1// SPDX-License-Identifier: GPL-2.0-only 2/* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11#include <linux/list.h> 12#include <linux/sched/mm.h> 13#include <linux/module.h> 14#include <linux/rtmutex.h> 15#include <linux/rbtree.h> 16#include <linux/seq_file.h> 17#include <linux/vmalloc.h> 18#include <linux/slab.h> 19#include <linux/sched.h> 20#include <linux/list_lru.h> 21#include <linux/ratelimit.h> 22#include <asm/cacheflush.h> 23#include <linux/uaccess.h> 24#include <linux/highmem.h> 25#include <linux/sizes.h> 26#include "binder_alloc.h" 27#include "binder_trace.h" 28 29struct list_lru binder_alloc_lru; 30 31static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38}; 39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44#define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51{ 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53} 54 55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56{ 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58} 59 60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62{ 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66} 67 68static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70{ 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99} 100 101static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103{ 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124} 125 126static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129{ 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157} 158 159/** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172{ 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179} 180 181static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183{ 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm)) 212 mm = alloc->vma_vm_mm; 213 214 if (mm) { 215 mmap_write_lock(mm); 216 vma = alloc->vma; 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_write_unlock(mm); 274 mmput_async(mm); 275 } 276 return 0; 277 278free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299err_alloc_page_failed: 300err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304err_no_vma: 305 if (mm) { 306 mmap_write_unlock(mm); 307 mmput_async(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310} 311 312 313static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 314 struct vm_area_struct *vma) 315{ 316 if (vma) 317 alloc->vma_vm_mm = vma->vm_mm; 318 /* 319 * If we see alloc->vma is not NULL, buffer data structures set up 320 * completely. Look at smp_rmb side binder_alloc_get_vma. 321 * We also want to guarantee new alloc->vma_vm_mm is always visible 322 * if alloc->vma is set. 323 */ 324 smp_wmb(); 325 alloc->vma = vma; 326} 327 328static inline struct vm_area_struct *binder_alloc_get_vma( 329 struct binder_alloc *alloc) 330{ 331 struct vm_area_struct *vma = NULL; 332 333 if (alloc->vma) { 334 /* Look at description in binder_alloc_set_vma */ 335 smp_rmb(); 336 vma = alloc->vma; 337 } 338 return vma; 339} 340 341static void debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 342{ 343 /* 344 * Find the amount and size of buffers allocated by the current caller; 345 * The idea is that once we cross the threshold, whoever is responsible 346 * for the low async space is likely to try to send another async txn, 347 * and at some point we'll catch them in the act. This is more efficient 348 * than keeping a map per pid. 349 */ 350 struct rb_node *n; 351 struct binder_buffer *buffer; 352 size_t total_alloc_size = 0; 353 size_t num_buffers = 0; 354 355 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 356 n = rb_next(n)) { 357 buffer = rb_entry(n, struct binder_buffer, rb_node); 358 if (buffer->pid != pid) 359 continue; 360 if (!buffer->async_transaction) 361 continue; 362 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 363 num_buffers++; 364 } 365 366 /* 367 * Warn if this pid has more than 50 transactions, or more than 50% of 368 * async space (which is 25% of total buffer size). 369 */ 370 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 371 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 372 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 373 alloc->pid, pid, num_buffers, total_alloc_size); 374 } 375} 376 377static struct binder_buffer *binder_alloc_new_buf_locked( 378 struct binder_alloc *alloc, 379 size_t data_size, 380 size_t offsets_size, 381 size_t extra_buffers_size, 382 int is_async, 383 int pid) 384{ 385 struct rb_node *n = alloc->free_buffers.rb_node; 386 struct binder_buffer *buffer; 387 size_t buffer_size; 388 struct rb_node *best_fit = NULL; 389 void __user *has_page_addr; 390 void __user *end_page_addr; 391 size_t size, data_offsets_size; 392 int ret; 393 394 if (!binder_alloc_get_vma(alloc)) { 395 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 396 "%d: binder_alloc_buf, no vma\n", 397 alloc->pid); 398 return ERR_PTR(-ESRCH); 399 } 400 401 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 402 ALIGN(offsets_size, sizeof(void *)); 403 404 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 405 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 406 "%d: got transaction with invalid size %zd-%zd\n", 407 alloc->pid, data_size, offsets_size); 408 return ERR_PTR(-EINVAL); 409 } 410 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 411 if (size < data_offsets_size || size < extra_buffers_size) { 412 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 413 "%d: got transaction with invalid extra_buffers_size %zd\n", 414 alloc->pid, extra_buffers_size); 415 return ERR_PTR(-EINVAL); 416 } 417 418 /* Pad 0-size buffers so they get assigned unique addresses */ 419 size = max(size, sizeof(void *)); 420 421 if (is_async && alloc->free_async_space < size) { 422 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 423 "%d: binder_alloc_buf size %zd failed, no async space left\n", 424 alloc->pid, size); 425 return ERR_PTR(-ENOSPC); 426 } 427 428 while (n) { 429 buffer = rb_entry(n, struct binder_buffer, rb_node); 430 BUG_ON(!buffer->free); 431 buffer_size = binder_alloc_buffer_size(alloc, buffer); 432 433 if (size < buffer_size) { 434 best_fit = n; 435 n = n->rb_left; 436 } else if (size > buffer_size) 437 n = n->rb_right; 438 else { 439 best_fit = n; 440 break; 441 } 442 } 443 if (best_fit == NULL) { 444 size_t allocated_buffers = 0; 445 size_t largest_alloc_size = 0; 446 size_t total_alloc_size = 0; 447 size_t free_buffers = 0; 448 size_t largest_free_size = 0; 449 size_t total_free_size = 0; 450 451 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 452 n = rb_next(n)) { 453 buffer = rb_entry(n, struct binder_buffer, rb_node); 454 buffer_size = binder_alloc_buffer_size(alloc, buffer); 455 allocated_buffers++; 456 total_alloc_size += buffer_size; 457 if (buffer_size > largest_alloc_size) 458 largest_alloc_size = buffer_size; 459 } 460 for (n = rb_first(&alloc->free_buffers); n != NULL; 461 n = rb_next(n)) { 462 buffer = rb_entry(n, struct binder_buffer, rb_node); 463 buffer_size = binder_alloc_buffer_size(alloc, buffer); 464 free_buffers++; 465 total_free_size += buffer_size; 466 if (buffer_size > largest_free_size) 467 largest_free_size = buffer_size; 468 } 469 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 470 "%d: binder_alloc_buf size %zd failed, no address space\n", 471 alloc->pid, size); 472 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 473 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 474 total_alloc_size, allocated_buffers, 475 largest_alloc_size, total_free_size, 476 free_buffers, largest_free_size); 477 return ERR_PTR(-ENOSPC); 478 } 479 if (n == NULL) { 480 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 481 buffer_size = binder_alloc_buffer_size(alloc, buffer); 482 } 483 484 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 485 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 486 alloc->pid, size, buffer, buffer_size); 487 488 has_page_addr = (void __user *) 489 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 490 WARN_ON(n && buffer_size != size); 491 end_page_addr = 492 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 493 if (end_page_addr > has_page_addr) 494 end_page_addr = has_page_addr; 495 ret = binder_update_page_range(alloc, 1, (void __user *) 496 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 497 if (ret) 498 return ERR_PTR(ret); 499 500 if (buffer_size != size) { 501 struct binder_buffer *new_buffer; 502 503 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 504 if (!new_buffer) { 505 pr_err("%s: %d failed to alloc new buffer struct\n", 506 __func__, alloc->pid); 507 goto err_alloc_buf_struct_failed; 508 } 509 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 510 list_add(&new_buffer->entry, &buffer->entry); 511 new_buffer->free = 1; 512 binder_insert_free_buffer(alloc, new_buffer); 513 } 514 515 rb_erase(best_fit, &alloc->free_buffers); 516 buffer->free = 0; 517 buffer->allow_user_free = 0; 518 binder_insert_allocated_buffer_locked(alloc, buffer); 519 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 520 "%d: binder_alloc_buf size %zd got %pK\n", 521 alloc->pid, size, buffer); 522 buffer->data_size = data_size; 523 buffer->offsets_size = offsets_size; 524 buffer->async_transaction = is_async; 525 buffer->extra_buffers_size = extra_buffers_size; 526 buffer->pid = pid; 527 if (is_async) { 528 alloc->free_async_space -= size; 529 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 530 "%d: binder_alloc_buf size %zd async free %zd\n", 531 alloc->pid, size, alloc->free_async_space); 532 if (alloc->free_async_space < alloc->buffer_size / 10) { 533 /* 534 * Start detecting spammers once we have less than 20% 535 * of async space left (which is less than 10% of total 536 * buffer size). 537 */ 538 debug_low_async_space_locked(alloc, pid); 539 } 540 } 541 return buffer; 542 543err_alloc_buf_struct_failed: 544 binder_update_page_range(alloc, 0, (void __user *) 545 PAGE_ALIGN((uintptr_t)buffer->user_data), 546 end_page_addr); 547 return ERR_PTR(-ENOMEM); 548} 549 550/** 551 * binder_alloc_new_buf() - Allocate a new binder buffer 552 * @alloc: binder_alloc for this proc 553 * @data_size: size of user data buffer 554 * @offsets_size: user specified buffer offset 555 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 556 * @is_async: buffer for async transaction 557 * @pid: pid to attribute allocation to (used for debugging) 558 * 559 * Allocate a new buffer given the requested sizes. Returns 560 * the kernel version of the buffer pointer. The size allocated 561 * is the sum of the three given sizes (each rounded up to 562 * pointer-sized boundary) 563 * 564 * Return: The allocated buffer or %ERR_PTR(-errno) if error 565 */ 566struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 567 size_t data_size, 568 size_t offsets_size, 569 size_t extra_buffers_size, 570 int is_async, 571 int pid) 572{ 573 struct binder_buffer *buffer; 574 575 mutex_lock(&alloc->mutex); 576 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 577 extra_buffers_size, is_async, pid); 578 mutex_unlock(&alloc->mutex); 579 return buffer; 580} 581 582static void __user *buffer_start_page(struct binder_buffer *buffer) 583{ 584 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 585} 586 587static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 588{ 589 return (void __user *) 590 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 591} 592 593static void binder_delete_free_buffer(struct binder_alloc *alloc, 594 struct binder_buffer *buffer) 595{ 596 struct binder_buffer *prev, *next = NULL; 597 bool to_free = true; 598 599 BUG_ON(alloc->buffers.next == &buffer->entry); 600 prev = binder_buffer_prev(buffer); 601 BUG_ON(!prev->free); 602 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 603 to_free = false; 604 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 605 "%d: merge free, buffer %pK share page with %pK\n", 606 alloc->pid, buffer->user_data, 607 prev->user_data); 608 } 609 610 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 611 next = binder_buffer_next(buffer); 612 if (buffer_start_page(next) == buffer_start_page(buffer)) { 613 to_free = false; 614 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 615 "%d: merge free, buffer %pK share page with %pK\n", 616 alloc->pid, 617 buffer->user_data, 618 next->user_data); 619 } 620 } 621 622 if (PAGE_ALIGNED(buffer->user_data)) { 623 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 624 "%d: merge free, buffer start %pK is page aligned\n", 625 alloc->pid, buffer->user_data); 626 to_free = false; 627 } 628 629 if (to_free) { 630 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 631 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 632 alloc->pid, buffer->user_data, 633 prev->user_data, 634 next ? next->user_data : NULL); 635 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 636 buffer_start_page(buffer) + PAGE_SIZE); 637 } 638 list_del(&buffer->entry); 639 kfree(buffer); 640} 641 642static void binder_free_buf_locked(struct binder_alloc *alloc, 643 struct binder_buffer *buffer) 644{ 645 size_t size, buffer_size; 646 647 buffer_size = binder_alloc_buffer_size(alloc, buffer); 648 649 size = ALIGN(buffer->data_size, sizeof(void *)) + 650 ALIGN(buffer->offsets_size, sizeof(void *)) + 651 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 652 653 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 654 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 655 alloc->pid, buffer, size, buffer_size); 656 657 BUG_ON(buffer->free); 658 BUG_ON(size > buffer_size); 659 BUG_ON(buffer->transaction != NULL); 660 BUG_ON(buffer->user_data < alloc->buffer); 661 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 662 663 if (buffer->async_transaction) { 664 alloc->free_async_space += buffer_size; 665 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 666 "%d: binder_free_buf size %zd async free %zd\n", 667 alloc->pid, size, alloc->free_async_space); 668 } 669 670 binder_update_page_range(alloc, 0, 671 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 672 (void __user *)(((uintptr_t) 673 buffer->user_data + buffer_size) & PAGE_MASK)); 674 675 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 676 buffer->free = 1; 677 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 678 struct binder_buffer *next = binder_buffer_next(buffer); 679 680 if (next->free) { 681 rb_erase(&next->rb_node, &alloc->free_buffers); 682 binder_delete_free_buffer(alloc, next); 683 } 684 } 685 if (alloc->buffers.next != &buffer->entry) { 686 struct binder_buffer *prev = binder_buffer_prev(buffer); 687 688 if (prev->free) { 689 binder_delete_free_buffer(alloc, buffer); 690 rb_erase(&prev->rb_node, &alloc->free_buffers); 691 buffer = prev; 692 } 693 } 694 binder_insert_free_buffer(alloc, buffer); 695} 696 697static void binder_alloc_clear_buf(struct binder_alloc *alloc, 698 struct binder_buffer *buffer); 699/** 700 * binder_alloc_free_buf() - free a binder buffer 701 * @alloc: binder_alloc for this proc 702 * @buffer: kernel pointer to buffer 703 * 704 * Free the buffer allocated via binder_alloc_new_buf() 705 */ 706void binder_alloc_free_buf(struct binder_alloc *alloc, 707 struct binder_buffer *buffer) 708{ 709 /* 710 * We could eliminate the call to binder_alloc_clear_buf() 711 * from binder_alloc_deferred_release() by moving this to 712 * binder_free_buf_locked(). However, that could 713 * increase contention for the alloc mutex if clear_on_free 714 * is used frequently for large buffers. The mutex is not 715 * needed for correctness here. 716 */ 717 if (buffer->clear_on_free) { 718 binder_alloc_clear_buf(alloc, buffer); 719 buffer->clear_on_free = false; 720 } 721 mutex_lock(&alloc->mutex); 722 binder_free_buf_locked(alloc, buffer); 723 mutex_unlock(&alloc->mutex); 724} 725 726/** 727 * binder_alloc_mmap_handler() - map virtual address space for proc 728 * @alloc: alloc structure for this proc 729 * @vma: vma passed to mmap() 730 * 731 * Called by binder_mmap() to initialize the space specified in 732 * vma for allocating binder buffers 733 * 734 * Return: 735 * 0 = success 736 * -EBUSY = address space already mapped 737 * -ENOMEM = failed to map memory to given address space 738 */ 739int binder_alloc_mmap_handler(struct binder_alloc *alloc, 740 struct vm_area_struct *vma) 741{ 742 int ret; 743 const char *failure_string; 744 struct binder_buffer *buffer; 745 746 mutex_lock(&binder_alloc_mmap_lock); 747 if (alloc->buffer_size) { 748 ret = -EBUSY; 749 failure_string = "already mapped"; 750 goto err_already_mapped; 751 } 752 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 753 SZ_4M); 754 mutex_unlock(&binder_alloc_mmap_lock); 755 756 alloc->buffer = (void __user *)vma->vm_start; 757 758 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 759 sizeof(alloc->pages[0]), 760 GFP_KERNEL); 761 if (alloc->pages == NULL) { 762 ret = -ENOMEM; 763 failure_string = "alloc page array"; 764 goto err_alloc_pages_failed; 765 } 766 767 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 768 if (!buffer) { 769 ret = -ENOMEM; 770 failure_string = "alloc buffer struct"; 771 goto err_alloc_buf_struct_failed; 772 } 773 774 buffer->user_data = alloc->buffer; 775 list_add(&buffer->entry, &alloc->buffers); 776 buffer->free = 1; 777 binder_insert_free_buffer(alloc, buffer); 778 alloc->free_async_space = alloc->buffer_size / 2; 779 binder_alloc_set_vma(alloc, vma); 780 mmgrab(alloc->vma_vm_mm); 781 782 return 0; 783 784err_alloc_buf_struct_failed: 785 kfree(alloc->pages); 786 alloc->pages = NULL; 787err_alloc_pages_failed: 788 alloc->buffer = NULL; 789 mutex_lock(&binder_alloc_mmap_lock); 790 alloc->buffer_size = 0; 791err_already_mapped: 792 mutex_unlock(&binder_alloc_mmap_lock); 793 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 794 "%s: %d %lx-%lx %s failed %d\n", __func__, 795 alloc->pid, vma->vm_start, vma->vm_end, 796 failure_string, ret); 797 return ret; 798} 799 800 801void binder_alloc_deferred_release(struct binder_alloc *alloc) 802{ 803 struct rb_node *n; 804 int buffers, page_count; 805 struct binder_buffer *buffer; 806 807 buffers = 0; 808 mutex_lock(&alloc->mutex); 809 BUG_ON(alloc->vma); 810 811 while ((n = rb_first(&alloc->allocated_buffers))) { 812 buffer = rb_entry(n, struct binder_buffer, rb_node); 813 814 /* Transaction should already have been freed */ 815 BUG_ON(buffer->transaction); 816 817 if (buffer->clear_on_free) { 818 binder_alloc_clear_buf(alloc, buffer); 819 buffer->clear_on_free = false; 820 } 821 binder_free_buf_locked(alloc, buffer); 822 buffers++; 823 } 824 825 while (!list_empty(&alloc->buffers)) { 826 buffer = list_first_entry(&alloc->buffers, 827 struct binder_buffer, entry); 828 WARN_ON(!buffer->free); 829 830 list_del(&buffer->entry); 831 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 832 kfree(buffer); 833 } 834 835 page_count = 0; 836 if (alloc->pages) { 837 int i; 838 839 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 840 void __user *page_addr; 841 bool on_lru; 842 843 if (!alloc->pages[i].page_ptr) 844 continue; 845 846 on_lru = list_lru_del(&binder_alloc_lru, 847 &alloc->pages[i].lru); 848 page_addr = alloc->buffer + i * PAGE_SIZE; 849 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 850 "%s: %d: page %d at %pK %s\n", 851 __func__, alloc->pid, i, page_addr, 852 on_lru ? "on lru" : "active"); 853 __free_page(alloc->pages[i].page_ptr); 854 page_count++; 855 } 856 kfree(alloc->pages); 857 } 858 mutex_unlock(&alloc->mutex); 859 if (alloc->vma_vm_mm) 860 mmdrop(alloc->vma_vm_mm); 861 862 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 863 "%s: %d buffers %d, pages %d\n", 864 __func__, alloc->pid, buffers, page_count); 865} 866 867static void print_binder_buffer(struct seq_file *m, const char *prefix, 868 struct binder_buffer *buffer) 869{ 870 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 871 prefix, buffer->debug_id, buffer->user_data, 872 buffer->data_size, buffer->offsets_size, 873 buffer->extra_buffers_size, 874 buffer->transaction ? "active" : "delivered"); 875} 876 877/** 878 * binder_alloc_print_allocated() - print buffer info 879 * @m: seq_file for output via seq_printf() 880 * @alloc: binder_alloc for this proc 881 * 882 * Prints information about every buffer associated with 883 * the binder_alloc state to the given seq_file 884 */ 885void binder_alloc_print_allocated(struct seq_file *m, 886 struct binder_alloc *alloc) 887{ 888 struct rb_node *n; 889 890 mutex_lock(&alloc->mutex); 891 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 892 print_binder_buffer(m, " buffer", 893 rb_entry(n, struct binder_buffer, rb_node)); 894 mutex_unlock(&alloc->mutex); 895} 896 897/** 898 * binder_alloc_print_pages() - print page usage 899 * @m: seq_file for output via seq_printf() 900 * @alloc: binder_alloc for this proc 901 */ 902void binder_alloc_print_pages(struct seq_file *m, 903 struct binder_alloc *alloc) 904{ 905 struct binder_lru_page *page; 906 int i; 907 int active = 0; 908 int lru = 0; 909 int free = 0; 910 911 mutex_lock(&alloc->mutex); 912 /* 913 * Make sure the binder_alloc is fully initialized, otherwise we might 914 * read inconsistent state. 915 */ 916 if (binder_alloc_get_vma(alloc) != NULL) { 917 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 918 page = &alloc->pages[i]; 919 if (!page->page_ptr) 920 free++; 921 else if (list_empty(&page->lru)) 922 active++; 923 else 924 lru++; 925 } 926 } 927 mutex_unlock(&alloc->mutex); 928 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 929 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 930} 931 932/** 933 * binder_alloc_get_allocated_count() - return count of buffers 934 * @alloc: binder_alloc for this proc 935 * 936 * Return: count of allocated buffers 937 */ 938int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 939{ 940 struct rb_node *n; 941 int count = 0; 942 943 mutex_lock(&alloc->mutex); 944 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 945 count++; 946 mutex_unlock(&alloc->mutex); 947 return count; 948} 949 950 951/** 952 * binder_alloc_vma_close() - invalidate address space 953 * @alloc: binder_alloc for this proc 954 * 955 * Called from binder_vma_close() when releasing address space. 956 * Clears alloc->vma to prevent new incoming transactions from 957 * allocating more buffers. 958 */ 959void binder_alloc_vma_close(struct binder_alloc *alloc) 960{ 961 binder_alloc_set_vma(alloc, NULL); 962} 963 964/** 965 * binder_alloc_free_page() - shrinker callback to free pages 966 * @item: item to free 967 * @lock: lock protecting the item 968 * @cb_arg: callback argument 969 * 970 * Called from list_lru_walk() in binder_shrink_scan() to free 971 * up pages when the system is under memory pressure. 972 */ 973enum lru_status binder_alloc_free_page(struct list_head *item, 974 struct list_lru_one *lru, 975 spinlock_t *lock, 976 void *cb_arg) 977 __must_hold(lock) 978{ 979 struct mm_struct *mm = NULL; 980 struct binder_lru_page *page = container_of(item, 981 struct binder_lru_page, 982 lru); 983 struct binder_alloc *alloc; 984 uintptr_t page_addr; 985 size_t index; 986 struct vm_area_struct *vma; 987 988 alloc = page->alloc; 989 if (!mutex_trylock(&alloc->mutex)) 990 goto err_get_alloc_mutex_failed; 991 992 if (!page->page_ptr) 993 goto err_page_already_freed; 994 995 index = page - alloc->pages; 996 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 997 998 mm = alloc->vma_vm_mm; 999 if (!mmget_not_zero(mm)) 1000 goto err_mmget; 1001 if (!mmap_read_trylock(mm)) 1002 goto err_mmap_read_lock_failed; 1003 vma = find_vma(mm, page_addr); 1004 if (vma && vma != binder_alloc_get_vma(alloc)) 1005 goto err_invalid_vma; 1006 1007 list_lru_isolate(lru, item); 1008 spin_unlock(lock); 1009 1010 if (vma) { 1011 trace_binder_unmap_user_start(alloc, index); 1012 1013 zap_page_range(vma, page_addr, PAGE_SIZE); 1014 1015 trace_binder_unmap_user_end(alloc, index); 1016 } 1017 mmap_read_unlock(mm); 1018 mmput_async(mm); 1019 1020 trace_binder_unmap_kernel_start(alloc, index); 1021 1022 __free_page(page->page_ptr); 1023 page->page_ptr = NULL; 1024 1025 trace_binder_unmap_kernel_end(alloc, index); 1026 1027 spin_lock(lock); 1028 mutex_unlock(&alloc->mutex); 1029 return LRU_REMOVED_RETRY; 1030 1031err_invalid_vma: 1032 mmap_read_unlock(mm); 1033err_mmap_read_lock_failed: 1034 mmput_async(mm); 1035err_mmget: 1036err_page_already_freed: 1037 mutex_unlock(&alloc->mutex); 1038err_get_alloc_mutex_failed: 1039 return LRU_SKIP; 1040} 1041 1042static unsigned long 1043binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1044{ 1045 unsigned long ret = list_lru_count(&binder_alloc_lru); 1046 return ret; 1047} 1048 1049static unsigned long 1050binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1051{ 1052 unsigned long ret; 1053 1054 ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1055 NULL, sc->nr_to_scan); 1056 return ret; 1057} 1058 1059static struct shrinker binder_shrinker = { 1060 .count_objects = binder_shrink_count, 1061 .scan_objects = binder_shrink_scan, 1062 .seeks = DEFAULT_SEEKS, 1063}; 1064 1065/** 1066 * binder_alloc_init() - called by binder_open() for per-proc initialization 1067 * @alloc: binder_alloc for this proc 1068 * 1069 * Called from binder_open() to initialize binder_alloc fields for 1070 * new binder proc 1071 */ 1072void binder_alloc_init(struct binder_alloc *alloc) 1073{ 1074 alloc->pid = current->group_leader->pid; 1075 mutex_init(&alloc->mutex); 1076 INIT_LIST_HEAD(&alloc->buffers); 1077} 1078 1079int binder_alloc_shrinker_init(void) 1080{ 1081 int ret = list_lru_init(&binder_alloc_lru); 1082 1083 if (ret == 0) { 1084 ret = register_shrinker(&binder_shrinker); 1085 if (ret) 1086 list_lru_destroy(&binder_alloc_lru); 1087 } 1088 return ret; 1089} 1090 1091void binder_alloc_shrinker_exit(void) 1092{ 1093 unregister_shrinker(&binder_shrinker); 1094 list_lru_destroy(&binder_alloc_lru); 1095} 1096 1097/** 1098 * check_buffer() - verify that buffer/offset is safe to access 1099 * @alloc: binder_alloc for this proc 1100 * @buffer: binder buffer to be accessed 1101 * @offset: offset into @buffer data 1102 * @bytes: bytes to access from offset 1103 * 1104 * Check that the @offset/@bytes are within the size of the given 1105 * @buffer and that the buffer is currently active and not freeable. 1106 * Offsets must also be multiples of sizeof(u32). The kernel is 1107 * allowed to touch the buffer in two cases: 1108 * 1109 * 1) when the buffer is being created: 1110 * (buffer->free == 0 && buffer->allow_user_free == 0) 1111 * 2) when the buffer is being torn down: 1112 * (buffer->free == 0 && buffer->transaction == NULL). 1113 * 1114 * Return: true if the buffer is safe to access 1115 */ 1116static inline bool check_buffer(struct binder_alloc *alloc, 1117 struct binder_buffer *buffer, 1118 binder_size_t offset, size_t bytes) 1119{ 1120 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1121 1122 return buffer_size >= bytes && 1123 offset <= buffer_size - bytes && 1124 IS_ALIGNED(offset, sizeof(u32)) && 1125 !buffer->free && 1126 (!buffer->allow_user_free || !buffer->transaction); 1127} 1128 1129/** 1130 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1131 * @alloc: binder_alloc for this proc 1132 * @buffer: binder buffer to be accessed 1133 * @buffer_offset: offset into @buffer data 1134 * @pgoffp: address to copy final page offset to 1135 * 1136 * Lookup the struct page corresponding to the address 1137 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1138 * NULL, the byte-offset into the page is written there. 1139 * 1140 * The caller is responsible to ensure that the offset points 1141 * to a valid address within the @buffer and that @buffer is 1142 * not freeable by the user. Since it can't be freed, we are 1143 * guaranteed that the corresponding elements of @alloc->pages[] 1144 * cannot change. 1145 * 1146 * Return: struct page 1147 */ 1148static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1149 struct binder_buffer *buffer, 1150 binder_size_t buffer_offset, 1151 pgoff_t *pgoffp) 1152{ 1153 binder_size_t buffer_space_offset = buffer_offset + 1154 (buffer->user_data - alloc->buffer); 1155 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1156 size_t index = buffer_space_offset >> PAGE_SHIFT; 1157 struct binder_lru_page *lru_page; 1158 1159 lru_page = &alloc->pages[index]; 1160 *pgoffp = pgoff; 1161 return lru_page->page_ptr; 1162} 1163 1164/** 1165 * binder_alloc_clear_buf() - zero out buffer 1166 * @alloc: binder_alloc for this proc 1167 * @buffer: binder buffer to be cleared 1168 * 1169 * memset the given buffer to 0 1170 */ 1171static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1172 struct binder_buffer *buffer) 1173{ 1174 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1175 binder_size_t buffer_offset = 0; 1176 1177 while (bytes) { 1178 unsigned long size; 1179 struct page *page; 1180 pgoff_t pgoff; 1181 void *kptr; 1182 1183 page = binder_alloc_get_page(alloc, buffer, 1184 buffer_offset, &pgoff); 1185 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1186 kptr = kmap(page) + pgoff; 1187 memset(kptr, 0, size); 1188 kunmap(page); 1189 bytes -= size; 1190 buffer_offset += size; 1191 } 1192} 1193 1194/** 1195 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1196 * @alloc: binder_alloc for this proc 1197 * @buffer: binder buffer to be accessed 1198 * @buffer_offset: offset into @buffer data 1199 * @from: userspace pointer to source buffer 1200 * @bytes: bytes to copy 1201 * 1202 * Copy bytes from source userspace to target buffer. 1203 * 1204 * Return: bytes remaining to be copied 1205 */ 1206unsigned long 1207binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1208 struct binder_buffer *buffer, 1209 binder_size_t buffer_offset, 1210 const void __user *from, 1211 size_t bytes) 1212{ 1213 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1214 return bytes; 1215 1216 while (bytes) { 1217 unsigned long size; 1218 unsigned long ret; 1219 struct page *page; 1220 pgoff_t pgoff; 1221 void *kptr; 1222 1223 page = binder_alloc_get_page(alloc, buffer, 1224 buffer_offset, &pgoff); 1225 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1226 kptr = kmap(page) + pgoff; 1227 ret = copy_from_user(kptr, from, size); 1228 kunmap(page); 1229 if (ret) 1230 return bytes - size + ret; 1231 bytes -= size; 1232 from += size; 1233 buffer_offset += size; 1234 } 1235 return 0; 1236} 1237 1238static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1239 bool to_buffer, 1240 struct binder_buffer *buffer, 1241 binder_size_t buffer_offset, 1242 void *ptr, 1243 size_t bytes) 1244{ 1245 /* All copies must be 32-bit aligned and 32-bit size */ 1246 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1247 return -EINVAL; 1248 1249 while (bytes) { 1250 unsigned long size; 1251 struct page *page; 1252 pgoff_t pgoff; 1253 void *tmpptr; 1254 void *base_ptr; 1255 1256 page = binder_alloc_get_page(alloc, buffer, 1257 buffer_offset, &pgoff); 1258 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1259 base_ptr = kmap_atomic(page); 1260 tmpptr = base_ptr + pgoff; 1261 if (to_buffer) 1262 memcpy(tmpptr, ptr, size); 1263 else 1264 memcpy(ptr, tmpptr, size); 1265 /* 1266 * kunmap_atomic() takes care of flushing the cache 1267 * if this device has VIVT cache arch 1268 */ 1269 kunmap_atomic(base_ptr); 1270 bytes -= size; 1271 pgoff = 0; 1272 ptr = ptr + size; 1273 buffer_offset += size; 1274 } 1275 return 0; 1276} 1277 1278int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1279 struct binder_buffer *buffer, 1280 binder_size_t buffer_offset, 1281 void *src, 1282 size_t bytes) 1283{ 1284 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1285 src, bytes); 1286} 1287 1288int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1289 void *dest, 1290 struct binder_buffer *buffer, 1291 binder_size_t buffer_offset, 1292 size_t bytes) 1293{ 1294 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1295 dest, bytes); 1296} 1297 1298