1/* 2 * blkfront.c 3 * 4 * XenLinux virtual block device driver. 5 * 6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand 7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge 8 * Copyright (c) 2004, Christian Limpach 9 * Copyright (c) 2004, Andrew Warfield 10 * Copyright (c) 2005, Christopher Clark 11 * Copyright (c) 2005, XenSource Ltd 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License version 2 15 * as published by the Free Software Foundation; or, when distributed 16 * separately from the Linux kernel or incorporated into other 17 * software packages, subject to the following license: 18 * 19 * Permission is hereby granted, free of charge, to any person obtaining a copy 20 * of this source file (the "Software"), to deal in the Software without 21 * restriction, including without limitation the rights to use, copy, modify, 22 * merge, publish, distribute, sublicense, and/or sell copies of the Software, 23 * and to permit persons to whom the Software is furnished to do so, subject to 24 * the following conditions: 25 * 26 * The above copyright notice and this permission notice shall be included in 27 * all copies or substantial portions of the Software. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 35 * IN THE SOFTWARE. 36 */ 37 38#include <linux/interrupt.h> 39#include <linux/blkdev.h> 40#include <linux/blk-mq.h> 41#include <linux/hdreg.h> 42#include <linux/cdrom.h> 43#include <linux/module.h> 44#include <linux/slab.h> 45#include <linux/mutex.h> 46#include <linux/scatterlist.h> 47#include <linux/bitmap.h> 48#include <linux/list.h> 49#include <linux/workqueue.h> 50#include <linux/sched/mm.h> 51 52#include <xen/xen.h> 53#include <xen/xenbus.h> 54#include <xen/grant_table.h> 55#include <xen/events.h> 56#include <xen/page.h> 57#include <xen/platform_pci.h> 58 59#include <xen/interface/grant_table.h> 60#include <xen/interface/io/blkif.h> 61#include <xen/interface/io/protocols.h> 62 63#include <asm/xen/hypervisor.h> 64 65/* 66 * The minimal size of segment supported by the block framework is PAGE_SIZE. 67 * When Linux is using a different page size than Xen, it may not be possible 68 * to put all the data in a single segment. 69 * This can happen when the backend doesn't support indirect descriptor and 70 * therefore the maximum amount of data that a request can carry is 71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB 72 * 73 * Note that we only support one extra request. So the Linux page size 74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) = 75 * 88KB. 76 */ 77#define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE) 78 79enum blkif_state { 80 BLKIF_STATE_DISCONNECTED, 81 BLKIF_STATE_CONNECTED, 82 BLKIF_STATE_SUSPENDED, 83 BLKIF_STATE_ERROR, 84}; 85 86struct grant { 87 grant_ref_t gref; 88 struct page *page; 89 struct list_head node; 90}; 91 92enum blk_req_status { 93 REQ_PROCESSING, 94 REQ_WAITING, 95 REQ_DONE, 96 REQ_ERROR, 97 REQ_EOPNOTSUPP, 98}; 99 100struct blk_shadow { 101 struct blkif_request req; 102 struct request *request; 103 struct grant **grants_used; 104 struct grant **indirect_grants; 105 struct scatterlist *sg; 106 unsigned int num_sg; 107 enum blk_req_status status; 108 109 #define NO_ASSOCIATED_ID ~0UL 110 /* 111 * Id of the sibling if we ever need 2 requests when handling a 112 * block I/O request 113 */ 114 unsigned long associated_id; 115}; 116 117struct blkif_req { 118 blk_status_t error; 119}; 120 121static inline struct blkif_req *blkif_req(struct request *rq) 122{ 123 return blk_mq_rq_to_pdu(rq); 124} 125 126static DEFINE_MUTEX(blkfront_mutex); 127static const struct block_device_operations xlvbd_block_fops; 128static struct delayed_work blkfront_work; 129static LIST_HEAD(info_list); 130 131/* 132 * Maximum number of segments in indirect requests, the actual value used by 133 * the frontend driver is the minimum of this value and the value provided 134 * by the backend driver. 135 */ 136 137static unsigned int xen_blkif_max_segments = 32; 138module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444); 139MODULE_PARM_DESC(max_indirect_segments, 140 "Maximum amount of segments in indirect requests (default is 32)"); 141 142static unsigned int xen_blkif_max_queues = 4; 143module_param_named(max_queues, xen_blkif_max_queues, uint, 0444); 144MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk"); 145 146/* 147 * Maximum order of pages to be used for the shared ring between front and 148 * backend, 4KB page granularity is used. 149 */ 150static unsigned int xen_blkif_max_ring_order; 151module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444); 152MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring"); 153 154static bool __read_mostly xen_blkif_trusted = true; 155module_param_named(trusted, xen_blkif_trusted, bool, 0644); 156MODULE_PARM_DESC(trusted, "Is the backend trusted"); 157 158#define BLK_RING_SIZE(info) \ 159 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages) 160 161/* 162 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19 163 * characters are enough. Define to 20 to keep consistent with backend. 164 */ 165#define RINGREF_NAME_LEN (20) 166/* 167 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters. 168 */ 169#define QUEUE_NAME_LEN (17) 170 171/* 172 * Per-ring info. 173 * Every blkfront device can associate with one or more blkfront_ring_info, 174 * depending on how many hardware queues/rings to be used. 175 */ 176struct blkfront_ring_info { 177 /* Lock to protect data in every ring buffer. */ 178 spinlock_t ring_lock; 179 struct blkif_front_ring ring; 180 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS]; 181 unsigned int evtchn, irq; 182 struct work_struct work; 183 struct gnttab_free_callback callback; 184 struct list_head indirect_pages; 185 struct list_head grants; 186 unsigned int persistent_gnts_c; 187 unsigned long shadow_free; 188 struct blkfront_info *dev_info; 189 struct blk_shadow shadow[]; 190}; 191 192/* 193 * We have one of these per vbd, whether ide, scsi or 'other'. They 194 * hang in private_data off the gendisk structure. We may end up 195 * putting all kinds of interesting stuff here :-) 196 */ 197struct blkfront_info 198{ 199 struct mutex mutex; 200 struct xenbus_device *xbdev; 201 struct gendisk *gd; 202 u16 sector_size; 203 unsigned int physical_sector_size; 204 int vdevice; 205 blkif_vdev_t handle; 206 enum blkif_state connected; 207 /* Number of pages per ring buffer. */ 208 unsigned int nr_ring_pages; 209 struct request_queue *rq; 210 unsigned int feature_flush:1; 211 unsigned int feature_fua:1; 212 unsigned int feature_discard:1; 213 unsigned int feature_secdiscard:1; 214 /* Connect-time cached feature_persistent parameter */ 215 unsigned int feature_persistent_parm:1; 216 /* Persistent grants feature negotiation result */ 217 unsigned int feature_persistent:1; 218 unsigned int bounce:1; 219 unsigned int discard_granularity; 220 unsigned int discard_alignment; 221 /* Number of 4KB segments handled */ 222 unsigned int max_indirect_segments; 223 int is_ready; 224 struct blk_mq_tag_set tag_set; 225 struct blkfront_ring_info *rinfo; 226 unsigned int nr_rings; 227 unsigned int rinfo_size; 228 /* Save uncomplete reqs and bios for migration. */ 229 struct list_head requests; 230 struct bio_list bio_list; 231 struct list_head info_list; 232}; 233 234static unsigned int nr_minors; 235static unsigned long *minors; 236static DEFINE_SPINLOCK(minor_lock); 237 238#define GRANT_INVALID_REF 0 239 240#define PARTS_PER_DISK 16 241#define PARTS_PER_EXT_DISK 256 242 243#define BLKIF_MAJOR(dev) ((dev)>>8) 244#define BLKIF_MINOR(dev) ((dev) & 0xff) 245 246#define EXT_SHIFT 28 247#define EXTENDED (1<<EXT_SHIFT) 248#define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED)) 249#define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED)) 250#define EMULATED_HD_DISK_MINOR_OFFSET (0) 251#define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256) 252#define EMULATED_SD_DISK_MINOR_OFFSET (0) 253#define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256) 254 255#define DEV_NAME "xvd" /* name in /dev */ 256 257/* 258 * Grants are always the same size as a Xen page (i.e 4KB). 259 * A physical segment is always the same size as a Linux page. 260 * Number of grants per physical segment 261 */ 262#define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE) 263 264#define GRANTS_PER_INDIRECT_FRAME \ 265 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment)) 266 267#define INDIRECT_GREFS(_grants) \ 268 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME) 269 270static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo); 271static void blkfront_gather_backend_features(struct blkfront_info *info); 272static int negotiate_mq(struct blkfront_info *info); 273 274#define for_each_rinfo(info, ptr, idx) \ 275 for ((ptr) = (info)->rinfo, (idx) = 0; \ 276 (idx) < (info)->nr_rings; \ 277 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size) 278 279static inline struct blkfront_ring_info * 280get_rinfo(const struct blkfront_info *info, unsigned int i) 281{ 282 BUG_ON(i >= info->nr_rings); 283 return (void *)info->rinfo + i * info->rinfo_size; 284} 285 286static int get_id_from_freelist(struct blkfront_ring_info *rinfo) 287{ 288 unsigned long free = rinfo->shadow_free; 289 290 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info)); 291 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id; 292 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */ 293 return free; 294} 295 296static int add_id_to_freelist(struct blkfront_ring_info *rinfo, 297 unsigned long id) 298{ 299 if (rinfo->shadow[id].req.u.rw.id != id) 300 return -EINVAL; 301 if (rinfo->shadow[id].request == NULL) 302 return -EINVAL; 303 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free; 304 rinfo->shadow[id].request = NULL; 305 rinfo->shadow_free = id; 306 return 0; 307} 308 309static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num) 310{ 311 struct blkfront_info *info = rinfo->dev_info; 312 struct page *granted_page; 313 struct grant *gnt_list_entry, *n; 314 int i = 0; 315 316 while (i < num) { 317 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO); 318 if (!gnt_list_entry) 319 goto out_of_memory; 320 321 if (info->bounce) { 322 granted_page = alloc_page(GFP_NOIO | __GFP_ZERO); 323 if (!granted_page) { 324 kfree(gnt_list_entry); 325 goto out_of_memory; 326 } 327 gnt_list_entry->page = granted_page; 328 } 329 330 gnt_list_entry->gref = GRANT_INVALID_REF; 331 list_add(&gnt_list_entry->node, &rinfo->grants); 332 i++; 333 } 334 335 return 0; 336 337out_of_memory: 338 list_for_each_entry_safe(gnt_list_entry, n, 339 &rinfo->grants, node) { 340 list_del(&gnt_list_entry->node); 341 if (info->bounce) 342 __free_page(gnt_list_entry->page); 343 kfree(gnt_list_entry); 344 i--; 345 } 346 BUG_ON(i != 0); 347 return -ENOMEM; 348} 349 350static struct grant *get_free_grant(struct blkfront_ring_info *rinfo) 351{ 352 struct grant *gnt_list_entry; 353 354 BUG_ON(list_empty(&rinfo->grants)); 355 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant, 356 node); 357 list_del(&gnt_list_entry->node); 358 359 if (gnt_list_entry->gref != GRANT_INVALID_REF) 360 rinfo->persistent_gnts_c--; 361 362 return gnt_list_entry; 363} 364 365static inline void grant_foreign_access(const struct grant *gnt_list_entry, 366 const struct blkfront_info *info) 367{ 368 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref, 369 info->xbdev->otherend_id, 370 gnt_list_entry->page, 371 0); 372} 373 374static struct grant *get_grant(grant_ref_t *gref_head, 375 unsigned long gfn, 376 struct blkfront_ring_info *rinfo) 377{ 378 struct grant *gnt_list_entry = get_free_grant(rinfo); 379 struct blkfront_info *info = rinfo->dev_info; 380 381 if (gnt_list_entry->gref != GRANT_INVALID_REF) 382 return gnt_list_entry; 383 384 /* Assign a gref to this page */ 385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 386 BUG_ON(gnt_list_entry->gref == -ENOSPC); 387 if (info->bounce) 388 grant_foreign_access(gnt_list_entry, info); 389 else { 390 /* Grant access to the GFN passed by the caller */ 391 gnttab_grant_foreign_access_ref(gnt_list_entry->gref, 392 info->xbdev->otherend_id, 393 gfn, 0); 394 } 395 396 return gnt_list_entry; 397} 398 399static struct grant *get_indirect_grant(grant_ref_t *gref_head, 400 struct blkfront_ring_info *rinfo) 401{ 402 struct grant *gnt_list_entry = get_free_grant(rinfo); 403 struct blkfront_info *info = rinfo->dev_info; 404 405 if (gnt_list_entry->gref != GRANT_INVALID_REF) 406 return gnt_list_entry; 407 408 /* Assign a gref to this page */ 409 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head); 410 BUG_ON(gnt_list_entry->gref == -ENOSPC); 411 if (!info->bounce) { 412 struct page *indirect_page; 413 414 /* Fetch a pre-allocated page to use for indirect grefs */ 415 BUG_ON(list_empty(&rinfo->indirect_pages)); 416 indirect_page = list_first_entry(&rinfo->indirect_pages, 417 struct page, lru); 418 list_del(&indirect_page->lru); 419 gnt_list_entry->page = indirect_page; 420 } 421 grant_foreign_access(gnt_list_entry, info); 422 423 return gnt_list_entry; 424} 425 426static const char *op_name(int op) 427{ 428 static const char *const names[] = { 429 [BLKIF_OP_READ] = "read", 430 [BLKIF_OP_WRITE] = "write", 431 [BLKIF_OP_WRITE_BARRIER] = "barrier", 432 [BLKIF_OP_FLUSH_DISKCACHE] = "flush", 433 [BLKIF_OP_DISCARD] = "discard" }; 434 435 if (op < 0 || op >= ARRAY_SIZE(names)) 436 return "unknown"; 437 438 if (!names[op]) 439 return "reserved"; 440 441 return names[op]; 442} 443static int xlbd_reserve_minors(unsigned int minor, unsigned int nr) 444{ 445 unsigned int end = minor + nr; 446 int rc; 447 448 if (end > nr_minors) { 449 unsigned long *bitmap, *old; 450 451 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap), 452 GFP_KERNEL); 453 if (bitmap == NULL) 454 return -ENOMEM; 455 456 spin_lock(&minor_lock); 457 if (end > nr_minors) { 458 old = minors; 459 memcpy(bitmap, minors, 460 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap)); 461 minors = bitmap; 462 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG; 463 } else 464 old = bitmap; 465 spin_unlock(&minor_lock); 466 kfree(old); 467 } 468 469 spin_lock(&minor_lock); 470 if (find_next_bit(minors, end, minor) >= end) { 471 bitmap_set(minors, minor, nr); 472 rc = 0; 473 } else 474 rc = -EBUSY; 475 spin_unlock(&minor_lock); 476 477 return rc; 478} 479 480static void xlbd_release_minors(unsigned int minor, unsigned int nr) 481{ 482 unsigned int end = minor + nr; 483 484 BUG_ON(end > nr_minors); 485 spin_lock(&minor_lock); 486 bitmap_clear(minors, minor, nr); 487 spin_unlock(&minor_lock); 488} 489 490static void blkif_restart_queue_callback(void *arg) 491{ 492 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg; 493 schedule_work(&rinfo->work); 494} 495 496static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg) 497{ 498 /* We don't have real geometry info, but let's at least return 499 values consistent with the size of the device */ 500 sector_t nsect = get_capacity(bd->bd_disk); 501 sector_t cylinders = nsect; 502 503 hg->heads = 0xff; 504 hg->sectors = 0x3f; 505 sector_div(cylinders, hg->heads * hg->sectors); 506 hg->cylinders = cylinders; 507 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect) 508 hg->cylinders = 0xffff; 509 return 0; 510} 511 512static int blkif_ioctl(struct block_device *bdev, fmode_t mode, 513 unsigned command, unsigned long argument) 514{ 515 struct blkfront_info *info = bdev->bd_disk->private_data; 516 int i; 517 518 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n", 519 command, (long)argument); 520 521 switch (command) { 522 case CDROMMULTISESSION: 523 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n"); 524 for (i = 0; i < sizeof(struct cdrom_multisession); i++) 525 if (put_user(0, (char __user *)(argument + i))) 526 return -EFAULT; 527 return 0; 528 529 case CDROM_GET_CAPABILITY: { 530 struct gendisk *gd = info->gd; 531 if (gd->flags & GENHD_FL_CD) 532 return 0; 533 return -EINVAL; 534 } 535 536 default: 537 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n", 538 command);*/ 539 return -EINVAL; /* same return as native Linux */ 540 } 541 542 return 0; 543} 544 545static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo, 546 struct request *req, 547 struct blkif_request **ring_req) 548{ 549 unsigned long id; 550 551 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt); 552 rinfo->ring.req_prod_pvt++; 553 554 id = get_id_from_freelist(rinfo); 555 rinfo->shadow[id].request = req; 556 rinfo->shadow[id].status = REQ_PROCESSING; 557 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID; 558 559 rinfo->shadow[id].req.u.rw.id = id; 560 561 return id; 562} 563 564static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo) 565{ 566 struct blkfront_info *info = rinfo->dev_info; 567 struct blkif_request *ring_req, *final_ring_req; 568 unsigned long id; 569 570 /* Fill out a communications ring structure. */ 571 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 572 ring_req = &rinfo->shadow[id].req; 573 574 ring_req->operation = BLKIF_OP_DISCARD; 575 ring_req->u.discard.nr_sectors = blk_rq_sectors(req); 576 ring_req->u.discard.id = id; 577 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req); 578 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard) 579 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE; 580 else 581 ring_req->u.discard.flag = 0; 582 583 /* Copy the request to the ring page. */ 584 *final_ring_req = *ring_req; 585 rinfo->shadow[id].status = REQ_WAITING; 586 587 return 0; 588} 589 590struct setup_rw_req { 591 unsigned int grant_idx; 592 struct blkif_request_segment *segments; 593 struct blkfront_ring_info *rinfo; 594 struct blkif_request *ring_req; 595 grant_ref_t gref_head; 596 unsigned int id; 597 /* Only used when persistent grant is used and it's a read request */ 598 bool need_copy; 599 unsigned int bvec_off; 600 char *bvec_data; 601 602 bool require_extra_req; 603 struct blkif_request *extra_ring_req; 604}; 605 606static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, 607 unsigned int len, void *data) 608{ 609 struct setup_rw_req *setup = data; 610 int n, ref; 611 struct grant *gnt_list_entry; 612 unsigned int fsect, lsect; 613 /* Convenient aliases */ 614 unsigned int grant_idx = setup->grant_idx; 615 struct blkif_request *ring_req = setup->ring_req; 616 struct blkfront_ring_info *rinfo = setup->rinfo; 617 /* 618 * We always use the shadow of the first request to store the list 619 * of grant associated to the block I/O request. This made the 620 * completion more easy to handle even if the block I/O request is 621 * split. 622 */ 623 struct blk_shadow *shadow = &rinfo->shadow[setup->id]; 624 625 if (unlikely(setup->require_extra_req && 626 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) { 627 /* 628 * We are using the second request, setup grant_idx 629 * to be the index of the segment array. 630 */ 631 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST; 632 ring_req = setup->extra_ring_req; 633 } 634 635 if ((ring_req->operation == BLKIF_OP_INDIRECT) && 636 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) { 637 if (setup->segments) 638 kunmap_atomic(setup->segments); 639 640 n = grant_idx / GRANTS_PER_INDIRECT_FRAME; 641 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo); 642 shadow->indirect_grants[n] = gnt_list_entry; 643 setup->segments = kmap_atomic(gnt_list_entry->page); 644 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref; 645 } 646 647 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo); 648 ref = gnt_list_entry->gref; 649 /* 650 * All the grants are stored in the shadow of the first 651 * request. Therefore we have to use the global index. 652 */ 653 shadow->grants_used[setup->grant_idx] = gnt_list_entry; 654 655 if (setup->need_copy) { 656 void *shared_data; 657 658 shared_data = kmap_atomic(gnt_list_entry->page); 659 /* 660 * this does not wipe data stored outside the 661 * range sg->offset..sg->offset+sg->length. 662 * Therefore, blkback *could* see data from 663 * previous requests. This is OK as long as 664 * persistent grants are shared with just one 665 * domain. It may need refactoring if this 666 * changes 667 */ 668 memcpy(shared_data + offset, 669 setup->bvec_data + setup->bvec_off, 670 len); 671 672 kunmap_atomic(shared_data); 673 setup->bvec_off += len; 674 } 675 676 fsect = offset >> 9; 677 lsect = fsect + (len >> 9) - 1; 678 if (ring_req->operation != BLKIF_OP_INDIRECT) { 679 ring_req->u.rw.seg[grant_idx] = 680 (struct blkif_request_segment) { 681 .gref = ref, 682 .first_sect = fsect, 683 .last_sect = lsect }; 684 } else { 685 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] = 686 (struct blkif_request_segment) { 687 .gref = ref, 688 .first_sect = fsect, 689 .last_sect = lsect }; 690 } 691 692 (setup->grant_idx)++; 693} 694 695static void blkif_setup_extra_req(struct blkif_request *first, 696 struct blkif_request *second) 697{ 698 uint16_t nr_segments = first->u.rw.nr_segments; 699 700 /* 701 * The second request is only present when the first request uses 702 * all its segments. It's always the continuity of the first one. 703 */ 704 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 705 706 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST; 707 second->u.rw.sector_number = first->u.rw.sector_number + 708 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512; 709 710 second->u.rw.handle = first->u.rw.handle; 711 second->operation = first->operation; 712} 713 714static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo) 715{ 716 struct blkfront_info *info = rinfo->dev_info; 717 struct blkif_request *ring_req, *extra_ring_req = NULL; 718 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL; 719 unsigned long id, extra_id = NO_ASSOCIATED_ID; 720 bool require_extra_req = false; 721 int i; 722 struct setup_rw_req setup = { 723 .grant_idx = 0, 724 .segments = NULL, 725 .rinfo = rinfo, 726 .need_copy = rq_data_dir(req) && info->bounce, 727 }; 728 729 /* 730 * Used to store if we are able to queue the request by just using 731 * existing persistent grants, or if we have to get new grants, 732 * as there are not sufficiently many free. 733 */ 734 bool new_persistent_gnts = false; 735 struct scatterlist *sg; 736 int num_sg, max_grefs, num_grant; 737 738 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG; 739 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST) 740 /* 741 * If we are using indirect segments we need to account 742 * for the indirect grefs used in the request. 743 */ 744 max_grefs += INDIRECT_GREFS(max_grefs); 745 746 /* Check if we have enough persistent grants to allocate a requests */ 747 if (rinfo->persistent_gnts_c < max_grefs) { 748 new_persistent_gnts = true; 749 750 if (gnttab_alloc_grant_references( 751 max_grefs - rinfo->persistent_gnts_c, 752 &setup.gref_head) < 0) { 753 gnttab_request_free_callback( 754 &rinfo->callback, 755 blkif_restart_queue_callback, 756 rinfo, 757 max_grefs - rinfo->persistent_gnts_c); 758 return 1; 759 } 760 } 761 762 /* Fill out a communications ring structure. */ 763 id = blkif_ring_get_request(rinfo, req, &final_ring_req); 764 ring_req = &rinfo->shadow[id].req; 765 766 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg); 767 num_grant = 0; 768 /* Calculate the number of grant used */ 769 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) 770 num_grant += gnttab_count_grant(sg->offset, sg->length); 771 772 require_extra_req = info->max_indirect_segments == 0 && 773 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST; 774 BUG_ON(!HAS_EXTRA_REQ && require_extra_req); 775 776 rinfo->shadow[id].num_sg = num_sg; 777 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST && 778 likely(!require_extra_req)) { 779 /* 780 * The indirect operation can only be a BLKIF_OP_READ or 781 * BLKIF_OP_WRITE 782 */ 783 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA); 784 ring_req->operation = BLKIF_OP_INDIRECT; 785 ring_req->u.indirect.indirect_op = rq_data_dir(req) ? 786 BLKIF_OP_WRITE : BLKIF_OP_READ; 787 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req); 788 ring_req->u.indirect.handle = info->handle; 789 ring_req->u.indirect.nr_segments = num_grant; 790 } else { 791 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req); 792 ring_req->u.rw.handle = info->handle; 793 ring_req->operation = rq_data_dir(req) ? 794 BLKIF_OP_WRITE : BLKIF_OP_READ; 795 if (req_op(req) == REQ_OP_FLUSH || 796 (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) { 797 /* 798 * Ideally we can do an unordered flush-to-disk. 799 * In case the backend onlysupports barriers, use that. 800 * A barrier request a superset of FUA, so we can 801 * implement it the same way. (It's also a FLUSH+FUA, 802 * since it is guaranteed ordered WRT previous writes.) 803 */ 804 if (info->feature_flush && info->feature_fua) 805 ring_req->operation = 806 BLKIF_OP_WRITE_BARRIER; 807 else if (info->feature_flush) 808 ring_req->operation = 809 BLKIF_OP_FLUSH_DISKCACHE; 810 else 811 ring_req->operation = 0; 812 } 813 ring_req->u.rw.nr_segments = num_grant; 814 if (unlikely(require_extra_req)) { 815 extra_id = blkif_ring_get_request(rinfo, req, 816 &final_extra_ring_req); 817 extra_ring_req = &rinfo->shadow[extra_id].req; 818 819 /* 820 * Only the first request contains the scatter-gather 821 * list. 822 */ 823 rinfo->shadow[extra_id].num_sg = 0; 824 825 blkif_setup_extra_req(ring_req, extra_ring_req); 826 827 /* Link the 2 requests together */ 828 rinfo->shadow[extra_id].associated_id = id; 829 rinfo->shadow[id].associated_id = extra_id; 830 } 831 } 832 833 setup.ring_req = ring_req; 834 setup.id = id; 835 836 setup.require_extra_req = require_extra_req; 837 if (unlikely(require_extra_req)) 838 setup.extra_ring_req = extra_ring_req; 839 840 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) { 841 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 842 843 if (setup.need_copy) { 844 setup.bvec_off = sg->offset; 845 setup.bvec_data = kmap_atomic(sg_page(sg)); 846 } 847 848 gnttab_foreach_grant_in_range(sg_page(sg), 849 sg->offset, 850 sg->length, 851 blkif_setup_rw_req_grant, 852 &setup); 853 854 if (setup.need_copy) 855 kunmap_atomic(setup.bvec_data); 856 } 857 if (setup.segments) 858 kunmap_atomic(setup.segments); 859 860 /* Copy request(s) to the ring page. */ 861 *final_ring_req = *ring_req; 862 rinfo->shadow[id].status = REQ_WAITING; 863 if (unlikely(require_extra_req)) { 864 *final_extra_ring_req = *extra_ring_req; 865 rinfo->shadow[extra_id].status = REQ_WAITING; 866 } 867 868 if (new_persistent_gnts) 869 gnttab_free_grant_references(setup.gref_head); 870 871 return 0; 872} 873 874/* 875 * Generate a Xen blkfront IO request from a blk layer request. Reads 876 * and writes are handled as expected. 877 * 878 * @req: a request struct 879 */ 880static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo) 881{ 882 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED)) 883 return 1; 884 885 if (unlikely(req_op(req) == REQ_OP_DISCARD || 886 req_op(req) == REQ_OP_SECURE_ERASE)) 887 return blkif_queue_discard_req(req, rinfo); 888 else 889 return blkif_queue_rw_req(req, rinfo); 890} 891 892static inline void flush_requests(struct blkfront_ring_info *rinfo) 893{ 894 int notify; 895 896 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify); 897 898 if (notify) 899 notify_remote_via_irq(rinfo->irq); 900} 901 902static inline bool blkif_request_flush_invalid(struct request *req, 903 struct blkfront_info *info) 904{ 905 return (blk_rq_is_passthrough(req) || 906 ((req_op(req) == REQ_OP_FLUSH) && 907 !info->feature_flush) || 908 ((req->cmd_flags & REQ_FUA) && 909 !info->feature_fua)); 910} 911 912static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx, 913 const struct blk_mq_queue_data *qd) 914{ 915 unsigned long flags; 916 int qid = hctx->queue_num; 917 struct blkfront_info *info = hctx->queue->queuedata; 918 struct blkfront_ring_info *rinfo = NULL; 919 920 rinfo = get_rinfo(info, qid); 921 blk_mq_start_request(qd->rq); 922 spin_lock_irqsave(&rinfo->ring_lock, flags); 923 if (RING_FULL(&rinfo->ring)) 924 goto out_busy; 925 926 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info)) 927 goto out_err; 928 929 if (blkif_queue_request(qd->rq, rinfo)) 930 goto out_busy; 931 932 flush_requests(rinfo); 933 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 934 return BLK_STS_OK; 935 936out_err: 937 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 938 return BLK_STS_IOERR; 939 940out_busy: 941 blk_mq_stop_hw_queue(hctx); 942 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 943 return BLK_STS_DEV_RESOURCE; 944} 945 946static void blkif_complete_rq(struct request *rq) 947{ 948 blk_mq_end_request(rq, blkif_req(rq)->error); 949} 950 951static const struct blk_mq_ops blkfront_mq_ops = { 952 .queue_rq = blkif_queue_rq, 953 .complete = blkif_complete_rq, 954}; 955 956static void blkif_set_queue_limits(struct blkfront_info *info) 957{ 958 struct request_queue *rq = info->rq; 959 struct gendisk *gd = info->gd; 960 unsigned int segments = info->max_indirect_segments ? : 961 BLKIF_MAX_SEGMENTS_PER_REQUEST; 962 963 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq); 964 965 if (info->feature_discard) { 966 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq); 967 blk_queue_max_discard_sectors(rq, get_capacity(gd)); 968 rq->limits.discard_granularity = info->discard_granularity ?: 969 info->physical_sector_size; 970 rq->limits.discard_alignment = info->discard_alignment; 971 if (info->feature_secdiscard) 972 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq); 973 } 974 975 /* Hard sector size and max sectors impersonate the equiv. hardware. */ 976 blk_queue_logical_block_size(rq, info->sector_size); 977 blk_queue_physical_block_size(rq, info->physical_sector_size); 978 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512); 979 980 /* Each segment in a request is up to an aligned page in size. */ 981 blk_queue_segment_boundary(rq, PAGE_SIZE - 1); 982 blk_queue_max_segment_size(rq, PAGE_SIZE); 983 984 /* Ensure a merged request will fit in a single I/O ring slot. */ 985 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG); 986 987 /* Make sure buffer addresses are sector-aligned. */ 988 blk_queue_dma_alignment(rq, 511); 989} 990 991static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, 992 unsigned int physical_sector_size) 993{ 994 struct request_queue *rq; 995 struct blkfront_info *info = gd->private_data; 996 997 memset(&info->tag_set, 0, sizeof(info->tag_set)); 998 info->tag_set.ops = &blkfront_mq_ops; 999 info->tag_set.nr_hw_queues = info->nr_rings; 1000 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) { 1001 /* 1002 * When indirect descriptior is not supported, the I/O request 1003 * will be split between multiple request in the ring. 1004 * To avoid problems when sending the request, divide by 1005 * 2 the depth of the queue. 1006 */ 1007 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2; 1008 } else 1009 info->tag_set.queue_depth = BLK_RING_SIZE(info); 1010 info->tag_set.numa_node = NUMA_NO_NODE; 1011 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1012 info->tag_set.cmd_size = sizeof(struct blkif_req); 1013 info->tag_set.driver_data = info; 1014 1015 if (blk_mq_alloc_tag_set(&info->tag_set)) 1016 return -EINVAL; 1017 rq = blk_mq_init_queue(&info->tag_set); 1018 if (IS_ERR(rq)) { 1019 blk_mq_free_tag_set(&info->tag_set); 1020 return PTR_ERR(rq); 1021 } 1022 1023 rq->queuedata = info; 1024 info->rq = gd->queue = rq; 1025 info->gd = gd; 1026 info->sector_size = sector_size; 1027 info->physical_sector_size = physical_sector_size; 1028 blkif_set_queue_limits(info); 1029 1030 return 0; 1031} 1032 1033static const char *flush_info(struct blkfront_info *info) 1034{ 1035 if (info->feature_flush && info->feature_fua) 1036 return "barrier: enabled;"; 1037 else if (info->feature_flush) 1038 return "flush diskcache: enabled;"; 1039 else 1040 return "barrier or flush: disabled;"; 1041} 1042 1043static void xlvbd_flush(struct blkfront_info *info) 1044{ 1045 blk_queue_write_cache(info->rq, info->feature_flush ? true : false, 1046 info->feature_fua ? true : false); 1047 pr_info("blkfront: %s: %s %s %s %s %s %s %s\n", 1048 info->gd->disk_name, flush_info(info), 1049 "persistent grants:", info->feature_persistent ? 1050 "enabled;" : "disabled;", "indirect descriptors:", 1051 info->max_indirect_segments ? "enabled;" : "disabled;", 1052 "bounce buffer:", info->bounce ? "enabled" : "disabled;"); 1053} 1054 1055static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset) 1056{ 1057 int major; 1058 major = BLKIF_MAJOR(vdevice); 1059 *minor = BLKIF_MINOR(vdevice); 1060 switch (major) { 1061 case XEN_IDE0_MAJOR: 1062 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET; 1063 *minor = ((*minor / 64) * PARTS_PER_DISK) + 1064 EMULATED_HD_DISK_MINOR_OFFSET; 1065 break; 1066 case XEN_IDE1_MAJOR: 1067 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET; 1068 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) + 1069 EMULATED_HD_DISK_MINOR_OFFSET; 1070 break; 1071 case XEN_SCSI_DISK0_MAJOR: 1072 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET; 1073 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET; 1074 break; 1075 case XEN_SCSI_DISK1_MAJOR: 1076 case XEN_SCSI_DISK2_MAJOR: 1077 case XEN_SCSI_DISK3_MAJOR: 1078 case XEN_SCSI_DISK4_MAJOR: 1079 case XEN_SCSI_DISK5_MAJOR: 1080 case XEN_SCSI_DISK6_MAJOR: 1081 case XEN_SCSI_DISK7_MAJOR: 1082 *offset = (*minor / PARTS_PER_DISK) + 1083 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) + 1084 EMULATED_SD_DISK_NAME_OFFSET; 1085 *minor = *minor + 1086 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) + 1087 EMULATED_SD_DISK_MINOR_OFFSET; 1088 break; 1089 case XEN_SCSI_DISK8_MAJOR: 1090 case XEN_SCSI_DISK9_MAJOR: 1091 case XEN_SCSI_DISK10_MAJOR: 1092 case XEN_SCSI_DISK11_MAJOR: 1093 case XEN_SCSI_DISK12_MAJOR: 1094 case XEN_SCSI_DISK13_MAJOR: 1095 case XEN_SCSI_DISK14_MAJOR: 1096 case XEN_SCSI_DISK15_MAJOR: 1097 *offset = (*minor / PARTS_PER_DISK) + 1098 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) + 1099 EMULATED_SD_DISK_NAME_OFFSET; 1100 *minor = *minor + 1101 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) + 1102 EMULATED_SD_DISK_MINOR_OFFSET; 1103 break; 1104 case XENVBD_MAJOR: 1105 *offset = *minor / PARTS_PER_DISK; 1106 break; 1107 default: 1108 printk(KERN_WARNING "blkfront: your disk configuration is " 1109 "incorrect, please use an xvd device instead\n"); 1110 return -ENODEV; 1111 } 1112 return 0; 1113} 1114 1115static char *encode_disk_name(char *ptr, unsigned int n) 1116{ 1117 if (n >= 26) 1118 ptr = encode_disk_name(ptr, n / 26 - 1); 1119 *ptr = 'a' + n % 26; 1120 return ptr + 1; 1121} 1122 1123static int xlvbd_alloc_gendisk(blkif_sector_t capacity, 1124 struct blkfront_info *info, 1125 u16 vdisk_info, u16 sector_size, 1126 unsigned int physical_sector_size) 1127{ 1128 struct gendisk *gd; 1129 int nr_minors = 1; 1130 int err; 1131 unsigned int offset; 1132 int minor; 1133 int nr_parts; 1134 char *ptr; 1135 1136 BUG_ON(info->gd != NULL); 1137 BUG_ON(info->rq != NULL); 1138 1139 if ((info->vdevice>>EXT_SHIFT) > 1) { 1140 /* this is above the extended range; something is wrong */ 1141 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice); 1142 return -ENODEV; 1143 } 1144 1145 if (!VDEV_IS_EXTENDED(info->vdevice)) { 1146 err = xen_translate_vdev(info->vdevice, &minor, &offset); 1147 if (err) 1148 return err; 1149 nr_parts = PARTS_PER_DISK; 1150 } else { 1151 minor = BLKIF_MINOR_EXT(info->vdevice); 1152 nr_parts = PARTS_PER_EXT_DISK; 1153 offset = minor / nr_parts; 1154 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4) 1155 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with " 1156 "emulated IDE disks,\n\t choose an xvd device name" 1157 "from xvde on\n", info->vdevice); 1158 } 1159 if (minor >> MINORBITS) { 1160 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n", 1161 info->vdevice, minor); 1162 return -ENODEV; 1163 } 1164 1165 if ((minor % nr_parts) == 0) 1166 nr_minors = nr_parts; 1167 1168 err = xlbd_reserve_minors(minor, nr_minors); 1169 if (err) 1170 goto out; 1171 err = -ENODEV; 1172 1173 gd = alloc_disk(nr_minors); 1174 if (gd == NULL) 1175 goto release; 1176 1177 strcpy(gd->disk_name, DEV_NAME); 1178 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset); 1179 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN); 1180 if (nr_minors > 1) 1181 *ptr = 0; 1182 else 1183 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr, 1184 "%d", minor & (nr_parts - 1)); 1185 1186 gd->major = XENVBD_MAJOR; 1187 gd->first_minor = minor; 1188 gd->fops = &xlvbd_block_fops; 1189 gd->private_data = info; 1190 set_capacity(gd, capacity); 1191 1192 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) { 1193 del_gendisk(gd); 1194 goto release; 1195 } 1196 1197 xlvbd_flush(info); 1198 1199 if (vdisk_info & VDISK_READONLY) 1200 set_disk_ro(gd, 1); 1201 1202 if (vdisk_info & VDISK_REMOVABLE) 1203 gd->flags |= GENHD_FL_REMOVABLE; 1204 1205 if (vdisk_info & VDISK_CDROM) 1206 gd->flags |= GENHD_FL_CD; 1207 1208 return 0; 1209 1210 release: 1211 xlbd_release_minors(minor, nr_minors); 1212 out: 1213 return err; 1214} 1215 1216static void xlvbd_release_gendisk(struct blkfront_info *info) 1217{ 1218 unsigned int minor, nr_minors, i; 1219 struct blkfront_ring_info *rinfo; 1220 1221 if (info->rq == NULL) 1222 return; 1223 1224 /* No more blkif_request(). */ 1225 blk_mq_stop_hw_queues(info->rq); 1226 1227 for_each_rinfo(info, rinfo, i) { 1228 /* No more gnttab callback work. */ 1229 gnttab_cancel_free_callback(&rinfo->callback); 1230 1231 /* Flush gnttab callback work. Must be done with no locks held. */ 1232 flush_work(&rinfo->work); 1233 } 1234 1235 del_gendisk(info->gd); 1236 1237 minor = info->gd->first_minor; 1238 nr_minors = info->gd->minors; 1239 xlbd_release_minors(minor, nr_minors); 1240 1241 blk_cleanup_queue(info->rq); 1242 blk_mq_free_tag_set(&info->tag_set); 1243 info->rq = NULL; 1244 1245 put_disk(info->gd); 1246 info->gd = NULL; 1247} 1248 1249/* Already hold rinfo->ring_lock. */ 1250static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo) 1251{ 1252 if (!RING_FULL(&rinfo->ring)) 1253 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true); 1254} 1255 1256static void kick_pending_request_queues(struct blkfront_ring_info *rinfo) 1257{ 1258 unsigned long flags; 1259 1260 spin_lock_irqsave(&rinfo->ring_lock, flags); 1261 kick_pending_request_queues_locked(rinfo); 1262 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1263} 1264 1265static void blkif_restart_queue(struct work_struct *work) 1266{ 1267 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work); 1268 1269 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED) 1270 kick_pending_request_queues(rinfo); 1271} 1272 1273static void blkif_free_ring(struct blkfront_ring_info *rinfo) 1274{ 1275 struct grant *persistent_gnt, *n; 1276 struct blkfront_info *info = rinfo->dev_info; 1277 int i, j, segs; 1278 1279 /* 1280 * Remove indirect pages, this only happens when using indirect 1281 * descriptors but not persistent grants 1282 */ 1283 if (!list_empty(&rinfo->indirect_pages)) { 1284 struct page *indirect_page, *n; 1285 1286 BUG_ON(info->bounce); 1287 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 1288 list_del(&indirect_page->lru); 1289 __free_page(indirect_page); 1290 } 1291 } 1292 1293 /* Remove all persistent grants. */ 1294 if (!list_empty(&rinfo->grants)) { 1295 list_for_each_entry_safe(persistent_gnt, n, 1296 &rinfo->grants, node) { 1297 list_del(&persistent_gnt->node); 1298 if (persistent_gnt->gref != GRANT_INVALID_REF) { 1299 gnttab_end_foreign_access(persistent_gnt->gref, 1300 0, 0UL); 1301 rinfo->persistent_gnts_c--; 1302 } 1303 if (info->bounce) 1304 __free_page(persistent_gnt->page); 1305 kfree(persistent_gnt); 1306 } 1307 } 1308 BUG_ON(rinfo->persistent_gnts_c != 0); 1309 1310 for (i = 0; i < BLK_RING_SIZE(info); i++) { 1311 /* 1312 * Clear persistent grants present in requests already 1313 * on the shared ring 1314 */ 1315 if (!rinfo->shadow[i].request) 1316 goto free_shadow; 1317 1318 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ? 1319 rinfo->shadow[i].req.u.indirect.nr_segments : 1320 rinfo->shadow[i].req.u.rw.nr_segments; 1321 for (j = 0; j < segs; j++) { 1322 persistent_gnt = rinfo->shadow[i].grants_used[j]; 1323 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1324 if (info->bounce) 1325 __free_page(persistent_gnt->page); 1326 kfree(persistent_gnt); 1327 } 1328 1329 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT) 1330 /* 1331 * If this is not an indirect operation don't try to 1332 * free indirect segments 1333 */ 1334 goto free_shadow; 1335 1336 for (j = 0; j < INDIRECT_GREFS(segs); j++) { 1337 persistent_gnt = rinfo->shadow[i].indirect_grants[j]; 1338 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL); 1339 __free_page(persistent_gnt->page); 1340 kfree(persistent_gnt); 1341 } 1342 1343free_shadow: 1344 kvfree(rinfo->shadow[i].grants_used); 1345 rinfo->shadow[i].grants_used = NULL; 1346 kvfree(rinfo->shadow[i].indirect_grants); 1347 rinfo->shadow[i].indirect_grants = NULL; 1348 kvfree(rinfo->shadow[i].sg); 1349 rinfo->shadow[i].sg = NULL; 1350 } 1351 1352 /* No more gnttab callback work. */ 1353 gnttab_cancel_free_callback(&rinfo->callback); 1354 1355 /* Flush gnttab callback work. Must be done with no locks held. */ 1356 flush_work(&rinfo->work); 1357 1358 /* Free resources associated with old device channel. */ 1359 for (i = 0; i < info->nr_ring_pages; i++) { 1360 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) { 1361 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0); 1362 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1363 } 1364 } 1365 free_pages_exact(rinfo->ring.sring, 1366 info->nr_ring_pages * XEN_PAGE_SIZE); 1367 rinfo->ring.sring = NULL; 1368 1369 if (rinfo->irq) 1370 unbind_from_irqhandler(rinfo->irq, rinfo); 1371 rinfo->evtchn = rinfo->irq = 0; 1372} 1373 1374static void blkif_free(struct blkfront_info *info, int suspend) 1375{ 1376 unsigned int i; 1377 struct blkfront_ring_info *rinfo; 1378 1379 /* Prevent new requests being issued until we fix things up. */ 1380 info->connected = suspend ? 1381 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED; 1382 /* No more blkif_request(). */ 1383 if (info->rq) 1384 blk_mq_stop_hw_queues(info->rq); 1385 1386 for_each_rinfo(info, rinfo, i) 1387 blkif_free_ring(rinfo); 1388 1389 kvfree(info->rinfo); 1390 info->rinfo = NULL; 1391 info->nr_rings = 0; 1392} 1393 1394struct copy_from_grant { 1395 const struct blk_shadow *s; 1396 unsigned int grant_idx; 1397 unsigned int bvec_offset; 1398 char *bvec_data; 1399}; 1400 1401static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset, 1402 unsigned int len, void *data) 1403{ 1404 struct copy_from_grant *info = data; 1405 char *shared_data; 1406 /* Convenient aliases */ 1407 const struct blk_shadow *s = info->s; 1408 1409 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page); 1410 1411 memcpy(info->bvec_data + info->bvec_offset, 1412 shared_data + offset, len); 1413 1414 info->bvec_offset += len; 1415 info->grant_idx++; 1416 1417 kunmap_atomic(shared_data); 1418} 1419 1420static enum blk_req_status blkif_rsp_to_req_status(int rsp) 1421{ 1422 switch (rsp) 1423 { 1424 case BLKIF_RSP_OKAY: 1425 return REQ_DONE; 1426 case BLKIF_RSP_EOPNOTSUPP: 1427 return REQ_EOPNOTSUPP; 1428 case BLKIF_RSP_ERROR: 1429 default: 1430 return REQ_ERROR; 1431 } 1432} 1433 1434/* 1435 * Get the final status of the block request based on two ring response 1436 */ 1437static int blkif_get_final_status(enum blk_req_status s1, 1438 enum blk_req_status s2) 1439{ 1440 BUG_ON(s1 < REQ_DONE); 1441 BUG_ON(s2 < REQ_DONE); 1442 1443 if (s1 == REQ_ERROR || s2 == REQ_ERROR) 1444 return BLKIF_RSP_ERROR; 1445 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP) 1446 return BLKIF_RSP_EOPNOTSUPP; 1447 return BLKIF_RSP_OKAY; 1448} 1449 1450/* 1451 * Return values: 1452 * 1 response processed. 1453 * 0 missing further responses. 1454 * -1 error while processing. 1455 */ 1456static int blkif_completion(unsigned long *id, 1457 struct blkfront_ring_info *rinfo, 1458 struct blkif_response *bret) 1459{ 1460 int i = 0; 1461 struct scatterlist *sg; 1462 int num_sg, num_grant; 1463 struct blkfront_info *info = rinfo->dev_info; 1464 struct blk_shadow *s = &rinfo->shadow[*id]; 1465 struct copy_from_grant data = { 1466 .grant_idx = 0, 1467 }; 1468 1469 num_grant = s->req.operation == BLKIF_OP_INDIRECT ? 1470 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments; 1471 1472 /* The I/O request may be split in two. */ 1473 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) { 1474 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id]; 1475 1476 /* Keep the status of the current response in shadow. */ 1477 s->status = blkif_rsp_to_req_status(bret->status); 1478 1479 /* Wait the second response if not yet here. */ 1480 if (s2->status < REQ_DONE) 1481 return 0; 1482 1483 bret->status = blkif_get_final_status(s->status, 1484 s2->status); 1485 1486 /* 1487 * All the grants is stored in the first shadow in order 1488 * to make the completion code simpler. 1489 */ 1490 num_grant += s2->req.u.rw.nr_segments; 1491 1492 /* 1493 * The two responses may not come in order. Only the 1494 * first request will store the scatter-gather list. 1495 */ 1496 if (s2->num_sg != 0) { 1497 /* Update "id" with the ID of the first response. */ 1498 *id = s->associated_id; 1499 s = s2; 1500 } 1501 1502 /* 1503 * We don't need anymore the second request, so recycling 1504 * it now. 1505 */ 1506 if (add_id_to_freelist(rinfo, s->associated_id)) 1507 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n", 1508 info->gd->disk_name, s->associated_id); 1509 } 1510 1511 data.s = s; 1512 num_sg = s->num_sg; 1513 1514 if (bret->operation == BLKIF_OP_READ && info->bounce) { 1515 for_each_sg(s->sg, sg, num_sg, i) { 1516 BUG_ON(sg->offset + sg->length > PAGE_SIZE); 1517 1518 data.bvec_offset = sg->offset; 1519 data.bvec_data = kmap_atomic(sg_page(sg)); 1520 1521 gnttab_foreach_grant_in_range(sg_page(sg), 1522 sg->offset, 1523 sg->length, 1524 blkif_copy_from_grant, 1525 &data); 1526 1527 kunmap_atomic(data.bvec_data); 1528 } 1529 } 1530 /* Add the persistent grant into the list of free grants */ 1531 for (i = 0; i < num_grant; i++) { 1532 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) { 1533 /* 1534 * If the grant is still mapped by the backend (the 1535 * backend has chosen to make this grant persistent) 1536 * we add it at the head of the list, so it will be 1537 * reused first. 1538 */ 1539 if (!info->feature_persistent) { 1540 pr_alert("backed has not unmapped grant: %u\n", 1541 s->grants_used[i]->gref); 1542 return -1; 1543 } 1544 list_add(&s->grants_used[i]->node, &rinfo->grants); 1545 rinfo->persistent_gnts_c++; 1546 } else { 1547 /* 1548 * If the grant is not mapped by the backend we add it 1549 * to the tail of the list, so it will not be picked 1550 * again unless we run out of persistent grants. 1551 */ 1552 s->grants_used[i]->gref = GRANT_INVALID_REF; 1553 list_add_tail(&s->grants_used[i]->node, &rinfo->grants); 1554 } 1555 } 1556 if (s->req.operation == BLKIF_OP_INDIRECT) { 1557 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) { 1558 if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) { 1559 if (!info->feature_persistent) { 1560 pr_alert("backed has not unmapped grant: %u\n", 1561 s->indirect_grants[i]->gref); 1562 return -1; 1563 } 1564 list_add(&s->indirect_grants[i]->node, &rinfo->grants); 1565 rinfo->persistent_gnts_c++; 1566 } else { 1567 struct page *indirect_page; 1568 1569 /* 1570 * Add the used indirect page back to the list of 1571 * available pages for indirect grefs. 1572 */ 1573 if (!info->bounce) { 1574 indirect_page = s->indirect_grants[i]->page; 1575 list_add(&indirect_page->lru, &rinfo->indirect_pages); 1576 } 1577 s->indirect_grants[i]->gref = GRANT_INVALID_REF; 1578 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants); 1579 } 1580 } 1581 } 1582 1583 return 1; 1584} 1585 1586static irqreturn_t blkif_interrupt(int irq, void *dev_id) 1587{ 1588 struct request *req; 1589 struct blkif_response bret; 1590 RING_IDX i, rp; 1591 unsigned long flags; 1592 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id; 1593 struct blkfront_info *info = rinfo->dev_info; 1594 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS; 1595 1596 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) { 1597 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS); 1598 return IRQ_HANDLED; 1599 } 1600 1601 spin_lock_irqsave(&rinfo->ring_lock, flags); 1602 again: 1603 rp = READ_ONCE(rinfo->ring.sring->rsp_prod); 1604 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */ 1605 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) { 1606 pr_alert("%s: illegal number of responses %u\n", 1607 info->gd->disk_name, rp - rinfo->ring.rsp_cons); 1608 goto err; 1609 } 1610 1611 for (i = rinfo->ring.rsp_cons; i != rp; i++) { 1612 unsigned long id; 1613 unsigned int op; 1614 1615 eoiflag = 0; 1616 1617 RING_COPY_RESPONSE(&rinfo->ring, i, &bret); 1618 id = bret.id; 1619 1620 /* 1621 * The backend has messed up and given us an id that we would 1622 * never have given to it (we stamp it up to BLK_RING_SIZE - 1623 * look in get_id_from_freelist. 1624 */ 1625 if (id >= BLK_RING_SIZE(info)) { 1626 pr_alert("%s: response has incorrect id (%ld)\n", 1627 info->gd->disk_name, id); 1628 goto err; 1629 } 1630 if (rinfo->shadow[id].status != REQ_WAITING) { 1631 pr_alert("%s: response references no pending request\n", 1632 info->gd->disk_name); 1633 goto err; 1634 } 1635 1636 rinfo->shadow[id].status = REQ_PROCESSING; 1637 req = rinfo->shadow[id].request; 1638 1639 op = rinfo->shadow[id].req.operation; 1640 if (op == BLKIF_OP_INDIRECT) 1641 op = rinfo->shadow[id].req.u.indirect.indirect_op; 1642 if (bret.operation != op) { 1643 pr_alert("%s: response has wrong operation (%u instead of %u)\n", 1644 info->gd->disk_name, bret.operation, op); 1645 goto err; 1646 } 1647 1648 if (bret.operation != BLKIF_OP_DISCARD) { 1649 int ret; 1650 1651 /* 1652 * We may need to wait for an extra response if the 1653 * I/O request is split in 2 1654 */ 1655 ret = blkif_completion(&id, rinfo, &bret); 1656 if (!ret) 1657 continue; 1658 if (unlikely(ret < 0)) 1659 goto err; 1660 } 1661 1662 if (add_id_to_freelist(rinfo, id)) { 1663 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n", 1664 info->gd->disk_name, op_name(bret.operation), id); 1665 continue; 1666 } 1667 1668 if (bret.status == BLKIF_RSP_OKAY) 1669 blkif_req(req)->error = BLK_STS_OK; 1670 else 1671 blkif_req(req)->error = BLK_STS_IOERR; 1672 1673 switch (bret.operation) { 1674 case BLKIF_OP_DISCARD: 1675 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1676 struct request_queue *rq = info->rq; 1677 1678 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1679 info->gd->disk_name, op_name(bret.operation)); 1680 blkif_req(req)->error = BLK_STS_NOTSUPP; 1681 info->feature_discard = 0; 1682 info->feature_secdiscard = 0; 1683 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq); 1684 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq); 1685 } 1686 break; 1687 case BLKIF_OP_FLUSH_DISKCACHE: 1688 case BLKIF_OP_WRITE_BARRIER: 1689 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) { 1690 pr_warn_ratelimited("blkfront: %s: %s op failed\n", 1691 info->gd->disk_name, op_name(bret.operation)); 1692 blkif_req(req)->error = BLK_STS_NOTSUPP; 1693 } 1694 if (unlikely(bret.status == BLKIF_RSP_ERROR && 1695 rinfo->shadow[id].req.u.rw.nr_segments == 0)) { 1696 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n", 1697 info->gd->disk_name, op_name(bret.operation)); 1698 blkif_req(req)->error = BLK_STS_NOTSUPP; 1699 } 1700 if (unlikely(blkif_req(req)->error)) { 1701 if (blkif_req(req)->error == BLK_STS_NOTSUPP) 1702 blkif_req(req)->error = BLK_STS_OK; 1703 info->feature_fua = 0; 1704 info->feature_flush = 0; 1705 xlvbd_flush(info); 1706 } 1707 fallthrough; 1708 case BLKIF_OP_READ: 1709 case BLKIF_OP_WRITE: 1710 if (unlikely(bret.status != BLKIF_RSP_OKAY)) 1711 dev_dbg_ratelimited(&info->xbdev->dev, 1712 "Bad return from blkdev data request: %#x\n", 1713 bret.status); 1714 1715 break; 1716 default: 1717 BUG(); 1718 } 1719 1720 if (likely(!blk_should_fake_timeout(req->q))) 1721 blk_mq_complete_request(req); 1722 } 1723 1724 rinfo->ring.rsp_cons = i; 1725 1726 if (i != rinfo->ring.req_prod_pvt) { 1727 int more_to_do; 1728 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do); 1729 if (more_to_do) 1730 goto again; 1731 } else 1732 rinfo->ring.sring->rsp_event = i + 1; 1733 1734 kick_pending_request_queues_locked(rinfo); 1735 1736 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1737 1738 xen_irq_lateeoi(irq, eoiflag); 1739 1740 return IRQ_HANDLED; 1741 1742 err: 1743 info->connected = BLKIF_STATE_ERROR; 1744 1745 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 1746 1747 /* No EOI in order to avoid further interrupts. */ 1748 1749 pr_alert("%s disabled for further use\n", info->gd->disk_name); 1750 return IRQ_HANDLED; 1751} 1752 1753 1754static int setup_blkring(struct xenbus_device *dev, 1755 struct blkfront_ring_info *rinfo) 1756{ 1757 struct blkif_sring *sring; 1758 int err, i; 1759 struct blkfront_info *info = rinfo->dev_info; 1760 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE; 1761 grant_ref_t gref[XENBUS_MAX_RING_GRANTS]; 1762 1763 for (i = 0; i < info->nr_ring_pages; i++) 1764 rinfo->ring_ref[i] = GRANT_INVALID_REF; 1765 1766 sring = alloc_pages_exact(ring_size, GFP_NOIO | __GFP_ZERO); 1767 if (!sring) { 1768 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring"); 1769 return -ENOMEM; 1770 } 1771 SHARED_RING_INIT(sring); 1772 FRONT_RING_INIT(&rinfo->ring, sring, ring_size); 1773 1774 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref); 1775 if (err < 0) { 1776 free_pages_exact(sring, ring_size); 1777 rinfo->ring.sring = NULL; 1778 goto fail; 1779 } 1780 for (i = 0; i < info->nr_ring_pages; i++) 1781 rinfo->ring_ref[i] = gref[i]; 1782 1783 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn); 1784 if (err) 1785 goto fail; 1786 1787 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt, 1788 0, "blkif", rinfo); 1789 if (err <= 0) { 1790 xenbus_dev_fatal(dev, err, 1791 "bind_evtchn_to_irqhandler failed"); 1792 goto fail; 1793 } 1794 rinfo->irq = err; 1795 1796 return 0; 1797fail: 1798 blkif_free(info, 0); 1799 return err; 1800} 1801 1802/* 1803 * Write out per-ring/queue nodes including ring-ref and event-channel, and each 1804 * ring buffer may have multi pages depending on ->nr_ring_pages. 1805 */ 1806static int write_per_ring_nodes(struct xenbus_transaction xbt, 1807 struct blkfront_ring_info *rinfo, const char *dir) 1808{ 1809 int err; 1810 unsigned int i; 1811 const char *message = NULL; 1812 struct blkfront_info *info = rinfo->dev_info; 1813 1814 if (info->nr_ring_pages == 1) { 1815 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]); 1816 if (err) { 1817 message = "writing ring-ref"; 1818 goto abort_transaction; 1819 } 1820 } else { 1821 for (i = 0; i < info->nr_ring_pages; i++) { 1822 char ring_ref_name[RINGREF_NAME_LEN]; 1823 1824 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i); 1825 err = xenbus_printf(xbt, dir, ring_ref_name, 1826 "%u", rinfo->ring_ref[i]); 1827 if (err) { 1828 message = "writing ring-ref"; 1829 goto abort_transaction; 1830 } 1831 } 1832 } 1833 1834 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn); 1835 if (err) { 1836 message = "writing event-channel"; 1837 goto abort_transaction; 1838 } 1839 1840 return 0; 1841 1842abort_transaction: 1843 xenbus_transaction_end(xbt, 1); 1844 if (message) 1845 xenbus_dev_fatal(info->xbdev, err, "%s", message); 1846 1847 return err; 1848} 1849 1850static void free_info(struct blkfront_info *info) 1851{ 1852 list_del(&info->info_list); 1853 kfree(info); 1854} 1855 1856/* Enable the persistent grants feature. */ 1857static bool feature_persistent = true; 1858module_param(feature_persistent, bool, 0644); 1859MODULE_PARM_DESC(feature_persistent, 1860 "Enables the persistent grants feature"); 1861 1862/* Common code used when first setting up, and when resuming. */ 1863static int talk_to_blkback(struct xenbus_device *dev, 1864 struct blkfront_info *info) 1865{ 1866 const char *message = NULL; 1867 struct xenbus_transaction xbt; 1868 int err; 1869 unsigned int i, max_page_order; 1870 unsigned int ring_page_order; 1871 struct blkfront_ring_info *rinfo; 1872 1873 if (!info) 1874 return -ENODEV; 1875 1876 /* Check if backend is trusted. */ 1877 info->bounce = !xen_blkif_trusted || 1878 !xenbus_read_unsigned(dev->nodename, "trusted", 1); 1879 1880 max_page_order = xenbus_read_unsigned(info->xbdev->otherend, 1881 "max-ring-page-order", 0); 1882 ring_page_order = min(xen_blkif_max_ring_order, max_page_order); 1883 info->nr_ring_pages = 1 << ring_page_order; 1884 1885 err = negotiate_mq(info); 1886 if (err) 1887 goto destroy_blkring; 1888 1889 for_each_rinfo(info, rinfo, i) { 1890 /* Create shared ring, alloc event channel. */ 1891 err = setup_blkring(dev, rinfo); 1892 if (err) 1893 goto destroy_blkring; 1894 } 1895 1896again: 1897 err = xenbus_transaction_start(&xbt); 1898 if (err) { 1899 xenbus_dev_fatal(dev, err, "starting transaction"); 1900 goto destroy_blkring; 1901 } 1902 1903 if (info->nr_ring_pages > 1) { 1904 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u", 1905 ring_page_order); 1906 if (err) { 1907 message = "writing ring-page-order"; 1908 goto abort_transaction; 1909 } 1910 } 1911 1912 /* We already got the number of queues/rings in _probe */ 1913 if (info->nr_rings == 1) { 1914 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename); 1915 if (err) 1916 goto destroy_blkring; 1917 } else { 1918 char *path; 1919 size_t pathsize; 1920 1921 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u", 1922 info->nr_rings); 1923 if (err) { 1924 message = "writing multi-queue-num-queues"; 1925 goto abort_transaction; 1926 } 1927 1928 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN; 1929 path = kmalloc(pathsize, GFP_KERNEL); 1930 if (!path) { 1931 err = -ENOMEM; 1932 message = "ENOMEM while writing ring references"; 1933 goto abort_transaction; 1934 } 1935 1936 for_each_rinfo(info, rinfo, i) { 1937 memset(path, 0, pathsize); 1938 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i); 1939 err = write_per_ring_nodes(xbt, rinfo, path); 1940 if (err) { 1941 kfree(path); 1942 goto destroy_blkring; 1943 } 1944 } 1945 kfree(path); 1946 } 1947 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s", 1948 XEN_IO_PROTO_ABI_NATIVE); 1949 if (err) { 1950 message = "writing protocol"; 1951 goto abort_transaction; 1952 } 1953 info->feature_persistent_parm = feature_persistent; 1954 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u", 1955 info->feature_persistent_parm); 1956 if (err) 1957 dev_warn(&dev->dev, 1958 "writing persistent grants feature to xenbus"); 1959 1960 err = xenbus_transaction_end(xbt, 0); 1961 if (err) { 1962 if (err == -EAGAIN) 1963 goto again; 1964 xenbus_dev_fatal(dev, err, "completing transaction"); 1965 goto destroy_blkring; 1966 } 1967 1968 for_each_rinfo(info, rinfo, i) { 1969 unsigned int j; 1970 1971 for (j = 0; j < BLK_RING_SIZE(info); j++) 1972 rinfo->shadow[j].req.u.rw.id = j + 1; 1973 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff; 1974 } 1975 xenbus_switch_state(dev, XenbusStateInitialised); 1976 1977 return 0; 1978 1979 abort_transaction: 1980 xenbus_transaction_end(xbt, 1); 1981 if (message) 1982 xenbus_dev_fatal(dev, err, "%s", message); 1983 destroy_blkring: 1984 blkif_free(info, 0); 1985 1986 mutex_lock(&blkfront_mutex); 1987 free_info(info); 1988 mutex_unlock(&blkfront_mutex); 1989 1990 dev_set_drvdata(&dev->dev, NULL); 1991 1992 return err; 1993} 1994 1995static int negotiate_mq(struct blkfront_info *info) 1996{ 1997 unsigned int backend_max_queues; 1998 unsigned int i; 1999 struct blkfront_ring_info *rinfo; 2000 2001 BUG_ON(info->nr_rings); 2002 2003 /* Check if backend supports multiple queues. */ 2004 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend, 2005 "multi-queue-max-queues", 1); 2006 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues); 2007 /* We need at least one ring. */ 2008 if (!info->nr_rings) 2009 info->nr_rings = 1; 2010 2011 info->rinfo_size = struct_size(info->rinfo, shadow, 2012 BLK_RING_SIZE(info)); 2013 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL); 2014 if (!info->rinfo) { 2015 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure"); 2016 info->nr_rings = 0; 2017 return -ENOMEM; 2018 } 2019 2020 for_each_rinfo(info, rinfo, i) { 2021 INIT_LIST_HEAD(&rinfo->indirect_pages); 2022 INIT_LIST_HEAD(&rinfo->grants); 2023 rinfo->dev_info = info; 2024 INIT_WORK(&rinfo->work, blkif_restart_queue); 2025 spin_lock_init(&rinfo->ring_lock); 2026 } 2027 return 0; 2028} 2029 2030/** 2031 * Entry point to this code when a new device is created. Allocate the basic 2032 * structures and the ring buffer for communication with the backend, and 2033 * inform the backend of the appropriate details for those. Switch to 2034 * Initialised state. 2035 */ 2036static int blkfront_probe(struct xenbus_device *dev, 2037 const struct xenbus_device_id *id) 2038{ 2039 int err, vdevice; 2040 struct blkfront_info *info; 2041 2042 /* FIXME: Use dynamic device id if this is not set. */ 2043 err = xenbus_scanf(XBT_NIL, dev->nodename, 2044 "virtual-device", "%i", &vdevice); 2045 if (err != 1) { 2046 /* go looking in the extended area instead */ 2047 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext", 2048 "%i", &vdevice); 2049 if (err != 1) { 2050 xenbus_dev_fatal(dev, err, "reading virtual-device"); 2051 return err; 2052 } 2053 } 2054 2055 if (xen_hvm_domain()) { 2056 char *type; 2057 int len; 2058 /* no unplug has been done: do not hook devices != xen vbds */ 2059 if (xen_has_pv_and_legacy_disk_devices()) { 2060 int major; 2061 2062 if (!VDEV_IS_EXTENDED(vdevice)) 2063 major = BLKIF_MAJOR(vdevice); 2064 else 2065 major = XENVBD_MAJOR; 2066 2067 if (major != XENVBD_MAJOR) { 2068 printk(KERN_INFO 2069 "%s: HVM does not support vbd %d as xen block device\n", 2070 __func__, vdevice); 2071 return -ENODEV; 2072 } 2073 } 2074 /* do not create a PV cdrom device if we are an HVM guest */ 2075 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len); 2076 if (IS_ERR(type)) 2077 return -ENODEV; 2078 if (strncmp(type, "cdrom", 5) == 0) { 2079 kfree(type); 2080 return -ENODEV; 2081 } 2082 kfree(type); 2083 } 2084 info = kzalloc(sizeof(*info), GFP_KERNEL); 2085 if (!info) { 2086 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure"); 2087 return -ENOMEM; 2088 } 2089 2090 info->xbdev = dev; 2091 2092 mutex_init(&info->mutex); 2093 info->vdevice = vdevice; 2094 info->connected = BLKIF_STATE_DISCONNECTED; 2095 2096 /* Front end dir is a number, which is used as the id. */ 2097 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0); 2098 dev_set_drvdata(&dev->dev, info); 2099 2100 mutex_lock(&blkfront_mutex); 2101 list_add(&info->info_list, &info_list); 2102 mutex_unlock(&blkfront_mutex); 2103 2104 return 0; 2105} 2106 2107static int blkif_recover(struct blkfront_info *info) 2108{ 2109 unsigned int r_index; 2110 struct request *req, *n; 2111 int rc; 2112 struct bio *bio; 2113 unsigned int segs; 2114 struct blkfront_ring_info *rinfo; 2115 2116 blkfront_gather_backend_features(info); 2117 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */ 2118 blkif_set_queue_limits(info); 2119 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST; 2120 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG); 2121 2122 for_each_rinfo(info, rinfo, r_index) { 2123 rc = blkfront_setup_indirect(rinfo); 2124 if (rc) 2125 return rc; 2126 } 2127 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2128 2129 /* Now safe for us to use the shared ring */ 2130 info->connected = BLKIF_STATE_CONNECTED; 2131 2132 for_each_rinfo(info, rinfo, r_index) { 2133 /* Kick any other new requests queued since we resumed */ 2134 kick_pending_request_queues(rinfo); 2135 } 2136 2137 list_for_each_entry_safe(req, n, &info->requests, queuelist) { 2138 /* Requeue pending requests (flush or discard) */ 2139 list_del_init(&req->queuelist); 2140 BUG_ON(req->nr_phys_segments > segs); 2141 blk_mq_requeue_request(req, false); 2142 } 2143 blk_mq_start_stopped_hw_queues(info->rq, true); 2144 blk_mq_kick_requeue_list(info->rq); 2145 2146 while ((bio = bio_list_pop(&info->bio_list)) != NULL) { 2147 /* Traverse the list of pending bios and re-queue them */ 2148 submit_bio(bio); 2149 } 2150 2151 return 0; 2152} 2153 2154/** 2155 * We are reconnecting to the backend, due to a suspend/resume, or a backend 2156 * driver restart. We tear down our blkif structure and recreate it, but 2157 * leave the device-layer structures intact so that this is transparent to the 2158 * rest of the kernel. 2159 */ 2160static int blkfront_resume(struct xenbus_device *dev) 2161{ 2162 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2163 int err = 0; 2164 unsigned int i, j; 2165 struct blkfront_ring_info *rinfo; 2166 2167 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename); 2168 2169 bio_list_init(&info->bio_list); 2170 INIT_LIST_HEAD(&info->requests); 2171 for_each_rinfo(info, rinfo, i) { 2172 struct bio_list merge_bio; 2173 struct blk_shadow *shadow = rinfo->shadow; 2174 2175 for (j = 0; j < BLK_RING_SIZE(info); j++) { 2176 /* Not in use? */ 2177 if (!shadow[j].request) 2178 continue; 2179 2180 /* 2181 * Get the bios in the request so we can re-queue them. 2182 */ 2183 if (req_op(shadow[j].request) == REQ_OP_FLUSH || 2184 req_op(shadow[j].request) == REQ_OP_DISCARD || 2185 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE || 2186 shadow[j].request->cmd_flags & REQ_FUA) { 2187 /* 2188 * Flush operations don't contain bios, so 2189 * we need to requeue the whole request 2190 * 2191 * XXX: but this doesn't make any sense for a 2192 * write with the FUA flag set.. 2193 */ 2194 list_add(&shadow[j].request->queuelist, &info->requests); 2195 continue; 2196 } 2197 merge_bio.head = shadow[j].request->bio; 2198 merge_bio.tail = shadow[j].request->biotail; 2199 bio_list_merge(&info->bio_list, &merge_bio); 2200 shadow[j].request->bio = NULL; 2201 blk_mq_end_request(shadow[j].request, BLK_STS_OK); 2202 } 2203 } 2204 2205 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED); 2206 2207 err = talk_to_blkback(dev, info); 2208 if (!err) 2209 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings); 2210 2211 /* 2212 * We have to wait for the backend to switch to 2213 * connected state, since we want to read which 2214 * features it supports. 2215 */ 2216 2217 return err; 2218} 2219 2220static void blkfront_closing(struct blkfront_info *info) 2221{ 2222 struct xenbus_device *xbdev = info->xbdev; 2223 struct block_device *bdev = NULL; 2224 2225 mutex_lock(&info->mutex); 2226 2227 if (xbdev->state == XenbusStateClosing) { 2228 mutex_unlock(&info->mutex); 2229 return; 2230 } 2231 2232 if (info->gd) 2233 bdev = bdget_disk(info->gd, 0); 2234 2235 mutex_unlock(&info->mutex); 2236 2237 if (!bdev) { 2238 xenbus_frontend_closed(xbdev); 2239 return; 2240 } 2241 2242 mutex_lock(&bdev->bd_mutex); 2243 2244 if (bdev->bd_openers) { 2245 xenbus_dev_error(xbdev, -EBUSY, 2246 "Device in use; refusing to close"); 2247 xenbus_switch_state(xbdev, XenbusStateClosing); 2248 } else { 2249 xlvbd_release_gendisk(info); 2250 xenbus_frontend_closed(xbdev); 2251 } 2252 2253 mutex_unlock(&bdev->bd_mutex); 2254 bdput(bdev); 2255} 2256 2257static void blkfront_setup_discard(struct blkfront_info *info) 2258{ 2259 info->feature_discard = 1; 2260 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend, 2261 "discard-granularity", 2262 0); 2263 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend, 2264 "discard-alignment", 0); 2265 info->feature_secdiscard = 2266 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure", 2267 0); 2268} 2269 2270static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo) 2271{ 2272 unsigned int psegs, grants, memflags; 2273 int err, i; 2274 struct blkfront_info *info = rinfo->dev_info; 2275 2276 memflags = memalloc_noio_save(); 2277 2278 if (info->max_indirect_segments == 0) { 2279 if (!HAS_EXTRA_REQ) 2280 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2281 else { 2282 /* 2283 * When an extra req is required, the maximum 2284 * grants supported is related to the size of the 2285 * Linux block segment. 2286 */ 2287 grants = GRANTS_PER_PSEG; 2288 } 2289 } 2290 else 2291 grants = info->max_indirect_segments; 2292 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG); 2293 2294 err = fill_grant_buffer(rinfo, 2295 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info)); 2296 if (err) 2297 goto out_of_memory; 2298 2299 if (!info->bounce && info->max_indirect_segments) { 2300 /* 2301 * We are using indirect descriptors but don't have a bounce 2302 * buffer, we need to allocate a set of pages that can be 2303 * used for mapping indirect grefs 2304 */ 2305 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info); 2306 2307 BUG_ON(!list_empty(&rinfo->indirect_pages)); 2308 for (i = 0; i < num; i++) { 2309 struct page *indirect_page = alloc_page(GFP_KERNEL | 2310 __GFP_ZERO); 2311 if (!indirect_page) 2312 goto out_of_memory; 2313 list_add(&indirect_page->lru, &rinfo->indirect_pages); 2314 } 2315 } 2316 2317 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2318 rinfo->shadow[i].grants_used = 2319 kvcalloc(grants, 2320 sizeof(rinfo->shadow[i].grants_used[0]), 2321 GFP_KERNEL); 2322 rinfo->shadow[i].sg = kvcalloc(psegs, 2323 sizeof(rinfo->shadow[i].sg[0]), 2324 GFP_KERNEL); 2325 if (info->max_indirect_segments) 2326 rinfo->shadow[i].indirect_grants = 2327 kvcalloc(INDIRECT_GREFS(grants), 2328 sizeof(rinfo->shadow[i].indirect_grants[0]), 2329 GFP_KERNEL); 2330 if ((rinfo->shadow[i].grants_used == NULL) || 2331 (rinfo->shadow[i].sg == NULL) || 2332 (info->max_indirect_segments && 2333 (rinfo->shadow[i].indirect_grants == NULL))) 2334 goto out_of_memory; 2335 sg_init_table(rinfo->shadow[i].sg, psegs); 2336 } 2337 2338 memalloc_noio_restore(memflags); 2339 2340 return 0; 2341 2342out_of_memory: 2343 for (i = 0; i < BLK_RING_SIZE(info); i++) { 2344 kvfree(rinfo->shadow[i].grants_used); 2345 rinfo->shadow[i].grants_used = NULL; 2346 kvfree(rinfo->shadow[i].sg); 2347 rinfo->shadow[i].sg = NULL; 2348 kvfree(rinfo->shadow[i].indirect_grants); 2349 rinfo->shadow[i].indirect_grants = NULL; 2350 } 2351 if (!list_empty(&rinfo->indirect_pages)) { 2352 struct page *indirect_page, *n; 2353 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) { 2354 list_del(&indirect_page->lru); 2355 __free_page(indirect_page); 2356 } 2357 } 2358 2359 memalloc_noio_restore(memflags); 2360 2361 return -ENOMEM; 2362} 2363 2364/* 2365 * Gather all backend feature-* 2366 */ 2367static void blkfront_gather_backend_features(struct blkfront_info *info) 2368{ 2369 unsigned int indirect_segments; 2370 2371 info->feature_flush = 0; 2372 info->feature_fua = 0; 2373 2374 /* 2375 * If there's no "feature-barrier" defined, then it means 2376 * we're dealing with a very old backend which writes 2377 * synchronously; nothing to do. 2378 * 2379 * If there are barriers, then we use flush. 2380 */ 2381 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) { 2382 info->feature_flush = 1; 2383 info->feature_fua = 1; 2384 } 2385 2386 /* 2387 * And if there is "feature-flush-cache" use that above 2388 * barriers. 2389 */ 2390 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache", 2391 0)) { 2392 info->feature_flush = 1; 2393 info->feature_fua = 0; 2394 } 2395 2396 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0)) 2397 blkfront_setup_discard(info); 2398 2399 if (info->feature_persistent_parm) 2400 info->feature_persistent = 2401 !!xenbus_read_unsigned(info->xbdev->otherend, 2402 "feature-persistent", 0); 2403 if (info->feature_persistent) 2404 info->bounce = true; 2405 2406 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend, 2407 "feature-max-indirect-segments", 0); 2408 if (indirect_segments > xen_blkif_max_segments) 2409 indirect_segments = xen_blkif_max_segments; 2410 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST) 2411 indirect_segments = 0; 2412 info->max_indirect_segments = indirect_segments; 2413 2414 if (info->feature_persistent) { 2415 mutex_lock(&blkfront_mutex); 2416 schedule_delayed_work(&blkfront_work, HZ * 10); 2417 mutex_unlock(&blkfront_mutex); 2418 } 2419} 2420 2421/* 2422 * Invoked when the backend is finally 'ready' (and has told produced 2423 * the details about the physical device - #sectors, size, etc). 2424 */ 2425static void blkfront_connect(struct blkfront_info *info) 2426{ 2427 unsigned long long sectors; 2428 unsigned long sector_size; 2429 unsigned int physical_sector_size; 2430 unsigned int binfo; 2431 int err, i; 2432 struct blkfront_ring_info *rinfo; 2433 2434 switch (info->connected) { 2435 case BLKIF_STATE_CONNECTED: 2436 /* 2437 * Potentially, the back-end may be signalling 2438 * a capacity change; update the capacity. 2439 */ 2440 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend, 2441 "sectors", "%Lu", §ors); 2442 if (XENBUS_EXIST_ERR(err)) 2443 return; 2444 printk(KERN_INFO "Setting capacity to %Lu\n", 2445 sectors); 2446 set_capacity_revalidate_and_notify(info->gd, sectors, true); 2447 2448 return; 2449 case BLKIF_STATE_SUSPENDED: 2450 /* 2451 * If we are recovering from suspension, we need to wait 2452 * for the backend to announce it's features before 2453 * reconnecting, at least we need to know if the backend 2454 * supports indirect descriptors, and how many. 2455 */ 2456 blkif_recover(info); 2457 return; 2458 2459 default: 2460 break; 2461 } 2462 2463 dev_dbg(&info->xbdev->dev, "%s:%s.\n", 2464 __func__, info->xbdev->otherend); 2465 2466 err = xenbus_gather(XBT_NIL, info->xbdev->otherend, 2467 "sectors", "%llu", §ors, 2468 "info", "%u", &binfo, 2469 "sector-size", "%lu", §or_size, 2470 NULL); 2471 if (err) { 2472 xenbus_dev_fatal(info->xbdev, err, 2473 "reading backend fields at %s", 2474 info->xbdev->otherend); 2475 return; 2476 } 2477 2478 /* 2479 * physcial-sector-size is a newer field, so old backends may not 2480 * provide this. Assume physical sector size to be the same as 2481 * sector_size in that case. 2482 */ 2483 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend, 2484 "physical-sector-size", 2485 sector_size); 2486 blkfront_gather_backend_features(info); 2487 for_each_rinfo(info, rinfo, i) { 2488 err = blkfront_setup_indirect(rinfo); 2489 if (err) { 2490 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s", 2491 info->xbdev->otherend); 2492 blkif_free(info, 0); 2493 break; 2494 } 2495 } 2496 2497 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size, 2498 physical_sector_size); 2499 if (err) { 2500 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s", 2501 info->xbdev->otherend); 2502 goto fail; 2503 } 2504 2505 xenbus_switch_state(info->xbdev, XenbusStateConnected); 2506 2507 /* Kick pending requests. */ 2508 info->connected = BLKIF_STATE_CONNECTED; 2509 for_each_rinfo(info, rinfo, i) 2510 kick_pending_request_queues(rinfo); 2511 2512 device_add_disk(&info->xbdev->dev, info->gd, NULL); 2513 2514 info->is_ready = 1; 2515 return; 2516 2517fail: 2518 blkif_free(info, 0); 2519 return; 2520} 2521 2522/** 2523 * Callback received when the backend's state changes. 2524 */ 2525static void blkback_changed(struct xenbus_device *dev, 2526 enum xenbus_state backend_state) 2527{ 2528 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2529 2530 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state); 2531 2532 switch (backend_state) { 2533 case XenbusStateInitWait: 2534 if (dev->state != XenbusStateInitialising) 2535 break; 2536 if (talk_to_blkback(dev, info)) 2537 break; 2538 case XenbusStateInitialising: 2539 case XenbusStateInitialised: 2540 case XenbusStateReconfiguring: 2541 case XenbusStateReconfigured: 2542 case XenbusStateUnknown: 2543 break; 2544 2545 case XenbusStateConnected: 2546 /* 2547 * talk_to_blkback sets state to XenbusStateInitialised 2548 * and blkfront_connect sets it to XenbusStateConnected 2549 * (if connection went OK). 2550 * 2551 * If the backend (or toolstack) decides to poke at backend 2552 * state (and re-trigger the watch by setting the state repeatedly 2553 * to XenbusStateConnected (4)) we need to deal with this. 2554 * This is allowed as this is used to communicate to the guest 2555 * that the size of disk has changed! 2556 */ 2557 if ((dev->state != XenbusStateInitialised) && 2558 (dev->state != XenbusStateConnected)) { 2559 if (talk_to_blkback(dev, info)) 2560 break; 2561 } 2562 2563 blkfront_connect(info); 2564 break; 2565 2566 case XenbusStateClosed: 2567 if (dev->state == XenbusStateClosed) 2568 break; 2569 fallthrough; 2570 case XenbusStateClosing: 2571 if (info) 2572 blkfront_closing(info); 2573 break; 2574 } 2575} 2576 2577static int blkfront_remove(struct xenbus_device *xbdev) 2578{ 2579 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev); 2580 struct block_device *bdev = NULL; 2581 struct gendisk *disk; 2582 2583 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename); 2584 2585 if (!info) 2586 return 0; 2587 2588 blkif_free(info, 0); 2589 2590 mutex_lock(&info->mutex); 2591 2592 disk = info->gd; 2593 if (disk) 2594 bdev = bdget_disk(disk, 0); 2595 2596 info->xbdev = NULL; 2597 mutex_unlock(&info->mutex); 2598 2599 if (!bdev) { 2600 mutex_lock(&blkfront_mutex); 2601 free_info(info); 2602 mutex_unlock(&blkfront_mutex); 2603 return 0; 2604 } 2605 2606 /* 2607 * The xbdev was removed before we reached the Closed 2608 * state. See if it's safe to remove the disk. If the bdev 2609 * isn't closed yet, we let release take care of it. 2610 */ 2611 2612 mutex_lock(&bdev->bd_mutex); 2613 info = disk->private_data; 2614 2615 dev_warn(disk_to_dev(disk), 2616 "%s was hot-unplugged, %d stale handles\n", 2617 xbdev->nodename, bdev->bd_openers); 2618 2619 if (info && !bdev->bd_openers) { 2620 xlvbd_release_gendisk(info); 2621 disk->private_data = NULL; 2622 mutex_lock(&blkfront_mutex); 2623 free_info(info); 2624 mutex_unlock(&blkfront_mutex); 2625 } 2626 2627 mutex_unlock(&bdev->bd_mutex); 2628 bdput(bdev); 2629 2630 return 0; 2631} 2632 2633static int blkfront_is_ready(struct xenbus_device *dev) 2634{ 2635 struct blkfront_info *info = dev_get_drvdata(&dev->dev); 2636 2637 return info->is_ready && info->xbdev; 2638} 2639 2640static int blkif_open(struct block_device *bdev, fmode_t mode) 2641{ 2642 struct gendisk *disk = bdev->bd_disk; 2643 struct blkfront_info *info; 2644 int err = 0; 2645 2646 mutex_lock(&blkfront_mutex); 2647 2648 info = disk->private_data; 2649 if (!info) { 2650 /* xbdev gone */ 2651 err = -ERESTARTSYS; 2652 goto out; 2653 } 2654 2655 mutex_lock(&info->mutex); 2656 2657 if (!info->gd) 2658 /* xbdev is closed */ 2659 err = -ERESTARTSYS; 2660 2661 mutex_unlock(&info->mutex); 2662 2663out: 2664 mutex_unlock(&blkfront_mutex); 2665 return err; 2666} 2667 2668static void blkif_release(struct gendisk *disk, fmode_t mode) 2669{ 2670 struct blkfront_info *info = disk->private_data; 2671 struct block_device *bdev; 2672 struct xenbus_device *xbdev; 2673 2674 mutex_lock(&blkfront_mutex); 2675 2676 bdev = bdget_disk(disk, 0); 2677 2678 if (!bdev) { 2679 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name); 2680 goto out_mutex; 2681 } 2682 if (bdev->bd_openers) 2683 goto out; 2684 2685 /* 2686 * Check if we have been instructed to close. We will have 2687 * deferred this request, because the bdev was still open. 2688 */ 2689 2690 mutex_lock(&info->mutex); 2691 xbdev = info->xbdev; 2692 2693 if (xbdev && xbdev->state == XenbusStateClosing) { 2694 /* pending switch to state closed */ 2695 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2696 xlvbd_release_gendisk(info); 2697 xenbus_frontend_closed(info->xbdev); 2698 } 2699 2700 mutex_unlock(&info->mutex); 2701 2702 if (!xbdev) { 2703 /* sudden device removal */ 2704 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n"); 2705 xlvbd_release_gendisk(info); 2706 disk->private_data = NULL; 2707 free_info(info); 2708 } 2709 2710out: 2711 bdput(bdev); 2712out_mutex: 2713 mutex_unlock(&blkfront_mutex); 2714} 2715 2716static const struct block_device_operations xlvbd_block_fops = 2717{ 2718 .owner = THIS_MODULE, 2719 .open = blkif_open, 2720 .release = blkif_release, 2721 .getgeo = blkif_getgeo, 2722 .ioctl = blkif_ioctl, 2723 .compat_ioctl = blkdev_compat_ptr_ioctl, 2724}; 2725 2726 2727static const struct xenbus_device_id blkfront_ids[] = { 2728 { "vbd" }, 2729 { "" } 2730}; 2731 2732static struct xenbus_driver blkfront_driver = { 2733 .ids = blkfront_ids, 2734 .probe = blkfront_probe, 2735 .remove = blkfront_remove, 2736 .resume = blkfront_resume, 2737 .otherend_changed = blkback_changed, 2738 .is_ready = blkfront_is_ready, 2739}; 2740 2741static void purge_persistent_grants(struct blkfront_info *info) 2742{ 2743 unsigned int i; 2744 unsigned long flags; 2745 struct blkfront_ring_info *rinfo; 2746 2747 for_each_rinfo(info, rinfo, i) { 2748 struct grant *gnt_list_entry, *tmp; 2749 2750 spin_lock_irqsave(&rinfo->ring_lock, flags); 2751 2752 if (rinfo->persistent_gnts_c == 0) { 2753 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2754 continue; 2755 } 2756 2757 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants, 2758 node) { 2759 if (gnt_list_entry->gref == GRANT_INVALID_REF || 2760 !gnttab_try_end_foreign_access(gnt_list_entry->gref)) 2761 continue; 2762 2763 list_del(&gnt_list_entry->node); 2764 rinfo->persistent_gnts_c--; 2765 gnt_list_entry->gref = GRANT_INVALID_REF; 2766 list_add_tail(&gnt_list_entry->node, &rinfo->grants); 2767 } 2768 2769 spin_unlock_irqrestore(&rinfo->ring_lock, flags); 2770 } 2771} 2772 2773static void blkfront_delay_work(struct work_struct *work) 2774{ 2775 struct blkfront_info *info; 2776 bool need_schedule_work = false; 2777 2778 /* 2779 * Note that when using bounce buffers but not persistent grants 2780 * there's no need to run blkfront_delay_work because grants are 2781 * revoked in blkif_completion or else an error is reported and the 2782 * connection is closed. 2783 */ 2784 2785 mutex_lock(&blkfront_mutex); 2786 2787 list_for_each_entry(info, &info_list, info_list) { 2788 if (info->feature_persistent) { 2789 need_schedule_work = true; 2790 mutex_lock(&info->mutex); 2791 purge_persistent_grants(info); 2792 mutex_unlock(&info->mutex); 2793 } 2794 } 2795 2796 if (need_schedule_work) 2797 schedule_delayed_work(&blkfront_work, HZ * 10); 2798 2799 mutex_unlock(&blkfront_mutex); 2800} 2801 2802static int __init xlblk_init(void) 2803{ 2804 int ret; 2805 int nr_cpus = num_online_cpus(); 2806 2807 if (!xen_domain()) 2808 return -ENODEV; 2809 2810 if (!xen_has_pv_disk_devices()) 2811 return -ENODEV; 2812 2813 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) { 2814 pr_warn("xen_blk: can't get major %d with name %s\n", 2815 XENVBD_MAJOR, DEV_NAME); 2816 return -ENODEV; 2817 } 2818 2819 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST) 2820 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 2821 2822 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) { 2823 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n", 2824 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER); 2825 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER; 2826 } 2827 2828 if (xen_blkif_max_queues > nr_cpus) { 2829 pr_info("Invalid max_queues (%d), will use default max: %d.\n", 2830 xen_blkif_max_queues, nr_cpus); 2831 xen_blkif_max_queues = nr_cpus; 2832 } 2833 2834 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work); 2835 2836 ret = xenbus_register_frontend(&blkfront_driver); 2837 if (ret) { 2838 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2839 return ret; 2840 } 2841 2842 return 0; 2843} 2844module_init(xlblk_init); 2845 2846 2847static void __exit xlblk_exit(void) 2848{ 2849 cancel_delayed_work_sync(&blkfront_work); 2850 2851 xenbus_unregister_driver(&blkfront_driver); 2852 unregister_blkdev(XENVBD_MAJOR, DEV_NAME); 2853 kfree(minors); 2854} 2855module_exit(xlblk_exit); 2856 2857MODULE_DESCRIPTION("Xen virtual block device frontend"); 2858MODULE_LICENSE("GPL"); 2859MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR); 2860MODULE_ALIAS("xen:vbd"); 2861MODULE_ALIAS("xenblk"); 2862