1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37 
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51 
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58 
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62 
63 #include <asm/xen/hypervisor.h>
64 
65 /*
66  * The minimal size of segment supported by the block framework is PAGE_SIZE.
67  * When Linux is using a different page size than Xen, it may not be possible
68  * to put all the data in a single segment.
69  * This can happen when the backend doesn't support indirect descriptor and
70  * therefore the maximum amount of data that a request can carry is
71  * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72  *
73  * Note that we only support one extra request. So the Linux page size
74  * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75  * 88KB.
76  */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78 
79 enum blkif_state {
80 	BLKIF_STATE_DISCONNECTED,
81 	BLKIF_STATE_CONNECTED,
82 	BLKIF_STATE_SUSPENDED,
83 	BLKIF_STATE_ERROR,
84 };
85 
86 struct grant {
87 	grant_ref_t gref;
88 	struct page *page;
89 	struct list_head node;
90 };
91 
92 enum blk_req_status {
93 	REQ_PROCESSING,
94 	REQ_WAITING,
95 	REQ_DONE,
96 	REQ_ERROR,
97 	REQ_EOPNOTSUPP,
98 };
99 
100 struct blk_shadow {
101 	struct blkif_request req;
102 	struct request *request;
103 	struct grant **grants_used;
104 	struct grant **indirect_grants;
105 	struct scatterlist *sg;
106 	unsigned int num_sg;
107 	enum blk_req_status status;
108 
109 	#define NO_ASSOCIATED_ID ~0UL
110 	/*
111 	 * Id of the sibling if we ever need 2 requests when handling a
112 	 * block I/O request
113 	 */
114 	unsigned long associated_id;
115 };
116 
117 struct blkif_req {
118 	blk_status_t	error;
119 };
120 
blkif_req(struct request *rq)121 static inline struct blkif_req *blkif_req(struct request *rq)
122 {
123 	return blk_mq_rq_to_pdu(rq);
124 }
125 
126 static DEFINE_MUTEX(blkfront_mutex);
127 static const struct block_device_operations xlvbd_block_fops;
128 static struct delayed_work blkfront_work;
129 static LIST_HEAD(info_list);
130 
131 /*
132  * Maximum number of segments in indirect requests, the actual value used by
133  * the frontend driver is the minimum of this value and the value provided
134  * by the backend driver.
135  */
136 
137 static unsigned int xen_blkif_max_segments = 32;
138 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
139 MODULE_PARM_DESC(max_indirect_segments,
140 		 "Maximum amount of segments in indirect requests (default is 32)");
141 
142 static unsigned int xen_blkif_max_queues = 4;
143 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
145 
146 /*
147  * Maximum order of pages to be used for the shared ring between front and
148  * backend, 4KB page granularity is used.
149  */
150 static unsigned int xen_blkif_max_ring_order;
151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
153 
154 static bool __read_mostly xen_blkif_trusted = true;
155 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
156 MODULE_PARM_DESC(trusted, "Is the backend trusted");
157 
158 #define BLK_RING_SIZE(info)	\
159 	__CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
160 
161 /*
162  * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
163  * characters are enough. Define to 20 to keep consistent with backend.
164  */
165 #define RINGREF_NAME_LEN (20)
166 /*
167  * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
168  */
169 #define QUEUE_NAME_LEN (17)
170 
171 /*
172  *  Per-ring info.
173  *  Every blkfront device can associate with one or more blkfront_ring_info,
174  *  depending on how many hardware queues/rings to be used.
175  */
176 struct blkfront_ring_info {
177 	/* Lock to protect data in every ring buffer. */
178 	spinlock_t ring_lock;
179 	struct blkif_front_ring ring;
180 	unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
181 	unsigned int evtchn, irq;
182 	struct work_struct work;
183 	struct gnttab_free_callback callback;
184 	struct list_head indirect_pages;
185 	struct list_head grants;
186 	unsigned int persistent_gnts_c;
187 	unsigned long shadow_free;
188 	struct blkfront_info *dev_info;
189 	struct blk_shadow shadow[];
190 };
191 
192 /*
193  * We have one of these per vbd, whether ide, scsi or 'other'.  They
194  * hang in private_data off the gendisk structure. We may end up
195  * putting all kinds of interesting stuff here :-)
196  */
197 struct blkfront_info
198 {
199 	struct mutex mutex;
200 	struct xenbus_device *xbdev;
201 	struct gendisk *gd;
202 	u16 sector_size;
203 	unsigned int physical_sector_size;
204 	int vdevice;
205 	blkif_vdev_t handle;
206 	enum blkif_state connected;
207 	/* Number of pages per ring buffer. */
208 	unsigned int nr_ring_pages;
209 	struct request_queue *rq;
210 	unsigned int feature_flush:1;
211 	unsigned int feature_fua:1;
212 	unsigned int feature_discard:1;
213 	unsigned int feature_secdiscard:1;
214 	/* Connect-time cached feature_persistent parameter */
215 	unsigned int feature_persistent_parm:1;
216 	/* Persistent grants feature negotiation result */
217 	unsigned int feature_persistent:1;
218 	unsigned int bounce:1;
219 	unsigned int discard_granularity;
220 	unsigned int discard_alignment;
221 	/* Number of 4KB segments handled */
222 	unsigned int max_indirect_segments;
223 	int is_ready;
224 	struct blk_mq_tag_set tag_set;
225 	struct blkfront_ring_info *rinfo;
226 	unsigned int nr_rings;
227 	unsigned int rinfo_size;
228 	/* Save uncomplete reqs and bios for migration. */
229 	struct list_head requests;
230 	struct bio_list bio_list;
231 	struct list_head info_list;
232 };
233 
234 static unsigned int nr_minors;
235 static unsigned long *minors;
236 static DEFINE_SPINLOCK(minor_lock);
237 
238 #define GRANT_INVALID_REF	0
239 
240 #define PARTS_PER_DISK		16
241 #define PARTS_PER_EXT_DISK      256
242 
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245 
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254 
255 #define DEV_NAME	"xvd"	/* name in /dev */
256 
257 /*
258  * Grants are always the same size as a Xen page (i.e 4KB).
259  * A physical segment is always the same size as a Linux page.
260  * Number of grants per physical segment
261  */
262 #define GRANTS_PER_PSEG	(PAGE_SIZE / XEN_PAGE_SIZE)
263 
264 #define GRANTS_PER_INDIRECT_FRAME \
265 	(XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266 
267 #define INDIRECT_GREFS(_grants)		\
268 	DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269 
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273 
274 #define for_each_rinfo(info, ptr, idx)				\
275 	for ((ptr) = (info)->rinfo, (idx) = 0;			\
276 	     (idx) < (info)->nr_rings;				\
277 	     (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278 
279 static inline struct blkfront_ring_info *
get_rinfo(const struct blkfront_info *info, unsigned int i)280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282 	BUG_ON(i >= info->nr_rings);
283 	return (void *)info->rinfo + i * info->rinfo_size;
284 }
285 
get_id_from_freelist(struct blkfront_ring_info *rinfo)286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288 	unsigned long free = rinfo->shadow_free;
289 
290 	BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291 	rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292 	rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293 	return free;
294 }
295 
add_id_to_freelist(struct blkfront_ring_info *rinfo, unsigned long id)296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297 			      unsigned long id)
298 {
299 	if (rinfo->shadow[id].req.u.rw.id != id)
300 		return -EINVAL;
301 	if (rinfo->shadow[id].request == NULL)
302 		return -EINVAL;
303 	rinfo->shadow[id].req.u.rw.id  = rinfo->shadow_free;
304 	rinfo->shadow[id].request = NULL;
305 	rinfo->shadow_free = id;
306 	return 0;
307 }
308 
fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311 	struct blkfront_info *info = rinfo->dev_info;
312 	struct page *granted_page;
313 	struct grant *gnt_list_entry, *n;
314 	int i = 0;
315 
316 	while (i < num) {
317 		gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318 		if (!gnt_list_entry)
319 			goto out_of_memory;
320 
321 		if (info->bounce) {
322 			granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323 			if (!granted_page) {
324 				kfree(gnt_list_entry);
325 				goto out_of_memory;
326 			}
327 			gnt_list_entry->page = granted_page;
328 		}
329 
330 		gnt_list_entry->gref = GRANT_INVALID_REF;
331 		list_add(&gnt_list_entry->node, &rinfo->grants);
332 		i++;
333 	}
334 
335 	return 0;
336 
337 out_of_memory:
338 	list_for_each_entry_safe(gnt_list_entry, n,
339 	                         &rinfo->grants, node) {
340 		list_del(&gnt_list_entry->node);
341 		if (info->bounce)
342 			__free_page(gnt_list_entry->page);
343 		kfree(gnt_list_entry);
344 		i--;
345 	}
346 	BUG_ON(i != 0);
347 	return -ENOMEM;
348 }
349 
get_free_grant(struct blkfront_ring_info *rinfo)350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352 	struct grant *gnt_list_entry;
353 
354 	BUG_ON(list_empty(&rinfo->grants));
355 	gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356 					  node);
357 	list_del(&gnt_list_entry->node);
358 
359 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
360 		rinfo->persistent_gnts_c--;
361 
362 	return gnt_list_entry;
363 }
364 
grant_foreign_access(const struct grant *gnt_list_entry, const struct blkfront_info *info)365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366 					const struct blkfront_info *info)
367 {
368 	gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369 						 info->xbdev->otherend_id,
370 						 gnt_list_entry->page,
371 						 0);
372 }
373 
get_grant(grant_ref_t *gref_head, unsigned long gfn, struct blkfront_ring_info *rinfo)374 static struct grant *get_grant(grant_ref_t *gref_head,
375 			       unsigned long gfn,
376 			       struct blkfront_ring_info *rinfo)
377 {
378 	struct grant *gnt_list_entry = get_free_grant(rinfo);
379 	struct blkfront_info *info = rinfo->dev_info;
380 
381 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
382 		return gnt_list_entry;
383 
384 	/* Assign a gref to this page */
385 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 	if (info->bounce)
388 		grant_foreign_access(gnt_list_entry, info);
389 	else {
390 		/* Grant access to the GFN passed by the caller */
391 		gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392 						info->xbdev->otherend_id,
393 						gfn, 0);
394 	}
395 
396 	return gnt_list_entry;
397 }
398 
get_indirect_grant(grant_ref_t *gref_head, struct blkfront_ring_info *rinfo)399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400 					struct blkfront_ring_info *rinfo)
401 {
402 	struct grant *gnt_list_entry = get_free_grant(rinfo);
403 	struct blkfront_info *info = rinfo->dev_info;
404 
405 	if (gnt_list_entry->gref != GRANT_INVALID_REF)
406 		return gnt_list_entry;
407 
408 	/* Assign a gref to this page */
409 	gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410 	BUG_ON(gnt_list_entry->gref == -ENOSPC);
411 	if (!info->bounce) {
412 		struct page *indirect_page;
413 
414 		/* Fetch a pre-allocated page to use for indirect grefs */
415 		BUG_ON(list_empty(&rinfo->indirect_pages));
416 		indirect_page = list_first_entry(&rinfo->indirect_pages,
417 						 struct page, lru);
418 		list_del(&indirect_page->lru);
419 		gnt_list_entry->page = indirect_page;
420 	}
421 	grant_foreign_access(gnt_list_entry, info);
422 
423 	return gnt_list_entry;
424 }
425 
op_name(int op)426 static const char *op_name(int op)
427 {
428 	static const char *const names[] = {
429 		[BLKIF_OP_READ] = "read",
430 		[BLKIF_OP_WRITE] = "write",
431 		[BLKIF_OP_WRITE_BARRIER] = "barrier",
432 		[BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433 		[BLKIF_OP_DISCARD] = "discard" };
434 
435 	if (op < 0 || op >= ARRAY_SIZE(names))
436 		return "unknown";
437 
438 	if (!names[op])
439 		return "reserved";
440 
441 	return names[op];
442 }
xlbd_reserve_minors(unsigned int minor, unsigned int nr)443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445 	unsigned int end = minor + nr;
446 	int rc;
447 
448 	if (end > nr_minors) {
449 		unsigned long *bitmap, *old;
450 
451 		bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452 				 GFP_KERNEL);
453 		if (bitmap == NULL)
454 			return -ENOMEM;
455 
456 		spin_lock(&minor_lock);
457 		if (end > nr_minors) {
458 			old = minors;
459 			memcpy(bitmap, minors,
460 			       BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461 			minors = bitmap;
462 			nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463 		} else
464 			old = bitmap;
465 		spin_unlock(&minor_lock);
466 		kfree(old);
467 	}
468 
469 	spin_lock(&minor_lock);
470 	if (find_next_bit(minors, end, minor) >= end) {
471 		bitmap_set(minors, minor, nr);
472 		rc = 0;
473 	} else
474 		rc = -EBUSY;
475 	spin_unlock(&minor_lock);
476 
477 	return rc;
478 }
479 
xlbd_release_minors(unsigned int minor, unsigned int nr)480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482 	unsigned int end = minor + nr;
483 
484 	BUG_ON(end > nr_minors);
485 	spin_lock(&minor_lock);
486 	bitmap_clear(minors,  minor, nr);
487 	spin_unlock(&minor_lock);
488 }
489 
blkif_restart_queue_callback(void *arg)490 static void blkif_restart_queue_callback(void *arg)
491 {
492 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493 	schedule_work(&rinfo->work);
494 }
495 
blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498 	/* We don't have real geometry info, but let's at least return
499 	   values consistent with the size of the device */
500 	sector_t nsect = get_capacity(bd->bd_disk);
501 	sector_t cylinders = nsect;
502 
503 	hg->heads = 0xff;
504 	hg->sectors = 0x3f;
505 	sector_div(cylinders, hg->heads * hg->sectors);
506 	hg->cylinders = cylinders;
507 	if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508 		hg->cylinders = 0xffff;
509 	return 0;
510 }
511 
blkif_ioctl(struct block_device *bdev, fmode_t mode, unsigned command, unsigned long argument)512 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
513 		       unsigned command, unsigned long argument)
514 {
515 	struct blkfront_info *info = bdev->bd_disk->private_data;
516 	int i;
517 
518 	dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
519 		command, (long)argument);
520 
521 	switch (command) {
522 	case CDROMMULTISESSION:
523 		dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
524 		for (i = 0; i < sizeof(struct cdrom_multisession); i++)
525 			if (put_user(0, (char __user *)(argument + i)))
526 				return -EFAULT;
527 		return 0;
528 
529 	case CDROM_GET_CAPABILITY: {
530 		struct gendisk *gd = info->gd;
531 		if (gd->flags & GENHD_FL_CD)
532 			return 0;
533 		return -EINVAL;
534 	}
535 
536 	default:
537 		/*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
538 		  command);*/
539 		return -EINVAL; /* same return as native Linux */
540 	}
541 
542 	return 0;
543 }
544 
blkif_ring_get_request(struct blkfront_ring_info *rinfo, struct request *req, struct blkif_request **ring_req)545 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
546 					    struct request *req,
547 					    struct blkif_request **ring_req)
548 {
549 	unsigned long id;
550 
551 	*ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
552 	rinfo->ring.req_prod_pvt++;
553 
554 	id = get_id_from_freelist(rinfo);
555 	rinfo->shadow[id].request = req;
556 	rinfo->shadow[id].status = REQ_PROCESSING;
557 	rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
558 
559 	rinfo->shadow[id].req.u.rw.id = id;
560 
561 	return id;
562 }
563 
blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)564 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
565 {
566 	struct blkfront_info *info = rinfo->dev_info;
567 	struct blkif_request *ring_req, *final_ring_req;
568 	unsigned long id;
569 
570 	/* Fill out a communications ring structure. */
571 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
572 	ring_req = &rinfo->shadow[id].req;
573 
574 	ring_req->operation = BLKIF_OP_DISCARD;
575 	ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
576 	ring_req->u.discard.id = id;
577 	ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
578 	if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
579 		ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
580 	else
581 		ring_req->u.discard.flag = 0;
582 
583 	/* Copy the request to the ring page. */
584 	*final_ring_req = *ring_req;
585 	rinfo->shadow[id].status = REQ_WAITING;
586 
587 	return 0;
588 }
589 
590 struct setup_rw_req {
591 	unsigned int grant_idx;
592 	struct blkif_request_segment *segments;
593 	struct blkfront_ring_info *rinfo;
594 	struct blkif_request *ring_req;
595 	grant_ref_t gref_head;
596 	unsigned int id;
597 	/* Only used when persistent grant is used and it's a read request */
598 	bool need_copy;
599 	unsigned int bvec_off;
600 	char *bvec_data;
601 
602 	bool require_extra_req;
603 	struct blkif_request *extra_ring_req;
604 };
605 
blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, unsigned int len, void *data)606 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
607 				     unsigned int len, void *data)
608 {
609 	struct setup_rw_req *setup = data;
610 	int n, ref;
611 	struct grant *gnt_list_entry;
612 	unsigned int fsect, lsect;
613 	/* Convenient aliases */
614 	unsigned int grant_idx = setup->grant_idx;
615 	struct blkif_request *ring_req = setup->ring_req;
616 	struct blkfront_ring_info *rinfo = setup->rinfo;
617 	/*
618 	 * We always use the shadow of the first request to store the list
619 	 * of grant associated to the block I/O request. This made the
620 	 * completion more easy to handle even if the block I/O request is
621 	 * split.
622 	 */
623 	struct blk_shadow *shadow = &rinfo->shadow[setup->id];
624 
625 	if (unlikely(setup->require_extra_req &&
626 		     grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
627 		/*
628 		 * We are using the second request, setup grant_idx
629 		 * to be the index of the segment array.
630 		 */
631 		grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
632 		ring_req = setup->extra_ring_req;
633 	}
634 
635 	if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
636 	    (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
637 		if (setup->segments)
638 			kunmap_atomic(setup->segments);
639 
640 		n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
641 		gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
642 		shadow->indirect_grants[n] = gnt_list_entry;
643 		setup->segments = kmap_atomic(gnt_list_entry->page);
644 		ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
645 	}
646 
647 	gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
648 	ref = gnt_list_entry->gref;
649 	/*
650 	 * All the grants are stored in the shadow of the first
651 	 * request. Therefore we have to use the global index.
652 	 */
653 	shadow->grants_used[setup->grant_idx] = gnt_list_entry;
654 
655 	if (setup->need_copy) {
656 		void *shared_data;
657 
658 		shared_data = kmap_atomic(gnt_list_entry->page);
659 		/*
660 		 * this does not wipe data stored outside the
661 		 * range sg->offset..sg->offset+sg->length.
662 		 * Therefore, blkback *could* see data from
663 		 * previous requests. This is OK as long as
664 		 * persistent grants are shared with just one
665 		 * domain. It may need refactoring if this
666 		 * changes
667 		 */
668 		memcpy(shared_data + offset,
669 		       setup->bvec_data + setup->bvec_off,
670 		       len);
671 
672 		kunmap_atomic(shared_data);
673 		setup->bvec_off += len;
674 	}
675 
676 	fsect = offset >> 9;
677 	lsect = fsect + (len >> 9) - 1;
678 	if (ring_req->operation != BLKIF_OP_INDIRECT) {
679 		ring_req->u.rw.seg[grant_idx] =
680 			(struct blkif_request_segment) {
681 				.gref       = ref,
682 				.first_sect = fsect,
683 				.last_sect  = lsect };
684 	} else {
685 		setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
686 			(struct blkif_request_segment) {
687 				.gref       = ref,
688 				.first_sect = fsect,
689 				.last_sect  = lsect };
690 	}
691 
692 	(setup->grant_idx)++;
693 }
694 
blkif_setup_extra_req(struct blkif_request *first, struct blkif_request *second)695 static void blkif_setup_extra_req(struct blkif_request *first,
696 				  struct blkif_request *second)
697 {
698 	uint16_t nr_segments = first->u.rw.nr_segments;
699 
700 	/*
701 	 * The second request is only present when the first request uses
702 	 * all its segments. It's always the continuity of the first one.
703 	 */
704 	first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
705 
706 	second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
707 	second->u.rw.sector_number = first->u.rw.sector_number +
708 		(BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
709 
710 	second->u.rw.handle = first->u.rw.handle;
711 	second->operation = first->operation;
712 }
713 
blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)714 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
715 {
716 	struct blkfront_info *info = rinfo->dev_info;
717 	struct blkif_request *ring_req, *extra_ring_req = NULL;
718 	struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
719 	unsigned long id, extra_id = NO_ASSOCIATED_ID;
720 	bool require_extra_req = false;
721 	int i;
722 	struct setup_rw_req setup = {
723 		.grant_idx = 0,
724 		.segments = NULL,
725 		.rinfo = rinfo,
726 		.need_copy = rq_data_dir(req) && info->bounce,
727 	};
728 
729 	/*
730 	 * Used to store if we are able to queue the request by just using
731 	 * existing persistent grants, or if we have to get new grants,
732 	 * as there are not sufficiently many free.
733 	 */
734 	bool new_persistent_gnts = false;
735 	struct scatterlist *sg;
736 	int num_sg, max_grefs, num_grant;
737 
738 	max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
739 	if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
740 		/*
741 		 * If we are using indirect segments we need to account
742 		 * for the indirect grefs used in the request.
743 		 */
744 		max_grefs += INDIRECT_GREFS(max_grefs);
745 
746 	/* Check if we have enough persistent grants to allocate a requests */
747 	if (rinfo->persistent_gnts_c < max_grefs) {
748 		new_persistent_gnts = true;
749 
750 		if (gnttab_alloc_grant_references(
751 		    max_grefs - rinfo->persistent_gnts_c,
752 		    &setup.gref_head) < 0) {
753 			gnttab_request_free_callback(
754 				&rinfo->callback,
755 				blkif_restart_queue_callback,
756 				rinfo,
757 				max_grefs - rinfo->persistent_gnts_c);
758 			return 1;
759 		}
760 	}
761 
762 	/* Fill out a communications ring structure. */
763 	id = blkif_ring_get_request(rinfo, req, &final_ring_req);
764 	ring_req = &rinfo->shadow[id].req;
765 
766 	num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
767 	num_grant = 0;
768 	/* Calculate the number of grant used */
769 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
770 	       num_grant += gnttab_count_grant(sg->offset, sg->length);
771 
772 	require_extra_req = info->max_indirect_segments == 0 &&
773 		num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
774 	BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
775 
776 	rinfo->shadow[id].num_sg = num_sg;
777 	if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
778 	    likely(!require_extra_req)) {
779 		/*
780 		 * The indirect operation can only be a BLKIF_OP_READ or
781 		 * BLKIF_OP_WRITE
782 		 */
783 		BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
784 		ring_req->operation = BLKIF_OP_INDIRECT;
785 		ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
786 			BLKIF_OP_WRITE : BLKIF_OP_READ;
787 		ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
788 		ring_req->u.indirect.handle = info->handle;
789 		ring_req->u.indirect.nr_segments = num_grant;
790 	} else {
791 		ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
792 		ring_req->u.rw.handle = info->handle;
793 		ring_req->operation = rq_data_dir(req) ?
794 			BLKIF_OP_WRITE : BLKIF_OP_READ;
795 		if (req_op(req) == REQ_OP_FLUSH ||
796 		    (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
797 			/*
798 			 * Ideally we can do an unordered flush-to-disk.
799 			 * In case the backend onlysupports barriers, use that.
800 			 * A barrier request a superset of FUA, so we can
801 			 * implement it the same way.  (It's also a FLUSH+FUA,
802 			 * since it is guaranteed ordered WRT previous writes.)
803 			 */
804 			if (info->feature_flush && info->feature_fua)
805 				ring_req->operation =
806 					BLKIF_OP_WRITE_BARRIER;
807 			else if (info->feature_flush)
808 				ring_req->operation =
809 					BLKIF_OP_FLUSH_DISKCACHE;
810 			else
811 				ring_req->operation = 0;
812 		}
813 		ring_req->u.rw.nr_segments = num_grant;
814 		if (unlikely(require_extra_req)) {
815 			extra_id = blkif_ring_get_request(rinfo, req,
816 							  &final_extra_ring_req);
817 			extra_ring_req = &rinfo->shadow[extra_id].req;
818 
819 			/*
820 			 * Only the first request contains the scatter-gather
821 			 * list.
822 			 */
823 			rinfo->shadow[extra_id].num_sg = 0;
824 
825 			blkif_setup_extra_req(ring_req, extra_ring_req);
826 
827 			/* Link the 2 requests together */
828 			rinfo->shadow[extra_id].associated_id = id;
829 			rinfo->shadow[id].associated_id = extra_id;
830 		}
831 	}
832 
833 	setup.ring_req = ring_req;
834 	setup.id = id;
835 
836 	setup.require_extra_req = require_extra_req;
837 	if (unlikely(require_extra_req))
838 		setup.extra_ring_req = extra_ring_req;
839 
840 	for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
841 		BUG_ON(sg->offset + sg->length > PAGE_SIZE);
842 
843 		if (setup.need_copy) {
844 			setup.bvec_off = sg->offset;
845 			setup.bvec_data = kmap_atomic(sg_page(sg));
846 		}
847 
848 		gnttab_foreach_grant_in_range(sg_page(sg),
849 					      sg->offset,
850 					      sg->length,
851 					      blkif_setup_rw_req_grant,
852 					      &setup);
853 
854 		if (setup.need_copy)
855 			kunmap_atomic(setup.bvec_data);
856 	}
857 	if (setup.segments)
858 		kunmap_atomic(setup.segments);
859 
860 	/* Copy request(s) to the ring page. */
861 	*final_ring_req = *ring_req;
862 	rinfo->shadow[id].status = REQ_WAITING;
863 	if (unlikely(require_extra_req)) {
864 		*final_extra_ring_req = *extra_ring_req;
865 		rinfo->shadow[extra_id].status = REQ_WAITING;
866 	}
867 
868 	if (new_persistent_gnts)
869 		gnttab_free_grant_references(setup.gref_head);
870 
871 	return 0;
872 }
873 
874 /*
875  * Generate a Xen blkfront IO request from a blk layer request.  Reads
876  * and writes are handled as expected.
877  *
878  * @req: a request struct
879  */
blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)880 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
881 {
882 	if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
883 		return 1;
884 
885 	if (unlikely(req_op(req) == REQ_OP_DISCARD ||
886 		     req_op(req) == REQ_OP_SECURE_ERASE))
887 		return blkif_queue_discard_req(req, rinfo);
888 	else
889 		return blkif_queue_rw_req(req, rinfo);
890 }
891 
flush_requests(struct blkfront_ring_info *rinfo)892 static inline void flush_requests(struct blkfront_ring_info *rinfo)
893 {
894 	int notify;
895 
896 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
897 
898 	if (notify)
899 		notify_remote_via_irq(rinfo->irq);
900 }
901 
blkif_request_flush_invalid(struct request *req, struct blkfront_info *info)902 static inline bool blkif_request_flush_invalid(struct request *req,
903 					       struct blkfront_info *info)
904 {
905 	return (blk_rq_is_passthrough(req) ||
906 		((req_op(req) == REQ_OP_FLUSH) &&
907 		 !info->feature_flush) ||
908 		((req->cmd_flags & REQ_FUA) &&
909 		 !info->feature_fua));
910 }
911 
blkif_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd)912 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
913 			  const struct blk_mq_queue_data *qd)
914 {
915 	unsigned long flags;
916 	int qid = hctx->queue_num;
917 	struct blkfront_info *info = hctx->queue->queuedata;
918 	struct blkfront_ring_info *rinfo = NULL;
919 
920 	rinfo = get_rinfo(info, qid);
921 	blk_mq_start_request(qd->rq);
922 	spin_lock_irqsave(&rinfo->ring_lock, flags);
923 	if (RING_FULL(&rinfo->ring))
924 		goto out_busy;
925 
926 	if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
927 		goto out_err;
928 
929 	if (blkif_queue_request(qd->rq, rinfo))
930 		goto out_busy;
931 
932 	flush_requests(rinfo);
933 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
934 	return BLK_STS_OK;
935 
936 out_err:
937 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
938 	return BLK_STS_IOERR;
939 
940 out_busy:
941 	blk_mq_stop_hw_queue(hctx);
942 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
943 	return BLK_STS_DEV_RESOURCE;
944 }
945 
blkif_complete_rq(struct request *rq)946 static void blkif_complete_rq(struct request *rq)
947 {
948 	blk_mq_end_request(rq, blkif_req(rq)->error);
949 }
950 
951 static const struct blk_mq_ops blkfront_mq_ops = {
952 	.queue_rq = blkif_queue_rq,
953 	.complete = blkif_complete_rq,
954 };
955 
blkif_set_queue_limits(struct blkfront_info *info)956 static void blkif_set_queue_limits(struct blkfront_info *info)
957 {
958 	struct request_queue *rq = info->rq;
959 	struct gendisk *gd = info->gd;
960 	unsigned int segments = info->max_indirect_segments ? :
961 				BLKIF_MAX_SEGMENTS_PER_REQUEST;
962 
963 	blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
964 
965 	if (info->feature_discard) {
966 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
967 		blk_queue_max_discard_sectors(rq, get_capacity(gd));
968 		rq->limits.discard_granularity = info->discard_granularity ?:
969 						 info->physical_sector_size;
970 		rq->limits.discard_alignment = info->discard_alignment;
971 		if (info->feature_secdiscard)
972 			blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
973 	}
974 
975 	/* Hard sector size and max sectors impersonate the equiv. hardware. */
976 	blk_queue_logical_block_size(rq, info->sector_size);
977 	blk_queue_physical_block_size(rq, info->physical_sector_size);
978 	blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
979 
980 	/* Each segment in a request is up to an aligned page in size. */
981 	blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
982 	blk_queue_max_segment_size(rq, PAGE_SIZE);
983 
984 	/* Ensure a merged request will fit in a single I/O ring slot. */
985 	blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
986 
987 	/* Make sure buffer addresses are sector-aligned. */
988 	blk_queue_dma_alignment(rq, 511);
989 }
990 
xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, unsigned int physical_sector_size)991 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
992 				unsigned int physical_sector_size)
993 {
994 	struct request_queue *rq;
995 	struct blkfront_info *info = gd->private_data;
996 
997 	memset(&info->tag_set, 0, sizeof(info->tag_set));
998 	info->tag_set.ops = &blkfront_mq_ops;
999 	info->tag_set.nr_hw_queues = info->nr_rings;
1000 	if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1001 		/*
1002 		 * When indirect descriptior is not supported, the I/O request
1003 		 * will be split between multiple request in the ring.
1004 		 * To avoid problems when sending the request, divide by
1005 		 * 2 the depth of the queue.
1006 		 */
1007 		info->tag_set.queue_depth =  BLK_RING_SIZE(info) / 2;
1008 	} else
1009 		info->tag_set.queue_depth = BLK_RING_SIZE(info);
1010 	info->tag_set.numa_node = NUMA_NO_NODE;
1011 	info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1012 	info->tag_set.cmd_size = sizeof(struct blkif_req);
1013 	info->tag_set.driver_data = info;
1014 
1015 	if (blk_mq_alloc_tag_set(&info->tag_set))
1016 		return -EINVAL;
1017 	rq = blk_mq_init_queue(&info->tag_set);
1018 	if (IS_ERR(rq)) {
1019 		blk_mq_free_tag_set(&info->tag_set);
1020 		return PTR_ERR(rq);
1021 	}
1022 
1023 	rq->queuedata = info;
1024 	info->rq = gd->queue = rq;
1025 	info->gd = gd;
1026 	info->sector_size = sector_size;
1027 	info->physical_sector_size = physical_sector_size;
1028 	blkif_set_queue_limits(info);
1029 
1030 	return 0;
1031 }
1032 
flush_info(struct blkfront_info *info)1033 static const char *flush_info(struct blkfront_info *info)
1034 {
1035 	if (info->feature_flush && info->feature_fua)
1036 		return "barrier: enabled;";
1037 	else if (info->feature_flush)
1038 		return "flush diskcache: enabled;";
1039 	else
1040 		return "barrier or flush: disabled;";
1041 }
1042 
xlvbd_flush(struct blkfront_info *info)1043 static void xlvbd_flush(struct blkfront_info *info)
1044 {
1045 	blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1046 			      info->feature_fua ? true : false);
1047 	pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
1048 		info->gd->disk_name, flush_info(info),
1049 		"persistent grants:", info->feature_persistent ?
1050 		"enabled;" : "disabled;", "indirect descriptors:",
1051 		info->max_indirect_segments ? "enabled;" : "disabled;",
1052 		"bounce buffer:", info->bounce ? "enabled" : "disabled;");
1053 }
1054 
xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)1055 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1056 {
1057 	int major;
1058 	major = BLKIF_MAJOR(vdevice);
1059 	*minor = BLKIF_MINOR(vdevice);
1060 	switch (major) {
1061 		case XEN_IDE0_MAJOR:
1062 			*offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1063 			*minor = ((*minor / 64) * PARTS_PER_DISK) +
1064 				EMULATED_HD_DISK_MINOR_OFFSET;
1065 			break;
1066 		case XEN_IDE1_MAJOR:
1067 			*offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1068 			*minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1069 				EMULATED_HD_DISK_MINOR_OFFSET;
1070 			break;
1071 		case XEN_SCSI_DISK0_MAJOR:
1072 			*offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1073 			*minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1074 			break;
1075 		case XEN_SCSI_DISK1_MAJOR:
1076 		case XEN_SCSI_DISK2_MAJOR:
1077 		case XEN_SCSI_DISK3_MAJOR:
1078 		case XEN_SCSI_DISK4_MAJOR:
1079 		case XEN_SCSI_DISK5_MAJOR:
1080 		case XEN_SCSI_DISK6_MAJOR:
1081 		case XEN_SCSI_DISK7_MAJOR:
1082 			*offset = (*minor / PARTS_PER_DISK) +
1083 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1084 				EMULATED_SD_DISK_NAME_OFFSET;
1085 			*minor = *minor +
1086 				((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1087 				EMULATED_SD_DISK_MINOR_OFFSET;
1088 			break;
1089 		case XEN_SCSI_DISK8_MAJOR:
1090 		case XEN_SCSI_DISK9_MAJOR:
1091 		case XEN_SCSI_DISK10_MAJOR:
1092 		case XEN_SCSI_DISK11_MAJOR:
1093 		case XEN_SCSI_DISK12_MAJOR:
1094 		case XEN_SCSI_DISK13_MAJOR:
1095 		case XEN_SCSI_DISK14_MAJOR:
1096 		case XEN_SCSI_DISK15_MAJOR:
1097 			*offset = (*minor / PARTS_PER_DISK) +
1098 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1099 				EMULATED_SD_DISK_NAME_OFFSET;
1100 			*minor = *minor +
1101 				((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1102 				EMULATED_SD_DISK_MINOR_OFFSET;
1103 			break;
1104 		case XENVBD_MAJOR:
1105 			*offset = *minor / PARTS_PER_DISK;
1106 			break;
1107 		default:
1108 			printk(KERN_WARNING "blkfront: your disk configuration is "
1109 					"incorrect, please use an xvd device instead\n");
1110 			return -ENODEV;
1111 	}
1112 	return 0;
1113 }
1114 
encode_disk_name(char *ptr, unsigned int n)1115 static char *encode_disk_name(char *ptr, unsigned int n)
1116 {
1117 	if (n >= 26)
1118 		ptr = encode_disk_name(ptr, n / 26 - 1);
1119 	*ptr = 'a' + n % 26;
1120 	return ptr + 1;
1121 }
1122 
xlvbd_alloc_gendisk(blkif_sector_t capacity, struct blkfront_info *info, u16 vdisk_info, u16 sector_size, unsigned int physical_sector_size)1123 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1124 			       struct blkfront_info *info,
1125 			       u16 vdisk_info, u16 sector_size,
1126 			       unsigned int physical_sector_size)
1127 {
1128 	struct gendisk *gd;
1129 	int nr_minors = 1;
1130 	int err;
1131 	unsigned int offset;
1132 	int minor;
1133 	int nr_parts;
1134 	char *ptr;
1135 
1136 	BUG_ON(info->gd != NULL);
1137 	BUG_ON(info->rq != NULL);
1138 
1139 	if ((info->vdevice>>EXT_SHIFT) > 1) {
1140 		/* this is above the extended range; something is wrong */
1141 		printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1142 		return -ENODEV;
1143 	}
1144 
1145 	if (!VDEV_IS_EXTENDED(info->vdevice)) {
1146 		err = xen_translate_vdev(info->vdevice, &minor, &offset);
1147 		if (err)
1148 			return err;
1149 		nr_parts = PARTS_PER_DISK;
1150 	} else {
1151 		minor = BLKIF_MINOR_EXT(info->vdevice);
1152 		nr_parts = PARTS_PER_EXT_DISK;
1153 		offset = minor / nr_parts;
1154 		if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1155 			printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1156 					"emulated IDE disks,\n\t choose an xvd device name"
1157 					"from xvde on\n", info->vdevice);
1158 	}
1159 	if (minor >> MINORBITS) {
1160 		pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1161 			info->vdevice, minor);
1162 		return -ENODEV;
1163 	}
1164 
1165 	if ((minor % nr_parts) == 0)
1166 		nr_minors = nr_parts;
1167 
1168 	err = xlbd_reserve_minors(minor, nr_minors);
1169 	if (err)
1170 		goto out;
1171 	err = -ENODEV;
1172 
1173 	gd = alloc_disk(nr_minors);
1174 	if (gd == NULL)
1175 		goto release;
1176 
1177 	strcpy(gd->disk_name, DEV_NAME);
1178 	ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1179 	BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1180 	if (nr_minors > 1)
1181 		*ptr = 0;
1182 	else
1183 		snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1184 			 "%d", minor & (nr_parts - 1));
1185 
1186 	gd->major = XENVBD_MAJOR;
1187 	gd->first_minor = minor;
1188 	gd->fops = &xlvbd_block_fops;
1189 	gd->private_data = info;
1190 	set_capacity(gd, capacity);
1191 
1192 	if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1193 		del_gendisk(gd);
1194 		goto release;
1195 	}
1196 
1197 	xlvbd_flush(info);
1198 
1199 	if (vdisk_info & VDISK_READONLY)
1200 		set_disk_ro(gd, 1);
1201 
1202 	if (vdisk_info & VDISK_REMOVABLE)
1203 		gd->flags |= GENHD_FL_REMOVABLE;
1204 
1205 	if (vdisk_info & VDISK_CDROM)
1206 		gd->flags |= GENHD_FL_CD;
1207 
1208 	return 0;
1209 
1210  release:
1211 	xlbd_release_minors(minor, nr_minors);
1212  out:
1213 	return err;
1214 }
1215 
xlvbd_release_gendisk(struct blkfront_info *info)1216 static void xlvbd_release_gendisk(struct blkfront_info *info)
1217 {
1218 	unsigned int minor, nr_minors, i;
1219 	struct blkfront_ring_info *rinfo;
1220 
1221 	if (info->rq == NULL)
1222 		return;
1223 
1224 	/* No more blkif_request(). */
1225 	blk_mq_stop_hw_queues(info->rq);
1226 
1227 	for_each_rinfo(info, rinfo, i) {
1228 		/* No more gnttab callback work. */
1229 		gnttab_cancel_free_callback(&rinfo->callback);
1230 
1231 		/* Flush gnttab callback work. Must be done with no locks held. */
1232 		flush_work(&rinfo->work);
1233 	}
1234 
1235 	del_gendisk(info->gd);
1236 
1237 	minor = info->gd->first_minor;
1238 	nr_minors = info->gd->minors;
1239 	xlbd_release_minors(minor, nr_minors);
1240 
1241 	blk_cleanup_queue(info->rq);
1242 	blk_mq_free_tag_set(&info->tag_set);
1243 	info->rq = NULL;
1244 
1245 	put_disk(info->gd);
1246 	info->gd = NULL;
1247 }
1248 
1249 /* Already hold rinfo->ring_lock. */
kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)1250 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1251 {
1252 	if (!RING_FULL(&rinfo->ring))
1253 		blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1254 }
1255 
kick_pending_request_queues(struct blkfront_ring_info *rinfo)1256 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1257 {
1258 	unsigned long flags;
1259 
1260 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1261 	kick_pending_request_queues_locked(rinfo);
1262 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1263 }
1264 
blkif_restart_queue(struct work_struct *work)1265 static void blkif_restart_queue(struct work_struct *work)
1266 {
1267 	struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1268 
1269 	if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1270 		kick_pending_request_queues(rinfo);
1271 }
1272 
blkif_free_ring(struct blkfront_ring_info *rinfo)1273 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1274 {
1275 	struct grant *persistent_gnt, *n;
1276 	struct blkfront_info *info = rinfo->dev_info;
1277 	int i, j, segs;
1278 
1279 	/*
1280 	 * Remove indirect pages, this only happens when using indirect
1281 	 * descriptors but not persistent grants
1282 	 */
1283 	if (!list_empty(&rinfo->indirect_pages)) {
1284 		struct page *indirect_page, *n;
1285 
1286 		BUG_ON(info->bounce);
1287 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1288 			list_del(&indirect_page->lru);
1289 			__free_page(indirect_page);
1290 		}
1291 	}
1292 
1293 	/* Remove all persistent grants. */
1294 	if (!list_empty(&rinfo->grants)) {
1295 		list_for_each_entry_safe(persistent_gnt, n,
1296 					 &rinfo->grants, node) {
1297 			list_del(&persistent_gnt->node);
1298 			if (persistent_gnt->gref != GRANT_INVALID_REF) {
1299 				gnttab_end_foreign_access(persistent_gnt->gref,
1300 							  0, 0UL);
1301 				rinfo->persistent_gnts_c--;
1302 			}
1303 			if (info->bounce)
1304 				__free_page(persistent_gnt->page);
1305 			kfree(persistent_gnt);
1306 		}
1307 	}
1308 	BUG_ON(rinfo->persistent_gnts_c != 0);
1309 
1310 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
1311 		/*
1312 		 * Clear persistent grants present in requests already
1313 		 * on the shared ring
1314 		 */
1315 		if (!rinfo->shadow[i].request)
1316 			goto free_shadow;
1317 
1318 		segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1319 		       rinfo->shadow[i].req.u.indirect.nr_segments :
1320 		       rinfo->shadow[i].req.u.rw.nr_segments;
1321 		for (j = 0; j < segs; j++) {
1322 			persistent_gnt = rinfo->shadow[i].grants_used[j];
1323 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1324 			if (info->bounce)
1325 				__free_page(persistent_gnt->page);
1326 			kfree(persistent_gnt);
1327 		}
1328 
1329 		if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1330 			/*
1331 			 * If this is not an indirect operation don't try to
1332 			 * free indirect segments
1333 			 */
1334 			goto free_shadow;
1335 
1336 		for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1337 			persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1338 			gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1339 			__free_page(persistent_gnt->page);
1340 			kfree(persistent_gnt);
1341 		}
1342 
1343 free_shadow:
1344 		kvfree(rinfo->shadow[i].grants_used);
1345 		rinfo->shadow[i].grants_used = NULL;
1346 		kvfree(rinfo->shadow[i].indirect_grants);
1347 		rinfo->shadow[i].indirect_grants = NULL;
1348 		kvfree(rinfo->shadow[i].sg);
1349 		rinfo->shadow[i].sg = NULL;
1350 	}
1351 
1352 	/* No more gnttab callback work. */
1353 	gnttab_cancel_free_callback(&rinfo->callback);
1354 
1355 	/* Flush gnttab callback work. Must be done with no locks held. */
1356 	flush_work(&rinfo->work);
1357 
1358 	/* Free resources associated with old device channel. */
1359 	for (i = 0; i < info->nr_ring_pages; i++) {
1360 		if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1361 			gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1362 			rinfo->ring_ref[i] = GRANT_INVALID_REF;
1363 		}
1364 	}
1365 	free_pages_exact(rinfo->ring.sring,
1366 			 info->nr_ring_pages * XEN_PAGE_SIZE);
1367 	rinfo->ring.sring = NULL;
1368 
1369 	if (rinfo->irq)
1370 		unbind_from_irqhandler(rinfo->irq, rinfo);
1371 	rinfo->evtchn = rinfo->irq = 0;
1372 }
1373 
blkif_free(struct blkfront_info *info, int suspend)1374 static void blkif_free(struct blkfront_info *info, int suspend)
1375 {
1376 	unsigned int i;
1377 	struct blkfront_ring_info *rinfo;
1378 
1379 	/* Prevent new requests being issued until we fix things up. */
1380 	info->connected = suspend ?
1381 		BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1382 	/* No more blkif_request(). */
1383 	if (info->rq)
1384 		blk_mq_stop_hw_queues(info->rq);
1385 
1386 	for_each_rinfo(info, rinfo, i)
1387 		blkif_free_ring(rinfo);
1388 
1389 	kvfree(info->rinfo);
1390 	info->rinfo = NULL;
1391 	info->nr_rings = 0;
1392 }
1393 
1394 struct copy_from_grant {
1395 	const struct blk_shadow *s;
1396 	unsigned int grant_idx;
1397 	unsigned int bvec_offset;
1398 	char *bvec_data;
1399 };
1400 
blkif_copy_from_grant(unsigned long gfn, unsigned int offset, unsigned int len, void *data)1401 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1402 				  unsigned int len, void *data)
1403 {
1404 	struct copy_from_grant *info = data;
1405 	char *shared_data;
1406 	/* Convenient aliases */
1407 	const struct blk_shadow *s = info->s;
1408 
1409 	shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1410 
1411 	memcpy(info->bvec_data + info->bvec_offset,
1412 	       shared_data + offset, len);
1413 
1414 	info->bvec_offset += len;
1415 	info->grant_idx++;
1416 
1417 	kunmap_atomic(shared_data);
1418 }
1419 
blkif_rsp_to_req_status(int rsp)1420 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1421 {
1422 	switch (rsp)
1423 	{
1424 	case BLKIF_RSP_OKAY:
1425 		return REQ_DONE;
1426 	case BLKIF_RSP_EOPNOTSUPP:
1427 		return REQ_EOPNOTSUPP;
1428 	case BLKIF_RSP_ERROR:
1429 	default:
1430 		return REQ_ERROR;
1431 	}
1432 }
1433 
1434 /*
1435  * Get the final status of the block request based on two ring response
1436  */
blkif_get_final_status(enum blk_req_status s1, enum blk_req_status s2)1437 static int blkif_get_final_status(enum blk_req_status s1,
1438 				  enum blk_req_status s2)
1439 {
1440 	BUG_ON(s1 < REQ_DONE);
1441 	BUG_ON(s2 < REQ_DONE);
1442 
1443 	if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1444 		return BLKIF_RSP_ERROR;
1445 	else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1446 		return BLKIF_RSP_EOPNOTSUPP;
1447 	return BLKIF_RSP_OKAY;
1448 }
1449 
1450 /*
1451  * Return values:
1452  *  1 response processed.
1453  *  0 missing further responses.
1454  * -1 error while processing.
1455  */
blkif_completion(unsigned long *id, struct blkfront_ring_info *rinfo, struct blkif_response *bret)1456 static int blkif_completion(unsigned long *id,
1457 			    struct blkfront_ring_info *rinfo,
1458 			    struct blkif_response *bret)
1459 {
1460 	int i = 0;
1461 	struct scatterlist *sg;
1462 	int num_sg, num_grant;
1463 	struct blkfront_info *info = rinfo->dev_info;
1464 	struct blk_shadow *s = &rinfo->shadow[*id];
1465 	struct copy_from_grant data = {
1466 		.grant_idx = 0,
1467 	};
1468 
1469 	num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1470 		s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1471 
1472 	/* The I/O request may be split in two. */
1473 	if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1474 		struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1475 
1476 		/* Keep the status of the current response in shadow. */
1477 		s->status = blkif_rsp_to_req_status(bret->status);
1478 
1479 		/* Wait the second response if not yet here. */
1480 		if (s2->status < REQ_DONE)
1481 			return 0;
1482 
1483 		bret->status = blkif_get_final_status(s->status,
1484 						      s2->status);
1485 
1486 		/*
1487 		 * All the grants is stored in the first shadow in order
1488 		 * to make the completion code simpler.
1489 		 */
1490 		num_grant += s2->req.u.rw.nr_segments;
1491 
1492 		/*
1493 		 * The two responses may not come in order. Only the
1494 		 * first request will store the scatter-gather list.
1495 		 */
1496 		if (s2->num_sg != 0) {
1497 			/* Update "id" with the ID of the first response. */
1498 			*id = s->associated_id;
1499 			s = s2;
1500 		}
1501 
1502 		/*
1503 		 * We don't need anymore the second request, so recycling
1504 		 * it now.
1505 		 */
1506 		if (add_id_to_freelist(rinfo, s->associated_id))
1507 			WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1508 			     info->gd->disk_name, s->associated_id);
1509 	}
1510 
1511 	data.s = s;
1512 	num_sg = s->num_sg;
1513 
1514 	if (bret->operation == BLKIF_OP_READ && info->bounce) {
1515 		for_each_sg(s->sg, sg, num_sg, i) {
1516 			BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1517 
1518 			data.bvec_offset = sg->offset;
1519 			data.bvec_data = kmap_atomic(sg_page(sg));
1520 
1521 			gnttab_foreach_grant_in_range(sg_page(sg),
1522 						      sg->offset,
1523 						      sg->length,
1524 						      blkif_copy_from_grant,
1525 						      &data);
1526 
1527 			kunmap_atomic(data.bvec_data);
1528 		}
1529 	}
1530 	/* Add the persistent grant into the list of free grants */
1531 	for (i = 0; i < num_grant; i++) {
1532 		if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1533 			/*
1534 			 * If the grant is still mapped by the backend (the
1535 			 * backend has chosen to make this grant persistent)
1536 			 * we add it at the head of the list, so it will be
1537 			 * reused first.
1538 			 */
1539 			if (!info->feature_persistent) {
1540 				pr_alert("backed has not unmapped grant: %u\n",
1541 					 s->grants_used[i]->gref);
1542 				return -1;
1543 			}
1544 			list_add(&s->grants_used[i]->node, &rinfo->grants);
1545 			rinfo->persistent_gnts_c++;
1546 		} else {
1547 			/*
1548 			 * If the grant is not mapped by the backend we add it
1549 			 * to the tail of the list, so it will not be picked
1550 			 * again unless we run out of persistent grants.
1551 			 */
1552 			s->grants_used[i]->gref = GRANT_INVALID_REF;
1553 			list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1554 		}
1555 	}
1556 	if (s->req.operation == BLKIF_OP_INDIRECT) {
1557 		for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1558 			if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1559 				if (!info->feature_persistent) {
1560 					pr_alert("backed has not unmapped grant: %u\n",
1561 						 s->indirect_grants[i]->gref);
1562 					return -1;
1563 				}
1564 				list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1565 				rinfo->persistent_gnts_c++;
1566 			} else {
1567 				struct page *indirect_page;
1568 
1569 				/*
1570 				 * Add the used indirect page back to the list of
1571 				 * available pages for indirect grefs.
1572 				 */
1573 				if (!info->bounce) {
1574 					indirect_page = s->indirect_grants[i]->page;
1575 					list_add(&indirect_page->lru, &rinfo->indirect_pages);
1576 				}
1577 				s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1578 				list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1579 			}
1580 		}
1581 	}
1582 
1583 	return 1;
1584 }
1585 
blkif_interrupt(int irq, void *dev_id)1586 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1587 {
1588 	struct request *req;
1589 	struct blkif_response bret;
1590 	RING_IDX i, rp;
1591 	unsigned long flags;
1592 	struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1593 	struct blkfront_info *info = rinfo->dev_info;
1594 	unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1595 
1596 	if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1597 		xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1598 		return IRQ_HANDLED;
1599 	}
1600 
1601 	spin_lock_irqsave(&rinfo->ring_lock, flags);
1602  again:
1603 	rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1604 	virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1605 	if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1606 		pr_alert("%s: illegal number of responses %u\n",
1607 			 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1608 		goto err;
1609 	}
1610 
1611 	for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1612 		unsigned long id;
1613 		unsigned int op;
1614 
1615 		eoiflag = 0;
1616 
1617 		RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1618 		id = bret.id;
1619 
1620 		/*
1621 		 * The backend has messed up and given us an id that we would
1622 		 * never have given to it (we stamp it up to BLK_RING_SIZE -
1623 		 * look in get_id_from_freelist.
1624 		 */
1625 		if (id >= BLK_RING_SIZE(info)) {
1626 			pr_alert("%s: response has incorrect id (%ld)\n",
1627 				 info->gd->disk_name, id);
1628 			goto err;
1629 		}
1630 		if (rinfo->shadow[id].status != REQ_WAITING) {
1631 			pr_alert("%s: response references no pending request\n",
1632 				 info->gd->disk_name);
1633 			goto err;
1634 		}
1635 
1636 		rinfo->shadow[id].status = REQ_PROCESSING;
1637 		req  = rinfo->shadow[id].request;
1638 
1639 		op = rinfo->shadow[id].req.operation;
1640 		if (op == BLKIF_OP_INDIRECT)
1641 			op = rinfo->shadow[id].req.u.indirect.indirect_op;
1642 		if (bret.operation != op) {
1643 			pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1644 				 info->gd->disk_name, bret.operation, op);
1645 			goto err;
1646 		}
1647 
1648 		if (bret.operation != BLKIF_OP_DISCARD) {
1649 			int ret;
1650 
1651 			/*
1652 			 * We may need to wait for an extra response if the
1653 			 * I/O request is split in 2
1654 			 */
1655 			ret = blkif_completion(&id, rinfo, &bret);
1656 			if (!ret)
1657 				continue;
1658 			if (unlikely(ret < 0))
1659 				goto err;
1660 		}
1661 
1662 		if (add_id_to_freelist(rinfo, id)) {
1663 			WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1664 			     info->gd->disk_name, op_name(bret.operation), id);
1665 			continue;
1666 		}
1667 
1668 		if (bret.status == BLKIF_RSP_OKAY)
1669 			blkif_req(req)->error = BLK_STS_OK;
1670 		else
1671 			blkif_req(req)->error = BLK_STS_IOERR;
1672 
1673 		switch (bret.operation) {
1674 		case BLKIF_OP_DISCARD:
1675 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1676 				struct request_queue *rq = info->rq;
1677 
1678 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1679 					   info->gd->disk_name, op_name(bret.operation));
1680 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1681 				info->feature_discard = 0;
1682 				info->feature_secdiscard = 0;
1683 				blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1684 				blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1685 			}
1686 			break;
1687 		case BLKIF_OP_FLUSH_DISKCACHE:
1688 		case BLKIF_OP_WRITE_BARRIER:
1689 			if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1690 				pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1691 				       info->gd->disk_name, op_name(bret.operation));
1692 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1693 			}
1694 			if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1695 				     rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1696 				pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1697 				       info->gd->disk_name, op_name(bret.operation));
1698 				blkif_req(req)->error = BLK_STS_NOTSUPP;
1699 			}
1700 			if (unlikely(blkif_req(req)->error)) {
1701 				if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1702 					blkif_req(req)->error = BLK_STS_OK;
1703 				info->feature_fua = 0;
1704 				info->feature_flush = 0;
1705 				xlvbd_flush(info);
1706 			}
1707 			fallthrough;
1708 		case BLKIF_OP_READ:
1709 		case BLKIF_OP_WRITE:
1710 			if (unlikely(bret.status != BLKIF_RSP_OKAY))
1711 				dev_dbg_ratelimited(&info->xbdev->dev,
1712 					"Bad return from blkdev data request: %#x\n",
1713 					bret.status);
1714 
1715 			break;
1716 		default:
1717 			BUG();
1718 		}
1719 
1720 		if (likely(!blk_should_fake_timeout(req->q)))
1721 			blk_mq_complete_request(req);
1722 	}
1723 
1724 	rinfo->ring.rsp_cons = i;
1725 
1726 	if (i != rinfo->ring.req_prod_pvt) {
1727 		int more_to_do;
1728 		RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1729 		if (more_to_do)
1730 			goto again;
1731 	} else
1732 		rinfo->ring.sring->rsp_event = i + 1;
1733 
1734 	kick_pending_request_queues_locked(rinfo);
1735 
1736 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1737 
1738 	xen_irq_lateeoi(irq, eoiflag);
1739 
1740 	return IRQ_HANDLED;
1741 
1742  err:
1743 	info->connected = BLKIF_STATE_ERROR;
1744 
1745 	spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1746 
1747 	/* No EOI in order to avoid further interrupts. */
1748 
1749 	pr_alert("%s disabled for further use\n", info->gd->disk_name);
1750 	return IRQ_HANDLED;
1751 }
1752 
1753 
setup_blkring(struct xenbus_device *dev, struct blkfront_ring_info *rinfo)1754 static int setup_blkring(struct xenbus_device *dev,
1755 			 struct blkfront_ring_info *rinfo)
1756 {
1757 	struct blkif_sring *sring;
1758 	int err, i;
1759 	struct blkfront_info *info = rinfo->dev_info;
1760 	unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1761 	grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1762 
1763 	for (i = 0; i < info->nr_ring_pages; i++)
1764 		rinfo->ring_ref[i] = GRANT_INVALID_REF;
1765 
1766 	sring = alloc_pages_exact(ring_size, GFP_NOIO | __GFP_ZERO);
1767 	if (!sring) {
1768 		xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1769 		return -ENOMEM;
1770 	}
1771 	SHARED_RING_INIT(sring);
1772 	FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1773 
1774 	err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1775 	if (err < 0) {
1776 		free_pages_exact(sring, ring_size);
1777 		rinfo->ring.sring = NULL;
1778 		goto fail;
1779 	}
1780 	for (i = 0; i < info->nr_ring_pages; i++)
1781 		rinfo->ring_ref[i] = gref[i];
1782 
1783 	err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1784 	if (err)
1785 		goto fail;
1786 
1787 	err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1788 						0, "blkif", rinfo);
1789 	if (err <= 0) {
1790 		xenbus_dev_fatal(dev, err,
1791 				 "bind_evtchn_to_irqhandler failed");
1792 		goto fail;
1793 	}
1794 	rinfo->irq = err;
1795 
1796 	return 0;
1797 fail:
1798 	blkif_free(info, 0);
1799 	return err;
1800 }
1801 
1802 /*
1803  * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1804  * ring buffer may have multi pages depending on ->nr_ring_pages.
1805  */
write_per_ring_nodes(struct xenbus_transaction xbt, struct blkfront_ring_info *rinfo, const char *dir)1806 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1807 				struct blkfront_ring_info *rinfo, const char *dir)
1808 {
1809 	int err;
1810 	unsigned int i;
1811 	const char *message = NULL;
1812 	struct blkfront_info *info = rinfo->dev_info;
1813 
1814 	if (info->nr_ring_pages == 1) {
1815 		err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1816 		if (err) {
1817 			message = "writing ring-ref";
1818 			goto abort_transaction;
1819 		}
1820 	} else {
1821 		for (i = 0; i < info->nr_ring_pages; i++) {
1822 			char ring_ref_name[RINGREF_NAME_LEN];
1823 
1824 			snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1825 			err = xenbus_printf(xbt, dir, ring_ref_name,
1826 					    "%u", rinfo->ring_ref[i]);
1827 			if (err) {
1828 				message = "writing ring-ref";
1829 				goto abort_transaction;
1830 			}
1831 		}
1832 	}
1833 
1834 	err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1835 	if (err) {
1836 		message = "writing event-channel";
1837 		goto abort_transaction;
1838 	}
1839 
1840 	return 0;
1841 
1842 abort_transaction:
1843 	xenbus_transaction_end(xbt, 1);
1844 	if (message)
1845 		xenbus_dev_fatal(info->xbdev, err, "%s", message);
1846 
1847 	return err;
1848 }
1849 
free_info(struct blkfront_info *info)1850 static void free_info(struct blkfront_info *info)
1851 {
1852 	list_del(&info->info_list);
1853 	kfree(info);
1854 }
1855 
1856 /* Enable the persistent grants feature. */
1857 static bool feature_persistent = true;
1858 module_param(feature_persistent, bool, 0644);
1859 MODULE_PARM_DESC(feature_persistent,
1860 		"Enables the persistent grants feature");
1861 
1862 /* Common code used when first setting up, and when resuming. */
talk_to_blkback(struct xenbus_device *dev, struct blkfront_info *info)1863 static int talk_to_blkback(struct xenbus_device *dev,
1864 			   struct blkfront_info *info)
1865 {
1866 	const char *message = NULL;
1867 	struct xenbus_transaction xbt;
1868 	int err;
1869 	unsigned int i, max_page_order;
1870 	unsigned int ring_page_order;
1871 	struct blkfront_ring_info *rinfo;
1872 
1873 	if (!info)
1874 		return -ENODEV;
1875 
1876 	/* Check if backend is trusted. */
1877 	info->bounce = !xen_blkif_trusted ||
1878 		       !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1879 
1880 	max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1881 					      "max-ring-page-order", 0);
1882 	ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1883 	info->nr_ring_pages = 1 << ring_page_order;
1884 
1885 	err = negotiate_mq(info);
1886 	if (err)
1887 		goto destroy_blkring;
1888 
1889 	for_each_rinfo(info, rinfo, i) {
1890 		/* Create shared ring, alloc event channel. */
1891 		err = setup_blkring(dev, rinfo);
1892 		if (err)
1893 			goto destroy_blkring;
1894 	}
1895 
1896 again:
1897 	err = xenbus_transaction_start(&xbt);
1898 	if (err) {
1899 		xenbus_dev_fatal(dev, err, "starting transaction");
1900 		goto destroy_blkring;
1901 	}
1902 
1903 	if (info->nr_ring_pages > 1) {
1904 		err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1905 				    ring_page_order);
1906 		if (err) {
1907 			message = "writing ring-page-order";
1908 			goto abort_transaction;
1909 		}
1910 	}
1911 
1912 	/* We already got the number of queues/rings in _probe */
1913 	if (info->nr_rings == 1) {
1914 		err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1915 		if (err)
1916 			goto destroy_blkring;
1917 	} else {
1918 		char *path;
1919 		size_t pathsize;
1920 
1921 		err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1922 				    info->nr_rings);
1923 		if (err) {
1924 			message = "writing multi-queue-num-queues";
1925 			goto abort_transaction;
1926 		}
1927 
1928 		pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1929 		path = kmalloc(pathsize, GFP_KERNEL);
1930 		if (!path) {
1931 			err = -ENOMEM;
1932 			message = "ENOMEM while writing ring references";
1933 			goto abort_transaction;
1934 		}
1935 
1936 		for_each_rinfo(info, rinfo, i) {
1937 			memset(path, 0, pathsize);
1938 			snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1939 			err = write_per_ring_nodes(xbt, rinfo, path);
1940 			if (err) {
1941 				kfree(path);
1942 				goto destroy_blkring;
1943 			}
1944 		}
1945 		kfree(path);
1946 	}
1947 	err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1948 			    XEN_IO_PROTO_ABI_NATIVE);
1949 	if (err) {
1950 		message = "writing protocol";
1951 		goto abort_transaction;
1952 	}
1953 	info->feature_persistent_parm = feature_persistent;
1954 	err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1955 			info->feature_persistent_parm);
1956 	if (err)
1957 		dev_warn(&dev->dev,
1958 			 "writing persistent grants feature to xenbus");
1959 
1960 	err = xenbus_transaction_end(xbt, 0);
1961 	if (err) {
1962 		if (err == -EAGAIN)
1963 			goto again;
1964 		xenbus_dev_fatal(dev, err, "completing transaction");
1965 		goto destroy_blkring;
1966 	}
1967 
1968 	for_each_rinfo(info, rinfo, i) {
1969 		unsigned int j;
1970 
1971 		for (j = 0; j < BLK_RING_SIZE(info); j++)
1972 			rinfo->shadow[j].req.u.rw.id = j + 1;
1973 		rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1974 	}
1975 	xenbus_switch_state(dev, XenbusStateInitialised);
1976 
1977 	return 0;
1978 
1979  abort_transaction:
1980 	xenbus_transaction_end(xbt, 1);
1981 	if (message)
1982 		xenbus_dev_fatal(dev, err, "%s", message);
1983  destroy_blkring:
1984 	blkif_free(info, 0);
1985 
1986 	mutex_lock(&blkfront_mutex);
1987 	free_info(info);
1988 	mutex_unlock(&blkfront_mutex);
1989 
1990 	dev_set_drvdata(&dev->dev, NULL);
1991 
1992 	return err;
1993 }
1994 
negotiate_mq(struct blkfront_info *info)1995 static int negotiate_mq(struct blkfront_info *info)
1996 {
1997 	unsigned int backend_max_queues;
1998 	unsigned int i;
1999 	struct blkfront_ring_info *rinfo;
2000 
2001 	BUG_ON(info->nr_rings);
2002 
2003 	/* Check if backend supports multiple queues. */
2004 	backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
2005 						  "multi-queue-max-queues", 1);
2006 	info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
2007 	/* We need at least one ring. */
2008 	if (!info->nr_rings)
2009 		info->nr_rings = 1;
2010 
2011 	info->rinfo_size = struct_size(info->rinfo, shadow,
2012 				       BLK_RING_SIZE(info));
2013 	info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
2014 	if (!info->rinfo) {
2015 		xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
2016 		info->nr_rings = 0;
2017 		return -ENOMEM;
2018 	}
2019 
2020 	for_each_rinfo(info, rinfo, i) {
2021 		INIT_LIST_HEAD(&rinfo->indirect_pages);
2022 		INIT_LIST_HEAD(&rinfo->grants);
2023 		rinfo->dev_info = info;
2024 		INIT_WORK(&rinfo->work, blkif_restart_queue);
2025 		spin_lock_init(&rinfo->ring_lock);
2026 	}
2027 	return 0;
2028 }
2029 
2030 /**
2031  * Entry point to this code when a new device is created.  Allocate the basic
2032  * structures and the ring buffer for communication with the backend, and
2033  * inform the backend of the appropriate details for those.  Switch to
2034  * Initialised state.
2035  */
blkfront_probe(struct xenbus_device *dev, const struct xenbus_device_id *id)2036 static int blkfront_probe(struct xenbus_device *dev,
2037 			  const struct xenbus_device_id *id)
2038 {
2039 	int err, vdevice;
2040 	struct blkfront_info *info;
2041 
2042 	/* FIXME: Use dynamic device id if this is not set. */
2043 	err = xenbus_scanf(XBT_NIL, dev->nodename,
2044 			   "virtual-device", "%i", &vdevice);
2045 	if (err != 1) {
2046 		/* go looking in the extended area instead */
2047 		err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
2048 				   "%i", &vdevice);
2049 		if (err != 1) {
2050 			xenbus_dev_fatal(dev, err, "reading virtual-device");
2051 			return err;
2052 		}
2053 	}
2054 
2055 	if (xen_hvm_domain()) {
2056 		char *type;
2057 		int len;
2058 		/* no unplug has been done: do not hook devices != xen vbds */
2059 		if (xen_has_pv_and_legacy_disk_devices()) {
2060 			int major;
2061 
2062 			if (!VDEV_IS_EXTENDED(vdevice))
2063 				major = BLKIF_MAJOR(vdevice);
2064 			else
2065 				major = XENVBD_MAJOR;
2066 
2067 			if (major != XENVBD_MAJOR) {
2068 				printk(KERN_INFO
2069 						"%s: HVM does not support vbd %d as xen block device\n",
2070 						__func__, vdevice);
2071 				return -ENODEV;
2072 			}
2073 		}
2074 		/* do not create a PV cdrom device if we are an HVM guest */
2075 		type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
2076 		if (IS_ERR(type))
2077 			return -ENODEV;
2078 		if (strncmp(type, "cdrom", 5) == 0) {
2079 			kfree(type);
2080 			return -ENODEV;
2081 		}
2082 		kfree(type);
2083 	}
2084 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2085 	if (!info) {
2086 		xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2087 		return -ENOMEM;
2088 	}
2089 
2090 	info->xbdev = dev;
2091 
2092 	mutex_init(&info->mutex);
2093 	info->vdevice = vdevice;
2094 	info->connected = BLKIF_STATE_DISCONNECTED;
2095 
2096 	/* Front end dir is a number, which is used as the id. */
2097 	info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2098 	dev_set_drvdata(&dev->dev, info);
2099 
2100 	mutex_lock(&blkfront_mutex);
2101 	list_add(&info->info_list, &info_list);
2102 	mutex_unlock(&blkfront_mutex);
2103 
2104 	return 0;
2105 }
2106 
blkif_recover(struct blkfront_info *info)2107 static int blkif_recover(struct blkfront_info *info)
2108 {
2109 	unsigned int r_index;
2110 	struct request *req, *n;
2111 	int rc;
2112 	struct bio *bio;
2113 	unsigned int segs;
2114 	struct blkfront_ring_info *rinfo;
2115 
2116 	blkfront_gather_backend_features(info);
2117 	/* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2118 	blkif_set_queue_limits(info);
2119 	segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2120 	blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2121 
2122 	for_each_rinfo(info, rinfo, r_index) {
2123 		rc = blkfront_setup_indirect(rinfo);
2124 		if (rc)
2125 			return rc;
2126 	}
2127 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2128 
2129 	/* Now safe for us to use the shared ring */
2130 	info->connected = BLKIF_STATE_CONNECTED;
2131 
2132 	for_each_rinfo(info, rinfo, r_index) {
2133 		/* Kick any other new requests queued since we resumed */
2134 		kick_pending_request_queues(rinfo);
2135 	}
2136 
2137 	list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2138 		/* Requeue pending requests (flush or discard) */
2139 		list_del_init(&req->queuelist);
2140 		BUG_ON(req->nr_phys_segments > segs);
2141 		blk_mq_requeue_request(req, false);
2142 	}
2143 	blk_mq_start_stopped_hw_queues(info->rq, true);
2144 	blk_mq_kick_requeue_list(info->rq);
2145 
2146 	while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2147 		/* Traverse the list of pending bios and re-queue them */
2148 		submit_bio(bio);
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * We are reconnecting to the backend, due to a suspend/resume, or a backend
2156  * driver restart.  We tear down our blkif structure and recreate it, but
2157  * leave the device-layer structures intact so that this is transparent to the
2158  * rest of the kernel.
2159  */
blkfront_resume(struct xenbus_device *dev)2160 static int blkfront_resume(struct xenbus_device *dev)
2161 {
2162 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2163 	int err = 0;
2164 	unsigned int i, j;
2165 	struct blkfront_ring_info *rinfo;
2166 
2167 	dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2168 
2169 	bio_list_init(&info->bio_list);
2170 	INIT_LIST_HEAD(&info->requests);
2171 	for_each_rinfo(info, rinfo, i) {
2172 		struct bio_list merge_bio;
2173 		struct blk_shadow *shadow = rinfo->shadow;
2174 
2175 		for (j = 0; j < BLK_RING_SIZE(info); j++) {
2176 			/* Not in use? */
2177 			if (!shadow[j].request)
2178 				continue;
2179 
2180 			/*
2181 			 * Get the bios in the request so we can re-queue them.
2182 			 */
2183 			if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2184 			    req_op(shadow[j].request) == REQ_OP_DISCARD ||
2185 			    req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2186 			    shadow[j].request->cmd_flags & REQ_FUA) {
2187 				/*
2188 				 * Flush operations don't contain bios, so
2189 				 * we need to requeue the whole request
2190 				 *
2191 				 * XXX: but this doesn't make any sense for a
2192 				 * write with the FUA flag set..
2193 				 */
2194 				list_add(&shadow[j].request->queuelist, &info->requests);
2195 				continue;
2196 			}
2197 			merge_bio.head = shadow[j].request->bio;
2198 			merge_bio.tail = shadow[j].request->biotail;
2199 			bio_list_merge(&info->bio_list, &merge_bio);
2200 			shadow[j].request->bio = NULL;
2201 			blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2202 		}
2203 	}
2204 
2205 	blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2206 
2207 	err = talk_to_blkback(dev, info);
2208 	if (!err)
2209 		blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2210 
2211 	/*
2212 	 * We have to wait for the backend to switch to
2213 	 * connected state, since we want to read which
2214 	 * features it supports.
2215 	 */
2216 
2217 	return err;
2218 }
2219 
blkfront_closing(struct blkfront_info *info)2220 static void blkfront_closing(struct blkfront_info *info)
2221 {
2222 	struct xenbus_device *xbdev = info->xbdev;
2223 	struct block_device *bdev = NULL;
2224 
2225 	mutex_lock(&info->mutex);
2226 
2227 	if (xbdev->state == XenbusStateClosing) {
2228 		mutex_unlock(&info->mutex);
2229 		return;
2230 	}
2231 
2232 	if (info->gd)
2233 		bdev = bdget_disk(info->gd, 0);
2234 
2235 	mutex_unlock(&info->mutex);
2236 
2237 	if (!bdev) {
2238 		xenbus_frontend_closed(xbdev);
2239 		return;
2240 	}
2241 
2242 	mutex_lock(&bdev->bd_mutex);
2243 
2244 	if (bdev->bd_openers) {
2245 		xenbus_dev_error(xbdev, -EBUSY,
2246 				 "Device in use; refusing to close");
2247 		xenbus_switch_state(xbdev, XenbusStateClosing);
2248 	} else {
2249 		xlvbd_release_gendisk(info);
2250 		xenbus_frontend_closed(xbdev);
2251 	}
2252 
2253 	mutex_unlock(&bdev->bd_mutex);
2254 	bdput(bdev);
2255 }
2256 
blkfront_setup_discard(struct blkfront_info *info)2257 static void blkfront_setup_discard(struct blkfront_info *info)
2258 {
2259 	info->feature_discard = 1;
2260 	info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2261 							 "discard-granularity",
2262 							 0);
2263 	info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2264 						       "discard-alignment", 0);
2265 	info->feature_secdiscard =
2266 		!!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2267 				       0);
2268 }
2269 
blkfront_setup_indirect(struct blkfront_ring_info *rinfo)2270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2271 {
2272 	unsigned int psegs, grants, memflags;
2273 	int err, i;
2274 	struct blkfront_info *info = rinfo->dev_info;
2275 
2276 	memflags = memalloc_noio_save();
2277 
2278 	if (info->max_indirect_segments == 0) {
2279 		if (!HAS_EXTRA_REQ)
2280 			grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2281 		else {
2282 			/*
2283 			 * When an extra req is required, the maximum
2284 			 * grants supported is related to the size of the
2285 			 * Linux block segment.
2286 			 */
2287 			grants = GRANTS_PER_PSEG;
2288 		}
2289 	}
2290 	else
2291 		grants = info->max_indirect_segments;
2292 	psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2293 
2294 	err = fill_grant_buffer(rinfo,
2295 				(grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2296 	if (err)
2297 		goto out_of_memory;
2298 
2299 	if (!info->bounce && info->max_indirect_segments) {
2300 		/*
2301 		 * We are using indirect descriptors but don't have a bounce
2302 		 * buffer, we need to allocate a set of pages that can be
2303 		 * used for mapping indirect grefs
2304 		 */
2305 		int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2306 
2307 		BUG_ON(!list_empty(&rinfo->indirect_pages));
2308 		for (i = 0; i < num; i++) {
2309 			struct page *indirect_page = alloc_page(GFP_KERNEL |
2310 			                                        __GFP_ZERO);
2311 			if (!indirect_page)
2312 				goto out_of_memory;
2313 			list_add(&indirect_page->lru, &rinfo->indirect_pages);
2314 		}
2315 	}
2316 
2317 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2318 		rinfo->shadow[i].grants_used =
2319 			kvcalloc(grants,
2320 				 sizeof(rinfo->shadow[i].grants_used[0]),
2321 				 GFP_KERNEL);
2322 		rinfo->shadow[i].sg = kvcalloc(psegs,
2323 					       sizeof(rinfo->shadow[i].sg[0]),
2324 					       GFP_KERNEL);
2325 		if (info->max_indirect_segments)
2326 			rinfo->shadow[i].indirect_grants =
2327 				kvcalloc(INDIRECT_GREFS(grants),
2328 					 sizeof(rinfo->shadow[i].indirect_grants[0]),
2329 					 GFP_KERNEL);
2330 		if ((rinfo->shadow[i].grants_used == NULL) ||
2331 			(rinfo->shadow[i].sg == NULL) ||
2332 		     (info->max_indirect_segments &&
2333 		     (rinfo->shadow[i].indirect_grants == NULL)))
2334 			goto out_of_memory;
2335 		sg_init_table(rinfo->shadow[i].sg, psegs);
2336 	}
2337 
2338 	memalloc_noio_restore(memflags);
2339 
2340 	return 0;
2341 
2342 out_of_memory:
2343 	for (i = 0; i < BLK_RING_SIZE(info); i++) {
2344 		kvfree(rinfo->shadow[i].grants_used);
2345 		rinfo->shadow[i].grants_used = NULL;
2346 		kvfree(rinfo->shadow[i].sg);
2347 		rinfo->shadow[i].sg = NULL;
2348 		kvfree(rinfo->shadow[i].indirect_grants);
2349 		rinfo->shadow[i].indirect_grants = NULL;
2350 	}
2351 	if (!list_empty(&rinfo->indirect_pages)) {
2352 		struct page *indirect_page, *n;
2353 		list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2354 			list_del(&indirect_page->lru);
2355 			__free_page(indirect_page);
2356 		}
2357 	}
2358 
2359 	memalloc_noio_restore(memflags);
2360 
2361 	return -ENOMEM;
2362 }
2363 
2364 /*
2365  * Gather all backend feature-*
2366  */
blkfront_gather_backend_features(struct blkfront_info *info)2367 static void blkfront_gather_backend_features(struct blkfront_info *info)
2368 {
2369 	unsigned int indirect_segments;
2370 
2371 	info->feature_flush = 0;
2372 	info->feature_fua = 0;
2373 
2374 	/*
2375 	 * If there's no "feature-barrier" defined, then it means
2376 	 * we're dealing with a very old backend which writes
2377 	 * synchronously; nothing to do.
2378 	 *
2379 	 * If there are barriers, then we use flush.
2380 	 */
2381 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2382 		info->feature_flush = 1;
2383 		info->feature_fua = 1;
2384 	}
2385 
2386 	/*
2387 	 * And if there is "feature-flush-cache" use that above
2388 	 * barriers.
2389 	 */
2390 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2391 				 0)) {
2392 		info->feature_flush = 1;
2393 		info->feature_fua = 0;
2394 	}
2395 
2396 	if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2397 		blkfront_setup_discard(info);
2398 
2399 	if (info->feature_persistent_parm)
2400 		info->feature_persistent =
2401 			!!xenbus_read_unsigned(info->xbdev->otherend,
2402 					       "feature-persistent", 0);
2403 	if (info->feature_persistent)
2404 		info->bounce = true;
2405 
2406 	indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2407 					"feature-max-indirect-segments", 0);
2408 	if (indirect_segments > xen_blkif_max_segments)
2409 		indirect_segments = xen_blkif_max_segments;
2410 	if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2411 		indirect_segments = 0;
2412 	info->max_indirect_segments = indirect_segments;
2413 
2414 	if (info->feature_persistent) {
2415 		mutex_lock(&blkfront_mutex);
2416 		schedule_delayed_work(&blkfront_work, HZ * 10);
2417 		mutex_unlock(&blkfront_mutex);
2418 	}
2419 }
2420 
2421 /*
2422  * Invoked when the backend is finally 'ready' (and has told produced
2423  * the details about the physical device - #sectors, size, etc).
2424  */
blkfront_connect(struct blkfront_info *info)2425 static void blkfront_connect(struct blkfront_info *info)
2426 {
2427 	unsigned long long sectors;
2428 	unsigned long sector_size;
2429 	unsigned int physical_sector_size;
2430 	unsigned int binfo;
2431 	int err, i;
2432 	struct blkfront_ring_info *rinfo;
2433 
2434 	switch (info->connected) {
2435 	case BLKIF_STATE_CONNECTED:
2436 		/*
2437 		 * Potentially, the back-end may be signalling
2438 		 * a capacity change; update the capacity.
2439 		 */
2440 		err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2441 				   "sectors", "%Lu", &sectors);
2442 		if (XENBUS_EXIST_ERR(err))
2443 			return;
2444 		printk(KERN_INFO "Setting capacity to %Lu\n",
2445 		       sectors);
2446 		set_capacity_revalidate_and_notify(info->gd, sectors, true);
2447 
2448 		return;
2449 	case BLKIF_STATE_SUSPENDED:
2450 		/*
2451 		 * If we are recovering from suspension, we need to wait
2452 		 * for the backend to announce it's features before
2453 		 * reconnecting, at least we need to know if the backend
2454 		 * supports indirect descriptors, and how many.
2455 		 */
2456 		blkif_recover(info);
2457 		return;
2458 
2459 	default:
2460 		break;
2461 	}
2462 
2463 	dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2464 		__func__, info->xbdev->otherend);
2465 
2466 	err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2467 			    "sectors", "%llu", &sectors,
2468 			    "info", "%u", &binfo,
2469 			    "sector-size", "%lu", &sector_size,
2470 			    NULL);
2471 	if (err) {
2472 		xenbus_dev_fatal(info->xbdev, err,
2473 				 "reading backend fields at %s",
2474 				 info->xbdev->otherend);
2475 		return;
2476 	}
2477 
2478 	/*
2479 	 * physcial-sector-size is a newer field, so old backends may not
2480 	 * provide this. Assume physical sector size to be the same as
2481 	 * sector_size in that case.
2482 	 */
2483 	physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2484 						    "physical-sector-size",
2485 						    sector_size);
2486 	blkfront_gather_backend_features(info);
2487 	for_each_rinfo(info, rinfo, i) {
2488 		err = blkfront_setup_indirect(rinfo);
2489 		if (err) {
2490 			xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2491 					 info->xbdev->otherend);
2492 			blkif_free(info, 0);
2493 			break;
2494 		}
2495 	}
2496 
2497 	err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2498 				  physical_sector_size);
2499 	if (err) {
2500 		xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2501 				 info->xbdev->otherend);
2502 		goto fail;
2503 	}
2504 
2505 	xenbus_switch_state(info->xbdev, XenbusStateConnected);
2506 
2507 	/* Kick pending requests. */
2508 	info->connected = BLKIF_STATE_CONNECTED;
2509 	for_each_rinfo(info, rinfo, i)
2510 		kick_pending_request_queues(rinfo);
2511 
2512 	device_add_disk(&info->xbdev->dev, info->gd, NULL);
2513 
2514 	info->is_ready = 1;
2515 	return;
2516 
2517 fail:
2518 	blkif_free(info, 0);
2519 	return;
2520 }
2521 
2522 /**
2523  * Callback received when the backend's state changes.
2524  */
blkback_changed(struct xenbus_device *dev, enum xenbus_state backend_state)2525 static void blkback_changed(struct xenbus_device *dev,
2526 			    enum xenbus_state backend_state)
2527 {
2528 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2529 
2530 	dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2531 
2532 	switch (backend_state) {
2533 	case XenbusStateInitWait:
2534 		if (dev->state != XenbusStateInitialising)
2535 			break;
2536 		if (talk_to_blkback(dev, info))
2537 			break;
2538 	case XenbusStateInitialising:
2539 	case XenbusStateInitialised:
2540 	case XenbusStateReconfiguring:
2541 	case XenbusStateReconfigured:
2542 	case XenbusStateUnknown:
2543 		break;
2544 
2545 	case XenbusStateConnected:
2546 		/*
2547 		 * talk_to_blkback sets state to XenbusStateInitialised
2548 		 * and blkfront_connect sets it to XenbusStateConnected
2549 		 * (if connection went OK).
2550 		 *
2551 		 * If the backend (or toolstack) decides to poke at backend
2552 		 * state (and re-trigger the watch by setting the state repeatedly
2553 		 * to XenbusStateConnected (4)) we need to deal with this.
2554 		 * This is allowed as this is used to communicate to the guest
2555 		 * that the size of disk has changed!
2556 		 */
2557 		if ((dev->state != XenbusStateInitialised) &&
2558 		    (dev->state != XenbusStateConnected)) {
2559 			if (talk_to_blkback(dev, info))
2560 				break;
2561 		}
2562 
2563 		blkfront_connect(info);
2564 		break;
2565 
2566 	case XenbusStateClosed:
2567 		if (dev->state == XenbusStateClosed)
2568 			break;
2569 		fallthrough;
2570 	case XenbusStateClosing:
2571 		if (info)
2572 			blkfront_closing(info);
2573 		break;
2574 	}
2575 }
2576 
blkfront_remove(struct xenbus_device *xbdev)2577 static int blkfront_remove(struct xenbus_device *xbdev)
2578 {
2579 	struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2580 	struct block_device *bdev = NULL;
2581 	struct gendisk *disk;
2582 
2583 	dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2584 
2585 	if (!info)
2586 		return 0;
2587 
2588 	blkif_free(info, 0);
2589 
2590 	mutex_lock(&info->mutex);
2591 
2592 	disk = info->gd;
2593 	if (disk)
2594 		bdev = bdget_disk(disk, 0);
2595 
2596 	info->xbdev = NULL;
2597 	mutex_unlock(&info->mutex);
2598 
2599 	if (!bdev) {
2600 		mutex_lock(&blkfront_mutex);
2601 		free_info(info);
2602 		mutex_unlock(&blkfront_mutex);
2603 		return 0;
2604 	}
2605 
2606 	/*
2607 	 * The xbdev was removed before we reached the Closed
2608 	 * state. See if it's safe to remove the disk. If the bdev
2609 	 * isn't closed yet, we let release take care of it.
2610 	 */
2611 
2612 	mutex_lock(&bdev->bd_mutex);
2613 	info = disk->private_data;
2614 
2615 	dev_warn(disk_to_dev(disk),
2616 		 "%s was hot-unplugged, %d stale handles\n",
2617 		 xbdev->nodename, bdev->bd_openers);
2618 
2619 	if (info && !bdev->bd_openers) {
2620 		xlvbd_release_gendisk(info);
2621 		disk->private_data = NULL;
2622 		mutex_lock(&blkfront_mutex);
2623 		free_info(info);
2624 		mutex_unlock(&blkfront_mutex);
2625 	}
2626 
2627 	mutex_unlock(&bdev->bd_mutex);
2628 	bdput(bdev);
2629 
2630 	return 0;
2631 }
2632 
blkfront_is_ready(struct xenbus_device *dev)2633 static int blkfront_is_ready(struct xenbus_device *dev)
2634 {
2635 	struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2636 
2637 	return info->is_ready && info->xbdev;
2638 }
2639 
blkif_open(struct block_device *bdev, fmode_t mode)2640 static int blkif_open(struct block_device *bdev, fmode_t mode)
2641 {
2642 	struct gendisk *disk = bdev->bd_disk;
2643 	struct blkfront_info *info;
2644 	int err = 0;
2645 
2646 	mutex_lock(&blkfront_mutex);
2647 
2648 	info = disk->private_data;
2649 	if (!info) {
2650 		/* xbdev gone */
2651 		err = -ERESTARTSYS;
2652 		goto out;
2653 	}
2654 
2655 	mutex_lock(&info->mutex);
2656 
2657 	if (!info->gd)
2658 		/* xbdev is closed */
2659 		err = -ERESTARTSYS;
2660 
2661 	mutex_unlock(&info->mutex);
2662 
2663 out:
2664 	mutex_unlock(&blkfront_mutex);
2665 	return err;
2666 }
2667 
blkif_release(struct gendisk *disk, fmode_t mode)2668 static void blkif_release(struct gendisk *disk, fmode_t mode)
2669 {
2670 	struct blkfront_info *info = disk->private_data;
2671 	struct block_device *bdev;
2672 	struct xenbus_device *xbdev;
2673 
2674 	mutex_lock(&blkfront_mutex);
2675 
2676 	bdev = bdget_disk(disk, 0);
2677 
2678 	if (!bdev) {
2679 		WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2680 		goto out_mutex;
2681 	}
2682 	if (bdev->bd_openers)
2683 		goto out;
2684 
2685 	/*
2686 	 * Check if we have been instructed to close. We will have
2687 	 * deferred this request, because the bdev was still open.
2688 	 */
2689 
2690 	mutex_lock(&info->mutex);
2691 	xbdev = info->xbdev;
2692 
2693 	if (xbdev && xbdev->state == XenbusStateClosing) {
2694 		/* pending switch to state closed */
2695 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2696 		xlvbd_release_gendisk(info);
2697 		xenbus_frontend_closed(info->xbdev);
2698  	}
2699 
2700 	mutex_unlock(&info->mutex);
2701 
2702 	if (!xbdev) {
2703 		/* sudden device removal */
2704 		dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2705 		xlvbd_release_gendisk(info);
2706 		disk->private_data = NULL;
2707 		free_info(info);
2708 	}
2709 
2710 out:
2711 	bdput(bdev);
2712 out_mutex:
2713 	mutex_unlock(&blkfront_mutex);
2714 }
2715 
2716 static const struct block_device_operations xlvbd_block_fops =
2717 {
2718 	.owner = THIS_MODULE,
2719 	.open = blkif_open,
2720 	.release = blkif_release,
2721 	.getgeo = blkif_getgeo,
2722 	.ioctl = blkif_ioctl,
2723 	.compat_ioctl = blkdev_compat_ptr_ioctl,
2724 };
2725 
2726 
2727 static const struct xenbus_device_id blkfront_ids[] = {
2728 	{ "vbd" },
2729 	{ "" }
2730 };
2731 
2732 static struct xenbus_driver blkfront_driver = {
2733 	.ids  = blkfront_ids,
2734 	.probe = blkfront_probe,
2735 	.remove = blkfront_remove,
2736 	.resume = blkfront_resume,
2737 	.otherend_changed = blkback_changed,
2738 	.is_ready = blkfront_is_ready,
2739 };
2740 
purge_persistent_grants(struct blkfront_info *info)2741 static void purge_persistent_grants(struct blkfront_info *info)
2742 {
2743 	unsigned int i;
2744 	unsigned long flags;
2745 	struct blkfront_ring_info *rinfo;
2746 
2747 	for_each_rinfo(info, rinfo, i) {
2748 		struct grant *gnt_list_entry, *tmp;
2749 
2750 		spin_lock_irqsave(&rinfo->ring_lock, flags);
2751 
2752 		if (rinfo->persistent_gnts_c == 0) {
2753 			spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2754 			continue;
2755 		}
2756 
2757 		list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2758 					 node) {
2759 			if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2760 			    !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2761 				continue;
2762 
2763 			list_del(&gnt_list_entry->node);
2764 			rinfo->persistent_gnts_c--;
2765 			gnt_list_entry->gref = GRANT_INVALID_REF;
2766 			list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2767 		}
2768 
2769 		spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2770 	}
2771 }
2772 
blkfront_delay_work(struct work_struct *work)2773 static void blkfront_delay_work(struct work_struct *work)
2774 {
2775 	struct blkfront_info *info;
2776 	bool need_schedule_work = false;
2777 
2778 	/*
2779 	 * Note that when using bounce buffers but not persistent grants
2780 	 * there's no need to run blkfront_delay_work because grants are
2781 	 * revoked in blkif_completion or else an error is reported and the
2782 	 * connection is closed.
2783 	 */
2784 
2785 	mutex_lock(&blkfront_mutex);
2786 
2787 	list_for_each_entry(info, &info_list, info_list) {
2788 		if (info->feature_persistent) {
2789 			need_schedule_work = true;
2790 			mutex_lock(&info->mutex);
2791 			purge_persistent_grants(info);
2792 			mutex_unlock(&info->mutex);
2793 		}
2794 	}
2795 
2796 	if (need_schedule_work)
2797 		schedule_delayed_work(&blkfront_work, HZ * 10);
2798 
2799 	mutex_unlock(&blkfront_mutex);
2800 }
2801 
xlblk_init(void)2802 static int __init xlblk_init(void)
2803 {
2804 	int ret;
2805 	int nr_cpus = num_online_cpus();
2806 
2807 	if (!xen_domain())
2808 		return -ENODEV;
2809 
2810 	if (!xen_has_pv_disk_devices())
2811 		return -ENODEV;
2812 
2813 	if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2814 		pr_warn("xen_blk: can't get major %d with name %s\n",
2815 			XENVBD_MAJOR, DEV_NAME);
2816 		return -ENODEV;
2817 	}
2818 
2819 	if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2820 		xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2821 
2822 	if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2823 		pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2824 			xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2825 		xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2826 	}
2827 
2828 	if (xen_blkif_max_queues > nr_cpus) {
2829 		pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2830 			xen_blkif_max_queues, nr_cpus);
2831 		xen_blkif_max_queues = nr_cpus;
2832 	}
2833 
2834 	INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2835 
2836 	ret = xenbus_register_frontend(&blkfront_driver);
2837 	if (ret) {
2838 		unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2839 		return ret;
2840 	}
2841 
2842 	return 0;
2843 }
2844 module_init(xlblk_init);
2845 
2846 
xlblk_exit(void)2847 static void __exit xlblk_exit(void)
2848 {
2849 	cancel_delayed_work_sync(&blkfront_work);
2850 
2851 	xenbus_unregister_driver(&blkfront_driver);
2852 	unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2853 	kfree(minors);
2854 }
2855 module_exit(xlblk_exit);
2856 
2857 MODULE_DESCRIPTION("Xen virtual block device frontend");
2858 MODULE_LICENSE("GPL");
2859 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2860 MODULE_ALIAS("xen:vbd");
2861 MODULE_ALIAS("xenblk");
2862