1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/devfreq.h>
37 #include <linux/timer.h>
38
39 #include "../base.h"
40 #include "power.h"
41
42 typedef int (*pm_callback_t)(struct device *);
43
44 #define list_for_each_entry_rcu_locked(pos, head, member) \
45 list_for_each_entry_rcu(pos, head, member, \
46 device_links_read_lock_held())
47
48 /*
49 * The entries in the dpm_list list are in a depth first order, simply
50 * because children are guaranteed to be discovered after parents, and
51 * are inserted at the back of the list on discovery.
52 *
53 * Since device_pm_add() may be called with a device lock held,
54 * we must never try to acquire a device lock while holding
55 * dpm_list_mutex.
56 */
57
58 LIST_HEAD(dpm_list);
59 static LIST_HEAD(dpm_prepared_list);
60 static LIST_HEAD(dpm_suspended_list);
61 static LIST_HEAD(dpm_late_early_list);
62 static LIST_HEAD(dpm_noirq_list);
63
64 struct suspend_stats suspend_stats;
65 static DEFINE_MUTEX(dpm_list_mtx);
66 static pm_message_t pm_transition;
67
68 static int async_error;
69
pm_verb(int event)70 static const char *pm_verb(int event)
71 {
72 switch (event) {
73 case PM_EVENT_SUSPEND:
74 return "suspend";
75 case PM_EVENT_RESUME:
76 return "resume";
77 case PM_EVENT_FREEZE:
78 return "freeze";
79 case PM_EVENT_QUIESCE:
80 return "quiesce";
81 case PM_EVENT_HIBERNATE:
82 return "hibernate";
83 case PM_EVENT_THAW:
84 return "thaw";
85 case PM_EVENT_RESTORE:
86 return "restore";
87 case PM_EVENT_RECOVER:
88 return "recover";
89 default:
90 return "(unknown PM event)";
91 }
92 }
93
94 /**
95 * device_pm_sleep_init - Initialize system suspend-related device fields.
96 * @dev: Device object being initialized.
97 */
device_pm_sleep_init(struct device *dev)98 void device_pm_sleep_init(struct device *dev)
99 {
100 dev->power.is_prepared = false;
101 dev->power.is_suspended = false;
102 dev->power.is_noirq_suspended = false;
103 dev->power.is_late_suspended = false;
104 init_completion(&dev->power.completion);
105 complete_all(&dev->power.completion);
106 dev->power.wakeup = NULL;
107 INIT_LIST_HEAD(&dev->power.entry);
108 }
109
110 /**
111 * device_pm_lock - Lock the list of active devices used by the PM core.
112 */
device_pm_lock(void)113 void device_pm_lock(void)
114 {
115 mutex_lock(&dpm_list_mtx);
116 }
117
118 /**
119 * device_pm_unlock - Unlock the list of active devices used by the PM core.
120 */
device_pm_unlock(void)121 void device_pm_unlock(void)
122 {
123 mutex_unlock(&dpm_list_mtx);
124 }
125
126 /**
127 * device_pm_add - Add a device to the PM core's list of active devices.
128 * @dev: Device to add to the list.
129 */
device_pm_add(struct device *dev)130 void device_pm_add(struct device *dev)
131 {
132 /* Skip PM setup/initialization. */
133 if (device_pm_not_required(dev))
134 return;
135
136 pr_debug("Adding info for %s:%s\n",
137 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
138 device_pm_check_callbacks(dev);
139 mutex_lock(&dpm_list_mtx);
140 if (dev->parent && dev->parent->power.is_prepared)
141 dev_warn(dev, "parent %s should not be sleeping\n",
142 dev_name(dev->parent));
143 list_add_tail(&dev->power.entry, &dpm_list);
144 dev->power.in_dpm_list = true;
145 mutex_unlock(&dpm_list_mtx);
146 }
147
148 /**
149 * device_pm_remove - Remove a device from the PM core's list of active devices.
150 * @dev: Device to be removed from the list.
151 */
device_pm_remove(struct device *dev)152 void device_pm_remove(struct device *dev)
153 {
154 if (device_pm_not_required(dev))
155 return;
156
157 pr_debug("Removing info for %s:%s\n",
158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
159 complete_all(&dev->power.completion);
160 mutex_lock(&dpm_list_mtx);
161 list_del_init(&dev->power.entry);
162 dev->power.in_dpm_list = false;
163 mutex_unlock(&dpm_list_mtx);
164 device_wakeup_disable(dev);
165 pm_runtime_remove(dev);
166 device_pm_check_callbacks(dev);
167 }
168
169 /**
170 * device_pm_move_before - Move device in the PM core's list of active devices.
171 * @deva: Device to move in dpm_list.
172 * @devb: Device @deva should come before.
173 */
device_pm_move_before(struct device *deva, struct device *devb)174 void device_pm_move_before(struct device *deva, struct device *devb)
175 {
176 pr_debug("Moving %s:%s before %s:%s\n",
177 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
178 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
179 /* Delete deva from dpm_list and reinsert before devb. */
180 list_move_tail(&deva->power.entry, &devb->power.entry);
181 }
182
183 /**
184 * device_pm_move_after - Move device in the PM core's list of active devices.
185 * @deva: Device to move in dpm_list.
186 * @devb: Device @deva should come after.
187 */
device_pm_move_after(struct device *deva, struct device *devb)188 void device_pm_move_after(struct device *deva, struct device *devb)
189 {
190 pr_debug("Moving %s:%s after %s:%s\n",
191 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
192 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
193 /* Delete deva from dpm_list and reinsert after devb. */
194 list_move(&deva->power.entry, &devb->power.entry);
195 }
196
197 /**
198 * device_pm_move_last - Move device to end of the PM core's list of devices.
199 * @dev: Device to move in dpm_list.
200 */
device_pm_move_last(struct device *dev)201 void device_pm_move_last(struct device *dev)
202 {
203 pr_debug("Moving %s:%s to end of list\n",
204 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
205 list_move_tail(&dev->power.entry, &dpm_list);
206 }
207
initcall_debug_start(struct device *dev, void *cb)208 static ktime_t initcall_debug_start(struct device *dev, void *cb)
209 {
210 if (!pm_print_times_enabled)
211 return 0;
212
213 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
214 task_pid_nr(current),
215 dev->parent ? dev_name(dev->parent) : "none");
216 return ktime_get();
217 }
218
initcall_debug_report(struct device *dev, ktime_t calltime, void *cb, int error)219 static void initcall_debug_report(struct device *dev, ktime_t calltime,
220 void *cb, int error)
221 {
222 ktime_t rettime;
223 s64 nsecs;
224
225 if (!pm_print_times_enabled)
226 return;
227
228 rettime = ktime_get();
229 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
230
231 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
232 (unsigned long long)nsecs >> 10);
233 }
234
235 /**
236 * dpm_wait - Wait for a PM operation to complete.
237 * @dev: Device to wait for.
238 * @async: If unset, wait only if the device's power.async_suspend flag is set.
239 */
dpm_wait(struct device *dev, bool async)240 static void dpm_wait(struct device *dev, bool async)
241 {
242 if (!dev)
243 return;
244
245 if (async || (pm_async_enabled && dev->power.async_suspend))
246 wait_for_completion(&dev->power.completion);
247 }
248
dpm_wait_fn(struct device *dev, void *async_ptr)249 static int dpm_wait_fn(struct device *dev, void *async_ptr)
250 {
251 dpm_wait(dev, *((bool *)async_ptr));
252 return 0;
253 }
254
dpm_wait_for_children(struct device *dev, bool async)255 static void dpm_wait_for_children(struct device *dev, bool async)
256 {
257 device_for_each_child(dev, &async, dpm_wait_fn);
258 }
259
dpm_wait_for_suppliers(struct device *dev, bool async)260 static void dpm_wait_for_suppliers(struct device *dev, bool async)
261 {
262 struct device_link *link;
263 int idx;
264
265 idx = device_links_read_lock();
266
267 /*
268 * If the supplier goes away right after we've checked the link to it,
269 * we'll wait for its completion to change the state, but that's fine,
270 * because the only things that will block as a result are the SRCU
271 * callbacks freeing the link objects for the links in the list we're
272 * walking.
273 */
274 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
275 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
276 dpm_wait(link->supplier, async);
277
278 device_links_read_unlock(idx);
279 }
280
dpm_wait_for_superior(struct device *dev, bool async)281 static bool dpm_wait_for_superior(struct device *dev, bool async)
282 {
283 struct device *parent;
284
285 /*
286 * If the device is resumed asynchronously and the parent's callback
287 * deletes both the device and the parent itself, the parent object may
288 * be freed while this function is running, so avoid that by reference
289 * counting the parent once more unless the device has been deleted
290 * already (in which case return right away).
291 */
292 mutex_lock(&dpm_list_mtx);
293
294 if (!device_pm_initialized(dev)) {
295 mutex_unlock(&dpm_list_mtx);
296 return false;
297 }
298
299 parent = get_device(dev->parent);
300
301 mutex_unlock(&dpm_list_mtx);
302
303 dpm_wait(parent, async);
304 put_device(parent);
305
306 dpm_wait_for_suppliers(dev, async);
307
308 /*
309 * If the parent's callback has deleted the device, attempting to resume
310 * it would be invalid, so avoid doing that then.
311 */
312 return device_pm_initialized(dev);
313 }
314
dpm_wait_for_consumers(struct device *dev, bool async)315 static void dpm_wait_for_consumers(struct device *dev, bool async)
316 {
317 struct device_link *link;
318 int idx;
319
320 idx = device_links_read_lock();
321
322 /*
323 * The status of a device link can only be changed from "dormant" by a
324 * probe, but that cannot happen during system suspend/resume. In
325 * theory it can change to "dormant" at that time, but then it is
326 * reasonable to wait for the target device anyway (eg. if it goes
327 * away, it's better to wait for it to go away completely and then
328 * continue instead of trying to continue in parallel with its
329 * unregistration).
330 */
331 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
332 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
333 dpm_wait(link->consumer, async);
334
335 device_links_read_unlock(idx);
336 }
337
dpm_wait_for_subordinate(struct device *dev, bool async)338 static void dpm_wait_for_subordinate(struct device *dev, bool async)
339 {
340 dpm_wait_for_children(dev, async);
341 dpm_wait_for_consumers(dev, async);
342 }
343
344 /**
345 * pm_op - Return the PM operation appropriate for given PM event.
346 * @ops: PM operations to choose from.
347 * @state: PM transition of the system being carried out.
348 */
pm_op(const struct dev_pm_ops *ops, pm_message_t state)349 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
350 {
351 switch (state.event) {
352 #ifdef CONFIG_SUSPEND
353 case PM_EVENT_SUSPEND:
354 return ops->suspend;
355 case PM_EVENT_RESUME:
356 return ops->resume;
357 #endif /* CONFIG_SUSPEND */
358 #ifdef CONFIG_HIBERNATE_CALLBACKS
359 case PM_EVENT_FREEZE:
360 case PM_EVENT_QUIESCE:
361 return ops->freeze;
362 case PM_EVENT_HIBERNATE:
363 return ops->poweroff;
364 case PM_EVENT_THAW:
365 case PM_EVENT_RECOVER:
366 return ops->thaw;
367 case PM_EVENT_RESTORE:
368 return ops->restore;
369 #endif /* CONFIG_HIBERNATE_CALLBACKS */
370 }
371
372 return NULL;
373 }
374
375 /**
376 * pm_late_early_op - Return the PM operation appropriate for given PM event.
377 * @ops: PM operations to choose from.
378 * @state: PM transition of the system being carried out.
379 *
380 * Runtime PM is disabled for @dev while this function is being executed.
381 */
pm_late_early_op(const struct dev_pm_ops *ops, pm_message_t state)382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
383 pm_message_t state)
384 {
385 switch (state.event) {
386 #ifdef CONFIG_SUSPEND
387 case PM_EVENT_SUSPEND:
388 return ops->suspend_late;
389 case PM_EVENT_RESUME:
390 return ops->resume_early;
391 #endif /* CONFIG_SUSPEND */
392 #ifdef CONFIG_HIBERNATE_CALLBACKS
393 case PM_EVENT_FREEZE:
394 case PM_EVENT_QUIESCE:
395 return ops->freeze_late;
396 case PM_EVENT_HIBERNATE:
397 return ops->poweroff_late;
398 case PM_EVENT_THAW:
399 case PM_EVENT_RECOVER:
400 return ops->thaw_early;
401 case PM_EVENT_RESTORE:
402 return ops->restore_early;
403 #endif /* CONFIG_HIBERNATE_CALLBACKS */
404 }
405
406 return NULL;
407 }
408
409 /**
410 * pm_noirq_op - Return the PM operation appropriate for given PM event.
411 * @ops: PM operations to choose from.
412 * @state: PM transition of the system being carried out.
413 *
414 * The driver of @dev will not receive interrupts while this function is being
415 * executed.
416 */
pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
418 {
419 switch (state.event) {
420 #ifdef CONFIG_SUSPEND
421 case PM_EVENT_SUSPEND:
422 return ops->suspend_noirq;
423 case PM_EVENT_RESUME:
424 return ops->resume_noirq;
425 #endif /* CONFIG_SUSPEND */
426 #ifdef CONFIG_HIBERNATE_CALLBACKS
427 case PM_EVENT_FREEZE:
428 case PM_EVENT_QUIESCE:
429 return ops->freeze_noirq;
430 case PM_EVENT_HIBERNATE:
431 return ops->poweroff_noirq;
432 case PM_EVENT_THAW:
433 case PM_EVENT_RECOVER:
434 return ops->thaw_noirq;
435 case PM_EVENT_RESTORE:
436 return ops->restore_noirq;
437 #endif /* CONFIG_HIBERNATE_CALLBACKS */
438 }
439
440 return NULL;
441 }
442
pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
444 {
445 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
446 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
447 ", may wakeup" : "");
448 }
449
pm_dev_err(struct device *dev, pm_message_t state, const char *info, int error)450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
451 int error)
452 {
453 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
454 error);
455 }
456
dpm_show_time(ktime_t starttime, pm_message_t state, int error, const char *info)457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
458 const char *info)
459 {
460 ktime_t calltime;
461 u64 usecs64;
462 int usecs;
463
464 calltime = ktime_get();
465 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
466 do_div(usecs64, NSEC_PER_USEC);
467 usecs = usecs64;
468 if (usecs == 0)
469 usecs = 1;
470
471 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
472 info ?: "", info ? " " : "", pm_verb(state.event),
473 error ? "aborted" : "complete",
474 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
475 }
476
dpm_run_callback(pm_callback_t cb, struct device *dev, pm_message_t state, const char *info)477 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
478 pm_message_t state, const char *info)
479 {
480 ktime_t calltime;
481 int error;
482
483 if (!cb)
484 return 0;
485
486 calltime = initcall_debug_start(dev, cb);
487
488 pm_dev_dbg(dev, state, info);
489 trace_device_pm_callback_start(dev, info, state.event);
490 error = cb(dev);
491 trace_device_pm_callback_end(dev, error);
492 suspend_report_result(cb, error);
493
494 initcall_debug_report(dev, calltime, cb, error);
495
496 return error;
497 }
498
499 #ifdef CONFIG_DPM_WATCHDOG
500 struct dpm_watchdog {
501 struct device *dev;
502 struct task_struct *tsk;
503 struct timer_list timer;
504 };
505
506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
507 struct dpm_watchdog wd
508
509 /**
510 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
511 * @t: The timer that PM watchdog depends on.
512 *
513 * Called when a driver has timed out suspending or resuming.
514 * There's not much we can do here to recover so panic() to
515 * capture a crash-dump in pstore.
516 */
dpm_watchdog_handler(struct timer_list *t)517 static void dpm_watchdog_handler(struct timer_list *t)
518 {
519 struct dpm_watchdog *wd = from_timer(wd, t, timer);
520
521 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522 show_stack(wd->tsk, NULL, KERN_EMERG);
523 panic("%s %s: unrecoverable failure\n",
524 dev_driver_string(wd->dev), dev_name(wd->dev));
525 }
526
527 /**
528 * dpm_watchdog_set - Enable pm watchdog for given device.
529 * @wd: Watchdog. Must be allocated on the stack.
530 * @dev: Device to handle.
531 */
dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
533 {
534 struct timer_list *timer = &wd->timer;
535
536 wd->dev = dev;
537 wd->tsk = current;
538
539 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
540 /* use same timeout value for both suspend and resume */
541 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
542 add_timer(timer);
543 }
544
545 /**
546 * dpm_watchdog_clear - Disable suspend/resume watchdog.
547 * @wd: Watchdog to disable.
548 */
dpm_watchdog_clear(struct dpm_watchdog *wd)549 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
550 {
551 struct timer_list *timer = &wd->timer;
552
553 del_timer_sync(timer);
554 destroy_timer_on_stack(timer);
555 }
556 #else
557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
558 #define dpm_watchdog_set(x, y)
559 #define dpm_watchdog_clear(x)
560 #endif
561
562 /*------------------------- Resume routines -------------------------*/
563
564 /**
565 * dev_pm_skip_resume - System-wide device resume optimization check.
566 * @dev: Target device.
567 *
568 * Return:
569 * - %false if the transition under way is RESTORE.
570 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
571 * - The logical negation of %power.must_resume otherwise (that is, when the
572 * transition under way is RESUME).
573 */
dev_pm_skip_resume(struct device *dev)574 bool dev_pm_skip_resume(struct device *dev)
575 {
576 if (pm_transition.event == PM_EVENT_RESTORE)
577 return false;
578
579 if (pm_transition.event == PM_EVENT_THAW)
580 return dev_pm_skip_suspend(dev);
581
582 return !dev->power.must_resume;
583 }
584
585 /**
586 * __device_resume_noirq - Execute a "noirq resume" callback for given device.
587 * @dev: Device to handle.
588 * @state: PM transition of the system being carried out.
589 * @async: If true, the device is being resumed asynchronously.
590 *
591 * The driver of @dev will not receive interrupts while this function is being
592 * executed.
593 */
__device_resume_noirq(struct device *dev, pm_message_t state, bool async)594 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async)
595 {
596 pm_callback_t callback = NULL;
597 const char *info = NULL;
598 bool skip_resume;
599 int error = 0;
600
601 TRACE_DEVICE(dev);
602 TRACE_RESUME(0);
603
604 if (dev->power.syscore || dev->power.direct_complete)
605 goto Out;
606
607 if (!dev->power.is_noirq_suspended)
608 goto Out;
609
610 if (!dpm_wait_for_superior(dev, async))
611 goto Out;
612
613 skip_resume = dev_pm_skip_resume(dev);
614 /*
615 * If the driver callback is skipped below or by the middle layer
616 * callback and device_resume_early() also skips the driver callback for
617 * this device later, it needs to appear as "suspended" to PM-runtime,
618 * so change its status accordingly.
619 *
620 * Otherwise, the device is going to be resumed, so set its PM-runtime
621 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
622 * to avoid confusing drivers that don't use it.
623 */
624 if (skip_resume)
625 pm_runtime_set_suspended(dev);
626 else if (dev_pm_skip_suspend(dev))
627 pm_runtime_set_active(dev);
628
629 if (dev->pm_domain) {
630 info = "noirq power domain ";
631 callback = pm_noirq_op(&dev->pm_domain->ops, state);
632 } else if (dev->type && dev->type->pm) {
633 info = "noirq type ";
634 callback = pm_noirq_op(dev->type->pm, state);
635 } else if (dev->class && dev->class->pm) {
636 info = "noirq class ";
637 callback = pm_noirq_op(dev->class->pm, state);
638 } else if (dev->bus && dev->bus->pm) {
639 info = "noirq bus ";
640 callback = pm_noirq_op(dev->bus->pm, state);
641 }
642 if (callback)
643 goto Run;
644
645 if (skip_resume)
646 goto Skip;
647
648 if (dev->driver && dev->driver->pm) {
649 info = "noirq driver ";
650 callback = pm_noirq_op(dev->driver->pm, state);
651 }
652
653 Run:
654 error = dpm_run_callback(callback, dev, state, info);
655
656 Skip:
657 dev->power.is_noirq_suspended = false;
658
659 Out:
660 complete_all(&dev->power.completion);
661 TRACE_RESUME(error);
662
663 if (error) {
664 suspend_stats.failed_resume_noirq++;
665 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
666 dpm_save_failed_dev(dev_name(dev));
667 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
668 }
669 }
670
is_async(struct device *dev)671 static bool is_async(struct device *dev)
672 {
673 return dev->power.async_suspend && pm_async_enabled
674 && !pm_trace_is_enabled();
675 }
676
dpm_async_fn(struct device *dev, async_func_t func)677 static bool dpm_async_fn(struct device *dev, async_func_t func)
678 {
679 reinit_completion(&dev->power.completion);
680
681 if (!is_async(dev))
682 return false;
683
684 get_device(dev);
685
686 if (async_schedule_dev_nocall(func, dev))
687 return true;
688
689 put_device(dev);
690
691 return false;
692 }
693
async_resume_noirq(void *data, async_cookie_t cookie)694 static void async_resume_noirq(void *data, async_cookie_t cookie)
695 {
696 struct device *dev = data;
697
698 __device_resume_noirq(dev, pm_transition, true);
699 put_device(dev);
700 }
701
device_resume_noirq(struct device *dev)702 static void device_resume_noirq(struct device *dev)
703 {
704 if (dpm_async_fn(dev, async_resume_noirq))
705 return;
706
707 __device_resume_noirq(dev, pm_transition, false);
708 }
709
dpm_noirq_resume_devices(pm_message_t state)710 static void dpm_noirq_resume_devices(pm_message_t state)
711 {
712 struct device *dev;
713 ktime_t starttime = ktime_get();
714
715 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
716 mutex_lock(&dpm_list_mtx);
717 pm_transition = state;
718
719 while (!list_empty(&dpm_noirq_list)) {
720 dev = to_device(dpm_noirq_list.next);
721 get_device(dev);
722 list_move_tail(&dev->power.entry, &dpm_late_early_list);
723
724 mutex_unlock(&dpm_list_mtx);
725
726 device_resume_noirq(dev);
727
728 put_device(dev);
729
730 mutex_lock(&dpm_list_mtx);
731 }
732 mutex_unlock(&dpm_list_mtx);
733 async_synchronize_full();
734 dpm_show_time(starttime, state, 0, "noirq");
735 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
736 }
737
738 /**
739 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
740 * @state: PM transition of the system being carried out.
741 *
742 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
743 * allow device drivers' interrupt handlers to be called.
744 */
dpm_resume_noirq(pm_message_t state)745 void dpm_resume_noirq(pm_message_t state)
746 {
747 dpm_noirq_resume_devices(state);
748
749 resume_device_irqs();
750 device_wakeup_disarm_wake_irqs();
751
752 cpuidle_resume();
753 }
754
755 /**
756 * __device_resume_early - Execute an "early resume" callback for given device.
757 * @dev: Device to handle.
758 * @state: PM transition of the system being carried out.
759 * @async: If true, the device is being resumed asynchronously.
760 *
761 * Runtime PM is disabled for @dev while this function is being executed.
762 */
__device_resume_early(struct device *dev, pm_message_t state, bool async)763 static void __device_resume_early(struct device *dev, pm_message_t state, bool async)
764 {
765 pm_callback_t callback = NULL;
766 const char *info = NULL;
767 int error = 0;
768
769 TRACE_DEVICE(dev);
770 TRACE_RESUME(0);
771
772 if (dev->power.syscore || dev->power.direct_complete)
773 goto Out;
774
775 if (!dev->power.is_late_suspended)
776 goto Out;
777
778 if (!dpm_wait_for_superior(dev, async))
779 goto Out;
780
781 if (dev->pm_domain) {
782 info = "early power domain ";
783 callback = pm_late_early_op(&dev->pm_domain->ops, state);
784 } else if (dev->type && dev->type->pm) {
785 info = "early type ";
786 callback = pm_late_early_op(dev->type->pm, state);
787 } else if (dev->class && dev->class->pm) {
788 info = "early class ";
789 callback = pm_late_early_op(dev->class->pm, state);
790 } else if (dev->bus && dev->bus->pm) {
791 info = "early bus ";
792 callback = pm_late_early_op(dev->bus->pm, state);
793 }
794 if (callback)
795 goto Run;
796
797 if (dev_pm_skip_resume(dev))
798 goto Skip;
799
800 if (dev->driver && dev->driver->pm) {
801 info = "early driver ";
802 callback = pm_late_early_op(dev->driver->pm, state);
803 }
804
805 Run:
806 error = dpm_run_callback(callback, dev, state, info);
807
808 Skip:
809 dev->power.is_late_suspended = false;
810
811 Out:
812 TRACE_RESUME(error);
813
814 pm_runtime_enable(dev);
815 complete_all(&dev->power.completion);
816
817 if (error) {
818 suspend_stats.failed_resume_early++;
819 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
820 dpm_save_failed_dev(dev_name(dev));
821 pm_dev_err(dev, state, async ? " async early" : " early", error);
822 }
823 }
824
async_resume_early(void *data, async_cookie_t cookie)825 static void async_resume_early(void *data, async_cookie_t cookie)
826 {
827 struct device *dev = data;
828
829 __device_resume_early(dev, pm_transition, true);
830 put_device(dev);
831 }
832
device_resume_early(struct device *dev)833 static void device_resume_early(struct device *dev)
834 {
835 if (dpm_async_fn(dev, async_resume_early))
836 return;
837
838 __device_resume_early(dev, pm_transition, false);
839 }
840
841 /**
842 * dpm_resume_early - Execute "early resume" callbacks for all devices.
843 * @state: PM transition of the system being carried out.
844 */
dpm_resume_early(pm_message_t state)845 void dpm_resume_early(pm_message_t state)
846 {
847 struct device *dev;
848 ktime_t starttime = ktime_get();
849
850 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
851 mutex_lock(&dpm_list_mtx);
852 pm_transition = state;
853
854 while (!list_empty(&dpm_late_early_list)) {
855 dev = to_device(dpm_late_early_list.next);
856 get_device(dev);
857 list_move_tail(&dev->power.entry, &dpm_suspended_list);
858
859 mutex_unlock(&dpm_list_mtx);
860
861 device_resume_early(dev);
862
863 put_device(dev);
864
865 mutex_lock(&dpm_list_mtx);
866 }
867 mutex_unlock(&dpm_list_mtx);
868 async_synchronize_full();
869 dpm_show_time(starttime, state, 0, "early");
870 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
871 }
872
873 /**
874 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
875 * @state: PM transition of the system being carried out.
876 */
dpm_resume_start(pm_message_t state)877 void dpm_resume_start(pm_message_t state)
878 {
879 dpm_resume_noirq(state);
880 dpm_resume_early(state);
881 }
882 EXPORT_SYMBOL_GPL(dpm_resume_start);
883
884 /**
885 * __device_resume - Execute "resume" callbacks for given device.
886 * @dev: Device to handle.
887 * @state: PM transition of the system being carried out.
888 * @async: If true, the device is being resumed asynchronously.
889 */
__device_resume(struct device *dev, pm_message_t state, bool async)890 static void __device_resume(struct device *dev, pm_message_t state, bool async)
891 {
892 pm_callback_t callback = NULL;
893 const char *info = NULL;
894 int error = 0;
895 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
896
897 TRACE_DEVICE(dev);
898 TRACE_RESUME(0);
899
900 if (dev->power.syscore)
901 goto Complete;
902
903 if (dev->power.direct_complete) {
904 /* Match the pm_runtime_disable() in __device_suspend(). */
905 pm_runtime_enable(dev);
906 goto Complete;
907 }
908
909 if (!dpm_wait_for_superior(dev, async))
910 goto Complete;
911
912 dpm_watchdog_set(&wd, dev);
913 device_lock(dev);
914
915 /*
916 * This is a fib. But we'll allow new children to be added below
917 * a resumed device, even if the device hasn't been completed yet.
918 */
919 dev->power.is_prepared = false;
920
921 if (!dev->power.is_suspended)
922 goto Unlock;
923
924 if (dev->pm_domain) {
925 info = "power domain ";
926 callback = pm_op(&dev->pm_domain->ops, state);
927 goto Driver;
928 }
929
930 if (dev->type && dev->type->pm) {
931 info = "type ";
932 callback = pm_op(dev->type->pm, state);
933 goto Driver;
934 }
935
936 if (dev->class && dev->class->pm) {
937 info = "class ";
938 callback = pm_op(dev->class->pm, state);
939 goto Driver;
940 }
941
942 if (dev->bus) {
943 if (dev->bus->pm) {
944 info = "bus ";
945 callback = pm_op(dev->bus->pm, state);
946 } else if (dev->bus->resume) {
947 info = "legacy bus ";
948 callback = dev->bus->resume;
949 goto End;
950 }
951 }
952
953 Driver:
954 if (!callback && dev->driver && dev->driver->pm) {
955 info = "driver ";
956 callback = pm_op(dev->driver->pm, state);
957 }
958
959 End:
960 error = dpm_run_callback(callback, dev, state, info);
961 dev->power.is_suspended = false;
962
963 Unlock:
964 device_unlock(dev);
965 dpm_watchdog_clear(&wd);
966
967 Complete:
968 complete_all(&dev->power.completion);
969
970 TRACE_RESUME(error);
971
972 if (error) {
973 suspend_stats.failed_resume++;
974 dpm_save_failed_step(SUSPEND_RESUME);
975 dpm_save_failed_dev(dev_name(dev));
976 pm_dev_err(dev, state, async ? " async" : "", error);
977 }
978 }
979
async_resume(void *data, async_cookie_t cookie)980 static void async_resume(void *data, async_cookie_t cookie)
981 {
982 struct device *dev = data;
983
984 __device_resume(dev, pm_transition, true);
985 put_device(dev);
986 }
987
device_resume(struct device *dev)988 static void device_resume(struct device *dev)
989 {
990 if (dpm_async_fn(dev, async_resume))
991 return;
992
993 __device_resume(dev, pm_transition, false);
994 }
995
996 /**
997 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
998 * @state: PM transition of the system being carried out.
999 *
1000 * Execute the appropriate "resume" callback for all devices whose status
1001 * indicates that they are suspended.
1002 */
dpm_resume(pm_message_t state)1003 void dpm_resume(pm_message_t state)
1004 {
1005 struct device *dev;
1006 ktime_t starttime = ktime_get();
1007
1008 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1009 might_sleep();
1010
1011 mutex_lock(&dpm_list_mtx);
1012 pm_transition = state;
1013 async_error = 0;
1014
1015 while (!list_empty(&dpm_suspended_list)) {
1016 dev = to_device(dpm_suspended_list.next);
1017
1018 get_device(dev);
1019
1020 mutex_unlock(&dpm_list_mtx);
1021
1022 device_resume(dev);
1023
1024 mutex_lock(&dpm_list_mtx);
1025
1026 if (!list_empty(&dev->power.entry))
1027 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1028
1029 mutex_unlock(&dpm_list_mtx);
1030
1031 put_device(dev);
1032
1033 mutex_lock(&dpm_list_mtx);
1034 }
1035 mutex_unlock(&dpm_list_mtx);
1036 async_synchronize_full();
1037 dpm_show_time(starttime, state, 0, NULL);
1038
1039 cpufreq_resume();
1040 devfreq_resume();
1041 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1042 }
1043
1044 /**
1045 * device_complete - Complete a PM transition for given device.
1046 * @dev: Device to handle.
1047 * @state: PM transition of the system being carried out.
1048 */
device_complete(struct device *dev, pm_message_t state)1049 static void device_complete(struct device *dev, pm_message_t state)
1050 {
1051 void (*callback)(struct device *) = NULL;
1052 const char *info = NULL;
1053
1054 if (dev->power.syscore)
1055 goto out;
1056
1057 device_lock(dev);
1058
1059 if (dev->pm_domain) {
1060 info = "completing power domain ";
1061 callback = dev->pm_domain->ops.complete;
1062 } else if (dev->type && dev->type->pm) {
1063 info = "completing type ";
1064 callback = dev->type->pm->complete;
1065 } else if (dev->class && dev->class->pm) {
1066 info = "completing class ";
1067 callback = dev->class->pm->complete;
1068 } else if (dev->bus && dev->bus->pm) {
1069 info = "completing bus ";
1070 callback = dev->bus->pm->complete;
1071 }
1072
1073 if (!callback && dev->driver && dev->driver->pm) {
1074 info = "completing driver ";
1075 callback = dev->driver->pm->complete;
1076 }
1077
1078 if (callback) {
1079 pm_dev_dbg(dev, state, info);
1080 callback(dev);
1081 }
1082
1083 device_unlock(dev);
1084
1085 out:
1086 pm_runtime_put(dev);
1087 }
1088
1089 /**
1090 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1091 * @state: PM transition of the system being carried out.
1092 *
1093 * Execute the ->complete() callbacks for all devices whose PM status is not
1094 * DPM_ON (this allows new devices to be registered).
1095 */
dpm_complete(pm_message_t state)1096 void dpm_complete(pm_message_t state)
1097 {
1098 struct list_head list;
1099
1100 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1101 might_sleep();
1102
1103 INIT_LIST_HEAD(&list);
1104 mutex_lock(&dpm_list_mtx);
1105 while (!list_empty(&dpm_prepared_list)) {
1106 struct device *dev = to_device(dpm_prepared_list.prev);
1107
1108 get_device(dev);
1109 dev->power.is_prepared = false;
1110 list_move(&dev->power.entry, &list);
1111
1112 mutex_unlock(&dpm_list_mtx);
1113
1114 trace_device_pm_callback_start(dev, "", state.event);
1115 device_complete(dev, state);
1116 trace_device_pm_callback_end(dev, 0);
1117
1118 put_device(dev);
1119
1120 mutex_lock(&dpm_list_mtx);
1121 }
1122 list_splice(&list, &dpm_list);
1123 mutex_unlock(&dpm_list_mtx);
1124
1125 /* Allow device probing and trigger re-probing of deferred devices */
1126 device_unblock_probing();
1127 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1128 }
1129
1130 /**
1131 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1132 * @state: PM transition of the system being carried out.
1133 *
1134 * Execute "resume" callbacks for all devices and complete the PM transition of
1135 * the system.
1136 */
dpm_resume_end(pm_message_t state)1137 void dpm_resume_end(pm_message_t state)
1138 {
1139 dpm_resume(state);
1140 dpm_complete(state);
1141 }
1142 EXPORT_SYMBOL_GPL(dpm_resume_end);
1143
1144
1145 /*------------------------- Suspend routines -------------------------*/
1146
1147 /**
1148 * resume_event - Return a "resume" message for given "suspend" sleep state.
1149 * @sleep_state: PM message representing a sleep state.
1150 *
1151 * Return a PM message representing the resume event corresponding to given
1152 * sleep state.
1153 */
resume_event(pm_message_t sleep_state)1154 static pm_message_t resume_event(pm_message_t sleep_state)
1155 {
1156 switch (sleep_state.event) {
1157 case PM_EVENT_SUSPEND:
1158 return PMSG_RESUME;
1159 case PM_EVENT_FREEZE:
1160 case PM_EVENT_QUIESCE:
1161 return PMSG_RECOVER;
1162 case PM_EVENT_HIBERNATE:
1163 return PMSG_RESTORE;
1164 }
1165 return PMSG_ON;
1166 }
1167
dpm_superior_set_must_resume(struct device *dev)1168 static void dpm_superior_set_must_resume(struct device *dev)
1169 {
1170 struct device_link *link;
1171 int idx;
1172
1173 if (dev->parent)
1174 dev->parent->power.must_resume = true;
1175
1176 idx = device_links_read_lock();
1177
1178 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1179 link->supplier->power.must_resume = true;
1180
1181 device_links_read_unlock(idx);
1182 }
1183
1184 /**
1185 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1186 * @dev: Device to handle.
1187 * @state: PM transition of the system being carried out.
1188 * @async: If true, the device is being suspended asynchronously.
1189 *
1190 * The driver of @dev will not receive interrupts while this function is being
1191 * executed.
1192 */
__device_suspend_noirq(struct device *dev, pm_message_t state, bool async)1193 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1194 {
1195 pm_callback_t callback = NULL;
1196 const char *info = NULL;
1197 int error = 0;
1198
1199 TRACE_DEVICE(dev);
1200 TRACE_SUSPEND(0);
1201
1202 dpm_wait_for_subordinate(dev, async);
1203
1204 if (async_error)
1205 goto Complete;
1206
1207 if (dev->power.syscore || dev->power.direct_complete)
1208 goto Complete;
1209
1210 if (dev->pm_domain) {
1211 info = "noirq power domain ";
1212 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1213 } else if (dev->type && dev->type->pm) {
1214 info = "noirq type ";
1215 callback = pm_noirq_op(dev->type->pm, state);
1216 } else if (dev->class && dev->class->pm) {
1217 info = "noirq class ";
1218 callback = pm_noirq_op(dev->class->pm, state);
1219 } else if (dev->bus && dev->bus->pm) {
1220 info = "noirq bus ";
1221 callback = pm_noirq_op(dev->bus->pm, state);
1222 }
1223 if (callback)
1224 goto Run;
1225
1226 if (dev_pm_skip_suspend(dev))
1227 goto Skip;
1228
1229 if (dev->driver && dev->driver->pm) {
1230 info = "noirq driver ";
1231 callback = pm_noirq_op(dev->driver->pm, state);
1232 }
1233
1234 Run:
1235 error = dpm_run_callback(callback, dev, state, info);
1236 if (error) {
1237 async_error = error;
1238 goto Complete;
1239 }
1240
1241 Skip:
1242 dev->power.is_noirq_suspended = true;
1243
1244 /*
1245 * Skipping the resume of devices that were in use right before the
1246 * system suspend (as indicated by their PM-runtime usage counters)
1247 * would be suboptimal. Also resume them if doing that is not allowed
1248 * to be skipped.
1249 */
1250 if (atomic_read(&dev->power.usage_count) > 1 ||
1251 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1252 dev->power.may_skip_resume))
1253 dev->power.must_resume = true;
1254
1255 if (dev->power.must_resume)
1256 dpm_superior_set_must_resume(dev);
1257
1258 Complete:
1259 complete_all(&dev->power.completion);
1260 TRACE_SUSPEND(error);
1261 return error;
1262 }
1263
async_suspend_noirq(void *data, async_cookie_t cookie)1264 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1265 {
1266 struct device *dev = data;
1267 int error;
1268
1269 error = __device_suspend_noirq(dev, pm_transition, true);
1270 if (error) {
1271 dpm_save_failed_dev(dev_name(dev));
1272 pm_dev_err(dev, pm_transition, " async", error);
1273 }
1274
1275 put_device(dev);
1276 }
1277
device_suspend_noirq(struct device *dev)1278 static int device_suspend_noirq(struct device *dev)
1279 {
1280 if (dpm_async_fn(dev, async_suspend_noirq))
1281 return 0;
1282
1283 return __device_suspend_noirq(dev, pm_transition, false);
1284 }
1285
dpm_noirq_suspend_devices(pm_message_t state)1286 static int dpm_noirq_suspend_devices(pm_message_t state)
1287 {
1288 ktime_t starttime = ktime_get();
1289 int error = 0;
1290
1291 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1292 mutex_lock(&dpm_list_mtx);
1293 pm_transition = state;
1294 async_error = 0;
1295
1296 while (!list_empty(&dpm_late_early_list)) {
1297 struct device *dev = to_device(dpm_late_early_list.prev);
1298
1299 get_device(dev);
1300 mutex_unlock(&dpm_list_mtx);
1301
1302 error = device_suspend_noirq(dev);
1303
1304 mutex_lock(&dpm_list_mtx);
1305
1306 if (error) {
1307 pm_dev_err(dev, state, " noirq", error);
1308 dpm_save_failed_dev(dev_name(dev));
1309 } else if (!list_empty(&dev->power.entry)) {
1310 list_move(&dev->power.entry, &dpm_noirq_list);
1311 }
1312
1313 mutex_unlock(&dpm_list_mtx);
1314
1315 put_device(dev);
1316
1317 mutex_lock(&dpm_list_mtx);
1318
1319 if (error || async_error)
1320 break;
1321 }
1322 mutex_unlock(&dpm_list_mtx);
1323 async_synchronize_full();
1324 if (!error)
1325 error = async_error;
1326
1327 if (error) {
1328 suspend_stats.failed_suspend_noirq++;
1329 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1330 }
1331 dpm_show_time(starttime, state, error, "noirq");
1332 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1333 return error;
1334 }
1335
1336 /**
1337 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1338 * @state: PM transition of the system being carried out.
1339 *
1340 * Prevent device drivers' interrupt handlers from being called and invoke
1341 * "noirq" suspend callbacks for all non-sysdev devices.
1342 */
dpm_suspend_noirq(pm_message_t state)1343 int dpm_suspend_noirq(pm_message_t state)
1344 {
1345 int ret;
1346
1347 cpuidle_pause();
1348
1349 device_wakeup_arm_wake_irqs();
1350 suspend_device_irqs();
1351
1352 ret = dpm_noirq_suspend_devices(state);
1353 if (ret)
1354 dpm_resume_noirq(resume_event(state));
1355
1356 return ret;
1357 }
1358
dpm_propagate_wakeup_to_parent(struct device *dev)1359 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1360 {
1361 struct device *parent = dev->parent;
1362
1363 if (!parent)
1364 return;
1365
1366 spin_lock_irq(&parent->power.lock);
1367
1368 if (dev->power.wakeup_path && !parent->power.ignore_children)
1369 parent->power.wakeup_path = true;
1370
1371 spin_unlock_irq(&parent->power.lock);
1372 }
1373
1374 /**
1375 * __device_suspend_late - Execute a "late suspend" callback for given device.
1376 * @dev: Device to handle.
1377 * @state: PM transition of the system being carried out.
1378 * @async: If true, the device is being suspended asynchronously.
1379 *
1380 * Runtime PM is disabled for @dev while this function is being executed.
1381 */
__device_suspend_late(struct device *dev, pm_message_t state, bool async)1382 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1383 {
1384 pm_callback_t callback = NULL;
1385 const char *info = NULL;
1386 int error = 0;
1387
1388 TRACE_DEVICE(dev);
1389 TRACE_SUSPEND(0);
1390
1391 __pm_runtime_disable(dev, false);
1392
1393 dpm_wait_for_subordinate(dev, async);
1394
1395 if (async_error)
1396 goto Complete;
1397
1398 if (pm_wakeup_pending()) {
1399 async_error = -EBUSY;
1400 goto Complete;
1401 }
1402
1403 if (dev->power.syscore || dev->power.direct_complete)
1404 goto Complete;
1405
1406 if (dev->pm_domain) {
1407 info = "late power domain ";
1408 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1409 } else if (dev->type && dev->type->pm) {
1410 info = "late type ";
1411 callback = pm_late_early_op(dev->type->pm, state);
1412 } else if (dev->class && dev->class->pm) {
1413 info = "late class ";
1414 callback = pm_late_early_op(dev->class->pm, state);
1415 } else if (dev->bus && dev->bus->pm) {
1416 info = "late bus ";
1417 callback = pm_late_early_op(dev->bus->pm, state);
1418 }
1419 if (callback)
1420 goto Run;
1421
1422 if (dev_pm_skip_suspend(dev))
1423 goto Skip;
1424
1425 if (dev->driver && dev->driver->pm) {
1426 info = "late driver ";
1427 callback = pm_late_early_op(dev->driver->pm, state);
1428 }
1429
1430 Run:
1431 error = dpm_run_callback(callback, dev, state, info);
1432 if (error) {
1433 async_error = error;
1434 goto Complete;
1435 }
1436 dpm_propagate_wakeup_to_parent(dev);
1437
1438 Skip:
1439 dev->power.is_late_suspended = true;
1440
1441 Complete:
1442 TRACE_SUSPEND(error);
1443 complete_all(&dev->power.completion);
1444 return error;
1445 }
1446
async_suspend_late(void *data, async_cookie_t cookie)1447 static void async_suspend_late(void *data, async_cookie_t cookie)
1448 {
1449 struct device *dev = data;
1450 int error;
1451
1452 error = __device_suspend_late(dev, pm_transition, true);
1453 if (error) {
1454 dpm_save_failed_dev(dev_name(dev));
1455 pm_dev_err(dev, pm_transition, " async", error);
1456 }
1457 put_device(dev);
1458 }
1459
device_suspend_late(struct device *dev)1460 static int device_suspend_late(struct device *dev)
1461 {
1462 if (dpm_async_fn(dev, async_suspend_late))
1463 return 0;
1464
1465 return __device_suspend_late(dev, pm_transition, false);
1466 }
1467
1468 /**
1469 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1470 * @state: PM transition of the system being carried out.
1471 */
dpm_suspend_late(pm_message_t state)1472 int dpm_suspend_late(pm_message_t state)
1473 {
1474 ktime_t starttime = ktime_get();
1475 int error = 0;
1476
1477 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1478 mutex_lock(&dpm_list_mtx);
1479 pm_transition = state;
1480 async_error = 0;
1481
1482 while (!list_empty(&dpm_suspended_list)) {
1483 struct device *dev = to_device(dpm_suspended_list.prev);
1484
1485 get_device(dev);
1486
1487 mutex_unlock(&dpm_list_mtx);
1488
1489 error = device_suspend_late(dev);
1490
1491 mutex_lock(&dpm_list_mtx);
1492
1493 if (!list_empty(&dev->power.entry))
1494 list_move(&dev->power.entry, &dpm_late_early_list);
1495
1496 if (error) {
1497 pm_dev_err(dev, state, " late", error);
1498 dpm_save_failed_dev(dev_name(dev));
1499 }
1500
1501 mutex_unlock(&dpm_list_mtx);
1502
1503 put_device(dev);
1504
1505 mutex_lock(&dpm_list_mtx);
1506
1507 if (error || async_error)
1508 break;
1509 }
1510 mutex_unlock(&dpm_list_mtx);
1511 async_synchronize_full();
1512 if (!error)
1513 error = async_error;
1514 if (error) {
1515 suspend_stats.failed_suspend_late++;
1516 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1517 dpm_resume_early(resume_event(state));
1518 }
1519 dpm_show_time(starttime, state, error, "late");
1520 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1521 return error;
1522 }
1523
1524 /**
1525 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1526 * @state: PM transition of the system being carried out.
1527 */
dpm_suspend_end(pm_message_t state)1528 int dpm_suspend_end(pm_message_t state)
1529 {
1530 ktime_t starttime = ktime_get();
1531 int error;
1532
1533 error = dpm_suspend_late(state);
1534 if (error)
1535 goto out;
1536
1537 error = dpm_suspend_noirq(state);
1538 if (error)
1539 dpm_resume_early(resume_event(state));
1540
1541 out:
1542 dpm_show_time(starttime, state, error, "end");
1543 return error;
1544 }
1545 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1546
1547 /**
1548 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1549 * @dev: Device to suspend.
1550 * @state: PM transition of the system being carried out.
1551 * @cb: Suspend callback to execute.
1552 * @info: string description of caller.
1553 */
legacy_suspend(struct device *dev, pm_message_t state, int (*cb)(struct device *dev, pm_message_t state), const char *info)1554 static int legacy_suspend(struct device *dev, pm_message_t state,
1555 int (*cb)(struct device *dev, pm_message_t state),
1556 const char *info)
1557 {
1558 int error;
1559 ktime_t calltime;
1560
1561 calltime = initcall_debug_start(dev, cb);
1562
1563 trace_device_pm_callback_start(dev, info, state.event);
1564 error = cb(dev, state);
1565 trace_device_pm_callback_end(dev, error);
1566 suspend_report_result(cb, error);
1567
1568 initcall_debug_report(dev, calltime, cb, error);
1569
1570 return error;
1571 }
1572
dpm_clear_superiors_direct_complete(struct device *dev)1573 static void dpm_clear_superiors_direct_complete(struct device *dev)
1574 {
1575 struct device_link *link;
1576 int idx;
1577
1578 if (dev->parent) {
1579 spin_lock_irq(&dev->parent->power.lock);
1580 dev->parent->power.direct_complete = false;
1581 spin_unlock_irq(&dev->parent->power.lock);
1582 }
1583
1584 idx = device_links_read_lock();
1585
1586 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1587 spin_lock_irq(&link->supplier->power.lock);
1588 link->supplier->power.direct_complete = false;
1589 spin_unlock_irq(&link->supplier->power.lock);
1590 }
1591
1592 device_links_read_unlock(idx);
1593 }
1594
1595 /**
1596 * __device_suspend - Execute "suspend" callbacks for given device.
1597 * @dev: Device to handle.
1598 * @state: PM transition of the system being carried out.
1599 * @async: If true, the device is being suspended asynchronously.
1600 */
__device_suspend(struct device *dev, pm_message_t state, bool async)1601 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1602 {
1603 pm_callback_t callback = NULL;
1604 const char *info = NULL;
1605 int error = 0;
1606 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1607
1608 TRACE_DEVICE(dev);
1609 TRACE_SUSPEND(0);
1610
1611 dpm_wait_for_subordinate(dev, async);
1612
1613 if (async_error) {
1614 dev->power.direct_complete = false;
1615 goto Complete;
1616 }
1617
1618 /*
1619 * Wait for possible runtime PM transitions of the device in progress
1620 * to complete and if there's a runtime resume request pending for it,
1621 * resume it before proceeding with invoking the system-wide suspend
1622 * callbacks for it.
1623 *
1624 * If the system-wide suspend callbacks below change the configuration
1625 * of the device, they must disable runtime PM for it or otherwise
1626 * ensure that its runtime-resume callbacks will not be confused by that
1627 * change in case they are invoked going forward.
1628 */
1629 pm_runtime_barrier(dev);
1630
1631 if (pm_wakeup_pending()) {
1632 dev->power.direct_complete = false;
1633 async_error = -EBUSY;
1634 goto Complete;
1635 }
1636
1637 if (dev->power.syscore)
1638 goto Complete;
1639
1640 /* Avoid direct_complete to let wakeup_path propagate. */
1641 if (device_may_wakeup(dev) || dev->power.wakeup_path)
1642 dev->power.direct_complete = false;
1643
1644 if (dev->power.direct_complete) {
1645 if (pm_runtime_status_suspended(dev)) {
1646 pm_runtime_disable(dev);
1647 if (pm_runtime_status_suspended(dev)) {
1648 pm_dev_dbg(dev, state, "direct-complete ");
1649 goto Complete;
1650 }
1651
1652 pm_runtime_enable(dev);
1653 }
1654 dev->power.direct_complete = false;
1655 }
1656
1657 dev->power.may_skip_resume = true;
1658 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1659
1660 dpm_watchdog_set(&wd, dev);
1661 device_lock(dev);
1662
1663 if (dev->pm_domain) {
1664 info = "power domain ";
1665 callback = pm_op(&dev->pm_domain->ops, state);
1666 goto Run;
1667 }
1668
1669 if (dev->type && dev->type->pm) {
1670 info = "type ";
1671 callback = pm_op(dev->type->pm, state);
1672 goto Run;
1673 }
1674
1675 if (dev->class && dev->class->pm) {
1676 info = "class ";
1677 callback = pm_op(dev->class->pm, state);
1678 goto Run;
1679 }
1680
1681 if (dev->bus) {
1682 if (dev->bus->pm) {
1683 info = "bus ";
1684 callback = pm_op(dev->bus->pm, state);
1685 } else if (dev->bus->suspend) {
1686 pm_dev_dbg(dev, state, "legacy bus ");
1687 error = legacy_suspend(dev, state, dev->bus->suspend,
1688 "legacy bus ");
1689 goto End;
1690 }
1691 }
1692
1693 Run:
1694 if (!callback && dev->driver && dev->driver->pm) {
1695 info = "driver ";
1696 callback = pm_op(dev->driver->pm, state);
1697 }
1698
1699 error = dpm_run_callback(callback, dev, state, info);
1700
1701 End:
1702 if (!error) {
1703 dev->power.is_suspended = true;
1704 if (device_may_wakeup(dev))
1705 dev->power.wakeup_path = true;
1706
1707 dpm_propagate_wakeup_to_parent(dev);
1708 dpm_clear_superiors_direct_complete(dev);
1709 }
1710
1711 device_unlock(dev);
1712 dpm_watchdog_clear(&wd);
1713
1714 Complete:
1715 if (error)
1716 async_error = error;
1717
1718 complete_all(&dev->power.completion);
1719 TRACE_SUSPEND(error);
1720 return error;
1721 }
1722
async_suspend(void *data, async_cookie_t cookie)1723 static void async_suspend(void *data, async_cookie_t cookie)
1724 {
1725 struct device *dev = data;
1726 int error;
1727
1728 error = __device_suspend(dev, pm_transition, true);
1729 if (error) {
1730 dpm_save_failed_dev(dev_name(dev));
1731 pm_dev_err(dev, pm_transition, " async", error);
1732 }
1733
1734 put_device(dev);
1735 }
1736
device_suspend(struct device *dev)1737 static int device_suspend(struct device *dev)
1738 {
1739 if (dpm_async_fn(dev, async_suspend))
1740 return 0;
1741
1742 return __device_suspend(dev, pm_transition, false);
1743 }
1744
1745 /**
1746 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1747 * @state: PM transition of the system being carried out.
1748 */
dpm_suspend(pm_message_t state)1749 int dpm_suspend(pm_message_t state)
1750 {
1751 ktime_t starttime = ktime_get();
1752 int error = 0;
1753
1754 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1755 might_sleep();
1756
1757 devfreq_suspend();
1758 cpufreq_suspend();
1759
1760 mutex_lock(&dpm_list_mtx);
1761 pm_transition = state;
1762 async_error = 0;
1763 while (!list_empty(&dpm_prepared_list)) {
1764 struct device *dev = to_device(dpm_prepared_list.prev);
1765
1766 get_device(dev);
1767
1768 mutex_unlock(&dpm_list_mtx);
1769
1770 error = device_suspend(dev);
1771
1772 mutex_lock(&dpm_list_mtx);
1773
1774 if (error) {
1775 pm_dev_err(dev, state, "", error);
1776 dpm_save_failed_dev(dev_name(dev));
1777 } else if (!list_empty(&dev->power.entry)) {
1778 list_move(&dev->power.entry, &dpm_suspended_list);
1779 }
1780
1781 mutex_unlock(&dpm_list_mtx);
1782
1783 put_device(dev);
1784
1785 mutex_lock(&dpm_list_mtx);
1786
1787 if (error || async_error)
1788 break;
1789 }
1790 mutex_unlock(&dpm_list_mtx);
1791 async_synchronize_full();
1792 if (!error)
1793 error = async_error;
1794 if (error) {
1795 suspend_stats.failed_suspend++;
1796 dpm_save_failed_step(SUSPEND_SUSPEND);
1797 }
1798 dpm_show_time(starttime, state, error, NULL);
1799 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1800 return error;
1801 }
1802
1803 /**
1804 * device_prepare - Prepare a device for system power transition.
1805 * @dev: Device to handle.
1806 * @state: PM transition of the system being carried out.
1807 *
1808 * Execute the ->prepare() callback(s) for given device. No new children of the
1809 * device may be registered after this function has returned.
1810 */
device_prepare(struct device *dev, pm_message_t state)1811 static int device_prepare(struct device *dev, pm_message_t state)
1812 {
1813 int (*callback)(struct device *) = NULL;
1814 int ret = 0;
1815
1816 /*
1817 * If a device's parent goes into runtime suspend at the wrong time,
1818 * it won't be possible to resume the device. To prevent this we
1819 * block runtime suspend here, during the prepare phase, and allow
1820 * it again during the complete phase.
1821 */
1822 pm_runtime_get_noresume(dev);
1823
1824 if (dev->power.syscore)
1825 return 0;
1826
1827 device_lock(dev);
1828
1829 dev->power.wakeup_path = false;
1830
1831 if (dev->power.no_pm_callbacks)
1832 goto unlock;
1833
1834 if (dev->pm_domain)
1835 callback = dev->pm_domain->ops.prepare;
1836 else if (dev->type && dev->type->pm)
1837 callback = dev->type->pm->prepare;
1838 else if (dev->class && dev->class->pm)
1839 callback = dev->class->pm->prepare;
1840 else if (dev->bus && dev->bus->pm)
1841 callback = dev->bus->pm->prepare;
1842
1843 if (!callback && dev->driver && dev->driver->pm)
1844 callback = dev->driver->pm->prepare;
1845
1846 if (callback)
1847 ret = callback(dev);
1848
1849 unlock:
1850 device_unlock(dev);
1851
1852 if (ret < 0) {
1853 suspend_report_result(callback, ret);
1854 pm_runtime_put(dev);
1855 return ret;
1856 }
1857 /*
1858 * A positive return value from ->prepare() means "this device appears
1859 * to be runtime-suspended and its state is fine, so if it really is
1860 * runtime-suspended, you can leave it in that state provided that you
1861 * will do the same thing with all of its descendants". This only
1862 * applies to suspend transitions, however.
1863 */
1864 spin_lock_irq(&dev->power.lock);
1865 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1866 (ret > 0 || dev->power.no_pm_callbacks) &&
1867 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1868 spin_unlock_irq(&dev->power.lock);
1869 return 0;
1870 }
1871
1872 /**
1873 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1874 * @state: PM transition of the system being carried out.
1875 *
1876 * Execute the ->prepare() callback(s) for all devices.
1877 */
dpm_prepare(pm_message_t state)1878 int dpm_prepare(pm_message_t state)
1879 {
1880 int error = 0;
1881
1882 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1883 might_sleep();
1884
1885 /*
1886 * Give a chance for the known devices to complete their probes, before
1887 * disable probing of devices. This sync point is important at least
1888 * at boot time + hibernation restore.
1889 */
1890 wait_for_device_probe();
1891 /*
1892 * It is unsafe if probing of devices will happen during suspend or
1893 * hibernation and system behavior will be unpredictable in this case.
1894 * So, let's prohibit device's probing here and defer their probes
1895 * instead. The normal behavior will be restored in dpm_complete().
1896 */
1897 device_block_probing();
1898
1899 mutex_lock(&dpm_list_mtx);
1900 while (!list_empty(&dpm_list) && !error) {
1901 struct device *dev = to_device(dpm_list.next);
1902
1903 get_device(dev);
1904
1905 mutex_unlock(&dpm_list_mtx);
1906
1907 trace_device_pm_callback_start(dev, "", state.event);
1908 error = device_prepare(dev, state);
1909 trace_device_pm_callback_end(dev, error);
1910
1911 mutex_lock(&dpm_list_mtx);
1912
1913 if (!error) {
1914 dev->power.is_prepared = true;
1915 if (!list_empty(&dev->power.entry))
1916 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1917 } else if (error == -EAGAIN) {
1918 error = 0;
1919 } else {
1920 dev_info(dev, "not prepared for power transition: code %d\n",
1921 error);
1922 }
1923
1924 mutex_unlock(&dpm_list_mtx);
1925
1926 put_device(dev);
1927
1928 mutex_lock(&dpm_list_mtx);
1929 }
1930 mutex_unlock(&dpm_list_mtx);
1931 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1932 return error;
1933 }
1934
1935 /**
1936 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1937 * @state: PM transition of the system being carried out.
1938 *
1939 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1940 * callbacks for them.
1941 */
dpm_suspend_start(pm_message_t state)1942 int dpm_suspend_start(pm_message_t state)
1943 {
1944 ktime_t starttime = ktime_get();
1945 int error;
1946
1947 error = dpm_prepare(state);
1948 if (error) {
1949 suspend_stats.failed_prepare++;
1950 dpm_save_failed_step(SUSPEND_PREPARE);
1951 } else
1952 error = dpm_suspend(state);
1953 dpm_show_time(starttime, state, error, "start");
1954 return error;
1955 }
1956 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1957
__suspend_report_result(const char *function, void *fn, int ret)1958 void __suspend_report_result(const char *function, void *fn, int ret)
1959 {
1960 if (ret)
1961 pr_err("%s(): %pS returns %d\n", function, fn, ret);
1962 }
1963 EXPORT_SYMBOL_GPL(__suspend_report_result);
1964
1965 /**
1966 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1967 * @subordinate: Device that needs to wait for @dev.
1968 * @dev: Device to wait for.
1969 */
device_pm_wait_for_dev(struct device *subordinate, struct device *dev)1970 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1971 {
1972 dpm_wait(dev, subordinate->power.async_suspend);
1973 return async_error;
1974 }
1975 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1976
1977 /**
1978 * dpm_for_each_dev - device iterator.
1979 * @data: data for the callback.
1980 * @fn: function to be called for each device.
1981 *
1982 * Iterate over devices in dpm_list, and call @fn for each device,
1983 * passing it @data.
1984 */
dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))1985 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1986 {
1987 struct device *dev;
1988
1989 if (!fn)
1990 return;
1991
1992 device_pm_lock();
1993 list_for_each_entry(dev, &dpm_list, power.entry)
1994 fn(dev, data);
1995 device_pm_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1998
pm_ops_is_empty(const struct dev_pm_ops *ops)1999 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2000 {
2001 if (!ops)
2002 return true;
2003
2004 return !ops->prepare &&
2005 !ops->suspend &&
2006 !ops->suspend_late &&
2007 !ops->suspend_noirq &&
2008 !ops->resume_noirq &&
2009 !ops->resume_early &&
2010 !ops->resume &&
2011 !ops->complete;
2012 }
2013
device_pm_check_callbacks(struct device *dev)2014 void device_pm_check_callbacks(struct device *dev)
2015 {
2016 unsigned long flags;
2017
2018 spin_lock_irqsave(&dev->power.lock, flags);
2019 dev->power.no_pm_callbacks =
2020 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2021 !dev->bus->suspend && !dev->bus->resume)) &&
2022 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2023 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2024 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2025 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2026 !dev->driver->suspend && !dev->driver->resume));
2027 spin_unlock_irqrestore(&dev->power.lock, flags);
2028 }
2029
dev_pm_skip_suspend(struct device *dev)2030 bool dev_pm_skip_suspend(struct device *dev)
2031 {
2032 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2033 pm_runtime_status_suspended(dev);
2034 }
2035