1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sysfs.h>
32
33 #include "base.h"
34 #include "power/power.h"
35
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
sysfs_deprecated_setup(char *arg)42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48
49 /* Device links support. */
50 static LIST_HEAD(wait_for_suppliers);
51 static DEFINE_MUTEX(wfs_lock);
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static unsigned int defer_fw_devlink_count;
55 static LIST_HEAD(deferred_fw_devlink);
56 static DEFINE_MUTEX(defer_fw_devlink_lock);
57 static bool fw_devlink_is_permissive(void);
58
59 #ifdef CONFIG_SRCU
60 static DEFINE_MUTEX(device_links_lock);
61 DEFINE_STATIC_SRCU(device_links_srcu);
62
device_links_write_lock(void)63 static inline void device_links_write_lock(void)
64 {
65 mutex_lock(&device_links_lock);
66 }
67
device_links_write_unlock(void)68 static inline void device_links_write_unlock(void)
69 {
70 mutex_unlock(&device_links_lock);
71 }
72
73 int device_links_read_lock(void) __acquires(&device_links_srcu)
74 {
75 return srcu_read_lock(&device_links_srcu);
76 }
77
78 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
79 {
80 srcu_read_unlock(&device_links_srcu, idx);
81 }
82
device_links_read_lock_held(void)83 int device_links_read_lock_held(void)
84 {
85 return srcu_read_lock_held(&device_links_srcu);
86 }
87
device_link_synchronize_removal(void)88 static void device_link_synchronize_removal(void)
89 {
90 synchronize_srcu(&device_links_srcu);
91 }
92 #else /* !CONFIG_SRCU */
93 static DECLARE_RWSEM(device_links_lock);
94
device_links_write_lock(void)95 static inline void device_links_write_lock(void)
96 {
97 down_write(&device_links_lock);
98 }
99
device_links_write_unlock(void)100 static inline void device_links_write_unlock(void)
101 {
102 up_write(&device_links_lock);
103 }
104
device_links_read_lock(void)105 int device_links_read_lock(void)
106 {
107 down_read(&device_links_lock);
108 return 0;
109 }
110
device_links_read_unlock(int not_used)111 void device_links_read_unlock(int not_used)
112 {
113 up_read(&device_links_lock);
114 }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)117 int device_links_read_lock_held(void)
118 {
119 return lockdep_is_held(&device_links_lock);
120 }
121 #endif
122
device_link_synchronize_removal(void)123 static inline void device_link_synchronize_removal(void)
124 {
125 }
126 #endif /* !CONFIG_SRCU */
127
device_is_ancestor(struct device *dev, struct device *target)128 static bool device_is_ancestor(struct device *dev, struct device *target)
129 {
130 while (target->parent) {
131 target = target->parent;
132 if (dev == target)
133 return true;
134 }
135 return false;
136 }
137
138 /**
139 * device_is_dependent - Check if one device depends on another one
140 * @dev: Device to check dependencies for.
141 * @target: Device to check against.
142 *
143 * Check if @target depends on @dev or any device dependent on it (its child or
144 * its consumer etc). Return 1 if that is the case or 0 otherwise.
145 */
device_is_dependent(struct device *dev, void *target)146 int device_is_dependent(struct device *dev, void *target)
147 {
148 struct device_link *link;
149 int ret;
150
151 /*
152 * The "ancestors" check is needed to catch the case when the target
153 * device has not been completely initialized yet and it is still
154 * missing from the list of children of its parent device.
155 */
156 if (dev == target || device_is_ancestor(dev, target))
157 return 1;
158
159 ret = device_for_each_child(dev, target, device_is_dependent);
160 if (ret)
161 return ret;
162
163 list_for_each_entry(link, &dev->links.consumers, s_node) {
164 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
165 continue;
166
167 if (link->consumer == target)
168 return 1;
169
170 ret = device_is_dependent(link->consumer, target);
171 if (ret)
172 break;
173 }
174 return ret;
175 }
176
device_link_init_status(struct device_link *link, struct device *consumer, struct device *supplier)177 static void device_link_init_status(struct device_link *link,
178 struct device *consumer,
179 struct device *supplier)
180 {
181 switch (supplier->links.status) {
182 case DL_DEV_PROBING:
183 switch (consumer->links.status) {
184 case DL_DEV_PROBING:
185 /*
186 * A consumer driver can create a link to a supplier
187 * that has not completed its probing yet as long as it
188 * knows that the supplier is already functional (for
189 * example, it has just acquired some resources from the
190 * supplier).
191 */
192 link->status = DL_STATE_CONSUMER_PROBE;
193 break;
194 default:
195 link->status = DL_STATE_DORMANT;
196 break;
197 }
198 break;
199 case DL_DEV_DRIVER_BOUND:
200 switch (consumer->links.status) {
201 case DL_DEV_PROBING:
202 link->status = DL_STATE_CONSUMER_PROBE;
203 break;
204 case DL_DEV_DRIVER_BOUND:
205 link->status = DL_STATE_ACTIVE;
206 break;
207 default:
208 link->status = DL_STATE_AVAILABLE;
209 break;
210 }
211 break;
212 case DL_DEV_UNBINDING:
213 link->status = DL_STATE_SUPPLIER_UNBIND;
214 break;
215 default:
216 link->status = DL_STATE_DORMANT;
217 break;
218 }
219 }
220
device_reorder_to_tail(struct device *dev, void *not_used)221 static int device_reorder_to_tail(struct device *dev, void *not_used)
222 {
223 struct device_link *link;
224
225 /*
226 * Devices that have not been registered yet will be put to the ends
227 * of the lists during the registration, so skip them here.
228 */
229 if (device_is_registered(dev))
230 devices_kset_move_last(dev);
231
232 if (device_pm_initialized(dev))
233 device_pm_move_last(dev);
234
235 device_for_each_child(dev, NULL, device_reorder_to_tail);
236 list_for_each_entry(link, &dev->links.consumers, s_node) {
237 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
238 continue;
239 device_reorder_to_tail(link->consumer, NULL);
240 }
241
242 return 0;
243 }
244
245 /**
246 * device_pm_move_to_tail - Move set of devices to the end of device lists
247 * @dev: Device to move
248 *
249 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
250 *
251 * It moves the @dev along with all of its children and all of its consumers
252 * to the ends of the device_kset and dpm_list, recursively.
253 */
device_pm_move_to_tail(struct device *dev)254 void device_pm_move_to_tail(struct device *dev)
255 {
256 int idx;
257
258 idx = device_links_read_lock();
259 device_pm_lock();
260 device_reorder_to_tail(dev, NULL);
261 device_pm_unlock();
262 device_links_read_unlock(idx);
263 }
264
265 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
266
status_show(struct device *dev, struct device_attribute *attr, char *buf)267 static ssize_t status_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 const char *output;
271
272 switch (to_devlink(dev)->status) {
273 case DL_STATE_NONE:
274 output = "not tracked";
275 break;
276 case DL_STATE_DORMANT:
277 output = "dormant";
278 break;
279 case DL_STATE_AVAILABLE:
280 output = "available";
281 break;
282 case DL_STATE_CONSUMER_PROBE:
283 output = "consumer probing";
284 break;
285 case DL_STATE_ACTIVE:
286 output = "active";
287 break;
288 case DL_STATE_SUPPLIER_UNBIND:
289 output = "supplier unbinding";
290 break;
291 default:
292 output = "unknown";
293 break;
294 }
295
296 return sysfs_emit(buf, "%s\n", output);
297 }
298 static DEVICE_ATTR_RO(status);
299
auto_remove_on_show(struct device *dev, struct device_attribute *attr, char *buf)300 static ssize_t auto_remove_on_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct device_link *link = to_devlink(dev);
304 const char *output;
305
306 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
307 output = "supplier unbind";
308 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
309 output = "consumer unbind";
310 else
311 output = "never";
312
313 return sysfs_emit(buf, "%s\n", output);
314 }
315 static DEVICE_ATTR_RO(auto_remove_on);
316
runtime_pm_show(struct device *dev, struct device_attribute *attr, char *buf)317 static ssize_t runtime_pm_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct device_link *link = to_devlink(dev);
321
322 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
323 }
324 static DEVICE_ATTR_RO(runtime_pm);
325
sync_state_only_show(struct device *dev, struct device_attribute *attr, char *buf)326 static ssize_t sync_state_only_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct device_link *link = to_devlink(dev);
330
331 return sysfs_emit(buf, "%d\n",
332 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
333 }
334 static DEVICE_ATTR_RO(sync_state_only);
335
336 static struct attribute *devlink_attrs[] = {
337 &dev_attr_status.attr,
338 &dev_attr_auto_remove_on.attr,
339 &dev_attr_runtime_pm.attr,
340 &dev_attr_sync_state_only.attr,
341 NULL,
342 };
343 ATTRIBUTE_GROUPS(devlink);
344
device_link_release_fn(struct work_struct *work)345 static void device_link_release_fn(struct work_struct *work)
346 {
347 struct device_link *link = container_of(work, struct device_link, rm_work);
348
349 /* Ensure that all references to the link object have been dropped. */
350 device_link_synchronize_removal();
351
352 pm_runtime_release_supplier(link);
353 pm_request_idle(link->supplier);
354
355 put_device(link->consumer);
356 put_device(link->supplier);
357 kfree(link);
358 }
359
devlink_dev_release(struct device *dev)360 static void devlink_dev_release(struct device *dev)
361 {
362 struct device_link *link = to_devlink(dev);
363
364 INIT_WORK(&link->rm_work, device_link_release_fn);
365 /*
366 * It may take a while to complete this work because of the SRCU
367 * synchronization in device_link_release_fn() and if the consumer or
368 * supplier devices get deleted when it runs, so put it into the "long"
369 * workqueue.
370 */
371 queue_work(system_long_wq, &link->rm_work);
372 }
373
374 static struct class devlink_class = {
375 .name = "devlink",
376 .owner = THIS_MODULE,
377 .dev_groups = devlink_groups,
378 .dev_release = devlink_dev_release,
379 };
380
devlink_add_symlinks(struct device *dev, struct class_interface *class_intf)381 static int devlink_add_symlinks(struct device *dev,
382 struct class_interface *class_intf)
383 {
384 int ret;
385 size_t len;
386 struct device_link *link = to_devlink(dev);
387 struct device *sup = link->supplier;
388 struct device *con = link->consumer;
389 char *buf;
390
391 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
392 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
393 len += strlen(":");
394 len += strlen("supplier:") + 1;
395 buf = kzalloc(len, GFP_KERNEL);
396 if (!buf)
397 return -ENOMEM;
398
399 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
400 if (ret)
401 goto out;
402
403 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
404 if (ret)
405 goto err_con;
406
407 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
408 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
409 if (ret)
410 goto err_con_dev;
411
412 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
413 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
414 if (ret)
415 goto err_sup_dev;
416
417 goto out;
418
419 err_sup_dev:
420 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
421 sysfs_remove_link(&sup->kobj, buf);
422 err_con_dev:
423 sysfs_remove_link(&link->link_dev.kobj, "consumer");
424 err_con:
425 sysfs_remove_link(&link->link_dev.kobj, "supplier");
426 out:
427 kfree(buf);
428 return ret;
429 }
430
devlink_remove_symlinks(struct device *dev, struct class_interface *class_intf)431 static void devlink_remove_symlinks(struct device *dev,
432 struct class_interface *class_intf)
433 {
434 struct device_link *link = to_devlink(dev);
435 size_t len;
436 struct device *sup = link->supplier;
437 struct device *con = link->consumer;
438 char *buf;
439
440 sysfs_remove_link(&link->link_dev.kobj, "consumer");
441 sysfs_remove_link(&link->link_dev.kobj, "supplier");
442
443 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
444 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
445 len += strlen(":");
446 len += strlen("supplier:") + 1;
447 buf = kzalloc(len, GFP_KERNEL);
448 if (!buf) {
449 WARN(1, "Unable to properly free device link symlinks!\n");
450 return;
451 }
452
453 if (device_is_registered(con)) {
454 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
455 sysfs_remove_link(&con->kobj, buf);
456 }
457 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
458 sysfs_remove_link(&sup->kobj, buf);
459 kfree(buf);
460 }
461
462 static struct class_interface devlink_class_intf = {
463 .class = &devlink_class,
464 .add_dev = devlink_add_symlinks,
465 .remove_dev = devlink_remove_symlinks,
466 };
467
devlink_class_init(void)468 static int __init devlink_class_init(void)
469 {
470 int ret;
471
472 ret = class_register(&devlink_class);
473 if (ret)
474 return ret;
475
476 ret = class_interface_register(&devlink_class_intf);
477 if (ret)
478 class_unregister(&devlink_class);
479
480 return ret;
481 }
482 postcore_initcall(devlink_class_init);
483
484 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
485 DL_FLAG_AUTOREMOVE_SUPPLIER | \
486 DL_FLAG_AUTOPROBE_CONSUMER | \
487 DL_FLAG_SYNC_STATE_ONLY)
488
489 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
490 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
491
492 /**
493 * device_link_add - Create a link between two devices.
494 * @consumer: Consumer end of the link.
495 * @supplier: Supplier end of the link.
496 * @flags: Link flags.
497 *
498 * The caller is responsible for the proper synchronization of the link creation
499 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
500 * runtime PM framework to take the link into account. Second, if the
501 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
502 * be forced into the active metastate and reference-counted upon the creation
503 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
504 * ignored.
505 *
506 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
507 * expected to release the link returned by it directly with the help of either
508 * device_link_del() or device_link_remove().
509 *
510 * If that flag is not set, however, the caller of this function is handing the
511 * management of the link over to the driver core entirely and its return value
512 * can only be used to check whether or not the link is present. In that case,
513 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
514 * flags can be used to indicate to the driver core when the link can be safely
515 * deleted. Namely, setting one of them in @flags indicates to the driver core
516 * that the link is not going to be used (by the given caller of this function)
517 * after unbinding the consumer or supplier driver, respectively, from its
518 * device, so the link can be deleted at that point. If none of them is set,
519 * the link will be maintained until one of the devices pointed to by it (either
520 * the consumer or the supplier) is unregistered.
521 *
522 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
523 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
524 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
525 * be used to request the driver core to automaticall probe for a consmer
526 * driver after successfully binding a driver to the supplier device.
527 *
528 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
529 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
530 * the same time is invalid and will cause NULL to be returned upfront.
531 * However, if a device link between the given @consumer and @supplier pair
532 * exists already when this function is called for them, the existing link will
533 * be returned regardless of its current type and status (the link's flags may
534 * be modified then). The caller of this function is then expected to treat
535 * the link as though it has just been created, so (in particular) if
536 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
537 * explicitly when not needed any more (as stated above).
538 *
539 * A side effect of the link creation is re-ordering of dpm_list and the
540 * devices_kset list by moving the consumer device and all devices depending
541 * on it to the ends of these lists (that does not happen to devices that have
542 * not been registered when this function is called).
543 *
544 * The supplier device is required to be registered when this function is called
545 * and NULL will be returned if that is not the case. The consumer device need
546 * not be registered, however.
547 */
device_link_add(struct device *consumer, struct device *supplier, u32 flags)548 struct device_link *device_link_add(struct device *consumer,
549 struct device *supplier, u32 flags)
550 {
551 struct device_link *link;
552
553 if (!consumer || !supplier || consumer == supplier ||
554 flags & ~DL_ADD_VALID_FLAGS ||
555 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
556 (flags & DL_FLAG_SYNC_STATE_ONLY &&
557 flags != DL_FLAG_SYNC_STATE_ONLY) ||
558 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
559 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
560 DL_FLAG_AUTOREMOVE_SUPPLIER)))
561 return NULL;
562
563 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
564 if (pm_runtime_get_sync(supplier) < 0) {
565 pm_runtime_put_noidle(supplier);
566 return NULL;
567 }
568 }
569
570 if (!(flags & DL_FLAG_STATELESS))
571 flags |= DL_FLAG_MANAGED;
572
573 device_links_write_lock();
574 device_pm_lock();
575
576 /*
577 * If the supplier has not been fully registered yet or there is a
578 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
579 * the supplier already in the graph, return NULL. If the link is a
580 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
581 * because it only affects sync_state() callbacks.
582 */
583 if (!device_pm_initialized(supplier)
584 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
585 device_is_dependent(consumer, supplier))) {
586 link = NULL;
587 goto out;
588 }
589
590 /*
591 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
592 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
593 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
594 */
595 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
596 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
597
598 list_for_each_entry(link, &supplier->links.consumers, s_node) {
599 if (link->consumer != consumer)
600 continue;
601
602 if (flags & DL_FLAG_PM_RUNTIME) {
603 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
604 pm_runtime_new_link(consumer);
605 link->flags |= DL_FLAG_PM_RUNTIME;
606 }
607 if (flags & DL_FLAG_RPM_ACTIVE)
608 refcount_inc(&link->rpm_active);
609 }
610
611 if (flags & DL_FLAG_STATELESS) {
612 kref_get(&link->kref);
613 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
614 !(link->flags & DL_FLAG_STATELESS)) {
615 link->flags |= DL_FLAG_STATELESS;
616 goto reorder;
617 } else {
618 link->flags |= DL_FLAG_STATELESS;
619 goto out;
620 }
621 }
622
623 /*
624 * If the life time of the link following from the new flags is
625 * longer than indicated by the flags of the existing link,
626 * update the existing link to stay around longer.
627 */
628 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
629 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
630 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
631 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
632 }
633 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
634 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
635 DL_FLAG_AUTOREMOVE_SUPPLIER);
636 }
637 if (!(link->flags & DL_FLAG_MANAGED)) {
638 kref_get(&link->kref);
639 link->flags |= DL_FLAG_MANAGED;
640 device_link_init_status(link, consumer, supplier);
641 }
642 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
643 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
644 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
645 goto reorder;
646 }
647
648 goto out;
649 }
650
651 link = kzalloc(sizeof(*link), GFP_KERNEL);
652 if (!link)
653 goto out;
654
655 refcount_set(&link->rpm_active, 1);
656
657 get_device(supplier);
658 link->supplier = supplier;
659 INIT_LIST_HEAD(&link->s_node);
660 get_device(consumer);
661 link->consumer = consumer;
662 INIT_LIST_HEAD(&link->c_node);
663 link->flags = flags;
664 kref_init(&link->kref);
665
666 link->link_dev.class = &devlink_class;
667 device_set_pm_not_required(&link->link_dev);
668 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
669 dev_bus_name(supplier), dev_name(supplier),
670 dev_bus_name(consumer), dev_name(consumer));
671 if (device_register(&link->link_dev)) {
672 put_device(&link->link_dev);
673 link = NULL;
674 goto out;
675 }
676
677 if (flags & DL_FLAG_PM_RUNTIME) {
678 if (flags & DL_FLAG_RPM_ACTIVE)
679 refcount_inc(&link->rpm_active);
680
681 pm_runtime_new_link(consumer);
682 }
683
684 /* Determine the initial link state. */
685 if (flags & DL_FLAG_STATELESS)
686 link->status = DL_STATE_NONE;
687 else
688 device_link_init_status(link, consumer, supplier);
689
690 /*
691 * Some callers expect the link creation during consumer driver probe to
692 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
693 */
694 if (link->status == DL_STATE_CONSUMER_PROBE &&
695 flags & DL_FLAG_PM_RUNTIME)
696 pm_runtime_resume(supplier);
697
698 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
699 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
700
701 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
702 dev_dbg(consumer,
703 "Linked as a sync state only consumer to %s\n",
704 dev_name(supplier));
705 goto out;
706 }
707
708 reorder:
709 /*
710 * Move the consumer and all of the devices depending on it to the end
711 * of dpm_list and the devices_kset list.
712 *
713 * It is necessary to hold dpm_list locked throughout all that or else
714 * we may end up suspending with a wrong ordering of it.
715 */
716 device_reorder_to_tail(consumer, NULL);
717
718 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
719
720 out:
721 device_pm_unlock();
722 device_links_write_unlock();
723
724 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
725 pm_runtime_put(supplier);
726
727 return link;
728 }
729 EXPORT_SYMBOL_GPL(device_link_add);
730
731 /**
732 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
733 * @consumer: Consumer device
734 *
735 * Marks the @consumer device as waiting for suppliers to become available by
736 * adding it to the wait_for_suppliers list. The consumer device will never be
737 * probed until it's removed from the wait_for_suppliers list.
738 *
739 * The caller is responsible for adding the links to the supplier devices once
740 * they are available and removing the @consumer device from the
741 * wait_for_suppliers list once links to all the suppliers have been created.
742 *
743 * This function is NOT meant to be called from the probe function of the
744 * consumer but rather from code that creates/adds the consumer device.
745 */
device_link_wait_for_supplier(struct device *consumer, bool need_for_probe)746 static void device_link_wait_for_supplier(struct device *consumer,
747 bool need_for_probe)
748 {
749 mutex_lock(&wfs_lock);
750 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
751 consumer->links.need_for_probe = need_for_probe;
752 mutex_unlock(&wfs_lock);
753 }
754
device_link_wait_for_mandatory_supplier(struct device *consumer)755 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
756 {
757 device_link_wait_for_supplier(consumer, true);
758 }
759
device_link_wait_for_optional_supplier(struct device *consumer)760 static void device_link_wait_for_optional_supplier(struct device *consumer)
761 {
762 device_link_wait_for_supplier(consumer, false);
763 }
764
765 /**
766 * device_link_add_missing_supplier_links - Add links from consumer devices to
767 * supplier devices, leaving any
768 * consumer with inactive suppliers on
769 * the wait_for_suppliers list
770 *
771 * Loops through all consumers waiting on suppliers and tries to add all their
772 * supplier links. If that succeeds, the consumer device is removed from
773 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
774 * list. Devices left on the wait_for_suppliers list will not be probed.
775 *
776 * The fwnode add_links callback is expected to return 0 if it has found and
777 * added all the supplier links for the consumer device. It should return an
778 * error if it isn't able to do so.
779 *
780 * The caller of device_link_wait_for_supplier() is expected to call this once
781 * it's aware of potential suppliers becoming available.
782 */
device_link_add_missing_supplier_links(void)783 static void device_link_add_missing_supplier_links(void)
784 {
785 struct device *dev, *tmp;
786
787 mutex_lock(&wfs_lock);
788 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
789 links.needs_suppliers) {
790 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
791 if (!ret)
792 list_del_init(&dev->links.needs_suppliers);
793 else if (ret != -ENODEV || fw_devlink_is_permissive())
794 dev->links.need_for_probe = false;
795 }
796 mutex_unlock(&wfs_lock);
797 }
798
799 #ifdef CONFIG_SRCU
__device_link_del(struct kref *kref)800 static void __device_link_del(struct kref *kref)
801 {
802 struct device_link *link = container_of(kref, struct device_link, kref);
803
804 dev_dbg(link->consumer, "Dropping the link to %s\n",
805 dev_name(link->supplier));
806
807 pm_runtime_drop_link(link);
808
809 list_del_rcu(&link->s_node);
810 list_del_rcu(&link->c_node);
811 device_unregister(&link->link_dev);
812 }
813 #else /* !CONFIG_SRCU */
__device_link_del(struct kref *kref)814 static void __device_link_del(struct kref *kref)
815 {
816 struct device_link *link = container_of(kref, struct device_link, kref);
817
818 dev_info(link->consumer, "Dropping the link to %s\n",
819 dev_name(link->supplier));
820
821 pm_runtime_drop_link(link);
822
823 list_del(&link->s_node);
824 list_del(&link->c_node);
825 device_unregister(&link->link_dev);
826 }
827 #endif /* !CONFIG_SRCU */
828
device_link_put_kref(struct device_link *link)829 static void device_link_put_kref(struct device_link *link)
830 {
831 if (link->flags & DL_FLAG_STATELESS)
832 kref_put(&link->kref, __device_link_del);
833 else
834 WARN(1, "Unable to drop a managed device link reference\n");
835 }
836
837 /**
838 * device_link_del - Delete a stateless link between two devices.
839 * @link: Device link to delete.
840 *
841 * The caller must ensure proper synchronization of this function with runtime
842 * PM. If the link was added multiple times, it needs to be deleted as often.
843 * Care is required for hotplugged devices: Their links are purged on removal
844 * and calling device_link_del() is then no longer allowed.
845 */
device_link_del(struct device_link *link)846 void device_link_del(struct device_link *link)
847 {
848 device_links_write_lock();
849 device_link_put_kref(link);
850 device_links_write_unlock();
851 }
852 EXPORT_SYMBOL_GPL(device_link_del);
853
854 /**
855 * device_link_remove - Delete a stateless link between two devices.
856 * @consumer: Consumer end of the link.
857 * @supplier: Supplier end of the link.
858 *
859 * The caller must ensure proper synchronization of this function with runtime
860 * PM.
861 */
device_link_remove(void *consumer, struct device *supplier)862 void device_link_remove(void *consumer, struct device *supplier)
863 {
864 struct device_link *link;
865
866 if (WARN_ON(consumer == supplier))
867 return;
868
869 device_links_write_lock();
870
871 list_for_each_entry(link, &supplier->links.consumers, s_node) {
872 if (link->consumer == consumer) {
873 device_link_put_kref(link);
874 break;
875 }
876 }
877
878 device_links_write_unlock();
879 }
880 EXPORT_SYMBOL_GPL(device_link_remove);
881
device_links_missing_supplier(struct device *dev)882 static void device_links_missing_supplier(struct device *dev)
883 {
884 struct device_link *link;
885
886 list_for_each_entry(link, &dev->links.suppliers, c_node) {
887 if (link->status != DL_STATE_CONSUMER_PROBE)
888 continue;
889
890 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
891 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
892 } else {
893 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
894 WRITE_ONCE(link->status, DL_STATE_DORMANT);
895 }
896 }
897 }
898
899 /**
900 * device_links_check_suppliers - Check presence of supplier drivers.
901 * @dev: Consumer device.
902 *
903 * Check links from this device to any suppliers. Walk the list of the device's
904 * links to suppliers and see if all of them are available. If not, simply
905 * return -EPROBE_DEFER.
906 *
907 * We need to guarantee that the supplier will not go away after the check has
908 * been positive here. It only can go away in __device_release_driver() and
909 * that function checks the device's links to consumers. This means we need to
910 * mark the link as "consumer probe in progress" to make the supplier removal
911 * wait for us to complete (or bad things may happen).
912 *
913 * Links without the DL_FLAG_MANAGED flag set are ignored.
914 */
device_links_check_suppliers(struct device *dev)915 int device_links_check_suppliers(struct device *dev)
916 {
917 struct device_link *link;
918 int ret = 0;
919
920 /*
921 * Device waiting for supplier to become available is not allowed to
922 * probe.
923 */
924 mutex_lock(&wfs_lock);
925 if (!list_empty(&dev->links.needs_suppliers) &&
926 dev->links.need_for_probe) {
927 mutex_unlock(&wfs_lock);
928 return -EPROBE_DEFER;
929 }
930 mutex_unlock(&wfs_lock);
931
932 device_links_write_lock();
933
934 list_for_each_entry(link, &dev->links.suppliers, c_node) {
935 if (!(link->flags & DL_FLAG_MANAGED))
936 continue;
937
938 if (link->status != DL_STATE_AVAILABLE &&
939 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
940 device_links_missing_supplier(dev);
941 ret = -EPROBE_DEFER;
942 break;
943 }
944 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
945 }
946 dev->links.status = DL_DEV_PROBING;
947
948 device_links_write_unlock();
949 return ret;
950 }
951
952 /**
953 * __device_links_queue_sync_state - Queue a device for sync_state() callback
954 * @dev: Device to call sync_state() on
955 * @list: List head to queue the @dev on
956 *
957 * Queues a device for a sync_state() callback when the device links write lock
958 * isn't held. This allows the sync_state() execution flow to use device links
959 * APIs. The caller must ensure this function is called with
960 * device_links_write_lock() held.
961 *
962 * This function does a get_device() to make sure the device is not freed while
963 * on this list.
964 *
965 * So the caller must also ensure that device_links_flush_sync_list() is called
966 * as soon as the caller releases device_links_write_lock(). This is necessary
967 * to make sure the sync_state() is called in a timely fashion and the
968 * put_device() is called on this device.
969 */
__device_links_queue_sync_state(struct device *dev, struct list_head *list)970 static void __device_links_queue_sync_state(struct device *dev,
971 struct list_head *list)
972 {
973 struct device_link *link;
974
975 if (!dev_has_sync_state(dev))
976 return;
977 if (dev->state_synced)
978 return;
979
980 list_for_each_entry(link, &dev->links.consumers, s_node) {
981 if (!(link->flags & DL_FLAG_MANAGED))
982 continue;
983 if (link->status != DL_STATE_ACTIVE)
984 return;
985 }
986
987 /*
988 * Set the flag here to avoid adding the same device to a list more
989 * than once. This can happen if new consumers get added to the device
990 * and probed before the list is flushed.
991 */
992 dev->state_synced = true;
993
994 if (WARN_ON(!list_empty(&dev->links.defer_hook)))
995 return;
996
997 get_device(dev);
998 list_add_tail(&dev->links.defer_hook, list);
999 }
1000
1001 /**
1002 * device_links_flush_sync_list - Call sync_state() on a list of devices
1003 * @list: List of devices to call sync_state() on
1004 * @dont_lock_dev: Device for which lock is already held by the caller
1005 *
1006 * Calls sync_state() on all the devices that have been queued for it. This
1007 * function is used in conjunction with __device_links_queue_sync_state(). The
1008 * @dont_lock_dev parameter is useful when this function is called from a
1009 * context where a device lock is already held.
1010 */
device_links_flush_sync_list(struct list_head *list, struct device *dont_lock_dev)1011 static void device_links_flush_sync_list(struct list_head *list,
1012 struct device *dont_lock_dev)
1013 {
1014 struct device *dev, *tmp;
1015
1016 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1017 list_del_init(&dev->links.defer_hook);
1018
1019 if (dev != dont_lock_dev)
1020 device_lock(dev);
1021
1022 if (dev->bus->sync_state)
1023 dev->bus->sync_state(dev);
1024 else if (dev->driver && dev->driver->sync_state)
1025 dev->driver->sync_state(dev);
1026
1027 if (dev != dont_lock_dev)
1028 device_unlock(dev);
1029
1030 put_device(dev);
1031 }
1032 }
1033
device_links_supplier_sync_state_pause(void)1034 void device_links_supplier_sync_state_pause(void)
1035 {
1036 device_links_write_lock();
1037 defer_sync_state_count++;
1038 device_links_write_unlock();
1039 }
1040
device_links_supplier_sync_state_resume(void)1041 void device_links_supplier_sync_state_resume(void)
1042 {
1043 struct device *dev, *tmp;
1044 LIST_HEAD(sync_list);
1045
1046 device_links_write_lock();
1047 if (!defer_sync_state_count) {
1048 WARN(true, "Unmatched sync_state pause/resume!");
1049 goto out;
1050 }
1051 defer_sync_state_count--;
1052 if (defer_sync_state_count)
1053 goto out;
1054
1055 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1056 /*
1057 * Delete from deferred_sync list before queuing it to
1058 * sync_list because defer_hook is used for both lists.
1059 */
1060 list_del_init(&dev->links.defer_hook);
1061 __device_links_queue_sync_state(dev, &sync_list);
1062 }
1063 out:
1064 device_links_write_unlock();
1065
1066 device_links_flush_sync_list(&sync_list, NULL);
1067 }
1068
sync_state_resume_initcall(void)1069 static int sync_state_resume_initcall(void)
1070 {
1071 device_links_supplier_sync_state_resume();
1072 return 0;
1073 }
1074 late_initcall(sync_state_resume_initcall);
1075
__device_links_supplier_defer_sync(struct device *sup)1076 static void __device_links_supplier_defer_sync(struct device *sup)
1077 {
1078 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1079 list_add_tail(&sup->links.defer_hook, &deferred_sync);
1080 }
1081
device_link_drop_managed(struct device_link *link)1082 static void device_link_drop_managed(struct device_link *link)
1083 {
1084 link->flags &= ~DL_FLAG_MANAGED;
1085 WRITE_ONCE(link->status, DL_STATE_NONE);
1086 kref_put(&link->kref, __device_link_del);
1087 }
1088
waiting_for_supplier_show(struct device *dev, struct device_attribute *attr, char *buf)1089 static ssize_t waiting_for_supplier_show(struct device *dev,
1090 struct device_attribute *attr,
1091 char *buf)
1092 {
1093 bool val;
1094
1095 device_lock(dev);
1096 mutex_lock(&wfs_lock);
1097 val = !list_empty(&dev->links.needs_suppliers)
1098 && dev->links.need_for_probe;
1099 mutex_unlock(&wfs_lock);
1100 device_unlock(dev);
1101 return sysfs_emit(buf, "%u\n", val);
1102 }
1103 static DEVICE_ATTR_RO(waiting_for_supplier);
1104
1105 /**
1106 * device_links_driver_bound - Update device links after probing its driver.
1107 * @dev: Device to update the links for.
1108 *
1109 * The probe has been successful, so update links from this device to any
1110 * consumers by changing their status to "available".
1111 *
1112 * Also change the status of @dev's links to suppliers to "active".
1113 *
1114 * Links without the DL_FLAG_MANAGED flag set are ignored.
1115 */
device_links_driver_bound(struct device *dev)1116 void device_links_driver_bound(struct device *dev)
1117 {
1118 struct device_link *link, *ln;
1119 LIST_HEAD(sync_list);
1120
1121 /*
1122 * If a device probes successfully, it's expected to have created all
1123 * the device links it needs to or make new device links as it needs
1124 * them. So, it no longer needs to wait on any suppliers.
1125 */
1126 mutex_lock(&wfs_lock);
1127 list_del_init(&dev->links.needs_suppliers);
1128 mutex_unlock(&wfs_lock);
1129 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1130
1131 device_links_write_lock();
1132
1133 list_for_each_entry(link, &dev->links.consumers, s_node) {
1134 if (!(link->flags & DL_FLAG_MANAGED))
1135 continue;
1136
1137 /*
1138 * Links created during consumer probe may be in the "consumer
1139 * probe" state to start with if the supplier is still probing
1140 * when they are created and they may become "active" if the
1141 * consumer probe returns first. Skip them here.
1142 */
1143 if (link->status == DL_STATE_CONSUMER_PROBE ||
1144 link->status == DL_STATE_ACTIVE)
1145 continue;
1146
1147 WARN_ON(link->status != DL_STATE_DORMANT);
1148 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1149
1150 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1151 driver_deferred_probe_add(link->consumer);
1152 }
1153
1154 if (defer_sync_state_count)
1155 __device_links_supplier_defer_sync(dev);
1156 else
1157 __device_links_queue_sync_state(dev, &sync_list);
1158
1159 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1160 struct device *supplier;
1161
1162 if (!(link->flags & DL_FLAG_MANAGED))
1163 continue;
1164
1165 supplier = link->supplier;
1166 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1167 /*
1168 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1169 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1170 * save to drop the managed link completely.
1171 */
1172 device_link_drop_managed(link);
1173 } else {
1174 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1175 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1176 }
1177
1178 /*
1179 * This needs to be done even for the deleted
1180 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1181 * device link that was preventing the supplier from getting a
1182 * sync_state() call.
1183 */
1184 if (defer_sync_state_count)
1185 __device_links_supplier_defer_sync(supplier);
1186 else
1187 __device_links_queue_sync_state(supplier, &sync_list);
1188 }
1189
1190 dev->links.status = DL_DEV_DRIVER_BOUND;
1191
1192 device_links_write_unlock();
1193
1194 device_links_flush_sync_list(&sync_list, dev);
1195 }
1196
1197 /**
1198 * __device_links_no_driver - Update links of a device without a driver.
1199 * @dev: Device without a drvier.
1200 *
1201 * Delete all non-persistent links from this device to any suppliers.
1202 *
1203 * Persistent links stay around, but their status is changed to "available",
1204 * unless they already are in the "supplier unbind in progress" state in which
1205 * case they need not be updated.
1206 *
1207 * Links without the DL_FLAG_MANAGED flag set are ignored.
1208 */
__device_links_no_driver(struct device *dev)1209 static void __device_links_no_driver(struct device *dev)
1210 {
1211 struct device_link *link, *ln;
1212
1213 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1214 if (!(link->flags & DL_FLAG_MANAGED))
1215 continue;
1216
1217 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1218 device_link_drop_managed(link);
1219 continue;
1220 }
1221
1222 if (link->status != DL_STATE_CONSUMER_PROBE &&
1223 link->status != DL_STATE_ACTIVE)
1224 continue;
1225
1226 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1227 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1228 } else {
1229 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1230 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1231 }
1232 }
1233
1234 dev->links.status = DL_DEV_NO_DRIVER;
1235 }
1236
1237 /**
1238 * device_links_no_driver - Update links after failing driver probe.
1239 * @dev: Device whose driver has just failed to probe.
1240 *
1241 * Clean up leftover links to consumers for @dev and invoke
1242 * %__device_links_no_driver() to update links to suppliers for it as
1243 * appropriate.
1244 *
1245 * Links without the DL_FLAG_MANAGED flag set are ignored.
1246 */
device_links_no_driver(struct device *dev)1247 void device_links_no_driver(struct device *dev)
1248 {
1249 struct device_link *link;
1250
1251 device_links_write_lock();
1252
1253 list_for_each_entry(link, &dev->links.consumers, s_node) {
1254 if (!(link->flags & DL_FLAG_MANAGED))
1255 continue;
1256
1257 /*
1258 * The probe has failed, so if the status of the link is
1259 * "consumer probe" or "active", it must have been added by
1260 * a probing consumer while this device was still probing.
1261 * Change its state to "dormant", as it represents a valid
1262 * relationship, but it is not functionally meaningful.
1263 */
1264 if (link->status == DL_STATE_CONSUMER_PROBE ||
1265 link->status == DL_STATE_ACTIVE)
1266 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1267 }
1268
1269 __device_links_no_driver(dev);
1270
1271 device_links_write_unlock();
1272 }
1273
1274 /**
1275 * device_links_driver_cleanup - Update links after driver removal.
1276 * @dev: Device whose driver has just gone away.
1277 *
1278 * Update links to consumers for @dev by changing their status to "dormant" and
1279 * invoke %__device_links_no_driver() to update links to suppliers for it as
1280 * appropriate.
1281 *
1282 * Links without the DL_FLAG_MANAGED flag set are ignored.
1283 */
device_links_driver_cleanup(struct device *dev)1284 void device_links_driver_cleanup(struct device *dev)
1285 {
1286 struct device_link *link, *ln;
1287
1288 device_links_write_lock();
1289
1290 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1291 if (!(link->flags & DL_FLAG_MANAGED))
1292 continue;
1293
1294 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1295 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1296
1297 /*
1298 * autoremove the links between this @dev and its consumer
1299 * devices that are not active, i.e. where the link state
1300 * has moved to DL_STATE_SUPPLIER_UNBIND.
1301 */
1302 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1303 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1304 device_link_drop_managed(link);
1305
1306 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1307 }
1308
1309 list_del_init(&dev->links.defer_hook);
1310 __device_links_no_driver(dev);
1311
1312 device_links_write_unlock();
1313 }
1314
1315 /**
1316 * device_links_busy - Check if there are any busy links to consumers.
1317 * @dev: Device to check.
1318 *
1319 * Check each consumer of the device and return 'true' if its link's status
1320 * is one of "consumer probe" or "active" (meaning that the given consumer is
1321 * probing right now or its driver is present). Otherwise, change the link
1322 * state to "supplier unbind" to prevent the consumer from being probed
1323 * successfully going forward.
1324 *
1325 * Return 'false' if there are no probing or active consumers.
1326 *
1327 * Links without the DL_FLAG_MANAGED flag set are ignored.
1328 */
device_links_busy(struct device *dev)1329 bool device_links_busy(struct device *dev)
1330 {
1331 struct device_link *link;
1332 bool ret = false;
1333
1334 device_links_write_lock();
1335
1336 list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 if (!(link->flags & DL_FLAG_MANAGED))
1338 continue;
1339
1340 if (link->status == DL_STATE_CONSUMER_PROBE
1341 || link->status == DL_STATE_ACTIVE) {
1342 ret = true;
1343 break;
1344 }
1345 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1346 }
1347
1348 dev->links.status = DL_DEV_UNBINDING;
1349
1350 device_links_write_unlock();
1351 return ret;
1352 }
1353
1354 /**
1355 * device_links_unbind_consumers - Force unbind consumers of the given device.
1356 * @dev: Device to unbind the consumers of.
1357 *
1358 * Walk the list of links to consumers for @dev and if any of them is in the
1359 * "consumer probe" state, wait for all device probes in progress to complete
1360 * and start over.
1361 *
1362 * If that's not the case, change the status of the link to "supplier unbind"
1363 * and check if the link was in the "active" state. If so, force the consumer
1364 * driver to unbind and start over (the consumer will not re-probe as we have
1365 * changed the state of the link already).
1366 *
1367 * Links without the DL_FLAG_MANAGED flag set are ignored.
1368 */
device_links_unbind_consumers(struct device *dev)1369 void device_links_unbind_consumers(struct device *dev)
1370 {
1371 struct device_link *link;
1372
1373 start:
1374 device_links_write_lock();
1375
1376 list_for_each_entry(link, &dev->links.consumers, s_node) {
1377 enum device_link_state status;
1378
1379 if (!(link->flags & DL_FLAG_MANAGED) ||
1380 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1381 continue;
1382
1383 status = link->status;
1384 if (status == DL_STATE_CONSUMER_PROBE) {
1385 device_links_write_unlock();
1386
1387 wait_for_device_probe();
1388 goto start;
1389 }
1390 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1391 if (status == DL_STATE_ACTIVE) {
1392 struct device *consumer = link->consumer;
1393
1394 get_device(consumer);
1395
1396 device_links_write_unlock();
1397
1398 device_release_driver_internal(consumer, NULL,
1399 consumer->parent);
1400 put_device(consumer);
1401 goto start;
1402 }
1403 }
1404
1405 device_links_write_unlock();
1406 }
1407
1408 /**
1409 * device_links_purge - Delete existing links to other devices.
1410 * @dev: Target device.
1411 */
device_links_purge(struct device *dev)1412 static void device_links_purge(struct device *dev)
1413 {
1414 struct device_link *link, *ln;
1415
1416 if (dev->class == &devlink_class)
1417 return;
1418
1419 mutex_lock(&wfs_lock);
1420 list_del_init(&dev->links.needs_suppliers);
1421 mutex_unlock(&wfs_lock);
1422
1423 /*
1424 * Delete all of the remaining links from this device to any other
1425 * devices (either consumers or suppliers).
1426 */
1427 device_links_write_lock();
1428
1429 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1430 WARN_ON(link->status == DL_STATE_ACTIVE);
1431 __device_link_del(&link->kref);
1432 }
1433
1434 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1435 WARN_ON(link->status != DL_STATE_DORMANT &&
1436 link->status != DL_STATE_NONE);
1437 __device_link_del(&link->kref);
1438 }
1439
1440 device_links_write_unlock();
1441 }
1442
1443 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
fw_devlink_setup(char *arg)1444 static int __init fw_devlink_setup(char *arg)
1445 {
1446 if (!arg)
1447 return -EINVAL;
1448
1449 if (strcmp(arg, "off") == 0) {
1450 fw_devlink_flags = 0;
1451 } else if (strcmp(arg, "permissive") == 0) {
1452 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1453 } else if (strcmp(arg, "on") == 0) {
1454 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1455 } else if (strcmp(arg, "rpm") == 0) {
1456 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1457 DL_FLAG_PM_RUNTIME;
1458 }
1459 return 0;
1460 }
1461 early_param("fw_devlink", fw_devlink_setup);
1462
fw_devlink_get_flags(void)1463 u32 fw_devlink_get_flags(void)
1464 {
1465 return fw_devlink_flags;
1466 }
1467
fw_devlink_is_permissive(void)1468 static bool fw_devlink_is_permissive(void)
1469 {
1470 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1471 }
1472
fw_devlink_link_device(struct device *dev)1473 static void fw_devlink_link_device(struct device *dev)
1474 {
1475 int fw_ret;
1476
1477 if (!fw_devlink_flags)
1478 return;
1479
1480 mutex_lock(&defer_fw_devlink_lock);
1481 if (!defer_fw_devlink_count)
1482 device_link_add_missing_supplier_links();
1483
1484 /*
1485 * The device's fwnode not having add_links() doesn't affect if other
1486 * consumers can find this device as a supplier. So, this check is
1487 * intentionally placed after device_link_add_missing_supplier_links().
1488 */
1489 if (!fwnode_has_op(dev->fwnode, add_links))
1490 goto out;
1491
1492 /*
1493 * If fw_devlink is being deferred, assume all devices have mandatory
1494 * suppliers they need to link to later. Then, when the fw_devlink is
1495 * resumed, all these devices will get a chance to try and link to any
1496 * suppliers they have.
1497 */
1498 if (!defer_fw_devlink_count) {
1499 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1500 if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1501 fw_ret = -EAGAIN;
1502 } else {
1503 fw_ret = -ENODEV;
1504 /*
1505 * defer_hook is not used to add device to deferred_sync list
1506 * until device is bound. Since deferred fw devlink also blocks
1507 * probing, same list hook can be used for deferred_fw_devlink.
1508 */
1509 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1510 }
1511
1512 if (fw_ret == -ENODEV)
1513 device_link_wait_for_mandatory_supplier(dev);
1514 else if (fw_ret)
1515 device_link_wait_for_optional_supplier(dev);
1516
1517 out:
1518 mutex_unlock(&defer_fw_devlink_lock);
1519 }
1520
1521 /**
1522 * fw_devlink_pause - Pause parsing of fwnode to create device links
1523 *
1524 * Calling this function defers any fwnode parsing to create device links until
1525 * fw_devlink_resume() is called. Both these functions are ref counted and the
1526 * caller needs to match the calls.
1527 *
1528 * While fw_devlink is paused:
1529 * - Any device that is added won't have its fwnode parsed to create device
1530 * links.
1531 * - The probe of the device will also be deferred during this period.
1532 * - Any devices that were already added, but waiting for suppliers won't be
1533 * able to link to newly added devices.
1534 *
1535 * Once fw_devlink_resume():
1536 * - All the fwnodes that was not parsed will be parsed.
1537 * - All the devices that were deferred probing will be reattempted if they
1538 * aren't waiting for any more suppliers.
1539 *
1540 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1541 * when a lot of devices that need to link to each other are added in a short
1542 * interval of time. For example, adding all the top level devices in a system.
1543 *
1544 * For example, if N devices are added and:
1545 * - All the consumers are added before their suppliers
1546 * - All the suppliers of the N devices are part of the N devices
1547 *
1548 * Then:
1549 *
1550 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1551 * will only need one parsing of its fwnode because it is guaranteed to find
1552 * all the supplier devices already registered and ready to link to. It won't
1553 * have to do another pass later to find one or more suppliers it couldn't
1554 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1555 * parses.
1556 *
1557 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1558 * end up doing O(N^2) parses of fwnodes because every device that's added is
1559 * guaranteed to trigger a parse of the fwnode of every device added before
1560 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1561 * device is parsed, all it descendant devices might need to have their
1562 * fwnodes parsed too (even if the devices themselves aren't added).
1563 */
fw_devlink_pause(void)1564 void fw_devlink_pause(void)
1565 {
1566 mutex_lock(&defer_fw_devlink_lock);
1567 defer_fw_devlink_count++;
1568 mutex_unlock(&defer_fw_devlink_lock);
1569 }
1570
1571 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1572 *
1573 * This function is used in conjunction with fw_devlink_pause() and is ref
1574 * counted. See documentation for fw_devlink_pause() for more details.
1575 */
fw_devlink_resume(void)1576 void fw_devlink_resume(void)
1577 {
1578 struct device *dev, *tmp;
1579 LIST_HEAD(probe_list);
1580
1581 mutex_lock(&defer_fw_devlink_lock);
1582 if (!defer_fw_devlink_count) {
1583 WARN(true, "Unmatched fw_devlink pause/resume!");
1584 goto out;
1585 }
1586
1587 defer_fw_devlink_count--;
1588 if (defer_fw_devlink_count)
1589 goto out;
1590
1591 device_link_add_missing_supplier_links();
1592 list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1593 out:
1594 mutex_unlock(&defer_fw_devlink_lock);
1595
1596 /*
1597 * bus_probe_device() can cause new devices to get added and they'll
1598 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1599 * the defer_fw_devlink_lock.
1600 */
1601 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1602 list_del_init(&dev->links.defer_hook);
1603 bus_probe_device(dev);
1604 }
1605 }
1606 /* Device links support end. */
1607
1608 int (*platform_notify)(struct device *dev) = NULL;
1609 int (*platform_notify_remove)(struct device *dev) = NULL;
1610 static struct kobject *dev_kobj;
1611 struct kobject *sysfs_dev_char_kobj;
1612 struct kobject *sysfs_dev_block_kobj;
1613
1614 static DEFINE_MUTEX(device_hotplug_lock);
1615
lock_device_hotplug(void)1616 void lock_device_hotplug(void)
1617 {
1618 mutex_lock(&device_hotplug_lock);
1619 }
1620
unlock_device_hotplug(void)1621 void unlock_device_hotplug(void)
1622 {
1623 mutex_unlock(&device_hotplug_lock);
1624 }
1625
lock_device_hotplug_sysfs(void)1626 int lock_device_hotplug_sysfs(void)
1627 {
1628 if (mutex_trylock(&device_hotplug_lock))
1629 return 0;
1630
1631 /* Avoid busy looping (5 ms of sleep should do). */
1632 msleep(5);
1633 return restart_syscall();
1634 }
1635
1636 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device *dev)1637 static inline int device_is_not_partition(struct device *dev)
1638 {
1639 return !(dev->type == &part_type);
1640 }
1641 #else
device_is_not_partition(struct device *dev)1642 static inline int device_is_not_partition(struct device *dev)
1643 {
1644 return 1;
1645 }
1646 #endif
1647
1648 static int
device_platform_notify(struct device *dev, enum kobject_action action)1649 device_platform_notify(struct device *dev, enum kobject_action action)
1650 {
1651 int ret;
1652
1653 ret = acpi_platform_notify(dev, action);
1654 if (ret)
1655 return ret;
1656
1657 ret = software_node_notify(dev, action);
1658 if (ret)
1659 return ret;
1660
1661 if (platform_notify && action == KOBJ_ADD)
1662 platform_notify(dev);
1663 else if (platform_notify_remove && action == KOBJ_REMOVE)
1664 platform_notify_remove(dev);
1665 return 0;
1666 }
1667
1668 /**
1669 * dev_driver_string - Return a device's driver name, if at all possible
1670 * @dev: struct device to get the name of
1671 *
1672 * Will return the device's driver's name if it is bound to a device. If
1673 * the device is not bound to a driver, it will return the name of the bus
1674 * it is attached to. If it is not attached to a bus either, an empty
1675 * string will be returned.
1676 */
dev_driver_string(const struct device *dev)1677 const char *dev_driver_string(const struct device *dev)
1678 {
1679 struct device_driver *drv;
1680
1681 /* dev->driver can change to NULL underneath us because of unbinding,
1682 * so be careful about accessing it. dev->bus and dev->class should
1683 * never change once they are set, so they don't need special care.
1684 */
1685 drv = READ_ONCE(dev->driver);
1686 return drv ? drv->name : dev_bus_name(dev);
1687 }
1688 EXPORT_SYMBOL(dev_driver_string);
1689
1690 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1691
dev_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)1692 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1693 char *buf)
1694 {
1695 struct device_attribute *dev_attr = to_dev_attr(attr);
1696 struct device *dev = kobj_to_dev(kobj);
1697 ssize_t ret = -EIO;
1698
1699 if (dev_attr->show)
1700 ret = dev_attr->show(dev, dev_attr, buf);
1701 if (ret >= (ssize_t)PAGE_SIZE) {
1702 printk("dev_attr_show: %pS returned bad count\n",
1703 dev_attr->show);
1704 }
1705 return ret;
1706 }
1707
dev_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)1708 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1709 const char *buf, size_t count)
1710 {
1711 struct device_attribute *dev_attr = to_dev_attr(attr);
1712 struct device *dev = kobj_to_dev(kobj);
1713 ssize_t ret = -EIO;
1714
1715 if (dev_attr->store)
1716 ret = dev_attr->store(dev, dev_attr, buf, count);
1717 return ret;
1718 }
1719
1720 static const struct sysfs_ops dev_sysfs_ops = {
1721 .show = dev_attr_show,
1722 .store = dev_attr_store,
1723 };
1724
1725 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1726
device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1727 ssize_t device_store_ulong(struct device *dev,
1728 struct device_attribute *attr,
1729 const char *buf, size_t size)
1730 {
1731 struct dev_ext_attribute *ea = to_ext_attr(attr);
1732 int ret;
1733 unsigned long new;
1734
1735 ret = kstrtoul(buf, 0, &new);
1736 if (ret)
1737 return ret;
1738 *(unsigned long *)(ea->var) = new;
1739 /* Always return full write size even if we didn't consume all */
1740 return size;
1741 }
1742 EXPORT_SYMBOL_GPL(device_store_ulong);
1743
device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf)1744 ssize_t device_show_ulong(struct device *dev,
1745 struct device_attribute *attr,
1746 char *buf)
1747 {
1748 struct dev_ext_attribute *ea = to_ext_attr(attr);
1749 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1750 }
1751 EXPORT_SYMBOL_GPL(device_show_ulong);
1752
device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1753 ssize_t device_store_int(struct device *dev,
1754 struct device_attribute *attr,
1755 const char *buf, size_t size)
1756 {
1757 struct dev_ext_attribute *ea = to_ext_attr(attr);
1758 int ret;
1759 long new;
1760
1761 ret = kstrtol(buf, 0, &new);
1762 if (ret)
1763 return ret;
1764
1765 if (new > INT_MAX || new < INT_MIN)
1766 return -EINVAL;
1767 *(int *)(ea->var) = new;
1768 /* Always return full write size even if we didn't consume all */
1769 return size;
1770 }
1771 EXPORT_SYMBOL_GPL(device_store_int);
1772
device_show_int(struct device *dev, struct device_attribute *attr, char *buf)1773 ssize_t device_show_int(struct device *dev,
1774 struct device_attribute *attr,
1775 char *buf)
1776 {
1777 struct dev_ext_attribute *ea = to_ext_attr(attr);
1778
1779 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1780 }
1781 EXPORT_SYMBOL_GPL(device_show_int);
1782
device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1783 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1784 const char *buf, size_t size)
1785 {
1786 struct dev_ext_attribute *ea = to_ext_attr(attr);
1787
1788 if (strtobool(buf, ea->var) < 0)
1789 return -EINVAL;
1790
1791 return size;
1792 }
1793 EXPORT_SYMBOL_GPL(device_store_bool);
1794
device_show_bool(struct device *dev, struct device_attribute *attr, char *buf)1795 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1796 char *buf)
1797 {
1798 struct dev_ext_attribute *ea = to_ext_attr(attr);
1799
1800 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1801 }
1802 EXPORT_SYMBOL_GPL(device_show_bool);
1803
1804 /**
1805 * device_release - free device structure.
1806 * @kobj: device's kobject.
1807 *
1808 * This is called once the reference count for the object
1809 * reaches 0. We forward the call to the device's release
1810 * method, which should handle actually freeing the structure.
1811 */
device_release(struct kobject *kobj)1812 static void device_release(struct kobject *kobj)
1813 {
1814 struct device *dev = kobj_to_dev(kobj);
1815 struct device_private *p = dev->p;
1816
1817 /*
1818 * Some platform devices are driven without driver attached
1819 * and managed resources may have been acquired. Make sure
1820 * all resources are released.
1821 *
1822 * Drivers still can add resources into device after device
1823 * is deleted but alive, so release devres here to avoid
1824 * possible memory leak.
1825 */
1826 devres_release_all(dev);
1827
1828 kfree(dev->dma_range_map);
1829
1830 if (dev->release)
1831 dev->release(dev);
1832 else if (dev->type && dev->type->release)
1833 dev->type->release(dev);
1834 else if (dev->class && dev->class->dev_release)
1835 dev->class->dev_release(dev);
1836 else
1837 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1838 dev_name(dev));
1839 kfree(p);
1840 }
1841
device_namespace(struct kobject *kobj)1842 static const void *device_namespace(struct kobject *kobj)
1843 {
1844 struct device *dev = kobj_to_dev(kobj);
1845 const void *ns = NULL;
1846
1847 if (dev->class && dev->class->ns_type)
1848 ns = dev->class->namespace(dev);
1849
1850 return ns;
1851 }
1852
device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)1853 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1854 {
1855 struct device *dev = kobj_to_dev(kobj);
1856
1857 if (dev->class && dev->class->get_ownership)
1858 dev->class->get_ownership(dev, uid, gid);
1859 }
1860
1861 static struct kobj_type device_ktype = {
1862 .release = device_release,
1863 .sysfs_ops = &dev_sysfs_ops,
1864 .namespace = device_namespace,
1865 .get_ownership = device_get_ownership,
1866 };
1867
1868
dev_uevent_filter(struct kset *kset, struct kobject *kobj)1869 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1870 {
1871 struct kobj_type *ktype = get_ktype(kobj);
1872
1873 if (ktype == &device_ktype) {
1874 struct device *dev = kobj_to_dev(kobj);
1875 if (dev->bus)
1876 return 1;
1877 if (dev->class)
1878 return 1;
1879 }
1880 return 0;
1881 }
1882
dev_uevent_name(struct kset *kset, struct kobject *kobj)1883 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1884 {
1885 struct device *dev = kobj_to_dev(kobj);
1886
1887 if (dev->bus)
1888 return dev->bus->name;
1889 if (dev->class)
1890 return dev->class->name;
1891 return NULL;
1892 }
1893
dev_uevent(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env)1894 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1895 struct kobj_uevent_env *env)
1896 {
1897 struct device *dev = kobj_to_dev(kobj);
1898 struct device_driver *driver;
1899 int retval = 0;
1900
1901 /* add device node properties if present */
1902 if (MAJOR(dev->devt)) {
1903 const char *tmp;
1904 const char *name;
1905 umode_t mode = 0;
1906 kuid_t uid = GLOBAL_ROOT_UID;
1907 kgid_t gid = GLOBAL_ROOT_GID;
1908
1909 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1910 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1911 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1912 if (name) {
1913 add_uevent_var(env, "DEVNAME=%s", name);
1914 if (mode)
1915 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1916 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1917 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1918 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1919 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1920 kfree(tmp);
1921 }
1922 }
1923
1924 if (dev->type && dev->type->name)
1925 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1926
1927 /* Synchronize with module_remove_driver() */
1928 rcu_read_lock();
1929 driver = READ_ONCE(dev->driver);
1930 if (driver)
1931 add_uevent_var(env, "DRIVER=%s", driver->name);
1932 rcu_read_unlock();
1933
1934 /* Add common DT information about the device */
1935 of_device_uevent(dev, env);
1936
1937 /* have the bus specific function add its stuff */
1938 if (dev->bus && dev->bus->uevent) {
1939 retval = dev->bus->uevent(dev, env);
1940 if (retval)
1941 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1942 dev_name(dev), __func__, retval);
1943 }
1944
1945 /* have the class specific function add its stuff */
1946 if (dev->class && dev->class->dev_uevent) {
1947 retval = dev->class->dev_uevent(dev, env);
1948 if (retval)
1949 pr_debug("device: '%s': %s: class uevent() "
1950 "returned %d\n", dev_name(dev),
1951 __func__, retval);
1952 }
1953
1954 /* have the device type specific function add its stuff */
1955 if (dev->type && dev->type->uevent) {
1956 retval = dev->type->uevent(dev, env);
1957 if (retval)
1958 pr_debug("device: '%s': %s: dev_type uevent() "
1959 "returned %d\n", dev_name(dev),
1960 __func__, retval);
1961 }
1962
1963 return retval;
1964 }
1965
1966 static const struct kset_uevent_ops device_uevent_ops = {
1967 .filter = dev_uevent_filter,
1968 .name = dev_uevent_name,
1969 .uevent = dev_uevent,
1970 };
1971
uevent_show(struct device *dev, struct device_attribute *attr, char *buf)1972 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1973 char *buf)
1974 {
1975 struct kobject *top_kobj;
1976 struct kset *kset;
1977 struct kobj_uevent_env *env = NULL;
1978 int i;
1979 int len = 0;
1980 int retval;
1981
1982 /* search the kset, the device belongs to */
1983 top_kobj = &dev->kobj;
1984 while (!top_kobj->kset && top_kobj->parent)
1985 top_kobj = top_kobj->parent;
1986 if (!top_kobj->kset)
1987 goto out;
1988
1989 kset = top_kobj->kset;
1990 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1991 goto out;
1992
1993 /* respect filter */
1994 if (kset->uevent_ops && kset->uevent_ops->filter)
1995 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1996 goto out;
1997
1998 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1999 if (!env)
2000 return -ENOMEM;
2001
2002 /* let the kset specific function add its keys */
2003 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2004 if (retval)
2005 goto out;
2006
2007 /* copy keys to file */
2008 for (i = 0; i < env->envp_idx; i++)
2009 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2010 out:
2011 kfree(env);
2012 return len;
2013 }
2014
uevent_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2015 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2016 const char *buf, size_t count)
2017 {
2018 int rc;
2019
2020 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2021
2022 if (rc) {
2023 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2024 return rc;
2025 }
2026
2027 return count;
2028 }
2029 static DEVICE_ATTR_RW(uevent);
2030
online_show(struct device *dev, struct device_attribute *attr, char *buf)2031 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2032 char *buf)
2033 {
2034 bool val;
2035
2036 device_lock(dev);
2037 val = !dev->offline;
2038 device_unlock(dev);
2039 return sysfs_emit(buf, "%u\n", val);
2040 }
2041
online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2042 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2043 const char *buf, size_t count)
2044 {
2045 bool val;
2046 int ret;
2047
2048 ret = strtobool(buf, &val);
2049 if (ret < 0)
2050 return ret;
2051
2052 ret = lock_device_hotplug_sysfs();
2053 if (ret)
2054 return ret;
2055
2056 ret = val ? device_online(dev) : device_offline(dev);
2057 unlock_device_hotplug();
2058 return ret < 0 ? ret : count;
2059 }
2060 static DEVICE_ATTR_RW(online);
2061
removable_show(struct device *dev, struct device_attribute *attr, char *buf)2062 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2063 char *buf)
2064 {
2065 const char *loc;
2066
2067 switch (dev->removable) {
2068 case DEVICE_REMOVABLE:
2069 loc = "removable";
2070 break;
2071 case DEVICE_FIXED:
2072 loc = "fixed";
2073 break;
2074 default:
2075 loc = "unknown";
2076 }
2077 return sysfs_emit(buf, "%s\n", loc);
2078 }
2079 static DEVICE_ATTR_RO(removable);
2080
device_add_groups(struct device *dev, const struct attribute_group **groups)2081 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2082 {
2083 return sysfs_create_groups(&dev->kobj, groups);
2084 }
2085 EXPORT_SYMBOL_GPL(device_add_groups);
2086
device_remove_groups(struct device *dev, const struct attribute_group **groups)2087 void device_remove_groups(struct device *dev,
2088 const struct attribute_group **groups)
2089 {
2090 sysfs_remove_groups(&dev->kobj, groups);
2091 }
2092 EXPORT_SYMBOL_GPL(device_remove_groups);
2093
2094 union device_attr_group_devres {
2095 const struct attribute_group *group;
2096 const struct attribute_group **groups;
2097 };
2098
devm_attr_group_match(struct device *dev, void *res, void *data)2099 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2100 {
2101 return ((union device_attr_group_devres *)res)->group == data;
2102 }
2103
devm_attr_group_remove(struct device *dev, void *res)2104 static void devm_attr_group_remove(struct device *dev, void *res)
2105 {
2106 union device_attr_group_devres *devres = res;
2107 const struct attribute_group *group = devres->group;
2108
2109 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2110 sysfs_remove_group(&dev->kobj, group);
2111 }
2112
devm_attr_groups_remove(struct device *dev, void *res)2113 static void devm_attr_groups_remove(struct device *dev, void *res)
2114 {
2115 union device_attr_group_devres *devres = res;
2116 const struct attribute_group **groups = devres->groups;
2117
2118 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2119 sysfs_remove_groups(&dev->kobj, groups);
2120 }
2121
2122 /**
2123 * devm_device_add_group - given a device, create a managed attribute group
2124 * @dev: The device to create the group for
2125 * @grp: The attribute group to create
2126 *
2127 * This function creates a group for the first time. It will explicitly
2128 * warn and error if any of the attribute files being created already exist.
2129 *
2130 * Returns 0 on success or error code on failure.
2131 */
devm_device_add_group(struct device *dev, const struct attribute_group *grp)2132 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2133 {
2134 union device_attr_group_devres *devres;
2135 int error;
2136
2137 devres = devres_alloc(devm_attr_group_remove,
2138 sizeof(*devres), GFP_KERNEL);
2139 if (!devres)
2140 return -ENOMEM;
2141
2142 error = sysfs_create_group(&dev->kobj, grp);
2143 if (error) {
2144 devres_free(devres);
2145 return error;
2146 }
2147
2148 devres->group = grp;
2149 devres_add(dev, devres);
2150 return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(devm_device_add_group);
2153
2154 /**
2155 * devm_device_remove_group: remove a managed group from a device
2156 * @dev: device to remove the group from
2157 * @grp: group to remove
2158 *
2159 * This function removes a group of attributes from a device. The attributes
2160 * previously have to have been created for this group, otherwise it will fail.
2161 */
devm_device_remove_group(struct device *dev, const struct attribute_group *grp)2162 void devm_device_remove_group(struct device *dev,
2163 const struct attribute_group *grp)
2164 {
2165 WARN_ON(devres_release(dev, devm_attr_group_remove,
2166 devm_attr_group_match,
2167 /* cast away const */ (void *)grp));
2168 }
2169 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2170
2171 /**
2172 * devm_device_add_groups - create a bunch of managed attribute groups
2173 * @dev: The device to create the group for
2174 * @groups: The attribute groups to create, NULL terminated
2175 *
2176 * This function creates a bunch of managed attribute groups. If an error
2177 * occurs when creating a group, all previously created groups will be
2178 * removed, unwinding everything back to the original state when this
2179 * function was called. It will explicitly warn and error if any of the
2180 * attribute files being created already exist.
2181 *
2182 * Returns 0 on success or error code from sysfs_create_group on failure.
2183 */
devm_device_add_groups(struct device *dev, const struct attribute_group **groups)2184 int devm_device_add_groups(struct device *dev,
2185 const struct attribute_group **groups)
2186 {
2187 union device_attr_group_devres *devres;
2188 int error;
2189
2190 devres = devres_alloc(devm_attr_groups_remove,
2191 sizeof(*devres), GFP_KERNEL);
2192 if (!devres)
2193 return -ENOMEM;
2194
2195 error = sysfs_create_groups(&dev->kobj, groups);
2196 if (error) {
2197 devres_free(devres);
2198 return error;
2199 }
2200
2201 devres->groups = groups;
2202 devres_add(dev, devres);
2203 return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2206
2207 /**
2208 * devm_device_remove_groups - remove a list of managed groups
2209 *
2210 * @dev: The device for the groups to be removed from
2211 * @groups: NULL terminated list of groups to be removed
2212 *
2213 * If groups is not NULL, remove the specified groups from the device.
2214 */
devm_device_remove_groups(struct device *dev, const struct attribute_group **groups)2215 void devm_device_remove_groups(struct device *dev,
2216 const struct attribute_group **groups)
2217 {
2218 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2219 devm_attr_group_match,
2220 /* cast away const */ (void *)groups));
2221 }
2222 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2223
device_add_attrs(struct device *dev)2224 static int device_add_attrs(struct device *dev)
2225 {
2226 struct class *class = dev->class;
2227 const struct device_type *type = dev->type;
2228 int error;
2229
2230 if (class) {
2231 error = device_add_groups(dev, class->dev_groups);
2232 if (error)
2233 return error;
2234 }
2235
2236 if (type) {
2237 error = device_add_groups(dev, type->groups);
2238 if (error)
2239 goto err_remove_class_groups;
2240 }
2241
2242 error = device_add_groups(dev, dev->groups);
2243 if (error)
2244 goto err_remove_type_groups;
2245
2246 if (device_supports_offline(dev) && !dev->offline_disabled) {
2247 error = device_create_file(dev, &dev_attr_online);
2248 if (error)
2249 goto err_remove_dev_groups;
2250 }
2251
2252 if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2253 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2254 if (error)
2255 goto err_remove_dev_online;
2256 }
2257
2258 if (dev_removable_is_valid(dev)) {
2259 error = device_create_file(dev, &dev_attr_removable);
2260 if (error)
2261 goto err_remove_dev_waiting_for_supplier;
2262 }
2263
2264 return 0;
2265
2266 err_remove_dev_waiting_for_supplier:
2267 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2268 err_remove_dev_online:
2269 device_remove_file(dev, &dev_attr_online);
2270 err_remove_dev_groups:
2271 device_remove_groups(dev, dev->groups);
2272 err_remove_type_groups:
2273 if (type)
2274 device_remove_groups(dev, type->groups);
2275 err_remove_class_groups:
2276 if (class)
2277 device_remove_groups(dev, class->dev_groups);
2278
2279 return error;
2280 }
2281
device_remove_attrs(struct device *dev)2282 static void device_remove_attrs(struct device *dev)
2283 {
2284 struct class *class = dev->class;
2285 const struct device_type *type = dev->type;
2286
2287 device_remove_file(dev, &dev_attr_removable);
2288 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2289 device_remove_file(dev, &dev_attr_online);
2290 device_remove_groups(dev, dev->groups);
2291
2292 if (type)
2293 device_remove_groups(dev, type->groups);
2294
2295 if (class)
2296 device_remove_groups(dev, class->dev_groups);
2297 }
2298
dev_show(struct device *dev, struct device_attribute *attr, char *buf)2299 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2300 char *buf)
2301 {
2302 return print_dev_t(buf, dev->devt);
2303 }
2304 static DEVICE_ATTR_RO(dev);
2305
2306 /* /sys/devices/ */
2307 struct kset *devices_kset;
2308
2309 /**
2310 * devices_kset_move_before - Move device in the devices_kset's list.
2311 * @deva: Device to move.
2312 * @devb: Device @deva should come before.
2313 */
devices_kset_move_before(struct device *deva, struct device *devb)2314 static void devices_kset_move_before(struct device *deva, struct device *devb)
2315 {
2316 if (!devices_kset)
2317 return;
2318 pr_debug("devices_kset: Moving %s before %s\n",
2319 dev_name(deva), dev_name(devb));
2320 spin_lock(&devices_kset->list_lock);
2321 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2322 spin_unlock(&devices_kset->list_lock);
2323 }
2324
2325 /**
2326 * devices_kset_move_after - Move device in the devices_kset's list.
2327 * @deva: Device to move
2328 * @devb: Device @deva should come after.
2329 */
devices_kset_move_after(struct device *deva, struct device *devb)2330 static void devices_kset_move_after(struct device *deva, struct device *devb)
2331 {
2332 if (!devices_kset)
2333 return;
2334 pr_debug("devices_kset: Moving %s after %s\n",
2335 dev_name(deva), dev_name(devb));
2336 spin_lock(&devices_kset->list_lock);
2337 list_move(&deva->kobj.entry, &devb->kobj.entry);
2338 spin_unlock(&devices_kset->list_lock);
2339 }
2340
2341 /**
2342 * devices_kset_move_last - move the device to the end of devices_kset's list.
2343 * @dev: device to move
2344 */
devices_kset_move_last(struct device *dev)2345 void devices_kset_move_last(struct device *dev)
2346 {
2347 if (!devices_kset)
2348 return;
2349 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2350 spin_lock(&devices_kset->list_lock);
2351 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2352 spin_unlock(&devices_kset->list_lock);
2353 }
2354
2355 /**
2356 * device_create_file - create sysfs attribute file for device.
2357 * @dev: device.
2358 * @attr: device attribute descriptor.
2359 */
device_create_file(struct device *dev, const struct device_attribute *attr)2360 int device_create_file(struct device *dev,
2361 const struct device_attribute *attr)
2362 {
2363 int error = 0;
2364
2365 if (dev) {
2366 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2367 "Attribute %s: write permission without 'store'\n",
2368 attr->attr.name);
2369 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2370 "Attribute %s: read permission without 'show'\n",
2371 attr->attr.name);
2372 error = sysfs_create_file(&dev->kobj, &attr->attr);
2373 }
2374
2375 return error;
2376 }
2377 EXPORT_SYMBOL_GPL(device_create_file);
2378
2379 /**
2380 * device_remove_file - remove sysfs attribute file.
2381 * @dev: device.
2382 * @attr: device attribute descriptor.
2383 */
device_remove_file(struct device *dev, const struct device_attribute *attr)2384 void device_remove_file(struct device *dev,
2385 const struct device_attribute *attr)
2386 {
2387 if (dev)
2388 sysfs_remove_file(&dev->kobj, &attr->attr);
2389 }
2390 EXPORT_SYMBOL_GPL(device_remove_file);
2391
2392 /**
2393 * device_remove_file_self - remove sysfs attribute file from its own method.
2394 * @dev: device.
2395 * @attr: device attribute descriptor.
2396 *
2397 * See kernfs_remove_self() for details.
2398 */
device_remove_file_self(struct device *dev, const struct device_attribute *attr)2399 bool device_remove_file_self(struct device *dev,
2400 const struct device_attribute *attr)
2401 {
2402 if (dev)
2403 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2404 else
2405 return false;
2406 }
2407 EXPORT_SYMBOL_GPL(device_remove_file_self);
2408
2409 /**
2410 * device_create_bin_file - create sysfs binary attribute file for device.
2411 * @dev: device.
2412 * @attr: device binary attribute descriptor.
2413 */
device_create_bin_file(struct device *dev, const struct bin_attribute *attr)2414 int device_create_bin_file(struct device *dev,
2415 const struct bin_attribute *attr)
2416 {
2417 int error = -EINVAL;
2418 if (dev)
2419 error = sysfs_create_bin_file(&dev->kobj, attr);
2420 return error;
2421 }
2422 EXPORT_SYMBOL_GPL(device_create_bin_file);
2423
2424 /**
2425 * device_remove_bin_file - remove sysfs binary attribute file
2426 * @dev: device.
2427 * @attr: device binary attribute descriptor.
2428 */
device_remove_bin_file(struct device *dev, const struct bin_attribute *attr)2429 void device_remove_bin_file(struct device *dev,
2430 const struct bin_attribute *attr)
2431 {
2432 if (dev)
2433 sysfs_remove_bin_file(&dev->kobj, attr);
2434 }
2435 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2436
klist_children_get(struct klist_node *n)2437 static void klist_children_get(struct klist_node *n)
2438 {
2439 struct device_private *p = to_device_private_parent(n);
2440 struct device *dev = p->device;
2441
2442 get_device(dev);
2443 }
2444
klist_children_put(struct klist_node *n)2445 static void klist_children_put(struct klist_node *n)
2446 {
2447 struct device_private *p = to_device_private_parent(n);
2448 struct device *dev = p->device;
2449
2450 put_device(dev);
2451 }
2452
2453 /**
2454 * device_initialize - init device structure.
2455 * @dev: device.
2456 *
2457 * This prepares the device for use by other layers by initializing
2458 * its fields.
2459 * It is the first half of device_register(), if called by
2460 * that function, though it can also be called separately, so one
2461 * may use @dev's fields. In particular, get_device()/put_device()
2462 * may be used for reference counting of @dev after calling this
2463 * function.
2464 *
2465 * All fields in @dev must be initialized by the caller to 0, except
2466 * for those explicitly set to some other value. The simplest
2467 * approach is to use kzalloc() to allocate the structure containing
2468 * @dev.
2469 *
2470 * NOTE: Use put_device() to give up your reference instead of freeing
2471 * @dev directly once you have called this function.
2472 */
device_initialize(struct device *dev)2473 void device_initialize(struct device *dev)
2474 {
2475 dev->kobj.kset = devices_kset;
2476 kobject_init(&dev->kobj, &device_ktype);
2477 INIT_LIST_HEAD(&dev->dma_pools);
2478 mutex_init(&dev->mutex);
2479 #ifdef CONFIG_PROVE_LOCKING
2480 mutex_init(&dev->lockdep_mutex);
2481 #endif
2482 lockdep_set_novalidate_class(&dev->mutex);
2483 spin_lock_init(&dev->devres_lock);
2484 INIT_LIST_HEAD(&dev->devres_head);
2485 device_pm_init(dev);
2486 set_dev_node(dev, -1);
2487 #ifdef CONFIG_GENERIC_MSI_IRQ
2488 raw_spin_lock_init(&dev->msi_lock);
2489 INIT_LIST_HEAD(&dev->msi_list);
2490 #endif
2491 INIT_LIST_HEAD(&dev->links.consumers);
2492 INIT_LIST_HEAD(&dev->links.suppliers);
2493 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2494 INIT_LIST_HEAD(&dev->links.defer_hook);
2495 dev->links.status = DL_DEV_NO_DRIVER;
2496 }
2497 EXPORT_SYMBOL_GPL(device_initialize);
2498
virtual_device_parent(struct device *dev)2499 struct kobject *virtual_device_parent(struct device *dev)
2500 {
2501 static struct kobject *virtual_dir = NULL;
2502
2503 if (!virtual_dir)
2504 virtual_dir = kobject_create_and_add("virtual",
2505 &devices_kset->kobj);
2506
2507 return virtual_dir;
2508 }
2509
2510 struct class_dir {
2511 struct kobject kobj;
2512 struct class *class;
2513 };
2514
2515 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2516
class_dir_release(struct kobject *kobj)2517 static void class_dir_release(struct kobject *kobj)
2518 {
2519 struct class_dir *dir = to_class_dir(kobj);
2520 kfree(dir);
2521 }
2522
2523 static const
class_dir_child_ns_type(struct kobject *kobj)2524 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2525 {
2526 struct class_dir *dir = to_class_dir(kobj);
2527 return dir->class->ns_type;
2528 }
2529
2530 static struct kobj_type class_dir_ktype = {
2531 .release = class_dir_release,
2532 .sysfs_ops = &kobj_sysfs_ops,
2533 .child_ns_type = class_dir_child_ns_type
2534 };
2535
2536 static struct kobject *
class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)2537 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2538 {
2539 struct class_dir *dir;
2540 int retval;
2541
2542 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2543 if (!dir)
2544 return ERR_PTR(-ENOMEM);
2545
2546 dir->class = class;
2547 kobject_init(&dir->kobj, &class_dir_ktype);
2548
2549 dir->kobj.kset = &class->p->glue_dirs;
2550
2551 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2552 if (retval < 0) {
2553 kobject_put(&dir->kobj);
2554 return ERR_PTR(retval);
2555 }
2556 return &dir->kobj;
2557 }
2558
2559 static DEFINE_MUTEX(gdp_mutex);
2560
get_device_parent(struct device *dev, struct device *parent)2561 static struct kobject *get_device_parent(struct device *dev,
2562 struct device *parent)
2563 {
2564 if (dev->class) {
2565 struct kobject *kobj = NULL;
2566 struct kobject *parent_kobj;
2567 struct kobject *k;
2568
2569 #ifdef CONFIG_BLOCK
2570 /* block disks show up in /sys/block */
2571 if (sysfs_deprecated && dev->class == &block_class) {
2572 if (parent && parent->class == &block_class)
2573 return &parent->kobj;
2574 return &block_class.p->subsys.kobj;
2575 }
2576 #endif
2577
2578 /*
2579 * If we have no parent, we live in "virtual".
2580 * Class-devices with a non class-device as parent, live
2581 * in a "glue" directory to prevent namespace collisions.
2582 */
2583 if (parent == NULL)
2584 parent_kobj = virtual_device_parent(dev);
2585 else if (parent->class && !dev->class->ns_type)
2586 return &parent->kobj;
2587 else
2588 parent_kobj = &parent->kobj;
2589
2590 mutex_lock(&gdp_mutex);
2591
2592 /* find our class-directory at the parent and reference it */
2593 spin_lock(&dev->class->p->glue_dirs.list_lock);
2594 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2595 if (k->parent == parent_kobj) {
2596 kobj = kobject_get(k);
2597 break;
2598 }
2599 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2600 if (kobj) {
2601 mutex_unlock(&gdp_mutex);
2602 return kobj;
2603 }
2604
2605 /* or create a new class-directory at the parent device */
2606 k = class_dir_create_and_add(dev->class, parent_kobj);
2607 /* do not emit an uevent for this simple "glue" directory */
2608 mutex_unlock(&gdp_mutex);
2609 return k;
2610 }
2611
2612 /* subsystems can specify a default root directory for their devices */
2613 if (!parent && dev->bus && dev->bus->dev_root)
2614 return &dev->bus->dev_root->kobj;
2615
2616 if (parent)
2617 return &parent->kobj;
2618 return NULL;
2619 }
2620
live_in_glue_dir(struct kobject *kobj, struct device *dev)2621 static inline bool live_in_glue_dir(struct kobject *kobj,
2622 struct device *dev)
2623 {
2624 if (!kobj || !dev->class ||
2625 kobj->kset != &dev->class->p->glue_dirs)
2626 return false;
2627 return true;
2628 }
2629
get_glue_dir(struct device *dev)2630 static inline struct kobject *get_glue_dir(struct device *dev)
2631 {
2632 return dev->kobj.parent;
2633 }
2634
2635 /*
2636 * make sure cleaning up dir as the last step, we need to make
2637 * sure .release handler of kobject is run with holding the
2638 * global lock
2639 */
cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)2640 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2641 {
2642 unsigned int ref;
2643
2644 /* see if we live in a "glue" directory */
2645 if (!live_in_glue_dir(glue_dir, dev))
2646 return;
2647
2648 mutex_lock(&gdp_mutex);
2649 /**
2650 * There is a race condition between removing glue directory
2651 * and adding a new device under the glue directory.
2652 *
2653 * CPU1: CPU2:
2654 *
2655 * device_add()
2656 * get_device_parent()
2657 * class_dir_create_and_add()
2658 * kobject_add_internal()
2659 * create_dir() // create glue_dir
2660 *
2661 * device_add()
2662 * get_device_parent()
2663 * kobject_get() // get glue_dir
2664 *
2665 * device_del()
2666 * cleanup_glue_dir()
2667 * kobject_del(glue_dir)
2668 *
2669 * kobject_add()
2670 * kobject_add_internal()
2671 * create_dir() // in glue_dir
2672 * sysfs_create_dir_ns()
2673 * kernfs_create_dir_ns(sd)
2674 *
2675 * sysfs_remove_dir() // glue_dir->sd=NULL
2676 * sysfs_put() // free glue_dir->sd
2677 *
2678 * // sd is freed
2679 * kernfs_new_node(sd)
2680 * kernfs_get(glue_dir)
2681 * kernfs_add_one()
2682 * kernfs_put()
2683 *
2684 * Before CPU1 remove last child device under glue dir, if CPU2 add
2685 * a new device under glue dir, the glue_dir kobject reference count
2686 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2687 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2688 * and sysfs_put(). This result in glue_dir->sd is freed.
2689 *
2690 * Then the CPU2 will see a stale "empty" but still potentially used
2691 * glue dir around in kernfs_new_node().
2692 *
2693 * In order to avoid this happening, we also should make sure that
2694 * kernfs_node for glue_dir is released in CPU1 only when refcount
2695 * for glue_dir kobj is 1.
2696 */
2697 ref = kref_read(&glue_dir->kref);
2698 if (!kobject_has_children(glue_dir) && !--ref)
2699 kobject_del(glue_dir);
2700 kobject_put(glue_dir);
2701 mutex_unlock(&gdp_mutex);
2702 }
2703
device_add_class_symlinks(struct device *dev)2704 static int device_add_class_symlinks(struct device *dev)
2705 {
2706 struct device_node *of_node = dev_of_node(dev);
2707 int error;
2708
2709 if (of_node) {
2710 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2711 if (error)
2712 dev_warn(dev, "Error %d creating of_node link\n",error);
2713 /* An error here doesn't warrant bringing down the device */
2714 }
2715
2716 if (!dev->class)
2717 return 0;
2718
2719 error = sysfs_create_link(&dev->kobj,
2720 &dev->class->p->subsys.kobj,
2721 "subsystem");
2722 if (error)
2723 goto out_devnode;
2724
2725 if (dev->parent && device_is_not_partition(dev)) {
2726 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2727 "device");
2728 if (error)
2729 goto out_subsys;
2730 }
2731
2732 #ifdef CONFIG_BLOCK
2733 /* /sys/block has directories and does not need symlinks */
2734 if (sysfs_deprecated && dev->class == &block_class)
2735 return 0;
2736 #endif
2737
2738 /* link in the class directory pointing to the device */
2739 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2740 &dev->kobj, dev_name(dev));
2741 if (error)
2742 goto out_device;
2743
2744 return 0;
2745
2746 out_device:
2747 sysfs_remove_link(&dev->kobj, "device");
2748
2749 out_subsys:
2750 sysfs_remove_link(&dev->kobj, "subsystem");
2751 out_devnode:
2752 sysfs_remove_link(&dev->kobj, "of_node");
2753 return error;
2754 }
2755
device_remove_class_symlinks(struct device *dev)2756 static void device_remove_class_symlinks(struct device *dev)
2757 {
2758 if (dev_of_node(dev))
2759 sysfs_remove_link(&dev->kobj, "of_node");
2760
2761 if (!dev->class)
2762 return;
2763
2764 if (dev->parent && device_is_not_partition(dev))
2765 sysfs_remove_link(&dev->kobj, "device");
2766 sysfs_remove_link(&dev->kobj, "subsystem");
2767 #ifdef CONFIG_BLOCK
2768 if (sysfs_deprecated && dev->class == &block_class)
2769 return;
2770 #endif
2771 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2772 }
2773
2774 /**
2775 * dev_set_name - set a device name
2776 * @dev: device
2777 * @fmt: format string for the device's name
2778 */
dev_set_name(struct device *dev, const char *fmt, ...)2779 int dev_set_name(struct device *dev, const char *fmt, ...)
2780 {
2781 va_list vargs;
2782 int err;
2783
2784 va_start(vargs, fmt);
2785 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2786 va_end(vargs);
2787 return err;
2788 }
2789 EXPORT_SYMBOL_GPL(dev_set_name);
2790
2791 /**
2792 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2793 * @dev: device
2794 *
2795 * By default we select char/ for new entries. Setting class->dev_obj
2796 * to NULL prevents an entry from being created. class->dev_kobj must
2797 * be set (or cleared) before any devices are registered to the class
2798 * otherwise device_create_sys_dev_entry() and
2799 * device_remove_sys_dev_entry() will disagree about the presence of
2800 * the link.
2801 */
device_to_dev_kobj(struct device *dev)2802 static struct kobject *device_to_dev_kobj(struct device *dev)
2803 {
2804 struct kobject *kobj;
2805
2806 if (dev->class)
2807 kobj = dev->class->dev_kobj;
2808 else
2809 kobj = sysfs_dev_char_kobj;
2810
2811 return kobj;
2812 }
2813
device_create_sys_dev_entry(struct device *dev)2814 static int device_create_sys_dev_entry(struct device *dev)
2815 {
2816 struct kobject *kobj = device_to_dev_kobj(dev);
2817 int error = 0;
2818 char devt_str[15];
2819
2820 if (kobj) {
2821 format_dev_t(devt_str, dev->devt);
2822 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2823 }
2824
2825 return error;
2826 }
2827
device_remove_sys_dev_entry(struct device *dev)2828 static void device_remove_sys_dev_entry(struct device *dev)
2829 {
2830 struct kobject *kobj = device_to_dev_kobj(dev);
2831 char devt_str[15];
2832
2833 if (kobj) {
2834 format_dev_t(devt_str, dev->devt);
2835 sysfs_remove_link(kobj, devt_str);
2836 }
2837 }
2838
device_private_init(struct device *dev)2839 static int device_private_init(struct device *dev)
2840 {
2841 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2842 if (!dev->p)
2843 return -ENOMEM;
2844 dev->p->device = dev;
2845 klist_init(&dev->p->klist_children, klist_children_get,
2846 klist_children_put);
2847 INIT_LIST_HEAD(&dev->p->deferred_probe);
2848 return 0;
2849 }
2850
2851 /**
2852 * device_add - add device to device hierarchy.
2853 * @dev: device.
2854 *
2855 * This is part 2 of device_register(), though may be called
2856 * separately _iff_ device_initialize() has been called separately.
2857 *
2858 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2859 * to the global and sibling lists for the device, then
2860 * adds it to the other relevant subsystems of the driver model.
2861 *
2862 * Do not call this routine or device_register() more than once for
2863 * any device structure. The driver model core is not designed to work
2864 * with devices that get unregistered and then spring back to life.
2865 * (Among other things, it's very hard to guarantee that all references
2866 * to the previous incarnation of @dev have been dropped.) Allocate
2867 * and register a fresh new struct device instead.
2868 *
2869 * NOTE: _Never_ directly free @dev after calling this function, even
2870 * if it returned an error! Always use put_device() to give up your
2871 * reference instead.
2872 *
2873 * Rule of thumb is: if device_add() succeeds, you should call
2874 * device_del() when you want to get rid of it. If device_add() has
2875 * *not* succeeded, use *only* put_device() to drop the reference
2876 * count.
2877 */
device_add(struct device *dev)2878 int device_add(struct device *dev)
2879 {
2880 struct device *parent;
2881 struct kobject *kobj;
2882 struct class_interface *class_intf;
2883 int error = -EINVAL;
2884 struct kobject *glue_dir = NULL;
2885
2886 dev = get_device(dev);
2887 if (!dev)
2888 goto done;
2889
2890 if (!dev->p) {
2891 error = device_private_init(dev);
2892 if (error)
2893 goto done;
2894 }
2895
2896 /*
2897 * for statically allocated devices, which should all be converted
2898 * some day, we need to initialize the name. We prevent reading back
2899 * the name, and force the use of dev_name()
2900 */
2901 if (dev->init_name) {
2902 dev_set_name(dev, "%s", dev->init_name);
2903 dev->init_name = NULL;
2904 }
2905
2906 /* subsystems can specify simple device enumeration */
2907 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2908 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2909
2910 if (!dev_name(dev)) {
2911 error = -EINVAL;
2912 goto name_error;
2913 }
2914
2915 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2916
2917 parent = get_device(dev->parent);
2918 kobj = get_device_parent(dev, parent);
2919 if (IS_ERR(kobj)) {
2920 error = PTR_ERR(kobj);
2921 goto parent_error;
2922 }
2923 if (kobj)
2924 dev->kobj.parent = kobj;
2925
2926 /* use parent numa_node */
2927 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2928 set_dev_node(dev, dev_to_node(parent));
2929
2930 /* first, register with generic layer. */
2931 /* we require the name to be set before, and pass NULL */
2932 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2933 if (error) {
2934 glue_dir = get_glue_dir(dev);
2935 goto Error;
2936 }
2937
2938 /* notify platform of device entry */
2939 error = device_platform_notify(dev, KOBJ_ADD);
2940 if (error)
2941 goto platform_error;
2942
2943 error = device_create_file(dev, &dev_attr_uevent);
2944 if (error)
2945 goto attrError;
2946
2947 error = device_add_class_symlinks(dev);
2948 if (error)
2949 goto SymlinkError;
2950 error = device_add_attrs(dev);
2951 if (error)
2952 goto AttrsError;
2953 error = bus_add_device(dev);
2954 if (error)
2955 goto BusError;
2956 error = dpm_sysfs_add(dev);
2957 if (error)
2958 goto DPMError;
2959 device_pm_add(dev);
2960
2961 if (MAJOR(dev->devt)) {
2962 error = device_create_file(dev, &dev_attr_dev);
2963 if (error)
2964 goto DevAttrError;
2965
2966 error = device_create_sys_dev_entry(dev);
2967 if (error)
2968 goto SysEntryError;
2969
2970 devtmpfs_create_node(dev);
2971 }
2972
2973 /* Notify clients of device addition. This call must come
2974 * after dpm_sysfs_add() and before kobject_uevent().
2975 */
2976 if (dev->bus)
2977 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2978 BUS_NOTIFY_ADD_DEVICE, dev);
2979
2980 kobject_uevent(&dev->kobj, KOBJ_ADD);
2981
2982 /*
2983 * Check if any of the other devices (consumers) have been waiting for
2984 * this device (supplier) to be added so that they can create a device
2985 * link to it.
2986 *
2987 * This needs to happen after device_pm_add() because device_link_add()
2988 * requires the supplier be registered before it's called.
2989 *
2990 * But this also needs to happen before bus_probe_device() to make sure
2991 * waiting consumers can link to it before the driver is bound to the
2992 * device and the driver sync_state callback is called for this device.
2993 */
2994 if (dev->fwnode && !dev->fwnode->dev) {
2995 dev->fwnode->dev = dev;
2996 fw_devlink_link_device(dev);
2997 }
2998
2999 bus_probe_device(dev);
3000 if (parent)
3001 klist_add_tail(&dev->p->knode_parent,
3002 &parent->p->klist_children);
3003
3004 if (dev->class) {
3005 mutex_lock(&dev->class->p->mutex);
3006 /* tie the class to the device */
3007 klist_add_tail(&dev->p->knode_class,
3008 &dev->class->p->klist_devices);
3009
3010 /* notify any interfaces that the device is here */
3011 list_for_each_entry(class_intf,
3012 &dev->class->p->interfaces, node)
3013 if (class_intf->add_dev)
3014 class_intf->add_dev(dev, class_intf);
3015 mutex_unlock(&dev->class->p->mutex);
3016 }
3017 done:
3018 put_device(dev);
3019 return error;
3020 SysEntryError:
3021 if (MAJOR(dev->devt))
3022 device_remove_file(dev, &dev_attr_dev);
3023 DevAttrError:
3024 device_pm_remove(dev);
3025 dpm_sysfs_remove(dev);
3026 DPMError:
3027 bus_remove_device(dev);
3028 BusError:
3029 device_remove_attrs(dev);
3030 AttrsError:
3031 device_remove_class_symlinks(dev);
3032 SymlinkError:
3033 device_remove_file(dev, &dev_attr_uevent);
3034 attrError:
3035 device_platform_notify(dev, KOBJ_REMOVE);
3036 platform_error:
3037 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3038 glue_dir = get_glue_dir(dev);
3039 kobject_del(&dev->kobj);
3040 Error:
3041 cleanup_glue_dir(dev, glue_dir);
3042 parent_error:
3043 put_device(parent);
3044 name_error:
3045 kfree(dev->p);
3046 dev->p = NULL;
3047 goto done;
3048 }
3049 EXPORT_SYMBOL_GPL(device_add);
3050
3051 /**
3052 * device_register - register a device with the system.
3053 * @dev: pointer to the device structure
3054 *
3055 * This happens in two clean steps - initialize the device
3056 * and add it to the system. The two steps can be called
3057 * separately, but this is the easiest and most common.
3058 * I.e. you should only call the two helpers separately if
3059 * have a clearly defined need to use and refcount the device
3060 * before it is added to the hierarchy.
3061 *
3062 * For more information, see the kerneldoc for device_initialize()
3063 * and device_add().
3064 *
3065 * NOTE: _Never_ directly free @dev after calling this function, even
3066 * if it returned an error! Always use put_device() to give up the
3067 * reference initialized in this function instead.
3068 */
device_register(struct device *dev)3069 int device_register(struct device *dev)
3070 {
3071 device_initialize(dev);
3072 return device_add(dev);
3073 }
3074 EXPORT_SYMBOL_GPL(device_register);
3075
3076 /**
3077 * get_device - increment reference count for device.
3078 * @dev: device.
3079 *
3080 * This simply forwards the call to kobject_get(), though
3081 * we do take care to provide for the case that we get a NULL
3082 * pointer passed in.
3083 */
get_device(struct device *dev)3084 struct device *get_device(struct device *dev)
3085 {
3086 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3087 }
3088 EXPORT_SYMBOL_GPL(get_device);
3089
3090 /**
3091 * put_device - decrement reference count.
3092 * @dev: device in question.
3093 */
put_device(struct device *dev)3094 void put_device(struct device *dev)
3095 {
3096 /* might_sleep(); */
3097 if (dev)
3098 kobject_put(&dev->kobj);
3099 }
3100 EXPORT_SYMBOL_GPL(put_device);
3101
kill_device(struct device *dev)3102 bool kill_device(struct device *dev)
3103 {
3104 /*
3105 * Require the device lock and set the "dead" flag to guarantee that
3106 * the update behavior is consistent with the other bitfields near
3107 * it and that we cannot have an asynchronous probe routine trying
3108 * to run while we are tearing out the bus/class/sysfs from
3109 * underneath the device.
3110 */
3111 lockdep_assert_held(&dev->mutex);
3112
3113 if (dev->p->dead)
3114 return false;
3115 dev->p->dead = true;
3116 return true;
3117 }
3118 EXPORT_SYMBOL_GPL(kill_device);
3119
3120 /**
3121 * device_del - delete device from system.
3122 * @dev: device.
3123 *
3124 * This is the first part of the device unregistration
3125 * sequence. This removes the device from the lists we control
3126 * from here, has it removed from the other driver model
3127 * subsystems it was added to in device_add(), and removes it
3128 * from the kobject hierarchy.
3129 *
3130 * NOTE: this should be called manually _iff_ device_add() was
3131 * also called manually.
3132 */
device_del(struct device *dev)3133 void device_del(struct device *dev)
3134 {
3135 struct device *parent = dev->parent;
3136 struct kobject *glue_dir = NULL;
3137 struct class_interface *class_intf;
3138 unsigned int noio_flag;
3139
3140 device_lock(dev);
3141 kill_device(dev);
3142 device_unlock(dev);
3143
3144 if (dev->fwnode && dev->fwnode->dev == dev)
3145 dev->fwnode->dev = NULL;
3146
3147 /* Notify clients of device removal. This call must come
3148 * before dpm_sysfs_remove().
3149 */
3150 noio_flag = memalloc_noio_save();
3151 if (dev->bus)
3152 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3153 BUS_NOTIFY_DEL_DEVICE, dev);
3154
3155 dpm_sysfs_remove(dev);
3156 if (parent)
3157 klist_del(&dev->p->knode_parent);
3158 if (MAJOR(dev->devt)) {
3159 devtmpfs_delete_node(dev);
3160 device_remove_sys_dev_entry(dev);
3161 device_remove_file(dev, &dev_attr_dev);
3162 }
3163 if (dev->class) {
3164 device_remove_class_symlinks(dev);
3165
3166 mutex_lock(&dev->class->p->mutex);
3167 /* notify any interfaces that the device is now gone */
3168 list_for_each_entry(class_intf,
3169 &dev->class->p->interfaces, node)
3170 if (class_intf->remove_dev)
3171 class_intf->remove_dev(dev, class_intf);
3172 /* remove the device from the class list */
3173 klist_del(&dev->p->knode_class);
3174 mutex_unlock(&dev->class->p->mutex);
3175 }
3176 device_remove_file(dev, &dev_attr_uevent);
3177 device_remove_attrs(dev);
3178 bus_remove_device(dev);
3179 device_pm_remove(dev);
3180 driver_deferred_probe_del(dev);
3181 device_platform_notify(dev, KOBJ_REMOVE);
3182 device_remove_properties(dev);
3183 device_links_purge(dev);
3184
3185 if (dev->bus)
3186 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3187 BUS_NOTIFY_REMOVED_DEVICE, dev);
3188 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3189 glue_dir = get_glue_dir(dev);
3190 kobject_del(&dev->kobj);
3191 cleanup_glue_dir(dev, glue_dir);
3192 memalloc_noio_restore(noio_flag);
3193 put_device(parent);
3194 }
3195 EXPORT_SYMBOL_GPL(device_del);
3196
3197 /**
3198 * device_unregister - unregister device from system.
3199 * @dev: device going away.
3200 *
3201 * We do this in two parts, like we do device_register(). First,
3202 * we remove it from all the subsystems with device_del(), then
3203 * we decrement the reference count via put_device(). If that
3204 * is the final reference count, the device will be cleaned up
3205 * via device_release() above. Otherwise, the structure will
3206 * stick around until the final reference to the device is dropped.
3207 */
device_unregister(struct device *dev)3208 void device_unregister(struct device *dev)
3209 {
3210 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3211 device_del(dev);
3212 put_device(dev);
3213 }
3214 EXPORT_SYMBOL_GPL(device_unregister);
3215
prev_device(struct klist_iter *i)3216 static struct device *prev_device(struct klist_iter *i)
3217 {
3218 struct klist_node *n = klist_prev(i);
3219 struct device *dev = NULL;
3220 struct device_private *p;
3221
3222 if (n) {
3223 p = to_device_private_parent(n);
3224 dev = p->device;
3225 }
3226 return dev;
3227 }
3228
next_device(struct klist_iter *i)3229 static struct device *next_device(struct klist_iter *i)
3230 {
3231 struct klist_node *n = klist_next(i);
3232 struct device *dev = NULL;
3233 struct device_private *p;
3234
3235 if (n) {
3236 p = to_device_private_parent(n);
3237 dev = p->device;
3238 }
3239 return dev;
3240 }
3241
3242 /**
3243 * device_get_devnode - path of device node file
3244 * @dev: device
3245 * @mode: returned file access mode
3246 * @uid: returned file owner
3247 * @gid: returned file group
3248 * @tmp: possibly allocated string
3249 *
3250 * Return the relative path of a possible device node.
3251 * Non-default names may need to allocate a memory to compose
3252 * a name. This memory is returned in tmp and needs to be
3253 * freed by the caller.
3254 */
device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp)3255 const char *device_get_devnode(struct device *dev,
3256 umode_t *mode, kuid_t *uid, kgid_t *gid,
3257 const char **tmp)
3258 {
3259 char *s;
3260
3261 *tmp = NULL;
3262
3263 /* the device type may provide a specific name */
3264 if (dev->type && dev->type->devnode)
3265 *tmp = dev->type->devnode(dev, mode, uid, gid);
3266 if (*tmp)
3267 return *tmp;
3268
3269 /* the class may provide a specific name */
3270 if (dev->class && dev->class->devnode)
3271 *tmp = dev->class->devnode(dev, mode);
3272 if (*tmp)
3273 return *tmp;
3274
3275 /* return name without allocation, tmp == NULL */
3276 if (strchr(dev_name(dev), '!') == NULL)
3277 return dev_name(dev);
3278
3279 /* replace '!' in the name with '/' */
3280 s = kstrdup(dev_name(dev), GFP_KERNEL);
3281 if (!s)
3282 return NULL;
3283 strreplace(s, '!', '/');
3284 return *tmp = s;
3285 }
3286
3287 /**
3288 * device_for_each_child - device child iterator.
3289 * @parent: parent struct device.
3290 * @fn: function to be called for each device.
3291 * @data: data for the callback.
3292 *
3293 * Iterate over @parent's child devices, and call @fn for each,
3294 * passing it @data.
3295 *
3296 * We check the return of @fn each time. If it returns anything
3297 * other than 0, we break out and return that value.
3298 */
device_for_each_child(struct device *parent, void *data, int (*fn)(struct device *dev, void *data))3299 int device_for_each_child(struct device *parent, void *data,
3300 int (*fn)(struct device *dev, void *data))
3301 {
3302 struct klist_iter i;
3303 struct device *child;
3304 int error = 0;
3305
3306 if (!parent->p)
3307 return 0;
3308
3309 klist_iter_init(&parent->p->klist_children, &i);
3310 while (!error && (child = next_device(&i)))
3311 error = fn(child, data);
3312 klist_iter_exit(&i);
3313 return error;
3314 }
3315 EXPORT_SYMBOL_GPL(device_for_each_child);
3316
3317 /**
3318 * device_for_each_child_reverse - device child iterator in reversed order.
3319 * @parent: parent struct device.
3320 * @fn: function to be called for each device.
3321 * @data: data for the callback.
3322 *
3323 * Iterate over @parent's child devices, and call @fn for each,
3324 * passing it @data.
3325 *
3326 * We check the return of @fn each time. If it returns anything
3327 * other than 0, we break out and return that value.
3328 */
device_for_each_child_reverse(struct device *parent, void *data, int (*fn)(struct device *dev, void *data))3329 int device_for_each_child_reverse(struct device *parent, void *data,
3330 int (*fn)(struct device *dev, void *data))
3331 {
3332 struct klist_iter i;
3333 struct device *child;
3334 int error = 0;
3335
3336 if (!parent->p)
3337 return 0;
3338
3339 klist_iter_init(&parent->p->klist_children, &i);
3340 while ((child = prev_device(&i)) && !error)
3341 error = fn(child, data);
3342 klist_iter_exit(&i);
3343 return error;
3344 }
3345 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3346
3347 /**
3348 * device_find_child - device iterator for locating a particular device.
3349 * @parent: parent struct device
3350 * @match: Callback function to check device
3351 * @data: Data to pass to match function
3352 *
3353 * This is similar to the device_for_each_child() function above, but it
3354 * returns a reference to a device that is 'found' for later use, as
3355 * determined by the @match callback.
3356 *
3357 * The callback should return 0 if the device doesn't match and non-zero
3358 * if it does. If the callback returns non-zero and a reference to the
3359 * current device can be obtained, this function will return to the caller
3360 * and not iterate over any more devices.
3361 *
3362 * NOTE: you will need to drop the reference with put_device() after use.
3363 */
device_find_child(struct device *parent, void *data, int (*match)(struct device *dev, void *data))3364 struct device *device_find_child(struct device *parent, void *data,
3365 int (*match)(struct device *dev, void *data))
3366 {
3367 struct klist_iter i;
3368 struct device *child;
3369
3370 if (!parent)
3371 return NULL;
3372
3373 klist_iter_init(&parent->p->klist_children, &i);
3374 while ((child = next_device(&i)))
3375 if (match(child, data) && get_device(child))
3376 break;
3377 klist_iter_exit(&i);
3378 return child;
3379 }
3380 EXPORT_SYMBOL_GPL(device_find_child);
3381
3382 /**
3383 * device_find_child_by_name - device iterator for locating a child device.
3384 * @parent: parent struct device
3385 * @name: name of the child device
3386 *
3387 * This is similar to the device_find_child() function above, but it
3388 * returns a reference to a device that has the name @name.
3389 *
3390 * NOTE: you will need to drop the reference with put_device() after use.
3391 */
device_find_child_by_name(struct device *parent, const char *name)3392 struct device *device_find_child_by_name(struct device *parent,
3393 const char *name)
3394 {
3395 struct klist_iter i;
3396 struct device *child;
3397
3398 if (!parent)
3399 return NULL;
3400
3401 klist_iter_init(&parent->p->klist_children, &i);
3402 while ((child = next_device(&i)))
3403 if (sysfs_streq(dev_name(child), name) && get_device(child))
3404 break;
3405 klist_iter_exit(&i);
3406 return child;
3407 }
3408 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3409
devices_init(void)3410 int __init devices_init(void)
3411 {
3412 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3413 if (!devices_kset)
3414 return -ENOMEM;
3415 dev_kobj = kobject_create_and_add("dev", NULL);
3416 if (!dev_kobj)
3417 goto dev_kobj_err;
3418 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3419 if (!sysfs_dev_block_kobj)
3420 goto block_kobj_err;
3421 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3422 if (!sysfs_dev_char_kobj)
3423 goto char_kobj_err;
3424
3425 return 0;
3426
3427 char_kobj_err:
3428 kobject_put(sysfs_dev_block_kobj);
3429 block_kobj_err:
3430 kobject_put(dev_kobj);
3431 dev_kobj_err:
3432 kset_unregister(devices_kset);
3433 return -ENOMEM;
3434 }
3435
device_check_offline(struct device *dev, void *not_used)3436 static int device_check_offline(struct device *dev, void *not_used)
3437 {
3438 int ret;
3439
3440 ret = device_for_each_child(dev, NULL, device_check_offline);
3441 if (ret)
3442 return ret;
3443
3444 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3445 }
3446
3447 /**
3448 * device_offline - Prepare the device for hot-removal.
3449 * @dev: Device to be put offline.
3450 *
3451 * Execute the device bus type's .offline() callback, if present, to prepare
3452 * the device for a subsequent hot-removal. If that succeeds, the device must
3453 * not be used until either it is removed or its bus type's .online() callback
3454 * is executed.
3455 *
3456 * Call under device_hotplug_lock.
3457 */
device_offline(struct device *dev)3458 int device_offline(struct device *dev)
3459 {
3460 int ret;
3461
3462 if (dev->offline_disabled)
3463 return -EPERM;
3464
3465 ret = device_for_each_child(dev, NULL, device_check_offline);
3466 if (ret)
3467 return ret;
3468
3469 device_lock(dev);
3470 if (device_supports_offline(dev)) {
3471 if (dev->offline) {
3472 ret = 1;
3473 } else {
3474 ret = dev->bus->offline(dev);
3475 if (!ret) {
3476 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3477 dev->offline = true;
3478 }
3479 }
3480 }
3481 device_unlock(dev);
3482
3483 return ret;
3484 }
3485
3486 /**
3487 * device_online - Put the device back online after successful device_offline().
3488 * @dev: Device to be put back online.
3489 *
3490 * If device_offline() has been successfully executed for @dev, but the device
3491 * has not been removed subsequently, execute its bus type's .online() callback
3492 * to indicate that the device can be used again.
3493 *
3494 * Call under device_hotplug_lock.
3495 */
device_online(struct device *dev)3496 int device_online(struct device *dev)
3497 {
3498 int ret = 0;
3499
3500 device_lock(dev);
3501 if (device_supports_offline(dev)) {
3502 if (dev->offline) {
3503 ret = dev->bus->online(dev);
3504 if (!ret) {
3505 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3506 dev->offline = false;
3507 }
3508 } else {
3509 ret = 1;
3510 }
3511 }
3512 device_unlock(dev);
3513
3514 return ret;
3515 }
3516
3517 struct root_device {
3518 struct device dev;
3519 struct module *owner;
3520 };
3521
to_root_device(struct device *d)3522 static inline struct root_device *to_root_device(struct device *d)
3523 {
3524 return container_of(d, struct root_device, dev);
3525 }
3526
root_device_release(struct device *dev)3527 static void root_device_release(struct device *dev)
3528 {
3529 kfree(to_root_device(dev));
3530 }
3531
3532 /**
3533 * __root_device_register - allocate and register a root device
3534 * @name: root device name
3535 * @owner: owner module of the root device, usually THIS_MODULE
3536 *
3537 * This function allocates a root device and registers it
3538 * using device_register(). In order to free the returned
3539 * device, use root_device_unregister().
3540 *
3541 * Root devices are dummy devices which allow other devices
3542 * to be grouped under /sys/devices. Use this function to
3543 * allocate a root device and then use it as the parent of
3544 * any device which should appear under /sys/devices/{name}
3545 *
3546 * The /sys/devices/{name} directory will also contain a
3547 * 'module' symlink which points to the @owner directory
3548 * in sysfs.
3549 *
3550 * Returns &struct device pointer on success, or ERR_PTR() on error.
3551 *
3552 * Note: You probably want to use root_device_register().
3553 */
__root_device_register(const char *name, struct module *owner)3554 struct device *__root_device_register(const char *name, struct module *owner)
3555 {
3556 struct root_device *root;
3557 int err = -ENOMEM;
3558
3559 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3560 if (!root)
3561 return ERR_PTR(err);
3562
3563 err = dev_set_name(&root->dev, "%s", name);
3564 if (err) {
3565 kfree(root);
3566 return ERR_PTR(err);
3567 }
3568
3569 root->dev.release = root_device_release;
3570
3571 err = device_register(&root->dev);
3572 if (err) {
3573 put_device(&root->dev);
3574 return ERR_PTR(err);
3575 }
3576
3577 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3578 if (owner) {
3579 struct module_kobject *mk = &owner->mkobj;
3580
3581 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3582 if (err) {
3583 device_unregister(&root->dev);
3584 return ERR_PTR(err);
3585 }
3586 root->owner = owner;
3587 }
3588 #endif
3589
3590 return &root->dev;
3591 }
3592 EXPORT_SYMBOL_GPL(__root_device_register);
3593
3594 /**
3595 * root_device_unregister - unregister and free a root device
3596 * @dev: device going away
3597 *
3598 * This function unregisters and cleans up a device that was created by
3599 * root_device_register().
3600 */
root_device_unregister(struct device *dev)3601 void root_device_unregister(struct device *dev)
3602 {
3603 struct root_device *root = to_root_device(dev);
3604
3605 if (root->owner)
3606 sysfs_remove_link(&root->dev.kobj, "module");
3607
3608 device_unregister(dev);
3609 }
3610 EXPORT_SYMBOL_GPL(root_device_unregister);
3611
3612
device_create_release(struct device *dev)3613 static void device_create_release(struct device *dev)
3614 {
3615 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3616 kfree(dev);
3617 }
3618
3619 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class *class, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, va_list args)3620 device_create_groups_vargs(struct class *class, struct device *parent,
3621 dev_t devt, void *drvdata,
3622 const struct attribute_group **groups,
3623 const char *fmt, va_list args)
3624 {
3625 struct device *dev = NULL;
3626 int retval = -ENODEV;
3627
3628 if (class == NULL || IS_ERR(class))
3629 goto error;
3630
3631 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3632 if (!dev) {
3633 retval = -ENOMEM;
3634 goto error;
3635 }
3636
3637 device_initialize(dev);
3638 dev->devt = devt;
3639 dev->class = class;
3640 dev->parent = parent;
3641 dev->groups = groups;
3642 dev->release = device_create_release;
3643 dev_set_drvdata(dev, drvdata);
3644
3645 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3646 if (retval)
3647 goto error;
3648
3649 retval = device_add(dev);
3650 if (retval)
3651 goto error;
3652
3653 return dev;
3654
3655 error:
3656 put_device(dev);
3657 return ERR_PTR(retval);
3658 }
3659
3660 /**
3661 * device_create - creates a device and registers it with sysfs
3662 * @class: pointer to the struct class that this device should be registered to
3663 * @parent: pointer to the parent struct device of this new device, if any
3664 * @devt: the dev_t for the char device to be added
3665 * @drvdata: the data to be added to the device for callbacks
3666 * @fmt: string for the device's name
3667 *
3668 * This function can be used by char device classes. A struct device
3669 * will be created in sysfs, registered to the specified class.
3670 *
3671 * A "dev" file will be created, showing the dev_t for the device, if
3672 * the dev_t is not 0,0.
3673 * If a pointer to a parent struct device is passed in, the newly created
3674 * struct device will be a child of that device in sysfs.
3675 * The pointer to the struct device will be returned from the call.
3676 * Any further sysfs files that might be required can be created using this
3677 * pointer.
3678 *
3679 * Returns &struct device pointer on success, or ERR_PTR() on error.
3680 *
3681 * Note: the struct class passed to this function must have previously
3682 * been created with a call to class_create().
3683 */
device_create(struct class *class, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...)3684 struct device *device_create(struct class *class, struct device *parent,
3685 dev_t devt, void *drvdata, const char *fmt, ...)
3686 {
3687 va_list vargs;
3688 struct device *dev;
3689
3690 va_start(vargs, fmt);
3691 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3692 fmt, vargs);
3693 va_end(vargs);
3694 return dev;
3695 }
3696 EXPORT_SYMBOL_GPL(device_create);
3697
3698 /**
3699 * device_create_with_groups - creates a device and registers it with sysfs
3700 * @class: pointer to the struct class that this device should be registered to
3701 * @parent: pointer to the parent struct device of this new device, if any
3702 * @devt: the dev_t for the char device to be added
3703 * @drvdata: the data to be added to the device for callbacks
3704 * @groups: NULL-terminated list of attribute groups to be created
3705 * @fmt: string for the device's name
3706 *
3707 * This function can be used by char device classes. A struct device
3708 * will be created in sysfs, registered to the specified class.
3709 * Additional attributes specified in the groups parameter will also
3710 * be created automatically.
3711 *
3712 * A "dev" file will be created, showing the dev_t for the device, if
3713 * the dev_t is not 0,0.
3714 * If a pointer to a parent struct device is passed in, the newly created
3715 * struct device will be a child of that device in sysfs.
3716 * The pointer to the struct device will be returned from the call.
3717 * Any further sysfs files that might be required can be created using this
3718 * pointer.
3719 *
3720 * Returns &struct device pointer on success, or ERR_PTR() on error.
3721 *
3722 * Note: the struct class passed to this function must have previously
3723 * been created with a call to class_create().
3724 */
device_create_with_groups(struct class *class, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...)3725 struct device *device_create_with_groups(struct class *class,
3726 struct device *parent, dev_t devt,
3727 void *drvdata,
3728 const struct attribute_group **groups,
3729 const char *fmt, ...)
3730 {
3731 va_list vargs;
3732 struct device *dev;
3733
3734 va_start(vargs, fmt);
3735 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3736 fmt, vargs);
3737 va_end(vargs);
3738 return dev;
3739 }
3740 EXPORT_SYMBOL_GPL(device_create_with_groups);
3741
3742 /**
3743 * device_destroy - removes a device that was created with device_create()
3744 * @class: pointer to the struct class that this device was registered with
3745 * @devt: the dev_t of the device that was previously registered
3746 *
3747 * This call unregisters and cleans up a device that was created with a
3748 * call to device_create().
3749 */
device_destroy(struct class *class, dev_t devt)3750 void device_destroy(struct class *class, dev_t devt)
3751 {
3752 struct device *dev;
3753
3754 dev = class_find_device_by_devt(class, devt);
3755 if (dev) {
3756 put_device(dev);
3757 device_unregister(dev);
3758 }
3759 }
3760 EXPORT_SYMBOL_GPL(device_destroy);
3761
3762 /**
3763 * device_rename - renames a device
3764 * @dev: the pointer to the struct device to be renamed
3765 * @new_name: the new name of the device
3766 *
3767 * It is the responsibility of the caller to provide mutual
3768 * exclusion between two different calls of device_rename
3769 * on the same device to ensure that new_name is valid and
3770 * won't conflict with other devices.
3771 *
3772 * Note: Don't call this function. Currently, the networking layer calls this
3773 * function, but that will change. The following text from Kay Sievers offers
3774 * some insight:
3775 *
3776 * Renaming devices is racy at many levels, symlinks and other stuff are not
3777 * replaced atomically, and you get a "move" uevent, but it's not easy to
3778 * connect the event to the old and new device. Device nodes are not renamed at
3779 * all, there isn't even support for that in the kernel now.
3780 *
3781 * In the meantime, during renaming, your target name might be taken by another
3782 * driver, creating conflicts. Or the old name is taken directly after you
3783 * renamed it -- then you get events for the same DEVPATH, before you even see
3784 * the "move" event. It's just a mess, and nothing new should ever rely on
3785 * kernel device renaming. Besides that, it's not even implemented now for
3786 * other things than (driver-core wise very simple) network devices.
3787 *
3788 * We are currently about to change network renaming in udev to completely
3789 * disallow renaming of devices in the same namespace as the kernel uses,
3790 * because we can't solve the problems properly, that arise with swapping names
3791 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3792 * be allowed to some other name than eth[0-9]*, for the aforementioned
3793 * reasons.
3794 *
3795 * Make up a "real" name in the driver before you register anything, or add
3796 * some other attributes for userspace to find the device, or use udev to add
3797 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3798 * don't even want to get into that and try to implement the missing pieces in
3799 * the core. We really have other pieces to fix in the driver core mess. :)
3800 */
device_rename(struct device *dev, const char *new_name)3801 int device_rename(struct device *dev, const char *new_name)
3802 {
3803 struct kobject *kobj = &dev->kobj;
3804 char *old_device_name = NULL;
3805 int error;
3806
3807 dev = get_device(dev);
3808 if (!dev)
3809 return -EINVAL;
3810
3811 dev_dbg(dev, "renaming to %s\n", new_name);
3812
3813 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3814 if (!old_device_name) {
3815 error = -ENOMEM;
3816 goto out;
3817 }
3818
3819 if (dev->class) {
3820 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3821 kobj, old_device_name,
3822 new_name, kobject_namespace(kobj));
3823 if (error)
3824 goto out;
3825 }
3826
3827 error = kobject_rename(kobj, new_name);
3828 if (error)
3829 goto out;
3830
3831 out:
3832 put_device(dev);
3833
3834 kfree(old_device_name);
3835
3836 return error;
3837 }
3838 EXPORT_SYMBOL_GPL(device_rename);
3839
device_move_class_links(struct device *dev, struct device *old_parent, struct device *new_parent)3840 static int device_move_class_links(struct device *dev,
3841 struct device *old_parent,
3842 struct device *new_parent)
3843 {
3844 int error = 0;
3845
3846 if (old_parent)
3847 sysfs_remove_link(&dev->kobj, "device");
3848 if (new_parent)
3849 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3850 "device");
3851 return error;
3852 }
3853
3854 /**
3855 * device_move - moves a device to a new parent
3856 * @dev: the pointer to the struct device to be moved
3857 * @new_parent: the new parent of the device (can be NULL)
3858 * @dpm_order: how to reorder the dpm_list
3859 */
device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order)3860 int device_move(struct device *dev, struct device *new_parent,
3861 enum dpm_order dpm_order)
3862 {
3863 int error;
3864 struct device *old_parent;
3865 struct kobject *new_parent_kobj;
3866
3867 dev = get_device(dev);
3868 if (!dev)
3869 return -EINVAL;
3870
3871 device_pm_lock();
3872 new_parent = get_device(new_parent);
3873 new_parent_kobj = get_device_parent(dev, new_parent);
3874 if (IS_ERR(new_parent_kobj)) {
3875 error = PTR_ERR(new_parent_kobj);
3876 put_device(new_parent);
3877 goto out;
3878 }
3879
3880 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3881 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3882 error = kobject_move(&dev->kobj, new_parent_kobj);
3883 if (error) {
3884 cleanup_glue_dir(dev, new_parent_kobj);
3885 put_device(new_parent);
3886 goto out;
3887 }
3888 old_parent = dev->parent;
3889 dev->parent = new_parent;
3890 if (old_parent)
3891 klist_remove(&dev->p->knode_parent);
3892 if (new_parent) {
3893 klist_add_tail(&dev->p->knode_parent,
3894 &new_parent->p->klist_children);
3895 set_dev_node(dev, dev_to_node(new_parent));
3896 }
3897
3898 if (dev->class) {
3899 error = device_move_class_links(dev, old_parent, new_parent);
3900 if (error) {
3901 /* We ignore errors on cleanup since we're hosed anyway... */
3902 device_move_class_links(dev, new_parent, old_parent);
3903 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3904 if (new_parent)
3905 klist_remove(&dev->p->knode_parent);
3906 dev->parent = old_parent;
3907 if (old_parent) {
3908 klist_add_tail(&dev->p->knode_parent,
3909 &old_parent->p->klist_children);
3910 set_dev_node(dev, dev_to_node(old_parent));
3911 }
3912 }
3913 cleanup_glue_dir(dev, new_parent_kobj);
3914 put_device(new_parent);
3915 goto out;
3916 }
3917 }
3918 switch (dpm_order) {
3919 case DPM_ORDER_NONE:
3920 break;
3921 case DPM_ORDER_DEV_AFTER_PARENT:
3922 device_pm_move_after(dev, new_parent);
3923 devices_kset_move_after(dev, new_parent);
3924 break;
3925 case DPM_ORDER_PARENT_BEFORE_DEV:
3926 device_pm_move_before(new_parent, dev);
3927 devices_kset_move_before(new_parent, dev);
3928 break;
3929 case DPM_ORDER_DEV_LAST:
3930 device_pm_move_last(dev);
3931 devices_kset_move_last(dev);
3932 break;
3933 }
3934
3935 put_device(old_parent);
3936 out:
3937 device_pm_unlock();
3938 put_device(dev);
3939 return error;
3940 }
3941 EXPORT_SYMBOL_GPL(device_move);
3942
device_attrs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)3943 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3944 kgid_t kgid)
3945 {
3946 struct kobject *kobj = &dev->kobj;
3947 struct class *class = dev->class;
3948 const struct device_type *type = dev->type;
3949 int error;
3950
3951 if (class) {
3952 /*
3953 * Change the device groups of the device class for @dev to
3954 * @kuid/@kgid.
3955 */
3956 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3957 kgid);
3958 if (error)
3959 return error;
3960 }
3961
3962 if (type) {
3963 /*
3964 * Change the device groups of the device type for @dev to
3965 * @kuid/@kgid.
3966 */
3967 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3968 kgid);
3969 if (error)
3970 return error;
3971 }
3972
3973 /* Change the device groups of @dev to @kuid/@kgid. */
3974 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3975 if (error)
3976 return error;
3977
3978 if (device_supports_offline(dev) && !dev->offline_disabled) {
3979 /* Change online device attributes of @dev to @kuid/@kgid. */
3980 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3981 kuid, kgid);
3982 if (error)
3983 return error;
3984 }
3985
3986 return 0;
3987 }
3988
3989 /**
3990 * device_change_owner - change the owner of an existing device.
3991 * @dev: device.
3992 * @kuid: new owner's kuid
3993 * @kgid: new owner's kgid
3994 *
3995 * This changes the owner of @dev and its corresponding sysfs entries to
3996 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3997 * core.
3998 *
3999 * Returns 0 on success or error code on failure.
4000 */
device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)4001 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4002 {
4003 int error;
4004 struct kobject *kobj = &dev->kobj;
4005
4006 dev = get_device(dev);
4007 if (!dev)
4008 return -EINVAL;
4009
4010 /*
4011 * Change the kobject and the default attributes and groups of the
4012 * ktype associated with it to @kuid/@kgid.
4013 */
4014 error = sysfs_change_owner(kobj, kuid, kgid);
4015 if (error)
4016 goto out;
4017
4018 /*
4019 * Change the uevent file for @dev to the new owner. The uevent file
4020 * was created in a separate step when @dev got added and we mirror
4021 * that step here.
4022 */
4023 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4024 kgid);
4025 if (error)
4026 goto out;
4027
4028 /*
4029 * Change the device groups, the device groups associated with the
4030 * device class, and the groups associated with the device type of @dev
4031 * to @kuid/@kgid.
4032 */
4033 error = device_attrs_change_owner(dev, kuid, kgid);
4034 if (error)
4035 goto out;
4036
4037 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4038 if (error)
4039 goto out;
4040
4041 #ifdef CONFIG_BLOCK
4042 if (sysfs_deprecated && dev->class == &block_class)
4043 goto out;
4044 #endif
4045
4046 /*
4047 * Change the owner of the symlink located in the class directory of
4048 * the device class associated with @dev which points to the actual
4049 * directory entry for @dev to @kuid/@kgid. This ensures that the
4050 * symlink shows the same permissions as its target.
4051 */
4052 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4053 dev_name(dev), kuid, kgid);
4054 if (error)
4055 goto out;
4056
4057 out:
4058 put_device(dev);
4059 return error;
4060 }
4061 EXPORT_SYMBOL_GPL(device_change_owner);
4062
4063 /**
4064 * device_shutdown - call ->shutdown() on each device to shutdown.
4065 */
device_shutdown(void)4066 void device_shutdown(void)
4067 {
4068 struct device *dev, *parent;
4069
4070 wait_for_device_probe();
4071 device_block_probing();
4072
4073 cpufreq_suspend();
4074
4075 spin_lock(&devices_kset->list_lock);
4076 /*
4077 * Walk the devices list backward, shutting down each in turn.
4078 * Beware that device unplug events may also start pulling
4079 * devices offline, even as the system is shutting down.
4080 */
4081 while (!list_empty(&devices_kset->list)) {
4082 dev = list_entry(devices_kset->list.prev, struct device,
4083 kobj.entry);
4084
4085 /*
4086 * hold reference count of device's parent to
4087 * prevent it from being freed because parent's
4088 * lock is to be held
4089 */
4090 parent = get_device(dev->parent);
4091 get_device(dev);
4092 /*
4093 * Make sure the device is off the kset list, in the
4094 * event that dev->*->shutdown() doesn't remove it.
4095 */
4096 list_del_init(&dev->kobj.entry);
4097 spin_unlock(&devices_kset->list_lock);
4098
4099 /* hold lock to avoid race with probe/release */
4100 if (parent)
4101 device_lock(parent);
4102 device_lock(dev);
4103
4104 /* Don't allow any more runtime suspends */
4105 pm_runtime_get_noresume(dev);
4106 pm_runtime_barrier(dev);
4107
4108 if (dev->class && dev->class->shutdown_pre) {
4109 if (initcall_debug)
4110 dev_info(dev, "shutdown_pre\n");
4111 dev->class->shutdown_pre(dev);
4112 }
4113 if (dev->bus && dev->bus->shutdown) {
4114 if (initcall_debug)
4115 dev_info(dev, "shutdown\n");
4116 dev->bus->shutdown(dev);
4117 } else if (dev->driver && dev->driver->shutdown) {
4118 if (initcall_debug)
4119 dev_info(dev, "shutdown\n");
4120 dev->driver->shutdown(dev);
4121 }
4122
4123 device_unlock(dev);
4124 if (parent)
4125 device_unlock(parent);
4126
4127 put_device(dev);
4128 put_device(parent);
4129
4130 spin_lock(&devices_kset->list_lock);
4131 }
4132 spin_unlock(&devices_kset->list_lock);
4133 }
4134
4135 /*
4136 * Device logging functions
4137 */
4138
4139 #ifdef CONFIG_PRINTK
4140 static void
set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)4141 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4142 {
4143 const char *subsys;
4144
4145 memset(dev_info, 0, sizeof(*dev_info));
4146
4147 if (dev->class)
4148 subsys = dev->class->name;
4149 else if (dev->bus)
4150 subsys = dev->bus->name;
4151 else
4152 return;
4153
4154 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4155
4156 /*
4157 * Add device identifier DEVICE=:
4158 * b12:8 block dev_t
4159 * c127:3 char dev_t
4160 * n8 netdev ifindex
4161 * +sound:card0 subsystem:devname
4162 */
4163 if (MAJOR(dev->devt)) {
4164 char c;
4165
4166 if (strcmp(subsys, "block") == 0)
4167 c = 'b';
4168 else
4169 c = 'c';
4170
4171 snprintf(dev_info->device, sizeof(dev_info->device),
4172 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4173 } else if (strcmp(subsys, "net") == 0) {
4174 struct net_device *net = to_net_dev(dev);
4175
4176 snprintf(dev_info->device, sizeof(dev_info->device),
4177 "n%u", net->ifindex);
4178 } else {
4179 snprintf(dev_info->device, sizeof(dev_info->device),
4180 "+%s:%s", subsys, dev_name(dev));
4181 }
4182 }
4183
dev_vprintk_emit(int level, const struct device *dev, const char *fmt, va_list args)4184 int dev_vprintk_emit(int level, const struct device *dev,
4185 const char *fmt, va_list args)
4186 {
4187 struct dev_printk_info dev_info;
4188
4189 set_dev_info(dev, &dev_info);
4190
4191 return vprintk_emit(0, level, &dev_info, fmt, args);
4192 }
4193 EXPORT_SYMBOL(dev_vprintk_emit);
4194
dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)4195 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4196 {
4197 va_list args;
4198 int r;
4199
4200 va_start(args, fmt);
4201
4202 r = dev_vprintk_emit(level, dev, fmt, args);
4203
4204 va_end(args);
4205
4206 return r;
4207 }
4208 EXPORT_SYMBOL(dev_printk_emit);
4209
__dev_printk(const char *level, const struct device *dev, struct va_format *vaf)4210 static void __dev_printk(const char *level, const struct device *dev,
4211 struct va_format *vaf)
4212 {
4213 if (dev)
4214 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4215 dev_driver_string(dev), dev_name(dev), vaf);
4216 else
4217 printk("%s(NULL device *): %pV", level, vaf);
4218 }
4219
dev_printk(const char *level, const struct device *dev, const char *fmt, ...)4220 void dev_printk(const char *level, const struct device *dev,
4221 const char *fmt, ...)
4222 {
4223 struct va_format vaf;
4224 va_list args;
4225
4226 va_start(args, fmt);
4227
4228 vaf.fmt = fmt;
4229 vaf.va = &args;
4230
4231 __dev_printk(level, dev, &vaf);
4232
4233 va_end(args);
4234 }
4235 EXPORT_SYMBOL(dev_printk);
4236
4237 #define define_dev_printk_level(func, kern_level) \
4238 void func(const struct device *dev, const char *fmt, ...) \
4239 { \
4240 struct va_format vaf; \
4241 va_list args; \
4242 \
4243 va_start(args, fmt); \
4244 \
4245 vaf.fmt = fmt; \
4246 vaf.va = &args; \
4247 \
4248 __dev_printk(kern_level, dev, &vaf); \
4249 \
4250 va_end(args); \
4251 } \
4252 EXPORT_SYMBOL(func);
4253
4254 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4255 define_dev_printk_level(_dev_alert, KERN_ALERT);
4256 define_dev_printk_level(_dev_crit, KERN_CRIT);
4257 define_dev_printk_level(_dev_err, KERN_ERR);
4258 define_dev_printk_level(_dev_warn, KERN_WARNING);
4259 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4260 define_dev_printk_level(_dev_info, KERN_INFO);
4261
4262 #endif
4263
4264 /**
4265 * dev_err_probe - probe error check and log helper
4266 * @dev: the pointer to the struct device
4267 * @err: error value to test
4268 * @fmt: printf-style format string
4269 * @...: arguments as specified in the format string
4270 *
4271 * This helper implements common pattern present in probe functions for error
4272 * checking: print debug or error message depending if the error value is
4273 * -EPROBE_DEFER and propagate error upwards.
4274 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4275 * checked later by reading devices_deferred debugfs attribute.
4276 * It replaces code sequence::
4277 *
4278 * if (err != -EPROBE_DEFER)
4279 * dev_err(dev, ...);
4280 * else
4281 * dev_dbg(dev, ...);
4282 * return err;
4283 *
4284 * with::
4285 *
4286 * return dev_err_probe(dev, err, ...);
4287 *
4288 * Returns @err.
4289 *
4290 */
dev_err_probe(const struct device *dev, int err, const char *fmt, ...)4291 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4292 {
4293 struct va_format vaf;
4294 va_list args;
4295
4296 va_start(args, fmt);
4297 vaf.fmt = fmt;
4298 vaf.va = &args;
4299
4300 if (err != -EPROBE_DEFER) {
4301 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4302 } else {
4303 device_set_deferred_probe_reason(dev, &vaf);
4304 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4305 }
4306
4307 va_end(args);
4308
4309 return err;
4310 }
4311 EXPORT_SYMBOL_GPL(dev_err_probe);
4312
fwnode_is_primary(struct fwnode_handle *fwnode)4313 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4314 {
4315 return fwnode && !IS_ERR(fwnode->secondary);
4316 }
4317
4318 /**
4319 * set_primary_fwnode - Change the primary firmware node of a given device.
4320 * @dev: Device to handle.
4321 * @fwnode: New primary firmware node of the device.
4322 *
4323 * Set the device's firmware node pointer to @fwnode, but if a secondary
4324 * firmware node of the device is present, preserve it.
4325 */
set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)4326 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4327 {
4328 struct device *parent = dev->parent;
4329 struct fwnode_handle *fn = dev->fwnode;
4330
4331 if (fwnode) {
4332 if (fwnode_is_primary(fn))
4333 fn = fn->secondary;
4334
4335 if (fn) {
4336 WARN_ON(fwnode->secondary);
4337 fwnode->secondary = fn;
4338 }
4339 dev->fwnode = fwnode;
4340 } else {
4341 if (fwnode_is_primary(fn)) {
4342 dev->fwnode = fn->secondary;
4343 if (!(parent && fn == parent->fwnode))
4344 fn->secondary = NULL;
4345 } else {
4346 dev->fwnode = NULL;
4347 }
4348 }
4349 }
4350 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4351
4352 /**
4353 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4354 * @dev: Device to handle.
4355 * @fwnode: New secondary firmware node of the device.
4356 *
4357 * If a primary firmware node of the device is present, set its secondary
4358 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4359 * @fwnode.
4360 */
set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)4361 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4362 {
4363 if (fwnode)
4364 fwnode->secondary = ERR_PTR(-ENODEV);
4365
4366 if (fwnode_is_primary(dev->fwnode))
4367 dev->fwnode->secondary = fwnode;
4368 else
4369 dev->fwnode = fwnode;
4370 }
4371 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4372
4373 /**
4374 * device_set_of_node_from_dev - reuse device-tree node of another device
4375 * @dev: device whose device-tree node is being set
4376 * @dev2: device whose device-tree node is being reused
4377 *
4378 * Takes another reference to the new device-tree node after first dropping
4379 * any reference held to the old node.
4380 */
device_set_of_node_from_dev(struct device *dev, const struct device *dev2)4381 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4382 {
4383 of_node_put(dev->of_node);
4384 dev->of_node = of_node_get(dev2->of_node);
4385 dev->of_node_reused = true;
4386 }
4387 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4388
device_set_node(struct device *dev, struct fwnode_handle *fwnode)4389 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4390 {
4391 dev->fwnode = fwnode;
4392 dev->of_node = to_of_node(fwnode);
4393 }
4394 EXPORT_SYMBOL_GPL(device_set_node);
4395
device_match_name(struct device *dev, const void *name)4396 int device_match_name(struct device *dev, const void *name)
4397 {
4398 return sysfs_streq(dev_name(dev), name);
4399 }
4400 EXPORT_SYMBOL_GPL(device_match_name);
4401
device_match_of_node(struct device *dev, const void *np)4402 int device_match_of_node(struct device *dev, const void *np)
4403 {
4404 return dev->of_node == np;
4405 }
4406 EXPORT_SYMBOL_GPL(device_match_of_node);
4407
device_match_fwnode(struct device *dev, const void *fwnode)4408 int device_match_fwnode(struct device *dev, const void *fwnode)
4409 {
4410 return dev_fwnode(dev) == fwnode;
4411 }
4412 EXPORT_SYMBOL_GPL(device_match_fwnode);
4413
device_match_devt(struct device *dev, const void *pdevt)4414 int device_match_devt(struct device *dev, const void *pdevt)
4415 {
4416 return dev->devt == *(dev_t *)pdevt;
4417 }
4418 EXPORT_SYMBOL_GPL(device_match_devt);
4419
device_match_acpi_dev(struct device *dev, const void *adev)4420 int device_match_acpi_dev(struct device *dev, const void *adev)
4421 {
4422 return ACPI_COMPANION(dev) == adev;
4423 }
4424 EXPORT_SYMBOL(device_match_acpi_dev);
4425
device_match_any(struct device *dev, const void *unused)4426 int device_match_any(struct device *dev, const void *unused)
4427 {
4428 return 1;
4429 }
4430 EXPORT_SYMBOL_GPL(device_match_any);
4431