1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 enum ipmi_panic_event_op {
53 	IPMI_SEND_PANIC_EVENT_NONE,
54 	IPMI_SEND_PANIC_EVENT,
55 	IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64 
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66 
panic_op_write_handler(const char *val, const struct kernel_param *kp)67 static int panic_op_write_handler(const char *val,
68 				  const struct kernel_param *kp)
69 {
70 	char valcp[16];
71 	char *s;
72 
73 	strncpy(valcp, val, 15);
74 	valcp[15] = '\0';
75 
76 	s = strstrip(valcp);
77 
78 	if (strcmp(s, "none") == 0)
79 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 	else if (strcmp(s, "event") == 0)
81 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 	else if (strcmp(s, "string") == 0)
83 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 	else
85 		return -EINVAL;
86 
87 	return 0;
88 }
89 
panic_op_read_handler(char *buffer, const struct kernel_param *kp)90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 	switch (ipmi_send_panic_event) {
93 	case IPMI_SEND_PANIC_EVENT_NONE:
94 		strcpy(buffer, "none\n");
95 		break;
96 
97 	case IPMI_SEND_PANIC_EVENT:
98 		strcpy(buffer, "event\n");
99 		break;
100 
101 	case IPMI_SEND_PANIC_EVENT_STRING:
102 		strcpy(buffer, "string\n");
103 		break;
104 
105 	default:
106 		strcpy(buffer, "???\n");
107 		break;
108 	}
109 
110 	return strlen(buffer);
111 }
112 
113 static const struct kernel_param_ops panic_op_ops = {
114 	.set = panic_op_write_handler,
115 	.get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119 
120 
121 #define MAX_EVENTS_IN_QUEUE	25
122 
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128 
129 /*
130  * Don't let a message sit in a queue forever, always time it with at lest
131  * the max message timer.  This is in milliseconds.
132  */
133 #define MAX_MSG_TIMEOUT		60000
134 
135 /*
136  * Timeout times below are in milliseconds, and are done off a 1
137  * second timer.  So setting the value to 1000 would mean anything
138  * between 0 and 1000ms.  So really the only reasonable minimum
139  * setting it 2000ms, which is between 1 and 2 seconds.
140  */
141 
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 		 "The time (milliseconds) between retry sends");
147 
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 		 "The time (milliseconds) between retry sends in maintenance mode");
153 
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 		 "The time (milliseconds) between retry sends in maintenance mode");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	/* Free must run in process context for RCU cleanup. */
203 	struct work_struct remove_work;
204 };
205 
206 static struct workqueue_struct *remove_work_wq;
207 
208 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
209 	__acquires(user->release_barrier)
210 {
211 	struct ipmi_user *ruser;
212 
213 	*index = srcu_read_lock(&user->release_barrier);
214 	ruser = srcu_dereference(user->self, &user->release_barrier);
215 	if (!ruser)
216 		srcu_read_unlock(&user->release_barrier, *index);
217 	return ruser;
218 }
219 
release_ipmi_user(struct ipmi_user *user, int index)220 static void release_ipmi_user(struct ipmi_user *user, int index)
221 {
222 	srcu_read_unlock(&user->release_barrier, index);
223 }
224 
225 struct cmd_rcvr {
226 	struct list_head link;
227 
228 	struct ipmi_user *user;
229 	unsigned char netfn;
230 	unsigned char cmd;
231 	unsigned int  chans;
232 
233 	/*
234 	 * This is used to form a linked lised during mass deletion.
235 	 * Since this is in an RCU list, we cannot use the link above
236 	 * or change any data until the RCU period completes.  So we
237 	 * use this next variable during mass deletion so we can have
238 	 * a list and don't have to wait and restart the search on
239 	 * every individual deletion of a command.
240 	 */
241 	struct cmd_rcvr *next;
242 };
243 
244 struct seq_table {
245 	unsigned int         inuse : 1;
246 	unsigned int         broadcast : 1;
247 
248 	unsigned long        timeout;
249 	unsigned long        orig_timeout;
250 	unsigned int         retries_left;
251 
252 	/*
253 	 * To verify on an incoming send message response that this is
254 	 * the message that the response is for, we keep a sequence id
255 	 * and increment it every time we send a message.
256 	 */
257 	long                 seqid;
258 
259 	/*
260 	 * This is held so we can properly respond to the message on a
261 	 * timeout, and it is used to hold the temporary data for
262 	 * retransmission, too.
263 	 */
264 	struct ipmi_recv_msg *recv_msg;
265 };
266 
267 /*
268  * Store the information in a msgid (long) to allow us to find a
269  * sequence table entry from the msgid.
270  */
271 #define STORE_SEQ_IN_MSGID(seq, seqid) \
272 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
273 
274 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
275 	do {								\
276 		seq = (((msgid) >> 26) & 0x3f);				\
277 		seqid = ((msgid) & 0x3ffffff);				\
278 	} while (0)
279 
280 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
281 
282 #define IPMI_MAX_CHANNELS       16
283 struct ipmi_channel {
284 	unsigned char medium;
285 	unsigned char protocol;
286 };
287 
288 struct ipmi_channel_set {
289 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
290 };
291 
292 struct ipmi_my_addrinfo {
293 	/*
294 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
295 	 * but may be changed by the user.
296 	 */
297 	unsigned char address;
298 
299 	/*
300 	 * My LUN.  This should generally stay the SMS LUN, but just in
301 	 * case...
302 	 */
303 	unsigned char lun;
304 };
305 
306 /*
307  * Note that the product id, manufacturer id, guid, and device id are
308  * immutable in this structure, so dyn_mutex is not required for
309  * accessing those.  If those change on a BMC, a new BMC is allocated.
310  */
311 struct bmc_device {
312 	struct platform_device pdev;
313 	struct list_head       intfs; /* Interfaces on this BMC. */
314 	struct ipmi_device_id  id;
315 	struct ipmi_device_id  fetch_id;
316 	int                    dyn_id_set;
317 	unsigned long          dyn_id_expiry;
318 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
319 	guid_t                 guid;
320 	guid_t                 fetch_guid;
321 	int                    dyn_guid_set;
322 	struct kref	       usecount;
323 	struct work_struct     remove_work;
324 	unsigned char	       cc; /* completion code */
325 };
326 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
327 
328 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
329 			     struct ipmi_device_id *id,
330 			     bool *guid_set, guid_t *guid);
331 
332 /*
333  * Various statistics for IPMI, these index stats[] in the ipmi_smi
334  * structure.
335  */
336 enum ipmi_stat_indexes {
337 	/* Commands we got from the user that were invalid. */
338 	IPMI_STAT_sent_invalid_commands = 0,
339 
340 	/* Commands we sent to the MC. */
341 	IPMI_STAT_sent_local_commands,
342 
343 	/* Responses from the MC that were delivered to a user. */
344 	IPMI_STAT_handled_local_responses,
345 
346 	/* Responses from the MC that were not delivered to a user. */
347 	IPMI_STAT_unhandled_local_responses,
348 
349 	/* Commands we sent out to the IPMB bus. */
350 	IPMI_STAT_sent_ipmb_commands,
351 
352 	/* Commands sent on the IPMB that had errors on the SEND CMD */
353 	IPMI_STAT_sent_ipmb_command_errs,
354 
355 	/* Each retransmit increments this count. */
356 	IPMI_STAT_retransmitted_ipmb_commands,
357 
358 	/*
359 	 * When a message times out (runs out of retransmits) this is
360 	 * incremented.
361 	 */
362 	IPMI_STAT_timed_out_ipmb_commands,
363 
364 	/*
365 	 * This is like above, but for broadcasts.  Broadcasts are
366 	 * *not* included in the above count (they are expected to
367 	 * time out).
368 	 */
369 	IPMI_STAT_timed_out_ipmb_broadcasts,
370 
371 	/* Responses I have sent to the IPMB bus. */
372 	IPMI_STAT_sent_ipmb_responses,
373 
374 	/* The response was delivered to the user. */
375 	IPMI_STAT_handled_ipmb_responses,
376 
377 	/* The response had invalid data in it. */
378 	IPMI_STAT_invalid_ipmb_responses,
379 
380 	/* The response didn't have anyone waiting for it. */
381 	IPMI_STAT_unhandled_ipmb_responses,
382 
383 	/* Commands we sent out to the IPMB bus. */
384 	IPMI_STAT_sent_lan_commands,
385 
386 	/* Commands sent on the IPMB that had errors on the SEND CMD */
387 	IPMI_STAT_sent_lan_command_errs,
388 
389 	/* Each retransmit increments this count. */
390 	IPMI_STAT_retransmitted_lan_commands,
391 
392 	/*
393 	 * When a message times out (runs out of retransmits) this is
394 	 * incremented.
395 	 */
396 	IPMI_STAT_timed_out_lan_commands,
397 
398 	/* Responses I have sent to the IPMB bus. */
399 	IPMI_STAT_sent_lan_responses,
400 
401 	/* The response was delivered to the user. */
402 	IPMI_STAT_handled_lan_responses,
403 
404 	/* The response had invalid data in it. */
405 	IPMI_STAT_invalid_lan_responses,
406 
407 	/* The response didn't have anyone waiting for it. */
408 	IPMI_STAT_unhandled_lan_responses,
409 
410 	/* The command was delivered to the user. */
411 	IPMI_STAT_handled_commands,
412 
413 	/* The command had invalid data in it. */
414 	IPMI_STAT_invalid_commands,
415 
416 	/* The command didn't have anyone waiting for it. */
417 	IPMI_STAT_unhandled_commands,
418 
419 	/* Invalid data in an event. */
420 	IPMI_STAT_invalid_events,
421 
422 	/* Events that were received with the proper format. */
423 	IPMI_STAT_events,
424 
425 	/* Retransmissions on IPMB that failed. */
426 	IPMI_STAT_dropped_rexmit_ipmb_commands,
427 
428 	/* Retransmissions on LAN that failed. */
429 	IPMI_STAT_dropped_rexmit_lan_commands,
430 
431 	/* This *must* remain last, add new values above this. */
432 	IPMI_NUM_STATS
433 };
434 
435 
436 #define IPMI_IPMB_NUM_SEQ	64
437 struct ipmi_smi {
438 	struct module *owner;
439 
440 	/* What interface number are we? */
441 	int intf_num;
442 
443 	struct kref refcount;
444 
445 	/* Set when the interface is being unregistered. */
446 	bool in_shutdown;
447 
448 	/* Used for a list of interfaces. */
449 	struct list_head link;
450 
451 	/*
452 	 * The list of upper layers that are using me.  seq_lock write
453 	 * protects this.  Read protection is with srcu.
454 	 */
455 	struct list_head users;
456 	struct srcu_struct users_srcu;
457 
458 	/* Used for wake ups at startup. */
459 	wait_queue_head_t waitq;
460 
461 	/*
462 	 * Prevents the interface from being unregistered when the
463 	 * interface is used by being looked up through the BMC
464 	 * structure.
465 	 */
466 	struct mutex bmc_reg_mutex;
467 
468 	struct bmc_device tmp_bmc;
469 	struct bmc_device *bmc;
470 	bool bmc_registered;
471 	struct list_head bmc_link;
472 	char *my_dev_name;
473 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
474 	struct work_struct bmc_reg_work;
475 
476 	const struct ipmi_smi_handlers *handlers;
477 	void                     *send_info;
478 
479 	/* Driver-model device for the system interface. */
480 	struct device          *si_dev;
481 
482 	/*
483 	 * A table of sequence numbers for this interface.  We use the
484 	 * sequence numbers for IPMB messages that go out of the
485 	 * interface to match them up with their responses.  A routine
486 	 * is called periodically to time the items in this list.
487 	 */
488 	spinlock_t       seq_lock;
489 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
490 	int curr_seq;
491 
492 	/*
493 	 * Messages queued for delivery.  If delivery fails (out of memory
494 	 * for instance), They will stay in here to be processed later in a
495 	 * periodic timer interrupt.  The tasklet is for handling received
496 	 * messages directly from the handler.
497 	 */
498 	spinlock_t       waiting_rcv_msgs_lock;
499 	struct list_head waiting_rcv_msgs;
500 	atomic_t	 watchdog_pretimeouts_to_deliver;
501 	struct tasklet_struct recv_tasklet;
502 
503 	spinlock_t             xmit_msgs_lock;
504 	struct list_head       xmit_msgs;
505 	struct ipmi_smi_msg    *curr_msg;
506 	struct list_head       hp_xmit_msgs;
507 
508 	/*
509 	 * The list of command receivers that are registered for commands
510 	 * on this interface.
511 	 */
512 	struct mutex     cmd_rcvrs_mutex;
513 	struct list_head cmd_rcvrs;
514 
515 	/*
516 	 * Events that were queues because no one was there to receive
517 	 * them.
518 	 */
519 	spinlock_t       events_lock; /* For dealing with event stuff. */
520 	struct list_head waiting_events;
521 	unsigned int     waiting_events_count; /* How many events in queue? */
522 	char             delivering_events;
523 	char             event_msg_printed;
524 
525 	/* How many users are waiting for events? */
526 	atomic_t         event_waiters;
527 	unsigned int     ticks_to_req_ev;
528 
529 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
530 
531 	/* How many users are waiting for commands? */
532 	unsigned int     command_waiters;
533 
534 	/* How many users are waiting for watchdogs? */
535 	unsigned int     watchdog_waiters;
536 
537 	/* How many users are waiting for message responses? */
538 	unsigned int     response_waiters;
539 
540 	/*
541 	 * Tells what the lower layer has last been asked to watch for,
542 	 * messages and/or watchdogs.  Protected by watch_lock.
543 	 */
544 	unsigned int     last_watch_mask;
545 
546 	/*
547 	 * The event receiver for my BMC, only really used at panic
548 	 * shutdown as a place to store this.
549 	 */
550 	unsigned char event_receiver;
551 	unsigned char event_receiver_lun;
552 	unsigned char local_sel_device;
553 	unsigned char local_event_generator;
554 
555 	/* For handling of maintenance mode. */
556 	int maintenance_mode;
557 	bool maintenance_mode_enable;
558 	int auto_maintenance_timeout;
559 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
560 
561 	/*
562 	 * If we are doing maintenance on something on IPMB, extend
563 	 * the timeout time to avoid timeouts writing firmware and
564 	 * such.
565 	 */
566 	int ipmb_maintenance_mode_timeout;
567 
568 	/*
569 	 * A cheap hack, if this is non-null and a message to an
570 	 * interface comes in with a NULL user, call this routine with
571 	 * it.  Note that the message will still be freed by the
572 	 * caller.  This only works on the system interface.
573 	 *
574 	 * Protected by bmc_reg_mutex.
575 	 */
576 	void (*null_user_handler)(struct ipmi_smi *intf,
577 				  struct ipmi_recv_msg *msg);
578 
579 	/*
580 	 * When we are scanning the channels for an SMI, this will
581 	 * tell which channel we are scanning.
582 	 */
583 	int curr_channel;
584 
585 	/* Channel information */
586 	struct ipmi_channel_set *channel_list;
587 	unsigned int curr_working_cset; /* First index into the following. */
588 	struct ipmi_channel_set wchannels[2];
589 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
590 	bool channels_ready;
591 
592 	atomic_t stats[IPMI_NUM_STATS];
593 
594 	/*
595 	 * run_to_completion duplicate of smb_info, smi_info
596 	 * and ipmi_serial_info structures. Used to decrease numbers of
597 	 * parameters passed by "low" level IPMI code.
598 	 */
599 	int run_to_completion;
600 };
601 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
602 
603 static void __get_guid(struct ipmi_smi *intf);
604 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
605 static int __ipmi_bmc_register(struct ipmi_smi *intf,
606 			       struct ipmi_device_id *id,
607 			       bool guid_set, guid_t *guid, int intf_num);
608 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
609 
610 
611 /**
612  * The driver model view of the IPMI messaging driver.
613  */
614 static struct platform_driver ipmidriver = {
615 	.driver = {
616 		.name = "ipmi",
617 		.bus = &platform_bus_type
618 	}
619 };
620 /*
621  * This mutex keeps us from adding the same BMC twice.
622  */
623 static DEFINE_MUTEX(ipmidriver_mutex);
624 
625 static LIST_HEAD(ipmi_interfaces);
626 static DEFINE_MUTEX(ipmi_interfaces_mutex);
627 #define ipmi_interfaces_mutex_held() \
628 	lockdep_is_held(&ipmi_interfaces_mutex)
629 static struct srcu_struct ipmi_interfaces_srcu;
630 
631 /*
632  * List of watchers that want to know when smi's are added and deleted.
633  */
634 static LIST_HEAD(smi_watchers);
635 static DEFINE_MUTEX(smi_watchers_mutex);
636 
637 #define ipmi_inc_stat(intf, stat) \
638 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
639 #define ipmi_get_stat(intf, stat) \
640 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
641 
642 static const char * const addr_src_to_str[] = {
643 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
644 	"device-tree", "platform"
645 };
646 
ipmi_addr_src_to_str(enum ipmi_addr_src src)647 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
648 {
649 	if (src >= SI_LAST)
650 		src = 0; /* Invalid */
651 	return addr_src_to_str[src];
652 }
653 EXPORT_SYMBOL(ipmi_addr_src_to_str);
654 
is_lan_addr(struct ipmi_addr *addr)655 static int is_lan_addr(struct ipmi_addr *addr)
656 {
657 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
658 }
659 
is_ipmb_addr(struct ipmi_addr *addr)660 static int is_ipmb_addr(struct ipmi_addr *addr)
661 {
662 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
663 }
664 
is_ipmb_bcast_addr(struct ipmi_addr *addr)665 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
666 {
667 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
668 }
669 
free_recv_msg_list(struct list_head *q)670 static void free_recv_msg_list(struct list_head *q)
671 {
672 	struct ipmi_recv_msg *msg, *msg2;
673 
674 	list_for_each_entry_safe(msg, msg2, q, link) {
675 		list_del(&msg->link);
676 		ipmi_free_recv_msg(msg);
677 	}
678 }
679 
free_smi_msg_list(struct list_head *q)680 static void free_smi_msg_list(struct list_head *q)
681 {
682 	struct ipmi_smi_msg *msg, *msg2;
683 
684 	list_for_each_entry_safe(msg, msg2, q, link) {
685 		list_del(&msg->link);
686 		ipmi_free_smi_msg(msg);
687 	}
688 }
689 
clean_up_interface_data(struct ipmi_smi *intf)690 static void clean_up_interface_data(struct ipmi_smi *intf)
691 {
692 	int              i;
693 	struct cmd_rcvr  *rcvr, *rcvr2;
694 	struct list_head list;
695 
696 	tasklet_kill(&intf->recv_tasklet);
697 
698 	free_smi_msg_list(&intf->waiting_rcv_msgs);
699 	free_recv_msg_list(&intf->waiting_events);
700 
701 	/*
702 	 * Wholesale remove all the entries from the list in the
703 	 * interface and wait for RCU to know that none are in use.
704 	 */
705 	mutex_lock(&intf->cmd_rcvrs_mutex);
706 	INIT_LIST_HEAD(&list);
707 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
708 	mutex_unlock(&intf->cmd_rcvrs_mutex);
709 
710 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
711 		kfree(rcvr);
712 
713 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
714 		if ((intf->seq_table[i].inuse)
715 					&& (intf->seq_table[i].recv_msg))
716 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
717 	}
718 }
719 
intf_free(struct kref *ref)720 static void intf_free(struct kref *ref)
721 {
722 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
723 
724 	clean_up_interface_data(intf);
725 	kfree(intf);
726 }
727 
728 struct watcher_entry {
729 	int              intf_num;
730 	struct ipmi_smi  *intf;
731 	struct list_head link;
732 };
733 
ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 	struct ipmi_smi *intf;
737 	int index, rv;
738 
739 	/*
740 	 * Make sure the driver is actually initialized, this handles
741 	 * problems with initialization order.
742 	 */
743 	rv = ipmi_init_msghandler();
744 	if (rv)
745 		return rv;
746 
747 	mutex_lock(&smi_watchers_mutex);
748 
749 	list_add(&watcher->link, &smi_watchers);
750 
751 	index = srcu_read_lock(&ipmi_interfaces_srcu);
752 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
753 			lockdep_is_held(&smi_watchers_mutex)) {
754 		int intf_num = READ_ONCE(intf->intf_num);
755 
756 		if (intf_num == -1)
757 			continue;
758 		watcher->new_smi(intf_num, intf->si_dev);
759 	}
760 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
761 
762 	mutex_unlock(&smi_watchers_mutex);
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL(ipmi_smi_watcher_register);
767 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)768 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
769 {
770 	mutex_lock(&smi_watchers_mutex);
771 	list_del(&watcher->link);
772 	mutex_unlock(&smi_watchers_mutex);
773 	return 0;
774 }
775 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
776 
777 /*
778  * Must be called with smi_watchers_mutex held.
779  */
780 static void
call_smi_watchers(int i, struct device *dev)781 call_smi_watchers(int i, struct device *dev)
782 {
783 	struct ipmi_smi_watcher *w;
784 
785 	mutex_lock(&smi_watchers_mutex);
786 	list_for_each_entry(w, &smi_watchers, link) {
787 		if (try_module_get(w->owner)) {
788 			w->new_smi(i, dev);
789 			module_put(w->owner);
790 		}
791 	}
792 	mutex_unlock(&smi_watchers_mutex);
793 }
794 
795 static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)796 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
797 {
798 	if (addr1->addr_type != addr2->addr_type)
799 		return 0;
800 
801 	if (addr1->channel != addr2->channel)
802 		return 0;
803 
804 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
805 		struct ipmi_system_interface_addr *smi_addr1
806 		    = (struct ipmi_system_interface_addr *) addr1;
807 		struct ipmi_system_interface_addr *smi_addr2
808 		    = (struct ipmi_system_interface_addr *) addr2;
809 		return (smi_addr1->lun == smi_addr2->lun);
810 	}
811 
812 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
813 		struct ipmi_ipmb_addr *ipmb_addr1
814 		    = (struct ipmi_ipmb_addr *) addr1;
815 		struct ipmi_ipmb_addr *ipmb_addr2
816 		    = (struct ipmi_ipmb_addr *) addr2;
817 
818 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
819 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
820 	}
821 
822 	if (is_lan_addr(addr1)) {
823 		struct ipmi_lan_addr *lan_addr1
824 			= (struct ipmi_lan_addr *) addr1;
825 		struct ipmi_lan_addr *lan_addr2
826 		    = (struct ipmi_lan_addr *) addr2;
827 
828 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
829 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
830 			&& (lan_addr1->session_handle
831 			    == lan_addr2->session_handle)
832 			&& (lan_addr1->lun == lan_addr2->lun));
833 	}
834 
835 	return 1;
836 }
837 
ipmi_validate_addr(struct ipmi_addr *addr, int len)838 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
839 {
840 	if (len < sizeof(struct ipmi_system_interface_addr))
841 		return -EINVAL;
842 
843 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
844 		if (addr->channel != IPMI_BMC_CHANNEL)
845 			return -EINVAL;
846 		return 0;
847 	}
848 
849 	if ((addr->channel == IPMI_BMC_CHANNEL)
850 	    || (addr->channel >= IPMI_MAX_CHANNELS)
851 	    || (addr->channel < 0))
852 		return -EINVAL;
853 
854 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
855 		if (len < sizeof(struct ipmi_ipmb_addr))
856 			return -EINVAL;
857 		return 0;
858 	}
859 
860 	if (is_lan_addr(addr)) {
861 		if (len < sizeof(struct ipmi_lan_addr))
862 			return -EINVAL;
863 		return 0;
864 	}
865 
866 	return -EINVAL;
867 }
868 EXPORT_SYMBOL(ipmi_validate_addr);
869 
ipmi_addr_length(int addr_type)870 unsigned int ipmi_addr_length(int addr_type)
871 {
872 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
873 		return sizeof(struct ipmi_system_interface_addr);
874 
875 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
876 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
877 		return sizeof(struct ipmi_ipmb_addr);
878 
879 	if (addr_type == IPMI_LAN_ADDR_TYPE)
880 		return sizeof(struct ipmi_lan_addr);
881 
882 	return 0;
883 }
884 EXPORT_SYMBOL(ipmi_addr_length);
885 
deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)886 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
887 {
888 	int rv = 0;
889 
890 	if (!msg->user) {
891 		/* Special handling for NULL users. */
892 		if (intf->null_user_handler) {
893 			intf->null_user_handler(intf, msg);
894 		} else {
895 			/* No handler, so give up. */
896 			rv = -EINVAL;
897 		}
898 		ipmi_free_recv_msg(msg);
899 	} else if (oops_in_progress) {
900 		/*
901 		 * If we are running in the panic context, calling the
902 		 * receive handler doesn't much meaning and has a deadlock
903 		 * risk.  At this moment, simply skip it in that case.
904 		 */
905 		ipmi_free_recv_msg(msg);
906 	} else {
907 		int index;
908 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
909 
910 		if (user) {
911 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
912 			release_ipmi_user(user, index);
913 		} else {
914 			/* User went away, give up. */
915 			ipmi_free_recv_msg(msg);
916 			rv = -EINVAL;
917 		}
918 	}
919 
920 	return rv;
921 }
922 
deliver_local_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)923 static void deliver_local_response(struct ipmi_smi *intf,
924 				   struct ipmi_recv_msg *msg)
925 {
926 	if (deliver_response(intf, msg))
927 		ipmi_inc_stat(intf, unhandled_local_responses);
928 	else
929 		ipmi_inc_stat(intf, handled_local_responses);
930 }
931 
deliver_err_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg, int err)932 static void deliver_err_response(struct ipmi_smi *intf,
933 				 struct ipmi_recv_msg *msg, int err)
934 {
935 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
936 	msg->msg_data[0] = err;
937 	msg->msg.netfn |= 1; /* Convert to a response. */
938 	msg->msg.data_len = 1;
939 	msg->msg.data = msg->msg_data;
940 	deliver_local_response(intf, msg);
941 }
942 
smi_add_watch(struct ipmi_smi *intf, unsigned int flags)943 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
944 {
945 	unsigned long iflags;
946 
947 	if (!intf->handlers->set_need_watch)
948 		return;
949 
950 	spin_lock_irqsave(&intf->watch_lock, iflags);
951 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
952 		intf->response_waiters++;
953 
954 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
955 		intf->watchdog_waiters++;
956 
957 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
958 		intf->command_waiters++;
959 
960 	if ((intf->last_watch_mask & flags) != flags) {
961 		intf->last_watch_mask |= flags;
962 		intf->handlers->set_need_watch(intf->send_info,
963 					       intf->last_watch_mask);
964 	}
965 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
966 }
967 
smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)968 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
969 {
970 	unsigned long iflags;
971 
972 	if (!intf->handlers->set_need_watch)
973 		return;
974 
975 	spin_lock_irqsave(&intf->watch_lock, iflags);
976 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
977 		intf->response_waiters--;
978 
979 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
980 		intf->watchdog_waiters--;
981 
982 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
983 		intf->command_waiters--;
984 
985 	flags = 0;
986 	if (intf->response_waiters)
987 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
988 	if (intf->watchdog_waiters)
989 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
990 	if (intf->command_waiters)
991 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
992 
993 	if (intf->last_watch_mask != flags) {
994 		intf->last_watch_mask = flags;
995 		intf->handlers->set_need_watch(intf->send_info,
996 					       intf->last_watch_mask);
997 	}
998 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
999 }
1000 
1001 /*
1002  * Find the next sequence number not being used and add the given
1003  * message with the given timeout to the sequence table.  This must be
1004  * called with the interface's seq_lock held.
1005  */
intf_next_seq(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, unsigned long timeout, int retries, int broadcast, unsigned char *seq, long *seqid)1006 static int intf_next_seq(struct ipmi_smi      *intf,
1007 			 struct ipmi_recv_msg *recv_msg,
1008 			 unsigned long        timeout,
1009 			 int                  retries,
1010 			 int                  broadcast,
1011 			 unsigned char        *seq,
1012 			 long                 *seqid)
1013 {
1014 	int          rv = 0;
1015 	unsigned int i;
1016 
1017 	if (timeout == 0)
1018 		timeout = default_retry_ms;
1019 	if (retries < 0)
1020 		retries = default_max_retries;
1021 
1022 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1023 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1024 		if (!intf->seq_table[i].inuse)
1025 			break;
1026 	}
1027 
1028 	if (!intf->seq_table[i].inuse) {
1029 		intf->seq_table[i].recv_msg = recv_msg;
1030 
1031 		/*
1032 		 * Start with the maximum timeout, when the send response
1033 		 * comes in we will start the real timer.
1034 		 */
1035 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1036 		intf->seq_table[i].orig_timeout = timeout;
1037 		intf->seq_table[i].retries_left = retries;
1038 		intf->seq_table[i].broadcast = broadcast;
1039 		intf->seq_table[i].inuse = 1;
1040 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1041 		*seq = i;
1042 		*seqid = intf->seq_table[i].seqid;
1043 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1044 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1045 		need_waiter(intf);
1046 	} else {
1047 		rv = -EAGAIN;
1048 	}
1049 
1050 	return rv;
1051 }
1052 
1053 /*
1054  * Return the receive message for the given sequence number and
1055  * release the sequence number so it can be reused.  Some other data
1056  * is passed in to be sure the message matches up correctly (to help
1057  * guard against message coming in after their timeout and the
1058  * sequence number being reused).
1059  */
intf_find_seq(struct ipmi_smi *intf, unsigned char seq, short channel, unsigned char cmd, unsigned char netfn, struct ipmi_addr *addr, struct ipmi_recv_msg **recv_msg)1060 static int intf_find_seq(struct ipmi_smi      *intf,
1061 			 unsigned char        seq,
1062 			 short                channel,
1063 			 unsigned char        cmd,
1064 			 unsigned char        netfn,
1065 			 struct ipmi_addr     *addr,
1066 			 struct ipmi_recv_msg **recv_msg)
1067 {
1068 	int           rv = -ENODEV;
1069 	unsigned long flags;
1070 
1071 	if (seq >= IPMI_IPMB_NUM_SEQ)
1072 		return -EINVAL;
1073 
1074 	spin_lock_irqsave(&intf->seq_lock, flags);
1075 	if (intf->seq_table[seq].inuse) {
1076 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1077 
1078 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1079 				&& (msg->msg.netfn == netfn)
1080 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1081 			*recv_msg = msg;
1082 			intf->seq_table[seq].inuse = 0;
1083 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1084 			rv = 0;
1085 		}
1086 	}
1087 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1088 
1089 	return rv;
1090 }
1091 
1092 
1093 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi *intf, long msgid)1094 static int intf_start_seq_timer(struct ipmi_smi *intf,
1095 				long       msgid)
1096 {
1097 	int           rv = -ENODEV;
1098 	unsigned long flags;
1099 	unsigned char seq;
1100 	unsigned long seqid;
1101 
1102 
1103 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1104 
1105 	spin_lock_irqsave(&intf->seq_lock, flags);
1106 	/*
1107 	 * We do this verification because the user can be deleted
1108 	 * while a message is outstanding.
1109 	 */
1110 	if ((intf->seq_table[seq].inuse)
1111 				&& (intf->seq_table[seq].seqid == seqid)) {
1112 		struct seq_table *ent = &intf->seq_table[seq];
1113 		ent->timeout = ent->orig_timeout;
1114 		rv = 0;
1115 	}
1116 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1117 
1118 	return rv;
1119 }
1120 
1121 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi *intf, long msgid, unsigned int err)1122 static int intf_err_seq(struct ipmi_smi *intf,
1123 			long         msgid,
1124 			unsigned int err)
1125 {
1126 	int                  rv = -ENODEV;
1127 	unsigned long        flags;
1128 	unsigned char        seq;
1129 	unsigned long        seqid;
1130 	struct ipmi_recv_msg *msg = NULL;
1131 
1132 
1133 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1134 
1135 	spin_lock_irqsave(&intf->seq_lock, flags);
1136 	/*
1137 	 * We do this verification because the user can be deleted
1138 	 * while a message is outstanding.
1139 	 */
1140 	if ((intf->seq_table[seq].inuse)
1141 				&& (intf->seq_table[seq].seqid == seqid)) {
1142 		struct seq_table *ent = &intf->seq_table[seq];
1143 
1144 		ent->inuse = 0;
1145 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1146 		msg = ent->recv_msg;
1147 		rv = 0;
1148 	}
1149 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1150 
1151 	if (msg)
1152 		deliver_err_response(intf, msg, err);
1153 
1154 	return rv;
1155 }
1156 
free_user_work(struct work_struct *work)1157 static void free_user_work(struct work_struct *work)
1158 {
1159 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1160 					      remove_work);
1161 
1162 	cleanup_srcu_struct(&user->release_barrier);
1163 	vfree(user);
1164 }
1165 
ipmi_create_user(unsigned int if_num, const struct ipmi_user_hndl *handler, void *handler_data, struct ipmi_user **user)1166 int ipmi_create_user(unsigned int          if_num,
1167 		     const struct ipmi_user_hndl *handler,
1168 		     void                  *handler_data,
1169 		     struct ipmi_user      **user)
1170 {
1171 	unsigned long flags;
1172 	struct ipmi_user *new_user;
1173 	int           rv, index;
1174 	struct ipmi_smi *intf;
1175 
1176 	/*
1177 	 * There is no module usecount here, because it's not
1178 	 * required.  Since this can only be used by and called from
1179 	 * other modules, they will implicitly use this module, and
1180 	 * thus this can't be removed unless the other modules are
1181 	 * removed.
1182 	 */
1183 
1184 	if (handler == NULL)
1185 		return -EINVAL;
1186 
1187 	/*
1188 	 * Make sure the driver is actually initialized, this handles
1189 	 * problems with initialization order.
1190 	 */
1191 	rv = ipmi_init_msghandler();
1192 	if (rv)
1193 		return rv;
1194 
1195 	new_user = vzalloc(sizeof(*new_user));
1196 	if (!new_user)
1197 		return -ENOMEM;
1198 
1199 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1200 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1201 		if (intf->intf_num == if_num)
1202 			goto found;
1203 	}
1204 	/* Not found, return an error */
1205 	rv = -EINVAL;
1206 	goto out_kfree;
1207 
1208  found:
1209 	INIT_WORK(&new_user->remove_work, free_user_work);
1210 
1211 	rv = init_srcu_struct(&new_user->release_barrier);
1212 	if (rv)
1213 		goto out_kfree;
1214 
1215 	if (!try_module_get(intf->owner)) {
1216 		rv = -ENODEV;
1217 		goto out_kfree;
1218 	}
1219 
1220 	/* Note that each existing user holds a refcount to the interface. */
1221 	kref_get(&intf->refcount);
1222 
1223 	kref_init(&new_user->refcount);
1224 	new_user->handler = handler;
1225 	new_user->handler_data = handler_data;
1226 	new_user->intf = intf;
1227 	new_user->gets_events = false;
1228 
1229 	rcu_assign_pointer(new_user->self, new_user);
1230 	spin_lock_irqsave(&intf->seq_lock, flags);
1231 	list_add_rcu(&new_user->link, &intf->users);
1232 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1233 	if (handler->ipmi_watchdog_pretimeout)
1234 		/* User wants pretimeouts, so make sure to watch for them. */
1235 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1236 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1237 	*user = new_user;
1238 	return 0;
1239 
1240 out_kfree:
1241 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1242 	vfree(new_user);
1243 	return rv;
1244 }
1245 EXPORT_SYMBOL(ipmi_create_user);
1246 
ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)1247 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1248 {
1249 	int rv, index;
1250 	struct ipmi_smi *intf;
1251 
1252 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1253 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1254 		if (intf->intf_num == if_num)
1255 			goto found;
1256 	}
1257 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1258 
1259 	/* Not found, return an error */
1260 	return -EINVAL;
1261 
1262 found:
1263 	if (!intf->handlers->get_smi_info)
1264 		rv = -ENOTTY;
1265 	else
1266 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1267 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1268 
1269 	return rv;
1270 }
1271 EXPORT_SYMBOL(ipmi_get_smi_info);
1272 
free_user(struct kref *ref)1273 static void free_user(struct kref *ref)
1274 {
1275 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1276 
1277 	/* SRCU cleanup must happen in task context. */
1278 	queue_work(remove_work_wq, &user->remove_work);
1279 }
1280 
_ipmi_destroy_user(struct ipmi_user *user)1281 static void _ipmi_destroy_user(struct ipmi_user *user)
1282 {
1283 	struct ipmi_smi  *intf = user->intf;
1284 	int              i;
1285 	unsigned long    flags;
1286 	struct cmd_rcvr  *rcvr;
1287 	struct cmd_rcvr  *rcvrs = NULL;
1288 	struct module    *owner;
1289 
1290 	if (!acquire_ipmi_user(user, &i)) {
1291 		/*
1292 		 * The user has already been cleaned up, just make sure
1293 		 * nothing is using it and return.
1294 		 */
1295 		synchronize_srcu(&user->release_barrier);
1296 		return;
1297 	}
1298 
1299 	rcu_assign_pointer(user->self, NULL);
1300 	release_ipmi_user(user, i);
1301 
1302 	synchronize_srcu(&user->release_barrier);
1303 
1304 	if (user->handler->shutdown)
1305 		user->handler->shutdown(user->handler_data);
1306 
1307 	if (user->handler->ipmi_watchdog_pretimeout)
1308 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1309 
1310 	if (user->gets_events)
1311 		atomic_dec(&intf->event_waiters);
1312 
1313 	/* Remove the user from the interface's sequence table. */
1314 	spin_lock_irqsave(&intf->seq_lock, flags);
1315 	list_del_rcu(&user->link);
1316 
1317 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1318 		if (intf->seq_table[i].inuse
1319 		    && (intf->seq_table[i].recv_msg->user == user)) {
1320 			intf->seq_table[i].inuse = 0;
1321 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1322 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1323 		}
1324 	}
1325 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1326 
1327 	/*
1328 	 * Remove the user from the command receiver's table.  First
1329 	 * we build a list of everything (not using the standard link,
1330 	 * since other things may be using it till we do
1331 	 * synchronize_srcu()) then free everything in that list.
1332 	 */
1333 	mutex_lock(&intf->cmd_rcvrs_mutex);
1334 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1335 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1336 		if (rcvr->user == user) {
1337 			list_del_rcu(&rcvr->link);
1338 			rcvr->next = rcvrs;
1339 			rcvrs = rcvr;
1340 		}
1341 	}
1342 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1343 	synchronize_rcu();
1344 	while (rcvrs) {
1345 		rcvr = rcvrs;
1346 		rcvrs = rcvr->next;
1347 		kfree(rcvr);
1348 	}
1349 
1350 	owner = intf->owner;
1351 	kref_put(&intf->refcount, intf_free);
1352 	module_put(owner);
1353 }
1354 
ipmi_destroy_user(struct ipmi_user *user)1355 int ipmi_destroy_user(struct ipmi_user *user)
1356 {
1357 	_ipmi_destroy_user(user);
1358 
1359 	kref_put(&user->refcount, free_user);
1360 
1361 	return 0;
1362 }
1363 EXPORT_SYMBOL(ipmi_destroy_user);
1364 
ipmi_get_version(struct ipmi_user *user, unsigned char *major, unsigned char *minor)1365 int ipmi_get_version(struct ipmi_user *user,
1366 		     unsigned char *major,
1367 		     unsigned char *minor)
1368 {
1369 	struct ipmi_device_id id;
1370 	int rv, index;
1371 
1372 	user = acquire_ipmi_user(user, &index);
1373 	if (!user)
1374 		return -ENODEV;
1375 
1376 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1377 	if (!rv) {
1378 		*major = ipmi_version_major(&id);
1379 		*minor = ipmi_version_minor(&id);
1380 	}
1381 	release_ipmi_user(user, index);
1382 
1383 	return rv;
1384 }
1385 EXPORT_SYMBOL(ipmi_get_version);
1386 
ipmi_set_my_address(struct ipmi_user *user, unsigned int channel, unsigned char address)1387 int ipmi_set_my_address(struct ipmi_user *user,
1388 			unsigned int  channel,
1389 			unsigned char address)
1390 {
1391 	int index, rv = 0;
1392 
1393 	user = acquire_ipmi_user(user, &index);
1394 	if (!user)
1395 		return -ENODEV;
1396 
1397 	if (channel >= IPMI_MAX_CHANNELS) {
1398 		rv = -EINVAL;
1399 	} else {
1400 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1401 		user->intf->addrinfo[channel].address = address;
1402 	}
1403 	release_ipmi_user(user, index);
1404 
1405 	return rv;
1406 }
1407 EXPORT_SYMBOL(ipmi_set_my_address);
1408 
ipmi_get_my_address(struct ipmi_user *user, unsigned int channel, unsigned char *address)1409 int ipmi_get_my_address(struct ipmi_user *user,
1410 			unsigned int  channel,
1411 			unsigned char *address)
1412 {
1413 	int index, rv = 0;
1414 
1415 	user = acquire_ipmi_user(user, &index);
1416 	if (!user)
1417 		return -ENODEV;
1418 
1419 	if (channel >= IPMI_MAX_CHANNELS) {
1420 		rv = -EINVAL;
1421 	} else {
1422 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1423 		*address = user->intf->addrinfo[channel].address;
1424 	}
1425 	release_ipmi_user(user, index);
1426 
1427 	return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_get_my_address);
1430 
ipmi_set_my_LUN(struct ipmi_user *user, unsigned int channel, unsigned char LUN)1431 int ipmi_set_my_LUN(struct ipmi_user *user,
1432 		    unsigned int  channel,
1433 		    unsigned char LUN)
1434 {
1435 	int index, rv = 0;
1436 
1437 	user = acquire_ipmi_user(user, &index);
1438 	if (!user)
1439 		return -ENODEV;
1440 
1441 	if (channel >= IPMI_MAX_CHANNELS) {
1442 		rv = -EINVAL;
1443 	} else {
1444 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1446 	}
1447 	release_ipmi_user(user, index);
1448 
1449 	return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_set_my_LUN);
1452 
ipmi_get_my_LUN(struct ipmi_user *user, unsigned int channel, unsigned char *address)1453 int ipmi_get_my_LUN(struct ipmi_user *user,
1454 		    unsigned int  channel,
1455 		    unsigned char *address)
1456 {
1457 	int index, rv = 0;
1458 
1459 	user = acquire_ipmi_user(user, &index);
1460 	if (!user)
1461 		return -ENODEV;
1462 
1463 	if (channel >= IPMI_MAX_CHANNELS) {
1464 		rv = -EINVAL;
1465 	} else {
1466 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 		*address = user->intf->addrinfo[channel].lun;
1468 	}
1469 	release_ipmi_user(user, index);
1470 
1471 	return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_my_LUN);
1474 
ipmi_get_maintenance_mode(struct ipmi_user *user)1475 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1476 {
1477 	int mode, index;
1478 	unsigned long flags;
1479 
1480 	user = acquire_ipmi_user(user, &index);
1481 	if (!user)
1482 		return -ENODEV;
1483 
1484 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1485 	mode = user->intf->maintenance_mode;
1486 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1487 	release_ipmi_user(user, index);
1488 
1489 	return mode;
1490 }
1491 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1492 
maintenance_mode_update(struct ipmi_smi *intf)1493 static void maintenance_mode_update(struct ipmi_smi *intf)
1494 {
1495 	if (intf->handlers->set_maintenance_mode)
1496 		intf->handlers->set_maintenance_mode(
1497 			intf->send_info, intf->maintenance_mode_enable);
1498 }
1499 
ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)1500 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1501 {
1502 	int rv = 0, index;
1503 	unsigned long flags;
1504 	struct ipmi_smi *intf = user->intf;
1505 
1506 	user = acquire_ipmi_user(user, &index);
1507 	if (!user)
1508 		return -ENODEV;
1509 
1510 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1511 	if (intf->maintenance_mode != mode) {
1512 		switch (mode) {
1513 		case IPMI_MAINTENANCE_MODE_AUTO:
1514 			intf->maintenance_mode_enable
1515 				= (intf->auto_maintenance_timeout > 0);
1516 			break;
1517 
1518 		case IPMI_MAINTENANCE_MODE_OFF:
1519 			intf->maintenance_mode_enable = false;
1520 			break;
1521 
1522 		case IPMI_MAINTENANCE_MODE_ON:
1523 			intf->maintenance_mode_enable = true;
1524 			break;
1525 
1526 		default:
1527 			rv = -EINVAL;
1528 			goto out_unlock;
1529 		}
1530 		intf->maintenance_mode = mode;
1531 
1532 		maintenance_mode_update(intf);
1533 	}
1534  out_unlock:
1535 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1536 	release_ipmi_user(user, index);
1537 
1538 	return rv;
1539 }
1540 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1541 
ipmi_set_gets_events(struct ipmi_user *user, bool val)1542 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1543 {
1544 	unsigned long        flags;
1545 	struct ipmi_smi      *intf = user->intf;
1546 	struct ipmi_recv_msg *msg, *msg2;
1547 	struct list_head     msgs;
1548 	int index;
1549 
1550 	user = acquire_ipmi_user(user, &index);
1551 	if (!user)
1552 		return -ENODEV;
1553 
1554 	INIT_LIST_HEAD(&msgs);
1555 
1556 	spin_lock_irqsave(&intf->events_lock, flags);
1557 	if (user->gets_events == val)
1558 		goto out;
1559 
1560 	user->gets_events = val;
1561 
1562 	if (val) {
1563 		if (atomic_inc_return(&intf->event_waiters) == 1)
1564 			need_waiter(intf);
1565 	} else {
1566 		atomic_dec(&intf->event_waiters);
1567 	}
1568 
1569 	if (intf->delivering_events)
1570 		/*
1571 		 * Another thread is delivering events for this, so
1572 		 * let it handle any new events.
1573 		 */
1574 		goto out;
1575 
1576 	/* Deliver any queued events. */
1577 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1578 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1579 			list_move_tail(&msg->link, &msgs);
1580 		intf->waiting_events_count = 0;
1581 		if (intf->event_msg_printed) {
1582 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1583 			intf->event_msg_printed = 0;
1584 		}
1585 
1586 		intf->delivering_events = 1;
1587 		spin_unlock_irqrestore(&intf->events_lock, flags);
1588 
1589 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1590 			msg->user = user;
1591 			kref_get(&user->refcount);
1592 			deliver_local_response(intf, msg);
1593 		}
1594 
1595 		spin_lock_irqsave(&intf->events_lock, flags);
1596 		intf->delivering_events = 0;
1597 	}
1598 
1599  out:
1600 	spin_unlock_irqrestore(&intf->events_lock, flags);
1601 	release_ipmi_user(user, index);
1602 
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(ipmi_set_gets_events);
1606 
find_cmd_rcvr(struct ipmi_smi *intf, unsigned char netfn, unsigned char cmd, unsigned char chan)1607 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1608 				      unsigned char netfn,
1609 				      unsigned char cmd,
1610 				      unsigned char chan)
1611 {
1612 	struct cmd_rcvr *rcvr;
1613 
1614 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1615 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1616 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1617 					&& (rcvr->chans & (1 << chan)))
1618 			return rcvr;
1619 	}
1620 	return NULL;
1621 }
1622 
is_cmd_rcvr_exclusive(struct ipmi_smi *intf, unsigned char netfn, unsigned char cmd, unsigned int chans)1623 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1624 				 unsigned char netfn,
1625 				 unsigned char cmd,
1626 				 unsigned int  chans)
1627 {
1628 	struct cmd_rcvr *rcvr;
1629 
1630 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1631 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1632 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1633 					&& (rcvr->chans & chans))
1634 			return 0;
1635 	}
1636 	return 1;
1637 }
1638 
ipmi_register_for_cmd(struct ipmi_user *user, unsigned char netfn, unsigned char cmd, unsigned int chans)1639 int ipmi_register_for_cmd(struct ipmi_user *user,
1640 			  unsigned char netfn,
1641 			  unsigned char cmd,
1642 			  unsigned int  chans)
1643 {
1644 	struct ipmi_smi *intf = user->intf;
1645 	struct cmd_rcvr *rcvr;
1646 	int rv = 0, index;
1647 
1648 	user = acquire_ipmi_user(user, &index);
1649 	if (!user)
1650 		return -ENODEV;
1651 
1652 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1653 	if (!rcvr) {
1654 		rv = -ENOMEM;
1655 		goto out_release;
1656 	}
1657 	rcvr->cmd = cmd;
1658 	rcvr->netfn = netfn;
1659 	rcvr->chans = chans;
1660 	rcvr->user = user;
1661 
1662 	mutex_lock(&intf->cmd_rcvrs_mutex);
1663 	/* Make sure the command/netfn is not already registered. */
1664 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1665 		rv = -EBUSY;
1666 		goto out_unlock;
1667 	}
1668 
1669 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1670 
1671 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1672 
1673 out_unlock:
1674 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1675 	if (rv)
1676 		kfree(rcvr);
1677 out_release:
1678 	release_ipmi_user(user, index);
1679 
1680 	return rv;
1681 }
1682 EXPORT_SYMBOL(ipmi_register_for_cmd);
1683 
ipmi_unregister_for_cmd(struct ipmi_user *user, unsigned char netfn, unsigned char cmd, unsigned int chans)1684 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1685 			    unsigned char netfn,
1686 			    unsigned char cmd,
1687 			    unsigned int  chans)
1688 {
1689 	struct ipmi_smi *intf = user->intf;
1690 	struct cmd_rcvr *rcvr;
1691 	struct cmd_rcvr *rcvrs = NULL;
1692 	int i, rv = -ENOENT, index;
1693 
1694 	user = acquire_ipmi_user(user, &index);
1695 	if (!user)
1696 		return -ENODEV;
1697 
1698 	mutex_lock(&intf->cmd_rcvrs_mutex);
1699 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1700 		if (((1 << i) & chans) == 0)
1701 			continue;
1702 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1703 		if (rcvr == NULL)
1704 			continue;
1705 		if (rcvr->user == user) {
1706 			rv = 0;
1707 			rcvr->chans &= ~chans;
1708 			if (rcvr->chans == 0) {
1709 				list_del_rcu(&rcvr->link);
1710 				rcvr->next = rcvrs;
1711 				rcvrs = rcvr;
1712 			}
1713 		}
1714 	}
1715 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1716 	synchronize_rcu();
1717 	release_ipmi_user(user, index);
1718 	while (rcvrs) {
1719 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1720 		rcvr = rcvrs;
1721 		rcvrs = rcvr->next;
1722 		kfree(rcvr);
1723 	}
1724 
1725 	return rv;
1726 }
1727 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1728 
1729 static unsigned char
ipmb_checksum(unsigned char *data, int size)1730 ipmb_checksum(unsigned char *data, int size)
1731 {
1732 	unsigned char csum = 0;
1733 
1734 	for (; size > 0; size--, data++)
1735 		csum += *data;
1736 
1737 	return -csum;
1738 }
1739 
format_ipmb_msg(struct ipmi_smi_msg *smi_msg, struct kernel_ipmi_msg *msg, struct ipmi_ipmb_addr *ipmb_addr, long msgid, unsigned char ipmb_seq, int broadcast, unsigned char source_address, unsigned char source_lun)1740 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1741 				   struct kernel_ipmi_msg *msg,
1742 				   struct ipmi_ipmb_addr *ipmb_addr,
1743 				   long                  msgid,
1744 				   unsigned char         ipmb_seq,
1745 				   int                   broadcast,
1746 				   unsigned char         source_address,
1747 				   unsigned char         source_lun)
1748 {
1749 	int i = broadcast;
1750 
1751 	/* Format the IPMB header data. */
1752 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1753 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1754 	smi_msg->data[2] = ipmb_addr->channel;
1755 	if (broadcast)
1756 		smi_msg->data[3] = 0;
1757 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1758 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1759 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1760 	smi_msg->data[i+6] = source_address;
1761 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1762 	smi_msg->data[i+8] = msg->cmd;
1763 
1764 	/* Now tack on the data to the message. */
1765 	if (msg->data_len > 0)
1766 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1767 	smi_msg->data_size = msg->data_len + 9;
1768 
1769 	/* Now calculate the checksum and tack it on. */
1770 	smi_msg->data[i+smi_msg->data_size]
1771 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1772 
1773 	/*
1774 	 * Add on the checksum size and the offset from the
1775 	 * broadcast.
1776 	 */
1777 	smi_msg->data_size += 1 + i;
1778 
1779 	smi_msg->msgid = msgid;
1780 }
1781 
format_lan_msg(struct ipmi_smi_msg *smi_msg, struct kernel_ipmi_msg *msg, struct ipmi_lan_addr *lan_addr, long msgid, unsigned char ipmb_seq, unsigned char source_lun)1782 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1783 				  struct kernel_ipmi_msg *msg,
1784 				  struct ipmi_lan_addr  *lan_addr,
1785 				  long                  msgid,
1786 				  unsigned char         ipmb_seq,
1787 				  unsigned char         source_lun)
1788 {
1789 	/* Format the IPMB header data. */
1790 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1791 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1792 	smi_msg->data[2] = lan_addr->channel;
1793 	smi_msg->data[3] = lan_addr->session_handle;
1794 	smi_msg->data[4] = lan_addr->remote_SWID;
1795 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1796 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1797 	smi_msg->data[7] = lan_addr->local_SWID;
1798 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1799 	smi_msg->data[9] = msg->cmd;
1800 
1801 	/* Now tack on the data to the message. */
1802 	if (msg->data_len > 0)
1803 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1804 	smi_msg->data_size = msg->data_len + 10;
1805 
1806 	/* Now calculate the checksum and tack it on. */
1807 	smi_msg->data[smi_msg->data_size]
1808 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1809 
1810 	/*
1811 	 * Add on the checksum size and the offset from the
1812 	 * broadcast.
1813 	 */
1814 	smi_msg->data_size += 1;
1815 
1816 	smi_msg->msgid = msgid;
1817 }
1818 
smi_add_send_msg(struct ipmi_smi *intf, struct ipmi_smi_msg *smi_msg, int priority)1819 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1820 					     struct ipmi_smi_msg *smi_msg,
1821 					     int priority)
1822 {
1823 	if (intf->curr_msg) {
1824 		if (priority > 0)
1825 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1826 		else
1827 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1828 		smi_msg = NULL;
1829 	} else {
1830 		intf->curr_msg = smi_msg;
1831 	}
1832 
1833 	return smi_msg;
1834 }
1835 
smi_send(struct ipmi_smi *intf, const struct ipmi_smi_handlers *handlers, struct ipmi_smi_msg *smi_msg, int priority)1836 static void smi_send(struct ipmi_smi *intf,
1837 		     const struct ipmi_smi_handlers *handlers,
1838 		     struct ipmi_smi_msg *smi_msg, int priority)
1839 {
1840 	int run_to_completion = intf->run_to_completion;
1841 	unsigned long flags = 0;
1842 
1843 	if (!run_to_completion)
1844 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1845 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1846 
1847 	if (!run_to_completion)
1848 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1849 
1850 	if (smi_msg)
1851 		handlers->sender(intf->send_info, smi_msg);
1852 }
1853 
is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)1854 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1855 {
1856 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1857 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1858 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1859 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1860 }
1861 
i_ipmi_req_sysintf(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, int retries, unsigned int retry_time_ms)1862 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1863 			      struct ipmi_addr       *addr,
1864 			      long                   msgid,
1865 			      struct kernel_ipmi_msg *msg,
1866 			      struct ipmi_smi_msg    *smi_msg,
1867 			      struct ipmi_recv_msg   *recv_msg,
1868 			      int                    retries,
1869 			      unsigned int           retry_time_ms)
1870 {
1871 	struct ipmi_system_interface_addr *smi_addr;
1872 
1873 	if (msg->netfn & 1)
1874 		/* Responses are not allowed to the SMI. */
1875 		return -EINVAL;
1876 
1877 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1878 	if (smi_addr->lun > 3) {
1879 		ipmi_inc_stat(intf, sent_invalid_commands);
1880 		return -EINVAL;
1881 	}
1882 
1883 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1884 
1885 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1886 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1887 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1888 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1889 		/*
1890 		 * We don't let the user do these, since we manage
1891 		 * the sequence numbers.
1892 		 */
1893 		ipmi_inc_stat(intf, sent_invalid_commands);
1894 		return -EINVAL;
1895 	}
1896 
1897 	if (is_maintenance_mode_cmd(msg)) {
1898 		unsigned long flags;
1899 
1900 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1901 		intf->auto_maintenance_timeout
1902 			= maintenance_mode_timeout_ms;
1903 		if (!intf->maintenance_mode
1904 		    && !intf->maintenance_mode_enable) {
1905 			intf->maintenance_mode_enable = true;
1906 			maintenance_mode_update(intf);
1907 		}
1908 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1909 				       flags);
1910 	}
1911 
1912 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1913 		ipmi_inc_stat(intf, sent_invalid_commands);
1914 		return -EMSGSIZE;
1915 	}
1916 
1917 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1918 	smi_msg->data[1] = msg->cmd;
1919 	smi_msg->msgid = msgid;
1920 	smi_msg->user_data = recv_msg;
1921 	if (msg->data_len > 0)
1922 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1923 	smi_msg->data_size = msg->data_len + 2;
1924 	ipmi_inc_stat(intf, sent_local_commands);
1925 
1926 	return 0;
1927 }
1928 
i_ipmi_req_ipmb(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, unsigned char source_address, unsigned char source_lun, int retries, unsigned int retry_time_ms)1929 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1930 			   struct ipmi_addr       *addr,
1931 			   long                   msgid,
1932 			   struct kernel_ipmi_msg *msg,
1933 			   struct ipmi_smi_msg    *smi_msg,
1934 			   struct ipmi_recv_msg   *recv_msg,
1935 			   unsigned char          source_address,
1936 			   unsigned char          source_lun,
1937 			   int                    retries,
1938 			   unsigned int           retry_time_ms)
1939 {
1940 	struct ipmi_ipmb_addr *ipmb_addr;
1941 	unsigned char ipmb_seq;
1942 	long seqid;
1943 	int broadcast = 0;
1944 	struct ipmi_channel *chans;
1945 	int rv = 0;
1946 
1947 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1948 		ipmi_inc_stat(intf, sent_invalid_commands);
1949 		return -EINVAL;
1950 	}
1951 
1952 	chans = READ_ONCE(intf->channel_list)->c;
1953 
1954 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1955 		ipmi_inc_stat(intf, sent_invalid_commands);
1956 		return -EINVAL;
1957 	}
1958 
1959 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1960 		/*
1961 		 * Broadcasts add a zero at the beginning of the
1962 		 * message, but otherwise is the same as an IPMB
1963 		 * address.
1964 		 */
1965 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1966 		broadcast = 1;
1967 		retries = 0; /* Don't retry broadcasts. */
1968 	}
1969 
1970 	/*
1971 	 * 9 for the header and 1 for the checksum, plus
1972 	 * possibly one for the broadcast.
1973 	 */
1974 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1975 		ipmi_inc_stat(intf, sent_invalid_commands);
1976 		return -EMSGSIZE;
1977 	}
1978 
1979 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1980 	if (ipmb_addr->lun > 3) {
1981 		ipmi_inc_stat(intf, sent_invalid_commands);
1982 		return -EINVAL;
1983 	}
1984 
1985 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1986 
1987 	if (recv_msg->msg.netfn & 0x1) {
1988 		/*
1989 		 * It's a response, so use the user's sequence
1990 		 * from msgid.
1991 		 */
1992 		ipmi_inc_stat(intf, sent_ipmb_responses);
1993 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1994 				msgid, broadcast,
1995 				source_address, source_lun);
1996 
1997 		/*
1998 		 * Save the receive message so we can use it
1999 		 * to deliver the response.
2000 		 */
2001 		smi_msg->user_data = recv_msg;
2002 	} else {
2003 		/* It's a command, so get a sequence for it. */
2004 		unsigned long flags;
2005 
2006 		spin_lock_irqsave(&intf->seq_lock, flags);
2007 
2008 		if (is_maintenance_mode_cmd(msg))
2009 			intf->ipmb_maintenance_mode_timeout =
2010 				maintenance_mode_timeout_ms;
2011 
2012 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2013 			/* Different default in maintenance mode */
2014 			retry_time_ms = default_maintenance_retry_ms;
2015 
2016 		/*
2017 		 * Create a sequence number with a 1 second
2018 		 * timeout and 4 retries.
2019 		 */
2020 		rv = intf_next_seq(intf,
2021 				   recv_msg,
2022 				   retry_time_ms,
2023 				   retries,
2024 				   broadcast,
2025 				   &ipmb_seq,
2026 				   &seqid);
2027 		if (rv)
2028 			/*
2029 			 * We have used up all the sequence numbers,
2030 			 * probably, so abort.
2031 			 */
2032 			goto out_err;
2033 
2034 		ipmi_inc_stat(intf, sent_ipmb_commands);
2035 
2036 		/*
2037 		 * Store the sequence number in the message,
2038 		 * so that when the send message response
2039 		 * comes back we can start the timer.
2040 		 */
2041 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2042 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2043 				ipmb_seq, broadcast,
2044 				source_address, source_lun);
2045 
2046 		/*
2047 		 * Copy the message into the recv message data, so we
2048 		 * can retransmit it later if necessary.
2049 		 */
2050 		memcpy(recv_msg->msg_data, smi_msg->data,
2051 		       smi_msg->data_size);
2052 		recv_msg->msg.data = recv_msg->msg_data;
2053 		recv_msg->msg.data_len = smi_msg->data_size;
2054 
2055 		/*
2056 		 * We don't unlock until here, because we need
2057 		 * to copy the completed message into the
2058 		 * recv_msg before we release the lock.
2059 		 * Otherwise, race conditions may bite us.  I
2060 		 * know that's pretty paranoid, but I prefer
2061 		 * to be correct.
2062 		 */
2063 out_err:
2064 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2065 	}
2066 
2067 	return rv;
2068 }
2069 
i_ipmi_req_lan(struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, struct ipmi_smi_msg *smi_msg, struct ipmi_recv_msg *recv_msg, unsigned char source_lun, int retries, unsigned int retry_time_ms)2070 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2071 			  struct ipmi_addr       *addr,
2072 			  long                   msgid,
2073 			  struct kernel_ipmi_msg *msg,
2074 			  struct ipmi_smi_msg    *smi_msg,
2075 			  struct ipmi_recv_msg   *recv_msg,
2076 			  unsigned char          source_lun,
2077 			  int                    retries,
2078 			  unsigned int           retry_time_ms)
2079 {
2080 	struct ipmi_lan_addr  *lan_addr;
2081 	unsigned char ipmb_seq;
2082 	long seqid;
2083 	struct ipmi_channel *chans;
2084 	int rv = 0;
2085 
2086 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2087 		ipmi_inc_stat(intf, sent_invalid_commands);
2088 		return -EINVAL;
2089 	}
2090 
2091 	chans = READ_ONCE(intf->channel_list)->c;
2092 
2093 	if ((chans[addr->channel].medium
2094 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2095 			&& (chans[addr->channel].medium
2096 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2097 		ipmi_inc_stat(intf, sent_invalid_commands);
2098 		return -EINVAL;
2099 	}
2100 
2101 	/* 11 for the header and 1 for the checksum. */
2102 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2103 		ipmi_inc_stat(intf, sent_invalid_commands);
2104 		return -EMSGSIZE;
2105 	}
2106 
2107 	lan_addr = (struct ipmi_lan_addr *) addr;
2108 	if (lan_addr->lun > 3) {
2109 		ipmi_inc_stat(intf, sent_invalid_commands);
2110 		return -EINVAL;
2111 	}
2112 
2113 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2114 
2115 	if (recv_msg->msg.netfn & 0x1) {
2116 		/*
2117 		 * It's a response, so use the user's sequence
2118 		 * from msgid.
2119 		 */
2120 		ipmi_inc_stat(intf, sent_lan_responses);
2121 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2122 			       msgid, source_lun);
2123 
2124 		/*
2125 		 * Save the receive message so we can use it
2126 		 * to deliver the response.
2127 		 */
2128 		smi_msg->user_data = recv_msg;
2129 	} else {
2130 		/* It's a command, so get a sequence for it. */
2131 		unsigned long flags;
2132 
2133 		spin_lock_irqsave(&intf->seq_lock, flags);
2134 
2135 		/*
2136 		 * Create a sequence number with a 1 second
2137 		 * timeout and 4 retries.
2138 		 */
2139 		rv = intf_next_seq(intf,
2140 				   recv_msg,
2141 				   retry_time_ms,
2142 				   retries,
2143 				   0,
2144 				   &ipmb_seq,
2145 				   &seqid);
2146 		if (rv)
2147 			/*
2148 			 * We have used up all the sequence numbers,
2149 			 * probably, so abort.
2150 			 */
2151 			goto out_err;
2152 
2153 		ipmi_inc_stat(intf, sent_lan_commands);
2154 
2155 		/*
2156 		 * Store the sequence number in the message,
2157 		 * so that when the send message response
2158 		 * comes back we can start the timer.
2159 		 */
2160 		format_lan_msg(smi_msg, msg, lan_addr,
2161 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2162 			       ipmb_seq, source_lun);
2163 
2164 		/*
2165 		 * Copy the message into the recv message data, so we
2166 		 * can retransmit it later if necessary.
2167 		 */
2168 		memcpy(recv_msg->msg_data, smi_msg->data,
2169 		       smi_msg->data_size);
2170 		recv_msg->msg.data = recv_msg->msg_data;
2171 		recv_msg->msg.data_len = smi_msg->data_size;
2172 
2173 		/*
2174 		 * We don't unlock until here, because we need
2175 		 * to copy the completed message into the
2176 		 * recv_msg before we release the lock.
2177 		 * Otherwise, race conditions may bite us.  I
2178 		 * know that's pretty paranoid, but I prefer
2179 		 * to be correct.
2180 		 */
2181 out_err:
2182 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2183 	}
2184 
2185 	return rv;
2186 }
2187 
2188 /*
2189  * Separate from ipmi_request so that the user does not have to be
2190  * supplied in certain circumstances (mainly at panic time).  If
2191  * messages are supplied, they will be freed, even if an error
2192  * occurs.
2193  */
i_ipmi_request(struct ipmi_user *user, struct ipmi_smi *intf, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, void *supplied_smi, struct ipmi_recv_msg *supplied_recv, int priority, unsigned char source_address, unsigned char source_lun, int retries, unsigned int retry_time_ms)2194 static int i_ipmi_request(struct ipmi_user     *user,
2195 			  struct ipmi_smi      *intf,
2196 			  struct ipmi_addr     *addr,
2197 			  long                 msgid,
2198 			  struct kernel_ipmi_msg *msg,
2199 			  void                 *user_msg_data,
2200 			  void                 *supplied_smi,
2201 			  struct ipmi_recv_msg *supplied_recv,
2202 			  int                  priority,
2203 			  unsigned char        source_address,
2204 			  unsigned char        source_lun,
2205 			  int                  retries,
2206 			  unsigned int         retry_time_ms)
2207 {
2208 	struct ipmi_smi_msg *smi_msg;
2209 	struct ipmi_recv_msg *recv_msg;
2210 	int rv = 0;
2211 
2212 	if (supplied_recv)
2213 		recv_msg = supplied_recv;
2214 	else {
2215 		recv_msg = ipmi_alloc_recv_msg();
2216 		if (recv_msg == NULL) {
2217 			rv = -ENOMEM;
2218 			goto out;
2219 		}
2220 	}
2221 	recv_msg->user_msg_data = user_msg_data;
2222 
2223 	if (supplied_smi)
2224 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2225 	else {
2226 		smi_msg = ipmi_alloc_smi_msg();
2227 		if (smi_msg == NULL) {
2228 			if (!supplied_recv)
2229 				ipmi_free_recv_msg(recv_msg);
2230 			rv = -ENOMEM;
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	rcu_read_lock();
2236 	if (intf->in_shutdown) {
2237 		rv = -ENODEV;
2238 		goto out_err;
2239 	}
2240 
2241 	recv_msg->user = user;
2242 	if (user)
2243 		/* The put happens when the message is freed. */
2244 		kref_get(&user->refcount);
2245 	recv_msg->msgid = msgid;
2246 	/*
2247 	 * Store the message to send in the receive message so timeout
2248 	 * responses can get the proper response data.
2249 	 */
2250 	recv_msg->msg = *msg;
2251 
2252 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2253 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2254 					recv_msg, retries, retry_time_ms);
2255 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2256 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2257 				     source_address, source_lun,
2258 				     retries, retry_time_ms);
2259 	} else if (is_lan_addr(addr)) {
2260 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2261 				    source_lun, retries, retry_time_ms);
2262 	} else {
2263 	    /* Unknown address type. */
2264 		ipmi_inc_stat(intf, sent_invalid_commands);
2265 		rv = -EINVAL;
2266 	}
2267 
2268 	if (rv) {
2269 out_err:
2270 		ipmi_free_smi_msg(smi_msg);
2271 		ipmi_free_recv_msg(recv_msg);
2272 	} else {
2273 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2274 
2275 		smi_send(intf, intf->handlers, smi_msg, priority);
2276 	}
2277 	rcu_read_unlock();
2278 
2279 out:
2280 	return rv;
2281 }
2282 
check_addr(struct ipmi_smi *intf, struct ipmi_addr *addr, unsigned char *saddr, unsigned char *lun)2283 static int check_addr(struct ipmi_smi  *intf,
2284 		      struct ipmi_addr *addr,
2285 		      unsigned char    *saddr,
2286 		      unsigned char    *lun)
2287 {
2288 	if (addr->channel >= IPMI_MAX_CHANNELS)
2289 		return -EINVAL;
2290 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2291 	*lun = intf->addrinfo[addr->channel].lun;
2292 	*saddr = intf->addrinfo[addr->channel].address;
2293 	return 0;
2294 }
2295 
ipmi_request_settime(struct ipmi_user *user, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, int priority, int retries, unsigned int retry_time_ms)2296 int ipmi_request_settime(struct ipmi_user *user,
2297 			 struct ipmi_addr *addr,
2298 			 long             msgid,
2299 			 struct kernel_ipmi_msg  *msg,
2300 			 void             *user_msg_data,
2301 			 int              priority,
2302 			 int              retries,
2303 			 unsigned int     retry_time_ms)
2304 {
2305 	unsigned char saddr = 0, lun = 0;
2306 	int rv, index;
2307 
2308 	if (!user)
2309 		return -EINVAL;
2310 
2311 	user = acquire_ipmi_user(user, &index);
2312 	if (!user)
2313 		return -ENODEV;
2314 
2315 	rv = check_addr(user->intf, addr, &saddr, &lun);
2316 	if (!rv)
2317 		rv = i_ipmi_request(user,
2318 				    user->intf,
2319 				    addr,
2320 				    msgid,
2321 				    msg,
2322 				    user_msg_data,
2323 				    NULL, NULL,
2324 				    priority,
2325 				    saddr,
2326 				    lun,
2327 				    retries,
2328 				    retry_time_ms);
2329 
2330 	release_ipmi_user(user, index);
2331 	return rv;
2332 }
2333 EXPORT_SYMBOL(ipmi_request_settime);
2334 
ipmi_request_supply_msgs(struct ipmi_user *user, struct ipmi_addr *addr, long msgid, struct kernel_ipmi_msg *msg, void *user_msg_data, void *supplied_smi, struct ipmi_recv_msg *supplied_recv, int priority)2335 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2336 			     struct ipmi_addr     *addr,
2337 			     long                 msgid,
2338 			     struct kernel_ipmi_msg *msg,
2339 			     void                 *user_msg_data,
2340 			     void                 *supplied_smi,
2341 			     struct ipmi_recv_msg *supplied_recv,
2342 			     int                  priority)
2343 {
2344 	unsigned char saddr = 0, lun = 0;
2345 	int rv, index;
2346 
2347 	if (!user)
2348 		return -EINVAL;
2349 
2350 	user = acquire_ipmi_user(user, &index);
2351 	if (!user)
2352 		return -ENODEV;
2353 
2354 	rv = check_addr(user->intf, addr, &saddr, &lun);
2355 	if (!rv)
2356 		rv = i_ipmi_request(user,
2357 				    user->intf,
2358 				    addr,
2359 				    msgid,
2360 				    msg,
2361 				    user_msg_data,
2362 				    supplied_smi,
2363 				    supplied_recv,
2364 				    priority,
2365 				    saddr,
2366 				    lun,
2367 				    -1, 0);
2368 
2369 	release_ipmi_user(user, index);
2370 	return rv;
2371 }
2372 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2373 
bmc_device_id_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)2374 static void bmc_device_id_handler(struct ipmi_smi *intf,
2375 				  struct ipmi_recv_msg *msg)
2376 {
2377 	int rv;
2378 
2379 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2380 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2381 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2382 		dev_warn(intf->si_dev,
2383 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2384 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2385 		return;
2386 	}
2387 
2388 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2389 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2390 	if (rv) {
2391 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2392 		/* record completion code when error */
2393 		intf->bmc->cc = msg->msg.data[0];
2394 		intf->bmc->dyn_id_set = 0;
2395 	} else {
2396 		/*
2397 		 * Make sure the id data is available before setting
2398 		 * dyn_id_set.
2399 		 */
2400 		smp_wmb();
2401 		intf->bmc->dyn_id_set = 1;
2402 	}
2403 
2404 	wake_up(&intf->waitq);
2405 }
2406 
2407 static int
send_get_device_id_cmd(struct ipmi_smi *intf)2408 send_get_device_id_cmd(struct ipmi_smi *intf)
2409 {
2410 	struct ipmi_system_interface_addr si;
2411 	struct kernel_ipmi_msg msg;
2412 
2413 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2414 	si.channel = IPMI_BMC_CHANNEL;
2415 	si.lun = 0;
2416 
2417 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2418 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2419 	msg.data = NULL;
2420 	msg.data_len = 0;
2421 
2422 	return i_ipmi_request(NULL,
2423 			      intf,
2424 			      (struct ipmi_addr *) &si,
2425 			      0,
2426 			      &msg,
2427 			      intf,
2428 			      NULL,
2429 			      NULL,
2430 			      0,
2431 			      intf->addrinfo[0].address,
2432 			      intf->addrinfo[0].lun,
2433 			      -1, 0);
2434 }
2435 
__get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)2436 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2437 {
2438 	int rv;
2439 	unsigned int retry_count = 0;
2440 
2441 	intf->null_user_handler = bmc_device_id_handler;
2442 
2443 retry:
2444 	bmc->cc = 0;
2445 	bmc->dyn_id_set = 2;
2446 
2447 	rv = send_get_device_id_cmd(intf);
2448 	if (rv)
2449 		goto out_reset_handler;
2450 
2451 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2452 
2453 	if (!bmc->dyn_id_set) {
2454 		if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2455 		     || bmc->cc ==  IPMI_DEVICE_IN_INIT_ERR
2456 		     || bmc->cc ==  IPMI_NOT_IN_MY_STATE_ERR)
2457 		     && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2458 			msleep(500);
2459 			dev_warn(intf->si_dev,
2460 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2461 			    bmc->cc);
2462 			goto retry;
2463 		}
2464 
2465 		rv = -EIO; /* Something went wrong in the fetch. */
2466 	}
2467 
2468 	/* dyn_id_set makes the id data available. */
2469 	smp_rmb();
2470 
2471 out_reset_handler:
2472 	intf->null_user_handler = NULL;
2473 
2474 	return rv;
2475 }
2476 
2477 /*
2478  * Fetch the device id for the bmc/interface.  You must pass in either
2479  * bmc or intf, this code will get the other one.  If the data has
2480  * been recently fetched, this will just use the cached data.  Otherwise
2481  * it will run a new fetch.
2482  *
2483  * Except for the first time this is called (in ipmi_add_smi()),
2484  * this will always return good data;
2485  */
__bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, struct ipmi_device_id *id, bool *guid_set, guid_t *guid, int intf_num)2486 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2487 			       struct ipmi_device_id *id,
2488 			       bool *guid_set, guid_t *guid, int intf_num)
2489 {
2490 	int rv = 0;
2491 	int prev_dyn_id_set, prev_guid_set;
2492 	bool intf_set = intf != NULL;
2493 
2494 	if (!intf) {
2495 		mutex_lock(&bmc->dyn_mutex);
2496 retry_bmc_lock:
2497 		if (list_empty(&bmc->intfs)) {
2498 			mutex_unlock(&bmc->dyn_mutex);
2499 			return -ENOENT;
2500 		}
2501 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2502 					bmc_link);
2503 		kref_get(&intf->refcount);
2504 		mutex_unlock(&bmc->dyn_mutex);
2505 		mutex_lock(&intf->bmc_reg_mutex);
2506 		mutex_lock(&bmc->dyn_mutex);
2507 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2508 					     bmc_link)) {
2509 			mutex_unlock(&intf->bmc_reg_mutex);
2510 			kref_put(&intf->refcount, intf_free);
2511 			goto retry_bmc_lock;
2512 		}
2513 	} else {
2514 		mutex_lock(&intf->bmc_reg_mutex);
2515 		bmc = intf->bmc;
2516 		mutex_lock(&bmc->dyn_mutex);
2517 		kref_get(&intf->refcount);
2518 	}
2519 
2520 	/* If we have a valid and current ID, just return that. */
2521 	if (intf->in_bmc_register ||
2522 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2523 		goto out_noprocessing;
2524 
2525 	prev_guid_set = bmc->dyn_guid_set;
2526 	__get_guid(intf);
2527 
2528 	prev_dyn_id_set = bmc->dyn_id_set;
2529 	rv = __get_device_id(intf, bmc);
2530 	if (rv)
2531 		goto out;
2532 
2533 	/*
2534 	 * The guid, device id, manufacturer id, and product id should
2535 	 * not change on a BMC.  If it does we have to do some dancing.
2536 	 */
2537 	if (!intf->bmc_registered
2538 	    || (!prev_guid_set && bmc->dyn_guid_set)
2539 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2540 	    || (prev_guid_set && bmc->dyn_guid_set
2541 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2542 	    || bmc->id.device_id != bmc->fetch_id.device_id
2543 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2544 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2545 		struct ipmi_device_id id = bmc->fetch_id;
2546 		int guid_set = bmc->dyn_guid_set;
2547 		guid_t guid;
2548 
2549 		guid = bmc->fetch_guid;
2550 		mutex_unlock(&bmc->dyn_mutex);
2551 
2552 		__ipmi_bmc_unregister(intf);
2553 		/* Fill in the temporary BMC for good measure. */
2554 		intf->bmc->id = id;
2555 		intf->bmc->dyn_guid_set = guid_set;
2556 		intf->bmc->guid = guid;
2557 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2558 			need_waiter(intf); /* Retry later on an error. */
2559 		else
2560 			__scan_channels(intf, &id);
2561 
2562 
2563 		if (!intf_set) {
2564 			/*
2565 			 * We weren't given the interface on the
2566 			 * command line, so restart the operation on
2567 			 * the next interface for the BMC.
2568 			 */
2569 			mutex_unlock(&intf->bmc_reg_mutex);
2570 			mutex_lock(&bmc->dyn_mutex);
2571 			goto retry_bmc_lock;
2572 		}
2573 
2574 		/* We have a new BMC, set it up. */
2575 		bmc = intf->bmc;
2576 		mutex_lock(&bmc->dyn_mutex);
2577 		goto out_noprocessing;
2578 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2579 		/* Version info changes, scan the channels again. */
2580 		__scan_channels(intf, &bmc->fetch_id);
2581 
2582 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2583 
2584 out:
2585 	if (rv && prev_dyn_id_set) {
2586 		rv = 0; /* Ignore failures if we have previous data. */
2587 		bmc->dyn_id_set = prev_dyn_id_set;
2588 	}
2589 	if (!rv) {
2590 		bmc->id = bmc->fetch_id;
2591 		if (bmc->dyn_guid_set)
2592 			bmc->guid = bmc->fetch_guid;
2593 		else if (prev_guid_set)
2594 			/*
2595 			 * The guid used to be valid and it failed to fetch,
2596 			 * just use the cached value.
2597 			 */
2598 			bmc->dyn_guid_set = prev_guid_set;
2599 	}
2600 out_noprocessing:
2601 	if (!rv) {
2602 		if (id)
2603 			*id = bmc->id;
2604 
2605 		if (guid_set)
2606 			*guid_set = bmc->dyn_guid_set;
2607 
2608 		if (guid && bmc->dyn_guid_set)
2609 			*guid =  bmc->guid;
2610 	}
2611 
2612 	mutex_unlock(&bmc->dyn_mutex);
2613 	mutex_unlock(&intf->bmc_reg_mutex);
2614 
2615 	kref_put(&intf->refcount, intf_free);
2616 	return rv;
2617 }
2618 
bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc, struct ipmi_device_id *id, bool *guid_set, guid_t *guid)2619 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2620 			     struct ipmi_device_id *id,
2621 			     bool *guid_set, guid_t *guid)
2622 {
2623 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2624 }
2625 
device_id_show(struct device *dev, struct device_attribute *attr, char *buf)2626 static ssize_t device_id_show(struct device *dev,
2627 			      struct device_attribute *attr,
2628 			      char *buf)
2629 {
2630 	struct bmc_device *bmc = to_bmc_device(dev);
2631 	struct ipmi_device_id id;
2632 	int rv;
2633 
2634 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2635 	if (rv)
2636 		return rv;
2637 
2638 	return snprintf(buf, 10, "%u\n", id.device_id);
2639 }
2640 static DEVICE_ATTR_RO(device_id);
2641 
provides_device_sdrs_show(struct device *dev, struct device_attribute *attr, char *buf)2642 static ssize_t provides_device_sdrs_show(struct device *dev,
2643 					 struct device_attribute *attr,
2644 					 char *buf)
2645 {
2646 	struct bmc_device *bmc = to_bmc_device(dev);
2647 	struct ipmi_device_id id;
2648 	int rv;
2649 
2650 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2651 	if (rv)
2652 		return rv;
2653 
2654 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2655 }
2656 static DEVICE_ATTR_RO(provides_device_sdrs);
2657 
revision_show(struct device *dev, struct device_attribute *attr, char *buf)2658 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2659 			     char *buf)
2660 {
2661 	struct bmc_device *bmc = to_bmc_device(dev);
2662 	struct ipmi_device_id id;
2663 	int rv;
2664 
2665 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2666 	if (rv)
2667 		return rv;
2668 
2669 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2670 }
2671 static DEVICE_ATTR_RO(revision);
2672 
firmware_revision_show(struct device *dev, struct device_attribute *attr, char *buf)2673 static ssize_t firmware_revision_show(struct device *dev,
2674 				      struct device_attribute *attr,
2675 				      char *buf)
2676 {
2677 	struct bmc_device *bmc = to_bmc_device(dev);
2678 	struct ipmi_device_id id;
2679 	int rv;
2680 
2681 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2682 	if (rv)
2683 		return rv;
2684 
2685 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2686 			id.firmware_revision_2);
2687 }
2688 static DEVICE_ATTR_RO(firmware_revision);
2689 
ipmi_version_show(struct device *dev, struct device_attribute *attr, char *buf)2690 static ssize_t ipmi_version_show(struct device *dev,
2691 				 struct device_attribute *attr,
2692 				 char *buf)
2693 {
2694 	struct bmc_device *bmc = to_bmc_device(dev);
2695 	struct ipmi_device_id id;
2696 	int rv;
2697 
2698 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2699 	if (rv)
2700 		return rv;
2701 
2702 	return snprintf(buf, 20, "%u.%u\n",
2703 			ipmi_version_major(&id),
2704 			ipmi_version_minor(&id));
2705 }
2706 static DEVICE_ATTR_RO(ipmi_version);
2707 
add_dev_support_show(struct device *dev, struct device_attribute *attr, char *buf)2708 static ssize_t add_dev_support_show(struct device *dev,
2709 				    struct device_attribute *attr,
2710 				    char *buf)
2711 {
2712 	struct bmc_device *bmc = to_bmc_device(dev);
2713 	struct ipmi_device_id id;
2714 	int rv;
2715 
2716 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2717 	if (rv)
2718 		return rv;
2719 
2720 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2721 }
2722 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2723 		   NULL);
2724 
manufacturer_id_show(struct device *dev, struct device_attribute *attr, char *buf)2725 static ssize_t manufacturer_id_show(struct device *dev,
2726 				    struct device_attribute *attr,
2727 				    char *buf)
2728 {
2729 	struct bmc_device *bmc = to_bmc_device(dev);
2730 	struct ipmi_device_id id;
2731 	int rv;
2732 
2733 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2734 	if (rv)
2735 		return rv;
2736 
2737 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2738 }
2739 static DEVICE_ATTR_RO(manufacturer_id);
2740 
product_id_show(struct device *dev, struct device_attribute *attr, char *buf)2741 static ssize_t product_id_show(struct device *dev,
2742 			       struct device_attribute *attr,
2743 			       char *buf)
2744 {
2745 	struct bmc_device *bmc = to_bmc_device(dev);
2746 	struct ipmi_device_id id;
2747 	int rv;
2748 
2749 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2750 	if (rv)
2751 		return rv;
2752 
2753 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2754 }
2755 static DEVICE_ATTR_RO(product_id);
2756 
aux_firmware_rev_show(struct device *dev, struct device_attribute *attr, char *buf)2757 static ssize_t aux_firmware_rev_show(struct device *dev,
2758 				     struct device_attribute *attr,
2759 				     char *buf)
2760 {
2761 	struct bmc_device *bmc = to_bmc_device(dev);
2762 	struct ipmi_device_id id;
2763 	int rv;
2764 
2765 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2766 	if (rv)
2767 		return rv;
2768 
2769 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2770 			id.aux_firmware_revision[3],
2771 			id.aux_firmware_revision[2],
2772 			id.aux_firmware_revision[1],
2773 			id.aux_firmware_revision[0]);
2774 }
2775 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2776 
guid_show(struct device *dev, struct device_attribute *attr, char *buf)2777 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2778 			 char *buf)
2779 {
2780 	struct bmc_device *bmc = to_bmc_device(dev);
2781 	bool guid_set;
2782 	guid_t guid;
2783 	int rv;
2784 
2785 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2786 	if (rv)
2787 		return rv;
2788 	if (!guid_set)
2789 		return -ENOENT;
2790 
2791 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2792 }
2793 static DEVICE_ATTR_RO(guid);
2794 
2795 static struct attribute *bmc_dev_attrs[] = {
2796 	&dev_attr_device_id.attr,
2797 	&dev_attr_provides_device_sdrs.attr,
2798 	&dev_attr_revision.attr,
2799 	&dev_attr_firmware_revision.attr,
2800 	&dev_attr_ipmi_version.attr,
2801 	&dev_attr_additional_device_support.attr,
2802 	&dev_attr_manufacturer_id.attr,
2803 	&dev_attr_product_id.attr,
2804 	&dev_attr_aux_firmware_revision.attr,
2805 	&dev_attr_guid.attr,
2806 	NULL
2807 };
2808 
bmc_dev_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)2809 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2810 				       struct attribute *attr, int idx)
2811 {
2812 	struct device *dev = kobj_to_dev(kobj);
2813 	struct bmc_device *bmc = to_bmc_device(dev);
2814 	umode_t mode = attr->mode;
2815 	int rv;
2816 
2817 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2818 		struct ipmi_device_id id;
2819 
2820 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2821 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2822 	}
2823 	if (attr == &dev_attr_guid.attr) {
2824 		bool guid_set;
2825 
2826 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2827 		return (!rv && guid_set) ? mode : 0;
2828 	}
2829 	return mode;
2830 }
2831 
2832 static const struct attribute_group bmc_dev_attr_group = {
2833 	.attrs		= bmc_dev_attrs,
2834 	.is_visible	= bmc_dev_attr_is_visible,
2835 };
2836 
2837 static const struct attribute_group *bmc_dev_attr_groups[] = {
2838 	&bmc_dev_attr_group,
2839 	NULL
2840 };
2841 
2842 static const struct device_type bmc_device_type = {
2843 	.groups		= bmc_dev_attr_groups,
2844 };
2845 
__find_bmc_guid(struct device *dev, const void *data)2846 static int __find_bmc_guid(struct device *dev, const void *data)
2847 {
2848 	const guid_t *guid = data;
2849 	struct bmc_device *bmc;
2850 	int rv;
2851 
2852 	if (dev->type != &bmc_device_type)
2853 		return 0;
2854 
2855 	bmc = to_bmc_device(dev);
2856 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2857 	if (rv)
2858 		rv = kref_get_unless_zero(&bmc->usecount);
2859 	return rv;
2860 }
2861 
2862 /*
2863  * Returns with the bmc's usecount incremented, if it is non-NULL.
2864  */
ipmi_find_bmc_guid(struct device_driver *drv, guid_t *guid)2865 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2866 					     guid_t *guid)
2867 {
2868 	struct device *dev;
2869 	struct bmc_device *bmc = NULL;
2870 
2871 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2872 	if (dev) {
2873 		bmc = to_bmc_device(dev);
2874 		put_device(dev);
2875 	}
2876 	return bmc;
2877 }
2878 
2879 struct prod_dev_id {
2880 	unsigned int  product_id;
2881 	unsigned char device_id;
2882 };
2883 
__find_bmc_prod_dev_id(struct device *dev, const void *data)2884 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2885 {
2886 	const struct prod_dev_id *cid = data;
2887 	struct bmc_device *bmc;
2888 	int rv;
2889 
2890 	if (dev->type != &bmc_device_type)
2891 		return 0;
2892 
2893 	bmc = to_bmc_device(dev);
2894 	rv = (bmc->id.product_id == cid->product_id
2895 	      && bmc->id.device_id == cid->device_id);
2896 	if (rv)
2897 		rv = kref_get_unless_zero(&bmc->usecount);
2898 	return rv;
2899 }
2900 
2901 /*
2902  * Returns with the bmc's usecount incremented, if it is non-NULL.
2903  */
ipmi_find_bmc_prod_dev_id( struct device_driver *drv, unsigned int product_id, unsigned char device_id)2904 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2905 	struct device_driver *drv,
2906 	unsigned int product_id, unsigned char device_id)
2907 {
2908 	struct prod_dev_id id = {
2909 		.product_id = product_id,
2910 		.device_id = device_id,
2911 	};
2912 	struct device *dev;
2913 	struct bmc_device *bmc = NULL;
2914 
2915 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2916 	if (dev) {
2917 		bmc = to_bmc_device(dev);
2918 		put_device(dev);
2919 	}
2920 	return bmc;
2921 }
2922 
2923 static DEFINE_IDA(ipmi_bmc_ida);
2924 
2925 static void
release_bmc_device(struct device *dev)2926 release_bmc_device(struct device *dev)
2927 {
2928 	kfree(to_bmc_device(dev));
2929 }
2930 
cleanup_bmc_work(struct work_struct *work)2931 static void cleanup_bmc_work(struct work_struct *work)
2932 {
2933 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2934 					      remove_work);
2935 	int id = bmc->pdev.id; /* Unregister overwrites id */
2936 
2937 	platform_device_unregister(&bmc->pdev);
2938 	ida_simple_remove(&ipmi_bmc_ida, id);
2939 }
2940 
2941 static void
cleanup_bmc_device(struct kref *ref)2942 cleanup_bmc_device(struct kref *ref)
2943 {
2944 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2945 
2946 	/*
2947 	 * Remove the platform device in a work queue to avoid issues
2948 	 * with removing the device attributes while reading a device
2949 	 * attribute.
2950 	 */
2951 	queue_work(remove_work_wq, &bmc->remove_work);
2952 }
2953 
2954 /*
2955  * Must be called with intf->bmc_reg_mutex held.
2956  */
__ipmi_bmc_unregister(struct ipmi_smi *intf)2957 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2958 {
2959 	struct bmc_device *bmc = intf->bmc;
2960 
2961 	if (!intf->bmc_registered)
2962 		return;
2963 
2964 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2965 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2966 	kfree(intf->my_dev_name);
2967 	intf->my_dev_name = NULL;
2968 
2969 	mutex_lock(&bmc->dyn_mutex);
2970 	list_del(&intf->bmc_link);
2971 	mutex_unlock(&bmc->dyn_mutex);
2972 	intf->bmc = &intf->tmp_bmc;
2973 	kref_put(&bmc->usecount, cleanup_bmc_device);
2974 	intf->bmc_registered = false;
2975 }
2976 
ipmi_bmc_unregister(struct ipmi_smi *intf)2977 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2978 {
2979 	mutex_lock(&intf->bmc_reg_mutex);
2980 	__ipmi_bmc_unregister(intf);
2981 	mutex_unlock(&intf->bmc_reg_mutex);
2982 }
2983 
2984 /*
2985  * Must be called with intf->bmc_reg_mutex held.
2986  */
__ipmi_bmc_register(struct ipmi_smi *intf, struct ipmi_device_id *id, bool guid_set, guid_t *guid, int intf_num)2987 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2988 			       struct ipmi_device_id *id,
2989 			       bool guid_set, guid_t *guid, int intf_num)
2990 {
2991 	int               rv;
2992 	struct bmc_device *bmc;
2993 	struct bmc_device *old_bmc;
2994 
2995 	/*
2996 	 * platform_device_register() can cause bmc_reg_mutex to
2997 	 * be claimed because of the is_visible functions of
2998 	 * the attributes.  Eliminate possible recursion and
2999 	 * release the lock.
3000 	 */
3001 	intf->in_bmc_register = true;
3002 	mutex_unlock(&intf->bmc_reg_mutex);
3003 
3004 	/*
3005 	 * Try to find if there is an bmc_device struct
3006 	 * representing the interfaced BMC already
3007 	 */
3008 	mutex_lock(&ipmidriver_mutex);
3009 	if (guid_set)
3010 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3011 	else
3012 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3013 						    id->product_id,
3014 						    id->device_id);
3015 
3016 	/*
3017 	 * If there is already an bmc_device, free the new one,
3018 	 * otherwise register the new BMC device
3019 	 */
3020 	if (old_bmc) {
3021 		bmc = old_bmc;
3022 		/*
3023 		 * Note: old_bmc already has usecount incremented by
3024 		 * the BMC find functions.
3025 		 */
3026 		intf->bmc = old_bmc;
3027 		mutex_lock(&bmc->dyn_mutex);
3028 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3029 		mutex_unlock(&bmc->dyn_mutex);
3030 
3031 		dev_info(intf->si_dev,
3032 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3033 			 bmc->id.manufacturer_id,
3034 			 bmc->id.product_id,
3035 			 bmc->id.device_id);
3036 	} else {
3037 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3038 		if (!bmc) {
3039 			rv = -ENOMEM;
3040 			goto out;
3041 		}
3042 		INIT_LIST_HEAD(&bmc->intfs);
3043 		mutex_init(&bmc->dyn_mutex);
3044 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3045 
3046 		bmc->id = *id;
3047 		bmc->dyn_id_set = 1;
3048 		bmc->dyn_guid_set = guid_set;
3049 		bmc->guid = *guid;
3050 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3051 
3052 		bmc->pdev.name = "ipmi_bmc";
3053 
3054 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3055 		if (rv < 0) {
3056 			kfree(bmc);
3057 			goto out;
3058 		}
3059 
3060 		bmc->pdev.dev.driver = &ipmidriver.driver;
3061 		bmc->pdev.id = rv;
3062 		bmc->pdev.dev.release = release_bmc_device;
3063 		bmc->pdev.dev.type = &bmc_device_type;
3064 		kref_init(&bmc->usecount);
3065 
3066 		intf->bmc = bmc;
3067 		mutex_lock(&bmc->dyn_mutex);
3068 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3069 		mutex_unlock(&bmc->dyn_mutex);
3070 
3071 		rv = platform_device_register(&bmc->pdev);
3072 		if (rv) {
3073 			dev_err(intf->si_dev,
3074 				"Unable to register bmc device: %d\n",
3075 				rv);
3076 			goto out_list_del;
3077 		}
3078 
3079 		dev_info(intf->si_dev,
3080 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3081 			 bmc->id.manufacturer_id,
3082 			 bmc->id.product_id,
3083 			 bmc->id.device_id);
3084 	}
3085 
3086 	/*
3087 	 * create symlink from system interface device to bmc device
3088 	 * and back.
3089 	 */
3090 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3091 	if (rv) {
3092 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3093 		goto out_put_bmc;
3094 	}
3095 
3096 	if (intf_num == -1)
3097 		intf_num = intf->intf_num;
3098 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3099 	if (!intf->my_dev_name) {
3100 		rv = -ENOMEM;
3101 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3102 			rv);
3103 		goto out_unlink1;
3104 	}
3105 
3106 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3107 			       intf->my_dev_name);
3108 	if (rv) {
3109 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3110 			rv);
3111 		goto out_free_my_dev_name;
3112 	}
3113 
3114 	intf->bmc_registered = true;
3115 
3116 out:
3117 	mutex_unlock(&ipmidriver_mutex);
3118 	mutex_lock(&intf->bmc_reg_mutex);
3119 	intf->in_bmc_register = false;
3120 	return rv;
3121 
3122 
3123 out_free_my_dev_name:
3124 	kfree(intf->my_dev_name);
3125 	intf->my_dev_name = NULL;
3126 
3127 out_unlink1:
3128 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3129 
3130 out_put_bmc:
3131 	mutex_lock(&bmc->dyn_mutex);
3132 	list_del(&intf->bmc_link);
3133 	mutex_unlock(&bmc->dyn_mutex);
3134 	intf->bmc = &intf->tmp_bmc;
3135 	kref_put(&bmc->usecount, cleanup_bmc_device);
3136 	goto out;
3137 
3138 out_list_del:
3139 	mutex_lock(&bmc->dyn_mutex);
3140 	list_del(&intf->bmc_link);
3141 	mutex_unlock(&bmc->dyn_mutex);
3142 	intf->bmc = &intf->tmp_bmc;
3143 	put_device(&bmc->pdev.dev);
3144 	goto out;
3145 }
3146 
3147 static int
send_guid_cmd(struct ipmi_smi *intf, int chan)3148 send_guid_cmd(struct ipmi_smi *intf, int chan)
3149 {
3150 	struct kernel_ipmi_msg            msg;
3151 	struct ipmi_system_interface_addr si;
3152 
3153 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3154 	si.channel = IPMI_BMC_CHANNEL;
3155 	si.lun = 0;
3156 
3157 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3158 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3159 	msg.data = NULL;
3160 	msg.data_len = 0;
3161 	return i_ipmi_request(NULL,
3162 			      intf,
3163 			      (struct ipmi_addr *) &si,
3164 			      0,
3165 			      &msg,
3166 			      intf,
3167 			      NULL,
3168 			      NULL,
3169 			      0,
3170 			      intf->addrinfo[0].address,
3171 			      intf->addrinfo[0].lun,
3172 			      -1, 0);
3173 }
3174 
guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)3175 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3176 {
3177 	struct bmc_device *bmc = intf->bmc;
3178 
3179 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3180 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3181 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3182 		/* Not for me */
3183 		return;
3184 
3185 	if (msg->msg.data[0] != 0) {
3186 		/* Error from getting the GUID, the BMC doesn't have one. */
3187 		bmc->dyn_guid_set = 0;
3188 		goto out;
3189 	}
3190 
3191 	if (msg->msg.data_len < UUID_SIZE + 1) {
3192 		bmc->dyn_guid_set = 0;
3193 		dev_warn(intf->si_dev,
3194 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3195 			 msg->msg.data_len, UUID_SIZE + 1);
3196 		goto out;
3197 	}
3198 
3199 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3200 	/*
3201 	 * Make sure the guid data is available before setting
3202 	 * dyn_guid_set.
3203 	 */
3204 	smp_wmb();
3205 	bmc->dyn_guid_set = 1;
3206  out:
3207 	wake_up(&intf->waitq);
3208 }
3209 
__get_guid(struct ipmi_smi *intf)3210 static void __get_guid(struct ipmi_smi *intf)
3211 {
3212 	int rv;
3213 	struct bmc_device *bmc = intf->bmc;
3214 
3215 	bmc->dyn_guid_set = 2;
3216 	intf->null_user_handler = guid_handler;
3217 	rv = send_guid_cmd(intf, 0);
3218 	if (rv)
3219 		/* Send failed, no GUID available. */
3220 		bmc->dyn_guid_set = 0;
3221 	else
3222 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3223 
3224 	/* dyn_guid_set makes the guid data available. */
3225 	smp_rmb();
3226 
3227 	intf->null_user_handler = NULL;
3228 }
3229 
3230 static int
send_channel_info_cmd(struct ipmi_smi *intf, int chan)3231 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3232 {
3233 	struct kernel_ipmi_msg            msg;
3234 	unsigned char                     data[1];
3235 	struct ipmi_system_interface_addr si;
3236 
3237 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3238 	si.channel = IPMI_BMC_CHANNEL;
3239 	si.lun = 0;
3240 
3241 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3242 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3243 	msg.data = data;
3244 	msg.data_len = 1;
3245 	data[0] = chan;
3246 	return i_ipmi_request(NULL,
3247 			      intf,
3248 			      (struct ipmi_addr *) &si,
3249 			      0,
3250 			      &msg,
3251 			      intf,
3252 			      NULL,
3253 			      NULL,
3254 			      0,
3255 			      intf->addrinfo[0].address,
3256 			      intf->addrinfo[0].lun,
3257 			      -1, 0);
3258 }
3259 
3260 static void
channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)3261 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3262 {
3263 	int rv = 0;
3264 	int ch;
3265 	unsigned int set = intf->curr_working_cset;
3266 	struct ipmi_channel *chans;
3267 
3268 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3269 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3270 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3271 		/* It's the one we want */
3272 		if (msg->msg.data[0] != 0) {
3273 			/* Got an error from the channel, just go on. */
3274 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3275 				/*
3276 				 * If the MC does not support this
3277 				 * command, that is legal.  We just
3278 				 * assume it has one IPMB at channel
3279 				 * zero.
3280 				 */
3281 				intf->wchannels[set].c[0].medium
3282 					= IPMI_CHANNEL_MEDIUM_IPMB;
3283 				intf->wchannels[set].c[0].protocol
3284 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3285 
3286 				intf->channel_list = intf->wchannels + set;
3287 				intf->channels_ready = true;
3288 				wake_up(&intf->waitq);
3289 				goto out;
3290 			}
3291 			goto next_channel;
3292 		}
3293 		if (msg->msg.data_len < 4) {
3294 			/* Message not big enough, just go on. */
3295 			goto next_channel;
3296 		}
3297 		ch = intf->curr_channel;
3298 		chans = intf->wchannels[set].c;
3299 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3300 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3301 
3302  next_channel:
3303 		intf->curr_channel++;
3304 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3305 			intf->channel_list = intf->wchannels + set;
3306 			intf->channels_ready = true;
3307 			wake_up(&intf->waitq);
3308 		} else {
3309 			intf->channel_list = intf->wchannels + set;
3310 			intf->channels_ready = true;
3311 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3312 		}
3313 
3314 		if (rv) {
3315 			/* Got an error somehow, just give up. */
3316 			dev_warn(intf->si_dev,
3317 				 "Error sending channel information for channel %d: %d\n",
3318 				 intf->curr_channel, rv);
3319 
3320 			intf->channel_list = intf->wchannels + set;
3321 			intf->channels_ready = true;
3322 			wake_up(&intf->waitq);
3323 		}
3324 	}
3325  out:
3326 	return;
3327 }
3328 
3329 /*
3330  * Must be holding intf->bmc_reg_mutex to call this.
3331  */
__scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)3332 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3333 {
3334 	int rv;
3335 
3336 	if (ipmi_version_major(id) > 1
3337 			|| (ipmi_version_major(id) == 1
3338 			    && ipmi_version_minor(id) >= 5)) {
3339 		unsigned int set;
3340 
3341 		/*
3342 		 * Start scanning the channels to see what is
3343 		 * available.
3344 		 */
3345 		set = !intf->curr_working_cset;
3346 		intf->curr_working_cset = set;
3347 		memset(&intf->wchannels[set], 0,
3348 		       sizeof(struct ipmi_channel_set));
3349 
3350 		intf->null_user_handler = channel_handler;
3351 		intf->curr_channel = 0;
3352 		rv = send_channel_info_cmd(intf, 0);
3353 		if (rv) {
3354 			dev_warn(intf->si_dev,
3355 				 "Error sending channel information for channel 0, %d\n",
3356 				 rv);
3357 			intf->null_user_handler = NULL;
3358 			return -EIO;
3359 		}
3360 
3361 		/* Wait for the channel info to be read. */
3362 		wait_event(intf->waitq, intf->channels_ready);
3363 		intf->null_user_handler = NULL;
3364 	} else {
3365 		unsigned int set = intf->curr_working_cset;
3366 
3367 		/* Assume a single IPMB channel at zero. */
3368 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3369 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3370 		intf->channel_list = intf->wchannels + set;
3371 		intf->channels_ready = true;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
ipmi_poll(struct ipmi_smi *intf)3377 static void ipmi_poll(struct ipmi_smi *intf)
3378 {
3379 	if (intf->handlers->poll)
3380 		intf->handlers->poll(intf->send_info);
3381 	/* In case something came in */
3382 	handle_new_recv_msgs(intf);
3383 }
3384 
ipmi_poll_interface(struct ipmi_user *user)3385 void ipmi_poll_interface(struct ipmi_user *user)
3386 {
3387 	ipmi_poll(user->intf);
3388 }
3389 EXPORT_SYMBOL(ipmi_poll_interface);
3390 
redo_bmc_reg(struct work_struct *work)3391 static void redo_bmc_reg(struct work_struct *work)
3392 {
3393 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3394 					     bmc_reg_work);
3395 
3396 	if (!intf->in_shutdown)
3397 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3398 
3399 	kref_put(&intf->refcount, intf_free);
3400 }
3401 
ipmi_add_smi(struct module *owner, const struct ipmi_smi_handlers *handlers, void *send_info, struct device *si_dev, unsigned char slave_addr)3402 int ipmi_add_smi(struct module         *owner,
3403 		 const struct ipmi_smi_handlers *handlers,
3404 		 void		       *send_info,
3405 		 struct device         *si_dev,
3406 		 unsigned char         slave_addr)
3407 {
3408 	int              i, j;
3409 	int              rv;
3410 	struct ipmi_smi *intf, *tintf;
3411 	struct list_head *link;
3412 	struct ipmi_device_id id;
3413 
3414 	/*
3415 	 * Make sure the driver is actually initialized, this handles
3416 	 * problems with initialization order.
3417 	 */
3418 	rv = ipmi_init_msghandler();
3419 	if (rv)
3420 		return rv;
3421 
3422 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3423 	if (!intf)
3424 		return -ENOMEM;
3425 
3426 	rv = init_srcu_struct(&intf->users_srcu);
3427 	if (rv) {
3428 		kfree(intf);
3429 		return rv;
3430 	}
3431 
3432 	intf->owner = owner;
3433 	intf->bmc = &intf->tmp_bmc;
3434 	INIT_LIST_HEAD(&intf->bmc->intfs);
3435 	mutex_init(&intf->bmc->dyn_mutex);
3436 	INIT_LIST_HEAD(&intf->bmc_link);
3437 	mutex_init(&intf->bmc_reg_mutex);
3438 	intf->intf_num = -1; /* Mark it invalid for now. */
3439 	kref_init(&intf->refcount);
3440 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3441 	intf->si_dev = si_dev;
3442 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3443 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3444 		intf->addrinfo[j].lun = 2;
3445 	}
3446 	if (slave_addr != 0)
3447 		intf->addrinfo[0].address = slave_addr;
3448 	INIT_LIST_HEAD(&intf->users);
3449 	intf->handlers = handlers;
3450 	intf->send_info = send_info;
3451 	spin_lock_init(&intf->seq_lock);
3452 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3453 		intf->seq_table[j].inuse = 0;
3454 		intf->seq_table[j].seqid = 0;
3455 	}
3456 	intf->curr_seq = 0;
3457 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3458 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3459 	tasklet_setup(&intf->recv_tasklet,
3460 		     smi_recv_tasklet);
3461 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3462 	spin_lock_init(&intf->xmit_msgs_lock);
3463 	INIT_LIST_HEAD(&intf->xmit_msgs);
3464 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3465 	spin_lock_init(&intf->events_lock);
3466 	spin_lock_init(&intf->watch_lock);
3467 	atomic_set(&intf->event_waiters, 0);
3468 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3469 	INIT_LIST_HEAD(&intf->waiting_events);
3470 	intf->waiting_events_count = 0;
3471 	mutex_init(&intf->cmd_rcvrs_mutex);
3472 	spin_lock_init(&intf->maintenance_mode_lock);
3473 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3474 	init_waitqueue_head(&intf->waitq);
3475 	for (i = 0; i < IPMI_NUM_STATS; i++)
3476 		atomic_set(&intf->stats[i], 0);
3477 
3478 	mutex_lock(&ipmi_interfaces_mutex);
3479 	/* Look for a hole in the numbers. */
3480 	i = 0;
3481 	link = &ipmi_interfaces;
3482 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3483 				ipmi_interfaces_mutex_held()) {
3484 		if (tintf->intf_num != i) {
3485 			link = &tintf->link;
3486 			break;
3487 		}
3488 		i++;
3489 	}
3490 	/* Add the new interface in numeric order. */
3491 	if (i == 0)
3492 		list_add_rcu(&intf->link, &ipmi_interfaces);
3493 	else
3494 		list_add_tail_rcu(&intf->link, link);
3495 
3496 	rv = handlers->start_processing(send_info, intf);
3497 	if (rv)
3498 		goto out_err;
3499 
3500 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3501 	if (rv) {
3502 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3503 		goto out_err_started;
3504 	}
3505 
3506 	mutex_lock(&intf->bmc_reg_mutex);
3507 	rv = __scan_channels(intf, &id);
3508 	mutex_unlock(&intf->bmc_reg_mutex);
3509 	if (rv)
3510 		goto out_err_bmc_reg;
3511 
3512 	/*
3513 	 * Keep memory order straight for RCU readers.  Make
3514 	 * sure everything else is committed to memory before
3515 	 * setting intf_num to mark the interface valid.
3516 	 */
3517 	smp_wmb();
3518 	intf->intf_num = i;
3519 	mutex_unlock(&ipmi_interfaces_mutex);
3520 
3521 	/* After this point the interface is legal to use. */
3522 	call_smi_watchers(i, intf->si_dev);
3523 
3524 	return 0;
3525 
3526  out_err_bmc_reg:
3527 	ipmi_bmc_unregister(intf);
3528  out_err_started:
3529 	if (intf->handlers->shutdown)
3530 		intf->handlers->shutdown(intf->send_info);
3531  out_err:
3532 	list_del_rcu(&intf->link);
3533 	mutex_unlock(&ipmi_interfaces_mutex);
3534 	synchronize_srcu(&ipmi_interfaces_srcu);
3535 	cleanup_srcu_struct(&intf->users_srcu);
3536 	kref_put(&intf->refcount, intf_free);
3537 
3538 	return rv;
3539 }
3540 EXPORT_SYMBOL(ipmi_add_smi);
3541 
deliver_smi_err_response(struct ipmi_smi *intf, struct ipmi_smi_msg *msg, unsigned char err)3542 static void deliver_smi_err_response(struct ipmi_smi *intf,
3543 				     struct ipmi_smi_msg *msg,
3544 				     unsigned char err)
3545 {
3546 	int rv;
3547 	msg->rsp[0] = msg->data[0] | 4;
3548 	msg->rsp[1] = msg->data[1];
3549 	msg->rsp[2] = err;
3550 	msg->rsp_size = 3;
3551 
3552 	/* This will never requeue, but it may ask us to free the message. */
3553 	rv = handle_one_recv_msg(intf, msg);
3554 	if (rv == 0)
3555 		ipmi_free_smi_msg(msg);
3556 }
3557 
cleanup_smi_msgs(struct ipmi_smi *intf)3558 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3559 {
3560 	int              i;
3561 	struct seq_table *ent;
3562 	struct ipmi_smi_msg *msg;
3563 	struct list_head *entry;
3564 	struct list_head tmplist;
3565 
3566 	/* Clear out our transmit queues and hold the messages. */
3567 	INIT_LIST_HEAD(&tmplist);
3568 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3569 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3570 
3571 	/* Current message first, to preserve order */
3572 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3573 		/* Wait for the message to clear out. */
3574 		schedule_timeout(1);
3575 	}
3576 
3577 	/* No need for locks, the interface is down. */
3578 
3579 	/*
3580 	 * Return errors for all pending messages in queue and in the
3581 	 * tables waiting for remote responses.
3582 	 */
3583 	while (!list_empty(&tmplist)) {
3584 		entry = tmplist.next;
3585 		list_del(entry);
3586 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3587 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3588 	}
3589 
3590 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3591 		ent = &intf->seq_table[i];
3592 		if (!ent->inuse)
3593 			continue;
3594 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3595 	}
3596 }
3597 
ipmi_unregister_smi(struct ipmi_smi *intf)3598 void ipmi_unregister_smi(struct ipmi_smi *intf)
3599 {
3600 	struct ipmi_smi_watcher *w;
3601 	int intf_num = intf->intf_num, index;
3602 
3603 	mutex_lock(&ipmi_interfaces_mutex);
3604 	intf->intf_num = -1;
3605 	intf->in_shutdown = true;
3606 	list_del_rcu(&intf->link);
3607 	mutex_unlock(&ipmi_interfaces_mutex);
3608 	synchronize_srcu(&ipmi_interfaces_srcu);
3609 
3610 	/* At this point no users can be added to the interface. */
3611 
3612 	/*
3613 	 * Call all the watcher interfaces to tell them that
3614 	 * an interface is going away.
3615 	 */
3616 	mutex_lock(&smi_watchers_mutex);
3617 	list_for_each_entry(w, &smi_watchers, link)
3618 		w->smi_gone(intf_num);
3619 	mutex_unlock(&smi_watchers_mutex);
3620 
3621 	index = srcu_read_lock(&intf->users_srcu);
3622 	while (!list_empty(&intf->users)) {
3623 		struct ipmi_user *user =
3624 			container_of(list_next_rcu(&intf->users),
3625 				     struct ipmi_user, link);
3626 
3627 		_ipmi_destroy_user(user);
3628 	}
3629 	srcu_read_unlock(&intf->users_srcu, index);
3630 
3631 	if (intf->handlers->shutdown)
3632 		intf->handlers->shutdown(intf->send_info);
3633 
3634 	cleanup_smi_msgs(intf);
3635 
3636 	ipmi_bmc_unregister(intf);
3637 
3638 	cleanup_srcu_struct(&intf->users_srcu);
3639 	kref_put(&intf->refcount, intf_free);
3640 }
3641 EXPORT_SYMBOL(ipmi_unregister_smi);
3642 
handle_ipmb_get_msg_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3643 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3644 				   struct ipmi_smi_msg *msg)
3645 {
3646 	struct ipmi_ipmb_addr ipmb_addr;
3647 	struct ipmi_recv_msg  *recv_msg;
3648 
3649 	/*
3650 	 * This is 11, not 10, because the response must contain a
3651 	 * completion code.
3652 	 */
3653 	if (msg->rsp_size < 11) {
3654 		/* Message not big enough, just ignore it. */
3655 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3656 		return 0;
3657 	}
3658 
3659 	if (msg->rsp[2] != 0) {
3660 		/* An error getting the response, just ignore it. */
3661 		return 0;
3662 	}
3663 
3664 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3665 	ipmb_addr.slave_addr = msg->rsp[6];
3666 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3667 	ipmb_addr.lun = msg->rsp[7] & 3;
3668 
3669 	/*
3670 	 * It's a response from a remote entity.  Look up the sequence
3671 	 * number and handle the response.
3672 	 */
3673 	if (intf_find_seq(intf,
3674 			  msg->rsp[7] >> 2,
3675 			  msg->rsp[3] & 0x0f,
3676 			  msg->rsp[8],
3677 			  (msg->rsp[4] >> 2) & (~1),
3678 			  (struct ipmi_addr *) &ipmb_addr,
3679 			  &recv_msg)) {
3680 		/*
3681 		 * We were unable to find the sequence number,
3682 		 * so just nuke the message.
3683 		 */
3684 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3685 		return 0;
3686 	}
3687 
3688 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3689 	/*
3690 	 * The other fields matched, so no need to set them, except
3691 	 * for netfn, which needs to be the response that was
3692 	 * returned, not the request value.
3693 	 */
3694 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3695 	recv_msg->msg.data = recv_msg->msg_data;
3696 	recv_msg->msg.data_len = msg->rsp_size - 10;
3697 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3698 	if (deliver_response(intf, recv_msg))
3699 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3700 	else
3701 		ipmi_inc_stat(intf, handled_ipmb_responses);
3702 
3703 	return 0;
3704 }
3705 
handle_ipmb_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3706 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3707 				   struct ipmi_smi_msg *msg)
3708 {
3709 	struct cmd_rcvr          *rcvr;
3710 	int                      rv = 0;
3711 	unsigned char            netfn;
3712 	unsigned char            cmd;
3713 	unsigned char            chan;
3714 	struct ipmi_user         *user = NULL;
3715 	struct ipmi_ipmb_addr    *ipmb_addr;
3716 	struct ipmi_recv_msg     *recv_msg;
3717 
3718 	if (msg->rsp_size < 10) {
3719 		/* Message not big enough, just ignore it. */
3720 		ipmi_inc_stat(intf, invalid_commands);
3721 		return 0;
3722 	}
3723 
3724 	if (msg->rsp[2] != 0) {
3725 		/* An error getting the response, just ignore it. */
3726 		return 0;
3727 	}
3728 
3729 	netfn = msg->rsp[4] >> 2;
3730 	cmd = msg->rsp[8];
3731 	chan = msg->rsp[3] & 0xf;
3732 
3733 	rcu_read_lock();
3734 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3735 	if (rcvr) {
3736 		user = rcvr->user;
3737 		kref_get(&user->refcount);
3738 	} else
3739 		user = NULL;
3740 	rcu_read_unlock();
3741 
3742 	if (user == NULL) {
3743 		/* We didn't find a user, deliver an error response. */
3744 		ipmi_inc_stat(intf, unhandled_commands);
3745 
3746 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3747 		msg->data[1] = IPMI_SEND_MSG_CMD;
3748 		msg->data[2] = msg->rsp[3];
3749 		msg->data[3] = msg->rsp[6];
3750 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3751 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3752 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3753 		/* rqseq/lun */
3754 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3755 		msg->data[8] = msg->rsp[8]; /* cmd */
3756 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3757 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3758 		msg->data_size = 11;
3759 
3760 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3761 
3762 		rcu_read_lock();
3763 		if (!intf->in_shutdown) {
3764 			smi_send(intf, intf->handlers, msg, 0);
3765 			/*
3766 			 * We used the message, so return the value
3767 			 * that causes it to not be freed or
3768 			 * queued.
3769 			 */
3770 			rv = -1;
3771 		}
3772 		rcu_read_unlock();
3773 	} else {
3774 		recv_msg = ipmi_alloc_recv_msg();
3775 		if (!recv_msg) {
3776 			/*
3777 			 * We couldn't allocate memory for the
3778 			 * message, so requeue it for handling
3779 			 * later.
3780 			 */
3781 			rv = 1;
3782 			kref_put(&user->refcount, free_user);
3783 		} else {
3784 			/* Extract the source address from the data. */
3785 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3786 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3787 			ipmb_addr->slave_addr = msg->rsp[6];
3788 			ipmb_addr->lun = msg->rsp[7] & 3;
3789 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3790 
3791 			/*
3792 			 * Extract the rest of the message information
3793 			 * from the IPMB header.
3794 			 */
3795 			recv_msg->user = user;
3796 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3797 			recv_msg->msgid = msg->rsp[7] >> 2;
3798 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3799 			recv_msg->msg.cmd = msg->rsp[8];
3800 			recv_msg->msg.data = recv_msg->msg_data;
3801 
3802 			/*
3803 			 * We chop off 10, not 9 bytes because the checksum
3804 			 * at the end also needs to be removed.
3805 			 */
3806 			recv_msg->msg.data_len = msg->rsp_size - 10;
3807 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3808 			       msg->rsp_size - 10);
3809 			if (deliver_response(intf, recv_msg))
3810 				ipmi_inc_stat(intf, unhandled_commands);
3811 			else
3812 				ipmi_inc_stat(intf, handled_commands);
3813 		}
3814 	}
3815 
3816 	return rv;
3817 }
3818 
handle_lan_get_msg_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3819 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3820 				  struct ipmi_smi_msg *msg)
3821 {
3822 	struct ipmi_lan_addr  lan_addr;
3823 	struct ipmi_recv_msg  *recv_msg;
3824 
3825 
3826 	/*
3827 	 * This is 13, not 12, because the response must contain a
3828 	 * completion code.
3829 	 */
3830 	if (msg->rsp_size < 13) {
3831 		/* Message not big enough, just ignore it. */
3832 		ipmi_inc_stat(intf, invalid_lan_responses);
3833 		return 0;
3834 	}
3835 
3836 	if (msg->rsp[2] != 0) {
3837 		/* An error getting the response, just ignore it. */
3838 		return 0;
3839 	}
3840 
3841 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3842 	lan_addr.session_handle = msg->rsp[4];
3843 	lan_addr.remote_SWID = msg->rsp[8];
3844 	lan_addr.local_SWID = msg->rsp[5];
3845 	lan_addr.channel = msg->rsp[3] & 0x0f;
3846 	lan_addr.privilege = msg->rsp[3] >> 4;
3847 	lan_addr.lun = msg->rsp[9] & 3;
3848 
3849 	/*
3850 	 * It's a response from a remote entity.  Look up the sequence
3851 	 * number and handle the response.
3852 	 */
3853 	if (intf_find_seq(intf,
3854 			  msg->rsp[9] >> 2,
3855 			  msg->rsp[3] & 0x0f,
3856 			  msg->rsp[10],
3857 			  (msg->rsp[6] >> 2) & (~1),
3858 			  (struct ipmi_addr *) &lan_addr,
3859 			  &recv_msg)) {
3860 		/*
3861 		 * We were unable to find the sequence number,
3862 		 * so just nuke the message.
3863 		 */
3864 		ipmi_inc_stat(intf, unhandled_lan_responses);
3865 		return 0;
3866 	}
3867 
3868 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3869 	/*
3870 	 * The other fields matched, so no need to set them, except
3871 	 * for netfn, which needs to be the response that was
3872 	 * returned, not the request value.
3873 	 */
3874 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3875 	recv_msg->msg.data = recv_msg->msg_data;
3876 	recv_msg->msg.data_len = msg->rsp_size - 12;
3877 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3878 	if (deliver_response(intf, recv_msg))
3879 		ipmi_inc_stat(intf, unhandled_lan_responses);
3880 	else
3881 		ipmi_inc_stat(intf, handled_lan_responses);
3882 
3883 	return 0;
3884 }
3885 
handle_lan_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3886 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3887 				  struct ipmi_smi_msg *msg)
3888 {
3889 	struct cmd_rcvr          *rcvr;
3890 	int                      rv = 0;
3891 	unsigned char            netfn;
3892 	unsigned char            cmd;
3893 	unsigned char            chan;
3894 	struct ipmi_user         *user = NULL;
3895 	struct ipmi_lan_addr     *lan_addr;
3896 	struct ipmi_recv_msg     *recv_msg;
3897 
3898 	if (msg->rsp_size < 12) {
3899 		/* Message not big enough, just ignore it. */
3900 		ipmi_inc_stat(intf, invalid_commands);
3901 		return 0;
3902 	}
3903 
3904 	if (msg->rsp[2] != 0) {
3905 		/* An error getting the response, just ignore it. */
3906 		return 0;
3907 	}
3908 
3909 	netfn = msg->rsp[6] >> 2;
3910 	cmd = msg->rsp[10];
3911 	chan = msg->rsp[3] & 0xf;
3912 
3913 	rcu_read_lock();
3914 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3915 	if (rcvr) {
3916 		user = rcvr->user;
3917 		kref_get(&user->refcount);
3918 	} else
3919 		user = NULL;
3920 	rcu_read_unlock();
3921 
3922 	if (user == NULL) {
3923 		/* We didn't find a user, just give up. */
3924 		ipmi_inc_stat(intf, unhandled_commands);
3925 
3926 		/*
3927 		 * Don't do anything with these messages, just allow
3928 		 * them to be freed.
3929 		 */
3930 		rv = 0;
3931 	} else {
3932 		recv_msg = ipmi_alloc_recv_msg();
3933 		if (!recv_msg) {
3934 			/*
3935 			 * We couldn't allocate memory for the
3936 			 * message, so requeue it for handling later.
3937 			 */
3938 			rv = 1;
3939 			kref_put(&user->refcount, free_user);
3940 		} else {
3941 			/* Extract the source address from the data. */
3942 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3943 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3944 			lan_addr->session_handle = msg->rsp[4];
3945 			lan_addr->remote_SWID = msg->rsp[8];
3946 			lan_addr->local_SWID = msg->rsp[5];
3947 			lan_addr->lun = msg->rsp[9] & 3;
3948 			lan_addr->channel = msg->rsp[3] & 0xf;
3949 			lan_addr->privilege = msg->rsp[3] >> 4;
3950 
3951 			/*
3952 			 * Extract the rest of the message information
3953 			 * from the IPMB header.
3954 			 */
3955 			recv_msg->user = user;
3956 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3957 			recv_msg->msgid = msg->rsp[9] >> 2;
3958 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3959 			recv_msg->msg.cmd = msg->rsp[10];
3960 			recv_msg->msg.data = recv_msg->msg_data;
3961 
3962 			/*
3963 			 * We chop off 12, not 11 bytes because the checksum
3964 			 * at the end also needs to be removed.
3965 			 */
3966 			recv_msg->msg.data_len = msg->rsp_size - 12;
3967 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3968 			       msg->rsp_size - 12);
3969 			if (deliver_response(intf, recv_msg))
3970 				ipmi_inc_stat(intf, unhandled_commands);
3971 			else
3972 				ipmi_inc_stat(intf, handled_commands);
3973 		}
3974 	}
3975 
3976 	return rv;
3977 }
3978 
3979 /*
3980  * This routine will handle "Get Message" command responses with
3981  * channels that use an OEM Medium. The message format belongs to
3982  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3983  * Chapter 22, sections 22.6 and 22.24 for more details.
3984  */
handle_oem_get_msg_cmd(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)3985 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3986 				  struct ipmi_smi_msg *msg)
3987 {
3988 	struct cmd_rcvr       *rcvr;
3989 	int                   rv = 0;
3990 	unsigned char         netfn;
3991 	unsigned char         cmd;
3992 	unsigned char         chan;
3993 	struct ipmi_user *user = NULL;
3994 	struct ipmi_system_interface_addr *smi_addr;
3995 	struct ipmi_recv_msg  *recv_msg;
3996 
3997 	/*
3998 	 * We expect the OEM SW to perform error checking
3999 	 * so we just do some basic sanity checks
4000 	 */
4001 	if (msg->rsp_size < 4) {
4002 		/* Message not big enough, just ignore it. */
4003 		ipmi_inc_stat(intf, invalid_commands);
4004 		return 0;
4005 	}
4006 
4007 	if (msg->rsp[2] != 0) {
4008 		/* An error getting the response, just ignore it. */
4009 		return 0;
4010 	}
4011 
4012 	/*
4013 	 * This is an OEM Message so the OEM needs to know how
4014 	 * handle the message. We do no interpretation.
4015 	 */
4016 	netfn = msg->rsp[0] >> 2;
4017 	cmd = msg->rsp[1];
4018 	chan = msg->rsp[3] & 0xf;
4019 
4020 	rcu_read_lock();
4021 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4022 	if (rcvr) {
4023 		user = rcvr->user;
4024 		kref_get(&user->refcount);
4025 	} else
4026 		user = NULL;
4027 	rcu_read_unlock();
4028 
4029 	if (user == NULL) {
4030 		/* We didn't find a user, just give up. */
4031 		ipmi_inc_stat(intf, unhandled_commands);
4032 
4033 		/*
4034 		 * Don't do anything with these messages, just allow
4035 		 * them to be freed.
4036 		 */
4037 
4038 		rv = 0;
4039 	} else {
4040 		recv_msg = ipmi_alloc_recv_msg();
4041 		if (!recv_msg) {
4042 			/*
4043 			 * We couldn't allocate memory for the
4044 			 * message, so requeue it for handling
4045 			 * later.
4046 			 */
4047 			rv = 1;
4048 			kref_put(&user->refcount, free_user);
4049 		} else {
4050 			/*
4051 			 * OEM Messages are expected to be delivered via
4052 			 * the system interface to SMS software.  We might
4053 			 * need to visit this again depending on OEM
4054 			 * requirements
4055 			 */
4056 			smi_addr = ((struct ipmi_system_interface_addr *)
4057 				    &recv_msg->addr);
4058 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4059 			smi_addr->channel = IPMI_BMC_CHANNEL;
4060 			smi_addr->lun = msg->rsp[0] & 3;
4061 
4062 			recv_msg->user = user;
4063 			recv_msg->user_msg_data = NULL;
4064 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4065 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4066 			recv_msg->msg.cmd = msg->rsp[1];
4067 			recv_msg->msg.data = recv_msg->msg_data;
4068 
4069 			/*
4070 			 * The message starts at byte 4 which follows the
4071 			 * the Channel Byte in the "GET MESSAGE" command
4072 			 */
4073 			recv_msg->msg.data_len = msg->rsp_size - 4;
4074 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4075 			       msg->rsp_size - 4);
4076 			if (deliver_response(intf, recv_msg))
4077 				ipmi_inc_stat(intf, unhandled_commands);
4078 			else
4079 				ipmi_inc_stat(intf, handled_commands);
4080 		}
4081 	}
4082 
4083 	return rv;
4084 }
4085 
copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, struct ipmi_smi_msg *msg)4086 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4087 				     struct ipmi_smi_msg  *msg)
4088 {
4089 	struct ipmi_system_interface_addr *smi_addr;
4090 
4091 	recv_msg->msgid = 0;
4092 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4093 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4094 	smi_addr->channel = IPMI_BMC_CHANNEL;
4095 	smi_addr->lun = msg->rsp[0] & 3;
4096 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4097 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4098 	recv_msg->msg.cmd = msg->rsp[1];
4099 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4100 	recv_msg->msg.data = recv_msg->msg_data;
4101 	recv_msg->msg.data_len = msg->rsp_size - 3;
4102 }
4103 
handle_read_event_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4104 static int handle_read_event_rsp(struct ipmi_smi *intf,
4105 				 struct ipmi_smi_msg *msg)
4106 {
4107 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4108 	struct list_head     msgs;
4109 	struct ipmi_user     *user;
4110 	int rv = 0, deliver_count = 0, index;
4111 	unsigned long        flags;
4112 
4113 	if (msg->rsp_size < 19) {
4114 		/* Message is too small to be an IPMB event. */
4115 		ipmi_inc_stat(intf, invalid_events);
4116 		return 0;
4117 	}
4118 
4119 	if (msg->rsp[2] != 0) {
4120 		/* An error getting the event, just ignore it. */
4121 		return 0;
4122 	}
4123 
4124 	INIT_LIST_HEAD(&msgs);
4125 
4126 	spin_lock_irqsave(&intf->events_lock, flags);
4127 
4128 	ipmi_inc_stat(intf, events);
4129 
4130 	/*
4131 	 * Allocate and fill in one message for every user that is
4132 	 * getting events.
4133 	 */
4134 	index = srcu_read_lock(&intf->users_srcu);
4135 	list_for_each_entry_rcu(user, &intf->users, link) {
4136 		if (!user->gets_events)
4137 			continue;
4138 
4139 		recv_msg = ipmi_alloc_recv_msg();
4140 		if (!recv_msg) {
4141 			rcu_read_unlock();
4142 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4143 						 link) {
4144 				list_del(&recv_msg->link);
4145 				ipmi_free_recv_msg(recv_msg);
4146 			}
4147 			/*
4148 			 * We couldn't allocate memory for the
4149 			 * message, so requeue it for handling
4150 			 * later.
4151 			 */
4152 			rv = 1;
4153 			goto out;
4154 		}
4155 
4156 		deliver_count++;
4157 
4158 		copy_event_into_recv_msg(recv_msg, msg);
4159 		recv_msg->user = user;
4160 		kref_get(&user->refcount);
4161 		list_add_tail(&recv_msg->link, &msgs);
4162 	}
4163 	srcu_read_unlock(&intf->users_srcu, index);
4164 
4165 	if (deliver_count) {
4166 		/* Now deliver all the messages. */
4167 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4168 			list_del(&recv_msg->link);
4169 			deliver_local_response(intf, recv_msg);
4170 		}
4171 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4172 		/*
4173 		 * No one to receive the message, put it in queue if there's
4174 		 * not already too many things in the queue.
4175 		 */
4176 		recv_msg = ipmi_alloc_recv_msg();
4177 		if (!recv_msg) {
4178 			/*
4179 			 * We couldn't allocate memory for the
4180 			 * message, so requeue it for handling
4181 			 * later.
4182 			 */
4183 			rv = 1;
4184 			goto out;
4185 		}
4186 
4187 		copy_event_into_recv_msg(recv_msg, msg);
4188 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4189 		intf->waiting_events_count++;
4190 	} else if (!intf->event_msg_printed) {
4191 		/*
4192 		 * There's too many things in the queue, discard this
4193 		 * message.
4194 		 */
4195 		dev_warn(intf->si_dev,
4196 			 "Event queue full, discarding incoming events\n");
4197 		intf->event_msg_printed = 1;
4198 	}
4199 
4200  out:
4201 	spin_unlock_irqrestore(&intf->events_lock, flags);
4202 
4203 	return rv;
4204 }
4205 
handle_bmc_rsp(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4206 static int handle_bmc_rsp(struct ipmi_smi *intf,
4207 			  struct ipmi_smi_msg *msg)
4208 {
4209 	struct ipmi_recv_msg *recv_msg;
4210 	struct ipmi_system_interface_addr *smi_addr;
4211 
4212 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4213 	if (recv_msg == NULL) {
4214 		dev_warn(intf->si_dev,
4215 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4216 		return 0;
4217 	}
4218 
4219 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4220 	recv_msg->msgid = msg->msgid;
4221 	smi_addr = ((struct ipmi_system_interface_addr *)
4222 		    &recv_msg->addr);
4223 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4224 	smi_addr->channel = IPMI_BMC_CHANNEL;
4225 	smi_addr->lun = msg->rsp[0] & 3;
4226 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4227 	recv_msg->msg.cmd = msg->rsp[1];
4228 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4229 	recv_msg->msg.data = recv_msg->msg_data;
4230 	recv_msg->msg.data_len = msg->rsp_size - 2;
4231 	deliver_local_response(intf, recv_msg);
4232 
4233 	return 0;
4234 }
4235 
4236 /*
4237  * Handle a received message.  Return 1 if the message should be requeued,
4238  * 0 if the message should be freed, or -1 if the message should not
4239  * be freed or requeued.
4240  */
handle_one_recv_msg(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4241 static int handle_one_recv_msg(struct ipmi_smi *intf,
4242 			       struct ipmi_smi_msg *msg)
4243 {
4244 	int requeue;
4245 	int chan;
4246 
4247 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4248 
4249 	if ((msg->data_size >= 2)
4250 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4251 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4252 	    && (msg->user_data == NULL)) {
4253 
4254 		if (intf->in_shutdown)
4255 			goto free_msg;
4256 
4257 		/*
4258 		 * This is the local response to a command send, start
4259 		 * the timer for these.  The user_data will not be
4260 		 * NULL if this is a response send, and we will let
4261 		 * response sends just go through.
4262 		 */
4263 
4264 		/*
4265 		 * Check for errors, if we get certain errors (ones
4266 		 * that mean basically we can try again later), we
4267 		 * ignore them and start the timer.  Otherwise we
4268 		 * report the error immediately.
4269 		 */
4270 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4271 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4272 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4273 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4274 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4275 			int ch = msg->rsp[3] & 0xf;
4276 			struct ipmi_channel *chans;
4277 
4278 			/* Got an error sending the message, handle it. */
4279 
4280 			chans = READ_ONCE(intf->channel_list)->c;
4281 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4282 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4283 				ipmi_inc_stat(intf, sent_lan_command_errs);
4284 			else
4285 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4286 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4287 		} else
4288 			/* The message was sent, start the timer. */
4289 			intf_start_seq_timer(intf, msg->msgid);
4290 free_msg:
4291 		requeue = 0;
4292 		goto out;
4293 
4294 	} else if (msg->rsp_size < 2) {
4295 		/* Message is too small to be correct. */
4296 		dev_warn(intf->si_dev,
4297 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4298 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4299 
4300 		/* Generate an error response for the message. */
4301 		msg->rsp[0] = msg->data[0] | (1 << 2);
4302 		msg->rsp[1] = msg->data[1];
4303 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4304 		msg->rsp_size = 3;
4305 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4306 		   || (msg->rsp[1] != msg->data[1])) {
4307 		/*
4308 		 * The NetFN and Command in the response is not even
4309 		 * marginally correct.
4310 		 */
4311 		dev_warn(intf->si_dev,
4312 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4313 			 (msg->data[0] >> 2) | 1, msg->data[1],
4314 			 msg->rsp[0] >> 2, msg->rsp[1]);
4315 
4316 		/* Generate an error response for the message. */
4317 		msg->rsp[0] = msg->data[0] | (1 << 2);
4318 		msg->rsp[1] = msg->data[1];
4319 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4320 		msg->rsp_size = 3;
4321 	}
4322 
4323 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4324 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4325 	    && (msg->user_data != NULL)) {
4326 		/*
4327 		 * It's a response to a response we sent.  For this we
4328 		 * deliver a send message response to the user.
4329 		 */
4330 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4331 
4332 		requeue = 0;
4333 		if (msg->rsp_size < 2)
4334 			/* Message is too small to be correct. */
4335 			goto out;
4336 
4337 		chan = msg->data[2] & 0x0f;
4338 		if (chan >= IPMI_MAX_CHANNELS)
4339 			/* Invalid channel number */
4340 			goto out;
4341 
4342 		if (!recv_msg)
4343 			goto out;
4344 
4345 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4346 		recv_msg->msg.data = recv_msg->msg_data;
4347 		recv_msg->msg.data_len = 1;
4348 		recv_msg->msg_data[0] = msg->rsp[2];
4349 		deliver_local_response(intf, recv_msg);
4350 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4351 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4352 		struct ipmi_channel   *chans;
4353 
4354 		/* It's from the receive queue. */
4355 		chan = msg->rsp[3] & 0xf;
4356 		if (chan >= IPMI_MAX_CHANNELS) {
4357 			/* Invalid channel number */
4358 			requeue = 0;
4359 			goto out;
4360 		}
4361 
4362 		/*
4363 		 * We need to make sure the channels have been initialized.
4364 		 * The channel_handler routine will set the "curr_channel"
4365 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4366 		 * channels for this interface have been initialized.
4367 		 */
4368 		if (!intf->channels_ready) {
4369 			requeue = 0; /* Throw the message away */
4370 			goto out;
4371 		}
4372 
4373 		chans = READ_ONCE(intf->channel_list)->c;
4374 
4375 		switch (chans[chan].medium) {
4376 		case IPMI_CHANNEL_MEDIUM_IPMB:
4377 			if (msg->rsp[4] & 0x04) {
4378 				/*
4379 				 * It's a response, so find the
4380 				 * requesting message and send it up.
4381 				 */
4382 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4383 			} else {
4384 				/*
4385 				 * It's a command to the SMS from some other
4386 				 * entity.  Handle that.
4387 				 */
4388 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4389 			}
4390 			break;
4391 
4392 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4393 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4394 			if (msg->rsp[6] & 0x04) {
4395 				/*
4396 				 * It's a response, so find the
4397 				 * requesting message and send it up.
4398 				 */
4399 				requeue = handle_lan_get_msg_rsp(intf, msg);
4400 			} else {
4401 				/*
4402 				 * It's a command to the SMS from some other
4403 				 * entity.  Handle that.
4404 				 */
4405 				requeue = handle_lan_get_msg_cmd(intf, msg);
4406 			}
4407 			break;
4408 
4409 		default:
4410 			/* Check for OEM Channels.  Clients had better
4411 			   register for these commands. */
4412 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4413 			    && (chans[chan].medium
4414 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4415 				requeue = handle_oem_get_msg_cmd(intf, msg);
4416 			} else {
4417 				/*
4418 				 * We don't handle the channel type, so just
4419 				 * free the message.
4420 				 */
4421 				requeue = 0;
4422 			}
4423 		}
4424 
4425 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4426 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4427 		/* It's an asynchronous event. */
4428 		requeue = handle_read_event_rsp(intf, msg);
4429 	} else {
4430 		/* It's a response from the local BMC. */
4431 		requeue = handle_bmc_rsp(intf, msg);
4432 	}
4433 
4434  out:
4435 	return requeue;
4436 }
4437 
4438 /*
4439  * If there are messages in the queue or pretimeouts, handle them.
4440  */
handle_new_recv_msgs(struct ipmi_smi *intf)4441 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4442 {
4443 	struct ipmi_smi_msg  *smi_msg;
4444 	unsigned long        flags = 0;
4445 	int                  rv;
4446 	int                  run_to_completion = intf->run_to_completion;
4447 
4448 	/* See if any waiting messages need to be processed. */
4449 	if (!run_to_completion)
4450 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4451 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4452 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4453 				     struct ipmi_smi_msg, link);
4454 		list_del(&smi_msg->link);
4455 		if (!run_to_completion)
4456 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4457 					       flags);
4458 		rv = handle_one_recv_msg(intf, smi_msg);
4459 		if (!run_to_completion)
4460 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4461 		if (rv > 0) {
4462 			/*
4463 			 * To preserve message order, quit if we
4464 			 * can't handle a message.  Add the message
4465 			 * back at the head, this is safe because this
4466 			 * tasklet is the only thing that pulls the
4467 			 * messages.
4468 			 */
4469 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4470 			break;
4471 		} else {
4472 			if (rv == 0)
4473 				/* Message handled */
4474 				ipmi_free_smi_msg(smi_msg);
4475 			/* If rv < 0, fatal error, del but don't free. */
4476 		}
4477 	}
4478 	if (!run_to_completion)
4479 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4480 
4481 	/*
4482 	 * If the pretimout count is non-zero, decrement one from it and
4483 	 * deliver pretimeouts to all the users.
4484 	 */
4485 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4486 		struct ipmi_user *user;
4487 		int index;
4488 
4489 		index = srcu_read_lock(&intf->users_srcu);
4490 		list_for_each_entry_rcu(user, &intf->users, link) {
4491 			if (user->handler->ipmi_watchdog_pretimeout)
4492 				user->handler->ipmi_watchdog_pretimeout(
4493 					user->handler_data);
4494 		}
4495 		srcu_read_unlock(&intf->users_srcu, index);
4496 	}
4497 }
4498 
smi_recv_tasklet(struct tasklet_struct *t)4499 static void smi_recv_tasklet(struct tasklet_struct *t)
4500 {
4501 	unsigned long flags = 0; /* keep us warning-free. */
4502 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4503 	int run_to_completion = intf->run_to_completion;
4504 	struct ipmi_smi_msg *newmsg = NULL;
4505 
4506 	/*
4507 	 * Start the next message if available.
4508 	 *
4509 	 * Do this here, not in the actual receiver, because we may deadlock
4510 	 * because the lower layer is allowed to hold locks while calling
4511 	 * message delivery.
4512 	 */
4513 
4514 	rcu_read_lock();
4515 
4516 	if (!run_to_completion)
4517 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4518 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4519 		struct list_head *entry = NULL;
4520 
4521 		/* Pick the high priority queue first. */
4522 		if (!list_empty(&intf->hp_xmit_msgs))
4523 			entry = intf->hp_xmit_msgs.next;
4524 		else if (!list_empty(&intf->xmit_msgs))
4525 			entry = intf->xmit_msgs.next;
4526 
4527 		if (entry) {
4528 			list_del(entry);
4529 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4530 			intf->curr_msg = newmsg;
4531 		}
4532 	}
4533 
4534 	if (!run_to_completion)
4535 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4536 	if (newmsg)
4537 		intf->handlers->sender(intf->send_info, newmsg);
4538 
4539 	rcu_read_unlock();
4540 
4541 	handle_new_recv_msgs(intf);
4542 }
4543 
4544 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi *intf, struct ipmi_smi_msg *msg)4545 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4546 			   struct ipmi_smi_msg *msg)
4547 {
4548 	unsigned long flags = 0; /* keep us warning-free. */
4549 	int run_to_completion = intf->run_to_completion;
4550 
4551 	/*
4552 	 * To preserve message order, we keep a queue and deliver from
4553 	 * a tasklet.
4554 	 */
4555 	if (!run_to_completion)
4556 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4557 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4558 	if (!run_to_completion)
4559 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4560 				       flags);
4561 
4562 	if (!run_to_completion)
4563 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4564 	/*
4565 	 * We can get an asynchronous event or receive message in addition
4566 	 * to commands we send.
4567 	 */
4568 	if (msg == intf->curr_msg)
4569 		intf->curr_msg = NULL;
4570 	if (!run_to_completion)
4571 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4572 
4573 	if (run_to_completion)
4574 		smi_recv_tasklet(&intf->recv_tasklet);
4575 	else
4576 		tasklet_schedule(&intf->recv_tasklet);
4577 }
4578 EXPORT_SYMBOL(ipmi_smi_msg_received);
4579 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)4580 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4581 {
4582 	if (intf->in_shutdown)
4583 		return;
4584 
4585 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4586 	tasklet_schedule(&intf->recv_tasklet);
4587 }
4588 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4589 
4590 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg, unsigned char seq, long seqid)4591 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4592 		  unsigned char seq, long seqid)
4593 {
4594 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4595 	if (!smi_msg)
4596 		/*
4597 		 * If we can't allocate the message, then just return, we
4598 		 * get 4 retries, so this should be ok.
4599 		 */
4600 		return NULL;
4601 
4602 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4603 	smi_msg->data_size = recv_msg->msg.data_len;
4604 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4605 
4606 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4607 
4608 	return smi_msg;
4609 }
4610 
check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent, struct list_head *timeouts, unsigned long timeout_period, int slot, unsigned long *flags, bool *need_timer)4611 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4612 			      struct list_head *timeouts,
4613 			      unsigned long timeout_period,
4614 			      int slot, unsigned long *flags,
4615 			      bool *need_timer)
4616 {
4617 	struct ipmi_recv_msg *msg;
4618 
4619 	if (intf->in_shutdown)
4620 		return;
4621 
4622 	if (!ent->inuse)
4623 		return;
4624 
4625 	if (timeout_period < ent->timeout) {
4626 		ent->timeout -= timeout_period;
4627 		*need_timer = true;
4628 		return;
4629 	}
4630 
4631 	if (ent->retries_left == 0) {
4632 		/* The message has used all its retries. */
4633 		ent->inuse = 0;
4634 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4635 		msg = ent->recv_msg;
4636 		list_add_tail(&msg->link, timeouts);
4637 		if (ent->broadcast)
4638 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4639 		else if (is_lan_addr(&ent->recv_msg->addr))
4640 			ipmi_inc_stat(intf, timed_out_lan_commands);
4641 		else
4642 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4643 	} else {
4644 		struct ipmi_smi_msg *smi_msg;
4645 		/* More retries, send again. */
4646 
4647 		*need_timer = true;
4648 
4649 		/*
4650 		 * Start with the max timer, set to normal timer after
4651 		 * the message is sent.
4652 		 */
4653 		ent->timeout = MAX_MSG_TIMEOUT;
4654 		ent->retries_left--;
4655 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4656 					    ent->seqid);
4657 		if (!smi_msg) {
4658 			if (is_lan_addr(&ent->recv_msg->addr))
4659 				ipmi_inc_stat(intf,
4660 					      dropped_rexmit_lan_commands);
4661 			else
4662 				ipmi_inc_stat(intf,
4663 					      dropped_rexmit_ipmb_commands);
4664 			return;
4665 		}
4666 
4667 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4668 
4669 		/*
4670 		 * Send the new message.  We send with a zero
4671 		 * priority.  It timed out, I doubt time is that
4672 		 * critical now, and high priority messages are really
4673 		 * only for messages to the local MC, which don't get
4674 		 * resent.
4675 		 */
4676 		if (intf->handlers) {
4677 			if (is_lan_addr(&ent->recv_msg->addr))
4678 				ipmi_inc_stat(intf,
4679 					      retransmitted_lan_commands);
4680 			else
4681 				ipmi_inc_stat(intf,
4682 					      retransmitted_ipmb_commands);
4683 
4684 			smi_send(intf, intf->handlers, smi_msg, 0);
4685 		} else
4686 			ipmi_free_smi_msg(smi_msg);
4687 
4688 		spin_lock_irqsave(&intf->seq_lock, *flags);
4689 	}
4690 }
4691 
ipmi_timeout_handler(struct ipmi_smi *intf, unsigned long timeout_period)4692 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4693 				 unsigned long timeout_period)
4694 {
4695 	struct list_head     timeouts;
4696 	struct ipmi_recv_msg *msg, *msg2;
4697 	unsigned long        flags;
4698 	int                  i;
4699 	bool                 need_timer = false;
4700 
4701 	if (!intf->bmc_registered) {
4702 		kref_get(&intf->refcount);
4703 		if (!schedule_work(&intf->bmc_reg_work)) {
4704 			kref_put(&intf->refcount, intf_free);
4705 			need_timer = true;
4706 		}
4707 	}
4708 
4709 	/*
4710 	 * Go through the seq table and find any messages that
4711 	 * have timed out, putting them in the timeouts
4712 	 * list.
4713 	 */
4714 	INIT_LIST_HEAD(&timeouts);
4715 	spin_lock_irqsave(&intf->seq_lock, flags);
4716 	if (intf->ipmb_maintenance_mode_timeout) {
4717 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4718 			intf->ipmb_maintenance_mode_timeout = 0;
4719 		else
4720 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4721 	}
4722 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4723 		check_msg_timeout(intf, &intf->seq_table[i],
4724 				  &timeouts, timeout_period, i,
4725 				  &flags, &need_timer);
4726 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4727 
4728 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4729 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4730 
4731 	/*
4732 	 * Maintenance mode handling.  Check the timeout
4733 	 * optimistically before we claim the lock.  It may
4734 	 * mean a timeout gets missed occasionally, but that
4735 	 * only means the timeout gets extended by one period
4736 	 * in that case.  No big deal, and it avoids the lock
4737 	 * most of the time.
4738 	 */
4739 	if (intf->auto_maintenance_timeout > 0) {
4740 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4741 		if (intf->auto_maintenance_timeout > 0) {
4742 			intf->auto_maintenance_timeout
4743 				-= timeout_period;
4744 			if (!intf->maintenance_mode
4745 			    && (intf->auto_maintenance_timeout <= 0)) {
4746 				intf->maintenance_mode_enable = false;
4747 				maintenance_mode_update(intf);
4748 			}
4749 		}
4750 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4751 				       flags);
4752 	}
4753 
4754 	tasklet_schedule(&intf->recv_tasklet);
4755 
4756 	return need_timer;
4757 }
4758 
ipmi_request_event(struct ipmi_smi *intf)4759 static void ipmi_request_event(struct ipmi_smi *intf)
4760 {
4761 	/* No event requests when in maintenance mode. */
4762 	if (intf->maintenance_mode_enable)
4763 		return;
4764 
4765 	if (!intf->in_shutdown)
4766 		intf->handlers->request_events(intf->send_info);
4767 }
4768 
4769 static struct timer_list ipmi_timer;
4770 
4771 static atomic_t stop_operation;
4772 
ipmi_timeout(struct timer_list *unused)4773 static void ipmi_timeout(struct timer_list *unused)
4774 {
4775 	struct ipmi_smi *intf;
4776 	bool need_timer = false;
4777 	int index;
4778 
4779 	if (atomic_read(&stop_operation))
4780 		return;
4781 
4782 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4783 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4784 		if (atomic_read(&intf->event_waiters)) {
4785 			intf->ticks_to_req_ev--;
4786 			if (intf->ticks_to_req_ev == 0) {
4787 				ipmi_request_event(intf);
4788 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4789 			}
4790 			need_timer = true;
4791 		}
4792 
4793 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4794 	}
4795 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4796 
4797 	if (need_timer)
4798 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4799 }
4800 
need_waiter(struct ipmi_smi *intf)4801 static void need_waiter(struct ipmi_smi *intf)
4802 {
4803 	/* Racy, but worst case we start the timer twice. */
4804 	if (!timer_pending(&ipmi_timer))
4805 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4806 }
4807 
4808 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4809 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4810 
free_smi_msg(struct ipmi_smi_msg *msg)4811 static void free_smi_msg(struct ipmi_smi_msg *msg)
4812 {
4813 	atomic_dec(&smi_msg_inuse_count);
4814 	/* Try to keep as much stuff out of the panic path as possible. */
4815 	if (!oops_in_progress)
4816 		kfree(msg);
4817 }
4818 
ipmi_alloc_smi_msg(void)4819 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4820 {
4821 	struct ipmi_smi_msg *rv;
4822 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4823 	if (rv) {
4824 		rv->done = free_smi_msg;
4825 		rv->user_data = NULL;
4826 		atomic_inc(&smi_msg_inuse_count);
4827 	}
4828 	return rv;
4829 }
4830 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4831 
free_recv_msg(struct ipmi_recv_msg *msg)4832 static void free_recv_msg(struct ipmi_recv_msg *msg)
4833 {
4834 	atomic_dec(&recv_msg_inuse_count);
4835 	/* Try to keep as much stuff out of the panic path as possible. */
4836 	if (!oops_in_progress)
4837 		kfree(msg);
4838 }
4839 
ipmi_alloc_recv_msg(void)4840 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4841 {
4842 	struct ipmi_recv_msg *rv;
4843 
4844 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4845 	if (rv) {
4846 		rv->user = NULL;
4847 		rv->done = free_recv_msg;
4848 		atomic_inc(&recv_msg_inuse_count);
4849 	}
4850 	return rv;
4851 }
4852 
ipmi_free_recv_msg(struct ipmi_recv_msg *msg)4853 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4854 {
4855 	if (msg->user && !oops_in_progress)
4856 		kref_put(&msg->user->refcount, free_user);
4857 	msg->done(msg);
4858 }
4859 EXPORT_SYMBOL(ipmi_free_recv_msg);
4860 
4861 static atomic_t panic_done_count = ATOMIC_INIT(0);
4862 
dummy_smi_done_handler(struct ipmi_smi_msg *msg)4863 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4864 {
4865 	atomic_dec(&panic_done_count);
4866 }
4867 
dummy_recv_done_handler(struct ipmi_recv_msg *msg)4868 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4869 {
4870 	atomic_dec(&panic_done_count);
4871 }
4872 
4873 /*
4874  * Inside a panic, send a message and wait for a response.
4875  */
ipmi_panic_request_and_wait(struct ipmi_smi *intf, struct ipmi_addr *addr, struct kernel_ipmi_msg *msg)4876 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4877 					struct ipmi_addr *addr,
4878 					struct kernel_ipmi_msg *msg)
4879 {
4880 	struct ipmi_smi_msg  smi_msg;
4881 	struct ipmi_recv_msg recv_msg;
4882 	int rv;
4883 
4884 	smi_msg.done = dummy_smi_done_handler;
4885 	recv_msg.done = dummy_recv_done_handler;
4886 	atomic_add(2, &panic_done_count);
4887 	rv = i_ipmi_request(NULL,
4888 			    intf,
4889 			    addr,
4890 			    0,
4891 			    msg,
4892 			    intf,
4893 			    &smi_msg,
4894 			    &recv_msg,
4895 			    0,
4896 			    intf->addrinfo[0].address,
4897 			    intf->addrinfo[0].lun,
4898 			    0, 1); /* Don't retry, and don't wait. */
4899 	if (rv)
4900 		atomic_sub(2, &panic_done_count);
4901 	else if (intf->handlers->flush_messages)
4902 		intf->handlers->flush_messages(intf->send_info);
4903 
4904 	while (atomic_read(&panic_done_count) != 0)
4905 		ipmi_poll(intf);
4906 }
4907 
event_receiver_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)4908 static void event_receiver_fetcher(struct ipmi_smi *intf,
4909 				   struct ipmi_recv_msg *msg)
4910 {
4911 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4912 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4913 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4914 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4915 		/* A get event receiver command, save it. */
4916 		intf->event_receiver = msg->msg.data[1];
4917 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4918 	}
4919 }
4920 
device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)4921 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4922 {
4923 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4924 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4925 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4926 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4927 		/*
4928 		 * A get device id command, save if we are an event
4929 		 * receiver or generator.
4930 		 */
4931 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4932 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4933 	}
4934 }
4935 
send_panic_events(struct ipmi_smi *intf, char *str)4936 static void send_panic_events(struct ipmi_smi *intf, char *str)
4937 {
4938 	struct kernel_ipmi_msg msg;
4939 	unsigned char data[16];
4940 	struct ipmi_system_interface_addr *si;
4941 	struct ipmi_addr addr;
4942 	char *p = str;
4943 	struct ipmi_ipmb_addr *ipmb;
4944 	int j;
4945 
4946 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4947 		return;
4948 
4949 	si = (struct ipmi_system_interface_addr *) &addr;
4950 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4951 	si->channel = IPMI_BMC_CHANNEL;
4952 	si->lun = 0;
4953 
4954 	/* Fill in an event telling that we have failed. */
4955 	msg.netfn = 0x04; /* Sensor or Event. */
4956 	msg.cmd = 2; /* Platform event command. */
4957 	msg.data = data;
4958 	msg.data_len = 8;
4959 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4960 	data[1] = 0x03; /* This is for IPMI 1.0. */
4961 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4962 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4963 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4964 
4965 	/*
4966 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4967 	 * to make the panic events more useful.
4968 	 */
4969 	if (str) {
4970 		data[3] = str[0];
4971 		data[6] = str[1];
4972 		data[7] = str[2];
4973 	}
4974 
4975 	/* Send the event announcing the panic. */
4976 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4977 
4978 	/*
4979 	 * On every interface, dump a bunch of OEM event holding the
4980 	 * string.
4981 	 */
4982 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4983 		return;
4984 
4985 	/*
4986 	 * intf_num is used as an marker to tell if the
4987 	 * interface is valid.  Thus we need a read barrier to
4988 	 * make sure data fetched before checking intf_num
4989 	 * won't be used.
4990 	 */
4991 	smp_rmb();
4992 
4993 	/*
4994 	 * First job here is to figure out where to send the
4995 	 * OEM events.  There's no way in IPMI to send OEM
4996 	 * events using an event send command, so we have to
4997 	 * find the SEL to put them in and stick them in
4998 	 * there.
4999 	 */
5000 
5001 	/* Get capabilities from the get device id. */
5002 	intf->local_sel_device = 0;
5003 	intf->local_event_generator = 0;
5004 	intf->event_receiver = 0;
5005 
5006 	/* Request the device info from the local MC. */
5007 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5008 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5009 	msg.data = NULL;
5010 	msg.data_len = 0;
5011 	intf->null_user_handler = device_id_fetcher;
5012 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5013 
5014 	if (intf->local_event_generator) {
5015 		/* Request the event receiver from the local MC. */
5016 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5017 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5018 		msg.data = NULL;
5019 		msg.data_len = 0;
5020 		intf->null_user_handler = event_receiver_fetcher;
5021 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5022 	}
5023 	intf->null_user_handler = NULL;
5024 
5025 	/*
5026 	 * Validate the event receiver.  The low bit must not
5027 	 * be 1 (it must be a valid IPMB address), it cannot
5028 	 * be zero, and it must not be my address.
5029 	 */
5030 	if (((intf->event_receiver & 1) == 0)
5031 	    && (intf->event_receiver != 0)
5032 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5033 		/*
5034 		 * The event receiver is valid, send an IPMB
5035 		 * message.
5036 		 */
5037 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5038 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5039 		ipmb->channel = 0; /* FIXME - is this right? */
5040 		ipmb->lun = intf->event_receiver_lun;
5041 		ipmb->slave_addr = intf->event_receiver;
5042 	} else if (intf->local_sel_device) {
5043 		/*
5044 		 * The event receiver was not valid (or was
5045 		 * me), but I am an SEL device, just dump it
5046 		 * in my SEL.
5047 		 */
5048 		si = (struct ipmi_system_interface_addr *) &addr;
5049 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5050 		si->channel = IPMI_BMC_CHANNEL;
5051 		si->lun = 0;
5052 	} else
5053 		return; /* No where to send the event. */
5054 
5055 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5056 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5057 	msg.data = data;
5058 	msg.data_len = 16;
5059 
5060 	j = 0;
5061 	while (*p) {
5062 		int size = strlen(p);
5063 
5064 		if (size > 11)
5065 			size = 11;
5066 		data[0] = 0;
5067 		data[1] = 0;
5068 		data[2] = 0xf0; /* OEM event without timestamp. */
5069 		data[3] = intf->addrinfo[0].address;
5070 		data[4] = j++; /* sequence # */
5071 		/*
5072 		 * Always give 11 bytes, so strncpy will fill
5073 		 * it with zeroes for me.
5074 		 */
5075 		strncpy(data+5, p, 11);
5076 		p += size;
5077 
5078 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5079 	}
5080 }
5081 
5082 static int has_panicked;
5083 
panic_event(struct notifier_block *this, unsigned long event, void *ptr)5084 static int panic_event(struct notifier_block *this,
5085 		       unsigned long         event,
5086 		       void                  *ptr)
5087 {
5088 	struct ipmi_smi *intf;
5089 	struct ipmi_user *user;
5090 
5091 	if (has_panicked)
5092 		return NOTIFY_DONE;
5093 	has_panicked = 1;
5094 
5095 	/* For every registered interface, set it to run to completion. */
5096 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5097 		if (!intf->handlers || intf->intf_num == -1)
5098 			/* Interface is not ready. */
5099 			continue;
5100 
5101 		if (!intf->handlers->poll)
5102 			continue;
5103 
5104 		/*
5105 		 * If we were interrupted while locking xmit_msgs_lock or
5106 		 * waiting_rcv_msgs_lock, the corresponding list may be
5107 		 * corrupted.  In this case, drop items on the list for
5108 		 * the safety.
5109 		 */
5110 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5111 			INIT_LIST_HEAD(&intf->xmit_msgs);
5112 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5113 		} else
5114 			spin_unlock(&intf->xmit_msgs_lock);
5115 
5116 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5117 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5118 		else
5119 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5120 
5121 		intf->run_to_completion = 1;
5122 		if (intf->handlers->set_run_to_completion)
5123 			intf->handlers->set_run_to_completion(intf->send_info,
5124 							      1);
5125 
5126 		list_for_each_entry_rcu(user, &intf->users, link) {
5127 			if (user->handler->ipmi_panic_handler)
5128 				user->handler->ipmi_panic_handler(
5129 					user->handler_data);
5130 		}
5131 
5132 		send_panic_events(intf, ptr);
5133 	}
5134 
5135 	return NOTIFY_DONE;
5136 }
5137 
5138 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5139 static int ipmi_register_driver(void)
5140 {
5141 	int rv;
5142 
5143 	if (drvregistered)
5144 		return 0;
5145 
5146 	rv = driver_register(&ipmidriver.driver);
5147 	if (rv)
5148 		pr_err("Could not register IPMI driver\n");
5149 	else
5150 		drvregistered = true;
5151 	return rv;
5152 }
5153 
5154 static struct notifier_block panic_block = {
5155 	.notifier_call	= panic_event,
5156 	.next		= NULL,
5157 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5158 };
5159 
ipmi_init_msghandler(void)5160 static int ipmi_init_msghandler(void)
5161 {
5162 	int rv;
5163 
5164 	mutex_lock(&ipmi_interfaces_mutex);
5165 	rv = ipmi_register_driver();
5166 	if (rv)
5167 		goto out;
5168 	if (initialized)
5169 		goto out;
5170 
5171 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5172 	if (rv)
5173 		goto out;
5174 
5175 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5176 	if (!remove_work_wq) {
5177 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5178 		rv = -ENOMEM;
5179 		goto out_wq;
5180 	}
5181 
5182 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5183 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5184 
5185 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5186 
5187 	initialized = true;
5188 
5189 out_wq:
5190 	if (rv)
5191 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5192 out:
5193 	mutex_unlock(&ipmi_interfaces_mutex);
5194 	return rv;
5195 }
5196 
ipmi_init_msghandler_mod(void)5197 static int __init ipmi_init_msghandler_mod(void)
5198 {
5199 	int rv;
5200 
5201 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5202 
5203 	mutex_lock(&ipmi_interfaces_mutex);
5204 	rv = ipmi_register_driver();
5205 	mutex_unlock(&ipmi_interfaces_mutex);
5206 
5207 	return rv;
5208 }
5209 
cleanup_ipmi(void)5210 static void __exit cleanup_ipmi(void)
5211 {
5212 	int count;
5213 
5214 	if (initialized) {
5215 		destroy_workqueue(remove_work_wq);
5216 
5217 		atomic_notifier_chain_unregister(&panic_notifier_list,
5218 						 &panic_block);
5219 
5220 		/*
5221 		 * This can't be called if any interfaces exist, so no worry
5222 		 * about shutting down the interfaces.
5223 		 */
5224 
5225 		/*
5226 		 * Tell the timer to stop, then wait for it to stop.  This
5227 		 * avoids problems with race conditions removing the timer
5228 		 * here.
5229 		 */
5230 		atomic_set(&stop_operation, 1);
5231 		del_timer_sync(&ipmi_timer);
5232 
5233 		initialized = false;
5234 
5235 		/* Check for buffer leaks. */
5236 		count = atomic_read(&smi_msg_inuse_count);
5237 		if (count != 0)
5238 			pr_warn("SMI message count %d at exit\n", count);
5239 		count = atomic_read(&recv_msg_inuse_count);
5240 		if (count != 0)
5241 			pr_warn("recv message count %d at exit\n", count);
5242 
5243 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5244 	}
5245 	if (drvregistered)
5246 		driver_unregister(&ipmidriver.driver);
5247 }
5248 module_exit(cleanup_ipmi);
5249 
5250 module_init(ipmi_init_msghandler_mod);
5251 MODULE_LICENSE("GPL");
5252 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5253 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5254 		   " interface.");
5255 MODULE_VERSION(IPMI_DRIVER_VERSION);
5256 MODULE_SOFTDEP("post: ipmi_devintf");
5257