xref: /kernel/linux/linux-5.10/drivers/base/core.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/rcupdate.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/mm.h>
31#include <linux/sysfs.h>
32
33#include "base.h"
34#include "power/power.h"
35
36#ifdef CONFIG_SYSFS_DEPRECATED
37#ifdef CONFIG_SYSFS_DEPRECATED_V2
38long sysfs_deprecated = 1;
39#else
40long sysfs_deprecated = 0;
41#endif
42static int __init sysfs_deprecated_setup(char *arg)
43{
44	return kstrtol(arg, 10, &sysfs_deprecated);
45}
46early_param("sysfs.deprecated", sysfs_deprecated_setup);
47#endif
48
49/* Device links support. */
50static LIST_HEAD(wait_for_suppliers);
51static DEFINE_MUTEX(wfs_lock);
52static LIST_HEAD(deferred_sync);
53static unsigned int defer_sync_state_count = 1;
54static unsigned int defer_fw_devlink_count;
55static LIST_HEAD(deferred_fw_devlink);
56static DEFINE_MUTEX(defer_fw_devlink_lock);
57static bool fw_devlink_is_permissive(void);
58
59#ifdef CONFIG_SRCU
60static DEFINE_MUTEX(device_links_lock);
61DEFINE_STATIC_SRCU(device_links_srcu);
62
63static inline void device_links_write_lock(void)
64{
65	mutex_lock(&device_links_lock);
66}
67
68static inline void device_links_write_unlock(void)
69{
70	mutex_unlock(&device_links_lock);
71}
72
73int device_links_read_lock(void) __acquires(&device_links_srcu)
74{
75	return srcu_read_lock(&device_links_srcu);
76}
77
78void device_links_read_unlock(int idx) __releases(&device_links_srcu)
79{
80	srcu_read_unlock(&device_links_srcu, idx);
81}
82
83int device_links_read_lock_held(void)
84{
85	return srcu_read_lock_held(&device_links_srcu);
86}
87
88static void device_link_synchronize_removal(void)
89{
90	synchronize_srcu(&device_links_srcu);
91}
92#else /* !CONFIG_SRCU */
93static DECLARE_RWSEM(device_links_lock);
94
95static inline void device_links_write_lock(void)
96{
97	down_write(&device_links_lock);
98}
99
100static inline void device_links_write_unlock(void)
101{
102	up_write(&device_links_lock);
103}
104
105int device_links_read_lock(void)
106{
107	down_read(&device_links_lock);
108	return 0;
109}
110
111void device_links_read_unlock(int not_used)
112{
113	up_read(&device_links_lock);
114}
115
116#ifdef CONFIG_DEBUG_LOCK_ALLOC
117int device_links_read_lock_held(void)
118{
119	return lockdep_is_held(&device_links_lock);
120}
121#endif
122
123static inline void device_link_synchronize_removal(void)
124{
125}
126#endif /* !CONFIG_SRCU */
127
128static bool device_is_ancestor(struct device *dev, struct device *target)
129{
130	while (target->parent) {
131		target = target->parent;
132		if (dev == target)
133			return true;
134	}
135	return false;
136}
137
138/**
139 * device_is_dependent - Check if one device depends on another one
140 * @dev: Device to check dependencies for.
141 * @target: Device to check against.
142 *
143 * Check if @target depends on @dev or any device dependent on it (its child or
144 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
145 */
146int device_is_dependent(struct device *dev, void *target)
147{
148	struct device_link *link;
149	int ret;
150
151	/*
152	 * The "ancestors" check is needed to catch the case when the target
153	 * device has not been completely initialized yet and it is still
154	 * missing from the list of children of its parent device.
155	 */
156	if (dev == target || device_is_ancestor(dev, target))
157		return 1;
158
159	ret = device_for_each_child(dev, target, device_is_dependent);
160	if (ret)
161		return ret;
162
163	list_for_each_entry(link, &dev->links.consumers, s_node) {
164		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
165			continue;
166
167		if (link->consumer == target)
168			return 1;
169
170		ret = device_is_dependent(link->consumer, target);
171		if (ret)
172			break;
173	}
174	return ret;
175}
176
177static void device_link_init_status(struct device_link *link,
178				    struct device *consumer,
179				    struct device *supplier)
180{
181	switch (supplier->links.status) {
182	case DL_DEV_PROBING:
183		switch (consumer->links.status) {
184		case DL_DEV_PROBING:
185			/*
186			 * A consumer driver can create a link to a supplier
187			 * that has not completed its probing yet as long as it
188			 * knows that the supplier is already functional (for
189			 * example, it has just acquired some resources from the
190			 * supplier).
191			 */
192			link->status = DL_STATE_CONSUMER_PROBE;
193			break;
194		default:
195			link->status = DL_STATE_DORMANT;
196			break;
197		}
198		break;
199	case DL_DEV_DRIVER_BOUND:
200		switch (consumer->links.status) {
201		case DL_DEV_PROBING:
202			link->status = DL_STATE_CONSUMER_PROBE;
203			break;
204		case DL_DEV_DRIVER_BOUND:
205			link->status = DL_STATE_ACTIVE;
206			break;
207		default:
208			link->status = DL_STATE_AVAILABLE;
209			break;
210		}
211		break;
212	case DL_DEV_UNBINDING:
213		link->status = DL_STATE_SUPPLIER_UNBIND;
214		break;
215	default:
216		link->status = DL_STATE_DORMANT;
217		break;
218	}
219}
220
221static int device_reorder_to_tail(struct device *dev, void *not_used)
222{
223	struct device_link *link;
224
225	/*
226	 * Devices that have not been registered yet will be put to the ends
227	 * of the lists during the registration, so skip them here.
228	 */
229	if (device_is_registered(dev))
230		devices_kset_move_last(dev);
231
232	if (device_pm_initialized(dev))
233		device_pm_move_last(dev);
234
235	device_for_each_child(dev, NULL, device_reorder_to_tail);
236	list_for_each_entry(link, &dev->links.consumers, s_node) {
237		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
238			continue;
239		device_reorder_to_tail(link->consumer, NULL);
240	}
241
242	return 0;
243}
244
245/**
246 * device_pm_move_to_tail - Move set of devices to the end of device lists
247 * @dev: Device to move
248 *
249 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
250 *
251 * It moves the @dev along with all of its children and all of its consumers
252 * to the ends of the device_kset and dpm_list, recursively.
253 */
254void device_pm_move_to_tail(struct device *dev)
255{
256	int idx;
257
258	idx = device_links_read_lock();
259	device_pm_lock();
260	device_reorder_to_tail(dev, NULL);
261	device_pm_unlock();
262	device_links_read_unlock(idx);
263}
264
265#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
266
267static ssize_t status_show(struct device *dev,
268			   struct device_attribute *attr, char *buf)
269{
270	const char *output;
271
272	switch (to_devlink(dev)->status) {
273	case DL_STATE_NONE:
274		output = "not tracked";
275		break;
276	case DL_STATE_DORMANT:
277		output = "dormant";
278		break;
279	case DL_STATE_AVAILABLE:
280		output = "available";
281		break;
282	case DL_STATE_CONSUMER_PROBE:
283		output = "consumer probing";
284		break;
285	case DL_STATE_ACTIVE:
286		output = "active";
287		break;
288	case DL_STATE_SUPPLIER_UNBIND:
289		output = "supplier unbinding";
290		break;
291	default:
292		output = "unknown";
293		break;
294	}
295
296	return sysfs_emit(buf, "%s\n", output);
297}
298static DEVICE_ATTR_RO(status);
299
300static ssize_t auto_remove_on_show(struct device *dev,
301				   struct device_attribute *attr, char *buf)
302{
303	struct device_link *link = to_devlink(dev);
304	const char *output;
305
306	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
307		output = "supplier unbind";
308	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
309		output = "consumer unbind";
310	else
311		output = "never";
312
313	return sysfs_emit(buf, "%s\n", output);
314}
315static DEVICE_ATTR_RO(auto_remove_on);
316
317static ssize_t runtime_pm_show(struct device *dev,
318			       struct device_attribute *attr, char *buf)
319{
320	struct device_link *link = to_devlink(dev);
321
322	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
323}
324static DEVICE_ATTR_RO(runtime_pm);
325
326static ssize_t sync_state_only_show(struct device *dev,
327				    struct device_attribute *attr, char *buf)
328{
329	struct device_link *link = to_devlink(dev);
330
331	return sysfs_emit(buf, "%d\n",
332			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
333}
334static DEVICE_ATTR_RO(sync_state_only);
335
336static struct attribute *devlink_attrs[] = {
337	&dev_attr_status.attr,
338	&dev_attr_auto_remove_on.attr,
339	&dev_attr_runtime_pm.attr,
340	&dev_attr_sync_state_only.attr,
341	NULL,
342};
343ATTRIBUTE_GROUPS(devlink);
344
345static void device_link_release_fn(struct work_struct *work)
346{
347	struct device_link *link = container_of(work, struct device_link, rm_work);
348
349	/* Ensure that all references to the link object have been dropped. */
350	device_link_synchronize_removal();
351
352	pm_runtime_release_supplier(link);
353	pm_request_idle(link->supplier);
354
355	put_device(link->consumer);
356	put_device(link->supplier);
357	kfree(link);
358}
359
360static void devlink_dev_release(struct device *dev)
361{
362	struct device_link *link = to_devlink(dev);
363
364	INIT_WORK(&link->rm_work, device_link_release_fn);
365	/*
366	 * It may take a while to complete this work because of the SRCU
367	 * synchronization in device_link_release_fn() and if the consumer or
368	 * supplier devices get deleted when it runs, so put it into the "long"
369	 * workqueue.
370	 */
371	queue_work(system_long_wq, &link->rm_work);
372}
373
374static struct class devlink_class = {
375	.name = "devlink",
376	.owner = THIS_MODULE,
377	.dev_groups = devlink_groups,
378	.dev_release = devlink_dev_release,
379};
380
381static int devlink_add_symlinks(struct device *dev,
382				struct class_interface *class_intf)
383{
384	int ret;
385	size_t len;
386	struct device_link *link = to_devlink(dev);
387	struct device *sup = link->supplier;
388	struct device *con = link->consumer;
389	char *buf;
390
391	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
392		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
393	len += strlen(":");
394	len += strlen("supplier:") + 1;
395	buf = kzalloc(len, GFP_KERNEL);
396	if (!buf)
397		return -ENOMEM;
398
399	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
400	if (ret)
401		goto out;
402
403	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
404	if (ret)
405		goto err_con;
406
407	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
408	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
409	if (ret)
410		goto err_con_dev;
411
412	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
413	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
414	if (ret)
415		goto err_sup_dev;
416
417	goto out;
418
419err_sup_dev:
420	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
421	sysfs_remove_link(&sup->kobj, buf);
422err_con_dev:
423	sysfs_remove_link(&link->link_dev.kobj, "consumer");
424err_con:
425	sysfs_remove_link(&link->link_dev.kobj, "supplier");
426out:
427	kfree(buf);
428	return ret;
429}
430
431static void devlink_remove_symlinks(struct device *dev,
432				   struct class_interface *class_intf)
433{
434	struct device_link *link = to_devlink(dev);
435	size_t len;
436	struct device *sup = link->supplier;
437	struct device *con = link->consumer;
438	char *buf;
439
440	sysfs_remove_link(&link->link_dev.kobj, "consumer");
441	sysfs_remove_link(&link->link_dev.kobj, "supplier");
442
443	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
444		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
445	len += strlen(":");
446	len += strlen("supplier:") + 1;
447	buf = kzalloc(len, GFP_KERNEL);
448	if (!buf) {
449		WARN(1, "Unable to properly free device link symlinks!\n");
450		return;
451	}
452
453	if (device_is_registered(con)) {
454		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
455		sysfs_remove_link(&con->kobj, buf);
456	}
457	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
458	sysfs_remove_link(&sup->kobj, buf);
459	kfree(buf);
460}
461
462static struct class_interface devlink_class_intf = {
463	.class = &devlink_class,
464	.add_dev = devlink_add_symlinks,
465	.remove_dev = devlink_remove_symlinks,
466};
467
468static int __init devlink_class_init(void)
469{
470	int ret;
471
472	ret = class_register(&devlink_class);
473	if (ret)
474		return ret;
475
476	ret = class_interface_register(&devlink_class_intf);
477	if (ret)
478		class_unregister(&devlink_class);
479
480	return ret;
481}
482postcore_initcall(devlink_class_init);
483
484#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
485			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
486			       DL_FLAG_AUTOPROBE_CONSUMER  | \
487			       DL_FLAG_SYNC_STATE_ONLY)
488
489#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
490			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
491
492/**
493 * device_link_add - Create a link between two devices.
494 * @consumer: Consumer end of the link.
495 * @supplier: Supplier end of the link.
496 * @flags: Link flags.
497 *
498 * The caller is responsible for the proper synchronization of the link creation
499 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
500 * runtime PM framework to take the link into account.  Second, if the
501 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
502 * be forced into the active metastate and reference-counted upon the creation
503 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
504 * ignored.
505 *
506 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
507 * expected to release the link returned by it directly with the help of either
508 * device_link_del() or device_link_remove().
509 *
510 * If that flag is not set, however, the caller of this function is handing the
511 * management of the link over to the driver core entirely and its return value
512 * can only be used to check whether or not the link is present.  In that case,
513 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
514 * flags can be used to indicate to the driver core when the link can be safely
515 * deleted.  Namely, setting one of them in @flags indicates to the driver core
516 * that the link is not going to be used (by the given caller of this function)
517 * after unbinding the consumer or supplier driver, respectively, from its
518 * device, so the link can be deleted at that point.  If none of them is set,
519 * the link will be maintained until one of the devices pointed to by it (either
520 * the consumer or the supplier) is unregistered.
521 *
522 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
523 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
524 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
525 * be used to request the driver core to automaticall probe for a consmer
526 * driver after successfully binding a driver to the supplier device.
527 *
528 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
529 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
530 * the same time is invalid and will cause NULL to be returned upfront.
531 * However, if a device link between the given @consumer and @supplier pair
532 * exists already when this function is called for them, the existing link will
533 * be returned regardless of its current type and status (the link's flags may
534 * be modified then).  The caller of this function is then expected to treat
535 * the link as though it has just been created, so (in particular) if
536 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
537 * explicitly when not needed any more (as stated above).
538 *
539 * A side effect of the link creation is re-ordering of dpm_list and the
540 * devices_kset list by moving the consumer device and all devices depending
541 * on it to the ends of these lists (that does not happen to devices that have
542 * not been registered when this function is called).
543 *
544 * The supplier device is required to be registered when this function is called
545 * and NULL will be returned if that is not the case.  The consumer device need
546 * not be registered, however.
547 */
548struct device_link *device_link_add(struct device *consumer,
549				    struct device *supplier, u32 flags)
550{
551	struct device_link *link;
552
553	if (!consumer || !supplier || consumer == supplier ||
554	    flags & ~DL_ADD_VALID_FLAGS ||
555	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
556	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
557	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
558	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
559	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
560		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
561		return NULL;
562
563	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
564		if (pm_runtime_get_sync(supplier) < 0) {
565			pm_runtime_put_noidle(supplier);
566			return NULL;
567		}
568	}
569
570	if (!(flags & DL_FLAG_STATELESS))
571		flags |= DL_FLAG_MANAGED;
572
573	device_links_write_lock();
574	device_pm_lock();
575
576	/*
577	 * If the supplier has not been fully registered yet or there is a
578	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
579	 * the supplier already in the graph, return NULL. If the link is a
580	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
581	 * because it only affects sync_state() callbacks.
582	 */
583	if (!device_pm_initialized(supplier)
584	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
585		  device_is_dependent(consumer, supplier))) {
586		link = NULL;
587		goto out;
588	}
589
590	/*
591	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
592	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
593	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
594	 */
595	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
596		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
597
598	list_for_each_entry(link, &supplier->links.consumers, s_node) {
599		if (link->consumer != consumer)
600			continue;
601
602		if (flags & DL_FLAG_PM_RUNTIME) {
603			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
604				pm_runtime_new_link(consumer);
605				link->flags |= DL_FLAG_PM_RUNTIME;
606			}
607			if (flags & DL_FLAG_RPM_ACTIVE)
608				refcount_inc(&link->rpm_active);
609		}
610
611		if (flags & DL_FLAG_STATELESS) {
612			kref_get(&link->kref);
613			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
614			    !(link->flags & DL_FLAG_STATELESS)) {
615				link->flags |= DL_FLAG_STATELESS;
616				goto reorder;
617			} else {
618				link->flags |= DL_FLAG_STATELESS;
619				goto out;
620			}
621		}
622
623		/*
624		 * If the life time of the link following from the new flags is
625		 * longer than indicated by the flags of the existing link,
626		 * update the existing link to stay around longer.
627		 */
628		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
629			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
630				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
631				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
632			}
633		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
634			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
635					 DL_FLAG_AUTOREMOVE_SUPPLIER);
636		}
637		if (!(link->flags & DL_FLAG_MANAGED)) {
638			kref_get(&link->kref);
639			link->flags |= DL_FLAG_MANAGED;
640			device_link_init_status(link, consumer, supplier);
641		}
642		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
643		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
644			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
645			goto reorder;
646		}
647
648		goto out;
649	}
650
651	link = kzalloc(sizeof(*link), GFP_KERNEL);
652	if (!link)
653		goto out;
654
655	refcount_set(&link->rpm_active, 1);
656
657	get_device(supplier);
658	link->supplier = supplier;
659	INIT_LIST_HEAD(&link->s_node);
660	get_device(consumer);
661	link->consumer = consumer;
662	INIT_LIST_HEAD(&link->c_node);
663	link->flags = flags;
664	kref_init(&link->kref);
665
666	link->link_dev.class = &devlink_class;
667	device_set_pm_not_required(&link->link_dev);
668	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
669		     dev_bus_name(supplier), dev_name(supplier),
670		     dev_bus_name(consumer), dev_name(consumer));
671	if (device_register(&link->link_dev)) {
672		put_device(&link->link_dev);
673		link = NULL;
674		goto out;
675	}
676
677	if (flags & DL_FLAG_PM_RUNTIME) {
678		if (flags & DL_FLAG_RPM_ACTIVE)
679			refcount_inc(&link->rpm_active);
680
681		pm_runtime_new_link(consumer);
682	}
683
684	/* Determine the initial link state. */
685	if (flags & DL_FLAG_STATELESS)
686		link->status = DL_STATE_NONE;
687	else
688		device_link_init_status(link, consumer, supplier);
689
690	/*
691	 * Some callers expect the link creation during consumer driver probe to
692	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
693	 */
694	if (link->status == DL_STATE_CONSUMER_PROBE &&
695	    flags & DL_FLAG_PM_RUNTIME)
696		pm_runtime_resume(supplier);
697
698	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
699	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
700
701	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
702		dev_dbg(consumer,
703			"Linked as a sync state only consumer to %s\n",
704			dev_name(supplier));
705		goto out;
706	}
707
708reorder:
709	/*
710	 * Move the consumer and all of the devices depending on it to the end
711	 * of dpm_list and the devices_kset list.
712	 *
713	 * It is necessary to hold dpm_list locked throughout all that or else
714	 * we may end up suspending with a wrong ordering of it.
715	 */
716	device_reorder_to_tail(consumer, NULL);
717
718	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
719
720out:
721	device_pm_unlock();
722	device_links_write_unlock();
723
724	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
725		pm_runtime_put(supplier);
726
727	return link;
728}
729EXPORT_SYMBOL_GPL(device_link_add);
730
731/**
732 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
733 * @consumer: Consumer device
734 *
735 * Marks the @consumer device as waiting for suppliers to become available by
736 * adding it to the wait_for_suppliers list. The consumer device will never be
737 * probed until it's removed from the wait_for_suppliers list.
738 *
739 * The caller is responsible for adding the links to the supplier devices once
740 * they are available and removing the @consumer device from the
741 * wait_for_suppliers list once links to all the suppliers have been created.
742 *
743 * This function is NOT meant to be called from the probe function of the
744 * consumer but rather from code that creates/adds the consumer device.
745 */
746static void device_link_wait_for_supplier(struct device *consumer,
747					  bool need_for_probe)
748{
749	mutex_lock(&wfs_lock);
750	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
751	consumer->links.need_for_probe = need_for_probe;
752	mutex_unlock(&wfs_lock);
753}
754
755static void device_link_wait_for_mandatory_supplier(struct device *consumer)
756{
757	device_link_wait_for_supplier(consumer, true);
758}
759
760static void device_link_wait_for_optional_supplier(struct device *consumer)
761{
762	device_link_wait_for_supplier(consumer, false);
763}
764
765/**
766 * device_link_add_missing_supplier_links - Add links from consumer devices to
767 *					    supplier devices, leaving any
768 *					    consumer with inactive suppliers on
769 *					    the wait_for_suppliers list
770 *
771 * Loops through all consumers waiting on suppliers and tries to add all their
772 * supplier links. If that succeeds, the consumer device is removed from
773 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
774 * list.  Devices left on the wait_for_suppliers list will not be probed.
775 *
776 * The fwnode add_links callback is expected to return 0 if it has found and
777 * added all the supplier links for the consumer device. It should return an
778 * error if it isn't able to do so.
779 *
780 * The caller of device_link_wait_for_supplier() is expected to call this once
781 * it's aware of potential suppliers becoming available.
782 */
783static void device_link_add_missing_supplier_links(void)
784{
785	struct device *dev, *tmp;
786
787	mutex_lock(&wfs_lock);
788	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
789				 links.needs_suppliers) {
790		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
791		if (!ret)
792			list_del_init(&dev->links.needs_suppliers);
793		else if (ret != -ENODEV || fw_devlink_is_permissive())
794			dev->links.need_for_probe = false;
795	}
796	mutex_unlock(&wfs_lock);
797}
798
799#ifdef CONFIG_SRCU
800static void __device_link_del(struct kref *kref)
801{
802	struct device_link *link = container_of(kref, struct device_link, kref);
803
804	dev_dbg(link->consumer, "Dropping the link to %s\n",
805		dev_name(link->supplier));
806
807	pm_runtime_drop_link(link);
808
809	list_del_rcu(&link->s_node);
810	list_del_rcu(&link->c_node);
811	device_unregister(&link->link_dev);
812}
813#else /* !CONFIG_SRCU */
814static void __device_link_del(struct kref *kref)
815{
816	struct device_link *link = container_of(kref, struct device_link, kref);
817
818	dev_info(link->consumer, "Dropping the link to %s\n",
819		 dev_name(link->supplier));
820
821	pm_runtime_drop_link(link);
822
823	list_del(&link->s_node);
824	list_del(&link->c_node);
825	device_unregister(&link->link_dev);
826}
827#endif /* !CONFIG_SRCU */
828
829static void device_link_put_kref(struct device_link *link)
830{
831	if (link->flags & DL_FLAG_STATELESS)
832		kref_put(&link->kref, __device_link_del);
833	else
834		WARN(1, "Unable to drop a managed device link reference\n");
835}
836
837/**
838 * device_link_del - Delete a stateless link between two devices.
839 * @link: Device link to delete.
840 *
841 * The caller must ensure proper synchronization of this function with runtime
842 * PM.  If the link was added multiple times, it needs to be deleted as often.
843 * Care is required for hotplugged devices:  Their links are purged on removal
844 * and calling device_link_del() is then no longer allowed.
845 */
846void device_link_del(struct device_link *link)
847{
848	device_links_write_lock();
849	device_link_put_kref(link);
850	device_links_write_unlock();
851}
852EXPORT_SYMBOL_GPL(device_link_del);
853
854/**
855 * device_link_remove - Delete a stateless link between two devices.
856 * @consumer: Consumer end of the link.
857 * @supplier: Supplier end of the link.
858 *
859 * The caller must ensure proper synchronization of this function with runtime
860 * PM.
861 */
862void device_link_remove(void *consumer, struct device *supplier)
863{
864	struct device_link *link;
865
866	if (WARN_ON(consumer == supplier))
867		return;
868
869	device_links_write_lock();
870
871	list_for_each_entry(link, &supplier->links.consumers, s_node) {
872		if (link->consumer == consumer) {
873			device_link_put_kref(link);
874			break;
875		}
876	}
877
878	device_links_write_unlock();
879}
880EXPORT_SYMBOL_GPL(device_link_remove);
881
882static void device_links_missing_supplier(struct device *dev)
883{
884	struct device_link *link;
885
886	list_for_each_entry(link, &dev->links.suppliers, c_node) {
887		if (link->status != DL_STATE_CONSUMER_PROBE)
888			continue;
889
890		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
891			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
892		} else {
893			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
894			WRITE_ONCE(link->status, DL_STATE_DORMANT);
895		}
896	}
897}
898
899/**
900 * device_links_check_suppliers - Check presence of supplier drivers.
901 * @dev: Consumer device.
902 *
903 * Check links from this device to any suppliers.  Walk the list of the device's
904 * links to suppliers and see if all of them are available.  If not, simply
905 * return -EPROBE_DEFER.
906 *
907 * We need to guarantee that the supplier will not go away after the check has
908 * been positive here.  It only can go away in __device_release_driver() and
909 * that function  checks the device's links to consumers.  This means we need to
910 * mark the link as "consumer probe in progress" to make the supplier removal
911 * wait for us to complete (or bad things may happen).
912 *
913 * Links without the DL_FLAG_MANAGED flag set are ignored.
914 */
915int device_links_check_suppliers(struct device *dev)
916{
917	struct device_link *link;
918	int ret = 0;
919
920	/*
921	 * Device waiting for supplier to become available is not allowed to
922	 * probe.
923	 */
924	mutex_lock(&wfs_lock);
925	if (!list_empty(&dev->links.needs_suppliers) &&
926	    dev->links.need_for_probe) {
927		mutex_unlock(&wfs_lock);
928		return -EPROBE_DEFER;
929	}
930	mutex_unlock(&wfs_lock);
931
932	device_links_write_lock();
933
934	list_for_each_entry(link, &dev->links.suppliers, c_node) {
935		if (!(link->flags & DL_FLAG_MANAGED))
936			continue;
937
938		if (link->status != DL_STATE_AVAILABLE &&
939		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
940			device_links_missing_supplier(dev);
941			ret = -EPROBE_DEFER;
942			break;
943		}
944		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
945	}
946	dev->links.status = DL_DEV_PROBING;
947
948	device_links_write_unlock();
949	return ret;
950}
951
952/**
953 * __device_links_queue_sync_state - Queue a device for sync_state() callback
954 * @dev: Device to call sync_state() on
955 * @list: List head to queue the @dev on
956 *
957 * Queues a device for a sync_state() callback when the device links write lock
958 * isn't held. This allows the sync_state() execution flow to use device links
959 * APIs.  The caller must ensure this function is called with
960 * device_links_write_lock() held.
961 *
962 * This function does a get_device() to make sure the device is not freed while
963 * on this list.
964 *
965 * So the caller must also ensure that device_links_flush_sync_list() is called
966 * as soon as the caller releases device_links_write_lock().  This is necessary
967 * to make sure the sync_state() is called in a timely fashion and the
968 * put_device() is called on this device.
969 */
970static void __device_links_queue_sync_state(struct device *dev,
971					    struct list_head *list)
972{
973	struct device_link *link;
974
975	if (!dev_has_sync_state(dev))
976		return;
977	if (dev->state_synced)
978		return;
979
980	list_for_each_entry(link, &dev->links.consumers, s_node) {
981		if (!(link->flags & DL_FLAG_MANAGED))
982			continue;
983		if (link->status != DL_STATE_ACTIVE)
984			return;
985	}
986
987	/*
988	 * Set the flag here to avoid adding the same device to a list more
989	 * than once. This can happen if new consumers get added to the device
990	 * and probed before the list is flushed.
991	 */
992	dev->state_synced = true;
993
994	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
995		return;
996
997	get_device(dev);
998	list_add_tail(&dev->links.defer_hook, list);
999}
1000
1001/**
1002 * device_links_flush_sync_list - Call sync_state() on a list of devices
1003 * @list: List of devices to call sync_state() on
1004 * @dont_lock_dev: Device for which lock is already held by the caller
1005 *
1006 * Calls sync_state() on all the devices that have been queued for it. This
1007 * function is used in conjunction with __device_links_queue_sync_state(). The
1008 * @dont_lock_dev parameter is useful when this function is called from a
1009 * context where a device lock is already held.
1010 */
1011static void device_links_flush_sync_list(struct list_head *list,
1012					 struct device *dont_lock_dev)
1013{
1014	struct device *dev, *tmp;
1015
1016	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1017		list_del_init(&dev->links.defer_hook);
1018
1019		if (dev != dont_lock_dev)
1020			device_lock(dev);
1021
1022		if (dev->bus->sync_state)
1023			dev->bus->sync_state(dev);
1024		else if (dev->driver && dev->driver->sync_state)
1025			dev->driver->sync_state(dev);
1026
1027		if (dev != dont_lock_dev)
1028			device_unlock(dev);
1029
1030		put_device(dev);
1031	}
1032}
1033
1034void device_links_supplier_sync_state_pause(void)
1035{
1036	device_links_write_lock();
1037	defer_sync_state_count++;
1038	device_links_write_unlock();
1039}
1040
1041void device_links_supplier_sync_state_resume(void)
1042{
1043	struct device *dev, *tmp;
1044	LIST_HEAD(sync_list);
1045
1046	device_links_write_lock();
1047	if (!defer_sync_state_count) {
1048		WARN(true, "Unmatched sync_state pause/resume!");
1049		goto out;
1050	}
1051	defer_sync_state_count--;
1052	if (defer_sync_state_count)
1053		goto out;
1054
1055	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1056		/*
1057		 * Delete from deferred_sync list before queuing it to
1058		 * sync_list because defer_hook is used for both lists.
1059		 */
1060		list_del_init(&dev->links.defer_hook);
1061		__device_links_queue_sync_state(dev, &sync_list);
1062	}
1063out:
1064	device_links_write_unlock();
1065
1066	device_links_flush_sync_list(&sync_list, NULL);
1067}
1068
1069static int sync_state_resume_initcall(void)
1070{
1071	device_links_supplier_sync_state_resume();
1072	return 0;
1073}
1074late_initcall(sync_state_resume_initcall);
1075
1076static void __device_links_supplier_defer_sync(struct device *sup)
1077{
1078	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1079		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1080}
1081
1082static void device_link_drop_managed(struct device_link *link)
1083{
1084	link->flags &= ~DL_FLAG_MANAGED;
1085	WRITE_ONCE(link->status, DL_STATE_NONE);
1086	kref_put(&link->kref, __device_link_del);
1087}
1088
1089static ssize_t waiting_for_supplier_show(struct device *dev,
1090					 struct device_attribute *attr,
1091					 char *buf)
1092{
1093	bool val;
1094
1095	device_lock(dev);
1096	mutex_lock(&wfs_lock);
1097	val = !list_empty(&dev->links.needs_suppliers)
1098	      && dev->links.need_for_probe;
1099	mutex_unlock(&wfs_lock);
1100	device_unlock(dev);
1101	return sysfs_emit(buf, "%u\n", val);
1102}
1103static DEVICE_ATTR_RO(waiting_for_supplier);
1104
1105/**
1106 * device_links_driver_bound - Update device links after probing its driver.
1107 * @dev: Device to update the links for.
1108 *
1109 * The probe has been successful, so update links from this device to any
1110 * consumers by changing their status to "available".
1111 *
1112 * Also change the status of @dev's links to suppliers to "active".
1113 *
1114 * Links without the DL_FLAG_MANAGED flag set are ignored.
1115 */
1116void device_links_driver_bound(struct device *dev)
1117{
1118	struct device_link *link, *ln;
1119	LIST_HEAD(sync_list);
1120
1121	/*
1122	 * If a device probes successfully, it's expected to have created all
1123	 * the device links it needs to or make new device links as it needs
1124	 * them. So, it no longer needs to wait on any suppliers.
1125	 */
1126	mutex_lock(&wfs_lock);
1127	list_del_init(&dev->links.needs_suppliers);
1128	mutex_unlock(&wfs_lock);
1129	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1130
1131	device_links_write_lock();
1132
1133	list_for_each_entry(link, &dev->links.consumers, s_node) {
1134		if (!(link->flags & DL_FLAG_MANAGED))
1135			continue;
1136
1137		/*
1138		 * Links created during consumer probe may be in the "consumer
1139		 * probe" state to start with if the supplier is still probing
1140		 * when they are created and they may become "active" if the
1141		 * consumer probe returns first.  Skip them here.
1142		 */
1143		if (link->status == DL_STATE_CONSUMER_PROBE ||
1144		    link->status == DL_STATE_ACTIVE)
1145			continue;
1146
1147		WARN_ON(link->status != DL_STATE_DORMANT);
1148		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1149
1150		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1151			driver_deferred_probe_add(link->consumer);
1152	}
1153
1154	if (defer_sync_state_count)
1155		__device_links_supplier_defer_sync(dev);
1156	else
1157		__device_links_queue_sync_state(dev, &sync_list);
1158
1159	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1160		struct device *supplier;
1161
1162		if (!(link->flags & DL_FLAG_MANAGED))
1163			continue;
1164
1165		supplier = link->supplier;
1166		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1167			/*
1168			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1169			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1170			 * save to drop the managed link completely.
1171			 */
1172			device_link_drop_managed(link);
1173		} else {
1174			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1175			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1176		}
1177
1178		/*
1179		 * This needs to be done even for the deleted
1180		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1181		 * device link that was preventing the supplier from getting a
1182		 * sync_state() call.
1183		 */
1184		if (defer_sync_state_count)
1185			__device_links_supplier_defer_sync(supplier);
1186		else
1187			__device_links_queue_sync_state(supplier, &sync_list);
1188	}
1189
1190	dev->links.status = DL_DEV_DRIVER_BOUND;
1191
1192	device_links_write_unlock();
1193
1194	device_links_flush_sync_list(&sync_list, dev);
1195}
1196
1197/**
1198 * __device_links_no_driver - Update links of a device without a driver.
1199 * @dev: Device without a drvier.
1200 *
1201 * Delete all non-persistent links from this device to any suppliers.
1202 *
1203 * Persistent links stay around, but their status is changed to "available",
1204 * unless they already are in the "supplier unbind in progress" state in which
1205 * case they need not be updated.
1206 *
1207 * Links without the DL_FLAG_MANAGED flag set are ignored.
1208 */
1209static void __device_links_no_driver(struct device *dev)
1210{
1211	struct device_link *link, *ln;
1212
1213	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1214		if (!(link->flags & DL_FLAG_MANAGED))
1215			continue;
1216
1217		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1218			device_link_drop_managed(link);
1219			continue;
1220		}
1221
1222		if (link->status != DL_STATE_CONSUMER_PROBE &&
1223		    link->status != DL_STATE_ACTIVE)
1224			continue;
1225
1226		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1227			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1228		} else {
1229			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1230			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1231		}
1232	}
1233
1234	dev->links.status = DL_DEV_NO_DRIVER;
1235}
1236
1237/**
1238 * device_links_no_driver - Update links after failing driver probe.
1239 * @dev: Device whose driver has just failed to probe.
1240 *
1241 * Clean up leftover links to consumers for @dev and invoke
1242 * %__device_links_no_driver() to update links to suppliers for it as
1243 * appropriate.
1244 *
1245 * Links without the DL_FLAG_MANAGED flag set are ignored.
1246 */
1247void device_links_no_driver(struct device *dev)
1248{
1249	struct device_link *link;
1250
1251	device_links_write_lock();
1252
1253	list_for_each_entry(link, &dev->links.consumers, s_node) {
1254		if (!(link->flags & DL_FLAG_MANAGED))
1255			continue;
1256
1257		/*
1258		 * The probe has failed, so if the status of the link is
1259		 * "consumer probe" or "active", it must have been added by
1260		 * a probing consumer while this device was still probing.
1261		 * Change its state to "dormant", as it represents a valid
1262		 * relationship, but it is not functionally meaningful.
1263		 */
1264		if (link->status == DL_STATE_CONSUMER_PROBE ||
1265		    link->status == DL_STATE_ACTIVE)
1266			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1267	}
1268
1269	__device_links_no_driver(dev);
1270
1271	device_links_write_unlock();
1272}
1273
1274/**
1275 * device_links_driver_cleanup - Update links after driver removal.
1276 * @dev: Device whose driver has just gone away.
1277 *
1278 * Update links to consumers for @dev by changing their status to "dormant" and
1279 * invoke %__device_links_no_driver() to update links to suppliers for it as
1280 * appropriate.
1281 *
1282 * Links without the DL_FLAG_MANAGED flag set are ignored.
1283 */
1284void device_links_driver_cleanup(struct device *dev)
1285{
1286	struct device_link *link, *ln;
1287
1288	device_links_write_lock();
1289
1290	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1291		if (!(link->flags & DL_FLAG_MANAGED))
1292			continue;
1293
1294		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1295		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1296
1297		/*
1298		 * autoremove the links between this @dev and its consumer
1299		 * devices that are not active, i.e. where the link state
1300		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1301		 */
1302		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1303		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1304			device_link_drop_managed(link);
1305
1306		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1307	}
1308
1309	list_del_init(&dev->links.defer_hook);
1310	__device_links_no_driver(dev);
1311
1312	device_links_write_unlock();
1313}
1314
1315/**
1316 * device_links_busy - Check if there are any busy links to consumers.
1317 * @dev: Device to check.
1318 *
1319 * Check each consumer of the device and return 'true' if its link's status
1320 * is one of "consumer probe" or "active" (meaning that the given consumer is
1321 * probing right now or its driver is present).  Otherwise, change the link
1322 * state to "supplier unbind" to prevent the consumer from being probed
1323 * successfully going forward.
1324 *
1325 * Return 'false' if there are no probing or active consumers.
1326 *
1327 * Links without the DL_FLAG_MANAGED flag set are ignored.
1328 */
1329bool device_links_busy(struct device *dev)
1330{
1331	struct device_link *link;
1332	bool ret = false;
1333
1334	device_links_write_lock();
1335
1336	list_for_each_entry(link, &dev->links.consumers, s_node) {
1337		if (!(link->flags & DL_FLAG_MANAGED))
1338			continue;
1339
1340		if (link->status == DL_STATE_CONSUMER_PROBE
1341		    || link->status == DL_STATE_ACTIVE) {
1342			ret = true;
1343			break;
1344		}
1345		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1346	}
1347
1348	dev->links.status = DL_DEV_UNBINDING;
1349
1350	device_links_write_unlock();
1351	return ret;
1352}
1353
1354/**
1355 * device_links_unbind_consumers - Force unbind consumers of the given device.
1356 * @dev: Device to unbind the consumers of.
1357 *
1358 * Walk the list of links to consumers for @dev and if any of them is in the
1359 * "consumer probe" state, wait for all device probes in progress to complete
1360 * and start over.
1361 *
1362 * If that's not the case, change the status of the link to "supplier unbind"
1363 * and check if the link was in the "active" state.  If so, force the consumer
1364 * driver to unbind and start over (the consumer will not re-probe as we have
1365 * changed the state of the link already).
1366 *
1367 * Links without the DL_FLAG_MANAGED flag set are ignored.
1368 */
1369void device_links_unbind_consumers(struct device *dev)
1370{
1371	struct device_link *link;
1372
1373 start:
1374	device_links_write_lock();
1375
1376	list_for_each_entry(link, &dev->links.consumers, s_node) {
1377		enum device_link_state status;
1378
1379		if (!(link->flags & DL_FLAG_MANAGED) ||
1380		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1381			continue;
1382
1383		status = link->status;
1384		if (status == DL_STATE_CONSUMER_PROBE) {
1385			device_links_write_unlock();
1386
1387			wait_for_device_probe();
1388			goto start;
1389		}
1390		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1391		if (status == DL_STATE_ACTIVE) {
1392			struct device *consumer = link->consumer;
1393
1394			get_device(consumer);
1395
1396			device_links_write_unlock();
1397
1398			device_release_driver_internal(consumer, NULL,
1399						       consumer->parent);
1400			put_device(consumer);
1401			goto start;
1402		}
1403	}
1404
1405	device_links_write_unlock();
1406}
1407
1408/**
1409 * device_links_purge - Delete existing links to other devices.
1410 * @dev: Target device.
1411 */
1412static void device_links_purge(struct device *dev)
1413{
1414	struct device_link *link, *ln;
1415
1416	if (dev->class == &devlink_class)
1417		return;
1418
1419	mutex_lock(&wfs_lock);
1420	list_del_init(&dev->links.needs_suppliers);
1421	mutex_unlock(&wfs_lock);
1422
1423	/*
1424	 * Delete all of the remaining links from this device to any other
1425	 * devices (either consumers or suppliers).
1426	 */
1427	device_links_write_lock();
1428
1429	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1430		WARN_ON(link->status == DL_STATE_ACTIVE);
1431		__device_link_del(&link->kref);
1432	}
1433
1434	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1435		WARN_ON(link->status != DL_STATE_DORMANT &&
1436			link->status != DL_STATE_NONE);
1437		__device_link_del(&link->kref);
1438	}
1439
1440	device_links_write_unlock();
1441}
1442
1443static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1444static int __init fw_devlink_setup(char *arg)
1445{
1446	if (!arg)
1447		return -EINVAL;
1448
1449	if (strcmp(arg, "off") == 0) {
1450		fw_devlink_flags = 0;
1451	} else if (strcmp(arg, "permissive") == 0) {
1452		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1453	} else if (strcmp(arg, "on") == 0) {
1454		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1455	} else if (strcmp(arg, "rpm") == 0) {
1456		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1457				   DL_FLAG_PM_RUNTIME;
1458	}
1459	return 0;
1460}
1461early_param("fw_devlink", fw_devlink_setup);
1462
1463u32 fw_devlink_get_flags(void)
1464{
1465	return fw_devlink_flags;
1466}
1467
1468static bool fw_devlink_is_permissive(void)
1469{
1470	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1471}
1472
1473static void fw_devlink_link_device(struct device *dev)
1474{
1475	int fw_ret;
1476
1477	if (!fw_devlink_flags)
1478		return;
1479
1480	mutex_lock(&defer_fw_devlink_lock);
1481	if (!defer_fw_devlink_count)
1482		device_link_add_missing_supplier_links();
1483
1484	/*
1485	 * The device's fwnode not having add_links() doesn't affect if other
1486	 * consumers can find this device as a supplier.  So, this check is
1487	 * intentionally placed after device_link_add_missing_supplier_links().
1488	 */
1489	if (!fwnode_has_op(dev->fwnode, add_links))
1490		goto out;
1491
1492	/*
1493	 * If fw_devlink is being deferred, assume all devices have mandatory
1494	 * suppliers they need to link to later. Then, when the fw_devlink is
1495	 * resumed, all these devices will get a chance to try and link to any
1496	 * suppliers they have.
1497	 */
1498	if (!defer_fw_devlink_count) {
1499		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1500		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1501			fw_ret = -EAGAIN;
1502	} else {
1503		fw_ret = -ENODEV;
1504		/*
1505		 * defer_hook is not used to add device to deferred_sync list
1506		 * until device is bound. Since deferred fw devlink also blocks
1507		 * probing, same list hook can be used for deferred_fw_devlink.
1508		 */
1509		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1510	}
1511
1512	if (fw_ret == -ENODEV)
1513		device_link_wait_for_mandatory_supplier(dev);
1514	else if (fw_ret)
1515		device_link_wait_for_optional_supplier(dev);
1516
1517out:
1518	mutex_unlock(&defer_fw_devlink_lock);
1519}
1520
1521/**
1522 * fw_devlink_pause - Pause parsing of fwnode to create device links
1523 *
1524 * Calling this function defers any fwnode parsing to create device links until
1525 * fw_devlink_resume() is called. Both these functions are ref counted and the
1526 * caller needs to match the calls.
1527 *
1528 * While fw_devlink is paused:
1529 * - Any device that is added won't have its fwnode parsed to create device
1530 *   links.
1531 * - The probe of the device will also be deferred during this period.
1532 * - Any devices that were already added, but waiting for suppliers won't be
1533 *   able to link to newly added devices.
1534 *
1535 * Once fw_devlink_resume():
1536 * - All the fwnodes that was not parsed will be parsed.
1537 * - All the devices that were deferred probing will be reattempted if they
1538 *   aren't waiting for any more suppliers.
1539 *
1540 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1541 * when a lot of devices that need to link to each other are added in a short
1542 * interval of time. For example, adding all the top level devices in a system.
1543 *
1544 * For example, if N devices are added and:
1545 * - All the consumers are added before their suppliers
1546 * - All the suppliers of the N devices are part of the N devices
1547 *
1548 * Then:
1549 *
1550 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1551 *   will only need one parsing of its fwnode because it is guaranteed to find
1552 *   all the supplier devices already registered and ready to link to. It won't
1553 *   have to do another pass later to find one or more suppliers it couldn't
1554 *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1555 *   parses.
1556 *
1557 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1558 *   end up doing O(N^2) parses of fwnodes because every device that's added is
1559 *   guaranteed to trigger a parse of the fwnode of every device added before
1560 *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1561 *   device is parsed, all it descendant devices might need to have their
1562 *   fwnodes parsed too (even if the devices themselves aren't added).
1563 */
1564void fw_devlink_pause(void)
1565{
1566	mutex_lock(&defer_fw_devlink_lock);
1567	defer_fw_devlink_count++;
1568	mutex_unlock(&defer_fw_devlink_lock);
1569}
1570
1571/** fw_devlink_resume - Resume parsing of fwnode to create device links
1572 *
1573 * This function is used in conjunction with fw_devlink_pause() and is ref
1574 * counted. See documentation for fw_devlink_pause() for more details.
1575 */
1576void fw_devlink_resume(void)
1577{
1578	struct device *dev, *tmp;
1579	LIST_HEAD(probe_list);
1580
1581	mutex_lock(&defer_fw_devlink_lock);
1582	if (!defer_fw_devlink_count) {
1583		WARN(true, "Unmatched fw_devlink pause/resume!");
1584		goto out;
1585	}
1586
1587	defer_fw_devlink_count--;
1588	if (defer_fw_devlink_count)
1589		goto out;
1590
1591	device_link_add_missing_supplier_links();
1592	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1593out:
1594	mutex_unlock(&defer_fw_devlink_lock);
1595
1596	/*
1597	 * bus_probe_device() can cause new devices to get added and they'll
1598	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1599	 * the defer_fw_devlink_lock.
1600	 */
1601	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1602		list_del_init(&dev->links.defer_hook);
1603		bus_probe_device(dev);
1604	}
1605}
1606/* Device links support end. */
1607
1608int (*platform_notify)(struct device *dev) = NULL;
1609int (*platform_notify_remove)(struct device *dev) = NULL;
1610static struct kobject *dev_kobj;
1611struct kobject *sysfs_dev_char_kobj;
1612struct kobject *sysfs_dev_block_kobj;
1613
1614static DEFINE_MUTEX(device_hotplug_lock);
1615
1616void lock_device_hotplug(void)
1617{
1618	mutex_lock(&device_hotplug_lock);
1619}
1620
1621void unlock_device_hotplug(void)
1622{
1623	mutex_unlock(&device_hotplug_lock);
1624}
1625
1626int lock_device_hotplug_sysfs(void)
1627{
1628	if (mutex_trylock(&device_hotplug_lock))
1629		return 0;
1630
1631	/* Avoid busy looping (5 ms of sleep should do). */
1632	msleep(5);
1633	return restart_syscall();
1634}
1635
1636#ifdef CONFIG_BLOCK
1637static inline int device_is_not_partition(struct device *dev)
1638{
1639	return !(dev->type == &part_type);
1640}
1641#else
1642static inline int device_is_not_partition(struct device *dev)
1643{
1644	return 1;
1645}
1646#endif
1647
1648static int
1649device_platform_notify(struct device *dev, enum kobject_action action)
1650{
1651	int ret;
1652
1653	ret = acpi_platform_notify(dev, action);
1654	if (ret)
1655		return ret;
1656
1657	ret = software_node_notify(dev, action);
1658	if (ret)
1659		return ret;
1660
1661	if (platform_notify && action == KOBJ_ADD)
1662		platform_notify(dev);
1663	else if (platform_notify_remove && action == KOBJ_REMOVE)
1664		platform_notify_remove(dev);
1665	return 0;
1666}
1667
1668/**
1669 * dev_driver_string - Return a device's driver name, if at all possible
1670 * @dev: struct device to get the name of
1671 *
1672 * Will return the device's driver's name if it is bound to a device.  If
1673 * the device is not bound to a driver, it will return the name of the bus
1674 * it is attached to.  If it is not attached to a bus either, an empty
1675 * string will be returned.
1676 */
1677const char *dev_driver_string(const struct device *dev)
1678{
1679	struct device_driver *drv;
1680
1681	/* dev->driver can change to NULL underneath us because of unbinding,
1682	 * so be careful about accessing it.  dev->bus and dev->class should
1683	 * never change once they are set, so they don't need special care.
1684	 */
1685	drv = READ_ONCE(dev->driver);
1686	return drv ? drv->name : dev_bus_name(dev);
1687}
1688EXPORT_SYMBOL(dev_driver_string);
1689
1690#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1691
1692static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1693			     char *buf)
1694{
1695	struct device_attribute *dev_attr = to_dev_attr(attr);
1696	struct device *dev = kobj_to_dev(kobj);
1697	ssize_t ret = -EIO;
1698
1699	if (dev_attr->show)
1700		ret = dev_attr->show(dev, dev_attr, buf);
1701	if (ret >= (ssize_t)PAGE_SIZE) {
1702		printk("dev_attr_show: %pS returned bad count\n",
1703				dev_attr->show);
1704	}
1705	return ret;
1706}
1707
1708static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1709			      const char *buf, size_t count)
1710{
1711	struct device_attribute *dev_attr = to_dev_attr(attr);
1712	struct device *dev = kobj_to_dev(kobj);
1713	ssize_t ret = -EIO;
1714
1715	if (dev_attr->store)
1716		ret = dev_attr->store(dev, dev_attr, buf, count);
1717	return ret;
1718}
1719
1720static const struct sysfs_ops dev_sysfs_ops = {
1721	.show	= dev_attr_show,
1722	.store	= dev_attr_store,
1723};
1724
1725#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1726
1727ssize_t device_store_ulong(struct device *dev,
1728			   struct device_attribute *attr,
1729			   const char *buf, size_t size)
1730{
1731	struct dev_ext_attribute *ea = to_ext_attr(attr);
1732	int ret;
1733	unsigned long new;
1734
1735	ret = kstrtoul(buf, 0, &new);
1736	if (ret)
1737		return ret;
1738	*(unsigned long *)(ea->var) = new;
1739	/* Always return full write size even if we didn't consume all */
1740	return size;
1741}
1742EXPORT_SYMBOL_GPL(device_store_ulong);
1743
1744ssize_t device_show_ulong(struct device *dev,
1745			  struct device_attribute *attr,
1746			  char *buf)
1747{
1748	struct dev_ext_attribute *ea = to_ext_attr(attr);
1749	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1750}
1751EXPORT_SYMBOL_GPL(device_show_ulong);
1752
1753ssize_t device_store_int(struct device *dev,
1754			 struct device_attribute *attr,
1755			 const char *buf, size_t size)
1756{
1757	struct dev_ext_attribute *ea = to_ext_attr(attr);
1758	int ret;
1759	long new;
1760
1761	ret = kstrtol(buf, 0, &new);
1762	if (ret)
1763		return ret;
1764
1765	if (new > INT_MAX || new < INT_MIN)
1766		return -EINVAL;
1767	*(int *)(ea->var) = new;
1768	/* Always return full write size even if we didn't consume all */
1769	return size;
1770}
1771EXPORT_SYMBOL_GPL(device_store_int);
1772
1773ssize_t device_show_int(struct device *dev,
1774			struct device_attribute *attr,
1775			char *buf)
1776{
1777	struct dev_ext_attribute *ea = to_ext_attr(attr);
1778
1779	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1780}
1781EXPORT_SYMBOL_GPL(device_show_int);
1782
1783ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1784			  const char *buf, size_t size)
1785{
1786	struct dev_ext_attribute *ea = to_ext_attr(attr);
1787
1788	if (strtobool(buf, ea->var) < 0)
1789		return -EINVAL;
1790
1791	return size;
1792}
1793EXPORT_SYMBOL_GPL(device_store_bool);
1794
1795ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1796			 char *buf)
1797{
1798	struct dev_ext_attribute *ea = to_ext_attr(attr);
1799
1800	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1801}
1802EXPORT_SYMBOL_GPL(device_show_bool);
1803
1804/**
1805 * device_release - free device structure.
1806 * @kobj: device's kobject.
1807 *
1808 * This is called once the reference count for the object
1809 * reaches 0. We forward the call to the device's release
1810 * method, which should handle actually freeing the structure.
1811 */
1812static void device_release(struct kobject *kobj)
1813{
1814	struct device *dev = kobj_to_dev(kobj);
1815	struct device_private *p = dev->p;
1816
1817	/*
1818	 * Some platform devices are driven without driver attached
1819	 * and managed resources may have been acquired.  Make sure
1820	 * all resources are released.
1821	 *
1822	 * Drivers still can add resources into device after device
1823	 * is deleted but alive, so release devres here to avoid
1824	 * possible memory leak.
1825	 */
1826	devres_release_all(dev);
1827
1828	kfree(dev->dma_range_map);
1829
1830	if (dev->release)
1831		dev->release(dev);
1832	else if (dev->type && dev->type->release)
1833		dev->type->release(dev);
1834	else if (dev->class && dev->class->dev_release)
1835		dev->class->dev_release(dev);
1836	else
1837		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1838			dev_name(dev));
1839	kfree(p);
1840}
1841
1842static const void *device_namespace(struct kobject *kobj)
1843{
1844	struct device *dev = kobj_to_dev(kobj);
1845	const void *ns = NULL;
1846
1847	if (dev->class && dev->class->ns_type)
1848		ns = dev->class->namespace(dev);
1849
1850	return ns;
1851}
1852
1853static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1854{
1855	struct device *dev = kobj_to_dev(kobj);
1856
1857	if (dev->class && dev->class->get_ownership)
1858		dev->class->get_ownership(dev, uid, gid);
1859}
1860
1861static struct kobj_type device_ktype = {
1862	.release	= device_release,
1863	.sysfs_ops	= &dev_sysfs_ops,
1864	.namespace	= device_namespace,
1865	.get_ownership	= device_get_ownership,
1866};
1867
1868
1869static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1870{
1871	struct kobj_type *ktype = get_ktype(kobj);
1872
1873	if (ktype == &device_ktype) {
1874		struct device *dev = kobj_to_dev(kobj);
1875		if (dev->bus)
1876			return 1;
1877		if (dev->class)
1878			return 1;
1879	}
1880	return 0;
1881}
1882
1883static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1884{
1885	struct device *dev = kobj_to_dev(kobj);
1886
1887	if (dev->bus)
1888		return dev->bus->name;
1889	if (dev->class)
1890		return dev->class->name;
1891	return NULL;
1892}
1893
1894static int dev_uevent(struct kset *kset, struct kobject *kobj,
1895		      struct kobj_uevent_env *env)
1896{
1897	struct device *dev = kobj_to_dev(kobj);
1898	struct device_driver *driver;
1899	int retval = 0;
1900
1901	/* add device node properties if present */
1902	if (MAJOR(dev->devt)) {
1903		const char *tmp;
1904		const char *name;
1905		umode_t mode = 0;
1906		kuid_t uid = GLOBAL_ROOT_UID;
1907		kgid_t gid = GLOBAL_ROOT_GID;
1908
1909		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1910		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1911		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1912		if (name) {
1913			add_uevent_var(env, "DEVNAME=%s", name);
1914			if (mode)
1915				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1916			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1917				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1918			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1919				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1920			kfree(tmp);
1921		}
1922	}
1923
1924	if (dev->type && dev->type->name)
1925		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1926
1927	/* Synchronize with module_remove_driver() */
1928	rcu_read_lock();
1929	driver = READ_ONCE(dev->driver);
1930	if (driver)
1931		add_uevent_var(env, "DRIVER=%s", driver->name);
1932	rcu_read_unlock();
1933
1934	/* Add common DT information about the device */
1935	of_device_uevent(dev, env);
1936
1937	/* have the bus specific function add its stuff */
1938	if (dev->bus && dev->bus->uevent) {
1939		retval = dev->bus->uevent(dev, env);
1940		if (retval)
1941			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1942				 dev_name(dev), __func__, retval);
1943	}
1944
1945	/* have the class specific function add its stuff */
1946	if (dev->class && dev->class->dev_uevent) {
1947		retval = dev->class->dev_uevent(dev, env);
1948		if (retval)
1949			pr_debug("device: '%s': %s: class uevent() "
1950				 "returned %d\n", dev_name(dev),
1951				 __func__, retval);
1952	}
1953
1954	/* have the device type specific function add its stuff */
1955	if (dev->type && dev->type->uevent) {
1956		retval = dev->type->uevent(dev, env);
1957		if (retval)
1958			pr_debug("device: '%s': %s: dev_type uevent() "
1959				 "returned %d\n", dev_name(dev),
1960				 __func__, retval);
1961	}
1962
1963	return retval;
1964}
1965
1966static const struct kset_uevent_ops device_uevent_ops = {
1967	.filter =	dev_uevent_filter,
1968	.name =		dev_uevent_name,
1969	.uevent =	dev_uevent,
1970};
1971
1972static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1973			   char *buf)
1974{
1975	struct kobject *top_kobj;
1976	struct kset *kset;
1977	struct kobj_uevent_env *env = NULL;
1978	int i;
1979	int len = 0;
1980	int retval;
1981
1982	/* search the kset, the device belongs to */
1983	top_kobj = &dev->kobj;
1984	while (!top_kobj->kset && top_kobj->parent)
1985		top_kobj = top_kobj->parent;
1986	if (!top_kobj->kset)
1987		goto out;
1988
1989	kset = top_kobj->kset;
1990	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1991		goto out;
1992
1993	/* respect filter */
1994	if (kset->uevent_ops && kset->uevent_ops->filter)
1995		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1996			goto out;
1997
1998	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1999	if (!env)
2000		return -ENOMEM;
2001
2002	/* let the kset specific function add its keys */
2003	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2004	if (retval)
2005		goto out;
2006
2007	/* copy keys to file */
2008	for (i = 0; i < env->envp_idx; i++)
2009		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2010out:
2011	kfree(env);
2012	return len;
2013}
2014
2015static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2016			    const char *buf, size_t count)
2017{
2018	int rc;
2019
2020	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2021
2022	if (rc) {
2023		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2024		return rc;
2025	}
2026
2027	return count;
2028}
2029static DEVICE_ATTR_RW(uevent);
2030
2031static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2032			   char *buf)
2033{
2034	bool val;
2035
2036	device_lock(dev);
2037	val = !dev->offline;
2038	device_unlock(dev);
2039	return sysfs_emit(buf, "%u\n", val);
2040}
2041
2042static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2043			    const char *buf, size_t count)
2044{
2045	bool val;
2046	int ret;
2047
2048	ret = strtobool(buf, &val);
2049	if (ret < 0)
2050		return ret;
2051
2052	ret = lock_device_hotplug_sysfs();
2053	if (ret)
2054		return ret;
2055
2056	ret = val ? device_online(dev) : device_offline(dev);
2057	unlock_device_hotplug();
2058	return ret < 0 ? ret : count;
2059}
2060static DEVICE_ATTR_RW(online);
2061
2062static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2063			      char *buf)
2064{
2065	const char *loc;
2066
2067	switch (dev->removable) {
2068	case DEVICE_REMOVABLE:
2069		loc = "removable";
2070		break;
2071	case DEVICE_FIXED:
2072		loc = "fixed";
2073		break;
2074	default:
2075		loc = "unknown";
2076	}
2077	return sysfs_emit(buf, "%s\n", loc);
2078}
2079static DEVICE_ATTR_RO(removable);
2080
2081int device_add_groups(struct device *dev, const struct attribute_group **groups)
2082{
2083	return sysfs_create_groups(&dev->kobj, groups);
2084}
2085EXPORT_SYMBOL_GPL(device_add_groups);
2086
2087void device_remove_groups(struct device *dev,
2088			  const struct attribute_group **groups)
2089{
2090	sysfs_remove_groups(&dev->kobj, groups);
2091}
2092EXPORT_SYMBOL_GPL(device_remove_groups);
2093
2094union device_attr_group_devres {
2095	const struct attribute_group *group;
2096	const struct attribute_group **groups;
2097};
2098
2099static int devm_attr_group_match(struct device *dev, void *res, void *data)
2100{
2101	return ((union device_attr_group_devres *)res)->group == data;
2102}
2103
2104static void devm_attr_group_remove(struct device *dev, void *res)
2105{
2106	union device_attr_group_devres *devres = res;
2107	const struct attribute_group *group = devres->group;
2108
2109	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2110	sysfs_remove_group(&dev->kobj, group);
2111}
2112
2113static void devm_attr_groups_remove(struct device *dev, void *res)
2114{
2115	union device_attr_group_devres *devres = res;
2116	const struct attribute_group **groups = devres->groups;
2117
2118	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2119	sysfs_remove_groups(&dev->kobj, groups);
2120}
2121
2122/**
2123 * devm_device_add_group - given a device, create a managed attribute group
2124 * @dev:	The device to create the group for
2125 * @grp:	The attribute group to create
2126 *
2127 * This function creates a group for the first time.  It will explicitly
2128 * warn and error if any of the attribute files being created already exist.
2129 *
2130 * Returns 0 on success or error code on failure.
2131 */
2132int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2133{
2134	union device_attr_group_devres *devres;
2135	int error;
2136
2137	devres = devres_alloc(devm_attr_group_remove,
2138			      sizeof(*devres), GFP_KERNEL);
2139	if (!devres)
2140		return -ENOMEM;
2141
2142	error = sysfs_create_group(&dev->kobj, grp);
2143	if (error) {
2144		devres_free(devres);
2145		return error;
2146	}
2147
2148	devres->group = grp;
2149	devres_add(dev, devres);
2150	return 0;
2151}
2152EXPORT_SYMBOL_GPL(devm_device_add_group);
2153
2154/**
2155 * devm_device_remove_group: remove a managed group from a device
2156 * @dev:	device to remove the group from
2157 * @grp:	group to remove
2158 *
2159 * This function removes a group of attributes from a device. The attributes
2160 * previously have to have been created for this group, otherwise it will fail.
2161 */
2162void devm_device_remove_group(struct device *dev,
2163			      const struct attribute_group *grp)
2164{
2165	WARN_ON(devres_release(dev, devm_attr_group_remove,
2166			       devm_attr_group_match,
2167			       /* cast away const */ (void *)grp));
2168}
2169EXPORT_SYMBOL_GPL(devm_device_remove_group);
2170
2171/**
2172 * devm_device_add_groups - create a bunch of managed attribute groups
2173 * @dev:	The device to create the group for
2174 * @groups:	The attribute groups to create, NULL terminated
2175 *
2176 * This function creates a bunch of managed attribute groups.  If an error
2177 * occurs when creating a group, all previously created groups will be
2178 * removed, unwinding everything back to the original state when this
2179 * function was called.  It will explicitly warn and error if any of the
2180 * attribute files being created already exist.
2181 *
2182 * Returns 0 on success or error code from sysfs_create_group on failure.
2183 */
2184int devm_device_add_groups(struct device *dev,
2185			   const struct attribute_group **groups)
2186{
2187	union device_attr_group_devres *devres;
2188	int error;
2189
2190	devres = devres_alloc(devm_attr_groups_remove,
2191			      sizeof(*devres), GFP_KERNEL);
2192	if (!devres)
2193		return -ENOMEM;
2194
2195	error = sysfs_create_groups(&dev->kobj, groups);
2196	if (error) {
2197		devres_free(devres);
2198		return error;
2199	}
2200
2201	devres->groups = groups;
2202	devres_add(dev, devres);
2203	return 0;
2204}
2205EXPORT_SYMBOL_GPL(devm_device_add_groups);
2206
2207/**
2208 * devm_device_remove_groups - remove a list of managed groups
2209 *
2210 * @dev:	The device for the groups to be removed from
2211 * @groups:	NULL terminated list of groups to be removed
2212 *
2213 * If groups is not NULL, remove the specified groups from the device.
2214 */
2215void devm_device_remove_groups(struct device *dev,
2216			       const struct attribute_group **groups)
2217{
2218	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2219			       devm_attr_group_match,
2220			       /* cast away const */ (void *)groups));
2221}
2222EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2223
2224static int device_add_attrs(struct device *dev)
2225{
2226	struct class *class = dev->class;
2227	const struct device_type *type = dev->type;
2228	int error;
2229
2230	if (class) {
2231		error = device_add_groups(dev, class->dev_groups);
2232		if (error)
2233			return error;
2234	}
2235
2236	if (type) {
2237		error = device_add_groups(dev, type->groups);
2238		if (error)
2239			goto err_remove_class_groups;
2240	}
2241
2242	error = device_add_groups(dev, dev->groups);
2243	if (error)
2244		goto err_remove_type_groups;
2245
2246	if (device_supports_offline(dev) && !dev->offline_disabled) {
2247		error = device_create_file(dev, &dev_attr_online);
2248		if (error)
2249			goto err_remove_dev_groups;
2250	}
2251
2252	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2253		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2254		if (error)
2255			goto err_remove_dev_online;
2256	}
2257
2258	if (dev_removable_is_valid(dev)) {
2259		error = device_create_file(dev, &dev_attr_removable);
2260		if (error)
2261			goto err_remove_dev_waiting_for_supplier;
2262	}
2263
2264	return 0;
2265
2266 err_remove_dev_waiting_for_supplier:
2267	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2268 err_remove_dev_online:
2269	device_remove_file(dev, &dev_attr_online);
2270 err_remove_dev_groups:
2271	device_remove_groups(dev, dev->groups);
2272 err_remove_type_groups:
2273	if (type)
2274		device_remove_groups(dev, type->groups);
2275 err_remove_class_groups:
2276	if (class)
2277		device_remove_groups(dev, class->dev_groups);
2278
2279	return error;
2280}
2281
2282static void device_remove_attrs(struct device *dev)
2283{
2284	struct class *class = dev->class;
2285	const struct device_type *type = dev->type;
2286
2287	device_remove_file(dev, &dev_attr_removable);
2288	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2289	device_remove_file(dev, &dev_attr_online);
2290	device_remove_groups(dev, dev->groups);
2291
2292	if (type)
2293		device_remove_groups(dev, type->groups);
2294
2295	if (class)
2296		device_remove_groups(dev, class->dev_groups);
2297}
2298
2299static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2300			char *buf)
2301{
2302	return print_dev_t(buf, dev->devt);
2303}
2304static DEVICE_ATTR_RO(dev);
2305
2306/* /sys/devices/ */
2307struct kset *devices_kset;
2308
2309/**
2310 * devices_kset_move_before - Move device in the devices_kset's list.
2311 * @deva: Device to move.
2312 * @devb: Device @deva should come before.
2313 */
2314static void devices_kset_move_before(struct device *deva, struct device *devb)
2315{
2316	if (!devices_kset)
2317		return;
2318	pr_debug("devices_kset: Moving %s before %s\n",
2319		 dev_name(deva), dev_name(devb));
2320	spin_lock(&devices_kset->list_lock);
2321	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2322	spin_unlock(&devices_kset->list_lock);
2323}
2324
2325/**
2326 * devices_kset_move_after - Move device in the devices_kset's list.
2327 * @deva: Device to move
2328 * @devb: Device @deva should come after.
2329 */
2330static void devices_kset_move_after(struct device *deva, struct device *devb)
2331{
2332	if (!devices_kset)
2333		return;
2334	pr_debug("devices_kset: Moving %s after %s\n",
2335		 dev_name(deva), dev_name(devb));
2336	spin_lock(&devices_kset->list_lock);
2337	list_move(&deva->kobj.entry, &devb->kobj.entry);
2338	spin_unlock(&devices_kset->list_lock);
2339}
2340
2341/**
2342 * devices_kset_move_last - move the device to the end of devices_kset's list.
2343 * @dev: device to move
2344 */
2345void devices_kset_move_last(struct device *dev)
2346{
2347	if (!devices_kset)
2348		return;
2349	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2350	spin_lock(&devices_kset->list_lock);
2351	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2352	spin_unlock(&devices_kset->list_lock);
2353}
2354
2355/**
2356 * device_create_file - create sysfs attribute file for device.
2357 * @dev: device.
2358 * @attr: device attribute descriptor.
2359 */
2360int device_create_file(struct device *dev,
2361		       const struct device_attribute *attr)
2362{
2363	int error = 0;
2364
2365	if (dev) {
2366		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2367			"Attribute %s: write permission without 'store'\n",
2368			attr->attr.name);
2369		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2370			"Attribute %s: read permission without 'show'\n",
2371			attr->attr.name);
2372		error = sysfs_create_file(&dev->kobj, &attr->attr);
2373	}
2374
2375	return error;
2376}
2377EXPORT_SYMBOL_GPL(device_create_file);
2378
2379/**
2380 * device_remove_file - remove sysfs attribute file.
2381 * @dev: device.
2382 * @attr: device attribute descriptor.
2383 */
2384void device_remove_file(struct device *dev,
2385			const struct device_attribute *attr)
2386{
2387	if (dev)
2388		sysfs_remove_file(&dev->kobj, &attr->attr);
2389}
2390EXPORT_SYMBOL_GPL(device_remove_file);
2391
2392/**
2393 * device_remove_file_self - remove sysfs attribute file from its own method.
2394 * @dev: device.
2395 * @attr: device attribute descriptor.
2396 *
2397 * See kernfs_remove_self() for details.
2398 */
2399bool device_remove_file_self(struct device *dev,
2400			     const struct device_attribute *attr)
2401{
2402	if (dev)
2403		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2404	else
2405		return false;
2406}
2407EXPORT_SYMBOL_GPL(device_remove_file_self);
2408
2409/**
2410 * device_create_bin_file - create sysfs binary attribute file for device.
2411 * @dev: device.
2412 * @attr: device binary attribute descriptor.
2413 */
2414int device_create_bin_file(struct device *dev,
2415			   const struct bin_attribute *attr)
2416{
2417	int error = -EINVAL;
2418	if (dev)
2419		error = sysfs_create_bin_file(&dev->kobj, attr);
2420	return error;
2421}
2422EXPORT_SYMBOL_GPL(device_create_bin_file);
2423
2424/**
2425 * device_remove_bin_file - remove sysfs binary attribute file
2426 * @dev: device.
2427 * @attr: device binary attribute descriptor.
2428 */
2429void device_remove_bin_file(struct device *dev,
2430			    const struct bin_attribute *attr)
2431{
2432	if (dev)
2433		sysfs_remove_bin_file(&dev->kobj, attr);
2434}
2435EXPORT_SYMBOL_GPL(device_remove_bin_file);
2436
2437static void klist_children_get(struct klist_node *n)
2438{
2439	struct device_private *p = to_device_private_parent(n);
2440	struct device *dev = p->device;
2441
2442	get_device(dev);
2443}
2444
2445static void klist_children_put(struct klist_node *n)
2446{
2447	struct device_private *p = to_device_private_parent(n);
2448	struct device *dev = p->device;
2449
2450	put_device(dev);
2451}
2452
2453/**
2454 * device_initialize - init device structure.
2455 * @dev: device.
2456 *
2457 * This prepares the device for use by other layers by initializing
2458 * its fields.
2459 * It is the first half of device_register(), if called by
2460 * that function, though it can also be called separately, so one
2461 * may use @dev's fields. In particular, get_device()/put_device()
2462 * may be used for reference counting of @dev after calling this
2463 * function.
2464 *
2465 * All fields in @dev must be initialized by the caller to 0, except
2466 * for those explicitly set to some other value.  The simplest
2467 * approach is to use kzalloc() to allocate the structure containing
2468 * @dev.
2469 *
2470 * NOTE: Use put_device() to give up your reference instead of freeing
2471 * @dev directly once you have called this function.
2472 */
2473void device_initialize(struct device *dev)
2474{
2475	dev->kobj.kset = devices_kset;
2476	kobject_init(&dev->kobj, &device_ktype);
2477	INIT_LIST_HEAD(&dev->dma_pools);
2478	mutex_init(&dev->mutex);
2479#ifdef CONFIG_PROVE_LOCKING
2480	mutex_init(&dev->lockdep_mutex);
2481#endif
2482	lockdep_set_novalidate_class(&dev->mutex);
2483	spin_lock_init(&dev->devres_lock);
2484	INIT_LIST_HEAD(&dev->devres_head);
2485	device_pm_init(dev);
2486	set_dev_node(dev, -1);
2487#ifdef CONFIG_GENERIC_MSI_IRQ
2488	raw_spin_lock_init(&dev->msi_lock);
2489	INIT_LIST_HEAD(&dev->msi_list);
2490#endif
2491	INIT_LIST_HEAD(&dev->links.consumers);
2492	INIT_LIST_HEAD(&dev->links.suppliers);
2493	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2494	INIT_LIST_HEAD(&dev->links.defer_hook);
2495	dev->links.status = DL_DEV_NO_DRIVER;
2496}
2497EXPORT_SYMBOL_GPL(device_initialize);
2498
2499struct kobject *virtual_device_parent(struct device *dev)
2500{
2501	static struct kobject *virtual_dir = NULL;
2502
2503	if (!virtual_dir)
2504		virtual_dir = kobject_create_and_add("virtual",
2505						     &devices_kset->kobj);
2506
2507	return virtual_dir;
2508}
2509
2510struct class_dir {
2511	struct kobject kobj;
2512	struct class *class;
2513};
2514
2515#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2516
2517static void class_dir_release(struct kobject *kobj)
2518{
2519	struct class_dir *dir = to_class_dir(kobj);
2520	kfree(dir);
2521}
2522
2523static const
2524struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2525{
2526	struct class_dir *dir = to_class_dir(kobj);
2527	return dir->class->ns_type;
2528}
2529
2530static struct kobj_type class_dir_ktype = {
2531	.release	= class_dir_release,
2532	.sysfs_ops	= &kobj_sysfs_ops,
2533	.child_ns_type	= class_dir_child_ns_type
2534};
2535
2536static struct kobject *
2537class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2538{
2539	struct class_dir *dir;
2540	int retval;
2541
2542	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2543	if (!dir)
2544		return ERR_PTR(-ENOMEM);
2545
2546	dir->class = class;
2547	kobject_init(&dir->kobj, &class_dir_ktype);
2548
2549	dir->kobj.kset = &class->p->glue_dirs;
2550
2551	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2552	if (retval < 0) {
2553		kobject_put(&dir->kobj);
2554		return ERR_PTR(retval);
2555	}
2556	return &dir->kobj;
2557}
2558
2559static DEFINE_MUTEX(gdp_mutex);
2560
2561static struct kobject *get_device_parent(struct device *dev,
2562					 struct device *parent)
2563{
2564	if (dev->class) {
2565		struct kobject *kobj = NULL;
2566		struct kobject *parent_kobj;
2567		struct kobject *k;
2568
2569#ifdef CONFIG_BLOCK
2570		/* block disks show up in /sys/block */
2571		if (sysfs_deprecated && dev->class == &block_class) {
2572			if (parent && parent->class == &block_class)
2573				return &parent->kobj;
2574			return &block_class.p->subsys.kobj;
2575		}
2576#endif
2577
2578		/*
2579		 * If we have no parent, we live in "virtual".
2580		 * Class-devices with a non class-device as parent, live
2581		 * in a "glue" directory to prevent namespace collisions.
2582		 */
2583		if (parent == NULL)
2584			parent_kobj = virtual_device_parent(dev);
2585		else if (parent->class && !dev->class->ns_type)
2586			return &parent->kobj;
2587		else
2588			parent_kobj = &parent->kobj;
2589
2590		mutex_lock(&gdp_mutex);
2591
2592		/* find our class-directory at the parent and reference it */
2593		spin_lock(&dev->class->p->glue_dirs.list_lock);
2594		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2595			if (k->parent == parent_kobj) {
2596				kobj = kobject_get(k);
2597				break;
2598			}
2599		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2600		if (kobj) {
2601			mutex_unlock(&gdp_mutex);
2602			return kobj;
2603		}
2604
2605		/* or create a new class-directory at the parent device */
2606		k = class_dir_create_and_add(dev->class, parent_kobj);
2607		/* do not emit an uevent for this simple "glue" directory */
2608		mutex_unlock(&gdp_mutex);
2609		return k;
2610	}
2611
2612	/* subsystems can specify a default root directory for their devices */
2613	if (!parent && dev->bus && dev->bus->dev_root)
2614		return &dev->bus->dev_root->kobj;
2615
2616	if (parent)
2617		return &parent->kobj;
2618	return NULL;
2619}
2620
2621static inline bool live_in_glue_dir(struct kobject *kobj,
2622				    struct device *dev)
2623{
2624	if (!kobj || !dev->class ||
2625	    kobj->kset != &dev->class->p->glue_dirs)
2626		return false;
2627	return true;
2628}
2629
2630static inline struct kobject *get_glue_dir(struct device *dev)
2631{
2632	return dev->kobj.parent;
2633}
2634
2635/*
2636 * make sure cleaning up dir as the last step, we need to make
2637 * sure .release handler of kobject is run with holding the
2638 * global lock
2639 */
2640static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2641{
2642	unsigned int ref;
2643
2644	/* see if we live in a "glue" directory */
2645	if (!live_in_glue_dir(glue_dir, dev))
2646		return;
2647
2648	mutex_lock(&gdp_mutex);
2649	/**
2650	 * There is a race condition between removing glue directory
2651	 * and adding a new device under the glue directory.
2652	 *
2653	 * CPU1:                                         CPU2:
2654	 *
2655	 * device_add()
2656	 *   get_device_parent()
2657	 *     class_dir_create_and_add()
2658	 *       kobject_add_internal()
2659	 *         create_dir()    // create glue_dir
2660	 *
2661	 *                                               device_add()
2662	 *                                                 get_device_parent()
2663	 *                                                   kobject_get() // get glue_dir
2664	 *
2665	 * device_del()
2666	 *   cleanup_glue_dir()
2667	 *     kobject_del(glue_dir)
2668	 *
2669	 *                                               kobject_add()
2670	 *                                                 kobject_add_internal()
2671	 *                                                   create_dir() // in glue_dir
2672	 *                                                     sysfs_create_dir_ns()
2673	 *                                                       kernfs_create_dir_ns(sd)
2674	 *
2675	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2676	 *       sysfs_put()        // free glue_dir->sd
2677	 *
2678	 *                                                         // sd is freed
2679	 *                                                         kernfs_new_node(sd)
2680	 *                                                           kernfs_get(glue_dir)
2681	 *                                                           kernfs_add_one()
2682	 *                                                           kernfs_put()
2683	 *
2684	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2685	 * a new device under glue dir, the glue_dir kobject reference count
2686	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2687	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2688	 * and sysfs_put(). This result in glue_dir->sd is freed.
2689	 *
2690	 * Then the CPU2 will see a stale "empty" but still potentially used
2691	 * glue dir around in kernfs_new_node().
2692	 *
2693	 * In order to avoid this happening, we also should make sure that
2694	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2695	 * for glue_dir kobj is 1.
2696	 */
2697	ref = kref_read(&glue_dir->kref);
2698	if (!kobject_has_children(glue_dir) && !--ref)
2699		kobject_del(glue_dir);
2700	kobject_put(glue_dir);
2701	mutex_unlock(&gdp_mutex);
2702}
2703
2704static int device_add_class_symlinks(struct device *dev)
2705{
2706	struct device_node *of_node = dev_of_node(dev);
2707	int error;
2708
2709	if (of_node) {
2710		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2711		if (error)
2712			dev_warn(dev, "Error %d creating of_node link\n",error);
2713		/* An error here doesn't warrant bringing down the device */
2714	}
2715
2716	if (!dev->class)
2717		return 0;
2718
2719	error = sysfs_create_link(&dev->kobj,
2720				  &dev->class->p->subsys.kobj,
2721				  "subsystem");
2722	if (error)
2723		goto out_devnode;
2724
2725	if (dev->parent && device_is_not_partition(dev)) {
2726		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2727					  "device");
2728		if (error)
2729			goto out_subsys;
2730	}
2731
2732#ifdef CONFIG_BLOCK
2733	/* /sys/block has directories and does not need symlinks */
2734	if (sysfs_deprecated && dev->class == &block_class)
2735		return 0;
2736#endif
2737
2738	/* link in the class directory pointing to the device */
2739	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2740				  &dev->kobj, dev_name(dev));
2741	if (error)
2742		goto out_device;
2743
2744	return 0;
2745
2746out_device:
2747	sysfs_remove_link(&dev->kobj, "device");
2748
2749out_subsys:
2750	sysfs_remove_link(&dev->kobj, "subsystem");
2751out_devnode:
2752	sysfs_remove_link(&dev->kobj, "of_node");
2753	return error;
2754}
2755
2756static void device_remove_class_symlinks(struct device *dev)
2757{
2758	if (dev_of_node(dev))
2759		sysfs_remove_link(&dev->kobj, "of_node");
2760
2761	if (!dev->class)
2762		return;
2763
2764	if (dev->parent && device_is_not_partition(dev))
2765		sysfs_remove_link(&dev->kobj, "device");
2766	sysfs_remove_link(&dev->kobj, "subsystem");
2767#ifdef CONFIG_BLOCK
2768	if (sysfs_deprecated && dev->class == &block_class)
2769		return;
2770#endif
2771	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2772}
2773
2774/**
2775 * dev_set_name - set a device name
2776 * @dev: device
2777 * @fmt: format string for the device's name
2778 */
2779int dev_set_name(struct device *dev, const char *fmt, ...)
2780{
2781	va_list vargs;
2782	int err;
2783
2784	va_start(vargs, fmt);
2785	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2786	va_end(vargs);
2787	return err;
2788}
2789EXPORT_SYMBOL_GPL(dev_set_name);
2790
2791/**
2792 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2793 * @dev: device
2794 *
2795 * By default we select char/ for new entries.  Setting class->dev_obj
2796 * to NULL prevents an entry from being created.  class->dev_kobj must
2797 * be set (or cleared) before any devices are registered to the class
2798 * otherwise device_create_sys_dev_entry() and
2799 * device_remove_sys_dev_entry() will disagree about the presence of
2800 * the link.
2801 */
2802static struct kobject *device_to_dev_kobj(struct device *dev)
2803{
2804	struct kobject *kobj;
2805
2806	if (dev->class)
2807		kobj = dev->class->dev_kobj;
2808	else
2809		kobj = sysfs_dev_char_kobj;
2810
2811	return kobj;
2812}
2813
2814static int device_create_sys_dev_entry(struct device *dev)
2815{
2816	struct kobject *kobj = device_to_dev_kobj(dev);
2817	int error = 0;
2818	char devt_str[15];
2819
2820	if (kobj) {
2821		format_dev_t(devt_str, dev->devt);
2822		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2823	}
2824
2825	return error;
2826}
2827
2828static void device_remove_sys_dev_entry(struct device *dev)
2829{
2830	struct kobject *kobj = device_to_dev_kobj(dev);
2831	char devt_str[15];
2832
2833	if (kobj) {
2834		format_dev_t(devt_str, dev->devt);
2835		sysfs_remove_link(kobj, devt_str);
2836	}
2837}
2838
2839static int device_private_init(struct device *dev)
2840{
2841	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2842	if (!dev->p)
2843		return -ENOMEM;
2844	dev->p->device = dev;
2845	klist_init(&dev->p->klist_children, klist_children_get,
2846		   klist_children_put);
2847	INIT_LIST_HEAD(&dev->p->deferred_probe);
2848	return 0;
2849}
2850
2851/**
2852 * device_add - add device to device hierarchy.
2853 * @dev: device.
2854 *
2855 * This is part 2 of device_register(), though may be called
2856 * separately _iff_ device_initialize() has been called separately.
2857 *
2858 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2859 * to the global and sibling lists for the device, then
2860 * adds it to the other relevant subsystems of the driver model.
2861 *
2862 * Do not call this routine or device_register() more than once for
2863 * any device structure.  The driver model core is not designed to work
2864 * with devices that get unregistered and then spring back to life.
2865 * (Among other things, it's very hard to guarantee that all references
2866 * to the previous incarnation of @dev have been dropped.)  Allocate
2867 * and register a fresh new struct device instead.
2868 *
2869 * NOTE: _Never_ directly free @dev after calling this function, even
2870 * if it returned an error! Always use put_device() to give up your
2871 * reference instead.
2872 *
2873 * Rule of thumb is: if device_add() succeeds, you should call
2874 * device_del() when you want to get rid of it. If device_add() has
2875 * *not* succeeded, use *only* put_device() to drop the reference
2876 * count.
2877 */
2878int device_add(struct device *dev)
2879{
2880	struct device *parent;
2881	struct kobject *kobj;
2882	struct class_interface *class_intf;
2883	int error = -EINVAL;
2884	struct kobject *glue_dir = NULL;
2885
2886	dev = get_device(dev);
2887	if (!dev)
2888		goto done;
2889
2890	if (!dev->p) {
2891		error = device_private_init(dev);
2892		if (error)
2893			goto done;
2894	}
2895
2896	/*
2897	 * for statically allocated devices, which should all be converted
2898	 * some day, we need to initialize the name. We prevent reading back
2899	 * the name, and force the use of dev_name()
2900	 */
2901	if (dev->init_name) {
2902		dev_set_name(dev, "%s", dev->init_name);
2903		dev->init_name = NULL;
2904	}
2905
2906	/* subsystems can specify simple device enumeration */
2907	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2908		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2909
2910	if (!dev_name(dev)) {
2911		error = -EINVAL;
2912		goto name_error;
2913	}
2914
2915	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2916
2917	parent = get_device(dev->parent);
2918	kobj = get_device_parent(dev, parent);
2919	if (IS_ERR(kobj)) {
2920		error = PTR_ERR(kobj);
2921		goto parent_error;
2922	}
2923	if (kobj)
2924		dev->kobj.parent = kobj;
2925
2926	/* use parent numa_node */
2927	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2928		set_dev_node(dev, dev_to_node(parent));
2929
2930	/* first, register with generic layer. */
2931	/* we require the name to be set before, and pass NULL */
2932	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2933	if (error) {
2934		glue_dir = get_glue_dir(dev);
2935		goto Error;
2936	}
2937
2938	/* notify platform of device entry */
2939	error = device_platform_notify(dev, KOBJ_ADD);
2940	if (error)
2941		goto platform_error;
2942
2943	error = device_create_file(dev, &dev_attr_uevent);
2944	if (error)
2945		goto attrError;
2946
2947	error = device_add_class_symlinks(dev);
2948	if (error)
2949		goto SymlinkError;
2950	error = device_add_attrs(dev);
2951	if (error)
2952		goto AttrsError;
2953	error = bus_add_device(dev);
2954	if (error)
2955		goto BusError;
2956	error = dpm_sysfs_add(dev);
2957	if (error)
2958		goto DPMError;
2959	device_pm_add(dev);
2960
2961	if (MAJOR(dev->devt)) {
2962		error = device_create_file(dev, &dev_attr_dev);
2963		if (error)
2964			goto DevAttrError;
2965
2966		error = device_create_sys_dev_entry(dev);
2967		if (error)
2968			goto SysEntryError;
2969
2970		devtmpfs_create_node(dev);
2971	}
2972
2973	/* Notify clients of device addition.  This call must come
2974	 * after dpm_sysfs_add() and before kobject_uevent().
2975	 */
2976	if (dev->bus)
2977		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2978					     BUS_NOTIFY_ADD_DEVICE, dev);
2979
2980	kobject_uevent(&dev->kobj, KOBJ_ADD);
2981
2982	/*
2983	 * Check if any of the other devices (consumers) have been waiting for
2984	 * this device (supplier) to be added so that they can create a device
2985	 * link to it.
2986	 *
2987	 * This needs to happen after device_pm_add() because device_link_add()
2988	 * requires the supplier be registered before it's called.
2989	 *
2990	 * But this also needs to happen before bus_probe_device() to make sure
2991	 * waiting consumers can link to it before the driver is bound to the
2992	 * device and the driver sync_state callback is called for this device.
2993	 */
2994	if (dev->fwnode && !dev->fwnode->dev) {
2995		dev->fwnode->dev = dev;
2996		fw_devlink_link_device(dev);
2997	}
2998
2999	bus_probe_device(dev);
3000	if (parent)
3001		klist_add_tail(&dev->p->knode_parent,
3002			       &parent->p->klist_children);
3003
3004	if (dev->class) {
3005		mutex_lock(&dev->class->p->mutex);
3006		/* tie the class to the device */
3007		klist_add_tail(&dev->p->knode_class,
3008			       &dev->class->p->klist_devices);
3009
3010		/* notify any interfaces that the device is here */
3011		list_for_each_entry(class_intf,
3012				    &dev->class->p->interfaces, node)
3013			if (class_intf->add_dev)
3014				class_intf->add_dev(dev, class_intf);
3015		mutex_unlock(&dev->class->p->mutex);
3016	}
3017done:
3018	put_device(dev);
3019	return error;
3020 SysEntryError:
3021	if (MAJOR(dev->devt))
3022		device_remove_file(dev, &dev_attr_dev);
3023 DevAttrError:
3024	device_pm_remove(dev);
3025	dpm_sysfs_remove(dev);
3026 DPMError:
3027	bus_remove_device(dev);
3028 BusError:
3029	device_remove_attrs(dev);
3030 AttrsError:
3031	device_remove_class_symlinks(dev);
3032 SymlinkError:
3033	device_remove_file(dev, &dev_attr_uevent);
3034 attrError:
3035	device_platform_notify(dev, KOBJ_REMOVE);
3036platform_error:
3037	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3038	glue_dir = get_glue_dir(dev);
3039	kobject_del(&dev->kobj);
3040 Error:
3041	cleanup_glue_dir(dev, glue_dir);
3042parent_error:
3043	put_device(parent);
3044name_error:
3045	kfree(dev->p);
3046	dev->p = NULL;
3047	goto done;
3048}
3049EXPORT_SYMBOL_GPL(device_add);
3050
3051/**
3052 * device_register - register a device with the system.
3053 * @dev: pointer to the device structure
3054 *
3055 * This happens in two clean steps - initialize the device
3056 * and add it to the system. The two steps can be called
3057 * separately, but this is the easiest and most common.
3058 * I.e. you should only call the two helpers separately if
3059 * have a clearly defined need to use and refcount the device
3060 * before it is added to the hierarchy.
3061 *
3062 * For more information, see the kerneldoc for device_initialize()
3063 * and device_add().
3064 *
3065 * NOTE: _Never_ directly free @dev after calling this function, even
3066 * if it returned an error! Always use put_device() to give up the
3067 * reference initialized in this function instead.
3068 */
3069int device_register(struct device *dev)
3070{
3071	device_initialize(dev);
3072	return device_add(dev);
3073}
3074EXPORT_SYMBOL_GPL(device_register);
3075
3076/**
3077 * get_device - increment reference count for device.
3078 * @dev: device.
3079 *
3080 * This simply forwards the call to kobject_get(), though
3081 * we do take care to provide for the case that we get a NULL
3082 * pointer passed in.
3083 */
3084struct device *get_device(struct device *dev)
3085{
3086	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3087}
3088EXPORT_SYMBOL_GPL(get_device);
3089
3090/**
3091 * put_device - decrement reference count.
3092 * @dev: device in question.
3093 */
3094void put_device(struct device *dev)
3095{
3096	/* might_sleep(); */
3097	if (dev)
3098		kobject_put(&dev->kobj);
3099}
3100EXPORT_SYMBOL_GPL(put_device);
3101
3102bool kill_device(struct device *dev)
3103{
3104	/*
3105	 * Require the device lock and set the "dead" flag to guarantee that
3106	 * the update behavior is consistent with the other bitfields near
3107	 * it and that we cannot have an asynchronous probe routine trying
3108	 * to run while we are tearing out the bus/class/sysfs from
3109	 * underneath the device.
3110	 */
3111	lockdep_assert_held(&dev->mutex);
3112
3113	if (dev->p->dead)
3114		return false;
3115	dev->p->dead = true;
3116	return true;
3117}
3118EXPORT_SYMBOL_GPL(kill_device);
3119
3120/**
3121 * device_del - delete device from system.
3122 * @dev: device.
3123 *
3124 * This is the first part of the device unregistration
3125 * sequence. This removes the device from the lists we control
3126 * from here, has it removed from the other driver model
3127 * subsystems it was added to in device_add(), and removes it
3128 * from the kobject hierarchy.
3129 *
3130 * NOTE: this should be called manually _iff_ device_add() was
3131 * also called manually.
3132 */
3133void device_del(struct device *dev)
3134{
3135	struct device *parent = dev->parent;
3136	struct kobject *glue_dir = NULL;
3137	struct class_interface *class_intf;
3138	unsigned int noio_flag;
3139
3140	device_lock(dev);
3141	kill_device(dev);
3142	device_unlock(dev);
3143
3144	if (dev->fwnode && dev->fwnode->dev == dev)
3145		dev->fwnode->dev = NULL;
3146
3147	/* Notify clients of device removal.  This call must come
3148	 * before dpm_sysfs_remove().
3149	 */
3150	noio_flag = memalloc_noio_save();
3151	if (dev->bus)
3152		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3153					     BUS_NOTIFY_DEL_DEVICE, dev);
3154
3155	dpm_sysfs_remove(dev);
3156	if (parent)
3157		klist_del(&dev->p->knode_parent);
3158	if (MAJOR(dev->devt)) {
3159		devtmpfs_delete_node(dev);
3160		device_remove_sys_dev_entry(dev);
3161		device_remove_file(dev, &dev_attr_dev);
3162	}
3163	if (dev->class) {
3164		device_remove_class_symlinks(dev);
3165
3166		mutex_lock(&dev->class->p->mutex);
3167		/* notify any interfaces that the device is now gone */
3168		list_for_each_entry(class_intf,
3169				    &dev->class->p->interfaces, node)
3170			if (class_intf->remove_dev)
3171				class_intf->remove_dev(dev, class_intf);
3172		/* remove the device from the class list */
3173		klist_del(&dev->p->knode_class);
3174		mutex_unlock(&dev->class->p->mutex);
3175	}
3176	device_remove_file(dev, &dev_attr_uevent);
3177	device_remove_attrs(dev);
3178	bus_remove_device(dev);
3179	device_pm_remove(dev);
3180	driver_deferred_probe_del(dev);
3181	device_platform_notify(dev, KOBJ_REMOVE);
3182	device_remove_properties(dev);
3183	device_links_purge(dev);
3184
3185	if (dev->bus)
3186		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3187					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3188	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3189	glue_dir = get_glue_dir(dev);
3190	kobject_del(&dev->kobj);
3191	cleanup_glue_dir(dev, glue_dir);
3192	memalloc_noio_restore(noio_flag);
3193	put_device(parent);
3194}
3195EXPORT_SYMBOL_GPL(device_del);
3196
3197/**
3198 * device_unregister - unregister device from system.
3199 * @dev: device going away.
3200 *
3201 * We do this in two parts, like we do device_register(). First,
3202 * we remove it from all the subsystems with device_del(), then
3203 * we decrement the reference count via put_device(). If that
3204 * is the final reference count, the device will be cleaned up
3205 * via device_release() above. Otherwise, the structure will
3206 * stick around until the final reference to the device is dropped.
3207 */
3208void device_unregister(struct device *dev)
3209{
3210	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3211	device_del(dev);
3212	put_device(dev);
3213}
3214EXPORT_SYMBOL_GPL(device_unregister);
3215
3216static struct device *prev_device(struct klist_iter *i)
3217{
3218	struct klist_node *n = klist_prev(i);
3219	struct device *dev = NULL;
3220	struct device_private *p;
3221
3222	if (n) {
3223		p = to_device_private_parent(n);
3224		dev = p->device;
3225	}
3226	return dev;
3227}
3228
3229static struct device *next_device(struct klist_iter *i)
3230{
3231	struct klist_node *n = klist_next(i);
3232	struct device *dev = NULL;
3233	struct device_private *p;
3234
3235	if (n) {
3236		p = to_device_private_parent(n);
3237		dev = p->device;
3238	}
3239	return dev;
3240}
3241
3242/**
3243 * device_get_devnode - path of device node file
3244 * @dev: device
3245 * @mode: returned file access mode
3246 * @uid: returned file owner
3247 * @gid: returned file group
3248 * @tmp: possibly allocated string
3249 *
3250 * Return the relative path of a possible device node.
3251 * Non-default names may need to allocate a memory to compose
3252 * a name. This memory is returned in tmp and needs to be
3253 * freed by the caller.
3254 */
3255const char *device_get_devnode(struct device *dev,
3256			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3257			       const char **tmp)
3258{
3259	char *s;
3260
3261	*tmp = NULL;
3262
3263	/* the device type may provide a specific name */
3264	if (dev->type && dev->type->devnode)
3265		*tmp = dev->type->devnode(dev, mode, uid, gid);
3266	if (*tmp)
3267		return *tmp;
3268
3269	/* the class may provide a specific name */
3270	if (dev->class && dev->class->devnode)
3271		*tmp = dev->class->devnode(dev, mode);
3272	if (*tmp)
3273		return *tmp;
3274
3275	/* return name without allocation, tmp == NULL */
3276	if (strchr(dev_name(dev), '!') == NULL)
3277		return dev_name(dev);
3278
3279	/* replace '!' in the name with '/' */
3280	s = kstrdup(dev_name(dev), GFP_KERNEL);
3281	if (!s)
3282		return NULL;
3283	strreplace(s, '!', '/');
3284	return *tmp = s;
3285}
3286
3287/**
3288 * device_for_each_child - device child iterator.
3289 * @parent: parent struct device.
3290 * @fn: function to be called for each device.
3291 * @data: data for the callback.
3292 *
3293 * Iterate over @parent's child devices, and call @fn for each,
3294 * passing it @data.
3295 *
3296 * We check the return of @fn each time. If it returns anything
3297 * other than 0, we break out and return that value.
3298 */
3299int device_for_each_child(struct device *parent, void *data,
3300			  int (*fn)(struct device *dev, void *data))
3301{
3302	struct klist_iter i;
3303	struct device *child;
3304	int error = 0;
3305
3306	if (!parent->p)
3307		return 0;
3308
3309	klist_iter_init(&parent->p->klist_children, &i);
3310	while (!error && (child = next_device(&i)))
3311		error = fn(child, data);
3312	klist_iter_exit(&i);
3313	return error;
3314}
3315EXPORT_SYMBOL_GPL(device_for_each_child);
3316
3317/**
3318 * device_for_each_child_reverse - device child iterator in reversed order.
3319 * @parent: parent struct device.
3320 * @fn: function to be called for each device.
3321 * @data: data for the callback.
3322 *
3323 * Iterate over @parent's child devices, and call @fn for each,
3324 * passing it @data.
3325 *
3326 * We check the return of @fn each time. If it returns anything
3327 * other than 0, we break out and return that value.
3328 */
3329int device_for_each_child_reverse(struct device *parent, void *data,
3330				  int (*fn)(struct device *dev, void *data))
3331{
3332	struct klist_iter i;
3333	struct device *child;
3334	int error = 0;
3335
3336	if (!parent->p)
3337		return 0;
3338
3339	klist_iter_init(&parent->p->klist_children, &i);
3340	while ((child = prev_device(&i)) && !error)
3341		error = fn(child, data);
3342	klist_iter_exit(&i);
3343	return error;
3344}
3345EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3346
3347/**
3348 * device_find_child - device iterator for locating a particular device.
3349 * @parent: parent struct device
3350 * @match: Callback function to check device
3351 * @data: Data to pass to match function
3352 *
3353 * This is similar to the device_for_each_child() function above, but it
3354 * returns a reference to a device that is 'found' for later use, as
3355 * determined by the @match callback.
3356 *
3357 * The callback should return 0 if the device doesn't match and non-zero
3358 * if it does.  If the callback returns non-zero and a reference to the
3359 * current device can be obtained, this function will return to the caller
3360 * and not iterate over any more devices.
3361 *
3362 * NOTE: you will need to drop the reference with put_device() after use.
3363 */
3364struct device *device_find_child(struct device *parent, void *data,
3365				 int (*match)(struct device *dev, void *data))
3366{
3367	struct klist_iter i;
3368	struct device *child;
3369
3370	if (!parent)
3371		return NULL;
3372
3373	klist_iter_init(&parent->p->klist_children, &i);
3374	while ((child = next_device(&i)))
3375		if (match(child, data) && get_device(child))
3376			break;
3377	klist_iter_exit(&i);
3378	return child;
3379}
3380EXPORT_SYMBOL_GPL(device_find_child);
3381
3382/**
3383 * device_find_child_by_name - device iterator for locating a child device.
3384 * @parent: parent struct device
3385 * @name: name of the child device
3386 *
3387 * This is similar to the device_find_child() function above, but it
3388 * returns a reference to a device that has the name @name.
3389 *
3390 * NOTE: you will need to drop the reference with put_device() after use.
3391 */
3392struct device *device_find_child_by_name(struct device *parent,
3393					 const char *name)
3394{
3395	struct klist_iter i;
3396	struct device *child;
3397
3398	if (!parent)
3399		return NULL;
3400
3401	klist_iter_init(&parent->p->klist_children, &i);
3402	while ((child = next_device(&i)))
3403		if (sysfs_streq(dev_name(child), name) && get_device(child))
3404			break;
3405	klist_iter_exit(&i);
3406	return child;
3407}
3408EXPORT_SYMBOL_GPL(device_find_child_by_name);
3409
3410int __init devices_init(void)
3411{
3412	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3413	if (!devices_kset)
3414		return -ENOMEM;
3415	dev_kobj = kobject_create_and_add("dev", NULL);
3416	if (!dev_kobj)
3417		goto dev_kobj_err;
3418	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3419	if (!sysfs_dev_block_kobj)
3420		goto block_kobj_err;
3421	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3422	if (!sysfs_dev_char_kobj)
3423		goto char_kobj_err;
3424
3425	return 0;
3426
3427 char_kobj_err:
3428	kobject_put(sysfs_dev_block_kobj);
3429 block_kobj_err:
3430	kobject_put(dev_kobj);
3431 dev_kobj_err:
3432	kset_unregister(devices_kset);
3433	return -ENOMEM;
3434}
3435
3436static int device_check_offline(struct device *dev, void *not_used)
3437{
3438	int ret;
3439
3440	ret = device_for_each_child(dev, NULL, device_check_offline);
3441	if (ret)
3442		return ret;
3443
3444	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3445}
3446
3447/**
3448 * device_offline - Prepare the device for hot-removal.
3449 * @dev: Device to be put offline.
3450 *
3451 * Execute the device bus type's .offline() callback, if present, to prepare
3452 * the device for a subsequent hot-removal.  If that succeeds, the device must
3453 * not be used until either it is removed or its bus type's .online() callback
3454 * is executed.
3455 *
3456 * Call under device_hotplug_lock.
3457 */
3458int device_offline(struct device *dev)
3459{
3460	int ret;
3461
3462	if (dev->offline_disabled)
3463		return -EPERM;
3464
3465	ret = device_for_each_child(dev, NULL, device_check_offline);
3466	if (ret)
3467		return ret;
3468
3469	device_lock(dev);
3470	if (device_supports_offline(dev)) {
3471		if (dev->offline) {
3472			ret = 1;
3473		} else {
3474			ret = dev->bus->offline(dev);
3475			if (!ret) {
3476				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3477				dev->offline = true;
3478			}
3479		}
3480	}
3481	device_unlock(dev);
3482
3483	return ret;
3484}
3485
3486/**
3487 * device_online - Put the device back online after successful device_offline().
3488 * @dev: Device to be put back online.
3489 *
3490 * If device_offline() has been successfully executed for @dev, but the device
3491 * has not been removed subsequently, execute its bus type's .online() callback
3492 * to indicate that the device can be used again.
3493 *
3494 * Call under device_hotplug_lock.
3495 */
3496int device_online(struct device *dev)
3497{
3498	int ret = 0;
3499
3500	device_lock(dev);
3501	if (device_supports_offline(dev)) {
3502		if (dev->offline) {
3503			ret = dev->bus->online(dev);
3504			if (!ret) {
3505				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3506				dev->offline = false;
3507			}
3508		} else {
3509			ret = 1;
3510		}
3511	}
3512	device_unlock(dev);
3513
3514	return ret;
3515}
3516
3517struct root_device {
3518	struct device dev;
3519	struct module *owner;
3520};
3521
3522static inline struct root_device *to_root_device(struct device *d)
3523{
3524	return container_of(d, struct root_device, dev);
3525}
3526
3527static void root_device_release(struct device *dev)
3528{
3529	kfree(to_root_device(dev));
3530}
3531
3532/**
3533 * __root_device_register - allocate and register a root device
3534 * @name: root device name
3535 * @owner: owner module of the root device, usually THIS_MODULE
3536 *
3537 * This function allocates a root device and registers it
3538 * using device_register(). In order to free the returned
3539 * device, use root_device_unregister().
3540 *
3541 * Root devices are dummy devices which allow other devices
3542 * to be grouped under /sys/devices. Use this function to
3543 * allocate a root device and then use it as the parent of
3544 * any device which should appear under /sys/devices/{name}
3545 *
3546 * The /sys/devices/{name} directory will also contain a
3547 * 'module' symlink which points to the @owner directory
3548 * in sysfs.
3549 *
3550 * Returns &struct device pointer on success, or ERR_PTR() on error.
3551 *
3552 * Note: You probably want to use root_device_register().
3553 */
3554struct device *__root_device_register(const char *name, struct module *owner)
3555{
3556	struct root_device *root;
3557	int err = -ENOMEM;
3558
3559	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3560	if (!root)
3561		return ERR_PTR(err);
3562
3563	err = dev_set_name(&root->dev, "%s", name);
3564	if (err) {
3565		kfree(root);
3566		return ERR_PTR(err);
3567	}
3568
3569	root->dev.release = root_device_release;
3570
3571	err = device_register(&root->dev);
3572	if (err) {
3573		put_device(&root->dev);
3574		return ERR_PTR(err);
3575	}
3576
3577#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3578	if (owner) {
3579		struct module_kobject *mk = &owner->mkobj;
3580
3581		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3582		if (err) {
3583			device_unregister(&root->dev);
3584			return ERR_PTR(err);
3585		}
3586		root->owner = owner;
3587	}
3588#endif
3589
3590	return &root->dev;
3591}
3592EXPORT_SYMBOL_GPL(__root_device_register);
3593
3594/**
3595 * root_device_unregister - unregister and free a root device
3596 * @dev: device going away
3597 *
3598 * This function unregisters and cleans up a device that was created by
3599 * root_device_register().
3600 */
3601void root_device_unregister(struct device *dev)
3602{
3603	struct root_device *root = to_root_device(dev);
3604
3605	if (root->owner)
3606		sysfs_remove_link(&root->dev.kobj, "module");
3607
3608	device_unregister(dev);
3609}
3610EXPORT_SYMBOL_GPL(root_device_unregister);
3611
3612
3613static void device_create_release(struct device *dev)
3614{
3615	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3616	kfree(dev);
3617}
3618
3619static __printf(6, 0) struct device *
3620device_create_groups_vargs(struct class *class, struct device *parent,
3621			   dev_t devt, void *drvdata,
3622			   const struct attribute_group **groups,
3623			   const char *fmt, va_list args)
3624{
3625	struct device *dev = NULL;
3626	int retval = -ENODEV;
3627
3628	if (class == NULL || IS_ERR(class))
3629		goto error;
3630
3631	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3632	if (!dev) {
3633		retval = -ENOMEM;
3634		goto error;
3635	}
3636
3637	device_initialize(dev);
3638	dev->devt = devt;
3639	dev->class = class;
3640	dev->parent = parent;
3641	dev->groups = groups;
3642	dev->release = device_create_release;
3643	dev_set_drvdata(dev, drvdata);
3644
3645	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3646	if (retval)
3647		goto error;
3648
3649	retval = device_add(dev);
3650	if (retval)
3651		goto error;
3652
3653	return dev;
3654
3655error:
3656	put_device(dev);
3657	return ERR_PTR(retval);
3658}
3659
3660/**
3661 * device_create - creates a device and registers it with sysfs
3662 * @class: pointer to the struct class that this device should be registered to
3663 * @parent: pointer to the parent struct device of this new device, if any
3664 * @devt: the dev_t for the char device to be added
3665 * @drvdata: the data to be added to the device for callbacks
3666 * @fmt: string for the device's name
3667 *
3668 * This function can be used by char device classes.  A struct device
3669 * will be created in sysfs, registered to the specified class.
3670 *
3671 * A "dev" file will be created, showing the dev_t for the device, if
3672 * the dev_t is not 0,0.
3673 * If a pointer to a parent struct device is passed in, the newly created
3674 * struct device will be a child of that device in sysfs.
3675 * The pointer to the struct device will be returned from the call.
3676 * Any further sysfs files that might be required can be created using this
3677 * pointer.
3678 *
3679 * Returns &struct device pointer on success, or ERR_PTR() on error.
3680 *
3681 * Note: the struct class passed to this function must have previously
3682 * been created with a call to class_create().
3683 */
3684struct device *device_create(struct class *class, struct device *parent,
3685			     dev_t devt, void *drvdata, const char *fmt, ...)
3686{
3687	va_list vargs;
3688	struct device *dev;
3689
3690	va_start(vargs, fmt);
3691	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3692					  fmt, vargs);
3693	va_end(vargs);
3694	return dev;
3695}
3696EXPORT_SYMBOL_GPL(device_create);
3697
3698/**
3699 * device_create_with_groups - creates a device and registers it with sysfs
3700 * @class: pointer to the struct class that this device should be registered to
3701 * @parent: pointer to the parent struct device of this new device, if any
3702 * @devt: the dev_t for the char device to be added
3703 * @drvdata: the data to be added to the device for callbacks
3704 * @groups: NULL-terminated list of attribute groups to be created
3705 * @fmt: string for the device's name
3706 *
3707 * This function can be used by char device classes.  A struct device
3708 * will be created in sysfs, registered to the specified class.
3709 * Additional attributes specified in the groups parameter will also
3710 * be created automatically.
3711 *
3712 * A "dev" file will be created, showing the dev_t for the device, if
3713 * the dev_t is not 0,0.
3714 * If a pointer to a parent struct device is passed in, the newly created
3715 * struct device will be a child of that device in sysfs.
3716 * The pointer to the struct device will be returned from the call.
3717 * Any further sysfs files that might be required can be created using this
3718 * pointer.
3719 *
3720 * Returns &struct device pointer on success, or ERR_PTR() on error.
3721 *
3722 * Note: the struct class passed to this function must have previously
3723 * been created with a call to class_create().
3724 */
3725struct device *device_create_with_groups(struct class *class,
3726					 struct device *parent, dev_t devt,
3727					 void *drvdata,
3728					 const struct attribute_group **groups,
3729					 const char *fmt, ...)
3730{
3731	va_list vargs;
3732	struct device *dev;
3733
3734	va_start(vargs, fmt);
3735	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3736					 fmt, vargs);
3737	va_end(vargs);
3738	return dev;
3739}
3740EXPORT_SYMBOL_GPL(device_create_with_groups);
3741
3742/**
3743 * device_destroy - removes a device that was created with device_create()
3744 * @class: pointer to the struct class that this device was registered with
3745 * @devt: the dev_t of the device that was previously registered
3746 *
3747 * This call unregisters and cleans up a device that was created with a
3748 * call to device_create().
3749 */
3750void device_destroy(struct class *class, dev_t devt)
3751{
3752	struct device *dev;
3753
3754	dev = class_find_device_by_devt(class, devt);
3755	if (dev) {
3756		put_device(dev);
3757		device_unregister(dev);
3758	}
3759}
3760EXPORT_SYMBOL_GPL(device_destroy);
3761
3762/**
3763 * device_rename - renames a device
3764 * @dev: the pointer to the struct device to be renamed
3765 * @new_name: the new name of the device
3766 *
3767 * It is the responsibility of the caller to provide mutual
3768 * exclusion between two different calls of device_rename
3769 * on the same device to ensure that new_name is valid and
3770 * won't conflict with other devices.
3771 *
3772 * Note: Don't call this function.  Currently, the networking layer calls this
3773 * function, but that will change.  The following text from Kay Sievers offers
3774 * some insight:
3775 *
3776 * Renaming devices is racy at many levels, symlinks and other stuff are not
3777 * replaced atomically, and you get a "move" uevent, but it's not easy to
3778 * connect the event to the old and new device. Device nodes are not renamed at
3779 * all, there isn't even support for that in the kernel now.
3780 *
3781 * In the meantime, during renaming, your target name might be taken by another
3782 * driver, creating conflicts. Or the old name is taken directly after you
3783 * renamed it -- then you get events for the same DEVPATH, before you even see
3784 * the "move" event. It's just a mess, and nothing new should ever rely on
3785 * kernel device renaming. Besides that, it's not even implemented now for
3786 * other things than (driver-core wise very simple) network devices.
3787 *
3788 * We are currently about to change network renaming in udev to completely
3789 * disallow renaming of devices in the same namespace as the kernel uses,
3790 * because we can't solve the problems properly, that arise with swapping names
3791 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3792 * be allowed to some other name than eth[0-9]*, for the aforementioned
3793 * reasons.
3794 *
3795 * Make up a "real" name in the driver before you register anything, or add
3796 * some other attributes for userspace to find the device, or use udev to add
3797 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3798 * don't even want to get into that and try to implement the missing pieces in
3799 * the core. We really have other pieces to fix in the driver core mess. :)
3800 */
3801int device_rename(struct device *dev, const char *new_name)
3802{
3803	struct kobject *kobj = &dev->kobj;
3804	char *old_device_name = NULL;
3805	int error;
3806
3807	dev = get_device(dev);
3808	if (!dev)
3809		return -EINVAL;
3810
3811	dev_dbg(dev, "renaming to %s\n", new_name);
3812
3813	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3814	if (!old_device_name) {
3815		error = -ENOMEM;
3816		goto out;
3817	}
3818
3819	if (dev->class) {
3820		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3821					     kobj, old_device_name,
3822					     new_name, kobject_namespace(kobj));
3823		if (error)
3824			goto out;
3825	}
3826
3827	error = kobject_rename(kobj, new_name);
3828	if (error)
3829		goto out;
3830
3831out:
3832	put_device(dev);
3833
3834	kfree(old_device_name);
3835
3836	return error;
3837}
3838EXPORT_SYMBOL_GPL(device_rename);
3839
3840static int device_move_class_links(struct device *dev,
3841				   struct device *old_parent,
3842				   struct device *new_parent)
3843{
3844	int error = 0;
3845
3846	if (old_parent)
3847		sysfs_remove_link(&dev->kobj, "device");
3848	if (new_parent)
3849		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3850					  "device");
3851	return error;
3852}
3853
3854/**
3855 * device_move - moves a device to a new parent
3856 * @dev: the pointer to the struct device to be moved
3857 * @new_parent: the new parent of the device (can be NULL)
3858 * @dpm_order: how to reorder the dpm_list
3859 */
3860int device_move(struct device *dev, struct device *new_parent,
3861		enum dpm_order dpm_order)
3862{
3863	int error;
3864	struct device *old_parent;
3865	struct kobject *new_parent_kobj;
3866
3867	dev = get_device(dev);
3868	if (!dev)
3869		return -EINVAL;
3870
3871	device_pm_lock();
3872	new_parent = get_device(new_parent);
3873	new_parent_kobj = get_device_parent(dev, new_parent);
3874	if (IS_ERR(new_parent_kobj)) {
3875		error = PTR_ERR(new_parent_kobj);
3876		put_device(new_parent);
3877		goto out;
3878	}
3879
3880	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3881		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3882	error = kobject_move(&dev->kobj, new_parent_kobj);
3883	if (error) {
3884		cleanup_glue_dir(dev, new_parent_kobj);
3885		put_device(new_parent);
3886		goto out;
3887	}
3888	old_parent = dev->parent;
3889	dev->parent = new_parent;
3890	if (old_parent)
3891		klist_remove(&dev->p->knode_parent);
3892	if (new_parent) {
3893		klist_add_tail(&dev->p->knode_parent,
3894			       &new_parent->p->klist_children);
3895		set_dev_node(dev, dev_to_node(new_parent));
3896	}
3897
3898	if (dev->class) {
3899		error = device_move_class_links(dev, old_parent, new_parent);
3900		if (error) {
3901			/* We ignore errors on cleanup since we're hosed anyway... */
3902			device_move_class_links(dev, new_parent, old_parent);
3903			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3904				if (new_parent)
3905					klist_remove(&dev->p->knode_parent);
3906				dev->parent = old_parent;
3907				if (old_parent) {
3908					klist_add_tail(&dev->p->knode_parent,
3909						       &old_parent->p->klist_children);
3910					set_dev_node(dev, dev_to_node(old_parent));
3911				}
3912			}
3913			cleanup_glue_dir(dev, new_parent_kobj);
3914			put_device(new_parent);
3915			goto out;
3916		}
3917	}
3918	switch (dpm_order) {
3919	case DPM_ORDER_NONE:
3920		break;
3921	case DPM_ORDER_DEV_AFTER_PARENT:
3922		device_pm_move_after(dev, new_parent);
3923		devices_kset_move_after(dev, new_parent);
3924		break;
3925	case DPM_ORDER_PARENT_BEFORE_DEV:
3926		device_pm_move_before(new_parent, dev);
3927		devices_kset_move_before(new_parent, dev);
3928		break;
3929	case DPM_ORDER_DEV_LAST:
3930		device_pm_move_last(dev);
3931		devices_kset_move_last(dev);
3932		break;
3933	}
3934
3935	put_device(old_parent);
3936out:
3937	device_pm_unlock();
3938	put_device(dev);
3939	return error;
3940}
3941EXPORT_SYMBOL_GPL(device_move);
3942
3943static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3944				     kgid_t kgid)
3945{
3946	struct kobject *kobj = &dev->kobj;
3947	struct class *class = dev->class;
3948	const struct device_type *type = dev->type;
3949	int error;
3950
3951	if (class) {
3952		/*
3953		 * Change the device groups of the device class for @dev to
3954		 * @kuid/@kgid.
3955		 */
3956		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3957						  kgid);
3958		if (error)
3959			return error;
3960	}
3961
3962	if (type) {
3963		/*
3964		 * Change the device groups of the device type for @dev to
3965		 * @kuid/@kgid.
3966		 */
3967		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3968						  kgid);
3969		if (error)
3970			return error;
3971	}
3972
3973	/* Change the device groups of @dev to @kuid/@kgid. */
3974	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3975	if (error)
3976		return error;
3977
3978	if (device_supports_offline(dev) && !dev->offline_disabled) {
3979		/* Change online device attributes of @dev to @kuid/@kgid. */
3980		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3981						kuid, kgid);
3982		if (error)
3983			return error;
3984	}
3985
3986	return 0;
3987}
3988
3989/**
3990 * device_change_owner - change the owner of an existing device.
3991 * @dev: device.
3992 * @kuid: new owner's kuid
3993 * @kgid: new owner's kgid
3994 *
3995 * This changes the owner of @dev and its corresponding sysfs entries to
3996 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3997 * core.
3998 *
3999 * Returns 0 on success or error code on failure.
4000 */
4001int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4002{
4003	int error;
4004	struct kobject *kobj = &dev->kobj;
4005
4006	dev = get_device(dev);
4007	if (!dev)
4008		return -EINVAL;
4009
4010	/*
4011	 * Change the kobject and the default attributes and groups of the
4012	 * ktype associated with it to @kuid/@kgid.
4013	 */
4014	error = sysfs_change_owner(kobj, kuid, kgid);
4015	if (error)
4016		goto out;
4017
4018	/*
4019	 * Change the uevent file for @dev to the new owner. The uevent file
4020	 * was created in a separate step when @dev got added and we mirror
4021	 * that step here.
4022	 */
4023	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4024					kgid);
4025	if (error)
4026		goto out;
4027
4028	/*
4029	 * Change the device groups, the device groups associated with the
4030	 * device class, and the groups associated with the device type of @dev
4031	 * to @kuid/@kgid.
4032	 */
4033	error = device_attrs_change_owner(dev, kuid, kgid);
4034	if (error)
4035		goto out;
4036
4037	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4038	if (error)
4039		goto out;
4040
4041#ifdef CONFIG_BLOCK
4042	if (sysfs_deprecated && dev->class == &block_class)
4043		goto out;
4044#endif
4045
4046	/*
4047	 * Change the owner of the symlink located in the class directory of
4048	 * the device class associated with @dev which points to the actual
4049	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4050	 * symlink shows the same permissions as its target.
4051	 */
4052	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4053					dev_name(dev), kuid, kgid);
4054	if (error)
4055		goto out;
4056
4057out:
4058	put_device(dev);
4059	return error;
4060}
4061EXPORT_SYMBOL_GPL(device_change_owner);
4062
4063/**
4064 * device_shutdown - call ->shutdown() on each device to shutdown.
4065 */
4066void device_shutdown(void)
4067{
4068	struct device *dev, *parent;
4069
4070	wait_for_device_probe();
4071	device_block_probing();
4072
4073	cpufreq_suspend();
4074
4075	spin_lock(&devices_kset->list_lock);
4076	/*
4077	 * Walk the devices list backward, shutting down each in turn.
4078	 * Beware that device unplug events may also start pulling
4079	 * devices offline, even as the system is shutting down.
4080	 */
4081	while (!list_empty(&devices_kset->list)) {
4082		dev = list_entry(devices_kset->list.prev, struct device,
4083				kobj.entry);
4084
4085		/*
4086		 * hold reference count of device's parent to
4087		 * prevent it from being freed because parent's
4088		 * lock is to be held
4089		 */
4090		parent = get_device(dev->parent);
4091		get_device(dev);
4092		/*
4093		 * Make sure the device is off the kset list, in the
4094		 * event that dev->*->shutdown() doesn't remove it.
4095		 */
4096		list_del_init(&dev->kobj.entry);
4097		spin_unlock(&devices_kset->list_lock);
4098
4099		/* hold lock to avoid race with probe/release */
4100		if (parent)
4101			device_lock(parent);
4102		device_lock(dev);
4103
4104		/* Don't allow any more runtime suspends */
4105		pm_runtime_get_noresume(dev);
4106		pm_runtime_barrier(dev);
4107
4108		if (dev->class && dev->class->shutdown_pre) {
4109			if (initcall_debug)
4110				dev_info(dev, "shutdown_pre\n");
4111			dev->class->shutdown_pre(dev);
4112		}
4113		if (dev->bus && dev->bus->shutdown) {
4114			if (initcall_debug)
4115				dev_info(dev, "shutdown\n");
4116			dev->bus->shutdown(dev);
4117		} else if (dev->driver && dev->driver->shutdown) {
4118			if (initcall_debug)
4119				dev_info(dev, "shutdown\n");
4120			dev->driver->shutdown(dev);
4121		}
4122
4123		device_unlock(dev);
4124		if (parent)
4125			device_unlock(parent);
4126
4127		put_device(dev);
4128		put_device(parent);
4129
4130		spin_lock(&devices_kset->list_lock);
4131	}
4132	spin_unlock(&devices_kset->list_lock);
4133}
4134
4135/*
4136 * Device logging functions
4137 */
4138
4139#ifdef CONFIG_PRINTK
4140static void
4141set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4142{
4143	const char *subsys;
4144
4145	memset(dev_info, 0, sizeof(*dev_info));
4146
4147	if (dev->class)
4148		subsys = dev->class->name;
4149	else if (dev->bus)
4150		subsys = dev->bus->name;
4151	else
4152		return;
4153
4154	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4155
4156	/*
4157	 * Add device identifier DEVICE=:
4158	 *   b12:8         block dev_t
4159	 *   c127:3        char dev_t
4160	 *   n8            netdev ifindex
4161	 *   +sound:card0  subsystem:devname
4162	 */
4163	if (MAJOR(dev->devt)) {
4164		char c;
4165
4166		if (strcmp(subsys, "block") == 0)
4167			c = 'b';
4168		else
4169			c = 'c';
4170
4171		snprintf(dev_info->device, sizeof(dev_info->device),
4172			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4173	} else if (strcmp(subsys, "net") == 0) {
4174		struct net_device *net = to_net_dev(dev);
4175
4176		snprintf(dev_info->device, sizeof(dev_info->device),
4177			 "n%u", net->ifindex);
4178	} else {
4179		snprintf(dev_info->device, sizeof(dev_info->device),
4180			 "+%s:%s", subsys, dev_name(dev));
4181	}
4182}
4183
4184int dev_vprintk_emit(int level, const struct device *dev,
4185		     const char *fmt, va_list args)
4186{
4187	struct dev_printk_info dev_info;
4188
4189	set_dev_info(dev, &dev_info);
4190
4191	return vprintk_emit(0, level, &dev_info, fmt, args);
4192}
4193EXPORT_SYMBOL(dev_vprintk_emit);
4194
4195int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4196{
4197	va_list args;
4198	int r;
4199
4200	va_start(args, fmt);
4201
4202	r = dev_vprintk_emit(level, dev, fmt, args);
4203
4204	va_end(args);
4205
4206	return r;
4207}
4208EXPORT_SYMBOL(dev_printk_emit);
4209
4210static void __dev_printk(const char *level, const struct device *dev,
4211			struct va_format *vaf)
4212{
4213	if (dev)
4214		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4215				dev_driver_string(dev), dev_name(dev), vaf);
4216	else
4217		printk("%s(NULL device *): %pV", level, vaf);
4218}
4219
4220void dev_printk(const char *level, const struct device *dev,
4221		const char *fmt, ...)
4222{
4223	struct va_format vaf;
4224	va_list args;
4225
4226	va_start(args, fmt);
4227
4228	vaf.fmt = fmt;
4229	vaf.va = &args;
4230
4231	__dev_printk(level, dev, &vaf);
4232
4233	va_end(args);
4234}
4235EXPORT_SYMBOL(dev_printk);
4236
4237#define define_dev_printk_level(func, kern_level)		\
4238void func(const struct device *dev, const char *fmt, ...)	\
4239{								\
4240	struct va_format vaf;					\
4241	va_list args;						\
4242								\
4243	va_start(args, fmt);					\
4244								\
4245	vaf.fmt = fmt;						\
4246	vaf.va = &args;						\
4247								\
4248	__dev_printk(kern_level, dev, &vaf);			\
4249								\
4250	va_end(args);						\
4251}								\
4252EXPORT_SYMBOL(func);
4253
4254define_dev_printk_level(_dev_emerg, KERN_EMERG);
4255define_dev_printk_level(_dev_alert, KERN_ALERT);
4256define_dev_printk_level(_dev_crit, KERN_CRIT);
4257define_dev_printk_level(_dev_err, KERN_ERR);
4258define_dev_printk_level(_dev_warn, KERN_WARNING);
4259define_dev_printk_level(_dev_notice, KERN_NOTICE);
4260define_dev_printk_level(_dev_info, KERN_INFO);
4261
4262#endif
4263
4264/**
4265 * dev_err_probe - probe error check and log helper
4266 * @dev: the pointer to the struct device
4267 * @err: error value to test
4268 * @fmt: printf-style format string
4269 * @...: arguments as specified in the format string
4270 *
4271 * This helper implements common pattern present in probe functions for error
4272 * checking: print debug or error message depending if the error value is
4273 * -EPROBE_DEFER and propagate error upwards.
4274 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4275 * checked later by reading devices_deferred debugfs attribute.
4276 * It replaces code sequence::
4277 *
4278 * 	if (err != -EPROBE_DEFER)
4279 * 		dev_err(dev, ...);
4280 * 	else
4281 * 		dev_dbg(dev, ...);
4282 * 	return err;
4283 *
4284 * with::
4285 *
4286 * 	return dev_err_probe(dev, err, ...);
4287 *
4288 * Returns @err.
4289 *
4290 */
4291int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4292{
4293	struct va_format vaf;
4294	va_list args;
4295
4296	va_start(args, fmt);
4297	vaf.fmt = fmt;
4298	vaf.va = &args;
4299
4300	if (err != -EPROBE_DEFER) {
4301		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4302	} else {
4303		device_set_deferred_probe_reason(dev, &vaf);
4304		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4305	}
4306
4307	va_end(args);
4308
4309	return err;
4310}
4311EXPORT_SYMBOL_GPL(dev_err_probe);
4312
4313static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4314{
4315	return fwnode && !IS_ERR(fwnode->secondary);
4316}
4317
4318/**
4319 * set_primary_fwnode - Change the primary firmware node of a given device.
4320 * @dev: Device to handle.
4321 * @fwnode: New primary firmware node of the device.
4322 *
4323 * Set the device's firmware node pointer to @fwnode, but if a secondary
4324 * firmware node of the device is present, preserve it.
4325 */
4326void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4327{
4328	struct device *parent = dev->parent;
4329	struct fwnode_handle *fn = dev->fwnode;
4330
4331	if (fwnode) {
4332		if (fwnode_is_primary(fn))
4333			fn = fn->secondary;
4334
4335		if (fn) {
4336			WARN_ON(fwnode->secondary);
4337			fwnode->secondary = fn;
4338		}
4339		dev->fwnode = fwnode;
4340	} else {
4341		if (fwnode_is_primary(fn)) {
4342			dev->fwnode = fn->secondary;
4343			if (!(parent && fn == parent->fwnode))
4344				fn->secondary = NULL;
4345		} else {
4346			dev->fwnode = NULL;
4347		}
4348	}
4349}
4350EXPORT_SYMBOL_GPL(set_primary_fwnode);
4351
4352/**
4353 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4354 * @dev: Device to handle.
4355 * @fwnode: New secondary firmware node of the device.
4356 *
4357 * If a primary firmware node of the device is present, set its secondary
4358 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4359 * @fwnode.
4360 */
4361void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4362{
4363	if (fwnode)
4364		fwnode->secondary = ERR_PTR(-ENODEV);
4365
4366	if (fwnode_is_primary(dev->fwnode))
4367		dev->fwnode->secondary = fwnode;
4368	else
4369		dev->fwnode = fwnode;
4370}
4371EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4372
4373/**
4374 * device_set_of_node_from_dev - reuse device-tree node of another device
4375 * @dev: device whose device-tree node is being set
4376 * @dev2: device whose device-tree node is being reused
4377 *
4378 * Takes another reference to the new device-tree node after first dropping
4379 * any reference held to the old node.
4380 */
4381void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4382{
4383	of_node_put(dev->of_node);
4384	dev->of_node = of_node_get(dev2->of_node);
4385	dev->of_node_reused = true;
4386}
4387EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4388
4389void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4390{
4391	dev->fwnode = fwnode;
4392	dev->of_node = to_of_node(fwnode);
4393}
4394EXPORT_SYMBOL_GPL(device_set_node);
4395
4396int device_match_name(struct device *dev, const void *name)
4397{
4398	return sysfs_streq(dev_name(dev), name);
4399}
4400EXPORT_SYMBOL_GPL(device_match_name);
4401
4402int device_match_of_node(struct device *dev, const void *np)
4403{
4404	return dev->of_node == np;
4405}
4406EXPORT_SYMBOL_GPL(device_match_of_node);
4407
4408int device_match_fwnode(struct device *dev, const void *fwnode)
4409{
4410	return dev_fwnode(dev) == fwnode;
4411}
4412EXPORT_SYMBOL_GPL(device_match_fwnode);
4413
4414int device_match_devt(struct device *dev, const void *pdevt)
4415{
4416	return dev->devt == *(dev_t *)pdevt;
4417}
4418EXPORT_SYMBOL_GPL(device_match_devt);
4419
4420int device_match_acpi_dev(struct device *dev, const void *adev)
4421{
4422	return ACPI_COMPANION(dev) == adev;
4423}
4424EXPORT_SYMBOL(device_match_acpi_dev);
4425
4426int device_match_any(struct device *dev, const void *unused)
4427{
4428	return 1;
4429}
4430EXPORT_SYMBOL_GPL(device_match_any);
4431