed.
3805 */
3806 recv_msg->msg.data_len = msg->rsp_size - 10;
3807 memcpy(recv_msg->msg_data, &msg->rsp[9],
3808 msg->rsp_size - 10);
3809 if (deliver_response(intf, recv_msg))
3810 ipmi_inc_stat(intf, unhandled_commands);
3811 else
3812 ipmi_inc_stat(intf, handled_commands);
3813 }
3814 }
3815
3816 return rv;
3817 }
3818
handle_lan_get_msg_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3819 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3820 struct ipmi_smi_msg *msg)
3821 {
3822 struct ipmi_lan_addr lan_addr;
3823 struct ipmi_recv_msg *recv_msg;
3824
3825
3826 /*
3827 * This is 13, not 12, because the response must contain a
3828 * completion code.
3829 */
3830 if (msg->rsp_size < 13) {
3831 /* Message not big enough, just ignore it. */
3832 ipmi_inc_stat(intf, invalid_lan_responses);
3833 return 0;
3834 }
3835
3836 if (msg->rsp[2] != 0) {
3837 /* An error getting the response, just ignore it. */
3838 return 0;
3839 }
3840
3841 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3842 lan_addr.session_handle = msg->rsp[4];
3843 lan_addr.remote_SWID = msg->rsp[8];
3844 lan_addr.local_SWID = msg->rsp[5];
3845 lan_addr.channel = msg->rsp[3] & 0x0f;
3846 lan_addr.privilege = msg->rsp[3] >> 4;
3847 lan_addr.lun = msg->rsp[9] & 3;
3848
3849 /*
3850 * It's a response from a remote entity. Look up the sequence
3851 * number and handle the response.
3852 */
3853 if (intf_find_seq(intf,
3854 msg->rsp[9] >> 2,
3855 msg->rsp[3] & 0x0f,
3856 msg->rsp[10],
3857 (msg->rsp[6] >> 2) & (~1),
3858 (struct ipmi_addr *) &lan_addr,
3859 &recv_msg)) {
3860 /*
3861 * We were unable to find the sequence number,
3862 * so just nuke the message.
3863 */
3864 ipmi_inc_stat(intf, unhandled_lan_responses);
3865 return 0;
3866 }
3867
3868 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3869 /*
3870 * The other fields matched, so no need to set them, except
3871 * for netfn, which needs to be the response that was
3872 * returned, not the request value.
3873 */
3874 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3875 recv_msg->msg.data = recv_msg->msg_data;
3876 recv_msg->msg.data_len = msg->rsp_size - 12;
3877 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3878 if (deliver_response(intf, recv_msg))
3879 ipmi_inc_stat(intf, unhandled_lan_responses);
3880 else
3881 ipmi_inc_stat(intf, handled_lan_responses);
3882
3883 return 0;
3884 }
3885
handle_lan_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3886 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3887 struct ipmi_smi_msg *msg)
3888 {
3889 struct cmd_rcvr *rcvr;
3890 int rv = 0;
3891 unsigned char netfn;
3892 unsigned char cmd;
3893 unsigned char chan;
3894 struct ipmi_user *user = NULL;
3895 struct ipmi_lan_addr *lan_addr;
3896 struct ipmi_recv_msg *recv_msg;
3897
3898 if (msg->rsp_size < 12) {
3899 /* Message not big enough, just ignore it. */
3900 ipmi_inc_stat(intf, invalid_commands);
3901 return 0;
3902 }
3903
3904 if (msg->rsp[2] != 0) {
3905 /* An error getting the response, just ignore it. */
3906 return 0;
3907 }
3908
3909 netfn = msg->rsp[6] >> 2;
3910 cmd = msg->rsp[10];
3911 chan = msg->rsp[3] & 0xf;
3912
3913 rcu_read_lock();
3914 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3915 if (rcvr) {
3916 user = rcvr->user;
3917 kref_get(&user->refcount);
3918 } else
3919 user = NULL;
3920 rcu_read_unlock();
3921
3922 if (user == NULL) {
3923 /* We didn't find a user, just give up. */
3924 ipmi_inc_stat(intf, unhandled_commands);
3925
3926 /*
3927 * Don't do anything with these messages, just allow
3928 * them to be freed.
3929 */
3930 rv = 0;
3931 } else {
3932 recv_msg = ipmi_alloc_recv_msg();
3933 if (!recv_msg) {
3934 /*
3935 * We couldn't allocate memory for the
3936 * message, so requeue it for handling later.
3937 */
3938 rv = 1;
3939 kref_put(&user->refcount, free_user);
3940 } else {
3941 /* Extract the source address from the data. */
3942 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3943 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3944 lan_addr->session_handle = msg->rsp[4];
3945 lan_addr->remote_SWID = msg->rsp[8];
3946 lan_addr->local_SWID = msg->rsp[5];
3947 lan_addr->lun = msg->rsp[9] & 3;
3948 lan_addr->channel = msg->rsp[3] & 0xf;
3949 lan_addr->privilege = msg->rsp[3] >> 4;
3950
3951 /*
3952 * Extract the rest of the message information
3953 * from the IPMB header.
3954 */
3955 recv_msg->user = user;
3956 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3957 recv_msg->msgid = msg->rsp[9] >> 2;
3958 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3959 recv_msg->msg.cmd = msg->rsp[10];
3960 recv_msg->msg.data = recv_msg->msg_data;
3961
3962 /*
3963 * We chop off 12, not 11 bytes because the checksum
3964 * at the end also needs to be removed.
3965 */
3966 recv_msg->msg.data_len = msg->rsp_size - 12;
3967 memcpy(recv_msg->msg_data, &msg->rsp[11],
3968 msg->rsp_size - 12);
3969 if (deliver_response(intf, recv_msg))
3970 ipmi_inc_stat(intf, unhandled_commands);
3971 else
3972 ipmi_inc_stat(intf, handled_commands);
3973 }
3974 }
3975
3976 return rv;
3977 }
3978
3979 /*
3980 * This routine will handle "Get Message" command responses with
3981 * channels that use an OEM Medium. The message format belongs to
3982 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3983 * Chapter 22, sections 22.6 and 22.24 for more details.
3984 */
handle_oem_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3985 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3986 struct ipmi_smi_msg *msg)
3987 {
3988 struct cmd_rcvr *rcvr;
3989 int rv = 0;
3990 unsigned char netfn;
3991 unsigned char cmd;
3992 unsigned char chan;
3993 struct ipmi_user *user = NULL;
3994 struct ipmi_system_interface_addr *smi_addr;
3995 struct ipmi_recv_msg *recv_msg;
3996
3997 /*
3998 * We expect the OEM SW to perform error checking
3999 * so we just do some basic sanity checks
4000 */
4001 if (msg->rsp_size < 4) {
4002 /* Message not big enough, just ignore it. */
4003 ipmi_inc_stat(intf, invalid_commands);
4004 return 0;
4005 }
4006
4007 if (msg->rsp[2] != 0) {
4008 /* An error getting the response, just ignore it. */
4009 return 0;
4010 }
4011
4012 /*
4013 * This is an OEM Message so the OEM needs to know how
4014 * handle the message. We do no interpretation.
4015 */
4016 netfn = msg->rsp[0] >> 2;
4017 cmd = msg->rsp[1];
4018 chan = msg->rsp[3] & 0xf;
4019
4020 rcu_read_lock();
4021 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4022 if (rcvr) {
4023 user = rcvr->user;
4024 kref_get(&user->refcount);
4025 } else
4026 user = NULL;
4027 rcu_read_unlock();
4028
4029 if (user == NULL) {
4030 /* We didn't find a user, just give up. */
4031 ipmi_inc_stat(intf, unhandled_commands);
4032
4033 /*
4034 * Don't do anything with these messages, just allow
4035 * them to be freed.
4036 */
4037
4038 rv = 0;
4039 } else {
4040 recv_msg = ipmi_alloc_recv_msg();
4041 if (!recv_msg) {
4042 /*
4043 * We couldn't allocate memory for the
4044 * message, so requeue it for handling
4045 * later.
4046 */
4047 rv = 1;
4048 kref_put(&user->refcount, free_user);
4049 } else {
4050 /*
4051 * OEM Messages are expected to be delivered via
4052 * the system interface to SMS software. We might
4053 * need to visit this again depending on OEM
4054 * requirements
4055 */
4056 smi_addr = ((struct ipmi_system_interface_addr *)
4057 &recv_msg->addr);
4058 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4059 smi_addr->channel = IPMI_BMC_CHANNEL;
4060 smi_addr->lun = msg->rsp[0] & 3;
4061
4062 recv_msg->user = user;
4063 recv_msg->user_msg_data = NULL;
4064 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4065 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4066 recv_msg->msg.cmd = msg->rsp[1];
4067 recv_msg->msg.data = recv_msg->msg_data;
4068
4069 /*
4070 * The message starts at byte 4 which follows the
4071 * the Channel Byte in the "GET MESSAGE" command
4072 */
4073 recv_msg->msg.data_len = msg->rsp_size - 4;
4074 memcpy(recv_msg->msg_data, &msg->rsp[4],
4075 msg->rsp_size - 4);
4076 if (deliver_response(intf, recv_msg))
4077 ipmi_inc_stat(intf, unhandled_commands);
4078 else
4079 ipmi_inc_stat(intf, handled_commands);
4080 }
4081 }
4082
4083 return rv;
4084 }
4085
copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, struct ipmi_smi_msg *msg)4086 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4087 struct ipmi_smi_msg *msg)
4088 {
4089 struct ipmi_system_interface_addr *smi_addr;
4090
4091 recv_msg->msgid = 0;
4092 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4093 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4094 smi_addr->channel = IPMI_BMC_CHANNEL;
4095 smi_addr->lun = msg->rsp[0] & 3;
4096 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4097 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4098 recv_msg->msg.cmd = msg->rsp[1];
4099 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4100 recv_msg->msg.data = recv_msg->msg_data;
4101 recv_msg->msg.data_len = msg->rsp_size - 3;
4102 }
4103
handle_read_event_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4104 static int handle_read_event_rsp(struct ipmi_smi *intf,
4105 struct ipmi_smi_msg *msg)
4106 {
4107 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4108 struct list_head msgs;
4109 struct ipmi_user *user;
4110 int rv = 0, deliver_count = 0, index;
4111 unsigned long flags;
4112
4113 if (msg->rsp_size < 19) {
4114 /* Message is too small to be an IPMB event. */
4115 ipmi_inc_stat(intf, invalid_events);
4116 return 0;
4117 }
4118
4119 if (msg->rsp[2] != 0) {
4120 /* An error getting the event, just ignore it. */
4121 return 0;
4122 }
4123
4124 INIT_LIST_HEAD(&msgs);
4125
4126 spin_lock_irqsave(&intf->events_lock, flags);
4127
4128 ipmi_inc_stat(intf, events);
4129
4130 /*
4131 * Allocate and fill in one message for every user that is
4132 * getting events.
4133 */
4134 index = srcu_read_lock(&intf->users_srcu);
4135 list_for_each_entry_rcu(user, &intf->users, link) {
4136 if (!user->gets_events)
4137 continue;
4138
4139 recv_msg = ipmi_alloc_recv_msg();
4140 if (!recv_msg) {
4141 rcu_read_unlock();
4142 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4143 link) {
4144 list_del(&recv_msg->link);
4145 ipmi_free_recv_msg(recv_msg);
4146 }
4147 /*
4148 * We couldn't allocate memory for the
4149 * message, so requeue it for handling
4150 * later.
4151 */
4152 rv = 1;
4153 goto out;
4154 }
4155
4156 deliver_count++;
4157
4158 copy_event_into_recv_msg(recv_msg, msg);
4159 recv_msg->user = user;
4160 kref_get(&user->refcount);
4161 list_add_tail(&recv_msg->link, &msgs);
4162 }
4163 srcu_read_unlock(&intf->users_srcu, index);
4164
4165 if (deliver_count) {
4166 /* Now deliver all the messages. */
4167 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4168 list_del(&recv_msg->link);
4169 deliver_local_response(intf, recv_msg);
4170 }
4171 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4172 /*
4173 * No one to receive the message, put it in queue if there's
4174 * not already too many things in the queue.
4175 */
4176 recv_msg = ipmi_alloc_recv_msg();
4177 if (!recv_msg) {
4178 /*
4179 * We couldn't allocate memory for the
4180 * message, so requeue it for handling
4181 * later.
4182 */
4183 rv = 1;
4184 goto out;
4185 }
4186
4187 copy_event_into_recv_msg(recv_msg, msg);
4188 list_add_tail(&recv_msg->link, &intf->waiting_events);
4189 intf->waiting_events_count++;
4190 } else if (!intf->event_msg_printed) {
4191 /*
4192 * There's too many things in the queue, discard this
4193 * message.
4194 */
4195 dev_warn(intf->si_dev,
4196 "Event queue full, discarding incoming events\n");
4197 intf->event_msg_printed = 1;
4198 }
4199
4200 out:
4201 spin_unlock_irqrestore(&intf->events_lock, flags);
4202
4203 return rv;
4204 }
4205
handle_bmc_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4206 static int handle_bmc_rsp(struct ipmi_smi *intf,
4207 struct ipmi_smi_msg *msg)
4208 {
4209 struct ipmi_recv_msg *recv_msg;
4210 struct ipmi_system_interface_addr *smi_addr;
4211
4212 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4213 if (recv_msg == NULL) {
4214 dev_warn(intf->si_dev,
4215 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4216 return 0;
4217 }
4218
4219 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4220 recv_msg->msgid = msg->msgid;
4221 smi_addr = ((struct ipmi_system_interface_addr *)
4222 &recv_msg->addr);
4223 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4224 smi_addr->channel = IPMI_BMC_CHANNEL;
4225 smi_addr->lun = msg->rsp[0] & 3;
4226 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4227 recv_msg->msg.cmd = msg->rsp[1];
4228 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4229 recv_msg->msg.data = recv_msg->msg_data;
4230 recv_msg->msg.data_len = msg->rsp_size - 2;
4231 deliver_local_response(intf, recv_msg);
4232
4233 return 0;
4234 }
4235
4236 /*
4237 * Handle a received message. Return 1 if the message should be requeued,
4238 * 0 if the message should be freed, or -1 if the message should not
4239 * be freed or requeued.
4240 */
handle_one_recv_msg(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4241 static int handle_one_recv_msg(struct ipmi_smi *intf,
4242 struct ipmi_smi_msg *msg)
4243 {
4244 int requeue;
4245 int chan;
4246
4247 pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4248
4249 if ((msg->data_size >= 2)
4250 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4251 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4252 && (msg->user_data == NULL)) {
4253
4254 if (intf->in_shutdown)
4255 goto free_msg;
4256
4257 /*
4258 * This is the local response to a command send, start
4259 * the timer for these. The user_data will not be
4260 * NULL if this is a response send, and we will let
4261 * response sends just go through.
4262 */
4263
4264 /*
4265 * Check for errors, if we get certain errors (ones
4266 * that mean basically we can try again later), we
4267 * ignore them and start the timer. Otherwise we
4268 * report the error immediately.
4269 */
4270 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4271 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4272 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4273 && (msg->rsp[2] != IPMI_BUS_ERR)
4274 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4275 int ch = msg->rsp[3] & 0xf;
4276 struct ipmi_channel *chans;
4277
4278 /* Got an error sending the message, handle it. */
4279
4280 chans = READ_ONCE(intf->channel_list)->c;
4281 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4282 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4283 ipmi_inc_stat(intf, sent_lan_command_errs);
4284 else
4285 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4286 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4287 } else
4288 /* The message was sent, start the timer. */
4289 intf_start_seq_timer(intf, msg->msgid);
4290 free_msg:
4291 requeue = 0;
4292 goto out;
4293
4294 } else if (msg->rsp_size < 2) {
4295 /* Message is too small to be correct. */
4296 dev_warn(intf->si_dev,
4297 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4298 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4299
4300 /* Generate an error response for the message. */
4301 msg->rsp[0] = msg->data[0] | (1 << 2);
4302 msg->rsp[1] = msg->data[1];
4303 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4304 msg->rsp_size = 3;
4305 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4306 || (msg->rsp[1] != msg->data[1])) {
4307 /*
4308 * The NetFN and Command in the response is not even
4309 * marginally correct.
4310 */
4311 dev_warn(intf->si_dev,
4312 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4313 (msg->data[0] >> 2) | 1, msg->data[1],
4314 msg->rsp[0] >> 2, msg->rsp[1]);
4315
4316 /* Generate an error response for the message. */
4317 msg->rsp[0] = msg->data[0] | (1 << 2);
4318 msg->rsp[1] = msg->data[1];
4319 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4320 msg->rsp_size = 3;
4321 }
4322
4323 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4324 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4325 && (msg->user_data != NULL)) {
4326 /*
4327 * It's a response to a response we sent. For this we
4328 * deliver a send message response to the user.
4329 */
4330 struct ipmi_recv_msg *recv_msg = msg->user_data;
4331
4332 requeue = 0;
4333 if (msg->rsp_size < 2)
4334 /* Message is too small to be correct. */
4335 goto out;
4336
4337 chan = msg->data[2] & 0x0f;
4338 if (chan >= IPMI_MAX_CHANNELS)
4339 /* Invalid channel number */
4340 goto out;
4341
4342 if (!recv_msg)
4343 goto out;
4344
4345 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4346 recv_msg->msg.data = recv_msg->msg_data;
4347 recv_msg->msg.data_len = 1;
4348 recv_msg->msg_data[0] = msg->rsp[2];
4349 deliver_local_response(intf, recv_msg);
4350 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4351 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4352 struct ipmi_channel *chans;
4353
4354 /* It's from the receive queue. */
4355 chan = msg->rsp[3] & 0xf;
4356 if (chan >= IPMI_MAX_CHANNELS) {
4357 /* Invalid channel number */
4358 requeue = 0;
4359 goto out;
4360 }
4361
4362 /*
4363 * We need to make sure the channels have been initialized.
4364 * The channel_handler routine will set the "curr_channel"
4365 * equal to or greater than IPMI_MAX_CHANNELS when all the
4366 * channels for this interface have been initialized.
4367 */
4368 if (!intf->channels_ready) {
4369 requeue = 0; /* Throw the message away */
4370 goto out;
4371 }
4372
4373 chans = READ_ONCE(intf->channel_list)->c;
4374
4375 switch (chans[chan].medium) {
4376 case IPMI_CHANNEL_MEDIUM_IPMB:
4377 if (msg->rsp[4] & 0x04) {
4378 /*
4379 * It's a response, so find the
4380 * requesting message and send it up.
4381 */
4382 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4383 } else {
4384 /*
4385 * It's a command to the SMS from some other
4386 * entity. Handle that.
4387 */
4388 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4389 }
4390 break;
4391
4392 case IPMI_CHANNEL_MEDIUM_8023LAN:
4393 case IPMI_CHANNEL_MEDIUM_ASYNC:
4394 if (msg->rsp[6] & 0x04) {
4395 /*
4396 * It's a response, so find the
4397 * requesting message and send it up.
4398 */
4399 requeue = handle_lan_get_msg_rsp(intf, msg);
4400 } else {
4401 /*
4402 * It's a command to the SMS from some other
4403 * entity. Handle that.
4404 */
4405 requeue = handle_lan_get_msg_cmd(intf, msg);
4406 }
4407 break;
4408
4409 default:
4410 /* Check for OEM Channels. Clients had better
4411 register for these commands. */
4412 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4413 && (chans[chan].medium
4414 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4415 requeue = handle_oem_get_msg_cmd(intf, msg);
4416 } else {
4417 /*
4418 * We don't handle the channel type, so just
4419 * free the message.
4420 */
4421 requeue = 0;
4422 }
4423 }
4424
4425 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4426 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4427 /* It's an asynchronous event. */
4428 requeue = handle_read_event_rsp(intf, msg);
4429 } else {
4430 /* It's a response from the local BMC. */
4431 requeue = handle_bmc_rsp(intf, msg);
4432 }
4433
4434 out:
4435 return requeue;
4436 }
4437
4438 /*
4439 * If there are messages in the queue or pretimeouts, handle them.
4440 */
handle_new_recv_msgs(struct ipmi_smi *intf)4441 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4442 {
4443 struct ipmi_smi_msg *smi_msg;
4444 unsigned long flags = 0;
4445 int rv;
4446 int run_to_completion = intf->run_to_completion;
4447
4448 /* See if any waiting messages need to be processed. */
4449 if (!run_to_completion)
4450 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4451 while (!list_empty(&intf->waiting_rcv_msgs)) {
4452 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4453 struct ipmi_smi_msg, link);
4454 list_del(&smi_msg->link);
4455 if (!run_to_completion)
4456 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4457 flags);
4458 rv = handle_one_recv_msg(intf, smi_msg);
4459 if (!run_to_completion)
4460 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4461 if (rv > 0) {
4462 /*
4463 * To preserve message order, quit if we
4464 * can't handle a message. Add the message
4465 * back at the head, this is safe because this
4466 * tasklet is the only thing that pulls the
4467 * messages.
4468 */
4469 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4470 break;
4471 } else {
4472 if (rv == 0)
4473 /* Message handled */
4474 ipmi_free_smi_msg(smi_msg);
4475 /* If rv < 0, fatal error, del but don't free. */
4476 }
4477 }
4478 if (!run_to_completion)
4479 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4480
4481 /*
4482 * If the pretimout count is non-zero, decrement one from it and
4483 * deliver pretimeouts to all the users.
4484 */
4485 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4486 struct ipmi_user *user;
4487 int index;
4488
4489 index = srcu_read_lock(&intf->users_srcu);
4490 list_for_each_entry_rcu(user, &intf->users, link) {
4491 if (user->handler->ipmi_watchdog_pretimeout)
4492 user->handler->ipmi_watchdog_pretimeout(
4493 user->handler_data);
4494 }
4495 srcu_read_unlock(&intf->users_srcu, index);
4496 }
4497 }
4498
smi_recv_tasklet(struct tasklet_struct *t)4499 static void smi_recv_tasklet(struct tasklet_struct *t)
4500 {
4501 unsigned long flags = 0; /* keep us warning-free. */
4502 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4503 int run_to_completion = intf->run_to_completion;
4504 struct ipmi_smi_msg *newmsg = NULL;
4505
4506 /*
4507 * Start the next message if available.
4508 *
4509 * Do this here, not in the actual receiver, because we may deadlock
4510 * because the lower layer is allowed to hold locks while calling
4511 * message delivery.
4512 */
4513
4514 rcu_read_lock();
4515
4516 if (!run_to_completion)
4517 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4518 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4519 struct list_head *entry = NULL;
4520
4521 /* Pick the high priority queue first. */
4522 if (!list_empty(&intf->hp_xmit_msgs))
4523 entry = intf->hp_xmit_msgs.next;
4524 else if (!list_empty(&intf->xmit_msgs))
4525 entry = intf->xmit_msgs.next;
4526
4527 if (entry) {
4528 list_del(entry);
4529 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4530 intf->curr_msg = newmsg;
4531 }
4532 }
4533
4534 if (!run_to_completion)
4535 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4536 if (newmsg)
4537 intf->handlers->sender(intf->send_info, newmsg);
4538
4539 rcu_read_unlock();
4540
4541 handle_new_recv_msgs(intf);
4542 }
4543
4544 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4545 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4546 struct ipmi_smi_msg *msg)
4547 {
4548 unsigned long flags = 0; /* keep us warning-free. */
4549 int run_to_completion = intf->run_to_completion;
4550
4551 /*
4552 * To preserve message order, we keep a queue and deliver from
4553 * a tasklet.
4554 */
4555 if (!run_to_completion)
4556 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4557 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4558 if (!run_to_completion)
4559 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4560 flags);
4561
4562 if (!run_to_completion)
4563 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4564 /*
4565 * We can get an asynchronous event or receive message in addition
4566 * to commands we send.
4567 */
4568 if (msg == intf->curr_msg)
4569 intf->curr_msg = NULL;
4570 if (!run_to_completion)
4571 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4572
4573 if (run_to_completion)
4574 smi_recv_tasklet(&intf->recv_tasklet);
4575 else
4576 tasklet_schedule(&intf->recv_tasklet);
4577 }
4578 EXPORT_SYMBOL(ipmi_smi_msg_received);
4579
ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)4580 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4581 {
4582 if (intf->in_shutdown)
4583 return;
4584
4585 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4586 tasklet_schedule(&intf->recv_tasklet);
4587 }
4588 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4589
4590 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, unsigned char seq, long seqid)4591 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4592 unsigned char seq, long seqid)
4593 {
4594 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4595 if (!smi_msg)
4596 /*
4597 * If we can't allocate the message, then just return, we
4598 * get 4 retries, so this should be ok.
4599 */
4600 return NULL;
4601
4602 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4603 smi_msg->data_size = recv_msg->msg.data_len;
4604 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4605
4606 pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4607
4608 return smi_msg;
4609 }
4610
check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent, struct list_head *timeouts, unsigned long timeout_period, int slot, unsigned long *flags, bool *need_timer)4611 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4612 struct list_head *timeouts,
4613 unsigned long timeout_period,
4614 int slot, unsigned long *flags,
4615 bool *need_timer)
4616 {
4617 struct ipmi_recv_msg *msg;
4618
4619 if (intf->in_shutdown)
4620 return;
4621
4622 if (!ent->inuse)
4623 return;
4624
4625 if (timeout_period < ent->timeout) {
4626 ent->timeout -= timeout_period;
4627 *need_timer = true;
4628 return;
4629 }
4630
4631 if (ent->retries_left == 0) {
4632 /* The message has used all its retries. */
4633 ent->inuse = 0;
4634 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4635 msg = ent->recv_msg;
4636 list_add_tail(&msg->link, timeouts);
4637 if (ent->broadcast)
4638 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4639 else if (is_lan_addr(&ent->recv_msg->addr))
4640 ipmi_inc_stat(intf, timed_out_lan_commands);
4641 else
4642 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4643 } else {
4644 struct ipmi_smi_msg *smi_msg;
4645 /* More retries, send again. */
4646
4647 *need_timer = true;
4648
4649 /*
4650 * Start with the max timer, set to normal timer after
4651 * the message is sent.
4652 */
4653 ent->timeout = MAX_MSG_TIMEOUT;
4654 ent->retries_left--;
4655 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4656 ent->seqid);
4657 if (!smi_msg) {
4658 if (is_lan_addr(&ent->recv_msg->addr))
4659 ipmi_inc_stat(intf,
4660 dropped_rexmit_lan_commands);
4661 else
4662 ipmi_inc_stat(intf,
4663 dropped_rexmit_ipmb_commands);
4664 return;
4665 }
4666
4667 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4668
4669 /*
4670 * Send the new message. We send with a zero
4671 * priority. It timed out, I doubt time is that
4672 * critical now, and high priority messages are really
4673 * only for messages to the local MC, which don't get
4674 * resent.
4675 */
4676 if (intf->handlers) {
4677 if (is_lan_addr(&ent->recv_msg->addr))
4678 ipmi_inc_stat(intf,
4679 retransmitted_lan_commands);
4680 else
4681 ipmi_inc_stat(intf,
4682 retransmitted_ipmb_commands);
4683
4684 smi_send(intf, intf->handlers, smi_msg, 0);
4685 } else
4686 ipmi_free_smi_msg(smi_msg);
4687
4688 spin_lock_irqsave(&intf->seq_lock, *flags);
4689 }
4690 }
4691
ipmi_timeout_handler(struct ipmi_smi *intf, unsigned long timeout_period)4692 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4693 unsigned long timeout_period)
4694 {
4695 struct list_head timeouts;
4696 struct ipmi_recv_msg *msg, *msg2;
4697 unsigned long flags;
4698 int i;
4699 bool need_timer = false;
4700
4701 if (!intf->bmc_registered) {
4702 kref_get(&intf->refcount);
4703 if (!schedule_work(&intf->bmc_reg_work)) {
4704 kref_put(&intf->refcount, intf_free);
4705 need_timer = true;
4706 }
4707 }
4708
4709 /*
4710 * Go through the seq table and find any messages that
4711 * have timed out, putting them in the timeouts
4712 * list.
4713 */
4714 INIT_LIST_HEAD(&timeouts);
4715 spin_lock_irqsave(&intf->seq_lock, flags);
4716 if (intf->ipmb_maintenance_mode_timeout) {
4717 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4718 intf->ipmb_maintenance_mode_timeout = 0;
4719 else
4720 intf->ipmb_maintenance_mode_timeout -= timeout_period;
4721 }
4722 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4723 check_msg_timeout(intf, &intf->seq_table[i],
4724 &timeouts, timeout_period, i,
4725 &flags, &need_timer);
4726 spin_unlock_irqrestore(&intf->seq_lock, flags);
4727
4728 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4729 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4730
4731 /*
4732 * Maintenance mode handling. Check the timeout
4733 * optimistically before we claim the lock. It may
4734 * mean a timeout gets missed occasionally, but that
4735 * only means the timeout gets extended by one period
4736 * in that case. No big deal, and it avoids the lock
4737 * most of the time.
4738 */
4739 if (intf->auto_maintenance_timeout > 0) {
4740 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4741 if (intf->auto_maintenance_timeout > 0) {
4742 intf->auto_maintenance_timeout
4743 -= timeout_period;
4744 if (!intf->maintenance_mode
4745 && (intf->auto_maintenance_timeout <= 0)) {
4746 intf->maintenance_mode_enable = false;
4747 maintenance_mode_update(intf);
4748 }
4749 }
4750 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4751 flags);
4752 }
4753
4754 tasklet_schedule(&intf->recv_tasklet);
4755
4756 return need_timer;
4757 }
4758
ipmi_request_event(struct ipmi_smi *intf)4759 static void ipmi_request_event(struct ipmi_smi *intf)
4760 {
4761 /* No event requests when in maintenance mode. */
4762 if (intf->maintenance_mode_enable)
4763 return;
4764
4765 if (!intf->in_shutdown)
4766 intf->handlers->request_events(intf->send_info);
4767 }
4768
4769 static struct timer_list ipmi_timer;
4770
4771 static atomic_t stop_operation;
4772
ipmi_timeout(struct timer_list *unused)4773 static void ipmi_timeout(struct timer_list *unused)
4774 {
4775 struct ipmi_smi *intf;
4776 bool need_timer = false;
4777 int index;
4778
4779 if (atomic_read(&stop_operation))
4780 return;
4781
4782 index = srcu_read_lock(&ipmi_interfaces_srcu);
4783 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4784 if (atomic_read(&intf->event_waiters)) {
4785 intf->ticks_to_req_ev--;
4786 if (intf->ticks_to_req_ev == 0) {
4787 ipmi_request_event(intf);
4788 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4789 }
4790 need_timer = true;
4791 }
4792
4793 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4794 }
4795 srcu_read_unlock(&ipmi_interfaces_srcu, index);
4796
4797 if (need_timer)
4798 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4799 }
4800
need_waiter(struct ipmi_smi *intf)4801 static void need_waiter(struct ipmi_smi *intf)
4802 {
4803 /* Racy, but worst case we start the timer twice. */
4804 if (!timer_pending(&ipmi_timer))
4805 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4806 }
4807
4808 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4809 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4810
free_smi_msg(struct ipmi_smi_msg *msg)4811 static void free_smi_msg(struct ipmi_smi_msg *msg)
4812 {
4813 atomic_dec(&smi_msg_inuse_count);
4814 /* Try to keep as much stuff out of the panic path as possible. */
4815 if (!oops_in_progress)
4816 kfree(msg);
4817 }
4818
ipmi_alloc_smi_msg(void)4819 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4820 {
4821 struct ipmi_smi_msg *rv;
4822 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4823 if (rv) {
4824 rv->done = free_smi_msg;
4825 rv->user_data = NULL;
4826 atomic_inc(&smi_msg_inuse_count);
4827 }
4828 return rv;
4829 }
4830 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4831
free_recv_msg(struct ipmi_recv_msg *msg)4832 static void free_recv_msg(struct ipmi_recv_msg *msg)
4833 {
4834 atomic_dec(&recv_msg_inuse_count);
4835 /* Try to keep as much stuff out of the panic path as possible. */
4836 if (!oops_in_progress)
4837 kfree(msg);
4838 }
4839
ipmi_alloc_recv_msg(void)4840 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4841 {
4842 struct ipmi_recv_msg *rv;
4843
4844 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4845 if (rv) {
4846 rv->user = NULL;
4847 rv->done = free_recv_msg;
4848 atomic_inc(&recv_msg_inuse_count);
4849 }
4850 return rv;
4851 }
4852
ipmi_free_recv_msg(struct ipmi_recv_msg *msg)4853 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4854 {
4855 if (msg->user && !oops_in_progress)
4856 kref_put(&msg->user->refcount, free_user);
4857 msg->done(msg);
4858 }
4859 EXPORT_SYMBOL(ipmi_free_recv_msg);
4860
4861 static atomic_t panic_done_count = ATOMIC_INIT(0);
4862
dummy_smi_done_handler(struct ipmi_smi_msg *msg)4863 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4864 {
4865 atomic_dec(&panic_done_count);
4866 }
4867
dummy_recv_done_handler(struct ipmi_recv_msg *msg)4868 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4869 {
4870 atomic_dec(&panic_done_count);
4871 }
4872
4873 /*
4874 * Inside a panic, send a message and wait for a response.
4875 */
ipmi_panic_request_and_wait(struct ipmi_smi *intf, struct ipmi_addr *addr, struct kernel_ipmi_msg *msg)4876 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4877 struct ipmi_addr *addr,
4878 struct kernel_ipmi_msg *msg)
4879 {
4880 struct ipmi_smi_msg smi_msg;
4881 struct ipmi_recv_msg recv_msg;
4882 int rv;
4883
4884 smi_msg.done = dummy_smi_done_handler;
4885 recv_msg.done = dummy_recv_done_handler;
4886 atomic_add(2, &panic_done_count);
4887 rv = i_ipmi_request(NULL,
4888 intf,
4889 addr,
4890 0,
4891 msg,
4892 intf,
4893 &smi_msg,
4894 &recv_msg,
4895 0,
4896 intf->addrinfo[0].address,
4897 intf->addrinfo[0].lun,
4898 0, 1); /* Don't retry, and don't wait. */
4899 if (rv)
4900 atomic_sub(2, &panic_done_count);
4901 else if (intf->handlers->flush_messages)
4902 intf->handlers->flush_messages(intf->send_info);
4903
4904 while (atomic_read(&panic_done_count) != 0)
4905 ipmi_poll(intf);
4906 }
4907
event_receiver_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)4908 static void event_receiver_fetcher(struct ipmi_smi *intf,
4909 struct ipmi_recv_msg *msg)
4910 {
4911 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4912 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4913 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4914 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4915 /* A get event receiver command, save it. */
4916 intf->event_receiver = msg->msg.data[1];
4917 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4918 }
4919 }
4920
device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)4921 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4922 {
4923 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4924 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4925 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4926 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4927 /*
4928 * A get device id command, save if we are an event
4929 * receiver or generator.
4930 */
4931 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4932 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4933 }
4934 }
4935
send_panic_events(struct ipmi_smi *intf, char *str)4936 static void send_panic_events(struct ipmi_smi *intf, char *str)
4937 {
4938 struct kernel_ipmi_msg msg;
4939 unsigned char data[16];
4940 struct ipmi_system_interface_addr *si;
4941 struct ipmi_addr addr;
4942 char *p = str;
4943 struct ipmi_ipmb_addr *ipmb;
4944 int j;
4945
4946 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4947 return;
4948
4949 si = (struct ipmi_system_interface_addr *) &addr;
4950 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4951 si->channel = IPMI_BMC_CHANNEL;
4952 si->lun = 0;
4953
4954 /* Fill in an event telling that we have failed. */
4955 msg.netfn = 0x04; /* Sensor or Event. */
4956 msg.cmd = 2; /* Platform event command. */
4957 msg.data = data;
4958 msg.data_len = 8;
4959 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4960 data[1] = 0x03; /* This is for IPMI 1.0. */
4961 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4962 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4963 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4964
4965 /*
4966 * Put a few breadcrumbs in. Hopefully later we can add more things
4967 * to make the panic events more useful.
4968 */
4969 if (str) {
4970 data[3] = str[0];
4971 data[6] = str[1];
4972 data[7] = str[2];
4973 }
4974
4975 /* Send the event announcing the panic. */
4976 ipmi_panic_request_and_wait(intf, &addr, &msg);
4977
4978 /*
4979 * On every interface, dump a bunch of OEM event holding the
4980 * string.
4981 */
4982 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4983 return;
4984
4985 /*
4986 * intf_num is used as an marker to tell if the
4987 * interface is valid. Thus we need a read barrier to
4988 * make sure data fetched before checking intf_num
4989 * won't be used.
4990 */
4991 smp_rmb();
4992
4993 /*
4994 * First job here is to figure out where to send the
4995 * OEM events. There's no way in IPMI to send OEM
4996 * events using an event send command, so we have to
4997 * find the SEL to put them in and stick them in
4998 * there.
4999 */
5000
5001 /* Get capabilities from the get device id. */
5002 intf->local_sel_device = 0;
5003 intf->local_event_generator = 0;
5004 intf->event_receiver = 0;
5005
5006 /* Request the device info from the local MC. */
5007 msg.netfn = IPMI_NETFN_APP_REQUEST;
5008 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5009 msg.data = NULL;
5010 msg.data_len = 0;
5011 intf->null_user_handler = device_id_fetcher;
5012 ipmi_panic_request_and_wait(intf, &addr, &msg);
5013
5014 if (intf->local_event_generator) {
5015 /* Request the event receiver from the local MC. */
5016 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5017 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5018 msg.data = NULL;
5019 msg.data_len = 0;
5020 intf->null_user_handler = event_receiver_fetcher;
5021 ipmi_panic_request_and_wait(intf, &addr, &msg);
5022 }
5023 intf->null_user_handler = NULL;
5024
5025 /*
5026 * Validate the event receiver. The low bit must not
5027 * be 1 (it must be a valid IPMB address), it cannot
5028 * be zero, and it must not be my address.
5029 */
5030 if (((intf->event_receiver & 1) == 0)
5031 && (intf->event_receiver != 0)
5032 && (intf->event_receiver != intf->addrinfo[0].address)) {
5033 /*
5034 * The event receiver is valid, send an IPMB
5035 * message.
5036 */
5037 ipmb = (struct ipmi_ipmb_addr *) &addr;
5038 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5039 ipmb->channel = 0; /* FIXME - is this right? */
5040 ipmb->lun = intf->event_receiver_lun;
5041 ipmb->slave_addr = intf->event_receiver;
5042 } else if (intf->local_sel_device) {
5043 /*
5044 * The event receiver was not valid (or was
5045 * me), but I am an SEL device, just dump it
5046 * in my SEL.
5047 */
5048 si = (struct ipmi_system_interface_addr *) &addr;
5049 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5050 si->channel = IPMI_BMC_CHANNEL;
5051 si->lun = 0;
5052 } else
5053 return; /* No where to send the event. */
5054
5055 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5056 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5057 msg.data = data;
5058 msg.data_len = 16;
5059
5060 j = 0;
5061 while (*p) {
5062 int size = strlen(p);
5063
5064 if (size > 11)
5065 size = 11;
5066 data[0] = 0;
5067 data[1] = 0;
5068 data[2] = 0xf0; /* OEM event without timestamp. */
5069 data[3] = intf->addrinfo[0].address;
5070 data[4] = j++; /* sequence # */
5071 /*
5072 * Always give 11 bytes, so strncpy will fill
5073 * it with zeroes for me.
5074 */
5075 strncpy(data+5, p, 11);
5076 p += size;
5077
5078 ipmi_panic_request_and_wait(intf, &addr, &msg);
5079 }
5080 }
5081
5082 static int has_panicked;
5083
panic_event(struct notifier_block *this, unsigned long event, void *ptr)5084 static int panic_event(struct notifier_block *this,
5085 unsigned long event,
5086 void *ptr)
5087 {
5088 struct ipmi_smi *intf;
5089 struct ipmi_user *user;
5090
5091 if (has_panicked)
5092 return NOTIFY_DONE;
5093 has_panicked = 1;
5094
5095 /* For every registered interface, set it to run to completion. */
5096 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5097 if (!intf->handlers || intf->intf_num == -1)
5098 /* Interface is not ready. */
5099 continue;
5100
5101 if (!intf->handlers->poll)
5102 continue;
5103
5104 /*
5105 * If we were interrupted while locking xmit_msgs_lock or
5106 * waiting_rcv_msgs_lock, the corresponding list may be
5107 * corrupted. In this case, drop items on the list for
5108 * the safety.
5109 */
5110 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5111 INIT_LIST_HEAD(&intf->xmit_msgs);
5112 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5113 } else
5114 spin_unlock(&intf->xmit_msgs_lock);
5115
5116 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5117 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5118 else
5119 spin_unlock(&intf->waiting_rcv_msgs_lock);
5120
5121 intf->run_to_completion = 1;
5122 if (intf->handlers->set_run_to_completion)
5123 intf->handlers->set_run_to_completion(intf->send_info,
5124 1);
5125
5126 list_for_each_entry_rcu(user, &intf->users, link) {
5127 if (user->handler->ipmi_panic_handler)
5128 user->handler->ipmi_panic_handler(
5129 user->handler_data);
5130 }
5131
5132 send_panic_events(intf, ptr);
5133 }
5134
5135 return NOTIFY_DONE;
5136 }
5137
5138 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5139 static int ipmi_register_driver(void)
5140 {
5141 int rv;
5142
5143 if (drvregistered)
5144 return 0;
5145
5146 rv = driver_register(&ipmidriver.driver);
5147 if (rv)
5148 pr_err("Could not register IPMI driver\n");
5149 else
5150 drvregistered = true;
5151 return rv;
5152 }
5153
5154 static struct notifier_block panic_block = {
5155 .notifier_call = panic_event,
5156 .next = NULL,
5157 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5158 };
5159
ipmi_init_msghandler(void)5160 static int ipmi_init_msghandler(void)
5161 {
5162 int rv;
5163
5164 mutex_lock(&ipmi_interfaces_mutex);
5165 rv = ipmi_register_driver();
5166 if (rv)
5167 goto out;
5168 if (initialized)
5169 goto out;
5170
5171 rv = init_srcu_struct(&ipmi_interfaces_srcu);
5172 if (rv)
5173 goto out;
5174
5175 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5176 if (!remove_work_wq) {
5177 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5178 rv = -ENOMEM;
5179 goto out_wq;
5180 }
5181
5182 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5183 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5184
5185 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5186
5187 initialized = true;
5188
5189 out_wq:
5190 if (rv)
5191 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5192 out:
5193 mutex_unlock(&ipmi_interfaces_mutex);
5194 return rv;
5195 }
5196
ipmi_init_msghandler_mod(void)5197 static int __init ipmi_init_msghandler_mod(void)
5198 {
5199 int rv;
5200
5201 pr_info("version " IPMI_DRIVER_VERSION "\n");
5202
5203 mutex_lock(&ipmi_interfaces_mutex);
5204 rv = ipmi_register_driver();
5205 mutex_unlock(&ipmi_interfaces_mutex);
5206
5207 return rv;
5208 }
5209
cleanup_ipmi(void)5210 static void __exit cleanup_ipmi(void)
5211 {
5212 int count;
5213
5214 if (initialized) {
5215 destroy_workqueue(remove_work_wq);
5216
5217 atomic_notifier_chain_unregister(&panic_notifier_list,
5218 &panic_block);
5219
5220 /*
5221 * This can't be called if any interfaces exist, so no worry
5222 * about shutting down the interfaces.
5223 */
5224
5225 /*
5226 * Tell the timer to stop, then wait for it to stop. This
5227 * avoids problems with race conditions removing the timer
5228 * here.
5229 */
5230 atomic_set(&stop_operation, 1);
5231 del_timer_sync(&ipmi_timer);
5232
5233 initialized = false;
5234
5235 /* Check for buffer leaks. */
5236 count = atomic_read(&smi_msg_inuse_count);
5237 if (count != 0)
5238 pr_warn("SMI message count %d at exit\n", count);
5239 count = atomic_read(&recv_msg_inuse_count);
5240 if (count != 0)
5241 pr_warn("recv message count %d at exit\n", count);
5242
5243 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5244 }
5245 if (drvregistered)
5246 driver_unregister(&ipmidriver.driver);
5247 }
5248 module_exit(cleanup_ipmi);
5249
5250 module_init(ipmi_init_msghandler_mod);
5251 MODULE_LICENSE("GPL");
5252 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5253 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5254 " interface.");
5255 MODULE_VERSION(IPMI_DRIVER_VERSION);
5256 MODULE_SOFTDEP("post: ipmi_devintf");
5257