1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62
63 #include <asm/xen/hypervisor.h>
64
65 /*
66 * The minimal size of segment supported by the block framework is PAGE_SIZE.
67 * When Linux is using a different page size than Xen, it may not be possible
68 * to put all the data in a single segment.
69 * This can happen when the backend doesn't support indirect descriptor and
70 * therefore the maximum amount of data that a request can carry is
71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72 *
73 * Note that we only support one extra request. So the Linux page size
74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75 * 88KB.
76 */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78
79 enum blkif_state {
80 BLKIF_STATE_DISCONNECTED,
81 BLKIF_STATE_CONNECTED,
82 BLKIF_STATE_SUSPENDED,
83 BLKIF_STATE_ERROR,
84 };
85
86 struct grant {
87 grant_ref_t gref;
88 struct page *page;
89 struct list_head node;
90 };
91
92 enum blk_req_status {
93 REQ_PROCESSING,
94 REQ_WAITING,
95 REQ_DONE,
96 REQ_ERROR,
97 REQ_EOPNOTSUPP,
98 };
99
100 struct blk_shadow {
101 struct blkif_request req;
102 struct request *request;
103 struct grant **grants_used;
104 struct grant **indirect_grants;
105 struct scatterlist *sg;
106 unsigned int num_sg;
107 enum blk_req_status status;
108
109 #define NO_ASSOCIATED_ID ~0UL
110 /*
111 * Id of the sibling if we ever need 2 requests when handling a
112 * block I/O request
113 */
114 unsigned long associated_id;
115 };
116
117 struct blkif_req {
118 blk_status_t error;
119 };
120
blkif_req(struct request *rq)121 static inline struct blkif_req *blkif_req(struct request *rq)
122 {
123 return blk_mq_rq_to_pdu(rq);
124 }
125
126 static DEFINE_MUTEX(blkfront_mutex);
127 static const struct block_device_operations xlvbd_block_fops;
128 static struct delayed_work blkfront_work;
129 static LIST_HEAD(info_list);
130
131 /*
132 * Maximum number of segments in indirect requests, the actual value used by
133 * the frontend driver is the minimum of this value and the value provided
134 * by the backend driver.
135 */
136
137 static unsigned int xen_blkif_max_segments = 32;
138 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
139 MODULE_PARM_DESC(max_indirect_segments,
140 "Maximum amount of segments in indirect requests (default is 32)");
141
142 static unsigned int xen_blkif_max_queues = 4;
143 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
145
146 /*
147 * Maximum order of pages to be used for the shared ring between front and
148 * backend, 4KB page granularity is used.
149 */
150 static unsigned int xen_blkif_max_ring_order;
151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
153
154 static bool __read_mostly xen_blkif_trusted = true;
155 module_param_named(trusted, xen_blkif_trusted, bool, 0644);
156 MODULE_PARM_DESC(trusted, "Is the backend trusted");
157
158 #define BLK_RING_SIZE(info) \
159 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
160
161 /*
162 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
163 * characters are enough. Define to 20 to keep consistent with backend.
164 */
165 #define RINGREF_NAME_LEN (20)
166 /*
167 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
168 */
169 #define QUEUE_NAME_LEN (17)
170
171 /*
172 * Per-ring info.
173 * Every blkfront device can associate with one or more blkfront_ring_info,
174 * depending on how many hardware queues/rings to be used.
175 */
176 struct blkfront_ring_info {
177 /* Lock to protect data in every ring buffer. */
178 spinlock_t ring_lock;
179 struct blkif_front_ring ring;
180 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
181 unsigned int evtchn, irq;
182 struct work_struct work;
183 struct gnttab_free_callback callback;
184 struct list_head indirect_pages;
185 struct list_head grants;
186 unsigned int persistent_gnts_c;
187 unsigned long shadow_free;
188 struct blkfront_info *dev_info;
189 struct blk_shadow shadow[];
190 };
191
192 /*
193 * We have one of these per vbd, whether ide, scsi or 'other'. They
194 * hang in private_data off the gendisk structure. We may end up
195 * putting all kinds of interesting stuff here :-)
196 */
197 struct blkfront_info
198 {
199 struct mutex mutex;
200 struct xenbus_device *xbdev;
201 struct gendisk *gd;
202 u16 sector_size;
203 unsigned int physical_sector_size;
204 int vdevice;
205 blkif_vdev_t handle;
206 enum blkif_state connected;
207 /* Number of pages per ring buffer. */
208 unsigned int nr_ring_pages;
209 struct request_queue *rq;
210 unsigned int feature_flush:1;
211 unsigned int feature_fua:1;
212 unsigned int feature_discard:1;
213 unsigned int feature_secdiscard:1;
214 /* Connect-time cached feature_persistent parameter */
215 unsigned int feature_persistent_parm:1;
216 /* Persistent grants feature negotiation result */
217 unsigned int feature_persistent:1;
218 unsigned int bounce:1;
219 unsigned int discard_granularity;
220 unsigned int discard_alignment;
221 /* Number of 4KB segments handled */
222 unsigned int max_indirect_segments;
223 int is_ready;
224 struct blk_mq_tag_set tag_set;
225 struct blkfront_ring_info *rinfo;
226 unsigned int nr_rings;
227 unsigned int rinfo_size;
228 /* Save uncomplete reqs and bios for migration. */
229 struct list_head requests;
230 struct bio_list bio_list;
231 struct list_head info_list;
232 };
233
234 static unsigned int nr_minors;
235 static unsigned long *minors;
236 static DEFINE_SPINLOCK(minor_lock);
237
238 #define GRANT_INVALID_REF 0
239
240 #define PARTS_PER_DISK 16
241 #define PARTS_PER_EXT_DISK 256
242
243 #define BLKIF_MAJOR(dev) ((dev)>>8)
244 #define BLKIF_MINOR(dev) ((dev) & 0xff)
245
246 #define EXT_SHIFT 28
247 #define EXTENDED (1<<EXT_SHIFT)
248 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
249 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
250 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
251 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
252 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
253 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
254
255 #define DEV_NAME "xvd" /* name in /dev */
256
257 /*
258 * Grants are always the same size as a Xen page (i.e 4KB).
259 * A physical segment is always the same size as a Linux page.
260 * Number of grants per physical segment
261 */
262 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
263
264 #define GRANTS_PER_INDIRECT_FRAME \
265 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
266
267 #define INDIRECT_GREFS(_grants) \
268 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
269
270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
271 static void blkfront_gather_backend_features(struct blkfront_info *info);
272 static int negotiate_mq(struct blkfront_info *info);
273
274 #define for_each_rinfo(info, ptr, idx) \
275 for ((ptr) = (info)->rinfo, (idx) = 0; \
276 (idx) < (info)->nr_rings; \
277 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
278
279 static inline struct blkfront_ring_info *
get_rinfo(const struct blkfront_info *info, unsigned int i)280 get_rinfo(const struct blkfront_info *info, unsigned int i)
281 {
282 BUG_ON(i >= info->nr_rings);
283 return (void *)info->rinfo + i * info->rinfo_size;
284 }
285
get_id_from_freelist(struct blkfront_ring_info *rinfo)286 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
287 {
288 unsigned long free = rinfo->shadow_free;
289
290 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
291 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
292 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
293 return free;
294 }
295
add_id_to_freelist(struct blkfront_ring_info *rinfo, unsigned long id)296 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
297 unsigned long id)
298 {
299 if (rinfo->shadow[id].req.u.rw.id != id)
300 return -EINVAL;
301 if (rinfo->shadow[id].request == NULL)
302 return -EINVAL;
303 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
304 rinfo->shadow[id].request = NULL;
305 rinfo->shadow_free = id;
306 return 0;
307 }
308
fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)309 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
310 {
311 struct blkfront_info *info = rinfo->dev_info;
312 struct page *granted_page;
313 struct grant *gnt_list_entry, *n;
314 int i = 0;
315
316 while (i < num) {
317 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
318 if (!gnt_list_entry)
319 goto out_of_memory;
320
321 if (info->bounce) {
322 granted_page = alloc_page(GFP_NOIO | __GFP_ZERO);
323 if (!granted_page) {
324 kfree(gnt_list_entry);
325 goto out_of_memory;
326 }
327 gnt_list_entry->page = granted_page;
328 }
329
330 gnt_list_entry->gref = GRANT_INVALID_REF;
331 list_add(&gnt_list_entry->node, &rinfo->grants);
332 i++;
333 }
334
335 return 0;
336
337 out_of_memory:
338 list_for_each_entry_safe(gnt_list_entry, n,
339 &rinfo->grants, node) {
340 list_del(&gnt_list_entry->node);
341 if (info->bounce)
342 __free_page(gnt_list_entry->page);
343 kfree(gnt_list_entry);
344 i--;
345 }
346 BUG_ON(i != 0);
347 return -ENOMEM;
348 }
349
get_free_grant(struct blkfront_ring_info *rinfo)350 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
351 {
352 struct grant *gnt_list_entry;
353
354 BUG_ON(list_empty(&rinfo->grants));
355 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
356 node);
357 list_del(&gnt_list_entry->node);
358
359 if (gnt_list_entry->gref != GRANT_INVALID_REF)
360 rinfo->persistent_gnts_c--;
361
362 return gnt_list_entry;
363 }
364
grant_foreign_access(const struct grant *gnt_list_entry, const struct blkfront_info *info)365 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
366 const struct blkfront_info *info)
367 {
368 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
369 info->xbdev->otherend_id,
370 gnt_list_entry->page,
371 0);
372 }
373
get_grant(grant_ref_t *gref_head, unsigned long gfn, struct blkfront_ring_info *rinfo)374 static struct grant *get_grant(grant_ref_t *gref_head,
375 unsigned long gfn,
376 struct blkfront_ring_info *rinfo)
377 {
378 struct grant *gnt_list_entry = get_free_grant(rinfo);
379 struct blkfront_info *info = rinfo->dev_info;
380
381 if (gnt_list_entry->gref != GRANT_INVALID_REF)
382 return gnt_list_entry;
383
384 /* Assign a gref to this page */
385 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
386 BUG_ON(gnt_list_entry->gref == -ENOSPC);
387 if (info->bounce)
388 grant_foreign_access(gnt_list_entry, info);
389 else {
390 /* Grant access to the GFN passed by the caller */
391 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
392 info->xbdev->otherend_id,
393 gfn, 0);
394 }
395
396 return gnt_list_entry;
397 }
398
get_indirect_grant(grant_ref_t *gref_head, struct blkfront_ring_info *rinfo)399 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
400 struct blkfront_ring_info *rinfo)
401 {
402 struct grant *gnt_list_entry = get_free_grant(rinfo);
403 struct blkfront_info *info = rinfo->dev_info;
404
405 if (gnt_list_entry->gref != GRANT_INVALID_REF)
406 return gnt_list_entry;
407
408 /* Assign a gref to this page */
409 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
410 BUG_ON(gnt_list_entry->gref == -ENOSPC);
411 if (!info->bounce) {
412 struct page *indirect_page;
413
414 /* Fetch a pre-allocated page to use for indirect grefs */
415 BUG_ON(list_empty(&rinfo->indirect_pages));
416 indirect_page = list_first_entry(&rinfo->indirect_pages,
417 struct page, lru);
418 list_del(&indirect_page->lru);
419 gnt_list_entry->page = indirect_page;
420 }
421 grant_foreign_access(gnt_list_entry, info);
422
423 return gnt_list_entry;
424 }
425
op_name(int op)426 static const char *op_name(int op)
427 {
428 static const char *const names[] = {
429 [BLKIF_OP_READ] = "read",
430 [BLKIF_OP_WRITE] = "write",
431 [BLKIF_OP_WRITE_BARRIER] = "barrier",
432 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
433 [BLKIF_OP_DISCARD] = "discard" };
434
435 if (op < 0 || op >= ARRAY_SIZE(names))
436 return "unknown";
437
438 if (!names[op])
439 return "reserved";
440
441 return names[op];
442 }
xlbd_reserve_minors(unsigned int minor, unsigned int nr)443 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
444 {
445 unsigned int end = minor + nr;
446 int rc;
447
448 if (end > nr_minors) {
449 unsigned long *bitmap, *old;
450
451 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
452 GFP_KERNEL);
453 if (bitmap == NULL)
454 return -ENOMEM;
455
456 spin_lock(&minor_lock);
457 if (end > nr_minors) {
458 old = minors;
459 memcpy(bitmap, minors,
460 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
461 minors = bitmap;
462 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
463 } else
464 old = bitmap;
465 spin_unlock(&minor_lock);
466 kfree(old);
467 }
468
469 spin_lock(&minor_lock);
470 if (find_next_bit(minors, end, minor) >= end) {
471 bitmap_set(minors, minor, nr);
472 rc = 0;
473 } else
474 rc = -EBUSY;
475 spin_unlock(&minor_lock);
476
477 return rc;
478 }
479
xlbd_release_minors(unsigned int minor, unsigned int nr)480 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
481 {
482 unsigned int end = minor + nr;
483
484 BUG_ON(end > nr_minors);
485 spin_lock(&minor_lock);
486 bitmap_clear(minors, minor, nr);
487 spin_unlock(&minor_lock);
488 }
489
blkif_restart_queue_callback(void *arg)490 static void blkif_restart_queue_callback(void *arg)
491 {
492 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
493 schedule_work(&rinfo->work);
494 }
495
blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)496 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
497 {
498 /* We don't have real geometry info, but let's at least return
499 values consistent with the size of the device */
500 sector_t nsect = get_capacity(bd->bd_disk);
501 sector_t cylinders = nsect;
502
503 hg->heads = 0xff;
504 hg->sectors = 0x3f;
505 sector_div(cylinders, hg->heads * hg->sectors);
506 hg->cylinders = cylinders;
507 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
508 hg->cylinders = 0xffff;
509 return 0;
510 }
511
blkif_ioctl(struct block_device *bdev, fmode_t mode, unsigned command, unsigned long argument)512 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
513 unsigned command, unsigned long argument)
514 {
515 struct blkfront_info *info = bdev->bd_disk->private_data;
516 int i;
517
518 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
519 command, (long)argument);
520
521 switch (command) {
522 case CDROMMULTISESSION:
523 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
524 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
525 if (put_user(0, (char __user *)(argument + i)))
526 return -EFAULT;
527 return 0;
528
529 case CDROM_GET_CAPABILITY: {
530 struct gendisk *gd = info->gd;
531 if (gd->flags & GENHD_FL_CD)
532 return 0;
533 return -EINVAL;
534 }
535
536 default:
537 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
538 command);*/
539 return -EINVAL; /* same return as native Linux */
540 }
541
542 return 0;
543 }
544
blkif_ring_get_request(struct blkfront_ring_info *rinfo, struct request *req, struct blkif_request **ring_req)545 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
546 struct request *req,
547 struct blkif_request **ring_req)
548 {
549 unsigned long id;
550
551 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
552 rinfo->ring.req_prod_pvt++;
553
554 id = get_id_from_freelist(rinfo);
555 rinfo->shadow[id].request = req;
556 rinfo->shadow[id].status = REQ_PROCESSING;
557 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
558
559 rinfo->shadow[id].req.u.rw.id = id;
560
561 return id;
562 }
563
blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)564 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
565 {
566 struct blkfront_info *info = rinfo->dev_info;
567 struct blkif_request *ring_req, *final_ring_req;
568 unsigned long id;
569
570 /* Fill out a communications ring structure. */
571 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
572 ring_req = &rinfo->shadow[id].req;
573
574 ring_req->operation = BLKIF_OP_DISCARD;
575 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
576 ring_req->u.discard.id = id;
577 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
578 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
579 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
580 else
581 ring_req->u.discard.flag = 0;
582
583 /* Copy the request to the ring page. */
584 *final_ring_req = *ring_req;
585 rinfo->shadow[id].status = REQ_WAITING;
586
587 return 0;
588 }
589
590 struct setup_rw_req {
591 unsigned int grant_idx;
592 struct blkif_request_segment *segments;
593 struct blkfront_ring_info *rinfo;
594 struct blkif_request *ring_req;
595 grant_ref_t gref_head;
596 unsigned int id;
597 /* Only used when persistent grant is used and it's a read request */
598 bool need_copy;
599 unsigned int bvec_off;
600 char *bvec_data;
601
602 bool require_extra_req;
603 struct blkif_request *extra_ring_req;
604 };
605
blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset, unsigned int len, void *data)606 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
607 unsigned int len, void *data)
608 {
609 struct setup_rw_req *setup = data;
610 int n, ref;
611 struct grant *gnt_list_entry;
612 unsigned int fsect, lsect;
613 /* Convenient aliases */
614 unsigned int grant_idx = setup->grant_idx;
615 struct blkif_request *ring_req = setup->ring_req;
616 struct blkfront_ring_info *rinfo = setup->rinfo;
617 /*
618 * We always use the shadow of the first request to store the list
619 * of grant associated to the block I/O request. This made the
620 * completion more easy to handle even if the block I/O request is
621 * split.
622 */
623 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
624
625 if (unlikely(setup->require_extra_req &&
626 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
627 /*
628 * We are using the second request, setup grant_idx
629 * to be the index of the segment array.
630 */
631 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
632 ring_req = setup->extra_ring_req;
633 }
634
635 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
636 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
637 if (setup->segments)
638 kunmap_atomic(setup->segments);
639
640 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
641 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
642 shadow->indirect_grants[n] = gnt_list_entry;
643 setup->segments = kmap_atomic(gnt_list_entry->page);
644 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
645 }
646
647 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
648 ref = gnt_list_entry->gref;
649 /*
650 * All the grants are stored in the shadow of the first
651 * request. Therefore we have to use the global index.
652 */
653 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
654
655 if (setup->need_copy) {
656 void *shared_data;
657
658 shared_data = kmap_atomic(gnt_list_entry->page);
659 /*
660 * this does not wipe data stored outside the
661 * range sg->offset..sg->offset+sg->length.
662 * Therefore, blkback *could* see data from
663 * previous requests. This is OK as long as
664 * persistent grants are shared with just one
665 * domain. It may need refactoring if this
666 * changes
667 */
668 memcpy(shared_data + offset,
669 setup->bvec_data + setup->bvec_off,
670 len);
671
672 kunmap_atomic(shared_data);
673 setup->bvec_off += len;
674 }
675
676 fsect = offset >> 9;
677 lsect = fsect + (len >> 9) - 1;
678 if (ring_req->operation != BLKIF_OP_INDIRECT) {
679 ring_req->u.rw.seg[grant_idx] =
680 (struct blkif_request_segment) {
681 .gref = ref,
682 .first_sect = fsect,
683 .last_sect = lsect };
684 } else {
685 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
686 (struct blkif_request_segment) {
687 .gref = ref,
688 .first_sect = fsect,
689 .last_sect = lsect };
690 }
691
692 (setup->grant_idx)++;
693 }
694
blkif_setup_extra_req(struct blkif_request *first, struct blkif_request *second)695 static void blkif_setup_extra_req(struct blkif_request *first,
696 struct blkif_request *second)
697 {
698 uint16_t nr_segments = first->u.rw.nr_segments;
699
700 /*
701 * The second request is only present when the first request uses
702 * all its segments. It's always the continuity of the first one.
703 */
704 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
705
706 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
707 second->u.rw.sector_number = first->u.rw.sector_number +
708 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
709
710 second->u.rw.handle = first->u.rw.handle;
711 second->operation = first->operation;
712 }
713
blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)714 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
715 {
716 struct blkfront_info *info = rinfo->dev_info;
717 struct blkif_request *ring_req, *extra_ring_req = NULL;
718 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
719 unsigned long id, extra_id = NO_ASSOCIATED_ID;
720 bool require_extra_req = false;
721 int i;
722 struct setup_rw_req setup = {
723 .grant_idx = 0,
724 .segments = NULL,
725 .rinfo = rinfo,
726 .need_copy = rq_data_dir(req) && info->bounce,
727 };
728
729 /*
730 * Used to store if we are able to queue the request by just using
731 * existing persistent grants, or if we have to get new grants,
732 * as there are not sufficiently many free.
733 */
734 bool new_persistent_gnts = false;
735 struct scatterlist *sg;
736 int num_sg, max_grefs, num_grant;
737
738 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
739 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
740 /*
741 * If we are using indirect segments we need to account
742 * for the indirect grefs used in the request.
743 */
744 max_grefs += INDIRECT_GREFS(max_grefs);
745
746 /* Check if we have enough persistent grants to allocate a requests */
747 if (rinfo->persistent_gnts_c < max_grefs) {
748 new_persistent_gnts = true;
749
750 if (gnttab_alloc_grant_references(
751 max_grefs - rinfo->persistent_gnts_c,
752 &setup.gref_head) < 0) {
753 gnttab_request_free_callback(
754 &rinfo->callback,
755 blkif_restart_queue_callback,
756 rinfo,
757 max_grefs - rinfo->persistent_gnts_c);
758 return 1;
759 }
760 }
761
762 /* Fill out a communications ring structure. */
763 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
764 ring_req = &rinfo->shadow[id].req;
765
766 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
767 num_grant = 0;
768 /* Calculate the number of grant used */
769 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
770 num_grant += gnttab_count_grant(sg->offset, sg->length);
771
772 require_extra_req = info->max_indirect_segments == 0 &&
773 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
774 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
775
776 rinfo->shadow[id].num_sg = num_sg;
777 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
778 likely(!require_extra_req)) {
779 /*
780 * The indirect operation can only be a BLKIF_OP_READ or
781 * BLKIF_OP_WRITE
782 */
783 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
784 ring_req->operation = BLKIF_OP_INDIRECT;
785 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
786 BLKIF_OP_WRITE : BLKIF_OP_READ;
787 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
788 ring_req->u.indirect.handle = info->handle;
789 ring_req->u.indirect.nr_segments = num_grant;
790 } else {
791 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
792 ring_req->u.rw.handle = info->handle;
793 ring_req->operation = rq_data_dir(req) ?
794 BLKIF_OP_WRITE : BLKIF_OP_READ;
795 if (req_op(req) == REQ_OP_FLUSH ||
796 (req_op(req) == REQ_OP_WRITE && (req->cmd_flags & REQ_FUA))) {
797 /*
798 * Ideally we can do an unordered flush-to-disk.
799 * In case the backend onlysupports barriers, use that.
800 * A barrier request a superset of FUA, so we can
801 * implement it the same way. (It's also a FLUSH+FUA,
802 * since it is guaranteed ordered WRT previous writes.)
803 */
804 if (info->feature_flush && info->feature_fua)
805 ring_req->operation =
806 BLKIF_OP_WRITE_BARRIER;
807 else if (info->feature_flush)
808 ring_req->operation =
809 BLKIF_OP_FLUSH_DISKCACHE;
810 else
811 ring_req->operation = 0;
812 }
813 ring_req->u.rw.nr_segments = num_grant;
814 if (unlikely(require_extra_req)) {
815 extra_id = blkif_ring_get_request(rinfo, req,
816 &final_extra_ring_req);
817 extra_ring_req = &rinfo->shadow[extra_id].req;
818
819 /*
820 * Only the first request contains the scatter-gather
821 * list.
822 */
823 rinfo->shadow[extra_id].num_sg = 0;
824
825 blkif_setup_extra_req(ring_req, extra_ring_req);
826
827 /* Link the 2 requests together */
828 rinfo->shadow[extra_id].associated_id = id;
829 rinfo->shadow[id].associated_id = extra_id;
830 }
831 }
832
833 setup.ring_req = ring_req;
834 setup.id = id;
835
836 setup.require_extra_req = require_extra_req;
837 if (unlikely(require_extra_req))
838 setup.extra_ring_req = extra_ring_req;
839
840 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
841 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
842
843 if (setup.need_copy) {
844 setup.bvec_off = sg->offset;
845 setup.bvec_data = kmap_atomic(sg_page(sg));
846 }
847
848 gnttab_foreach_grant_in_range(sg_page(sg),
849 sg->offset,
850 sg->length,
851 blkif_setup_rw_req_grant,
852 &setup);
853
854 if (setup.need_copy)
855 kunmap_atomic(setup.bvec_data);
856 }
857 if (setup.segments)
858 kunmap_atomic(setup.segments);
859
860 /* Copy request(s) to the ring page. */
861 *final_ring_req = *ring_req;
862 rinfo->shadow[id].status = REQ_WAITING;
863 if (unlikely(require_extra_req)) {
864 *final_extra_ring_req = *extra_ring_req;
865 rinfo->shadow[extra_id].status = REQ_WAITING;
866 }
867
868 if (new_persistent_gnts)
869 gnttab_free_grant_references(setup.gref_head);
870
871 return 0;
872 }
873
874 /*
875 * Generate a Xen blkfront IO request from a blk layer request. Reads
876 * and writes are handled as expected.
877 *
878 * @req: a request struct
879 */
blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)880 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
881 {
882 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
883 return 1;
884
885 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
886 req_op(req) == REQ_OP_SECURE_ERASE))
887 return blkif_queue_discard_req(req, rinfo);
888 else
889 return blkif_queue_rw_req(req, rinfo);
890 }
891
flush_requests(struct blkfront_ring_info *rinfo)892 static inline void flush_requests(struct blkfront_ring_info *rinfo)
893 {
894 int notify;
895
896 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
897
898 if (notify)
899 notify_remote_via_irq(rinfo->irq);
900 }
901
blkif_request_flush_invalid(struct request *req, struct blkfront_info *info)902 static inline bool blkif_request_flush_invalid(struct request *req,
903 struct blkfront_info *info)
904 {
905 return (blk_rq_is_passthrough(req) ||
906 ((req_op(req) == REQ_OP_FLUSH) &&
907 !info->feature_flush) ||
908 ((req->cmd_flags & REQ_FUA) &&
909 !info->feature_fua));
910 }
911
blkif_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd)912 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
913 const struct blk_mq_queue_data *qd)
914 {
915 unsigned long flags;
916 int qid = hctx->queue_num;
917 struct blkfront_info *info = hctx->queue->queuedata;
918 struct blkfront_ring_info *rinfo = NULL;
919
920 rinfo = get_rinfo(info, qid);
921 blk_mq_start_request(qd->rq);
922 spin_lock_irqsave(&rinfo->ring_lock, flags);
923 if (RING_FULL(&rinfo->ring))
924 goto out_busy;
925
926 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
927 goto out_err;
928
929 if (blkif_queue_request(qd->rq, rinfo))
930 goto out_busy;
931
932 flush_requests(rinfo);
933 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
934 return BLK_STS_OK;
935
936 out_err:
937 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
938 return BLK_STS_IOERR;
939
940 out_busy:
941 blk_mq_stop_hw_queue(hctx);
942 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
943 return BLK_STS_DEV_RESOURCE;
944 }
945
blkif_complete_rq(struct request *rq)946 static void blkif_complete_rq(struct request *rq)
947 {
948 blk_mq_end_request(rq, blkif_req(rq)->error);
949 }
950
951 static const struct blk_mq_ops blkfront_mq_ops = {
952 .queue_rq = blkif_queue_rq,
953 .complete = blkif_complete_rq,
954 };
955
blkif_set_queue_limits(struct blkfront_info *info)956 static void blkif_set_queue_limits(struct blkfront_info *info)
957 {
958 struct request_queue *rq = info->rq;
959 struct gendisk *gd = info->gd;
960 unsigned int segments = info->max_indirect_segments ? :
961 BLKIF_MAX_SEGMENTS_PER_REQUEST;
962
963 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
964
965 if (info->feature_discard) {
966 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
967 blk_queue_max_discard_sectors(rq, get_capacity(gd));
968 rq->limits.discard_granularity = info->discard_granularity ?:
969 info->physical_sector_size;
970 rq->limits.discard_alignment = info->discard_alignment;
971 if (info->feature_secdiscard)
972 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
973 }
974
975 /* Hard sector size and max sectors impersonate the equiv. hardware. */
976 blk_queue_logical_block_size(rq, info->sector_size);
977 blk_queue_physical_block_size(rq, info->physical_sector_size);
978 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
979
980 /* Each segment in a request is up to an aligned page in size. */
981 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
982 blk_queue_max_segment_size(rq, PAGE_SIZE);
983
984 /* Ensure a merged request will fit in a single I/O ring slot. */
985 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
986
987 /* Make sure buffer addresses are sector-aligned. */
988 blk_queue_dma_alignment(rq, 511);
989 }
990
xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size, unsigned int physical_sector_size)991 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
992 unsigned int physical_sector_size)
993 {
994 struct request_queue *rq;
995 struct blkfront_info *info = gd->private_data;
996
997 memset(&info->tag_set, 0, sizeof(info->tag_set));
998 info->tag_set.ops = &blkfront_mq_ops;
999 info->tag_set.nr_hw_queues = info->nr_rings;
1000 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
1001 /*
1002 * When indirect descriptior is not supported, the I/O request
1003 * will be split between multiple request in the ring.
1004 * To avoid problems when sending the request, divide by
1005 * 2 the depth of the queue.
1006 */
1007 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
1008 } else
1009 info->tag_set.queue_depth = BLK_RING_SIZE(info);
1010 info->tag_set.numa_node = NUMA_NO_NODE;
1011 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1012 info->tag_set.cmd_size = sizeof(struct blkif_req);
1013 info->tag_set.driver_data = info;
1014
1015 if (blk_mq_alloc_tag_set(&info->tag_set))
1016 return -EINVAL;
1017 rq = blk_mq_init_queue(&info->tag_set);
1018 if (IS_ERR(rq)) {
1019 blk_mq_free_tag_set(&info->tag_set);
1020 return PTR_ERR(rq);
1021 }
1022
1023 rq->queuedata = info;
1024 info->rq = gd->queue = rq;
1025 info->gd = gd;
1026 info->sector_size = sector_size;
1027 info->physical_sector_size = physical_sector_size;
1028 blkif_set_queue_limits(info);
1029
1030 return 0;
1031 }
1032
flush_info(struct blkfront_info *info)1033 static const char *flush_info(struct blkfront_info *info)
1034 {
1035 if (info->feature_flush && info->feature_fua)
1036 return "barrier: enabled;";
1037 else if (info->feature_flush)
1038 return "flush diskcache: enabled;";
1039 else
1040 return "barrier or flush: disabled;";
1041 }
1042
xlvbd_flush(struct blkfront_info *info)1043 static void xlvbd_flush(struct blkfront_info *info)
1044 {
1045 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1046 info->feature_fua ? true : false);
1047 pr_info("blkfront: %s: %s %s %s %s %s %s %s\n",
1048 info->gd->disk_name, flush_info(info),
1049 "persistent grants:", info->feature_persistent ?
1050 "enabled;" : "disabled;", "indirect descriptors:",
1051 info->max_indirect_segments ? "enabled;" : "disabled;",
1052 "bounce buffer:", info->bounce ? "enabled" : "disabled;");
1053 }
1054
xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)1055 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1056 {
1057 int major;
1058 major = BLKIF_MAJOR(vdevice);
1059 *minor = BLKIF_MINOR(vdevice);
1060 switch (major) {
1061 case XEN_IDE0_MAJOR:
1062 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1063 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1064 EMULATED_HD_DISK_MINOR_OFFSET;
1065 break;
1066 case XEN_IDE1_MAJOR:
1067 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1068 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1069 EMULATED_HD_DISK_MINOR_OFFSET;
1070 break;
1071 case XEN_SCSI_DISK0_MAJOR:
1072 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1073 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1074 break;
1075 case XEN_SCSI_DISK1_MAJOR:
1076 case XEN_SCSI_DISK2_MAJOR:
1077 case XEN_SCSI_DISK3_MAJOR:
1078 case XEN_SCSI_DISK4_MAJOR:
1079 case XEN_SCSI_DISK5_MAJOR:
1080 case XEN_SCSI_DISK6_MAJOR:
1081 case XEN_SCSI_DISK7_MAJOR:
1082 *offset = (*minor / PARTS_PER_DISK) +
1083 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1084 EMULATED_SD_DISK_NAME_OFFSET;
1085 *minor = *minor +
1086 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1087 EMULATED_SD_DISK_MINOR_OFFSET;
1088 break;
1089 case XEN_SCSI_DISK8_MAJOR:
1090 case XEN_SCSI_DISK9_MAJOR:
1091 case XEN_SCSI_DISK10_MAJOR:
1092 case XEN_SCSI_DISK11_MAJOR:
1093 case XEN_SCSI_DISK12_MAJOR:
1094 case XEN_SCSI_DISK13_MAJOR:
1095 case XEN_SCSI_DISK14_MAJOR:
1096 case XEN_SCSI_DISK15_MAJOR:
1097 *offset = (*minor / PARTS_PER_DISK) +
1098 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1099 EMULATED_SD_DISK_NAME_OFFSET;
1100 *minor = *minor +
1101 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1102 EMULATED_SD_DISK_MINOR_OFFSET;
1103 break;
1104 case XENVBD_MAJOR:
1105 *offset = *minor / PARTS_PER_DISK;
1106 break;
1107 default:
1108 printk(KERN_WARNING "blkfront: your disk configuration is "
1109 "incorrect, please use an xvd device instead\n");
1110 return -ENODEV;
1111 }
1112 return 0;
1113 }
1114
encode_disk_name(char *ptr, unsigned int n)1115 static char *encode_disk_name(char *ptr, unsigned int n)
1116 {
1117 if (n >= 26)
1118 ptr = encode_disk_name(ptr, n / 26 - 1);
1119 *ptr = 'a' + n % 26;
1120 return ptr + 1;
1121 }
1122
xlvbd_alloc_gendisk(blkif_sector_t capacity, struct blkfront_info *info, u16 vdisk_info, u16 sector_size, unsigned int physical_sector_size)1123 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1124 struct blkfront_info *info,
1125 u16 vdisk_info, u16 sector_size,
1126 unsigned int physical_sector_size)
1127 {
1128 struct gendisk *gd;
1129 int nr_minors = 1;
1130 int err;
1131 unsigned int offset;
1132 int minor;
1133 int nr_parts;
1134 char *ptr;
1135
1136 BUG_ON(info->gd != NULL);
1137 BUG_ON(info->rq != NULL);
1138
1139 if ((info->vdevice>>EXT_SHIFT) > 1) {
1140 /* this is above the extended range; something is wrong */
1141 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1142 return -ENODEV;
1143 }
1144
1145 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1146 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1147 if (err)
1148 return err;
1149 nr_parts = PARTS_PER_DISK;
1150 } else {
1151 minor = BLKIF_MINOR_EXT(info->vdevice);
1152 nr_parts = PARTS_PER_EXT_DISK;
1153 offset = minor / nr_parts;
1154 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1155 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1156 "emulated IDE disks,\n\t choose an xvd device name"
1157 "from xvde on\n", info->vdevice);
1158 }
1159 if (minor >> MINORBITS) {
1160 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1161 info->vdevice, minor);
1162 return -ENODEV;
1163 }
1164
1165 if ((minor % nr_parts) == 0)
1166 nr_minors = nr_parts;
1167
1168 err = xlbd_reserve_minors(minor, nr_minors);
1169 if (err)
1170 goto out;
1171 err = -ENODEV;
1172
1173 gd = alloc_disk(nr_minors);
1174 if (gd == NULL)
1175 goto release;
1176
1177 strcpy(gd->disk_name, DEV_NAME);
1178 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1179 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1180 if (nr_minors > 1)
1181 *ptr = 0;
1182 else
1183 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1184 "%d", minor & (nr_parts - 1));
1185
1186 gd->major = XENVBD_MAJOR;
1187 gd->first_minor = minor;
1188 gd->fops = &xlvbd_block_fops;
1189 gd->private_data = info;
1190 set_capacity(gd, capacity);
1191
1192 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1193 del_gendisk(gd);
1194 goto release;
1195 }
1196
1197 xlvbd_flush(info);
1198
1199 if (vdisk_info & VDISK_READONLY)
1200 set_disk_ro(gd, 1);
1201
1202 if (vdisk_info & VDISK_REMOVABLE)
1203 gd->flags |= GENHD_FL_REMOVABLE;
1204
1205 if (vdisk_info & VDISK_CDROM)
1206 gd->flags |= GENHD_FL_CD;
1207
1208 return 0;
1209
1210 release:
1211 xlbd_release_minors(minor, nr_minors);
1212 out:
1213 return err;
1214 }
1215
xlvbd_release_gendisk(struct blkfront_info *info)1216 static void xlvbd_release_gendisk(struct blkfront_info *info)
1217 {
1218 unsigned int minor, nr_minors, i;
1219 struct blkfront_ring_info *rinfo;
1220
1221 if (info->rq == NULL)
1222 return;
1223
1224 /* No more blkif_request(). */
1225 blk_mq_stop_hw_queues(info->rq);
1226
1227 for_each_rinfo(info, rinfo, i) {
1228 /* No more gnttab callback work. */
1229 gnttab_cancel_free_callback(&rinfo->callback);
1230
1231 /* Flush gnttab callback work. Must be done with no locks held. */
1232 flush_work(&rinfo->work);
1233 }
1234
1235 del_gendisk(info->gd);
1236
1237 minor = info->gd->first_minor;
1238 nr_minors = info->gd->minors;
1239 xlbd_release_minors(minor, nr_minors);
1240
1241 blk_cleanup_queue(info->rq);
1242 blk_mq_free_tag_set(&info->tag_set);
1243 info->rq = NULL;
1244
1245 put_disk(info->gd);
1246 info->gd = NULL;
1247 }
1248
1249 /* Already hold rinfo->ring_lock. */
kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)1250 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1251 {
1252 if (!RING_FULL(&rinfo->ring))
1253 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1254 }
1255
kick_pending_request_queues(struct blkfront_ring_info *rinfo)1256 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1257 {
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&rinfo->ring_lock, flags);
1261 kick_pending_request_queues_locked(rinfo);
1262 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1263 }
1264
blkif_restart_queue(struct work_struct *work)1265 static void blkif_restart_queue(struct work_struct *work)
1266 {
1267 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1268
1269 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1270 kick_pending_request_queues(rinfo);
1271 }
1272
blkif_free_ring(struct blkfront_ring_info *rinfo)1273 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1274 {
1275 struct grant *persistent_gnt, *n;
1276 struct blkfront_info *info = rinfo->dev_info;
1277 int i, j, segs;
1278
1279 /*
1280 * Remove indirect pages, this only happens when using indirect
1281 * descriptors but not persistent grants
1282 */
1283 if (!list_empty(&rinfo->indirect_pages)) {
1284 struct page *indirect_page, *n;
1285
1286 BUG_ON(info->bounce);
1287 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1288 list_del(&indirect_page->lru);
1289 __free_page(indirect_page);
1290 }
1291 }
1292
1293 /* Remove all persistent grants. */
1294 if (!list_empty(&rinfo->grants)) {
1295 list_for_each_entry_safe(persistent_gnt, n,
1296 &rinfo->grants, node) {
1297 list_del(&persistent_gnt->node);
1298 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1299 gnttab_end_foreign_access(persistent_gnt->gref,
1300 0, 0UL);
1301 rinfo->persistent_gnts_c--;
1302 }
1303 if (info->bounce)
1304 __free_page(persistent_gnt->page);
1305 kfree(persistent_gnt);
1306 }
1307 }
1308 BUG_ON(rinfo->persistent_gnts_c != 0);
1309
1310 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1311 /*
1312 * Clear persistent grants present in requests already
1313 * on the shared ring
1314 */
1315 if (!rinfo->shadow[i].request)
1316 goto free_shadow;
1317
1318 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1319 rinfo->shadow[i].req.u.indirect.nr_segments :
1320 rinfo->shadow[i].req.u.rw.nr_segments;
1321 for (j = 0; j < segs; j++) {
1322 persistent_gnt = rinfo->shadow[i].grants_used[j];
1323 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1324 if (info->bounce)
1325 __free_page(persistent_gnt->page);
1326 kfree(persistent_gnt);
1327 }
1328
1329 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1330 /*
1331 * If this is not an indirect operation don't try to
1332 * free indirect segments
1333 */
1334 goto free_shadow;
1335
1336 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1337 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1338 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1339 __free_page(persistent_gnt->page);
1340 kfree(persistent_gnt);
1341 }
1342
1343 free_shadow:
1344 kvfree(rinfo->shadow[i].grants_used);
1345 rinfo->shadow[i].grants_used = NULL;
1346 kvfree(rinfo->shadow[i].indirect_grants);
1347 rinfo->shadow[i].indirect_grants = NULL;
1348 kvfree(rinfo->shadow[i].sg);
1349 rinfo->shadow[i].sg = NULL;
1350 }
1351
1352 /* No more gnttab callback work. */
1353 gnttab_cancel_free_callback(&rinfo->callback);
1354
1355 /* Flush gnttab callback work. Must be done with no locks held. */
1356 flush_work(&rinfo->work);
1357
1358 /* Free resources associated with old device channel. */
1359 for (i = 0; i < info->nr_ring_pages; i++) {
1360 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1361 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1362 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1363 }
1364 }
1365 free_pages_exact(rinfo->ring.sring,
1366 info->nr_ring_pages * XEN_PAGE_SIZE);
1367 rinfo->ring.sring = NULL;
1368
1369 if (rinfo->irq)
1370 unbind_from_irqhandler(rinfo->irq, rinfo);
1371 rinfo->evtchn = rinfo->irq = 0;
1372 }
1373
blkif_free(struct blkfront_info *info, int suspend)1374 static void blkif_free(struct blkfront_info *info, int suspend)
1375 {
1376 unsigned int i;
1377 struct blkfront_ring_info *rinfo;
1378
1379 /* Prevent new requests being issued until we fix things up. */
1380 info->connected = suspend ?
1381 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1382 /* No more blkif_request(). */
1383 if (info->rq)
1384 blk_mq_stop_hw_queues(info->rq);
1385
1386 for_each_rinfo(info, rinfo, i)
1387 blkif_free_ring(rinfo);
1388
1389 kvfree(info->rinfo);
1390 info->rinfo = NULL;
1391 info->nr_rings = 0;
1392 }
1393
1394 struct copy_from_grant {
1395 const struct blk_shadow *s;
1396 unsigned int grant_idx;
1397 unsigned int bvec_offset;
1398 char *bvec_data;
1399 };
1400
blkif_copy_from_grant(unsigned long gfn, unsigned int offset, unsigned int len, void *data)1401 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1402 unsigned int len, void *data)
1403 {
1404 struct copy_from_grant *info = data;
1405 char *shared_data;
1406 /* Convenient aliases */
1407 const struct blk_shadow *s = info->s;
1408
1409 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1410
1411 memcpy(info->bvec_data + info->bvec_offset,
1412 shared_data + offset, len);
1413
1414 info->bvec_offset += len;
1415 info->grant_idx++;
1416
1417 kunmap_atomic(shared_data);
1418 }
1419
blkif_rsp_to_req_status(int rsp)1420 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1421 {
1422 switch (rsp)
1423 {
1424 case BLKIF_RSP_OKAY:
1425 return REQ_DONE;
1426 case BLKIF_RSP_EOPNOTSUPP:
1427 return REQ_EOPNOTSUPP;
1428 case BLKIF_RSP_ERROR:
1429 default:
1430 return REQ_ERROR;
1431 }
1432 }
1433
1434 /*
1435 * Get the final status of the block request based on two ring response
1436 */
blkif_get_final_status(enum blk_req_status s1, enum blk_req_status s2)1437 static int blkif_get_final_status(enum blk_req_status s1,
1438 enum blk_req_status s2)
1439 {
1440 BUG_ON(s1 < REQ_DONE);
1441 BUG_ON(s2 < REQ_DONE);
1442
1443 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1444 return BLKIF_RSP_ERROR;
1445 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1446 return BLKIF_RSP_EOPNOTSUPP;
1447 return BLKIF_RSP_OKAY;
1448 }
1449
1450 /*
1451 * Return values:
1452 * 1 response processed.
1453 * 0 missing further responses.
1454 * -1 error while processing.
1455 */
blkif_completion(unsigned long *id, struct blkfront_ring_info *rinfo, struct blkif_response *bret)1456 static int blkif_completion(unsigned long *id,
1457 struct blkfront_ring_info *rinfo,
1458 struct blkif_response *bret)
1459 {
1460 int i = 0;
1461 struct scatterlist *sg;
1462 int num_sg, num_grant;
1463 struct blkfront_info *info = rinfo->dev_info;
1464 struct blk_shadow *s = &rinfo->shadow[*id];
1465 struct copy_from_grant data = {
1466 .grant_idx = 0,
1467 };
1468
1469 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1470 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1471
1472 /* The I/O request may be split in two. */
1473 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1474 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1475
1476 /* Keep the status of the current response in shadow. */
1477 s->status = blkif_rsp_to_req_status(bret->status);
1478
1479 /* Wait the second response if not yet here. */
1480 if (s2->status < REQ_DONE)
1481 return 0;
1482
1483 bret->status = blkif_get_final_status(s->status,
1484 s2->status);
1485
1486 /*
1487 * All the grants is stored in the first shadow in order
1488 * to make the completion code simpler.
1489 */
1490 num_grant += s2->req.u.rw.nr_segments;
1491
1492 /*
1493 * The two responses may not come in order. Only the
1494 * first request will store the scatter-gather list.
1495 */
1496 if (s2->num_sg != 0) {
1497 /* Update "id" with the ID of the first response. */
1498 *id = s->associated_id;
1499 s = s2;
1500 }
1501
1502 /*
1503 * We don't need anymore the second request, so recycling
1504 * it now.
1505 */
1506 if (add_id_to_freelist(rinfo, s->associated_id))
1507 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1508 info->gd->disk_name, s->associated_id);
1509 }
1510
1511 data.s = s;
1512 num_sg = s->num_sg;
1513
1514 if (bret->operation == BLKIF_OP_READ && info->bounce) {
1515 for_each_sg(s->sg, sg, num_sg, i) {
1516 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1517
1518 data.bvec_offset = sg->offset;
1519 data.bvec_data = kmap_atomic(sg_page(sg));
1520
1521 gnttab_foreach_grant_in_range(sg_page(sg),
1522 sg->offset,
1523 sg->length,
1524 blkif_copy_from_grant,
1525 &data);
1526
1527 kunmap_atomic(data.bvec_data);
1528 }
1529 }
1530 /* Add the persistent grant into the list of free grants */
1531 for (i = 0; i < num_grant; i++) {
1532 if (!gnttab_try_end_foreign_access(s->grants_used[i]->gref)) {
1533 /*
1534 * If the grant is still mapped by the backend (the
1535 * backend has chosen to make this grant persistent)
1536 * we add it at the head of the list, so it will be
1537 * reused first.
1538 */
1539 if (!info->feature_persistent) {
1540 pr_alert("backed has not unmapped grant: %u\n",
1541 s->grants_used[i]->gref);
1542 return -1;
1543 }
1544 list_add(&s->grants_used[i]->node, &rinfo->grants);
1545 rinfo->persistent_gnts_c++;
1546 } else {
1547 /*
1548 * If the grant is not mapped by the backend we add it
1549 * to the tail of the list, so it will not be picked
1550 * again unless we run out of persistent grants.
1551 */
1552 s->grants_used[i]->gref = GRANT_INVALID_REF;
1553 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1554 }
1555 }
1556 if (s->req.operation == BLKIF_OP_INDIRECT) {
1557 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1558 if (!gnttab_try_end_foreign_access(s->indirect_grants[i]->gref)) {
1559 if (!info->feature_persistent) {
1560 pr_alert("backed has not unmapped grant: %u\n",
1561 s->indirect_grants[i]->gref);
1562 return -1;
1563 }
1564 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1565 rinfo->persistent_gnts_c++;
1566 } else {
1567 struct page *indirect_page;
1568
1569 /*
1570 * Add the used indirect page back to the list of
1571 * available pages for indirect grefs.
1572 */
1573 if (!info->bounce) {
1574 indirect_page = s->indirect_grants[i]->page;
1575 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1576 }
1577 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1578 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1579 }
1580 }
1581 }
1582
1583 return 1;
1584 }
1585
blkif_interrupt(int irq, void *dev_id)1586 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1587 {
1588 struct request *req;
1589 struct blkif_response bret;
1590 RING_IDX i, rp;
1591 unsigned long flags;
1592 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1593 struct blkfront_info *info = rinfo->dev_info;
1594 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1595
1596 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1597 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1598 return IRQ_HANDLED;
1599 }
1600
1601 spin_lock_irqsave(&rinfo->ring_lock, flags);
1602 again:
1603 rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1604 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1605 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1606 pr_alert("%s: illegal number of responses %u\n",
1607 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1608 goto err;
1609 }
1610
1611 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1612 unsigned long id;
1613 unsigned int op;
1614
1615 eoiflag = 0;
1616
1617 RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1618 id = bret.id;
1619
1620 /*
1621 * The backend has messed up and given us an id that we would
1622 * never have given to it (we stamp it up to BLK_RING_SIZE -
1623 * look in get_id_from_freelist.
1624 */
1625 if (id >= BLK_RING_SIZE(info)) {
1626 pr_alert("%s: response has incorrect id (%ld)\n",
1627 info->gd->disk_name, id);
1628 goto err;
1629 }
1630 if (rinfo->shadow[id].status != REQ_WAITING) {
1631 pr_alert("%s: response references no pending request\n",
1632 info->gd->disk_name);
1633 goto err;
1634 }
1635
1636 rinfo->shadow[id].status = REQ_PROCESSING;
1637 req = rinfo->shadow[id].request;
1638
1639 op = rinfo->shadow[id].req.operation;
1640 if (op == BLKIF_OP_INDIRECT)
1641 op = rinfo->shadow[id].req.u.indirect.indirect_op;
1642 if (bret.operation != op) {
1643 pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1644 info->gd->disk_name, bret.operation, op);
1645 goto err;
1646 }
1647
1648 if (bret.operation != BLKIF_OP_DISCARD) {
1649 int ret;
1650
1651 /*
1652 * We may need to wait for an extra response if the
1653 * I/O request is split in 2
1654 */
1655 ret = blkif_completion(&id, rinfo, &bret);
1656 if (!ret)
1657 continue;
1658 if (unlikely(ret < 0))
1659 goto err;
1660 }
1661
1662 if (add_id_to_freelist(rinfo, id)) {
1663 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1664 info->gd->disk_name, op_name(bret.operation), id);
1665 continue;
1666 }
1667
1668 if (bret.status == BLKIF_RSP_OKAY)
1669 blkif_req(req)->error = BLK_STS_OK;
1670 else
1671 blkif_req(req)->error = BLK_STS_IOERR;
1672
1673 switch (bret.operation) {
1674 case BLKIF_OP_DISCARD:
1675 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1676 struct request_queue *rq = info->rq;
1677
1678 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1679 info->gd->disk_name, op_name(bret.operation));
1680 blkif_req(req)->error = BLK_STS_NOTSUPP;
1681 info->feature_discard = 0;
1682 info->feature_secdiscard = 0;
1683 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1684 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1685 }
1686 break;
1687 case BLKIF_OP_FLUSH_DISKCACHE:
1688 case BLKIF_OP_WRITE_BARRIER:
1689 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1690 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1691 info->gd->disk_name, op_name(bret.operation));
1692 blkif_req(req)->error = BLK_STS_NOTSUPP;
1693 }
1694 if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1695 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1696 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1697 info->gd->disk_name, op_name(bret.operation));
1698 blkif_req(req)->error = BLK_STS_NOTSUPP;
1699 }
1700 if (unlikely(blkif_req(req)->error)) {
1701 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1702 blkif_req(req)->error = BLK_STS_OK;
1703 info->feature_fua = 0;
1704 info->feature_flush = 0;
1705 xlvbd_flush(info);
1706 }
1707 fallthrough;
1708 case BLKIF_OP_READ:
1709 case BLKIF_OP_WRITE:
1710 if (unlikely(bret.status != BLKIF_RSP_OKAY))
1711 dev_dbg_ratelimited(&info->xbdev->dev,
1712 "Bad return from blkdev data request: %#x\n",
1713 bret.status);
1714
1715 break;
1716 default:
1717 BUG();
1718 }
1719
1720 if (likely(!blk_should_fake_timeout(req->q)))
1721 blk_mq_complete_request(req);
1722 }
1723
1724 rinfo->ring.rsp_cons = i;
1725
1726 if (i != rinfo->ring.req_prod_pvt) {
1727 int more_to_do;
1728 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1729 if (more_to_do)
1730 goto again;
1731 } else
1732 rinfo->ring.sring->rsp_event = i + 1;
1733
1734 kick_pending_request_queues_locked(rinfo);
1735
1736 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1737
1738 xen_irq_lateeoi(irq, eoiflag);
1739
1740 return IRQ_HANDLED;
1741
1742 err:
1743 info->connected = BLKIF_STATE_ERROR;
1744
1745 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1746
1747 /* No EOI in order to avoid further interrupts. */
1748
1749 pr_alert("%s disabled for further use\n", info->gd->disk_name);
1750 return IRQ_HANDLED;
1751 }
1752
1753
setup_blkring(struct xenbus_device *dev, struct blkfront_ring_info *rinfo)1754 static int setup_blkring(struct xenbus_device *dev,
1755 struct blkfront_ring_info *rinfo)
1756 {
1757 struct blkif_sring *sring;
1758 int err, i;
1759 struct blkfront_info *info = rinfo->dev_info;
1760 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1761 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1762
1763 for (i = 0; i < info->nr_ring_pages; i++)
1764 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1765
1766 sring = alloc_pages_exact(ring_size, GFP_NOIO | __GFP_ZERO);
1767 if (!sring) {
1768 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1769 return -ENOMEM;
1770 }
1771 SHARED_RING_INIT(sring);
1772 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1773
1774 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1775 if (err < 0) {
1776 free_pages_exact(sring, ring_size);
1777 rinfo->ring.sring = NULL;
1778 goto fail;
1779 }
1780 for (i = 0; i < info->nr_ring_pages; i++)
1781 rinfo->ring_ref[i] = gref[i];
1782
1783 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1784 if (err)
1785 goto fail;
1786
1787 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1788 0, "blkif", rinfo);
1789 if (err <= 0) {
1790 xenbus_dev_fatal(dev, err,
1791 "bind_evtchn_to_irqhandler failed");
1792 goto fail;
1793 }
1794 rinfo->irq = err;
1795
1796 return 0;
1797 fail:
1798 blkif_free(info, 0);
1799 return err;
1800 }
1801
1802 /*
1803 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1804 * ring buffer may have multi pages depending on ->nr_ring_pages.
1805 */
write_per_ring_nodes(struct xenbus_transaction xbt, struct blkfront_ring_info *rinfo, const char *dir)1806 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1807 struct blkfront_ring_info *rinfo, const char *dir)
1808 {
1809 int err;
1810 unsigned int i;
1811 const char *message = NULL;
1812 struct blkfront_info *info = rinfo->dev_info;
1813
1814 if (info->nr_ring_pages == 1) {
1815 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1816 if (err) {
1817 message = "writing ring-ref";
1818 goto abort_transaction;
1819 }
1820 } else {
1821 for (i = 0; i < info->nr_ring_pages; i++) {
1822 char ring_ref_name[RINGREF_NAME_LEN];
1823
1824 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1825 err = xenbus_printf(xbt, dir, ring_ref_name,
1826 "%u", rinfo->ring_ref[i]);
1827 if (err) {
1828 message = "writing ring-ref";
1829 goto abort_transaction;
1830 }
1831 }
1832 }
1833
1834 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1835 if (err) {
1836 message = "writing event-channel";
1837 goto abort_transaction;
1838 }
1839
1840 return 0;
1841
1842 abort_transaction:
1843 xenbus_transaction_end(xbt, 1);
1844 if (message)
1845 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1846
1847 return err;
1848 }
1849
free_info(struct blkfront_info *info)1850 static void free_info(struct blkfront_info *info)
1851 {
1852 list_del(&info->info_list);
1853 kfree(info);
1854 }
1855
1856 /* Enable the persistent grants feature. */
1857 static bool feature_persistent = true;
1858 module_param(feature_persistent, bool, 0644);
1859 MODULE_PARM_DESC(feature_persistent,
1860 "Enables the persistent grants feature");
1861
1862 /* Common code used when first setting up, and when resuming. */
talk_to_blkback(struct xenbus_device *dev, struct blkfront_info *info)1863 static int talk_to_blkback(struct xenbus_device *dev,
1864 struct blkfront_info *info)
1865 {
1866 const char *message = NULL;
1867 struct xenbus_transaction xbt;
1868 int err;
1869 unsigned int i, max_page_order;
1870 unsigned int ring_page_order;
1871 struct blkfront_ring_info *rinfo;
1872
1873 if (!info)
1874 return -ENODEV;
1875
1876 /* Check if backend is trusted. */
1877 info->bounce = !xen_blkif_trusted ||
1878 !xenbus_read_unsigned(dev->nodename, "trusted", 1);
1879
1880 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1881 "max-ring-page-order", 0);
1882 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1883 info->nr_ring_pages = 1 << ring_page_order;
1884
1885 err = negotiate_mq(info);
1886 if (err)
1887 goto destroy_blkring;
1888
1889 for_each_rinfo(info, rinfo, i) {
1890 /* Create shared ring, alloc event channel. */
1891 err = setup_blkring(dev, rinfo);
1892 if (err)
1893 goto destroy_blkring;
1894 }
1895
1896 again:
1897 err = xenbus_transaction_start(&xbt);
1898 if (err) {
1899 xenbus_dev_fatal(dev, err, "starting transaction");
1900 goto destroy_blkring;
1901 }
1902
1903 if (info->nr_ring_pages > 1) {
1904 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1905 ring_page_order);
1906 if (err) {
1907 message = "writing ring-page-order";
1908 goto abort_transaction;
1909 }
1910 }
1911
1912 /* We already got the number of queues/rings in _probe */
1913 if (info->nr_rings == 1) {
1914 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1915 if (err)
1916 goto destroy_blkring;
1917 } else {
1918 char *path;
1919 size_t pathsize;
1920
1921 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1922 info->nr_rings);
1923 if (err) {
1924 message = "writing multi-queue-num-queues";
1925 goto abort_transaction;
1926 }
1927
1928 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1929 path = kmalloc(pathsize, GFP_KERNEL);
1930 if (!path) {
1931 err = -ENOMEM;
1932 message = "ENOMEM while writing ring references";
1933 goto abort_transaction;
1934 }
1935
1936 for_each_rinfo(info, rinfo, i) {
1937 memset(path, 0, pathsize);
1938 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1939 err = write_per_ring_nodes(xbt, rinfo, path);
1940 if (err) {
1941 kfree(path);
1942 goto destroy_blkring;
1943 }
1944 }
1945 kfree(path);
1946 }
1947 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1948 XEN_IO_PROTO_ABI_NATIVE);
1949 if (err) {
1950 message = "writing protocol";
1951 goto abort_transaction;
1952 }
1953 info->feature_persistent_parm = feature_persistent;
1954 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1955 info->feature_persistent_parm);
1956 if (err)
1957 dev_warn(&dev->dev,
1958 "writing persistent grants feature to xenbus");
1959
1960 err = xenbus_transaction_end(xbt, 0);
1961 if (err) {
1962 if (err == -EAGAIN)
1963 goto again;
1964 xenbus_dev_fatal(dev, err, "completing transaction");
1965 goto destroy_blkring;
1966 }
1967
1968 for_each_rinfo(info, rinfo, i) {
1969 unsigned int j;
1970
1971 for (j = 0; j < BLK_RING_SIZE(info); j++)
1972 rinfo->shadow[j].req.u.rw.id = j + 1;
1973 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1974 }
1975 xenbus_switch_state(dev, XenbusStateInitialised);
1976
1977 return 0;
1978
1979 abort_transaction:
1980 xenbus_transaction_end(xbt, 1);
1981 if (message)
1982 xenbus_dev_fatal(dev, err, "%s", message);
1983 destroy_blkring:
1984 blkif_free(info, 0);
1985
1986 mutex_lock(&blkfront_mutex);
1987 free_info(info);
1988 mutex_unlock(&blkfront_mutex);
1989
1990 dev_set_drvdata(&dev->dev, NULL);
1991
1992 return err;
1993 }
1994
negotiate_mq(struct blkfront_info *info)1995 static int negotiate_mq(struct blkfront_info *info)
1996 {
1997 unsigned int backend_max_queues;
1998 unsigned int i;
1999 struct blkfront_ring_info *rinfo;
2000
2001 BUG_ON(info->nr_rings);
2002
2003 /* Check if backend supports multiple queues. */
2004 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
2005 "multi-queue-max-queues", 1);
2006 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
2007 /* We need at least one ring. */
2008 if (!info->nr_rings)
2009 info->nr_rings = 1;
2010
2011 info->rinfo_size = struct_size(info->rinfo, shadow,
2012 BLK_RING_SIZE(info));
2013 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
2014 if (!info->rinfo) {
2015 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
2016 info->nr_rings = 0;
2017 return -ENOMEM;
2018 }
2019
2020 for_each_rinfo(info, rinfo, i) {
2021 INIT_LIST_HEAD(&rinfo->indirect_pages);
2022 INIT_LIST_HEAD(&rinfo->grants);
2023 rinfo->dev_info = info;
2024 INIT_WORK(&rinfo->work, blkif_restart_queue);
2025 spin_lock_init(&rinfo->ring_lock);
2026 }
2027 return 0;
2028 }
2029
2030 /**
2031 * Entry point to this code when a new device is created. Allocate the basic
2032 * structures and the ring buffer for communication with the backend, and
2033 * inform the backend of the appropriate details for those. Switch to
2034 * Initialised state.
2035 */
blkfront_probe(struct xenbus_device *dev, const struct xenbus_device_id *id)2036 static int blkfront_probe(struct xenbus_device *dev,
2037 const struct xenbus_device_id *id)
2038 {
2039 int err, vdevice;
2040 struct blkfront_info *info;
2041
2042 /* FIXME: Use dynamic device id if this is not set. */
2043 err = xenbus_scanf(XBT_NIL, dev->nodename,
2044 "virtual-device", "%i", &vdevice);
2045 if (err != 1) {
2046 /* go looking in the extended area instead */
2047 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
2048 "%i", &vdevice);
2049 if (err != 1) {
2050 xenbus_dev_fatal(dev, err, "reading virtual-device");
2051 return err;
2052 }
2053 }
2054
2055 if (xen_hvm_domain()) {
2056 char *type;
2057 int len;
2058 /* no unplug has been done: do not hook devices != xen vbds */
2059 if (xen_has_pv_and_legacy_disk_devices()) {
2060 int major;
2061
2062 if (!VDEV_IS_EXTENDED(vdevice))
2063 major = BLKIF_MAJOR(vdevice);
2064 else
2065 major = XENVBD_MAJOR;
2066
2067 if (major != XENVBD_MAJOR) {
2068 printk(KERN_INFO
2069 "%s: HVM does not support vbd %d as xen block device\n",
2070 __func__, vdevice);
2071 return -ENODEV;
2072 }
2073 }
2074 /* do not create a PV cdrom device if we are an HVM guest */
2075 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
2076 if (IS_ERR(type))
2077 return -ENODEV;
2078 if (strncmp(type, "cdrom", 5) == 0) {
2079 kfree(type);
2080 return -ENODEV;
2081 }
2082 kfree(type);
2083 }
2084 info = kzalloc(sizeof(*info), GFP_KERNEL);
2085 if (!info) {
2086 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2087 return -ENOMEM;
2088 }
2089
2090 info->xbdev = dev;
2091
2092 mutex_init(&info->mutex);
2093 info->vdevice = vdevice;
2094 info->connected = BLKIF_STATE_DISCONNECTED;
2095
2096 /* Front end dir is a number, which is used as the id. */
2097 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2098 dev_set_drvdata(&dev->dev, info);
2099
2100 mutex_lock(&blkfront_mutex);
2101 list_add(&info->info_list, &info_list);
2102 mutex_unlock(&blkfront_mutex);
2103
2104 return 0;
2105 }
2106
blkif_recover(struct blkfront_info *info)2107 static int blkif_recover(struct blkfront_info *info)
2108 {
2109 unsigned int r_index;
2110 struct request *req, *n;
2111 int rc;
2112 struct bio *bio;
2113 unsigned int segs;
2114 struct blkfront_ring_info *rinfo;
2115
2116 blkfront_gather_backend_features(info);
2117 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2118 blkif_set_queue_limits(info);
2119 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2120 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2121
2122 for_each_rinfo(info, rinfo, r_index) {
2123 rc = blkfront_setup_indirect(rinfo);
2124 if (rc)
2125 return rc;
2126 }
2127 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2128
2129 /* Now safe for us to use the shared ring */
2130 info->connected = BLKIF_STATE_CONNECTED;
2131
2132 for_each_rinfo(info, rinfo, r_index) {
2133 /* Kick any other new requests queued since we resumed */
2134 kick_pending_request_queues(rinfo);
2135 }
2136
2137 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2138 /* Requeue pending requests (flush or discard) */
2139 list_del_init(&req->queuelist);
2140 BUG_ON(req->nr_phys_segments > segs);
2141 blk_mq_requeue_request(req, false);
2142 }
2143 blk_mq_start_stopped_hw_queues(info->rq, true);
2144 blk_mq_kick_requeue_list(info->rq);
2145
2146 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2147 /* Traverse the list of pending bios and re-queue them */
2148 submit_bio(bio);
2149 }
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2156 * driver restart. We tear down our blkif structure and recreate it, but
2157 * leave the device-layer structures intact so that this is transparent to the
2158 * rest of the kernel.
2159 */
blkfront_resume(struct xenbus_device *dev)2160 static int blkfront_resume(struct xenbus_device *dev)
2161 {
2162 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2163 int err = 0;
2164 unsigned int i, j;
2165 struct blkfront_ring_info *rinfo;
2166
2167 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2168
2169 bio_list_init(&info->bio_list);
2170 INIT_LIST_HEAD(&info->requests);
2171 for_each_rinfo(info, rinfo, i) {
2172 struct bio_list merge_bio;
2173 struct blk_shadow *shadow = rinfo->shadow;
2174
2175 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2176 /* Not in use? */
2177 if (!shadow[j].request)
2178 continue;
2179
2180 /*
2181 * Get the bios in the request so we can re-queue them.
2182 */
2183 if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2184 req_op(shadow[j].request) == REQ_OP_DISCARD ||
2185 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2186 shadow[j].request->cmd_flags & REQ_FUA) {
2187 /*
2188 * Flush operations don't contain bios, so
2189 * we need to requeue the whole request
2190 *
2191 * XXX: but this doesn't make any sense for a
2192 * write with the FUA flag set..
2193 */
2194 list_add(&shadow[j].request->queuelist, &info->requests);
2195 continue;
2196 }
2197 merge_bio.head = shadow[j].request->bio;
2198 merge_bio.tail = shadow[j].request->biotail;
2199 bio_list_merge(&info->bio_list, &merge_bio);
2200 shadow[j].request->bio = NULL;
2201 blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2202 }
2203 }
2204
2205 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2206
2207 err = talk_to_blkback(dev, info);
2208 if (!err)
2209 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2210
2211 /*
2212 * We have to wait for the backend to switch to
2213 * connected state, since we want to read which
2214 * features it supports.
2215 */
2216
2217 return err;
2218 }
2219
blkfront_closing(struct blkfront_info *info)2220 static void blkfront_closing(struct blkfront_info *info)
2221 {
2222 struct xenbus_device *xbdev = info->xbdev;
2223 struct block_device *bdev = NULL;
2224
2225 mutex_lock(&info->mutex);
2226
2227 if (xbdev->state == XenbusStateClosing) {
2228 mutex_unlock(&info->mutex);
2229 return;
2230 }
2231
2232 if (info->gd)
2233 bdev = bdget_disk(info->gd, 0);
2234
2235 mutex_unlock(&info->mutex);
2236
2237 if (!bdev) {
2238 xenbus_frontend_closed(xbdev);
2239 return;
2240 }
2241
2242 mutex_lock(&bdev->bd_mutex);
2243
2244 if (bdev->bd_openers) {
2245 xenbus_dev_error(xbdev, -EBUSY,
2246 "Device in use; refusing to close");
2247 xenbus_switch_state(xbdev, XenbusStateClosing);
2248 } else {
2249 xlvbd_release_gendisk(info);
2250 xenbus_frontend_closed(xbdev);
2251 }
2252
2253 mutex_unlock(&bdev->bd_mutex);
2254 bdput(bdev);
2255 }
2256
blkfront_setup_discard(struct blkfront_info *info)2257 static void blkfront_setup_discard(struct blkfront_info *info)
2258 {
2259 info->feature_discard = 1;
2260 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2261 "discard-granularity",
2262 0);
2263 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2264 "discard-alignment", 0);
2265 info->feature_secdiscard =
2266 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2267 0);
2268 }
2269
blkfront_setup_indirect(struct blkfront_ring_info *rinfo)2270 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2271 {
2272 unsigned int psegs, grants, memflags;
2273 int err, i;
2274 struct blkfront_info *info = rinfo->dev_info;
2275
2276 memflags = memalloc_noio_save();
2277
2278 if (info->max_indirect_segments == 0) {
2279 if (!HAS_EXTRA_REQ)
2280 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2281 else {
2282 /*
2283 * When an extra req is required, the maximum
2284 * grants supported is related to the size of the
2285 * Linux block segment.
2286 */
2287 grants = GRANTS_PER_PSEG;
2288 }
2289 }
2290 else
2291 grants = info->max_indirect_segments;
2292 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2293
2294 err = fill_grant_buffer(rinfo,
2295 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2296 if (err)
2297 goto out_of_memory;
2298
2299 if (!info->bounce && info->max_indirect_segments) {
2300 /*
2301 * We are using indirect descriptors but don't have a bounce
2302 * buffer, we need to allocate a set of pages that can be
2303 * used for mapping indirect grefs
2304 */
2305 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2306
2307 BUG_ON(!list_empty(&rinfo->indirect_pages));
2308 for (i = 0; i < num; i++) {
2309 struct page *indirect_page = alloc_page(GFP_KERNEL |
2310 __GFP_ZERO);
2311 if (!indirect_page)
2312 goto out_of_memory;
2313 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2314 }
2315 }
2316
2317 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2318 rinfo->shadow[i].grants_used =
2319 kvcalloc(grants,
2320 sizeof(rinfo->shadow[i].grants_used[0]),
2321 GFP_KERNEL);
2322 rinfo->shadow[i].sg = kvcalloc(psegs,
2323 sizeof(rinfo->shadow[i].sg[0]),
2324 GFP_KERNEL);
2325 if (info->max_indirect_segments)
2326 rinfo->shadow[i].indirect_grants =
2327 kvcalloc(INDIRECT_GREFS(grants),
2328 sizeof(rinfo->shadow[i].indirect_grants[0]),
2329 GFP_KERNEL);
2330 if ((rinfo->shadow[i].grants_used == NULL) ||
2331 (rinfo->shadow[i].sg == NULL) ||
2332 (info->max_indirect_segments &&
2333 (rinfo->shadow[i].indirect_grants == NULL)))
2334 goto out_of_memory;
2335 sg_init_table(rinfo->shadow[i].sg, psegs);
2336 }
2337
2338 memalloc_noio_restore(memflags);
2339
2340 return 0;
2341
2342 out_of_memory:
2343 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2344 kvfree(rinfo->shadow[i].grants_used);
2345 rinfo->shadow[i].grants_used = NULL;
2346 kvfree(rinfo->shadow[i].sg);
2347 rinfo->shadow[i].sg = NULL;
2348 kvfree(rinfo->shadow[i].indirect_grants);
2349 rinfo->shadow[i].indirect_grants = NULL;
2350 }
2351 if (!list_empty(&rinfo->indirect_pages)) {
2352 struct page *indirect_page, *n;
2353 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2354 list_del(&indirect_page->lru);
2355 __free_page(indirect_page);
2356 }
2357 }
2358
2359 memalloc_noio_restore(memflags);
2360
2361 return -ENOMEM;
2362 }
2363
2364 /*
2365 * Gather all backend feature-*
2366 */
blkfront_gather_backend_features(struct blkfront_info *info)2367 static void blkfront_gather_backend_features(struct blkfront_info *info)
2368 {
2369 unsigned int indirect_segments;
2370
2371 info->feature_flush = 0;
2372 info->feature_fua = 0;
2373
2374 /*
2375 * If there's no "feature-barrier" defined, then it means
2376 * we're dealing with a very old backend which writes
2377 * synchronously; nothing to do.
2378 *
2379 * If there are barriers, then we use flush.
2380 */
2381 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2382 info->feature_flush = 1;
2383 info->feature_fua = 1;
2384 }
2385
2386 /*
2387 * And if there is "feature-flush-cache" use that above
2388 * barriers.
2389 */
2390 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2391 0)) {
2392 info->feature_flush = 1;
2393 info->feature_fua = 0;
2394 }
2395
2396 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2397 blkfront_setup_discard(info);
2398
2399 if (info->feature_persistent_parm)
2400 info->feature_persistent =
2401 !!xenbus_read_unsigned(info->xbdev->otherend,
2402 "feature-persistent", 0);
2403 if (info->feature_persistent)
2404 info->bounce = true;
2405
2406 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2407 "feature-max-indirect-segments", 0);
2408 if (indirect_segments > xen_blkif_max_segments)
2409 indirect_segments = xen_blkif_max_segments;
2410 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2411 indirect_segments = 0;
2412 info->max_indirect_segments = indirect_segments;
2413
2414 if (info->feature_persistent) {
2415 mutex_lock(&blkfront_mutex);
2416 schedule_delayed_work(&blkfront_work, HZ * 10);
2417 mutex_unlock(&blkfront_mutex);
2418 }
2419 }
2420
2421 /*
2422 * Invoked when the backend is finally 'ready' (and has told produced
2423 * the details about the physical device - #sectors, size, etc).
2424 */
blkfront_connect(struct blkfront_info *info)2425 static void blkfront_connect(struct blkfront_info *info)
2426 {
2427 unsigned long long sectors;
2428 unsigned long sector_size;
2429 unsigned int physical_sector_size;
2430 unsigned int binfo;
2431 int err, i;
2432 struct blkfront_ring_info *rinfo;
2433
2434 switch (info->connected) {
2435 case BLKIF_STATE_CONNECTED:
2436 /*
2437 * Potentially, the back-end may be signalling
2438 * a capacity change; update the capacity.
2439 */
2440 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2441 "sectors", "%Lu", §ors);
2442 if (XENBUS_EXIST_ERR(err))
2443 return;
2444 printk(KERN_INFO "Setting capacity to %Lu\n",
2445 sectors);
2446 set_capacity_revalidate_and_notify(info->gd, sectors, true);
2447
2448 return;
2449 case BLKIF_STATE_SUSPENDED:
2450 /*
2451 * If we are recovering from suspension, we need to wait
2452 * for the backend to announce it's features before
2453 * reconnecting, at least we need to know if the backend
2454 * supports indirect descriptors, and how many.
2455 */
2456 blkif_recover(info);
2457 return;
2458
2459 default:
2460 break;
2461 }
2462
2463 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2464 __func__, info->xbdev->otherend);
2465
2466 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2467 "sectors", "%llu", §ors,
2468 "info", "%u", &binfo,
2469 "sector-size", "%lu", §or_size,
2470 NULL);
2471 if (err) {
2472 xenbus_dev_fatal(info->xbdev, err,
2473 "reading backend fields at %s",
2474 info->xbdev->otherend);
2475 return;
2476 }
2477
2478 /*
2479 * physcial-sector-size is a newer field, so old backends may not
2480 * provide this. Assume physical sector size to be the same as
2481 * sector_size in that case.
2482 */
2483 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2484 "physical-sector-size",
2485 sector_size);
2486 blkfront_gather_backend_features(info);
2487 for_each_rinfo(info, rinfo, i) {
2488 err = blkfront_setup_indirect(rinfo);
2489 if (err) {
2490 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2491 info->xbdev->otherend);
2492 blkif_free(info, 0);
2493 break;
2494 }
2495 }
2496
2497 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2498 physical_sector_size);
2499 if (err) {
2500 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2501 info->xbdev->otherend);
2502 goto fail;
2503 }
2504
2505 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2506
2507 /* Kick pending requests. */
2508 info->connected = BLKIF_STATE_CONNECTED;
2509 for_each_rinfo(info, rinfo, i)
2510 kick_pending_request_queues(rinfo);
2511
2512 device_add_disk(&info->xbdev->dev, info->gd, NULL);
2513
2514 info->is_ready = 1;
2515 return;
2516
2517 fail:
2518 blkif_free(info, 0);
2519 return;
2520 }
2521
2522 /**
2523 * Callback received when the backend's state changes.
2524 */
blkback_changed(struct xenbus_device *dev, enum xenbus_state backend_state)2525 static void blkback_changed(struct xenbus_device *dev,
2526 enum xenbus_state backend_state)
2527 {
2528 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2529
2530 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2531
2532 switch (backend_state) {
2533 case XenbusStateInitWait:
2534 if (dev->state != XenbusStateInitialising)
2535 break;
2536 if (talk_to_blkback(dev, info))
2537 break;
2538 case XenbusStateInitialising:
2539 case XenbusStateInitialised:
2540 case XenbusStateReconfiguring:
2541 case XenbusStateReconfigured:
2542 case XenbusStateUnknown:
2543 break;
2544
2545 case XenbusStateConnected:
2546 /*
2547 * talk_to_blkback sets state to XenbusStateInitialised
2548 * and blkfront_connect sets it to XenbusStateConnected
2549 * (if connection went OK).
2550 *
2551 * If the backend (or toolstack) decides to poke at backend
2552 * state (and re-trigger the watch by setting the state repeatedly
2553 * to XenbusStateConnected (4)) we need to deal with this.
2554 * This is allowed as this is used to communicate to the guest
2555 * that the size of disk has changed!
2556 */
2557 if ((dev->state != XenbusStateInitialised) &&
2558 (dev->state != XenbusStateConnected)) {
2559 if (talk_to_blkback(dev, info))
2560 break;
2561 }
2562
2563 blkfront_connect(info);
2564 break;
2565
2566 case XenbusStateClosed:
2567 if (dev->state == XenbusStateClosed)
2568 break;
2569 fallthrough;
2570 case XenbusStateClosing:
2571 if (info)
2572 blkfront_closing(info);
2573 break;
2574 }
2575 }
2576
blkfront_remove(struct xenbus_device *xbdev)2577 static int blkfront_remove(struct xenbus_device *xbdev)
2578 {
2579 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2580 struct block_device *bdev = NULL;
2581 struct gendisk *disk;
2582
2583 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2584
2585 if (!info)
2586 return 0;
2587
2588 blkif_free(info, 0);
2589
2590 mutex_lock(&info->mutex);
2591
2592 disk = info->gd;
2593 if (disk)
2594 bdev = bdget_disk(disk, 0);
2595
2596 info->xbdev = NULL;
2597 mutex_unlock(&info->mutex);
2598
2599 if (!bdev) {
2600 mutex_lock(&blkfront_mutex);
2601 free_info(info);
2602 mutex_unlock(&blkfront_mutex);
2603 return 0;
2604 }
2605
2606 /*
2607 * The xbdev was removed before we reached the Closed
2608 * state. See if it's safe to remove the disk. If the bdev
2609 * isn't closed yet, we let release take care of it.
2610 */
2611
2612 mutex_lock(&bdev->bd_mutex);
2613 info = disk->private_data;
2614
2615 dev_warn(disk_to_dev(disk),
2616 "%s was hot-unplugged, %d stale handles\n",
2617 xbdev->nodename, bdev->bd_openers);
2618
2619 if (info && !bdev->bd_openers) {
2620 xlvbd_release_gendisk(info);
2621 disk->private_data = NULL;
2622 mutex_lock(&blkfront_mutex);
2623 free_info(info);
2624 mutex_unlock(&blkfront_mutex);
2625 }
2626
2627 mutex_unlock(&bdev->bd_mutex);
2628 bdput(bdev);
2629
2630 return 0;
2631 }
2632
blkfront_is_ready(struct xenbus_device *dev)2633 static int blkfront_is_ready(struct xenbus_device *dev)
2634 {
2635 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2636
2637 return info->is_ready && info->xbdev;
2638 }
2639
blkif_open(struct block_device *bdev, fmode_t mode)2640 static int blkif_open(struct block_device *bdev, fmode_t mode)
2641 {
2642 struct gendisk *disk = bdev->bd_disk;
2643 struct blkfront_info *info;
2644 int err = 0;
2645
2646 mutex_lock(&blkfront_mutex);
2647
2648 info = disk->private_data;
2649 if (!info) {
2650 /* xbdev gone */
2651 err = -ERESTARTSYS;
2652 goto out;
2653 }
2654
2655 mutex_lock(&info->mutex);
2656
2657 if (!info->gd)
2658 /* xbdev is closed */
2659 err = -ERESTARTSYS;
2660
2661 mutex_unlock(&info->mutex);
2662
2663 out:
2664 mutex_unlock(&blkfront_mutex);
2665 return err;
2666 }
2667
blkif_release(struct gendisk *disk, fmode_t mode)2668 static void blkif_release(struct gendisk *disk, fmode_t mode)
2669 {
2670 struct blkfront_info *info = disk->private_data;
2671 struct block_device *bdev;
2672 struct xenbus_device *xbdev;
2673
2674 mutex_lock(&blkfront_mutex);
2675
2676 bdev = bdget_disk(disk, 0);
2677
2678 if (!bdev) {
2679 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2680 goto out_mutex;
2681 }
2682 if (bdev->bd_openers)
2683 goto out;
2684
2685 /*
2686 * Check if we have been instructed to close. We will have
2687 * deferred this request, because the bdev was still open.
2688 */
2689
2690 mutex_lock(&info->mutex);
2691 xbdev = info->xbdev;
2692
2693 if (xbdev && xbdev->state == XenbusStateClosing) {
2694 /* pending switch to state closed */
2695 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2696 xlvbd_release_gendisk(info);
2697 xenbus_frontend_closed(info->xbdev);
2698 }
2699
2700 mutex_unlock(&info->mutex);
2701
2702 if (!xbdev) {
2703 /* sudden device removal */
2704 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2705 xlvbd_release_gendisk(info);
2706 disk->private_data = NULL;
2707 free_info(info);
2708 }
2709
2710 out:
2711 bdput(bdev);
2712 out_mutex:
2713 mutex_unlock(&blkfront_mutex);
2714 }
2715
2716 static const struct block_device_operations xlvbd_block_fops =
2717 {
2718 .owner = THIS_MODULE,
2719 .open = blkif_open,
2720 .release = blkif_release,
2721 .getgeo = blkif_getgeo,
2722 .ioctl = blkif_ioctl,
2723 .compat_ioctl = blkdev_compat_ptr_ioctl,
2724 };
2725
2726
2727 static const struct xenbus_device_id blkfront_ids[] = {
2728 { "vbd" },
2729 { "" }
2730 };
2731
2732 static struct xenbus_driver blkfront_driver = {
2733 .ids = blkfront_ids,
2734 .probe = blkfront_probe,
2735 .remove = blkfront_remove,
2736 .resume = blkfront_resume,
2737 .otherend_changed = blkback_changed,
2738 .is_ready = blkfront_is_ready,
2739 };
2740
purge_persistent_grants(struct blkfront_info *info)2741 static void purge_persistent_grants(struct blkfront_info *info)
2742 {
2743 unsigned int i;
2744 unsigned long flags;
2745 struct blkfront_ring_info *rinfo;
2746
2747 for_each_rinfo(info, rinfo, i) {
2748 struct grant *gnt_list_entry, *tmp;
2749
2750 spin_lock_irqsave(&rinfo->ring_lock, flags);
2751
2752 if (rinfo->persistent_gnts_c == 0) {
2753 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2754 continue;
2755 }
2756
2757 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2758 node) {
2759 if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2760 !gnttab_try_end_foreign_access(gnt_list_entry->gref))
2761 continue;
2762
2763 list_del(&gnt_list_entry->node);
2764 rinfo->persistent_gnts_c--;
2765 gnt_list_entry->gref = GRANT_INVALID_REF;
2766 list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2767 }
2768
2769 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2770 }
2771 }
2772
blkfront_delay_work(struct work_struct *work)2773 static void blkfront_delay_work(struct work_struct *work)
2774 {
2775 struct blkfront_info *info;
2776 bool need_schedule_work = false;
2777
2778 /*
2779 * Note that when using bounce buffers but not persistent grants
2780 * there's no need to run blkfront_delay_work because grants are
2781 * revoked in blkif_completion or else an error is reported and the
2782 * connection is closed.
2783 */
2784
2785 mutex_lock(&blkfront_mutex);
2786
2787 list_for_each_entry(info, &info_list, info_list) {
2788 if (info->feature_persistent) {
2789 need_schedule_work = true;
2790 mutex_lock(&info->mutex);
2791 purge_persistent_grants(info);
2792 mutex_unlock(&info->mutex);
2793 }
2794 }
2795
2796 if (need_schedule_work)
2797 schedule_delayed_work(&blkfront_work, HZ * 10);
2798
2799 mutex_unlock(&blkfront_mutex);
2800 }
2801
xlblk_init(void)2802 static int __init xlblk_init(void)
2803 {
2804 int ret;
2805 int nr_cpus = num_online_cpus();
2806
2807 if (!xen_domain())
2808 return -ENODEV;
2809
2810 if (!xen_has_pv_disk_devices())
2811 return -ENODEV;
2812
2813 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2814 pr_warn("xen_blk: can't get major %d with name %s\n",
2815 XENVBD_MAJOR, DEV_NAME);
2816 return -ENODEV;
2817 }
2818
2819 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2820 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2821
2822 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2823 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2824 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2825 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2826 }
2827
2828 if (xen_blkif_max_queues > nr_cpus) {
2829 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2830 xen_blkif_max_queues, nr_cpus);
2831 xen_blkif_max_queues = nr_cpus;
2832 }
2833
2834 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2835
2836 ret = xenbus_register_frontend(&blkfront_driver);
2837 if (ret) {
2838 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2839 return ret;
2840 }
2841
2842 return 0;
2843 }
2844 module_init(xlblk_init);
2845
2846
xlblk_exit(void)2847 static void __exit xlblk_exit(void)
2848 {
2849 cancel_delayed_work_sync(&blkfront_work);
2850
2851 xenbus_unregister_driver(&blkfront_driver);
2852 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2853 kfree(minors);
2854 }
2855 module_exit(xlblk_exit);
2856
2857 MODULE_DESCRIPTION("Xen virtual block device frontend");
2858 MODULE_LICENSE("GPL");
2859 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2860 MODULE_ALIAS("xen:vbd");
2861 MODULE_ALIAS("xenblk");
2862