1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sysfs.h>
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
sysfs_deprecated_setup(char *arg)42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(wait_for_suppliers);
51 static DEFINE_MUTEX(wfs_lock);
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static unsigned int defer_fw_devlink_count;
55 static LIST_HEAD(deferred_fw_devlink);
56 static DEFINE_MUTEX(defer_fw_devlink_lock);
57 static bool fw_devlink_is_permissive(void);
58 
59 #ifdef CONFIG_SRCU
60 static DEFINE_MUTEX(device_links_lock);
61 DEFINE_STATIC_SRCU(device_links_srcu);
62 
device_links_write_lock(void)63 static inline void device_links_write_lock(void)
64 {
65 	mutex_lock(&device_links_lock);
66 }
67 
device_links_write_unlock(void)68 static inline void device_links_write_unlock(void)
69 {
70 	mutex_unlock(&device_links_lock);
71 }
72 
73 int device_links_read_lock(void) __acquires(&device_links_srcu)
74 {
75 	return srcu_read_lock(&device_links_srcu);
76 }
77 
78 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
79 {
80 	srcu_read_unlock(&device_links_srcu, idx);
81 }
82 
device_links_read_lock_held(void)83 int device_links_read_lock_held(void)
84 {
85 	return srcu_read_lock_held(&device_links_srcu);
86 }
87 
device_link_synchronize_removal(void)88 static void device_link_synchronize_removal(void)
89 {
90 	synchronize_srcu(&device_links_srcu);
91 }
92 #else /* !CONFIG_SRCU */
93 static DECLARE_RWSEM(device_links_lock);
94 
device_links_write_lock(void)95 static inline void device_links_write_lock(void)
96 {
97 	down_write(&device_links_lock);
98 }
99 
device_links_write_unlock(void)100 static inline void device_links_write_unlock(void)
101 {
102 	up_write(&device_links_lock);
103 }
104 
device_links_read_lock(void)105 int device_links_read_lock(void)
106 {
107 	down_read(&device_links_lock);
108 	return 0;
109 }
110 
device_links_read_unlock(int not_used)111 void device_links_read_unlock(int not_used)
112 {
113 	up_read(&device_links_lock);
114 }
115 
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)117 int device_links_read_lock_held(void)
118 {
119 	return lockdep_is_held(&device_links_lock);
120 }
121 #endif
122 
device_link_synchronize_removal(void)123 static inline void device_link_synchronize_removal(void)
124 {
125 }
126 #endif /* !CONFIG_SRCU */
127 
device_is_ancestor(struct device *dev, struct device *target)128 static bool device_is_ancestor(struct device *dev, struct device *target)
129 {
130 	while (target->parent) {
131 		target = target->parent;
132 		if (dev == target)
133 			return true;
134 	}
135 	return false;
136 }
137 
138 /**
139  * device_is_dependent - Check if one device depends on another one
140  * @dev: Device to check dependencies for.
141  * @target: Device to check against.
142  *
143  * Check if @target depends on @dev or any device dependent on it (its child or
144  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
145  */
device_is_dependent(struct device *dev, void *target)146 int device_is_dependent(struct device *dev, void *target)
147 {
148 	struct device_link *link;
149 	int ret;
150 
151 	/*
152 	 * The "ancestors" check is needed to catch the case when the target
153 	 * device has not been completely initialized yet and it is still
154 	 * missing from the list of children of its parent device.
155 	 */
156 	if (dev == target || device_is_ancestor(dev, target))
157 		return 1;
158 
159 	ret = device_for_each_child(dev, target, device_is_dependent);
160 	if (ret)
161 		return ret;
162 
163 	list_for_each_entry(link, &dev->links.consumers, s_node) {
164 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
165 			continue;
166 
167 		if (link->consumer == target)
168 			return 1;
169 
170 		ret = device_is_dependent(link->consumer, target);
171 		if (ret)
172 			break;
173 	}
174 	return ret;
175 }
176 
device_link_init_status(struct device_link *link, struct device *consumer, struct device *supplier)177 static void device_link_init_status(struct device_link *link,
178 				    struct device *consumer,
179 				    struct device *supplier)
180 {
181 	switch (supplier->links.status) {
182 	case DL_DEV_PROBING:
183 		switch (consumer->links.status) {
184 		case DL_DEV_PROBING:
185 			/*
186 			 * A consumer driver can create a link to a supplier
187 			 * that has not completed its probing yet as long as it
188 			 * knows that the supplier is already functional (for
189 			 * example, it has just acquired some resources from the
190 			 * supplier).
191 			 */
192 			link->status = DL_STATE_CONSUMER_PROBE;
193 			break;
194 		default:
195 			link->status = DL_STATE_DORMANT;
196 			break;
197 		}
198 		break;
199 	case DL_DEV_DRIVER_BOUND:
200 		switch (consumer->links.status) {
201 		case DL_DEV_PROBING:
202 			link->status = DL_STATE_CONSUMER_PROBE;
203 			break;
204 		case DL_DEV_DRIVER_BOUND:
205 			link->status = DL_STATE_ACTIVE;
206 			break;
207 		default:
208 			link->status = DL_STATE_AVAILABLE;
209 			break;
210 		}
211 		break;
212 	case DL_DEV_UNBINDING:
213 		link->status = DL_STATE_SUPPLIER_UNBIND;
214 		break;
215 	default:
216 		link->status = DL_STATE_DORMANT;
217 		break;
218 	}
219 }
220 
device_reorder_to_tail(struct device *dev, void *not_used)221 static int device_reorder_to_tail(struct device *dev, void *not_used)
222 {
223 	struct device_link *link;
224 
225 	/*
226 	 * Devices that have not been registered yet will be put to the ends
227 	 * of the lists during the registration, so skip them here.
228 	 */
229 	if (device_is_registered(dev))
230 		devices_kset_move_last(dev);
231 
232 	if (device_pm_initialized(dev))
233 		device_pm_move_last(dev);
234 
235 	device_for_each_child(dev, NULL, device_reorder_to_tail);
236 	list_for_each_entry(link, &dev->links.consumers, s_node) {
237 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
238 			continue;
239 		device_reorder_to_tail(link->consumer, NULL);
240 	}
241 
242 	return 0;
243 }
244 
245 /**
246  * device_pm_move_to_tail - Move set of devices to the end of device lists
247  * @dev: Device to move
248  *
249  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
250  *
251  * It moves the @dev along with all of its children and all of its consumers
252  * to the ends of the device_kset and dpm_list, recursively.
253  */
device_pm_move_to_tail(struct device *dev)254 void device_pm_move_to_tail(struct device *dev)
255 {
256 	int idx;
257 
258 	idx = device_links_read_lock();
259 	device_pm_lock();
260 	device_reorder_to_tail(dev, NULL);
261 	device_pm_unlock();
262 	device_links_read_unlock(idx);
263 }
264 
265 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
266 
status_show(struct device *dev, struct device_attribute *attr, char *buf)267 static ssize_t status_show(struct device *dev,
268 			   struct device_attribute *attr, char *buf)
269 {
270 	const char *output;
271 
272 	switch (to_devlink(dev)->status) {
273 	case DL_STATE_NONE:
274 		output = "not tracked";
275 		break;
276 	case DL_STATE_DORMANT:
277 		output = "dormant";
278 		break;
279 	case DL_STATE_AVAILABLE:
280 		output = "available";
281 		break;
282 	case DL_STATE_CONSUMER_PROBE:
283 		output = "consumer probing";
284 		break;
285 	case DL_STATE_ACTIVE:
286 		output = "active";
287 		break;
288 	case DL_STATE_SUPPLIER_UNBIND:
289 		output = "supplier unbinding";
290 		break;
291 	default:
292 		output = "unknown";
293 		break;
294 	}
295 
296 	return sysfs_emit(buf, "%s\n", output);
297 }
298 static DEVICE_ATTR_RO(status);
299 
auto_remove_on_show(struct device *dev, struct device_attribute *attr, char *buf)300 static ssize_t auto_remove_on_show(struct device *dev,
301 				   struct device_attribute *attr, char *buf)
302 {
303 	struct device_link *link = to_devlink(dev);
304 	const char *output;
305 
306 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
307 		output = "supplier unbind";
308 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
309 		output = "consumer unbind";
310 	else
311 		output = "never";
312 
313 	return sysfs_emit(buf, "%s\n", output);
314 }
315 static DEVICE_ATTR_RO(auto_remove_on);
316 
runtime_pm_show(struct device *dev, struct device_attribute *attr, char *buf)317 static ssize_t runtime_pm_show(struct device *dev,
318 			       struct device_attribute *attr, char *buf)
319 {
320 	struct device_link *link = to_devlink(dev);
321 
322 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
323 }
324 static DEVICE_ATTR_RO(runtime_pm);
325 
sync_state_only_show(struct device *dev, struct device_attribute *attr, char *buf)326 static ssize_t sync_state_only_show(struct device *dev,
327 				    struct device_attribute *attr, char *buf)
328 {
329 	struct device_link *link = to_devlink(dev);
330 
331 	return sysfs_emit(buf, "%d\n",
332 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
333 }
334 static DEVICE_ATTR_RO(sync_state_only);
335 
336 static struct attribute *devlink_attrs[] = {
337 	&dev_attr_status.attr,
338 	&dev_attr_auto_remove_on.attr,
339 	&dev_attr_runtime_pm.attr,
340 	&dev_attr_sync_state_only.attr,
341 	NULL,
342 };
343 ATTRIBUTE_GROUPS(devlink);
344 
device_link_release_fn(struct work_struct *work)345 static void device_link_release_fn(struct work_struct *work)
346 {
347 	struct device_link *link = container_of(work, struct device_link, rm_work);
348 
349 	/* Ensure that all references to the link object have been dropped. */
350 	device_link_synchronize_removal();
351 
352 	pm_runtime_release_supplier(link);
353 	pm_request_idle(link->supplier);
354 
355 	put_device(link->consumer);
356 	put_device(link->supplier);
357 	kfree(link);
358 }
359 
devlink_dev_release(struct device *dev)360 static void devlink_dev_release(struct device *dev)
361 {
362 	struct device_link *link = to_devlink(dev);
363 
364 	INIT_WORK(&link->rm_work, device_link_release_fn);
365 	/*
366 	 * It may take a while to complete this work because of the SRCU
367 	 * synchronization in device_link_release_fn() and if the consumer or
368 	 * supplier devices get deleted when it runs, so put it into the "long"
369 	 * workqueue.
370 	 */
371 	queue_work(system_long_wq, &link->rm_work);
372 }
373 
374 static struct class devlink_class = {
375 	.name = "devlink",
376 	.owner = THIS_MODULE,
377 	.dev_groups = devlink_groups,
378 	.dev_release = devlink_dev_release,
379 };
380 
devlink_add_symlinks(struct device *dev, struct class_interface *class_intf)381 static int devlink_add_symlinks(struct device *dev,
382 				struct class_interface *class_intf)
383 {
384 	int ret;
385 	size_t len;
386 	struct device_link *link = to_devlink(dev);
387 	struct device *sup = link->supplier;
388 	struct device *con = link->consumer;
389 	char *buf;
390 
391 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
392 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
393 	len += strlen(":");
394 	len += strlen("supplier:") + 1;
395 	buf = kzalloc(len, GFP_KERNEL);
396 	if (!buf)
397 		return -ENOMEM;
398 
399 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
400 	if (ret)
401 		goto out;
402 
403 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
404 	if (ret)
405 		goto err_con;
406 
407 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
408 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
409 	if (ret)
410 		goto err_con_dev;
411 
412 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
413 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
414 	if (ret)
415 		goto err_sup_dev;
416 
417 	goto out;
418 
419 err_sup_dev:
420 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
421 	sysfs_remove_link(&sup->kobj, buf);
422 err_con_dev:
423 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
424 err_con:
425 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
426 out:
427 	kfree(buf);
428 	return ret;
429 }
430 
devlink_remove_symlinks(struct device *dev, struct class_interface *class_intf)431 static void devlink_remove_symlinks(struct device *dev,
432 				   struct class_interface *class_intf)
433 {
434 	struct device_link *link = to_devlink(dev);
435 	size_t len;
436 	struct device *sup = link->supplier;
437 	struct device *con = link->consumer;
438 	char *buf;
439 
440 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
441 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
442 
443 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
444 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
445 	len += strlen(":");
446 	len += strlen("supplier:") + 1;
447 	buf = kzalloc(len, GFP_KERNEL);
448 	if (!buf) {
449 		WARN(1, "Unable to properly free device link symlinks!\n");
450 		return;
451 	}
452 
453 	if (device_is_registered(con)) {
454 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
455 		sysfs_remove_link(&con->kobj, buf);
456 	}
457 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
458 	sysfs_remove_link(&sup->kobj, buf);
459 	kfree(buf);
460 }
461 
462 static struct class_interface devlink_class_intf = {
463 	.class = &devlink_class,
464 	.add_dev = devlink_add_symlinks,
465 	.remove_dev = devlink_remove_symlinks,
466 };
467 
devlink_class_init(void)468 static int __init devlink_class_init(void)
469 {
470 	int ret;
471 
472 	ret = class_register(&devlink_class);
473 	if (ret)
474 		return ret;
475 
476 	ret = class_interface_register(&devlink_class_intf);
477 	if (ret)
478 		class_unregister(&devlink_class);
479 
480 	return ret;
481 }
482 postcore_initcall(devlink_class_init);
483 
484 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
485 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
486 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
487 			       DL_FLAG_SYNC_STATE_ONLY)
488 
489 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
490 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
491 
492 /**
493  * device_link_add - Create a link between two devices.
494  * @consumer: Consumer end of the link.
495  * @supplier: Supplier end of the link.
496  * @flags: Link flags.
497  *
498  * The caller is responsible for the proper synchronization of the link creation
499  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
500  * runtime PM framework to take the link into account.  Second, if the
501  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
502  * be forced into the active metastate and reference-counted upon the creation
503  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
504  * ignored.
505  *
506  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
507  * expected to release the link returned by it directly with the help of either
508  * device_link_del() or device_link_remove().
509  *
510  * If that flag is not set, however, the caller of this function is handing the
511  * management of the link over to the driver core entirely and its return value
512  * can only be used to check whether or not the link is present.  In that case,
513  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
514  * flags can be used to indicate to the driver core when the link can be safely
515  * deleted.  Namely, setting one of them in @flags indicates to the driver core
516  * that the link is not going to be used (by the given caller of this function)
517  * after unbinding the consumer or supplier driver, respectively, from its
518  * device, so the link can be deleted at that point.  If none of them is set,
519  * the link will be maintained until one of the devices pointed to by it (either
520  * the consumer or the supplier) is unregistered.
521  *
522  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
523  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
524  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
525  * be used to request the driver core to automaticall probe for a consmer
526  * driver after successfully binding a driver to the supplier device.
527  *
528  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
529  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
530  * the same time is invalid and will cause NULL to be returned upfront.
531  * However, if a device link between the given @consumer and @supplier pair
532  * exists already when this function is called for them, the existing link will
533  * be returned regardless of its current type and status (the link's flags may
534  * be modified then).  The caller of this function is then expected to treat
535  * the link as though it has just been created, so (in particular) if
536  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
537  * explicitly when not needed any more (as stated above).
538  *
539  * A side effect of the link creation is re-ordering of dpm_list and the
540  * devices_kset list by moving the consumer device and all devices depending
541  * on it to the ends of these lists (that does not happen to devices that have
542  * not been registered when this function is called).
543  *
544  * The supplier device is required to be registered when this function is called
545  * and NULL will be returned if that is not the case.  The consumer device need
546  * not be registered, however.
547  */
device_link_add(struct device *consumer, struct device *supplier, u32 flags)548 struct device_link *device_link_add(struct device *consumer,
549 				    struct device *supplier, u32 flags)
550 {
551 	struct device_link *link;
552 
553 	if (!consumer || !supplier || consumer == supplier ||
554 	    flags & ~DL_ADD_VALID_FLAGS ||
555 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
556 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
557 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
558 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
559 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
560 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
561 		return NULL;
562 
563 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
564 		if (pm_runtime_get_sync(supplier) < 0) {
565 			pm_runtime_put_noidle(supplier);
566 			return NULL;
567 		}
568 	}
569 
570 	if (!(flags & DL_FLAG_STATELESS))
571 		flags |= DL_FLAG_MANAGED;
572 
573 	device_links_write_lock();
574 	device_pm_lock();
575 
576 	/*
577 	 * If the supplier has not been fully registered yet or there is a
578 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
579 	 * the supplier already in the graph, return NULL. If the link is a
580 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
581 	 * because it only affects sync_state() callbacks.
582 	 */
583 	if (!device_pm_initialized(supplier)
584 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
585 		  device_is_dependent(consumer, supplier))) {
586 		link = NULL;
587 		goto out;
588 	}
589 
590 	/*
591 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
592 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
593 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
594 	 */
595 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
596 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
597 
598 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
599 		if (link->consumer != consumer)
600 			continue;
601 
602 		if (flags & DL_FLAG_PM_RUNTIME) {
603 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
604 				pm_runtime_new_link(consumer);
605 				link->flags |= DL_FLAG_PM_RUNTIME;
606 			}
607 			if (flags & DL_FLAG_RPM_ACTIVE)
608 				refcount_inc(&link->rpm_active);
609 		}
610 
611 		if (flags & DL_FLAG_STATELESS) {
612 			kref_get(&link->kref);
613 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
614 			    !(link->flags & DL_FLAG_STATELESS)) {
615 				link->flags |= DL_FLAG_STATELESS;
616 				goto reorder;
617 			} else {
618 				link->flags |= DL_FLAG_STATELESS;
619 				goto out;
620 			}
621 		}
622 
623 		/*
624 		 * If the life time of the link following from the new flags is
625 		 * longer than indicated by the flags of the existing link,
626 		 * update the existing link to stay around longer.
627 		 */
628 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
629 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
630 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
631 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
632 			}
633 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
634 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
635 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
636 		}
637 		if (!(link->flags & DL_FLAG_MANAGED)) {
638 			kref_get(&link->kref);
639 			link->flags |= DL_FLAG_MANAGED;
640 			device_link_init_status(link, consumer, supplier);
641 		}
642 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
643 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
644 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
645 			goto reorder;
646 		}
647 
648 		goto out;
649 	}
650 
651 	link = kzalloc(sizeof(*link), GFP_KERNEL);
652 	if (!link)
653 		goto out;
654 
655 	refcount_set(&link->rpm_active, 1);
656 
657 	get_device(supplier);
658 	link->supplier = supplier;
659 	INIT_LIST_HEAD(&link->s_node);
660 	get_device(consumer);
661 	link->consumer = consumer;
662 	INIT_LIST_HEAD(&link->c_node);
663 	link->flags = flags;
664 	kref_init(&link->kref);
665 
666 	link->link_dev.class = &devlink_class;
667 	device_set_pm_not_required(&link->link_dev);
668 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
669 		     dev_bus_name(supplier), dev_name(supplier),
670 		     dev_bus_name(consumer), dev_name(consumer));
671 	if (device_register(&link->link_dev)) {
672 		put_device(&link->link_dev);
673 		link = NULL;
674 		goto out;
675 	}
676 
677 	if (flags & DL_FLAG_PM_RUNTIME) {
678 		if (flags & DL_FLAG_RPM_ACTIVE)
679 			refcount_inc(&link->rpm_active);
680 
681 		pm_runtime_new_link(consumer);
682 	}
683 
684 	/* Determine the initial link state. */
685 	if (flags & DL_FLAG_STATELESS)
686 		link->status = DL_STATE_NONE;
687 	else
688 		device_link_init_status(link, consumer, supplier);
689 
690 	/*
691 	 * Some callers expect the link creation during consumer driver probe to
692 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
693 	 */
694 	if (link->status == DL_STATE_CONSUMER_PROBE &&
695 	    flags & DL_FLAG_PM_RUNTIME)
696 		pm_runtime_resume(supplier);
697 
698 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
699 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
700 
701 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
702 		dev_dbg(consumer,
703 			"Linked as a sync state only consumer to %s\n",
704 			dev_name(supplier));
705 		goto out;
706 	}
707 
708 reorder:
709 	/*
710 	 * Move the consumer and all of the devices depending on it to the end
711 	 * of dpm_list and the devices_kset list.
712 	 *
713 	 * It is necessary to hold dpm_list locked throughout all that or else
714 	 * we may end up suspending with a wrong ordering of it.
715 	 */
716 	device_reorder_to_tail(consumer, NULL);
717 
718 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
719 
720 out:
721 	device_pm_unlock();
722 	device_links_write_unlock();
723 
724 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
725 		pm_runtime_put(supplier);
726 
727 	return link;
728 }
729 EXPORT_SYMBOL_GPL(device_link_add);
730 
731 /**
732  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
733  * @consumer: Consumer device
734  *
735  * Marks the @consumer device as waiting for suppliers to become available by
736  * adding it to the wait_for_suppliers list. The consumer device will never be
737  * probed until it's removed from the wait_for_suppliers list.
738  *
739  * The caller is responsible for adding the links to the supplier devices once
740  * they are available and removing the @consumer device from the
741  * wait_for_suppliers list once links to all the suppliers have been created.
742  *
743  * This function is NOT meant to be called from the probe function of the
744  * consumer but rather from code that creates/adds the consumer device.
745  */
device_link_wait_for_supplier(struct device *consumer, bool need_for_probe)746 static void device_link_wait_for_supplier(struct device *consumer,
747 					  bool need_for_probe)
748 {
749 	mutex_lock(&wfs_lock);
750 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
751 	consumer->links.need_for_probe = need_for_probe;
752 	mutex_unlock(&wfs_lock);
753 }
754 
device_link_wait_for_mandatory_supplier(struct device *consumer)755 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
756 {
757 	device_link_wait_for_supplier(consumer, true);
758 }
759 
device_link_wait_for_optional_supplier(struct device *consumer)760 static void device_link_wait_for_optional_supplier(struct device *consumer)
761 {
762 	device_link_wait_for_supplier(consumer, false);
763 }
764 
765 /**
766  * device_link_add_missing_supplier_links - Add links from consumer devices to
767  *					    supplier devices, leaving any
768  *					    consumer with inactive suppliers on
769  *					    the wait_for_suppliers list
770  *
771  * Loops through all consumers waiting on suppliers and tries to add all their
772  * supplier links. If that succeeds, the consumer device is removed from
773  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
774  * list.  Devices left on the wait_for_suppliers list will not be probed.
775  *
776  * The fwnode add_links callback is expected to return 0 if it has found and
777  * added all the supplier links for the consumer device. It should return an
778  * error if it isn't able to do so.
779  *
780  * The caller of device_link_wait_for_supplier() is expected to call this once
781  * it's aware of potential suppliers becoming available.
782  */
device_link_add_missing_supplier_links(void)783 static void device_link_add_missing_supplier_links(void)
784 {
785 	struct device *dev, *tmp;
786 
787 	mutex_lock(&wfs_lock);
788 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
789 				 links.needs_suppliers) {
790 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
791 		if (!ret)
792 			list_del_init(&dev->links.needs_suppliers);
793 		else if (ret != -ENODEV || fw_devlink_is_permissive())
794 			dev->links.need_for_probe = false;
795 	}
796 	mutex_unlock(&wfs_lock);
797 }
798 
799 #ifdef CONFIG_SRCU
__device_link_del(struct kref *kref)800 static void __device_link_del(struct kref *kref)
801 {
802 	struct device_link *link = container_of(kref, struct device_link, kref);
803 
804 	dev_dbg(link->consumer, "Dropping the link to %s\n",
805 		dev_name(link->supplier));
806 
807 	pm_runtime_drop_link(link);
808 
809 	list_del_rcu(&link->s_node);
810 	list_del_rcu(&link->c_node);
811 	device_unregister(&link->link_dev);
812 }
813 #else /* !CONFIG_SRCU */
__device_link_del(struct kref *kref)814 static void __device_link_del(struct kref *kref)
815 {
816 	struct device_link *link = container_of(kref, struct device_link, kref);
817 
818 	dev_info(link->consumer, "Dropping the link to %s\n",
819 		 dev_name(link->supplier));
820 
821 	pm_runtime_drop_link(link);
822 
823 	list_del(&link->s_node);
824 	list_del(&link->c_node);
825 	device_unregister(&link->link_dev);
826 }
827 #endif /* !CONFIG_SRCU */
828 
device_link_put_kref(struct device_link *link)829 static void device_link_put_kref(struct device_link *link)
830 {
831 	if (link->flags & DL_FLAG_STATELESS)
832 		kref_put(&link->kref, __device_link_del);
833 	else
834 		WARN(1, "Unable to drop a managed device link reference\n");
835 }
836 
837 /**
838  * device_link_del - Delete a stateless link between two devices.
839  * @link: Device link to delete.
840  *
841  * The caller must ensure proper synchronization of this function with runtime
842  * PM.  If the link was added multiple times, it needs to be deleted as often.
843  * Care is required for hotplugged devices:  Their links are purged on removal
844  * and calling device_link_del() is then no longer allowed.
845  */
device_link_del(struct device_link *link)846 void device_link_del(struct device_link *link)
847 {
848 	device_links_write_lock();
849 	device_link_put_kref(link);
850 	device_links_write_unlock();
851 }
852 EXPORT_SYMBOL_GPL(device_link_del);
853 
854 /**
855  * device_link_remove - Delete a stateless link between two devices.
856  * @consumer: Consumer end of the link.
857  * @supplier: Supplier end of the link.
858  *
859  * The caller must ensure proper synchronization of this function with runtime
860  * PM.
861  */
device_link_remove(void *consumer, struct device *supplier)862 void device_link_remove(void *consumer, struct device *supplier)
863 {
864 	struct device_link *link;
865 
866 	if (WARN_ON(consumer == supplier))
867 		return;
868 
869 	device_links_write_lock();
870 
871 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
872 		if (link->consumer == consumer) {
873 			device_link_put_kref(link);
874 			break;
875 		}
876 	}
877 
878 	device_links_write_unlock();
879 }
880 EXPORT_SYMBOL_GPL(device_link_remove);
881 
device_links_missing_supplier(struct device *dev)882 static void device_links_missing_supplier(struct device *dev)
883 {
884 	struct device_link *link;
885 
886 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
887 		if (link->status != DL_STATE_CONSUMER_PROBE)
888 			continue;
889 
890 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
891 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
892 		} else {
893 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
894 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
895 		}
896 	}
897 }
898 
899 /**
900  * device_links_check_suppliers - Check presence of supplier drivers.
901  * @dev: Consumer device.
902  *
903  * Check links from this device to any suppliers.  Walk the list of the device's
904  * links to suppliers and see if all of them are available.  If not, simply
905  * return -EPROBE_DEFER.
906  *
907  * We need to guarantee that the supplier will not go away after the check has
908  * been positive here.  It only can go away in __device_release_driver() and
909  * that function  checks the device's links to consumers.  This means we need to
910  * mark the link as "consumer probe in progress" to make the supplier removal
911  * wait for us to complete (or bad things may happen).
912  *
913  * Links without the DL_FLAG_MANAGED flag set are ignored.
914  */
device_links_check_suppliers(struct device *dev)915 int device_links_check_suppliers(struct device *dev)
916 {
917 	struct device_link *link;
918 	int ret = 0;
919 
920 	/*
921 	 * Device waiting for supplier to become available is not allowed to
922 	 * probe.
923 	 */
924 	mutex_lock(&wfs_lock);
925 	if (!list_empty(&dev->links.needs_suppliers) &&
926 	    dev->links.need_for_probe) {
927 		mutex_unlock(&wfs_lock);
928 		return -EPROBE_DEFER;
929 	}
930 	mutex_unlock(&wfs_lock);
931 
932 	device_links_write_lock();
933 
934 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
935 		if (!(link->flags & DL_FLAG_MANAGED))
936 			continue;
937 
938 		if (link->status != DL_STATE_AVAILABLE &&
939 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
940 			device_links_missing_supplier(dev);
941 			ret = -EPROBE_DEFER;
942 			break;
943 		}
944 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
945 	}
946 	dev->links.status = DL_DEV_PROBING;
947 
948 	device_links_write_unlock();
949 	return ret;
950 }
951 
952 /**
953  * __device_links_queue_sync_state - Queue a device for sync_state() callback
954  * @dev: Device to call sync_state() on
955  * @list: List head to queue the @dev on
956  *
957  * Queues a device for a sync_state() callback when the device links write lock
958  * isn't held. This allows the sync_state() execution flow to use device links
959  * APIs.  The caller must ensure this function is called with
960  * device_links_write_lock() held.
961  *
962  * This function does a get_device() to make sure the device is not freed while
963  * on this list.
964  *
965  * So the caller must also ensure that device_links_flush_sync_list() is called
966  * as soon as the caller releases device_links_write_lock().  This is necessary
967  * to make sure the sync_state() is called in a timely fashion and the
968  * put_device() is called on this device.
969  */
__device_links_queue_sync_state(struct device *dev, struct list_head *list)970 static void __device_links_queue_sync_state(struct device *dev,
971 					    struct list_head *list)
972 {
973 	struct device_link *link;
974 
975 	if (!dev_has_sync_state(dev))
976 		return;
977 	if (dev->state_synced)
978 		return;
979 
980 	list_for_each_entry(link, &dev->links.consumers, s_node) {
981 		if (!(link->flags & DL_FLAG_MANAGED))
982 			continue;
983 		if (link->status != DL_STATE_ACTIVE)
984 			return;
985 	}
986 
987 	/*
988 	 * Set the flag here to avoid adding the same device to a list more
989 	 * than once. This can happen if new consumers get added to the device
990 	 * and probed before the list is flushed.
991 	 */
992 	dev->state_synced = true;
993 
994 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
995 		return;
996 
997 	get_device(dev);
998 	list_add_tail(&dev->links.defer_hook, list);
999 }
1000 
1001 /**
1002  * device_links_flush_sync_list - Call sync_state() on a list of devices
1003  * @list: List of devices to call sync_state() on
1004  * @dont_lock_dev: Device for which lock is already held by the caller
1005  *
1006  * Calls sync_state() on all the devices that have been queued for it. This
1007  * function is used in conjunction with __device_links_queue_sync_state(). The
1008  * @dont_lock_dev parameter is useful when this function is called from a
1009  * context where a device lock is already held.
1010  */
device_links_flush_sync_list(struct list_head *list, struct device *dont_lock_dev)1011 static void device_links_flush_sync_list(struct list_head *list,
1012 					 struct device *dont_lock_dev)
1013 {
1014 	struct device *dev, *tmp;
1015 
1016 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1017 		list_del_init(&dev->links.defer_hook);
1018 
1019 		if (dev != dont_lock_dev)
1020 			device_lock(dev);
1021 
1022 		if (dev->bus->sync_state)
1023 			dev->bus->sync_state(dev);
1024 		else if (dev->driver && dev->driver->sync_state)
1025 			dev->driver->sync_state(dev);
1026 
1027 		if (dev != dont_lock_dev)
1028 			device_unlock(dev);
1029 
1030 		put_device(dev);
1031 	}
1032 }
1033 
device_links_supplier_sync_state_pause(void)1034 void device_links_supplier_sync_state_pause(void)
1035 {
1036 	device_links_write_lock();
1037 	defer_sync_state_count++;
1038 	device_links_write_unlock();
1039 }
1040 
device_links_supplier_sync_state_resume(void)1041 void device_links_supplier_sync_state_resume(void)
1042 {
1043 	struct device *dev, *tmp;
1044 	LIST_HEAD(sync_list);
1045 
1046 	device_links_write_lock();
1047 	if (!defer_sync_state_count) {
1048 		WARN(true, "Unmatched sync_state pause/resume!");
1049 		goto out;
1050 	}
1051 	defer_sync_state_count--;
1052 	if (defer_sync_state_count)
1053 		goto out;
1054 
1055 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1056 		/*
1057 		 * Delete from deferred_sync list before queuing it to
1058 		 * sync_list because defer_hook is used for both lists.
1059 		 */
1060 		list_del_init(&dev->links.defer_hook);
1061 		__device_links_queue_sync_state(dev, &sync_list);
1062 	}
1063 out:
1064 	device_links_write_unlock();
1065 
1066 	device_links_flush_sync_list(&sync_list, NULL);
1067 }
1068 
sync_state_resume_initcall(void)1069 static int sync_state_resume_initcall(void)
1070 {
1071 	device_links_supplier_sync_state_resume();
1072 	return 0;
1073 }
1074 late_initcall(sync_state_resume_initcall);
1075 
__device_links_supplier_defer_sync(struct device *sup)1076 static void __device_links_supplier_defer_sync(struct device *sup)
1077 {
1078 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1079 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1080 }
1081 
device_link_drop_managed(struct device_link *link)1082 static void device_link_drop_managed(struct device_link *link)
1083 {
1084 	link->flags &= ~DL_FLAG_MANAGED;
1085 	WRITE_ONCE(link->status, DL_STATE_NONE);
1086 	kref_put(&link->kref, __device_link_del);
1087 }
1088 
waiting_for_supplier_show(struct device *dev, struct device_attribute *attr, char *buf)1089 static ssize_t waiting_for_supplier_show(struct device *dev,
1090 					 struct device_attribute *attr,
1091 					 char *buf)
1092 {
1093 	bool val;
1094 
1095 	device_lock(dev);
1096 	mutex_lock(&wfs_lock);
1097 	val = !list_empty(&dev->links.needs_suppliers)
1098 	      && dev->links.need_for_probe;
1099 	mutex_unlock(&wfs_lock);
1100 	device_unlock(dev);
1101 	return sysfs_emit(buf, "%u\n", val);
1102 }
1103 static DEVICE_ATTR_RO(waiting_for_supplier);
1104 
1105 /**
1106  * device_links_driver_bound - Update device links after probing its driver.
1107  * @dev: Device to update the links for.
1108  *
1109  * The probe has been successful, so update links from this device to any
1110  * consumers by changing their status to "available".
1111  *
1112  * Also change the status of @dev's links to suppliers to "active".
1113  *
1114  * Links without the DL_FLAG_MANAGED flag set are ignored.
1115  */
device_links_driver_bound(struct device *dev)1116 void device_links_driver_bound(struct device *dev)
1117 {
1118 	struct device_link *link, *ln;
1119 	LIST_HEAD(sync_list);
1120 
1121 	/*
1122 	 * If a device probes successfully, it's expected to have created all
1123 	 * the device links it needs to or make new device links as it needs
1124 	 * them. So, it no longer needs to wait on any suppliers.
1125 	 */
1126 	mutex_lock(&wfs_lock);
1127 	list_del_init(&dev->links.needs_suppliers);
1128 	mutex_unlock(&wfs_lock);
1129 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1130 
1131 	device_links_write_lock();
1132 
1133 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1134 		if (!(link->flags & DL_FLAG_MANAGED))
1135 			continue;
1136 
1137 		/*
1138 		 * Links created during consumer probe may be in the "consumer
1139 		 * probe" state to start with if the supplier is still probing
1140 		 * when they are created and they may become "active" if the
1141 		 * consumer probe returns first.  Skip them here.
1142 		 */
1143 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1144 		    link->status == DL_STATE_ACTIVE)
1145 			continue;
1146 
1147 		WARN_ON(link->status != DL_STATE_DORMANT);
1148 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1149 
1150 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1151 			driver_deferred_probe_add(link->consumer);
1152 	}
1153 
1154 	if (defer_sync_state_count)
1155 		__device_links_supplier_defer_sync(dev);
1156 	else
1157 		__device_links_queue_sync_state(dev, &sync_list);
1158 
1159 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1160 		struct device *supplier;
1161 
1162 		if (!(link->flags & DL_FLAG_MANAGED))
1163 			continue;
1164 
1165 		supplier = link->supplier;
1166 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1167 			/*
1168 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1169 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1170 			 * save to drop the managed link completely.
1171 			 */
1172 			device_link_drop_managed(link);
1173 		} else {
1174 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1175 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1176 		}
1177 
1178 		/*
1179 		 * This needs to be done even for the deleted
1180 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1181 		 * device link that was preventing the supplier from getting a
1182 		 * sync_state() call.
1183 		 */
1184 		if (defer_sync_state_count)
1185 			__device_links_supplier_defer_sync(supplier);
1186 		else
1187 			__device_links_queue_sync_state(supplier, &sync_list);
1188 	}
1189 
1190 	dev->links.status = DL_DEV_DRIVER_BOUND;
1191 
1192 	device_links_write_unlock();
1193 
1194 	device_links_flush_sync_list(&sync_list, dev);
1195 }
1196 
1197 /**
1198  * __device_links_no_driver - Update links of a device without a driver.
1199  * @dev: Device without a drvier.
1200  *
1201  * Delete all non-persistent links from this device to any suppliers.
1202  *
1203  * Persistent links stay around, but their status is changed to "available",
1204  * unless they already are in the "supplier unbind in progress" state in which
1205  * case they need not be updated.
1206  *
1207  * Links without the DL_FLAG_MANAGED flag set are ignored.
1208  */
__device_links_no_driver(struct device *dev)1209 static void __device_links_no_driver(struct device *dev)
1210 {
1211 	struct device_link *link, *ln;
1212 
1213 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1214 		if (!(link->flags & DL_FLAG_MANAGED))
1215 			continue;
1216 
1217 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1218 			device_link_drop_managed(link);
1219 			continue;
1220 		}
1221 
1222 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1223 		    link->status != DL_STATE_ACTIVE)
1224 			continue;
1225 
1226 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1227 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1228 		} else {
1229 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1230 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1231 		}
1232 	}
1233 
1234 	dev->links.status = DL_DEV_NO_DRIVER;
1235 }
1236 
1237 /**
1238  * device_links_no_driver - Update links after failing driver probe.
1239  * @dev: Device whose driver has just failed to probe.
1240  *
1241  * Clean up leftover links to consumers for @dev and invoke
1242  * %__device_links_no_driver() to update links to suppliers for it as
1243  * appropriate.
1244  *
1245  * Links without the DL_FLAG_MANAGED flag set are ignored.
1246  */
device_links_no_driver(struct device *dev)1247 void device_links_no_driver(struct device *dev)
1248 {
1249 	struct device_link *link;
1250 
1251 	device_links_write_lock();
1252 
1253 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1254 		if (!(link->flags & DL_FLAG_MANAGED))
1255 			continue;
1256 
1257 		/*
1258 		 * The probe has failed, so if the status of the link is
1259 		 * "consumer probe" or "active", it must have been added by
1260 		 * a probing consumer while this device was still probing.
1261 		 * Change its state to "dormant", as it represents a valid
1262 		 * relationship, but it is not functionally meaningful.
1263 		 */
1264 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1265 		    link->status == DL_STATE_ACTIVE)
1266 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1267 	}
1268 
1269 	__device_links_no_driver(dev);
1270 
1271 	device_links_write_unlock();
1272 }
1273 
1274 /**
1275  * device_links_driver_cleanup - Update links after driver removal.
1276  * @dev: Device whose driver has just gone away.
1277  *
1278  * Update links to consumers for @dev by changing their status to "dormant" and
1279  * invoke %__device_links_no_driver() to update links to suppliers for it as
1280  * appropriate.
1281  *
1282  * Links without the DL_FLAG_MANAGED flag set are ignored.
1283  */
device_links_driver_cleanup(struct device *dev)1284 void device_links_driver_cleanup(struct device *dev)
1285 {
1286 	struct device_link *link, *ln;
1287 
1288 	device_links_write_lock();
1289 
1290 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1291 		if (!(link->flags & DL_FLAG_MANAGED))
1292 			continue;
1293 
1294 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1295 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1296 
1297 		/*
1298 		 * autoremove the links between this @dev and its consumer
1299 		 * devices that are not active, i.e. where the link state
1300 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1301 		 */
1302 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1303 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1304 			device_link_drop_managed(link);
1305 
1306 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1307 	}
1308 
1309 	list_del_init(&dev->links.defer_hook);
1310 	__device_links_no_driver(dev);
1311 
1312 	device_links_write_unlock();
1313 }
1314 
1315 /**
1316  * device_links_busy - Check if there are any busy links to consumers.
1317  * @dev: Device to check.
1318  *
1319  * Check each consumer of the device and return 'true' if its link's status
1320  * is one of "consumer probe" or "active" (meaning that the given consumer is
1321  * probing right now or its driver is present).  Otherwise, change the link
1322  * state to "supplier unbind" to prevent the consumer from being probed
1323  * successfully going forward.
1324  *
1325  * Return 'false' if there are no probing or active consumers.
1326  *
1327  * Links without the DL_FLAG_MANAGED flag set are ignored.
1328  */
device_links_busy(struct device *dev)1329 bool device_links_busy(struct device *dev)
1330 {
1331 	struct device_link *link;
1332 	bool ret = false;
1333 
1334 	device_links_write_lock();
1335 
1336 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1337 		if (!(link->flags & DL_FLAG_MANAGED))
1338 			continue;
1339 
1340 		if (link->status == DL_STATE_CONSUMER_PROBE
1341 		    || link->status == DL_STATE_ACTIVE) {
1342 			ret = true;
1343 			break;
1344 		}
1345 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1346 	}
1347 
1348 	dev->links.status = DL_DEV_UNBINDING;
1349 
1350 	device_links_write_unlock();
1351 	return ret;
1352 }
1353 
1354 /**
1355  * device_links_unbind_consumers - Force unbind consumers of the given device.
1356  * @dev: Device to unbind the consumers of.
1357  *
1358  * Walk the list of links to consumers for @dev and if any of them is in the
1359  * "consumer probe" state, wait for all device probes in progress to complete
1360  * and start over.
1361  *
1362  * If that's not the case, change the status of the link to "supplier unbind"
1363  * and check if the link was in the "active" state.  If so, force the consumer
1364  * driver to unbind and start over (the consumer will not re-probe as we have
1365  * changed the state of the link already).
1366  *
1367  * Links without the DL_FLAG_MANAGED flag set are ignored.
1368  */
device_links_unbind_consumers(struct device *dev)1369 void device_links_unbind_consumers(struct device *dev)
1370 {
1371 	struct device_link *link;
1372 
1373  start:
1374 	device_links_write_lock();
1375 
1376 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1377 		enum device_link_state status;
1378 
1379 		if (!(link->flags & DL_FLAG_MANAGED) ||
1380 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1381 			continue;
1382 
1383 		status = link->status;
1384 		if (status == DL_STATE_CONSUMER_PROBE) {
1385 			device_links_write_unlock();
1386 
1387 			wait_for_device_probe();
1388 			goto start;
1389 		}
1390 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1391 		if (status == DL_STATE_ACTIVE) {
1392 			struct device *consumer = link->consumer;
1393 
1394 			get_device(consumer);
1395 
1396 			device_links_write_unlock();
1397 
1398 			device_release_driver_internal(consumer, NULL,
1399 						       consumer->parent);
1400 			put_device(consumer);
1401 			goto start;
1402 		}
1403 	}
1404 
1405 	device_links_write_unlock();
1406 }
1407 
1408 /**
1409  * device_links_purge - Delete existing links to other devices.
1410  * @dev: Target device.
1411  */
device_links_purge(struct device *dev)1412 static void device_links_purge(struct device *dev)
1413 {
1414 	struct device_link *link, *ln;
1415 
1416 	if (dev->class == &devlink_class)
1417 		return;
1418 
1419 	mutex_lock(&wfs_lock);
1420 	list_del_init(&dev->links.needs_suppliers);
1421 	mutex_unlock(&wfs_lock);
1422 
1423 	/*
1424 	 * Delete all of the remaining links from this device to any other
1425 	 * devices (either consumers or suppliers).
1426 	 */
1427 	device_links_write_lock();
1428 
1429 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1430 		WARN_ON(link->status == DL_STATE_ACTIVE);
1431 		__device_link_del(&link->kref);
1432 	}
1433 
1434 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1435 		WARN_ON(link->status != DL_STATE_DORMANT &&
1436 			link->status != DL_STATE_NONE);
1437 		__device_link_del(&link->kref);
1438 	}
1439 
1440 	device_links_write_unlock();
1441 }
1442 
1443 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
fw_devlink_setup(char *arg)1444 static int __init fw_devlink_setup(char *arg)
1445 {
1446 	if (!arg)
1447 		return -EINVAL;
1448 
1449 	if (strcmp(arg, "off") == 0) {
1450 		fw_devlink_flags = 0;
1451 	} else if (strcmp(arg, "permissive") == 0) {
1452 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1453 	} else if (strcmp(arg, "on") == 0) {
1454 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1455 	} else if (strcmp(arg, "rpm") == 0) {
1456 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1457 				   DL_FLAG_PM_RUNTIME;
1458 	}
1459 	return 0;
1460 }
1461 early_param("fw_devlink", fw_devlink_setup);
1462 
fw_devlink_get_flags(void)1463 u32 fw_devlink_get_flags(void)
1464 {
1465 	return fw_devlink_flags;
1466 }
1467 
fw_devlink_is_permissive(void)1468 static bool fw_devlink_is_permissive(void)
1469 {
1470 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1471 }
1472 
fw_devlink_link_device(struct device *dev)1473 static void fw_devlink_link_device(struct device *dev)
1474 {
1475 	int fw_ret;
1476 
1477 	if (!fw_devlink_flags)
1478 		return;
1479 
1480 	mutex_lock(&defer_fw_devlink_lock);
1481 	if (!defer_fw_devlink_count)
1482 		device_link_add_missing_supplier_links();
1483 
1484 	/*
1485 	 * The device's fwnode not having add_links() doesn't affect if other
1486 	 * consumers can find this device as a supplier.  So, this check is
1487 	 * intentionally placed after device_link_add_missing_supplier_links().
1488 	 */
1489 	if (!fwnode_has_op(dev->fwnode, add_links))
1490 		goto out;
1491 
1492 	/*
1493 	 * If fw_devlink is being deferred, assume all devices have mandatory
1494 	 * suppliers they need to link to later. Then, when the fw_devlink is
1495 	 * resumed, all these devices will get a chance to try and link to any
1496 	 * suppliers they have.
1497 	 */
1498 	if (!defer_fw_devlink_count) {
1499 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1500 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1501 			fw_ret = -EAGAIN;
1502 	} else {
1503 		fw_ret = -ENODEV;
1504 		/*
1505 		 * defer_hook is not used to add device to deferred_sync list
1506 		 * until device is bound. Since deferred fw devlink also blocks
1507 		 * probing, same list hook can be used for deferred_fw_devlink.
1508 		 */
1509 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1510 	}
1511 
1512 	if (fw_ret == -ENODEV)
1513 		device_link_wait_for_mandatory_supplier(dev);
1514 	else if (fw_ret)
1515 		device_link_wait_for_optional_supplier(dev);
1516 
1517 out:
1518 	mutex_unlock(&defer_fw_devlink_lock);
1519 }
1520 
1521 /**
1522  * fw_devlink_pause - Pause parsing of fwnode to create device links
1523  *
1524  * Calling this function defers any fwnode parsing to create device links until
1525  * fw_devlink_resume() is called. Both these functions are ref counted and the
1526  * caller needs to match the calls.
1527  *
1528  * While fw_devlink is paused:
1529  * - Any device that is added won't have its fwnode parsed to create device
1530  *   links.
1531  * - The probe of the device will also be deferred during this period.
1532  * - Any devices that were already added, but waiting for suppliers won't be
1533  *   able to link to newly added devices.
1534  *
1535  * Once fw_devlink_resume():
1536  * - All the fwnodes that was not parsed will be parsed.
1537  * - All the devices that were deferred probing will be reattempted if they
1538  *   aren't waiting for any more suppliers.
1539  *
1540  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1541  * when a lot of devices that need to link to each other are added in a short
1542  * interval of time. For example, adding all the top level devices in a system.
1543  *
1544  * For example, if N devices are added and:
1545  * - All the consumers are added before their suppliers
1546  * - All the suppliers of the N devices are part of the N devices
1547  *
1548  * Then:
1549  *
1550  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1551  *   will only need one parsing of its fwnode because it is guaranteed to find
1552  *   all the supplier devices already registered and ready to link to. It won't
1553  *   have to do another pass later to find one or more suppliers it couldn't
1554  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1555  *   parses.
1556  *
1557  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1558  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1559  *   guaranteed to trigger a parse of the fwnode of every device added before
1560  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1561  *   device is parsed, all it descendant devices might need to have their
1562  *   fwnodes parsed too (even if the devices themselves aren't added).
1563  */
fw_devlink_pause(void)1564 void fw_devlink_pause(void)
1565 {
1566 	mutex_lock(&defer_fw_devlink_lock);
1567 	defer_fw_devlink_count++;
1568 	mutex_unlock(&defer_fw_devlink_lock);
1569 }
1570 
1571 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1572  *
1573  * This function is used in conjunction with fw_devlink_pause() and is ref
1574  * counted. See documentation for fw_devlink_pause() for more details.
1575  */
fw_devlink_resume(void)1576 void fw_devlink_resume(void)
1577 {
1578 	struct device *dev, *tmp;
1579 	LIST_HEAD(probe_list);
1580 
1581 	mutex_lock(&defer_fw_devlink_lock);
1582 	if (!defer_fw_devlink_count) {
1583 		WARN(true, "Unmatched fw_devlink pause/resume!");
1584 		goto out;
1585 	}
1586 
1587 	defer_fw_devlink_count--;
1588 	if (defer_fw_devlink_count)
1589 		goto out;
1590 
1591 	device_link_add_missing_supplier_links();
1592 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1593 out:
1594 	mutex_unlock(&defer_fw_devlink_lock);
1595 
1596 	/*
1597 	 * bus_probe_device() can cause new devices to get added and they'll
1598 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1599 	 * the defer_fw_devlink_lock.
1600 	 */
1601 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1602 		list_del_init(&dev->links.defer_hook);
1603 		bus_probe_device(dev);
1604 	}
1605 }
1606 /* Device links support end. */
1607 
1608 int (*platform_notify)(struct device *dev) = NULL;
1609 int (*platform_notify_remove)(struct device *dev) = NULL;
1610 static struct kobject *dev_kobj;
1611 struct kobject *sysfs_dev_char_kobj;
1612 struct kobject *sysfs_dev_block_kobj;
1613 
1614 static DEFINE_MUTEX(device_hotplug_lock);
1615 
lock_device_hotplug(void)1616 void lock_device_hotplug(void)
1617 {
1618 	mutex_lock(&device_hotplug_lock);
1619 }
1620 
unlock_device_hotplug(void)1621 void unlock_device_hotplug(void)
1622 {
1623 	mutex_unlock(&device_hotplug_lock);
1624 }
1625 
lock_device_hotplug_sysfs(void)1626 int lock_device_hotplug_sysfs(void)
1627 {
1628 	if (mutex_trylock(&device_hotplug_lock))
1629 		return 0;
1630 
1631 	/* Avoid busy looping (5 ms of sleep should do). */
1632 	msleep(5);
1633 	return restart_syscall();
1634 }
1635 
1636 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device *dev)1637 static inline int device_is_not_partition(struct device *dev)
1638 {
1639 	return !(dev->type == &part_type);
1640 }
1641 #else
device_is_not_partition(struct device *dev)1642 static inline int device_is_not_partition(struct device *dev)
1643 {
1644 	return 1;
1645 }
1646 #endif
1647 
1648 static int
device_platform_notify(struct device *dev, enum kobject_action action)1649 device_platform_notify(struct device *dev, enum kobject_action action)
1650 {
1651 	int ret;
1652 
1653 	ret = acpi_platform_notify(dev, action);
1654 	if (ret)
1655 		return ret;
1656 
1657 	ret = software_node_notify(dev, action);
1658 	if (ret)
1659 		return ret;
1660 
1661 	if (platform_notify && action == KOBJ_ADD)
1662 		platform_notify(dev);
1663 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1664 		platform_notify_remove(dev);
1665 	return 0;
1666 }
1667 
1668 /**
1669  * dev_driver_string - Return a device's driver name, if at all possible
1670  * @dev: struct device to get the name of
1671  *
1672  * Will return the device's driver's name if it is bound to a device.  If
1673  * the device is not bound to a driver, it will return the name of the bus
1674  * it is attached to.  If it is not attached to a bus either, an empty
1675  * string will be returned.
1676  */
dev_driver_string(const struct device *dev)1677 const char *dev_driver_string(const struct device *dev)
1678 {
1679 	struct device_driver *drv;
1680 
1681 	/* dev->driver can change to NULL underneath us because of unbinding,
1682 	 * so be careful about accessing it.  dev->bus and dev->class should
1683 	 * never change once they are set, so they don't need special care.
1684 	 */
1685 	drv = READ_ONCE(dev->driver);
1686 	return drv ? drv->name : dev_bus_name(dev);
1687 }
1688 EXPORT_SYMBOL(dev_driver_string);
1689 
1690 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1691 
dev_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)1692 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1693 			     char *buf)
1694 {
1695 	struct device_attribute *dev_attr = to_dev_attr(attr);
1696 	struct device *dev = kobj_to_dev(kobj);
1697 	ssize_t ret = -EIO;
1698 
1699 	if (dev_attr->show)
1700 		ret = dev_attr->show(dev, dev_attr, buf);
1701 	if (ret >= (ssize_t)PAGE_SIZE) {
1702 		printk("dev_attr_show: %pS returned bad count\n",
1703 				dev_attr->show);
1704 	}
1705 	return ret;
1706 }
1707 
dev_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)1708 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1709 			      const char *buf, size_t count)
1710 {
1711 	struct device_attribute *dev_attr = to_dev_attr(attr);
1712 	struct device *dev = kobj_to_dev(kobj);
1713 	ssize_t ret = -EIO;
1714 
1715 	if (dev_attr->store)
1716 		ret = dev_attr->store(dev, dev_attr, buf, count);
1717 	return ret;
1718 }
1719 
1720 static const struct sysfs_ops dev_sysfs_ops = {
1721 	.show	= dev_attr_show,
1722 	.store	= dev_attr_store,
1723 };
1724 
1725 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1726 
device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1727 ssize_t device_store_ulong(struct device *dev,
1728 			   struct device_attribute *attr,
1729 			   const char *buf, size_t size)
1730 {
1731 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1732 	int ret;
1733 	unsigned long new;
1734 
1735 	ret = kstrtoul(buf, 0, &new);
1736 	if (ret)
1737 		return ret;
1738 	*(unsigned long *)(ea->var) = new;
1739 	/* Always return full write size even if we didn't consume all */
1740 	return size;
1741 }
1742 EXPORT_SYMBOL_GPL(device_store_ulong);
1743 
device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf)1744 ssize_t device_show_ulong(struct device *dev,
1745 			  struct device_attribute *attr,
1746 			  char *buf)
1747 {
1748 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1749 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1750 }
1751 EXPORT_SYMBOL_GPL(device_show_ulong);
1752 
device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1753 ssize_t device_store_int(struct device *dev,
1754 			 struct device_attribute *attr,
1755 			 const char *buf, size_t size)
1756 {
1757 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1758 	int ret;
1759 	long new;
1760 
1761 	ret = kstrtol(buf, 0, &new);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (new > INT_MAX || new < INT_MIN)
1766 		return -EINVAL;
1767 	*(int *)(ea->var) = new;
1768 	/* Always return full write size even if we didn't consume all */
1769 	return size;
1770 }
1771 EXPORT_SYMBOL_GPL(device_store_int);
1772 
device_show_int(struct device *dev, struct device_attribute *attr, char *buf)1773 ssize_t device_show_int(struct device *dev,
1774 			struct device_attribute *attr,
1775 			char *buf)
1776 {
1777 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1778 
1779 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1780 }
1781 EXPORT_SYMBOL_GPL(device_show_int);
1782 
device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t size)1783 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1784 			  const char *buf, size_t size)
1785 {
1786 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1787 
1788 	if (strtobool(buf, ea->var) < 0)
1789 		return -EINVAL;
1790 
1791 	return size;
1792 }
1793 EXPORT_SYMBOL_GPL(device_store_bool);
1794 
device_show_bool(struct device *dev, struct device_attribute *attr, char *buf)1795 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1796 			 char *buf)
1797 {
1798 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1799 
1800 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1801 }
1802 EXPORT_SYMBOL_GPL(device_show_bool);
1803 
1804 /**
1805  * device_release - free device structure.
1806  * @kobj: device's kobject.
1807  *
1808  * This is called once the reference count for the object
1809  * reaches 0. We forward the call to the device's release
1810  * method, which should handle actually freeing the structure.
1811  */
device_release(struct kobject *kobj)1812 static void device_release(struct kobject *kobj)
1813 {
1814 	struct device *dev = kobj_to_dev(kobj);
1815 	struct device_private *p = dev->p;
1816 
1817 	/*
1818 	 * Some platform devices are driven without driver attached
1819 	 * and managed resources may have been acquired.  Make sure
1820 	 * all resources are released.
1821 	 *
1822 	 * Drivers still can add resources into device after device
1823 	 * is deleted but alive, so release devres here to avoid
1824 	 * possible memory leak.
1825 	 */
1826 	devres_release_all(dev);
1827 
1828 	kfree(dev->dma_range_map);
1829 
1830 	if (dev->release)
1831 		dev->release(dev);
1832 	else if (dev->type && dev->type->release)
1833 		dev->type->release(dev);
1834 	else if (dev->class && dev->class->dev_release)
1835 		dev->class->dev_release(dev);
1836 	else
1837 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1838 			dev_name(dev));
1839 	kfree(p);
1840 }
1841 
device_namespace(struct kobject *kobj)1842 static const void *device_namespace(struct kobject *kobj)
1843 {
1844 	struct device *dev = kobj_to_dev(kobj);
1845 	const void *ns = NULL;
1846 
1847 	if (dev->class && dev->class->ns_type)
1848 		ns = dev->class->namespace(dev);
1849 
1850 	return ns;
1851 }
1852 
device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)1853 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1854 {
1855 	struct device *dev = kobj_to_dev(kobj);
1856 
1857 	if (dev->class && dev->class->get_ownership)
1858 		dev->class->get_ownership(dev, uid, gid);
1859 }
1860 
1861 static struct kobj_type device_ktype = {
1862 	.release	= device_release,
1863 	.sysfs_ops	= &dev_sysfs_ops,
1864 	.namespace	= device_namespace,
1865 	.get_ownership	= device_get_ownership,
1866 };
1867 
1868 
dev_uevent_filter(struct kset *kset, struct kobject *kobj)1869 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1870 {
1871 	struct kobj_type *ktype = get_ktype(kobj);
1872 
1873 	if (ktype == &device_ktype) {
1874 		struct device *dev = kobj_to_dev(kobj);
1875 		if (dev->bus)
1876 			return 1;
1877 		if (dev->class)
1878 			return 1;
1879 	}
1880 	return 0;
1881 }
1882 
dev_uevent_name(struct kset *kset, struct kobject *kobj)1883 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1884 {
1885 	struct device *dev = kobj_to_dev(kobj);
1886 
1887 	if (dev->bus)
1888 		return dev->bus->name;
1889 	if (dev->class)
1890 		return dev->class->name;
1891 	return NULL;
1892 }
1893 
dev_uevent(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env)1894 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1895 		      struct kobj_uevent_env *env)
1896 {
1897 	struct device *dev = kobj_to_dev(kobj);
1898 	struct device_driver *driver;
1899 	int retval = 0;
1900 
1901 	/* add device node properties if present */
1902 	if (MAJOR(dev->devt)) {
1903 		const char *tmp;
1904 		const char *name;
1905 		umode_t mode = 0;
1906 		kuid_t uid = GLOBAL_ROOT_UID;
1907 		kgid_t gid = GLOBAL_ROOT_GID;
1908 
1909 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1910 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1911 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1912 		if (name) {
1913 			add_uevent_var(env, "DEVNAME=%s", name);
1914 			if (mode)
1915 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1916 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1917 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1918 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1919 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1920 			kfree(tmp);
1921 		}
1922 	}
1923 
1924 	if (dev->type && dev->type->name)
1925 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1926 
1927 	/* Synchronize with module_remove_driver() */
1928 	rcu_read_lock();
1929 	driver = READ_ONCE(dev->driver);
1930 	if (driver)
1931 		add_uevent_var(env, "DRIVER=%s", driver->name);
1932 	rcu_read_unlock();
1933 
1934 	/* Add common DT information about the device */
1935 	of_device_uevent(dev, env);
1936 
1937 	/* have the bus specific function add its stuff */
1938 	if (dev->bus && dev->bus->uevent) {
1939 		retval = dev->bus->uevent(dev, env);
1940 		if (retval)
1941 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1942 				 dev_name(dev), __func__, retval);
1943 	}
1944 
1945 	/* have the class specific function add its stuff */
1946 	if (dev->class && dev->class->dev_uevent) {
1947 		retval = dev->class->dev_uevent(dev, env);
1948 		if (retval)
1949 			pr_debug("device: '%s': %s: class uevent() "
1950 				 "returned %d\n", dev_name(dev),
1951 				 __func__, retval);
1952 	}
1953 
1954 	/* have the device type specific function add its stuff */
1955 	if (dev->type && dev->type->uevent) {
1956 		retval = dev->type->uevent(dev, env);
1957 		if (retval)
1958 			pr_debug("device: '%s': %s: dev_type uevent() "
1959 				 "returned %d\n", dev_name(dev),
1960 				 __func__, retval);
1961 	}
1962 
1963 	return retval;
1964 }
1965 
1966 static const struct kset_uevent_ops device_uevent_ops = {
1967 	.filter =	dev_uevent_filter,
1968 	.name =		dev_uevent_name,
1969 	.uevent =	dev_uevent,
1970 };
1971 
uevent_show(struct device *dev, struct device_attribute *attr, char *buf)1972 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1973 			   char *buf)
1974 {
1975 	struct kobject *top_kobj;
1976 	struct kset *kset;
1977 	struct kobj_uevent_env *env = NULL;
1978 	int i;
1979 	int len = 0;
1980 	int retval;
1981 
1982 	/* search the kset, the device belongs to */
1983 	top_kobj = &dev->kobj;
1984 	while (!top_kobj->kset && top_kobj->parent)
1985 		top_kobj = top_kobj->parent;
1986 	if (!top_kobj->kset)
1987 		goto out;
1988 
1989 	kset = top_kobj->kset;
1990 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1991 		goto out;
1992 
1993 	/* respect filter */
1994 	if (kset->uevent_ops && kset->uevent_ops->filter)
1995 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1996 			goto out;
1997 
1998 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1999 	if (!env)
2000 		return -ENOMEM;
2001 
2002 	/* let the kset specific function add its keys */
2003 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2004 	if (retval)
2005 		goto out;
2006 
2007 	/* copy keys to file */
2008 	for (i = 0; i < env->envp_idx; i++)
2009 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2010 out:
2011 	kfree(env);
2012 	return len;
2013 }
2014 
uevent_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2015 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2016 			    const char *buf, size_t count)
2017 {
2018 	int rc;
2019 
2020 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2021 
2022 	if (rc) {
2023 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2024 		return rc;
2025 	}
2026 
2027 	return count;
2028 }
2029 static DEVICE_ATTR_RW(uevent);
2030 
online_show(struct device *dev, struct device_attribute *attr, char *buf)2031 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2032 			   char *buf)
2033 {
2034 	bool val;
2035 
2036 	device_lock(dev);
2037 	val = !dev->offline;
2038 	device_unlock(dev);
2039 	return sysfs_emit(buf, "%u\n", val);
2040 }
2041 
online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2042 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2043 			    const char *buf, size_t count)
2044 {
2045 	bool val;
2046 	int ret;
2047 
2048 	ret = strtobool(buf, &val);
2049 	if (ret < 0)
2050 		return ret;
2051 
2052 	ret = lock_device_hotplug_sysfs();
2053 	if (ret)
2054 		return ret;
2055 
2056 	ret = val ? device_online(dev) : device_offline(dev);
2057 	unlock_device_hotplug();
2058 	return ret < 0 ? ret : count;
2059 }
2060 static DEVICE_ATTR_RW(online);
2061 
removable_show(struct device *dev, struct device_attribute *attr, char *buf)2062 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2063 			      char *buf)
2064 {
2065 	const char *loc;
2066 
2067 	switch (dev->removable) {
2068 	case DEVICE_REMOVABLE:
2069 		loc = "removable";
2070 		break;
2071 	case DEVICE_FIXED:
2072 		loc = "fixed";
2073 		break;
2074 	default:
2075 		loc = "unknown";
2076 	}
2077 	return sysfs_emit(buf, "%s\n", loc);
2078 }
2079 static DEVICE_ATTR_RO(removable);
2080 
device_add_groups(struct device *dev, const struct attribute_group **groups)2081 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2082 {
2083 	return sysfs_create_groups(&dev->kobj, groups);
2084 }
2085 EXPORT_SYMBOL_GPL(device_add_groups);
2086 
device_remove_groups(struct device *dev, const struct attribute_group **groups)2087 void device_remove_groups(struct device *dev,
2088 			  const struct attribute_group **groups)
2089 {
2090 	sysfs_remove_groups(&dev->kobj, groups);
2091 }
2092 EXPORT_SYMBOL_GPL(device_remove_groups);
2093 
2094 union device_attr_group_devres {
2095 	const struct attribute_group *group;
2096 	const struct attribute_group **groups;
2097 };
2098 
devm_attr_group_match(struct device *dev, void *res, void *data)2099 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2100 {
2101 	return ((union device_attr_group_devres *)res)->group == data;
2102 }
2103 
devm_attr_group_remove(struct device *dev, void *res)2104 static void devm_attr_group_remove(struct device *dev, void *res)
2105 {
2106 	union device_attr_group_devres *devres = res;
2107 	const struct attribute_group *group = devres->group;
2108 
2109 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2110 	sysfs_remove_group(&dev->kobj, group);
2111 }
2112 
devm_attr_groups_remove(struct device *dev, void *res)2113 static void devm_attr_groups_remove(struct device *dev, void *res)
2114 {
2115 	union device_attr_group_devres *devres = res;
2116 	const struct attribute_group **groups = devres->groups;
2117 
2118 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2119 	sysfs_remove_groups(&dev->kobj, groups);
2120 }
2121 
2122 /**
2123  * devm_device_add_group - given a device, create a managed attribute group
2124  * @dev:	The device to create the group for
2125  * @grp:	The attribute group to create
2126  *
2127  * This function creates a group for the first time.  It will explicitly
2128  * warn and error if any of the attribute files being created already exist.
2129  *
2130  * Returns 0 on success or error code on failure.
2131  */
devm_device_add_group(struct device *dev, const struct attribute_group *grp)2132 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2133 {
2134 	union device_attr_group_devres *devres;
2135 	int error;
2136 
2137 	devres = devres_alloc(devm_attr_group_remove,
2138 			      sizeof(*devres), GFP_KERNEL);
2139 	if (!devres)
2140 		return -ENOMEM;
2141 
2142 	error = sysfs_create_group(&dev->kobj, grp);
2143 	if (error) {
2144 		devres_free(devres);
2145 		return error;
2146 	}
2147 
2148 	devres->group = grp;
2149 	devres_add(dev, devres);
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(devm_device_add_group);
2153 
2154 /**
2155  * devm_device_remove_group: remove a managed group from a device
2156  * @dev:	device to remove the group from
2157  * @grp:	group to remove
2158  *
2159  * This function removes a group of attributes from a device. The attributes
2160  * previously have to have been created for this group, otherwise it will fail.
2161  */
devm_device_remove_group(struct device *dev, const struct attribute_group *grp)2162 void devm_device_remove_group(struct device *dev,
2163 			      const struct attribute_group *grp)
2164 {
2165 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2166 			       devm_attr_group_match,
2167 			       /* cast away const */ (void *)grp));
2168 }
2169 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2170 
2171 /**
2172  * devm_device_add_groups - create a bunch of managed attribute groups
2173  * @dev:	The device to create the group for
2174  * @groups:	The attribute groups to create, NULL terminated
2175  *
2176  * This function creates a bunch of managed attribute groups.  If an error
2177  * occurs when creating a group, all previously created groups will be
2178  * removed, unwinding everything back to the original state when this
2179  * function was called.  It will explicitly warn and error if any of the
2180  * attribute files being created already exist.
2181  *
2182  * Returns 0 on success or error code from sysfs_create_group on failure.
2183  */
devm_device_add_groups(struct device *dev, const struct attribute_group **groups)2184 int devm_device_add_groups(struct device *dev,
2185 			   const struct attribute_group **groups)
2186 {
2187 	union device_attr_group_devres *devres;
2188 	int error;
2189 
2190 	devres = devres_alloc(devm_attr_groups_remove,
2191 			      sizeof(*devres), GFP_KERNEL);
2192 	if (!devres)
2193 		return -ENOMEM;
2194 
2195 	error = sysfs_create_groups(&dev->kobj, groups);
2196 	if (error) {
2197 		devres_free(devres);
2198 		return error;
2199 	}
2200 
2201 	devres->groups = groups;
2202 	devres_add(dev, devres);
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2206 
2207 /**
2208  * devm_device_remove_groups - remove a list of managed groups
2209  *
2210  * @dev:	The device for the groups to be removed from
2211  * @groups:	NULL terminated list of groups to be removed
2212  *
2213  * If groups is not NULL, remove the specified groups from the device.
2214  */
devm_device_remove_groups(struct device *dev, const struct attribute_group **groups)2215 void devm_device_remove_groups(struct device *dev,
2216 			       const struct attribute_group **groups)
2217 {
2218 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2219 			       devm_attr_group_match,
2220 			       /* cast away const */ (void *)groups));
2221 }
2222 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2223 
device_add_attrs(struct device *dev)2224 static int device_add_attrs(struct device *dev)
2225 {
2226 	struct class *class = dev->class;
2227 	const struct device_type *type = dev->type;
2228 	int error;
2229 
2230 	if (class) {
2231 		error = device_add_groups(dev, class->dev_groups);
2232 		if (error)
2233 			return error;
2234 	}
2235 
2236 	if (type) {
2237 		error = device_add_groups(dev, type->groups);
2238 		if (error)
2239 			goto err_remove_class_groups;
2240 	}
2241 
2242 	error = device_add_groups(dev, dev->groups);
2243 	if (error)
2244 		goto err_remove_type_groups;
2245 
2246 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2247 		error = device_create_file(dev, &dev_attr_online);
2248 		if (error)
2249 			goto err_remove_dev_groups;
2250 	}
2251 
2252 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2253 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2254 		if (error)
2255 			goto err_remove_dev_online;
2256 	}
2257 
2258 	if (dev_removable_is_valid(dev)) {
2259 		error = device_create_file(dev, &dev_attr_removable);
2260 		if (error)
2261 			goto err_remove_dev_waiting_for_supplier;
2262 	}
2263 
2264 	return 0;
2265 
2266  err_remove_dev_waiting_for_supplier:
2267 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2268  err_remove_dev_online:
2269 	device_remove_file(dev, &dev_attr_online);
2270  err_remove_dev_groups:
2271 	device_remove_groups(dev, dev->groups);
2272  err_remove_type_groups:
2273 	if (type)
2274 		device_remove_groups(dev, type->groups);
2275  err_remove_class_groups:
2276 	if (class)
2277 		device_remove_groups(dev, class->dev_groups);
2278 
2279 	return error;
2280 }
2281 
device_remove_attrs(struct device *dev)2282 static void device_remove_attrs(struct device *dev)
2283 {
2284 	struct class *class = dev->class;
2285 	const struct device_type *type = dev->type;
2286 
2287 	device_remove_file(dev, &dev_attr_removable);
2288 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2289 	device_remove_file(dev, &dev_attr_online);
2290 	device_remove_groups(dev, dev->groups);
2291 
2292 	if (type)
2293 		device_remove_groups(dev, type->groups);
2294 
2295 	if (class)
2296 		device_remove_groups(dev, class->dev_groups);
2297 }
2298 
dev_show(struct device *dev, struct device_attribute *attr, char *buf)2299 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2300 			char *buf)
2301 {
2302 	return print_dev_t(buf, dev->devt);
2303 }
2304 static DEVICE_ATTR_RO(dev);
2305 
2306 /* /sys/devices/ */
2307 struct kset *devices_kset;
2308 
2309 /**
2310  * devices_kset_move_before - Move device in the devices_kset's list.
2311  * @deva: Device to move.
2312  * @devb: Device @deva should come before.
2313  */
devices_kset_move_before(struct device *deva, struct device *devb)2314 static void devices_kset_move_before(struct device *deva, struct device *devb)
2315 {
2316 	if (!devices_kset)
2317 		return;
2318 	pr_debug("devices_kset: Moving %s before %s\n",
2319 		 dev_name(deva), dev_name(devb));
2320 	spin_lock(&devices_kset->list_lock);
2321 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2322 	spin_unlock(&devices_kset->list_lock);
2323 }
2324 
2325 /**
2326  * devices_kset_move_after - Move device in the devices_kset's list.
2327  * @deva: Device to move
2328  * @devb: Device @deva should come after.
2329  */
devices_kset_move_after(struct device *deva, struct device *devb)2330 static void devices_kset_move_after(struct device *deva, struct device *devb)
2331 {
2332 	if (!devices_kset)
2333 		return;
2334 	pr_debug("devices_kset: Moving %s after %s\n",
2335 		 dev_name(deva), dev_name(devb));
2336 	spin_lock(&devices_kset->list_lock);
2337 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2338 	spin_unlock(&devices_kset->list_lock);
2339 }
2340 
2341 /**
2342  * devices_kset_move_last - move the device to the end of devices_kset's list.
2343  * @dev: device to move
2344  */
devices_kset_move_last(struct device *dev)2345 void devices_kset_move_last(struct device *dev)
2346 {
2347 	if (!devices_kset)
2348 		return;
2349 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2350 	spin_lock(&devices_kset->list_lock);
2351 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2352 	spin_unlock(&devices_kset->list_lock);
2353 }
2354 
2355 /**
2356  * device_create_file - create sysfs attribute file for device.
2357  * @dev: device.
2358  * @attr: device attribute descriptor.
2359  */
device_create_file(struct device *dev, const struct device_attribute *attr)2360 int device_create_file(struct device *dev,
2361 		       const struct device_attribute *attr)
2362 {
2363 	int error = 0;
2364 
2365 	if (dev) {
2366 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2367 			"Attribute %s: write permission without 'store'\n",
2368 			attr->attr.name);
2369 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2370 			"Attribute %s: read permission without 'show'\n",
2371 			attr->attr.name);
2372 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2373 	}
2374 
2375 	return error;
2376 }
2377 EXPORT_SYMBOL_GPL(device_create_file);
2378 
2379 /**
2380  * device_remove_file - remove sysfs attribute file.
2381  * @dev: device.
2382  * @attr: device attribute descriptor.
2383  */
device_remove_file(struct device *dev, const struct device_attribute *attr)2384 void device_remove_file(struct device *dev,
2385 			const struct device_attribute *attr)
2386 {
2387 	if (dev)
2388 		sysfs_remove_file(&dev->kobj, &attr->attr);
2389 }
2390 EXPORT_SYMBOL_GPL(device_remove_file);
2391 
2392 /**
2393  * device_remove_file_self - remove sysfs attribute file from its own method.
2394  * @dev: device.
2395  * @attr: device attribute descriptor.
2396  *
2397  * See kernfs_remove_self() for details.
2398  */
device_remove_file_self(struct device *dev, const struct device_attribute *attr)2399 bool device_remove_file_self(struct device *dev,
2400 			     const struct device_attribute *attr)
2401 {
2402 	if (dev)
2403 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2404 	else
2405 		return false;
2406 }
2407 EXPORT_SYMBOL_GPL(device_remove_file_self);
2408 
2409 /**
2410  * device_create_bin_file - create sysfs binary attribute file for device.
2411  * @dev: device.
2412  * @attr: device binary attribute descriptor.
2413  */
device_create_bin_file(struct device *dev, const struct bin_attribute *attr)2414 int device_create_bin_file(struct device *dev,
2415 			   const struct bin_attribute *attr)
2416 {
2417 	int error = -EINVAL;
2418 	if (dev)
2419 		error = sysfs_create_bin_file(&dev->kobj, attr);
2420 	return error;
2421 }
2422 EXPORT_SYMBOL_GPL(device_create_bin_file);
2423 
2424 /**
2425  * device_remove_bin_file - remove sysfs binary attribute file
2426  * @dev: device.
2427  * @attr: device binary attribute descriptor.
2428  */
device_remove_bin_file(struct device *dev, const struct bin_attribute *attr)2429 void device_remove_bin_file(struct device *dev,
2430 			    const struct bin_attribute *attr)
2431 {
2432 	if (dev)
2433 		sysfs_remove_bin_file(&dev->kobj, attr);
2434 }
2435 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2436 
klist_children_get(struct klist_node *n)2437 static void klist_children_get(struct klist_node *n)
2438 {
2439 	struct device_private *p = to_device_private_parent(n);
2440 	struct device *dev = p->device;
2441 
2442 	get_device(dev);
2443 }
2444 
klist_children_put(struct klist_node *n)2445 static void klist_children_put(struct klist_node *n)
2446 {
2447 	struct device_private *p = to_device_private_parent(n);
2448 	struct device *dev = p->device;
2449 
2450 	put_device(dev);
2451 }
2452 
2453 /**
2454  * device_initialize - init device structure.
2455  * @dev: device.
2456  *
2457  * This prepares the device for use by other layers by initializing
2458  * its fields.
2459  * It is the first half of device_register(), if called by
2460  * that function, though it can also be called separately, so one
2461  * may use @dev's fields. In particular, get_device()/put_device()
2462  * may be used for reference counting of @dev after calling this
2463  * function.
2464  *
2465  * All fields in @dev must be initialized by the caller to 0, except
2466  * for those explicitly set to some other value.  The simplest
2467  * approach is to use kzalloc() to allocate the structure containing
2468  * @dev.
2469  *
2470  * NOTE: Use put_device() to give up your reference instead of freeing
2471  * @dev directly once you have called this function.
2472  */
device_initialize(struct device *dev)2473 void device_initialize(struct device *dev)
2474 {
2475 	dev->kobj.kset = devices_kset;
2476 	kobject_init(&dev->kobj, &device_ktype);
2477 	INIT_LIST_HEAD(&dev->dma_pools);
2478 	mutex_init(&dev->mutex);
2479 #ifdef CONFIG_PROVE_LOCKING
2480 	mutex_init(&dev->lockdep_mutex);
2481 #endif
2482 	lockdep_set_novalidate_class(&dev->mutex);
2483 	spin_lock_init(&dev->devres_lock);
2484 	INIT_LIST_HEAD(&dev->devres_head);
2485 	device_pm_init(dev);
2486 	set_dev_node(dev, -1);
2487 #ifdef CONFIG_GENERIC_MSI_IRQ
2488 	raw_spin_lock_init(&dev->msi_lock);
2489 	INIT_LIST_HEAD(&dev->msi_list);
2490 #endif
2491 	INIT_LIST_HEAD(&dev->links.consumers);
2492 	INIT_LIST_HEAD(&dev->links.suppliers);
2493 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2494 	INIT_LIST_HEAD(&dev->links.defer_hook);
2495 	dev->links.status = DL_DEV_NO_DRIVER;
2496 }
2497 EXPORT_SYMBOL_GPL(device_initialize);
2498 
virtual_device_parent(struct device *dev)2499 struct kobject *virtual_device_parent(struct device *dev)
2500 {
2501 	static struct kobject *virtual_dir = NULL;
2502 
2503 	if (!virtual_dir)
2504 		virtual_dir = kobject_create_and_add("virtual",
2505 						     &devices_kset->kobj);
2506 
2507 	return virtual_dir;
2508 }
2509 
2510 struct class_dir {
2511 	struct kobject kobj;
2512 	struct class *class;
2513 };
2514 
2515 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2516 
class_dir_release(struct kobject *kobj)2517 static void class_dir_release(struct kobject *kobj)
2518 {
2519 	struct class_dir *dir = to_class_dir(kobj);
2520 	kfree(dir);
2521 }
2522 
2523 static const
class_dir_child_ns_type(struct kobject *kobj)2524 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2525 {
2526 	struct class_dir *dir = to_class_dir(kobj);
2527 	return dir->class->ns_type;
2528 }
2529 
2530 static struct kobj_type class_dir_ktype = {
2531 	.release	= class_dir_release,
2532 	.sysfs_ops	= &kobj_sysfs_ops,
2533 	.child_ns_type	= class_dir_child_ns_type
2534 };
2535 
2536 static struct kobject *
class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)2537 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2538 {
2539 	struct class_dir *dir;
2540 	int retval;
2541 
2542 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2543 	if (!dir)
2544 		return ERR_PTR(-ENOMEM);
2545 
2546 	dir->class = class;
2547 	kobject_init(&dir->kobj, &class_dir_ktype);
2548 
2549 	dir->kobj.kset = &class->p->glue_dirs;
2550 
2551 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2552 	if (retval < 0) {
2553 		kobject_put(&dir->kobj);
2554 		return ERR_PTR(retval);
2555 	}
2556 	return &dir->kobj;
2557 }
2558 
2559 static DEFINE_MUTEX(gdp_mutex);
2560 
get_device_parent(struct device *dev, struct device *parent)2561 static struct kobject *get_device_parent(struct device *dev,
2562 					 struct device *parent)
2563 {
2564 	if (dev->class) {
2565 		struct kobject *kobj = NULL;
2566 		struct kobject *parent_kobj;
2567 		struct kobject *k;
2568 
2569 #ifdef CONFIG_BLOCK
2570 		/* block disks show up in /sys/block */
2571 		if (sysfs_deprecated && dev->class == &block_class) {
2572 			if (parent && parent->class == &block_class)
2573 				return &parent->kobj;
2574 			return &block_class.p->subsys.kobj;
2575 		}
2576 #endif
2577 
2578 		/*
2579 		 * If we have no parent, we live in "virtual".
2580 		 * Class-devices with a non class-device as parent, live
2581 		 * in a "glue" directory to prevent namespace collisions.
2582 		 */
2583 		if (parent == NULL)
2584 			parent_kobj = virtual_device_parent(dev);
2585 		else if (parent->class && !dev->class->ns_type)
2586 			return &parent->kobj;
2587 		else
2588 			parent_kobj = &parent->kobj;
2589 
2590 		mutex_lock(&gdp_mutex);
2591 
2592 		/* find our class-directory at the parent and reference it */
2593 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2594 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2595 			if (k->parent == parent_kobj) {
2596 				kobj = kobject_get(k);
2597 				break;
2598 			}
2599 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2600 		if (kobj) {
2601 			mutex_unlock(&gdp_mutex);
2602 			return kobj;
2603 		}
2604 
2605 		/* or create a new class-directory at the parent device */
2606 		k = class_dir_create_and_add(dev->class, parent_kobj);
2607 		/* do not emit an uevent for this simple "glue" directory */
2608 		mutex_unlock(&gdp_mutex);
2609 		return k;
2610 	}
2611 
2612 	/* subsystems can specify a default root directory for their devices */
2613 	if (!parent && dev->bus && dev->bus->dev_root)
2614 		return &dev->bus->dev_root->kobj;
2615 
2616 	if (parent)
2617 		return &parent->kobj;
2618 	return NULL;
2619 }
2620 
live_in_glue_dir(struct kobject *kobj, struct device *dev)2621 static inline bool live_in_glue_dir(struct kobject *kobj,
2622 				    struct device *dev)
2623 {
2624 	if (!kobj || !dev->class ||
2625 	    kobj->kset != &dev->class->p->glue_dirs)
2626 		return false;
2627 	return true;
2628 }
2629 
get_glue_dir(struct device *dev)2630 static inline struct kobject *get_glue_dir(struct device *dev)
2631 {
2632 	return dev->kobj.parent;
2633 }
2634 
2635 /*
2636  * make sure cleaning up dir as the last step, we need to make
2637  * sure .release handler of kobject is run with holding the
2638  * global lock
2639  */
cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)2640 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2641 {
2642 	unsigned int ref;
2643 
2644 	/* see if we live in a "glue" directory */
2645 	if (!live_in_glue_dir(glue_dir, dev))
2646 		return;
2647 
2648 	mutex_lock(&gdp_mutex);
2649 	/**
2650 	 * There is a race condition between removing glue directory
2651 	 * and adding a new device under the glue directory.
2652 	 *
2653 	 * CPU1:                                         CPU2:
2654 	 *
2655 	 * device_add()
2656 	 *   get_device_parent()
2657 	 *     class_dir_create_and_add()
2658 	 *       kobject_add_internal()
2659 	 *         create_dir()    // create glue_dir
2660 	 *
2661 	 *                                               device_add()
2662 	 *                                                 get_device_parent()
2663 	 *                                                   kobject_get() // get glue_dir
2664 	 *
2665 	 * device_del()
2666 	 *   cleanup_glue_dir()
2667 	 *     kobject_del(glue_dir)
2668 	 *
2669 	 *                                               kobject_add()
2670 	 *                                                 kobject_add_internal()
2671 	 *                                                   create_dir() // in glue_dir
2672 	 *                                                     sysfs_create_dir_ns()
2673 	 *                                                       kernfs_create_dir_ns(sd)
2674 	 *
2675 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2676 	 *       sysfs_put()        // free glue_dir->sd
2677 	 *
2678 	 *                                                         // sd is freed
2679 	 *                                                         kernfs_new_node(sd)
2680 	 *                                                           kernfs_get(glue_dir)
2681 	 *                                                           kernfs_add_one()
2682 	 *                                                           kernfs_put()
2683 	 *
2684 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2685 	 * a new device under glue dir, the glue_dir kobject reference count
2686 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2687 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2688 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2689 	 *
2690 	 * Then the CPU2 will see a stale "empty" but still potentially used
2691 	 * glue dir around in kernfs_new_node().
2692 	 *
2693 	 * In order to avoid this happening, we also should make sure that
2694 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2695 	 * for glue_dir kobj is 1.
2696 	 */
2697 	ref = kref_read(&glue_dir->kref);
2698 	if (!kobject_has_children(glue_dir) && !--ref)
2699 		kobject_del(glue_dir);
2700 	kobject_put(glue_dir);
2701 	mutex_unlock(&gdp_mutex);
2702 }
2703 
device_add_class_symlinks(struct device *dev)2704 static int device_add_class_symlinks(struct device *dev)
2705 {
2706 	struct device_node *of_node = dev_of_node(dev);
2707 	int error;
2708 
2709 	if (of_node) {
2710 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2711 		if (error)
2712 			dev_warn(dev, "Error %d creating of_node link\n",error);
2713 		/* An error here doesn't warrant bringing down the device */
2714 	}
2715 
2716 	if (!dev->class)
2717 		return 0;
2718 
2719 	error = sysfs_create_link(&dev->kobj,
2720 				  &dev->class->p->subsys.kobj,
2721 				  "subsystem");
2722 	if (error)
2723 		goto out_devnode;
2724 
2725 	if (dev->parent && device_is_not_partition(dev)) {
2726 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2727 					  "device");
2728 		if (error)
2729 			goto out_subsys;
2730 	}
2731 
2732 #ifdef CONFIG_BLOCK
2733 	/* /sys/block has directories and does not need symlinks */
2734 	if (sysfs_deprecated && dev->class == &block_class)
2735 		return 0;
2736 #endif
2737 
2738 	/* link in the class directory pointing to the device */
2739 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2740 				  &dev->kobj, dev_name(dev));
2741 	if (error)
2742 		goto out_device;
2743 
2744 	return 0;
2745 
2746 out_device:
2747 	sysfs_remove_link(&dev->kobj, "device");
2748 
2749 out_subsys:
2750 	sysfs_remove_link(&dev->kobj, "subsystem");
2751 out_devnode:
2752 	sysfs_remove_link(&dev->kobj, "of_node");
2753 	return error;
2754 }
2755 
device_remove_class_symlinks(struct device *dev)2756 static void device_remove_class_symlinks(struct device *dev)
2757 {
2758 	if (dev_of_node(dev))
2759 		sysfs_remove_link(&dev->kobj, "of_node");
2760 
2761 	if (!dev->class)
2762 		return;
2763 
2764 	if (dev->parent && device_is_not_partition(dev))
2765 		sysfs_remove_link(&dev->kobj, "device");
2766 	sysfs_remove_link(&dev->kobj, "subsystem");
2767 #ifdef CONFIG_BLOCK
2768 	if (sysfs_deprecated && dev->class == &block_class)
2769 		return;
2770 #endif
2771 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2772 }
2773 
2774 /**
2775  * dev_set_name - set a device name
2776  * @dev: device
2777  * @fmt: format string for the device's name
2778  */
dev_set_name(struct device *dev, const char *fmt, ...)2779 int dev_set_name(struct device *dev, const char *fmt, ...)
2780 {
2781 	va_list vargs;
2782 	int err;
2783 
2784 	va_start(vargs, fmt);
2785 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2786 	va_end(vargs);
2787 	return err;
2788 }
2789 EXPORT_SYMBOL_GPL(dev_set_name);
2790 
2791 /**
2792  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2793  * @dev: device
2794  *
2795  * By default we select char/ for new entries.  Setting class->dev_obj
2796  * to NULL prevents an entry from being created.  class->dev_kobj must
2797  * be set (or cleared) before any devices are registered to the class
2798  * otherwise device_create_sys_dev_entry() and
2799  * device_remove_sys_dev_entry() will disagree about the presence of
2800  * the link.
2801  */
device_to_dev_kobj(struct device *dev)2802 static struct kobject *device_to_dev_kobj(struct device *dev)
2803 {
2804 	struct kobject *kobj;
2805 
2806 	if (dev->class)
2807 		kobj = dev->class->dev_kobj;
2808 	else
2809 		kobj = sysfs_dev_char_kobj;
2810 
2811 	return kobj;
2812 }
2813 
device_create_sys_dev_entry(struct device *dev)2814 static int device_create_sys_dev_entry(struct device *dev)
2815 {
2816 	struct kobject *kobj = device_to_dev_kobj(dev);
2817 	int error = 0;
2818 	char devt_str[15];
2819 
2820 	if (kobj) {
2821 		format_dev_t(devt_str, dev->devt);
2822 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2823 	}
2824 
2825 	return error;
2826 }
2827 
device_remove_sys_dev_entry(struct device *dev)2828 static void device_remove_sys_dev_entry(struct device *dev)
2829 {
2830 	struct kobject *kobj = device_to_dev_kobj(dev);
2831 	char devt_str[15];
2832 
2833 	if (kobj) {
2834 		format_dev_t(devt_str, dev->devt);
2835 		sysfs_remove_link(kobj, devt_str);
2836 	}
2837 }
2838 
device_private_init(struct device *dev)2839 static int device_private_init(struct device *dev)
2840 {
2841 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2842 	if (!dev->p)
2843 		return -ENOMEM;
2844 	dev->p->device = dev;
2845 	klist_init(&dev->p->klist_children, klist_children_get,
2846 		   klist_children_put);
2847 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2848 	return 0;
2849 }
2850 
2851 /**
2852  * device_add - add device to device hierarchy.
2853  * @dev: device.
2854  *
2855  * This is part 2 of device_register(), though may be called
2856  * separately _iff_ device_initialize() has been called separately.
2857  *
2858  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2859  * to the global and sibling lists for the device, then
2860  * adds it to the other relevant subsystems of the driver model.
2861  *
2862  * Do not call this routine or device_register() more than once for
2863  * any device structure.  The driver model core is not designed to work
2864  * with devices that get unregistered and then spring back to life.
2865  * (Among other things, it's very hard to guarantee that all references
2866  * to the previous incarnation of @dev have been dropped.)  Allocate
2867  * and register a fresh new struct device instead.
2868  *
2869  * NOTE: _Never_ directly free @dev after calling this function, even
2870  * if it returned an error! Always use put_device() to give up your
2871  * reference instead.
2872  *
2873  * Rule of thumb is: if device_add() succeeds, you should call
2874  * device_del() when you want to get rid of it. If device_add() has
2875  * *not* succeeded, use *only* put_device() to drop the reference
2876  * count.
2877  */
device_add(struct device *dev)2878 int device_add(struct device *dev)
2879 {
2880 	struct device *parent;
2881 	struct kobject *kobj;
2882 	struct class_interface *class_intf;
2883 	int error = -EINVAL;
2884 	struct kobject *glue_dir = NULL;
2885 
2886 	dev = get_device(dev);
2887 	if (!dev)
2888 		goto done;
2889 
2890 	if (!dev->p) {
2891 		error = device_private_init(dev);
2892 		if (error)
2893 			goto done;
2894 	}
2895 
2896 	/*
2897 	 * for statically allocated devices, which should all be converted
2898 	 * some day, we need to initialize the name. We prevent reading back
2899 	 * the name, and force the use of dev_name()
2900 	 */
2901 	if (dev->init_name) {
2902 		dev_set_name(dev, "%s", dev->init_name);
2903 		dev->init_name = NULL;
2904 	}
2905 
2906 	/* subsystems can specify simple device enumeration */
2907 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2908 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2909 
2910 	if (!dev_name(dev)) {
2911 		error = -EINVAL;
2912 		goto name_error;
2913 	}
2914 
2915 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2916 
2917 	parent = get_device(dev->parent);
2918 	kobj = get_device_parent(dev, parent);
2919 	if (IS_ERR(kobj)) {
2920 		error = PTR_ERR(kobj);
2921 		goto parent_error;
2922 	}
2923 	if (kobj)
2924 		dev->kobj.parent = kobj;
2925 
2926 	/* use parent numa_node */
2927 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2928 		set_dev_node(dev, dev_to_node(parent));
2929 
2930 	/* first, register with generic layer. */
2931 	/* we require the name to be set before, and pass NULL */
2932 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2933 	if (error) {
2934 		glue_dir = get_glue_dir(dev);
2935 		goto Error;
2936 	}
2937 
2938 	/* notify platform of device entry */
2939 	error = device_platform_notify(dev, KOBJ_ADD);
2940 	if (error)
2941 		goto platform_error;
2942 
2943 	error = device_create_file(dev, &dev_attr_uevent);
2944 	if (error)
2945 		goto attrError;
2946 
2947 	error = device_add_class_symlinks(dev);
2948 	if (error)
2949 		goto SymlinkError;
2950 	error = device_add_attrs(dev);
2951 	if (error)
2952 		goto AttrsError;
2953 	error = bus_add_device(dev);
2954 	if (error)
2955 		goto BusError;
2956 	error = dpm_sysfs_add(dev);
2957 	if (error)
2958 		goto DPMError;
2959 	device_pm_add(dev);
2960 
2961 	if (MAJOR(dev->devt)) {
2962 		error = device_create_file(dev, &dev_attr_dev);
2963 		if (error)
2964 			goto DevAttrError;
2965 
2966 		error = device_create_sys_dev_entry(dev);
2967 		if (error)
2968 			goto SysEntryError;
2969 
2970 		devtmpfs_create_node(dev);
2971 	}
2972 
2973 	/* Notify clients of device addition.  This call must come
2974 	 * after dpm_sysfs_add() and before kobject_uevent().
2975 	 */
2976 	if (dev->bus)
2977 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2978 					     BUS_NOTIFY_ADD_DEVICE, dev);
2979 
2980 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2981 
2982 	/*
2983 	 * Check if any of the other devices (consumers) have been waiting for
2984 	 * this device (supplier) to be added so that they can create a device
2985 	 * link to it.
2986 	 *
2987 	 * This needs to happen after device_pm_add() because device_link_add()
2988 	 * requires the supplier be registered before it's called.
2989 	 *
2990 	 * But this also needs to happen before bus_probe_device() to make sure
2991 	 * waiting consumers can link to it before the driver is bound to the
2992 	 * device and the driver sync_state callback is called for this device.
2993 	 */
2994 	if (dev->fwnode && !dev->fwnode->dev) {
2995 		dev->fwnode->dev = dev;
2996 		fw_devlink_link_device(dev);
2997 	}
2998 
2999 	bus_probe_device(dev);
3000 	if (parent)
3001 		klist_add_tail(&dev->p->knode_parent,
3002 			       &parent->p->klist_children);
3003 
3004 	if (dev->class) {
3005 		mutex_lock(&dev->class->p->mutex);
3006 		/* tie the class to the device */
3007 		klist_add_tail(&dev->p->knode_class,
3008 			       &dev->class->p->klist_devices);
3009 
3010 		/* notify any interfaces that the device is here */
3011 		list_for_each_entry(class_intf,
3012 				    &dev->class->p->interfaces, node)
3013 			if (class_intf->add_dev)
3014 				class_intf->add_dev(dev, class_intf);
3015 		mutex_unlock(&dev->class->p->mutex);
3016 	}
3017 done:
3018 	put_device(dev);
3019 	return error;
3020  SysEntryError:
3021 	if (MAJOR(dev->devt))
3022 		device_remove_file(dev, &dev_attr_dev);
3023  DevAttrError:
3024 	device_pm_remove(dev);
3025 	dpm_sysfs_remove(dev);
3026  DPMError:
3027 	bus_remove_device(dev);
3028  BusError:
3029 	device_remove_attrs(dev);
3030  AttrsError:
3031 	device_remove_class_symlinks(dev);
3032  SymlinkError:
3033 	device_remove_file(dev, &dev_attr_uevent);
3034  attrError:
3035 	device_platform_notify(dev, KOBJ_REMOVE);
3036 platform_error:
3037 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3038 	glue_dir = get_glue_dir(dev);
3039 	kobject_del(&dev->kobj);
3040  Error:
3041 	cleanup_glue_dir(dev, glue_dir);
3042 parent_error:
3043 	put_device(parent);
3044 name_error:
3045 	kfree(dev->p);
3046 	dev->p = NULL;
3047 	goto done;
3048 }
3049 EXPORT_SYMBOL_GPL(device_add);
3050 
3051 /**
3052  * device_register - register a device with the system.
3053  * @dev: pointer to the device structure
3054  *
3055  * This happens in two clean steps - initialize the device
3056  * and add it to the system. The two steps can be called
3057  * separately, but this is the easiest and most common.
3058  * I.e. you should only call the two helpers separately if
3059  * have a clearly defined need to use and refcount the device
3060  * before it is added to the hierarchy.
3061  *
3062  * For more information, see the kerneldoc for device_initialize()
3063  * and device_add().
3064  *
3065  * NOTE: _Never_ directly free @dev after calling this function, even
3066  * if it returned an error! Always use put_device() to give up the
3067  * reference initialized in this function instead.
3068  */
device_register(struct device *dev)3069 int device_register(struct device *dev)
3070 {
3071 	device_initialize(dev);
3072 	return device_add(dev);
3073 }
3074 EXPORT_SYMBOL_GPL(device_register);
3075 
3076 /**
3077  * get_device - increment reference count for device.
3078  * @dev: device.
3079  *
3080  * This simply forwards the call to kobject_get(), though
3081  * we do take care to provide for the case that we get a NULL
3082  * pointer passed in.
3083  */
get_device(struct device *dev)3084 struct device *get_device(struct device *dev)
3085 {
3086 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3087 }
3088 EXPORT_SYMBOL_GPL(get_device);
3089 
3090 /**
3091  * put_device - decrement reference count.
3092  * @dev: device in question.
3093  */
put_device(struct device *dev)3094 void put_device(struct device *dev)
3095 {
3096 	/* might_sleep(); */
3097 	if (dev)
3098 		kobject_put(&dev->kobj);
3099 }
3100 EXPORT_SYMBOL_GPL(put_device);
3101 
kill_device(struct device *dev)3102 bool kill_device(struct device *dev)
3103 {
3104 	/*
3105 	 * Require the device lock and set the "dead" flag to guarantee that
3106 	 * the update behavior is consistent with the other bitfields near
3107 	 * it and that we cannot have an asynchronous probe routine trying
3108 	 * to run while we are tearing out the bus/class/sysfs from
3109 	 * underneath the device.
3110 	 */
3111 	lockdep_assert_held(&dev->mutex);
3112 
3113 	if (dev->p->dead)
3114 		return false;
3115 	dev->p->dead = true;
3116 	return true;
3117 }
3118 EXPORT_SYMBOL_GPL(kill_device);
3119 
3120 /**
3121  * device_del - delete device from system.
3122  * @dev: device.
3123  *
3124  * This is the first part of the device unregistration
3125  * sequence. This removes the device from the lists we control
3126  * from here, has it removed from the other driver model
3127  * subsystems it was added to in device_add(), and removes it
3128  * from the kobject hierarchy.
3129  *
3130  * NOTE: this should be called manually _iff_ device_add() was
3131  * also called manually.
3132  */
device_del(struct device *dev)3133 void device_del(struct device *dev)
3134 {
3135 	struct device *parent = dev->parent;
3136 	struct kobject *glue_dir = NULL;
3137 	struct class_interface *class_intf;
3138 	unsigned int noio_flag;
3139 
3140 	device_lock(dev);
3141 	kill_device(dev);
3142 	device_unlock(dev);
3143 
3144 	if (dev->fwnode && dev->fwnode->dev == dev)
3145 		dev->fwnode->dev = NULL;
3146 
3147 	/* Notify clients of device removal.  This call must come
3148 	 * before dpm_sysfs_remove().
3149 	 */
3150 	noio_flag = memalloc_noio_save();
3151 	if (dev->bus)
3152 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3153 					     BUS_NOTIFY_DEL_DEVICE, dev);
3154 
3155 	dpm_sysfs_remove(dev);
3156 	if (parent)
3157 		klist_del(&dev->p->knode_parent);
3158 	if (MAJOR(dev->devt)) {
3159 		devtmpfs_delete_node(dev);
3160 		device_remove_sys_dev_entry(dev);
3161 		device_remove_file(dev, &dev_attr_dev);
3162 	}
3163 	if (dev->class) {
3164 		device_remove_class_symlinks(dev);
3165 
3166 		mutex_lock(&dev->class->p->mutex);
3167 		/* notify any interfaces that the device is now gone */
3168 		list_for_each_entry(class_intf,
3169 				    &dev->class->p->interfaces, node)
3170 			if (class_intf->remove_dev)
3171 				class_intf->remove_dev(dev, class_intf);
3172 		/* remove the device from the class list */
3173 		klist_del(&dev->p->knode_class);
3174 		mutex_unlock(&dev->class->p->mutex);
3175 	}
3176 	device_remove_file(dev, &dev_attr_uevent);
3177 	device_remove_attrs(dev);
3178 	bus_remove_device(dev);
3179 	device_pm_remove(dev);
3180 	driver_deferred_probe_del(dev);
3181 	device_platform_notify(dev, KOBJ_REMOVE);
3182 	device_remove_properties(dev);
3183 	device_links_purge(dev);
3184 
3185 	if (dev->bus)
3186 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3187 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3188 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3189 	glue_dir = get_glue_dir(dev);
3190 	kobject_del(&dev->kobj);
3191 	cleanup_glue_dir(dev, glue_dir);
3192 	memalloc_noio_restore(noio_flag);
3193 	put_device(parent);
3194 }
3195 EXPORT_SYMBOL_GPL(device_del);
3196 
3197 /**
3198  * device_unregister - unregister device from system.
3199  * @dev: device going away.
3200  *
3201  * We do this in two parts, like we do device_register(). First,
3202  * we remove it from all the subsystems with device_del(), then
3203  * we decrement the reference count via put_device(). If that
3204  * is the final reference count, the device will be cleaned up
3205  * via device_release() above. Otherwise, the structure will
3206  * stick around until the final reference to the device is dropped.
3207  */
device_unregister(struct device *dev)3208 void device_unregister(struct device *dev)
3209 {
3210 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3211 	device_del(dev);
3212 	put_device(dev);
3213 }
3214 EXPORT_SYMBOL_GPL(device_unregister);
3215 
prev_device(struct klist_iter *i)3216 static struct device *prev_device(struct klist_iter *i)
3217 {
3218 	struct klist_node *n = klist_prev(i);
3219 	struct device *dev = NULL;
3220 	struct device_private *p;
3221 
3222 	if (n) {
3223 		p = to_device_private_parent(n);
3224 		dev = p->device;
3225 	}
3226 	return dev;
3227 }
3228 
next_device(struct klist_iter *i)3229 static struct device *next_device(struct klist_iter *i)
3230 {
3231 	struct klist_node *n = klist_next(i);
3232 	struct device *dev = NULL;
3233 	struct device_private *p;
3234 
3235 	if (n) {
3236 		p = to_device_private_parent(n);
3237 		dev = p->device;
3238 	}
3239 	return dev;
3240 }
3241 
3242 /**
3243  * device_get_devnode - path of device node file
3244  * @dev: device
3245  * @mode: returned file access mode
3246  * @uid: returned file owner
3247  * @gid: returned file group
3248  * @tmp: possibly allocated string
3249  *
3250  * Return the relative path of a possible device node.
3251  * Non-default names may need to allocate a memory to compose
3252  * a name. This memory is returned in tmp and needs to be
3253  * freed by the caller.
3254  */
device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp)3255 const char *device_get_devnode(struct device *dev,
3256 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3257 			       const char **tmp)
3258 {
3259 	char *s;
3260 
3261 	*tmp = NULL;
3262 
3263 	/* the device type may provide a specific name */
3264 	if (dev->type && dev->type->devnode)
3265 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3266 	if (*tmp)
3267 		return *tmp;
3268 
3269 	/* the class may provide a specific name */
3270 	if (dev->class && dev->class->devnode)
3271 		*tmp = dev->class->devnode(dev, mode);
3272 	if (*tmp)
3273 		return *tmp;
3274 
3275 	/* return name without allocation, tmp == NULL */
3276 	if (strchr(dev_name(dev), '!') == NULL)
3277 		return dev_name(dev);
3278 
3279 	/* replace '!' in the name with '/' */
3280 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3281 	if (!s)
3282 		return NULL;
3283 	strreplace(s, '!', '/');
3284 	return *tmp = s;
3285 }
3286 
3287 /**
3288  * device_for_each_child - device child iterator.
3289  * @parent: parent struct device.
3290  * @fn: function to be called for each device.
3291  * @data: data for the callback.
3292  *
3293  * Iterate over @parent's child devices, and call @fn for each,
3294  * passing it @data.
3295  *
3296  * We check the return of @fn each time. If it returns anything
3297  * other than 0, we break out and return that value.
3298  */
device_for_each_child(struct device *parent, void *data, int (*fn)(struct device *dev, void *data))3299 int device_for_each_child(struct device *parent, void *data,
3300 			  int (*fn)(struct device *dev, void *data))
3301 {
3302 	struct klist_iter i;
3303 	struct device *child;
3304 	int error = 0;
3305 
3306 	if (!parent->p)
3307 		return 0;
3308 
3309 	klist_iter_init(&parent->p->klist_children, &i);
3310 	while (!error && (child = next_device(&i)))
3311 		error = fn(child, data);
3312 	klist_iter_exit(&i);
3313 	return error;
3314 }
3315 EXPORT_SYMBOL_GPL(device_for_each_child);
3316 
3317 /**
3318  * device_for_each_child_reverse - device child iterator in reversed order.
3319  * @parent: parent struct device.
3320  * @fn: function to be called for each device.
3321  * @data: data for the callback.
3322  *
3323  * Iterate over @parent's child devices, and call @fn for each,
3324  * passing it @data.
3325  *
3326  * We check the return of @fn each time. If it returns anything
3327  * other than 0, we break out and return that value.
3328  */
device_for_each_child_reverse(struct device *parent, void *data, int (*fn)(struct device *dev, void *data))3329 int device_for_each_child_reverse(struct device *parent, void *data,
3330 				  int (*fn)(struct device *dev, void *data))
3331 {
3332 	struct klist_iter i;
3333 	struct device *child;
3334 	int error = 0;
3335 
3336 	if (!parent->p)
3337 		return 0;
3338 
3339 	klist_iter_init(&parent->p->klist_children, &i);
3340 	while ((child = prev_device(&i)) && !error)
3341 		error = fn(child, data);
3342 	klist_iter_exit(&i);
3343 	return error;
3344 }
3345 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3346 
3347 /**
3348  * device_find_child - device iterator for locating a particular device.
3349  * @parent: parent struct device
3350  * @match: Callback function to check device
3351  * @data: Data to pass to match function
3352  *
3353  * This is similar to the device_for_each_child() function above, but it
3354  * returns a reference to a device that is 'found' for later use, as
3355  * determined by the @match callback.
3356  *
3357  * The callback should return 0 if the device doesn't match and non-zero
3358  * if it does.  If the callback returns non-zero and a reference to the
3359  * current device can be obtained, this function will return to the caller
3360  * and not iterate over any more devices.
3361  *
3362  * NOTE: you will need to drop the reference with put_device() after use.
3363  */
device_find_child(struct device *parent, void *data, int (*match)(struct device *dev, void *data))3364 struct device *device_find_child(struct device *parent, void *data,
3365 				 int (*match)(struct device *dev, void *data))
3366 {
3367 	struct klist_iter i;
3368 	struct device *child;
3369 
3370 	if (!parent)
3371 		return NULL;
3372 
3373 	klist_iter_init(&parent->p->klist_children, &i);
3374 	while ((child = next_device(&i)))
3375 		if (match(child, data) && get_device(child))
3376 			break;
3377 	klist_iter_exit(&i);
3378 	return child;
3379 }
3380 EXPORT_SYMBOL_GPL(device_find_child);
3381 
3382 /**
3383  * device_find_child_by_name - device iterator for locating a child device.
3384  * @parent: parent struct device
3385  * @name: name of the child device
3386  *
3387  * This is similar to the device_find_child() function above, but it
3388  * returns a reference to a device that has the name @name.
3389  *
3390  * NOTE: you will need to drop the reference with put_device() after use.
3391  */
device_find_child_by_name(struct device *parent, const char *name)3392 struct device *device_find_child_by_name(struct device *parent,
3393 					 const char *name)
3394 {
3395 	struct klist_iter i;
3396 	struct device *child;
3397 
3398 	if (!parent)
3399 		return NULL;
3400 
3401 	klist_iter_init(&parent->p->klist_children, &i);
3402 	while ((child = next_device(&i)))
3403 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3404 			break;
3405 	klist_iter_exit(&i);
3406 	return child;
3407 }
3408 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3409 
devices_init(void)3410 int __init devices_init(void)
3411 {
3412 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3413 	if (!devices_kset)
3414 		return -ENOMEM;
3415 	dev_kobj = kobject_create_and_add("dev", NULL);
3416 	if (!dev_kobj)
3417 		goto dev_kobj_err;
3418 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3419 	if (!sysfs_dev_block_kobj)
3420 		goto block_kobj_err;
3421 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3422 	if (!sysfs_dev_char_kobj)
3423 		goto char_kobj_err;
3424 
3425 	return 0;
3426 
3427  char_kobj_err:
3428 	kobject_put(sysfs_dev_block_kobj);
3429  block_kobj_err:
3430 	kobject_put(dev_kobj);
3431  dev_kobj_err:
3432 	kset_unregister(devices_kset);
3433 	return -ENOMEM;
3434 }
3435 
device_check_offline(struct device *dev, void *not_used)3436 static int device_check_offline(struct device *dev, void *not_used)
3437 {
3438 	int ret;
3439 
3440 	ret = device_for_each_child(dev, NULL, device_check_offline);
3441 	if (ret)
3442 		return ret;
3443 
3444 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3445 }
3446 
3447 /**
3448  * device_offline - Prepare the device for hot-removal.
3449  * @dev: Device to be put offline.
3450  *
3451  * Execute the device bus type's .offline() callback, if present, to prepare
3452  * the device for a subsequent hot-removal.  If that succeeds, the device must
3453  * not be used until either it is removed or its bus type's .online() callback
3454  * is executed.
3455  *
3456  * Call under device_hotplug_lock.
3457  */
device_offline(struct device *dev)3458 int device_offline(struct device *dev)
3459 {
3460 	int ret;
3461 
3462 	if (dev->offline_disabled)
3463 		return -EPERM;
3464 
3465 	ret = device_for_each_child(dev, NULL, device_check_offline);
3466 	if (ret)
3467 		return ret;
3468 
3469 	device_lock(dev);
3470 	if (device_supports_offline(dev)) {
3471 		if (dev->offline) {
3472 			ret = 1;
3473 		} else {
3474 			ret = dev->bus->offline(dev);
3475 			if (!ret) {
3476 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3477 				dev->offline = true;
3478 			}
3479 		}
3480 	}
3481 	device_unlock(dev);
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  * device_online - Put the device back online after successful device_offline().
3488  * @dev: Device to be put back online.
3489  *
3490  * If device_offline() has been successfully executed for @dev, but the device
3491  * has not been removed subsequently, execute its bus type's .online() callback
3492  * to indicate that the device can be used again.
3493  *
3494  * Call under device_hotplug_lock.
3495  */
device_online(struct device *dev)3496 int device_online(struct device *dev)
3497 {
3498 	int ret = 0;
3499 
3500 	device_lock(dev);
3501 	if (device_supports_offline(dev)) {
3502 		if (dev->offline) {
3503 			ret = dev->bus->online(dev);
3504 			if (!ret) {
3505 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3506 				dev->offline = false;
3507 			}
3508 		} else {
3509 			ret = 1;
3510 		}
3511 	}
3512 	device_unlock(dev);
3513 
3514 	return ret;
3515 }
3516 
3517 struct root_device {
3518 	struct device dev;
3519 	struct module *owner;
3520 };
3521 
to_root_device(struct device *d)3522 static inline struct root_device *to_root_device(struct device *d)
3523 {
3524 	return container_of(d, struct root_device, dev);
3525 }
3526 
root_device_release(struct device *dev)3527 static void root_device_release(struct device *dev)
3528 {
3529 	kfree(to_root_device(dev));
3530 }
3531 
3532 /**
3533  * __root_device_register - allocate and register a root device
3534  * @name: root device name
3535  * @owner: owner module of the root device, usually THIS_MODULE
3536  *
3537  * This function allocates a root device and registers it
3538  * using device_register(). In order to free the returned
3539  * device, use root_device_unregister().
3540  *
3541  * Root devices are dummy devices which allow other devices
3542  * to be grouped under /sys/devices. Use this function to
3543  * allocate a root device and then use it as the parent of
3544  * any device which should appear under /sys/devices/{name}
3545  *
3546  * The /sys/devices/{name} directory will also contain a
3547  * 'module' symlink which points to the @owner directory
3548  * in sysfs.
3549  *
3550  * Returns &struct device pointer on success, or ERR_PTR() on error.
3551  *
3552  * Note: You probably want to use root_device_register().
3553  */
__root_device_register(const char *name, struct module *owner)3554 struct device *__root_device_register(const char *name, struct module *owner)
3555 {
3556 	struct root_device *root;
3557 	int err = -ENOMEM;
3558 
3559 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3560 	if (!root)
3561 		return ERR_PTR(err);
3562 
3563 	err = dev_set_name(&root->dev, "%s", name);
3564 	if (err) {
3565 		kfree(root);
3566 		return ERR_PTR(err);
3567 	}
3568 
3569 	root->dev.release = root_device_release;
3570 
3571 	err = device_register(&root->dev);
3572 	if (err) {
3573 		put_device(&root->dev);
3574 		return ERR_PTR(err);
3575 	}
3576 
3577 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3578 	if (owner) {
3579 		struct module_kobject *mk = &owner->mkobj;
3580 
3581 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3582 		if (err) {
3583 			device_unregister(&root->dev);
3584 			return ERR_PTR(err);
3585 		}
3586 		root->owner = owner;
3587 	}
3588 #endif
3589 
3590 	return &root->dev;
3591 }
3592 EXPORT_SYMBOL_GPL(__root_device_register);
3593 
3594 /**
3595  * root_device_unregister - unregister and free a root device
3596  * @dev: device going away
3597  *
3598  * This function unregisters and cleans up a device that was created by
3599  * root_device_register().
3600  */
root_device_unregister(struct device *dev)3601 void root_device_unregister(struct device *dev)
3602 {
3603 	struct root_device *root = to_root_device(dev);
3604 
3605 	if (root->owner)
3606 		sysfs_remove_link(&root->dev.kobj, "module");
3607 
3608 	device_unregister(dev);
3609 }
3610 EXPORT_SYMBOL_GPL(root_device_unregister);
3611 
3612 
device_create_release(struct device *dev)3613 static void device_create_release(struct device *dev)
3614 {
3615 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3616 	kfree(dev);
3617 }
3618 
3619 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class *class, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, va_list args)3620 device_create_groups_vargs(struct class *class, struct device *parent,
3621 			   dev_t devt, void *drvdata,
3622 			   const struct attribute_group **groups,
3623 			   const char *fmt, va_list args)
3624 {
3625 	struct device *dev = NULL;
3626 	int retval = -ENODEV;
3627 
3628 	if (class == NULL || IS_ERR(class))
3629 		goto error;
3630 
3631 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3632 	if (!dev) {
3633 		retval = -ENOMEM;
3634 		goto error;
3635 	}
3636 
3637 	device_initialize(dev);
3638 	dev->devt = devt;
3639 	dev->class = class;
3640 	dev->parent = parent;
3641 	dev->groups = groups;
3642 	dev->release = device_create_release;
3643 	dev_set_drvdata(dev, drvdata);
3644 
3645 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3646 	if (retval)
3647 		goto error;
3648 
3649 	retval = device_add(dev);
3650 	if (retval)
3651 		goto error;
3652 
3653 	return dev;
3654 
3655 error:
3656 	put_device(dev);
3657 	return ERR_PTR(retval);
3658 }
3659 
3660 /**
3661  * device_create - creates a device and registers it with sysfs
3662  * @class: pointer to the struct class that this device should be registered to
3663  * @parent: pointer to the parent struct device of this new device, if any
3664  * @devt: the dev_t for the char device to be added
3665  * @drvdata: the data to be added to the device for callbacks
3666  * @fmt: string for the device's name
3667  *
3668  * This function can be used by char device classes.  A struct device
3669  * will be created in sysfs, registered to the specified class.
3670  *
3671  * A "dev" file will be created, showing the dev_t for the device, if
3672  * the dev_t is not 0,0.
3673  * If a pointer to a parent struct device is passed in, the newly created
3674  * struct device will be a child of that device in sysfs.
3675  * The pointer to the struct device will be returned from the call.
3676  * Any further sysfs files that might be required can be created using this
3677  * pointer.
3678  *
3679  * Returns &struct device pointer on success, or ERR_PTR() on error.
3680  *
3681  * Note: the struct class passed to this function must have previously
3682  * been created with a call to class_create().
3683  */
device_create(struct class *class, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...)3684 struct device *device_create(struct class *class, struct device *parent,
3685 			     dev_t devt, void *drvdata, const char *fmt, ...)
3686 {
3687 	va_list vargs;
3688 	struct device *dev;
3689 
3690 	va_start(vargs, fmt);
3691 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3692 					  fmt, vargs);
3693 	va_end(vargs);
3694 	return dev;
3695 }
3696 EXPORT_SYMBOL_GPL(device_create);
3697 
3698 /**
3699  * device_create_with_groups - creates a device and registers it with sysfs
3700  * @class: pointer to the struct class that this device should be registered to
3701  * @parent: pointer to the parent struct device of this new device, if any
3702  * @devt: the dev_t for the char device to be added
3703  * @drvdata: the data to be added to the device for callbacks
3704  * @groups: NULL-terminated list of attribute groups to be created
3705  * @fmt: string for the device's name
3706  *
3707  * This function can be used by char device classes.  A struct device
3708  * will be created in sysfs, registered to the specified class.
3709  * Additional attributes specified in the groups parameter will also
3710  * be created automatically.
3711  *
3712  * A "dev" file will be created, showing the dev_t for the device, if
3713  * the dev_t is not 0,0.
3714  * If a pointer to a parent struct device is passed in, the newly created
3715  * struct device will be a child of that device in sysfs.
3716  * The pointer to the struct device will be returned from the call.
3717  * Any further sysfs files that might be required can be created using this
3718  * pointer.
3719  *
3720  * Returns &struct device pointer on success, or ERR_PTR() on error.
3721  *
3722  * Note: the struct class passed to this function must have previously
3723  * been created with a call to class_create().
3724  */
device_create_with_groups(struct class *class, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...)3725 struct device *device_create_with_groups(struct class *class,
3726 					 struct device *parent, dev_t devt,
3727 					 void *drvdata,
3728 					 const struct attribute_group **groups,
3729 					 const char *fmt, ...)
3730 {
3731 	va_list vargs;
3732 	struct device *dev;
3733 
3734 	va_start(vargs, fmt);
3735 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3736 					 fmt, vargs);
3737 	va_end(vargs);
3738 	return dev;
3739 }
3740 EXPORT_SYMBOL_GPL(device_create_with_groups);
3741 
3742 /**
3743  * device_destroy - removes a device that was created with device_create()
3744  * @class: pointer to the struct class that this device was registered with
3745  * @devt: the dev_t of the device that was previously registered
3746  *
3747  * This call unregisters and cleans up a device that was created with a
3748  * call to device_create().
3749  */
device_destroy(struct class *class, dev_t devt)3750 void device_destroy(struct class *class, dev_t devt)
3751 {
3752 	struct device *dev;
3753 
3754 	dev = class_find_device_by_devt(class, devt);
3755 	if (dev) {
3756 		put_device(dev);
3757 		device_unregister(dev);
3758 	}
3759 }
3760 EXPORT_SYMBOL_GPL(device_destroy);
3761 
3762 /**
3763  * device_rename - renames a device
3764  * @dev: the pointer to the struct device to be renamed
3765  * @new_name: the new name of the device
3766  *
3767  * It is the responsibility of the caller to provide mutual
3768  * exclusion between two different calls of device_rename
3769  * on the same device to ensure that new_name is valid and
3770  * won't conflict with other devices.
3771  *
3772  * Note: Don't call this function.  Currently, the networking layer calls this
3773  * function, but that will change.  The following text from Kay Sievers offers
3774  * some insight:
3775  *
3776  * Renaming devices is racy at many levels, symlinks and other stuff are not
3777  * replaced atomically, and you get a "move" uevent, but it's not easy to
3778  * connect the event to the old and new device. Device nodes are not renamed at
3779  * all, there isn't even support for that in the kernel now.
3780  *
3781  * In the meantime, during renaming, your target name might be taken by another
3782  * driver, creating conflicts. Or the old name is taken directly after you
3783  * renamed it -- then you get events for the same DEVPATH, before you even see
3784  * the "move" event. It's just a mess, and nothing new should ever rely on
3785  * kernel device renaming. Besides that, it's not even implemented now for
3786  * other things than (driver-core wise very simple) network devices.
3787  *
3788  * We are currently about to change network renaming in udev to completely
3789  * disallow renaming of devices in the same namespace as the kernel uses,
3790  * because we can't solve the problems properly, that arise with swapping names
3791  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3792  * be allowed to some other name than eth[0-9]*, for the aforementioned
3793  * reasons.
3794  *
3795  * Make up a "real" name in the driver before you register anything, or add
3796  * some other attributes for userspace to find the device, or use udev to add
3797  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3798  * don't even want to get into that and try to implement the missing pieces in
3799  * the core. We really have other pieces to fix in the driver core mess. :)
3800  */
device_rename(struct device *dev, const char *new_name)3801 int device_rename(struct device *dev, const char *new_name)
3802 {
3803 	struct kobject *kobj = &dev->kobj;
3804 	char *old_device_name = NULL;
3805 	int error;
3806 
3807 	dev = get_device(dev);
3808 	if (!dev)
3809 		return -EINVAL;
3810 
3811 	dev_dbg(dev, "renaming to %s\n", new_name);
3812 
3813 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3814 	if (!old_device_name) {
3815 		error = -ENOMEM;
3816 		goto out;
3817 	}
3818 
3819 	if (dev->class) {
3820 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3821 					     kobj, old_device_name,
3822 					     new_name, kobject_namespace(kobj));
3823 		if (error)
3824 			goto out;
3825 	}
3826 
3827 	error = kobject_rename(kobj, new_name);
3828 	if (error)
3829 		goto out;
3830 
3831 out:
3832 	put_device(dev);
3833 
3834 	kfree(old_device_name);
3835 
3836 	return error;
3837 }
3838 EXPORT_SYMBOL_GPL(device_rename);
3839 
device_move_class_links(struct device *dev, struct device *old_parent, struct device *new_parent)3840 static int device_move_class_links(struct device *dev,
3841 				   struct device *old_parent,
3842 				   struct device *new_parent)
3843 {
3844 	int error = 0;
3845 
3846 	if (old_parent)
3847 		sysfs_remove_link(&dev->kobj, "device");
3848 	if (new_parent)
3849 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3850 					  "device");
3851 	return error;
3852 }
3853 
3854 /**
3855  * device_move - moves a device to a new parent
3856  * @dev: the pointer to the struct device to be moved
3857  * @new_parent: the new parent of the device (can be NULL)
3858  * @dpm_order: how to reorder the dpm_list
3859  */
device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order)3860 int device_move(struct device *dev, struct device *new_parent,
3861 		enum dpm_order dpm_order)
3862 {
3863 	int error;
3864 	struct device *old_parent;
3865 	struct kobject *new_parent_kobj;
3866 
3867 	dev = get_device(dev);
3868 	if (!dev)
3869 		return -EINVAL;
3870 
3871 	device_pm_lock();
3872 	new_parent = get_device(new_parent);
3873 	new_parent_kobj = get_device_parent(dev, new_parent);
3874 	if (IS_ERR(new_parent_kobj)) {
3875 		error = PTR_ERR(new_parent_kobj);
3876 		put_device(new_parent);
3877 		goto out;
3878 	}
3879 
3880 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3881 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3882 	error = kobject_move(&dev->kobj, new_parent_kobj);
3883 	if (error) {
3884 		cleanup_glue_dir(dev, new_parent_kobj);
3885 		put_device(new_parent);
3886 		goto out;
3887 	}
3888 	old_parent = dev->parent;
3889 	dev->parent = new_parent;
3890 	if (old_parent)
3891 		klist_remove(&dev->p->knode_parent);
3892 	if (new_parent) {
3893 		klist_add_tail(&dev->p->knode_parent,
3894 			       &new_parent->p->klist_children);
3895 		set_dev_node(dev, dev_to_node(new_parent));
3896 	}
3897 
3898 	if (dev->class) {
3899 		error = device_move_class_links(dev, old_parent, new_parent);
3900 		if (error) {
3901 			/* We ignore errors on cleanup since we're hosed anyway... */
3902 			device_move_class_links(dev, new_parent, old_parent);
3903 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3904 				if (new_parent)
3905 					klist_remove(&dev->p->knode_parent);
3906 				dev->parent = old_parent;
3907 				if (old_parent) {
3908 					klist_add_tail(&dev->p->knode_parent,
3909 						       &old_parent->p->klist_children);
3910 					set_dev_node(dev, dev_to_node(old_parent));
3911 				}
3912 			}
3913 			cleanup_glue_dir(dev, new_parent_kobj);
3914 			put_device(new_parent);
3915 			goto out;
3916 		}
3917 	}
3918 	switch (dpm_order) {
3919 	case DPM_ORDER_NONE:
3920 		break;
3921 	case DPM_ORDER_DEV_AFTER_PARENT:
3922 		device_pm_move_after(dev, new_parent);
3923 		devices_kset_move_after(dev, new_parent);
3924 		break;
3925 	case DPM_ORDER_PARENT_BEFORE_DEV:
3926 		device_pm_move_before(new_parent, dev);
3927 		devices_kset_move_before(new_parent, dev);
3928 		break;
3929 	case DPM_ORDER_DEV_LAST:
3930 		device_pm_move_last(dev);
3931 		devices_kset_move_last(dev);
3932 		break;
3933 	}
3934 
3935 	put_device(old_parent);
3936 out:
3937 	device_pm_unlock();
3938 	put_device(dev);
3939 	return error;
3940 }
3941 EXPORT_SYMBOL_GPL(device_move);
3942 
device_attrs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)3943 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3944 				     kgid_t kgid)
3945 {
3946 	struct kobject *kobj = &dev->kobj;
3947 	struct class *class = dev->class;
3948 	const struct device_type *type = dev->type;
3949 	int error;
3950 
3951 	if (class) {
3952 		/*
3953 		 * Change the device groups of the device class for @dev to
3954 		 * @kuid/@kgid.
3955 		 */
3956 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3957 						  kgid);
3958 		if (error)
3959 			return error;
3960 	}
3961 
3962 	if (type) {
3963 		/*
3964 		 * Change the device groups of the device type for @dev to
3965 		 * @kuid/@kgid.
3966 		 */
3967 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3968 						  kgid);
3969 		if (error)
3970 			return error;
3971 	}
3972 
3973 	/* Change the device groups of @dev to @kuid/@kgid. */
3974 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3975 	if (error)
3976 		return error;
3977 
3978 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3979 		/* Change online device attributes of @dev to @kuid/@kgid. */
3980 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3981 						kuid, kgid);
3982 		if (error)
3983 			return error;
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 /**
3990  * device_change_owner - change the owner of an existing device.
3991  * @dev: device.
3992  * @kuid: new owner's kuid
3993  * @kgid: new owner's kgid
3994  *
3995  * This changes the owner of @dev and its corresponding sysfs entries to
3996  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3997  * core.
3998  *
3999  * Returns 0 on success or error code on failure.
4000  */
device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)4001 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4002 {
4003 	int error;
4004 	struct kobject *kobj = &dev->kobj;
4005 
4006 	dev = get_device(dev);
4007 	if (!dev)
4008 		return -EINVAL;
4009 
4010 	/*
4011 	 * Change the kobject and the default attributes and groups of the
4012 	 * ktype associated with it to @kuid/@kgid.
4013 	 */
4014 	error = sysfs_change_owner(kobj, kuid, kgid);
4015 	if (error)
4016 		goto out;
4017 
4018 	/*
4019 	 * Change the uevent file for @dev to the new owner. The uevent file
4020 	 * was created in a separate step when @dev got added and we mirror
4021 	 * that step here.
4022 	 */
4023 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4024 					kgid);
4025 	if (error)
4026 		goto out;
4027 
4028 	/*
4029 	 * Change the device groups, the device groups associated with the
4030 	 * device class, and the groups associated with the device type of @dev
4031 	 * to @kuid/@kgid.
4032 	 */
4033 	error = device_attrs_change_owner(dev, kuid, kgid);
4034 	if (error)
4035 		goto out;
4036 
4037 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4038 	if (error)
4039 		goto out;
4040 
4041 #ifdef CONFIG_BLOCK
4042 	if (sysfs_deprecated && dev->class == &block_class)
4043 		goto out;
4044 #endif
4045 
4046 	/*
4047 	 * Change the owner of the symlink located in the class directory of
4048 	 * the device class associated with @dev which points to the actual
4049 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4050 	 * symlink shows the same permissions as its target.
4051 	 */
4052 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4053 					dev_name(dev), kuid, kgid);
4054 	if (error)
4055 		goto out;
4056 
4057 out:
4058 	put_device(dev);
4059 	return error;
4060 }
4061 EXPORT_SYMBOL_GPL(device_change_owner);
4062 
4063 /**
4064  * device_shutdown - call ->shutdown() on each device to shutdown.
4065  */
device_shutdown(void)4066 void device_shutdown(void)
4067 {
4068 	struct device *dev, *parent;
4069 
4070 	wait_for_device_probe();
4071 	device_block_probing();
4072 
4073 	cpufreq_suspend();
4074 
4075 	spin_lock(&devices_kset->list_lock);
4076 	/*
4077 	 * Walk the devices list backward, shutting down each in turn.
4078 	 * Beware that device unplug events may also start pulling
4079 	 * devices offline, even as the system is shutting down.
4080 	 */
4081 	while (!list_empty(&devices_kset->list)) {
4082 		dev = list_entry(devices_kset->list.prev, struct device,
4083 				kobj.entry);
4084 
4085 		/*
4086 		 * hold reference count of device's parent to
4087 		 * prevent it from being freed because parent's
4088 		 * lock is to be held
4089 		 */
4090 		parent = get_device(dev->parent);
4091 		get_device(dev);
4092 		/*
4093 		 * Make sure the device is off the kset list, in the
4094 		 * event that dev->*->shutdown() doesn't remove it.
4095 		 */
4096 		list_del_init(&dev->kobj.entry);
4097 		spin_unlock(&devices_kset->list_lock);
4098 
4099 		/* hold lock to avoid race with probe/release */
4100 		if (parent)
4101 			device_lock(parent);
4102 		device_lock(dev);
4103 
4104 		/* Don't allow any more runtime suspends */
4105 		pm_runtime_get_noresume(dev);
4106 		pm_runtime_barrier(dev);
4107 
4108 		if (dev->class && dev->class->shutdown_pre) {
4109 			if (initcall_debug)
4110 				dev_info(dev, "shutdown_pre\n");
4111 			dev->class->shutdown_pre(dev);
4112 		}
4113 		if (dev->bus && dev->bus->shutdown) {
4114 			if (initcall_debug)
4115 				dev_info(dev, "shutdown\n");
4116 			dev->bus->shutdown(dev);
4117 		} else if (dev->driver && dev->driver->shutdown) {
4118 			if (initcall_debug)
4119 				dev_info(dev, "shutdown\n");
4120 			dev->driver->shutdown(dev);
4121 		}
4122 
4123 		device_unlock(dev);
4124 		if (parent)
4125 			device_unlock(parent);
4126 
4127 		put_device(dev);
4128 		put_device(parent);
4129 
4130 		spin_lock(&devices_kset->list_lock);
4131 	}
4132 	spin_unlock(&devices_kset->list_lock);
4133 }
4134 
4135 /*
4136  * Device logging functions
4137  */
4138 
4139 #ifdef CONFIG_PRINTK
4140 static void
set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)4141 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4142 {
4143 	const char *subsys;
4144 
4145 	memset(dev_info, 0, sizeof(*dev_info));
4146 
4147 	if (dev->class)
4148 		subsys = dev->class->name;
4149 	else if (dev->bus)
4150 		subsys = dev->bus->name;
4151 	else
4152 		return;
4153 
4154 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4155 
4156 	/*
4157 	 * Add device identifier DEVICE=:
4158 	 *   b12:8         block dev_t
4159 	 *   c127:3        char dev_t
4160 	 *   n8            netdev ifindex
4161 	 *   +sound:card0  subsystem:devname
4162 	 */
4163 	if (MAJOR(dev->devt)) {
4164 		char c;
4165 
4166 		if (strcmp(subsys, "block") == 0)
4167 			c = 'b';
4168 		else
4169 			c = 'c';
4170 
4171 		snprintf(dev_info->device, sizeof(dev_info->device),
4172 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4173 	} else if (strcmp(subsys, "net") == 0) {
4174 		struct net_device *net = to_net_dev(dev);
4175 
4176 		snprintf(dev_info->device, sizeof(dev_info->device),
4177 			 "n%u", net->ifindex);
4178 	} else {
4179 		snprintf(dev_info->device, sizeof(dev_info->device),
4180 			 "+%s:%s", subsys, dev_name(dev));
4181 	}
4182 }
4183 
dev_vprintk_emit(int level, const struct device *dev, const char *fmt, va_list args)4184 int dev_vprintk_emit(int level, const struct device *dev,
4185 		     const char *fmt, va_list args)
4186 {
4187 	struct dev_printk_info dev_info;
4188 
4189 	set_dev_info(dev, &dev_info);
4190 
4191 	return vprintk_emit(0, level, &dev_info, fmt, args);
4192 }
4193 EXPORT_SYMBOL(dev_vprintk_emit);
4194 
dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)4195 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4196 {
4197 	va_list args;
4198 	int r;
4199 
4200 	va_start(args, fmt);
4201 
4202 	r = dev_vprintk_emit(level, dev, fmt, args);
4203 
4204 	va_end(args);
4205 
4206 	return r;
4207 }
4208 EXPORT_SYMBOL(dev_printk_emit);
4209 
__dev_printk(const char *level, const struct device *dev, struct va_format *vaf)4210 static void __dev_printk(const char *level, const struct device *dev,
4211 			struct va_format *vaf)
4212 {
4213 	if (dev)
4214 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4215 				dev_driver_string(dev), dev_name(dev), vaf);
4216 	else
4217 		printk("%s(NULL device *): %pV", level, vaf);
4218 }
4219 
dev_printk(const char *level, const struct device *dev, const char *fmt, ...)4220 void dev_printk(const char *level, const struct device *dev,
4221 		const char *fmt, ...)
4222 {
4223 	struct va_format vaf;
4224 	va_list args;
4225 
4226 	va_start(args, fmt);
4227 
4228 	vaf.fmt = fmt;
4229 	vaf.va = &args;
4230 
4231 	__dev_printk(level, dev, &vaf);
4232 
4233 	va_end(args);
4234 }
4235 EXPORT_SYMBOL(dev_printk);
4236 
4237 #define define_dev_printk_level(func, kern_level)		\
4238 void func(const struct device *dev, const char *fmt, ...)	\
4239 {								\
4240 	struct va_format vaf;					\
4241 	va_list args;						\
4242 								\
4243 	va_start(args, fmt);					\
4244 								\
4245 	vaf.fmt = fmt;						\
4246 	vaf.va = &args;						\
4247 								\
4248 	__dev_printk(kern_level, dev, &vaf);			\
4249 								\
4250 	va_end(args);						\
4251 }								\
4252 EXPORT_SYMBOL(func);
4253 
4254 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4255 define_dev_printk_level(_dev_alert, KERN_ALERT);
4256 define_dev_printk_level(_dev_crit, KERN_CRIT);
4257 define_dev_printk_level(_dev_err, KERN_ERR);
4258 define_dev_printk_level(_dev_warn, KERN_WARNING);
4259 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4260 define_dev_printk_level(_dev_info, KERN_INFO);
4261 
4262 #endif
4263 
4264 /**
4265  * dev_err_probe - probe error check and log helper
4266  * @dev: the pointer to the struct device
4267  * @err: error value to test
4268  * @fmt: printf-style format string
4269  * @...: arguments as specified in the format string
4270  *
4271  * This helper implements common pattern present in probe functions for error
4272  * checking: print debug or error message depending if the error value is
4273  * -EPROBE_DEFER and propagate error upwards.
4274  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4275  * checked later by reading devices_deferred debugfs attribute.
4276  * It replaces code sequence::
4277  *
4278  * 	if (err != -EPROBE_DEFER)
4279  * 		dev_err(dev, ...);
4280  * 	else
4281  * 		dev_dbg(dev, ...);
4282  * 	return err;
4283  *
4284  * with::
4285  *
4286  * 	return dev_err_probe(dev, err, ...);
4287  *
4288  * Returns @err.
4289  *
4290  */
dev_err_probe(const struct device *dev, int err, const char *fmt, ...)4291 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4292 {
4293 	struct va_format vaf;
4294 	va_list args;
4295 
4296 	va_start(args, fmt);
4297 	vaf.fmt = fmt;
4298 	vaf.va = &args;
4299 
4300 	if (err != -EPROBE_DEFER) {
4301 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4302 	} else {
4303 		device_set_deferred_probe_reason(dev, &vaf);
4304 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4305 	}
4306 
4307 	va_end(args);
4308 
4309 	return err;
4310 }
4311 EXPORT_SYMBOL_GPL(dev_err_probe);
4312 
fwnode_is_primary(struct fwnode_handle *fwnode)4313 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4314 {
4315 	return fwnode && !IS_ERR(fwnode->secondary);
4316 }
4317 
4318 /**
4319  * set_primary_fwnode - Change the primary firmware node of a given device.
4320  * @dev: Device to handle.
4321  * @fwnode: New primary firmware node of the device.
4322  *
4323  * Set the device's firmware node pointer to @fwnode, but if a secondary
4324  * firmware node of the device is present, preserve it.
4325  */
set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)4326 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4327 {
4328 	struct device *parent = dev->parent;
4329 	struct fwnode_handle *fn = dev->fwnode;
4330 
4331 	if (fwnode) {
4332 		if (fwnode_is_primary(fn))
4333 			fn = fn->secondary;
4334 
4335 		if (fn) {
4336 			WARN_ON(fwnode->secondary);
4337 			fwnode->secondary = fn;
4338 		}
4339 		dev->fwnode = fwnode;
4340 	} else {
4341 		if (fwnode_is_primary(fn)) {
4342 			dev->fwnode = fn->secondary;
4343 			if (!(parent && fn == parent->fwnode))
4344 				fn->secondary = NULL;
4345 		} else {
4346 			dev->fwnode = NULL;
4347 		}
4348 	}
4349 }
4350 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4351 
4352 /**
4353  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4354  * @dev: Device to handle.
4355  * @fwnode: New secondary firmware node of the device.
4356  *
4357  * If a primary firmware node of the device is present, set its secondary
4358  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4359  * @fwnode.
4360  */
set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)4361 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4362 {
4363 	if (fwnode)
4364 		fwnode->secondary = ERR_PTR(-ENODEV);
4365 
4366 	if (fwnode_is_primary(dev->fwnode))
4367 		dev->fwnode->secondary = fwnode;
4368 	else
4369 		dev->fwnode = fwnode;
4370 }
4371 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4372 
4373 /**
4374  * device_set_of_node_from_dev - reuse device-tree node of another device
4375  * @dev: device whose device-tree node is being set
4376  * @dev2: device whose device-tree node is being reused
4377  *
4378  * Takes another reference to the new device-tree node after first dropping
4379  * any reference held to the old node.
4380  */
device_set_of_node_from_dev(struct device *dev, const struct device *dev2)4381 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4382 {
4383 	of_node_put(dev->of_node);
4384 	dev->of_node = of_node_get(dev2->of_node);
4385 	dev->of_node_reused = true;
4386 }
4387 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4388 
device_set_node(struct device *dev, struct fwnode_handle *fwnode)4389 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4390 {
4391 	dev->fwnode = fwnode;
4392 	dev->of_node = to_of_node(fwnode);
4393 }
4394 EXPORT_SYMBOL_GPL(device_set_node);
4395 
device_match_name(struct device *dev, const void *name)4396 int device_match_name(struct device *dev, const void *name)
4397 {
4398 	return sysfs_streq(dev_name(dev), name);
4399 }
4400 EXPORT_SYMBOL_GPL(device_match_name);
4401 
device_match_of_node(struct device *dev, const void *np)4402 int device_match_of_node(struct device *dev, const void *np)
4403 {
4404 	return dev->of_node == np;
4405 }
4406 EXPORT_SYMBOL_GPL(device_match_of_node);
4407 
device_match_fwnode(struct device *dev, const void *fwnode)4408 int device_match_fwnode(struct device *dev, const void *fwnode)
4409 {
4410 	return dev_fwnode(dev) == fwnode;
4411 }
4412 EXPORT_SYMBOL_GPL(device_match_fwnode);
4413 
device_match_devt(struct device *dev, const void *pdevt)4414 int device_match_devt(struct device *dev, const void *pdevt)
4415 {
4416 	return dev->devt == *(dev_t *)pdevt;
4417 }
4418 EXPORT_SYMBOL_GPL(device_match_devt);
4419 
device_match_acpi_dev(struct device *dev, const void *adev)4420 int device_match_acpi_dev(struct device *dev, const void *adev)
4421 {
4422 	return ACPI_COMPANION(dev) == adev;
4423 }
4424 EXPORT_SYMBOL(device_match_acpi_dev);
4425 
device_match_any(struct device *dev, const void *unused)4426 int device_match_any(struct device *dev, const void *unused)
4427 {
4428 	return 1;
4429 }
4430 EXPORT_SYMBOL_GPL(device_match_any);
4431