1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3 *
4 * Android IPC Subsystem
5 *
6 * Copyright (C) 2007-2017 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34 BINDER_DEBUG_USER_ERROR = 1U << 0,
35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45 do { \
46 if (binder_alloc_debug_mask & mask) \
47 pr_info_ratelimited(x); \
48 } while (0)
49
binder_buffer_next(struct binder_buffer *buffer)50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
binder_buffer_prev(struct binder_buffer *buffer)55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
binder_alloc_buffer_size(struct binder_alloc *alloc, struct binder_buffer *buffer)60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 struct binder_buffer *buffer)
62 {
63 if (list_is_last(&buffer->entry, &alloc->buffers))
64 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
binder_insert_free_buffer(struct binder_alloc *alloc, struct binder_buffer *new_buffer)68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 struct binder_buffer *new_buffer)
70 {
71 struct rb_node **p = &alloc->free_buffers.rb_node;
72 struct rb_node *parent = NULL;
73 struct binder_buffer *buffer;
74 size_t buffer_size;
75 size_t new_buffer_size;
76
77 BUG_ON(!new_buffer->free);
78
79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 "%d: add free buffer, size %zd, at %pK\n",
83 alloc->pid, new_buffer_size, new_buffer);
84
85 while (*p) {
86 parent = *p;
87 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 BUG_ON(!buffer->free);
89
90 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92 if (new_buffer_size < buffer_size)
93 p = &parent->rb_left;
94 else
95 p = &parent->rb_right;
96 }
97 rb_link_node(&new_buffer->rb_node, parent, p);
98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
binder_insert_allocated_buffer_locked( struct binder_alloc *alloc, struct binder_buffer *new_buffer)101 static void binder_insert_allocated_buffer_locked(
102 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 struct rb_node *parent = NULL;
106 struct binder_buffer *buffer;
107
108 BUG_ON(new_buffer->free);
109
110 while (*p) {
111 parent = *p;
112 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 BUG_ON(buffer->free);
114
115 if (new_buffer->user_data < buffer->user_data)
116 p = &parent->rb_left;
117 else if (new_buffer->user_data > buffer->user_data)
118 p = &parent->rb_right;
119 else
120 BUG();
121 }
122 rb_link_node(&new_buffer->rb_node, parent, p);
123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
binder_alloc_prepare_to_free_locked( struct binder_alloc *alloc, uintptr_t user_ptr)126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 struct binder_alloc *alloc,
128 uintptr_t user_ptr)
129 {
130 struct rb_node *n = alloc->allocated_buffers.rb_node;
131 struct binder_buffer *buffer;
132 void __user *uptr;
133
134 uptr = (void __user *)user_ptr;
135
136 while (n) {
137 buffer = rb_entry(n, struct binder_buffer, rb_node);
138 BUG_ON(buffer->free);
139
140 if (uptr < buffer->user_data)
141 n = n->rb_left;
142 else if (uptr > buffer->user_data)
143 n = n->rb_right;
144 else {
145 /*
146 * Guard against user threads attempting to
147 * free the buffer when in use by kernel or
148 * after it's already been freed.
149 */
150 if (!buffer->allow_user_free)
151 return ERR_PTR(-EPERM);
152 buffer->allow_user_free = 0;
153 return buffer;
154 }
155 }
156 return NULL;
157 }
158
159 /**
160 * binder_alloc_prepare_to_free() - get buffer given user ptr
161 * @alloc: binder_alloc for this proc
162 * @user_ptr: User pointer to buffer data
163 *
164 * Validate userspace pointer to buffer data and return buffer corresponding to
165 * that user pointer. Search the rb tree for buffer that matches user data
166 * pointer.
167 *
168 * Return: Pointer to buffer or NULL
169 */
binder_alloc_prepare_to_free(struct binder_alloc *alloc, uintptr_t user_ptr)170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 uintptr_t user_ptr)
172 {
173 struct binder_buffer *buffer;
174
175 mutex_lock(&alloc->mutex);
176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 mutex_unlock(&alloc->mutex);
178 return buffer;
179 }
180
binder_update_page_range(struct binder_alloc *alloc, int allocate, void __user *start, void __user *end)181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 void __user *start, void __user *end)
183 {
184 void __user *page_addr;
185 unsigned long user_page_addr;
186 struct binder_lru_page *page;
187 struct vm_area_struct *vma = NULL;
188 struct mm_struct *mm = NULL;
189 bool need_mm = false;
190
191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 "%d: %s pages %pK-%pK\n", alloc->pid,
193 allocate ? "allocate" : "free", start, end);
194
195 if (end <= start)
196 return 0;
197
198 trace_binder_update_page_range(alloc, allocate, start, end);
199
200 if (allocate == 0)
201 goto free_range;
202
203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 if (!page->page_ptr) {
206 need_mm = true;
207 break;
208 }
209 }
210
211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 mm = alloc->vma_vm_mm;
213
214 if (mm) {
215 mmap_write_lock(mm);
216 vma = alloc->vma;
217 }
218
219 if (!vma && need_mm) {
220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 alloc->pid);
223 goto err_no_vma;
224 }
225
226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 int ret;
228 bool on_lru;
229 size_t index;
230
231 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 page = &alloc->pages[index];
233
234 if (page->page_ptr) {
235 trace_binder_alloc_lru_start(alloc, index);
236
237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 WARN_ON(!on_lru);
239
240 trace_binder_alloc_lru_end(alloc, index);
241 continue;
242 }
243
244 if (WARN_ON(!vma))
245 goto err_page_ptr_cleared;
246
247 trace_binder_alloc_page_start(alloc, index);
248 page->page_ptr = alloc_page(GFP_KERNEL |
249 __GFP_HIGHMEM |
250 __GFP_ZERO);
251 if (!page->page_ptr) {
252 pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 alloc->pid, page_addr);
254 goto err_alloc_page_failed;
255 }
256 page->alloc = alloc;
257 INIT_LIST_HEAD(&page->lru);
258
259 user_page_addr = (uintptr_t)page_addr;
260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 if (ret) {
262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 alloc->pid, user_page_addr);
264 goto err_vm_insert_page_failed;
265 }
266
267 if (index + 1 > alloc->pages_high)
268 alloc->pages_high = index + 1;
269
270 trace_binder_alloc_page_end(alloc, index);
271 }
272 if (mm) {
273 mmap_write_unlock(mm);
274 mmput_async(mm);
275 }
276 return 0;
277
278 free_range:
279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 bool ret;
281 size_t index;
282
283 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 page = &alloc->pages[index];
285
286 trace_binder_free_lru_start(alloc, index);
287
288 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 WARN_ON(!ret);
290
291 trace_binder_free_lru_end(alloc, index);
292 if (page_addr == start)
293 break;
294 continue;
295
296 err_vm_insert_page_failed:
297 __free_page(page->page_ptr);
298 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301 if (page_addr == start)
302 break;
303 }
304 err_no_vma:
305 if (mm) {
306 mmap_write_unlock(mm);
307 mmput_async(mm);
308 }
309 return vma ? -ENOMEM : -ESRCH;
310 }
311
312
binder_alloc_set_vma(struct binder_alloc *alloc, struct vm_area_struct *vma)313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314 struct vm_area_struct *vma)
315 {
316 if (vma)
317 alloc->vma_vm_mm = vma->vm_mm;
318 /*
319 * If we see alloc->vma is not NULL, buffer data structures set up
320 * completely. Look at smp_rmb side binder_alloc_get_vma.
321 * We also want to guarantee new alloc->vma_vm_mm is always visible
322 * if alloc->vma is set.
323 */
324 smp_wmb();
325 alloc->vma = vma;
326 }
327
binder_alloc_get_vma( struct binder_alloc *alloc)328 static inline struct vm_area_struct *binder_alloc_get_vma(
329 struct binder_alloc *alloc)
330 {
331 struct vm_area_struct *vma = NULL;
332
333 if (alloc->vma) {
334 /* Look at description in binder_alloc_set_vma */
335 smp_rmb();
336 vma = alloc->vma;
337 }
338 return vma;
339 }
340
debug_low_async_space_locked(struct binder_alloc *alloc, int pid)341 static void debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
342 {
343 /*
344 * Find the amount and size of buffers allocated by the current caller;
345 * The idea is that once we cross the threshold, whoever is responsible
346 * for the low async space is likely to try to send another async txn,
347 * and at some point we'll catch them in the act. This is more efficient
348 * than keeping a map per pid.
349 */
350 struct rb_node *n;
351 struct binder_buffer *buffer;
352 size_t total_alloc_size = 0;
353 size_t num_buffers = 0;
354
355 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
356 n = rb_next(n)) {
357 buffer = rb_entry(n, struct binder_buffer, rb_node);
358 if (buffer->pid != pid)
359 continue;
360 if (!buffer->async_transaction)
361 continue;
362 total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
363 num_buffers++;
364 }
365
366 /*
367 * Warn if this pid has more than 50 transactions, or more than 50% of
368 * async space (which is 25% of total buffer size).
369 */
370 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
371 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
372 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
373 alloc->pid, pid, num_buffers, total_alloc_size);
374 }
375 }
376
binder_alloc_new_buf_locked( struct binder_alloc *alloc, size_t data_size, size_t offsets_size, size_t extra_buffers_size, int is_async, int pid)377 static struct binder_buffer *binder_alloc_new_buf_locked(
378 struct binder_alloc *alloc,
379 size_t data_size,
380 size_t offsets_size,
381 size_t extra_buffers_size,
382 int is_async,
383 int pid)
384 {
385 struct rb_node *n = alloc->free_buffers.rb_node;
386 struct binder_buffer *buffer;
387 size_t buffer_size;
388 struct rb_node *best_fit = NULL;
389 void __user *has_page_addr;
390 void __user *end_page_addr;
391 size_t size, data_offsets_size;
392 int ret;
393
394 if (!binder_alloc_get_vma(alloc)) {
395 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
396 "%d: binder_alloc_buf, no vma\n",
397 alloc->pid);
398 return ERR_PTR(-ESRCH);
399 }
400
401 data_offsets_size = ALIGN(data_size, sizeof(void *)) +
402 ALIGN(offsets_size, sizeof(void *));
403
404 if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
405 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
406 "%d: got transaction with invalid size %zd-%zd\n",
407 alloc->pid, data_size, offsets_size);
408 return ERR_PTR(-EINVAL);
409 }
410 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
411 if (size < data_offsets_size || size < extra_buffers_size) {
412 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
413 "%d: got transaction with invalid extra_buffers_size %zd\n",
414 alloc->pid, extra_buffers_size);
415 return ERR_PTR(-EINVAL);
416 }
417
418 /* Pad 0-size buffers so they get assigned unique addresses */
419 size = max(size, sizeof(void *));
420
421 if (is_async && alloc->free_async_space < size) {
422 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
423 "%d: binder_alloc_buf size %zd failed, no async space left\n",
424 alloc->pid, size);
425 return ERR_PTR(-ENOSPC);
426 }
427
428 while (n) {
429 buffer = rb_entry(n, struct binder_buffer, rb_node);
430 BUG_ON(!buffer->free);
431 buffer_size = binder_alloc_buffer_size(alloc, buffer);
432
433 if (size < buffer_size) {
434 best_fit = n;
435 n = n->rb_left;
436 } else if (size > buffer_size)
437 n = n->rb_right;
438 else {
439 best_fit = n;
440 break;
441 }
442 }
443 if (best_fit == NULL) {
444 size_t allocated_buffers = 0;
445 size_t largest_alloc_size = 0;
446 size_t total_alloc_size = 0;
447 size_t free_buffers = 0;
448 size_t largest_free_size = 0;
449 size_t total_free_size = 0;
450
451 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
452 n = rb_next(n)) {
453 buffer = rb_entry(n, struct binder_buffer, rb_node);
454 buffer_size = binder_alloc_buffer_size(alloc, buffer);
455 allocated_buffers++;
456 total_alloc_size += buffer_size;
457 if (buffer_size > largest_alloc_size)
458 largest_alloc_size = buffer_size;
459 }
460 for (n = rb_first(&alloc->free_buffers); n != NULL;
461 n = rb_next(n)) {
462 buffer = rb_entry(n, struct binder_buffer, rb_node);
463 buffer_size = binder_alloc_buffer_size(alloc, buffer);
464 free_buffers++;
465 total_free_size += buffer_size;
466 if (buffer_size > largest_free_size)
467 largest_free_size = buffer_size;
468 }
469 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
470 "%d: binder_alloc_buf size %zd failed, no address space\n",
471 alloc->pid, size);
472 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
473 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
474 total_alloc_size, allocated_buffers,
475 largest_alloc_size, total_free_size,
476 free_buffers, largest_free_size);
477 return ERR_PTR(-ENOSPC);
478 }
479 if (n == NULL) {
480 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
481 buffer_size = binder_alloc_buffer_size(alloc, buffer);
482 }
483
484 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
485 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
486 alloc->pid, size, buffer, buffer_size);
487
488 has_page_addr = (void __user *)
489 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
490 WARN_ON(n && buffer_size != size);
491 end_page_addr =
492 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
493 if (end_page_addr > has_page_addr)
494 end_page_addr = has_page_addr;
495 ret = binder_update_page_range(alloc, 1, (void __user *)
496 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
497 if (ret)
498 return ERR_PTR(ret);
499
500 if (buffer_size != size) {
501 struct binder_buffer *new_buffer;
502
503 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
504 if (!new_buffer) {
505 pr_err("%s: %d failed to alloc new buffer struct\n",
506 __func__, alloc->pid);
507 goto err_alloc_buf_struct_failed;
508 }
509 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
510 list_add(&new_buffer->entry, &buffer->entry);
511 new_buffer->free = 1;
512 binder_insert_free_buffer(alloc, new_buffer);
513 }
514
515 rb_erase(best_fit, &alloc->free_buffers);
516 buffer->free = 0;
517 buffer->allow_user_free = 0;
518 binder_insert_allocated_buffer_locked(alloc, buffer);
519 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
520 "%d: binder_alloc_buf size %zd got %pK\n",
521 alloc->pid, size, buffer);
522 buffer->data_size = data_size;
523 buffer->offsets_size = offsets_size;
524 buffer->async_transaction = is_async;
525 buffer->extra_buffers_size = extra_buffers_size;
526 buffer->pid = pid;
527 if (is_async) {
528 alloc->free_async_space -= size;
529 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
530 "%d: binder_alloc_buf size %zd async free %zd\n",
531 alloc->pid, size, alloc->free_async_space);
532 if (alloc->free_async_space < alloc->buffer_size / 10) {
533 /*
534 * Start detecting spammers once we have less than 20%
535 * of async space left (which is less than 10% of total
536 * buffer size).
537 */
538 debug_low_async_space_locked(alloc, pid);
539 }
540 }
541 return buffer;
542
543 err_alloc_buf_struct_failed:
544 binder_update_page_range(alloc, 0, (void __user *)
545 PAGE_ALIGN((uintptr_t)buffer->user_data),
546 end_page_addr);
547 return ERR_PTR(-ENOMEM);
548 }
549
550 /**
551 * binder_alloc_new_buf() - Allocate a new binder buffer
552 * @alloc: binder_alloc for this proc
553 * @data_size: size of user data buffer
554 * @offsets_size: user specified buffer offset
555 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
556 * @is_async: buffer for async transaction
557 * @pid: pid to attribute allocation to (used for debugging)
558 *
559 * Allocate a new buffer given the requested sizes. Returns
560 * the kernel version of the buffer pointer. The size allocated
561 * is the sum of the three given sizes (each rounded up to
562 * pointer-sized boundary)
563 *
564 * Return: The allocated buffer or %ERR_PTR(-errno) if error
565 */
binder_alloc_new_buf(struct binder_alloc *alloc, size_t data_size, size_t offsets_size, size_t extra_buffers_size, int is_async, int pid)566 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
567 size_t data_size,
568 size_t offsets_size,
569 size_t extra_buffers_size,
570 int is_async,
571 int pid)
572 {
573 struct binder_buffer *buffer;
574
575 mutex_lock(&alloc->mutex);
576 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
577 extra_buffers_size, is_async, pid);
578 mutex_unlock(&alloc->mutex);
579 return buffer;
580 }
581
buffer_start_page(struct binder_buffer *buffer)582 static void __user *buffer_start_page(struct binder_buffer *buffer)
583 {
584 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
585 }
586
prev_buffer_end_page(struct binder_buffer *buffer)587 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
588 {
589 return (void __user *)
590 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
591 }
592
binder_delete_free_buffer(struct binder_alloc *alloc, struct binder_buffer *buffer)593 static void binder_delete_free_buffer(struct binder_alloc *alloc,
594 struct binder_buffer *buffer)
595 {
596 struct binder_buffer *prev, *next = NULL;
597 bool to_free = true;
598
599 BUG_ON(alloc->buffers.next == &buffer->entry);
600 prev = binder_buffer_prev(buffer);
601 BUG_ON(!prev->free);
602 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
603 to_free = false;
604 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
605 "%d: merge free, buffer %pK share page with %pK\n",
606 alloc->pid, buffer->user_data,
607 prev->user_data);
608 }
609
610 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
611 next = binder_buffer_next(buffer);
612 if (buffer_start_page(next) == buffer_start_page(buffer)) {
613 to_free = false;
614 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
615 "%d: merge free, buffer %pK share page with %pK\n",
616 alloc->pid,
617 buffer->user_data,
618 next->user_data);
619 }
620 }
621
622 if (PAGE_ALIGNED(buffer->user_data)) {
623 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
624 "%d: merge free, buffer start %pK is page aligned\n",
625 alloc->pid, buffer->user_data);
626 to_free = false;
627 }
628
629 if (to_free) {
630 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
631 "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
632 alloc->pid, buffer->user_data,
633 prev->user_data,
634 next ? next->user_data : NULL);
635 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
636 buffer_start_page(buffer) + PAGE_SIZE);
637 }
638 list_del(&buffer->entry);
639 kfree(buffer);
640 }
641
binder_free_buf_locked(struct binder_alloc *alloc, struct binder_buffer *buffer)642 static void binder_free_buf_locked(struct binder_alloc *alloc,
643 struct binder_buffer *buffer)
644 {
645 size_t size, buffer_size;
646
647 buffer_size = binder_alloc_buffer_size(alloc, buffer);
648
649 size = ALIGN(buffer->data_size, sizeof(void *)) +
650 ALIGN(buffer->offsets_size, sizeof(void *)) +
651 ALIGN(buffer->extra_buffers_size, sizeof(void *));
652
653 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
654 "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
655 alloc->pid, buffer, size, buffer_size);
656
657 BUG_ON(buffer->free);
658 BUG_ON(size > buffer_size);
659 BUG_ON(buffer->transaction != NULL);
660 BUG_ON(buffer->user_data < alloc->buffer);
661 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
662
663 if (buffer->async_transaction) {
664 alloc->free_async_space += buffer_size;
665 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
666 "%d: binder_free_buf size %zd async free %zd\n",
667 alloc->pid, size, alloc->free_async_space);
668 }
669
670 binder_update_page_range(alloc, 0,
671 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
672 (void __user *)(((uintptr_t)
673 buffer->user_data + buffer_size) & PAGE_MASK));
674
675 rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
676 buffer->free = 1;
677 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
678 struct binder_buffer *next = binder_buffer_next(buffer);
679
680 if (next->free) {
681 rb_erase(&next->rb_node, &alloc->free_buffers);
682 binder_delete_free_buffer(alloc, next);
683 }
684 }
685 if (alloc->buffers.next != &buffer->entry) {
686 struct binder_buffer *prev = binder_buffer_prev(buffer);
687
688 if (prev->free) {
689 binder_delete_free_buffer(alloc, buffer);
690 rb_erase(&prev->rb_node, &alloc->free_buffers);
691 buffer = prev;
692 }
693 }
694 binder_insert_free_buffer(alloc, buffer);
695 }
696
697 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
698 struct binder_buffer *buffer);
699 /**
700 * binder_alloc_free_buf() - free a binder buffer
701 * @alloc: binder_alloc for this proc
702 * @buffer: kernel pointer to buffer
703 *
704 * Free the buffer allocated via binder_alloc_new_buf()
705 */
binder_alloc_free_buf(struct binder_alloc *alloc, struct binder_buffer *buffer)706 void binder_alloc_free_buf(struct binder_alloc *alloc,
707 struct binder_buffer *buffer)
708 {
709 /*
710 * We could eliminate the call to binder_alloc_clear_buf()
711 * from binder_alloc_deferred_release() by moving this to
712 * binder_free_buf_locked(). However, that could
713 * increase contention for the alloc mutex if clear_on_free
714 * is used frequently for large buffers. The mutex is not
715 * needed for correctness here.
716 */
717 if (buffer->clear_on_free) {
718 binder_alloc_clear_buf(alloc, buffer);
719 buffer->clear_on_free = false;
720 }
721 mutex_lock(&alloc->mutex);
722 binder_free_buf_locked(alloc, buffer);
723 mutex_unlock(&alloc->mutex);
724 }
725
726 /**
727 * binder_alloc_mmap_handler() - map virtual address space for proc
728 * @alloc: alloc structure for this proc
729 * @vma: vma passed to mmap()
730 *
731 * Called by binder_mmap() to initialize the space specified in
732 * vma for allocating binder buffers
733 *
734 * Return:
735 * 0 = success
736 * -EBUSY = address space already mapped
737 * -ENOMEM = failed to map memory to given address space
738 */
binder_alloc_mmap_handler(struct binder_alloc *alloc, struct vm_area_struct *vma)739 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
740 struct vm_area_struct *vma)
741 {
742 int ret;
743 const char *failure_string;
744 struct binder_buffer *buffer;
745
746 mutex_lock(&binder_alloc_mmap_lock);
747 if (alloc->buffer_size) {
748 ret = -EBUSY;
749 failure_string = "already mapped";
750 goto err_already_mapped;
751 }
752 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
753 SZ_4M);
754 mutex_unlock(&binder_alloc_mmap_lock);
755
756 alloc->buffer = (void __user *)vma->vm_start;
757
758 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
759 sizeof(alloc->pages[0]),
760 GFP_KERNEL);
761 if (alloc->pages == NULL) {
762 ret = -ENOMEM;
763 failure_string = "alloc page array";
764 goto err_alloc_pages_failed;
765 }
766
767 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
768 if (!buffer) {
769 ret = -ENOMEM;
770 failure_string = "alloc buffer struct";
771 goto err_alloc_buf_struct_failed;
772 }
773
774 buffer->user_data = alloc->buffer;
775 list_add(&buffer->entry, &alloc->buffers);
776 buffer->free = 1;
777 binder_insert_free_buffer(alloc, buffer);
778 alloc->free_async_space = alloc->buffer_size / 2;
779 binder_alloc_set_vma(alloc, vma);
780 mmgrab(alloc->vma_vm_mm);
781
782 return 0;
783
784 err_alloc_buf_struct_failed:
785 kfree(alloc->pages);
786 alloc->pages = NULL;
787 err_alloc_pages_failed:
788 alloc->buffer = NULL;
789 mutex_lock(&binder_alloc_mmap_lock);
790 alloc->buffer_size = 0;
791 err_already_mapped:
792 mutex_unlock(&binder_alloc_mmap_lock);
793 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
794 "%s: %d %lx-%lx %s failed %d\n", __func__,
795 alloc->pid, vma->vm_start, vma->vm_end,
796 failure_string, ret);
797 return ret;
798 }
799
800
binder_alloc_deferred_release(struct binder_alloc *alloc)801 void binder_alloc_deferred_release(struct binder_alloc *alloc)
802 {
803 struct rb_node *n;
804 int buffers, page_count;
805 struct binder_buffer *buffer;
806
807 buffers = 0;
808 mutex_lock(&alloc->mutex);
809 BUG_ON(alloc->vma);
810
811 while ((n = rb_first(&alloc->allocated_buffers))) {
812 buffer = rb_entry(n, struct binder_buffer, rb_node);
813
814 /* Transaction should already have been freed */
815 BUG_ON(buffer->transaction);
816
817 if (buffer->clear_on_free) {
818 binder_alloc_clear_buf(alloc, buffer);
819 buffer->clear_on_free = false;
820 }
821 binder_free_buf_locked(alloc, buffer);
822 buffers++;
823 }
824
825 while (!list_empty(&alloc->buffers)) {
826 buffer = list_first_entry(&alloc->buffers,
827 struct binder_buffer, entry);
828 WARN_ON(!buffer->free);
829
830 list_del(&buffer->entry);
831 WARN_ON_ONCE(!list_empty(&alloc->buffers));
832 kfree(buffer);
833 }
834
835 page_count = 0;
836 if (alloc->pages) {
837 int i;
838
839 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
840 void __user *page_addr;
841 bool on_lru;
842
843 if (!alloc->pages[i].page_ptr)
844 continue;
845
846 on_lru = list_lru_del(&binder_alloc_lru,
847 &alloc->pages[i].lru);
848 page_addr = alloc->buffer + i * PAGE_SIZE;
849 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
850 "%s: %d: page %d at %pK %s\n",
851 __func__, alloc->pid, i, page_addr,
852 on_lru ? "on lru" : "active");
853 __free_page(alloc->pages[i].page_ptr);
854 page_count++;
855 }
856 kfree(alloc->pages);
857 }
858 mutex_unlock(&alloc->mutex);
859 if (alloc->vma_vm_mm)
860 mmdrop(alloc->vma_vm_mm);
861
862 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
863 "%s: %d buffers %d, pages %d\n",
864 __func__, alloc->pid, buffers, page_count);
865 }
866
print_binder_buffer(struct seq_file *m, const char *prefix, struct binder_buffer *buffer)867 static void print_binder_buffer(struct seq_file *m, const char *prefix,
868 struct binder_buffer *buffer)
869 {
870 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
871 prefix, buffer->debug_id, buffer->user_data,
872 buffer->data_size, buffer->offsets_size,
873 buffer->extra_buffers_size,
874 buffer->transaction ? "active" : "delivered");
875 }
876
877 /**
878 * binder_alloc_print_allocated() - print buffer info
879 * @m: seq_file for output via seq_printf()
880 * @alloc: binder_alloc for this proc
881 *
882 * Prints information about every buffer associated with
883 * the binder_alloc state to the given seq_file
884 */
binder_alloc_print_allocated(struct seq_file *m, struct binder_alloc *alloc)885 void binder_alloc_print_allocated(struct seq_file *m,
886 struct binder_alloc *alloc)
887 {
888 struct rb_node *n;
889
890 mutex_lock(&alloc->mutex);
891 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
892 print_binder_buffer(m, " buffer",
893 rb_entry(n, struct binder_buffer, rb_node));
894 mutex_unlock(&alloc->mutex);
895 }
896
897 /**
898 * binder_alloc_print_pages() - print page usage
899 * @m: seq_file for output via seq_printf()
900 * @alloc: binder_alloc for this proc
901 */
binder_alloc_print_pages(struct seq_file *m, struct binder_alloc *alloc)902 void binder_alloc_print_pages(struct seq_file *m,
903 struct binder_alloc *alloc)
904 {
905 struct binder_lru_page *page;
906 int i;
907 int active = 0;
908 int lru = 0;
909 int free = 0;
910
911 mutex_lock(&alloc->mutex);
912 /*
913 * Make sure the binder_alloc is fully initialized, otherwise we might
914 * read inconsistent state.
915 */
916 if (binder_alloc_get_vma(alloc) != NULL) {
917 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
918 page = &alloc->pages[i];
919 if (!page->page_ptr)
920 free++;
921 else if (list_empty(&page->lru))
922 active++;
923 else
924 lru++;
925 }
926 }
927 mutex_unlock(&alloc->mutex);
928 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
929 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
930 }
931
932 /**
933 * binder_alloc_get_allocated_count() - return count of buffers
934 * @alloc: binder_alloc for this proc
935 *
936 * Return: count of allocated buffers
937 */
binder_alloc_get_allocated_count(struct binder_alloc *alloc)938 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
939 {
940 struct rb_node *n;
941 int count = 0;
942
943 mutex_lock(&alloc->mutex);
944 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
945 count++;
946 mutex_unlock(&alloc->mutex);
947 return count;
948 }
949
950
951 /**
952 * binder_alloc_vma_close() - invalidate address space
953 * @alloc: binder_alloc for this proc
954 *
955 * Called from binder_vma_close() when releasing address space.
956 * Clears alloc->vma to prevent new incoming transactions from
957 * allocating more buffers.
958 */
binder_alloc_vma_close(struct binder_alloc *alloc)959 void binder_alloc_vma_close(struct binder_alloc *alloc)
960 {
961 binder_alloc_set_vma(alloc, NULL);
962 }
963
964 /**
965 * binder_alloc_free_page() - shrinker callback to free pages
966 * @item: item to free
967 * @lock: lock protecting the item
968 * @cb_arg: callback argument
969 *
970 * Called from list_lru_walk() in binder_shrink_scan() to free
971 * up pages when the system is under memory pressure.
972 */
973 enum lru_status binder_alloc_free_page(struct list_head *item,
974 struct list_lru_one *lru,
975 spinlock_t *lock,
976 void *cb_arg)
__must_holdnull977 __must_hold(lock)
978 {
979 struct mm_struct *mm = NULL;
980 struct binder_lru_page *page = container_of(item,
981 struct binder_lru_page,
982 lru);
983 struct binder_alloc *alloc;
984 uintptr_t page_addr;
985 size_t index;
986 struct vm_area_struct *vma;
987
988 alloc = page->alloc;
989 if (!mutex_trylock(&alloc->mutex))
990 goto err_get_alloc_mutex_failed;
991
992 if (!page->page_ptr)
993 goto err_page_already_freed;
994
995 index = page - alloc->pages;
996 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
997
998 mm = alloc->vma_vm_mm;
999 if (!mmget_not_zero(mm))
1000 goto err_mmget;
1001 if (!mmap_read_trylock(mm))
1002 goto err_mmap_read_lock_failed;
1003 vma = find_vma(mm, page_addr);
1004 if (vma && vma != binder_alloc_get_vma(alloc))
1005 goto err_invalid_vma;
1006
1007 list_lru_isolate(lru, item);
1008 spin_unlock(lock);
1009
1010 if (vma) {
1011 trace_binder_unmap_user_start(alloc, index);
1012
1013 zap_page_range(vma, page_addr, PAGE_SIZE);
1014
1015 trace_binder_unmap_user_end(alloc, index);
1016 }
1017 mmap_read_unlock(mm);
1018 mmput_async(mm);
1019
1020 trace_binder_unmap_kernel_start(alloc, index);
1021
1022 __free_page(page->page_ptr);
1023 page->page_ptr = NULL;
1024
1025 trace_binder_unmap_kernel_end(alloc, index);
1026
1027 spin_lock(lock);
1028 mutex_unlock(&alloc->mutex);
1029 return LRU_REMOVED_RETRY;
1030
1031 err_invalid_vma:
1032 mmap_read_unlock(mm);
1033 err_mmap_read_lock_failed:
1034 mmput_async(mm);
1035 err_mmget:
1036 err_page_already_freed:
1037 mutex_unlock(&alloc->mutex);
1038 err_get_alloc_mutex_failed:
1039 return LRU_SKIP;
1040 }
1041
1042 static unsigned long
binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)1043 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1044 {
1045 unsigned long ret = list_lru_count(&binder_alloc_lru);
1046 return ret;
1047 }
1048
1049 static unsigned long
binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)1050 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1051 {
1052 unsigned long ret;
1053
1054 ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1055 NULL, sc->nr_to_scan);
1056 return ret;
1057 }
1058
1059 static struct shrinker binder_shrinker = {
1060 .count_objects = binder_shrink_count,
1061 .scan_objects = binder_shrink_scan,
1062 .seeks = DEFAULT_SEEKS,
1063 };
1064
1065 /**
1066 * binder_alloc_init() - called by binder_open() for per-proc initialization
1067 * @alloc: binder_alloc for this proc
1068 *
1069 * Called from binder_open() to initialize binder_alloc fields for
1070 * new binder proc
1071 */
binder_alloc_init(struct binder_alloc *alloc)1072 void binder_alloc_init(struct binder_alloc *alloc)
1073 {
1074 alloc->pid = current->group_leader->pid;
1075 mutex_init(&alloc->mutex);
1076 INIT_LIST_HEAD(&alloc->buffers);
1077 }
1078
binder_alloc_shrinker_init(void)1079 int binder_alloc_shrinker_init(void)
1080 {
1081 int ret = list_lru_init(&binder_alloc_lru);
1082
1083 if (ret == 0) {
1084 ret = register_shrinker(&binder_shrinker);
1085 if (ret)
1086 list_lru_destroy(&binder_alloc_lru);
1087 }
1088 return ret;
1089 }
1090
binder_alloc_shrinker_exit(void)1091 void binder_alloc_shrinker_exit(void)
1092 {
1093 unregister_shrinker(&binder_shrinker);
1094 list_lru_destroy(&binder_alloc_lru);
1095 }
1096
1097 /**
1098 * check_buffer() - verify that buffer/offset is safe to access
1099 * @alloc: binder_alloc for this proc
1100 * @buffer: binder buffer to be accessed
1101 * @offset: offset into @buffer data
1102 * @bytes: bytes to access from offset
1103 *
1104 * Check that the @offset/@bytes are within the size of the given
1105 * @buffer and that the buffer is currently active and not freeable.
1106 * Offsets must also be multiples of sizeof(u32). The kernel is
1107 * allowed to touch the buffer in two cases:
1108 *
1109 * 1) when the buffer is being created:
1110 * (buffer->free == 0 && buffer->allow_user_free == 0)
1111 * 2) when the buffer is being torn down:
1112 * (buffer->free == 0 && buffer->transaction == NULL).
1113 *
1114 * Return: true if the buffer is safe to access
1115 */
check_buffer(struct binder_alloc *alloc, struct binder_buffer *buffer, binder_size_t offset, size_t bytes)1116 static inline bool check_buffer(struct binder_alloc *alloc,
1117 struct binder_buffer *buffer,
1118 binder_size_t offset, size_t bytes)
1119 {
1120 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1121
1122 return buffer_size >= bytes &&
1123 offset <= buffer_size - bytes &&
1124 IS_ALIGNED(offset, sizeof(u32)) &&
1125 !buffer->free &&
1126 (!buffer->allow_user_free || !buffer->transaction);
1127 }
1128
1129 /**
1130 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1131 * @alloc: binder_alloc for this proc
1132 * @buffer: binder buffer to be accessed
1133 * @buffer_offset: offset into @buffer data
1134 * @pgoffp: address to copy final page offset to
1135 *
1136 * Lookup the struct page corresponding to the address
1137 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1138 * NULL, the byte-offset into the page is written there.
1139 *
1140 * The caller is responsible to ensure that the offset points
1141 * to a valid address within the @buffer and that @buffer is
1142 * not freeable by the user. Since it can't be freed, we are
1143 * guaranteed that the corresponding elements of @alloc->pages[]
1144 * cannot change.
1145 *
1146 * Return: struct page
1147 */
binder_alloc_get_page(struct binder_alloc *alloc, struct binder_buffer *buffer, binder_size_t buffer_offset, pgoff_t *pgoffp)1148 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1149 struct binder_buffer *buffer,
1150 binder_size_t buffer_offset,
1151 pgoff_t *pgoffp)
1152 {
1153 binder_size_t buffer_space_offset = buffer_offset +
1154 (buffer->user_data - alloc->buffer);
1155 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1156 size_t index = buffer_space_offset >> PAGE_SHIFT;
1157 struct binder_lru_page *lru_page;
1158
1159 lru_page = &alloc->pages[index];
1160 *pgoffp = pgoff;
1161 return lru_page->page_ptr;
1162 }
1163
1164 /**
1165 * binder_alloc_clear_buf() - zero out buffer
1166 * @alloc: binder_alloc for this proc
1167 * @buffer: binder buffer to be cleared
1168 *
1169 * memset the given buffer to 0
1170 */
binder_alloc_clear_buf(struct binder_alloc *alloc, struct binder_buffer *buffer)1171 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1172 struct binder_buffer *buffer)
1173 {
1174 size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1175 binder_size_t buffer_offset = 0;
1176
1177 while (bytes) {
1178 unsigned long size;
1179 struct page *page;
1180 pgoff_t pgoff;
1181 void *kptr;
1182
1183 page = binder_alloc_get_page(alloc, buffer,
1184 buffer_offset, &pgoff);
1185 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1186 kptr = kmap(page) + pgoff;
1187 memset(kptr, 0, size);
1188 kunmap(page);
1189 bytes -= size;
1190 buffer_offset += size;
1191 }
1192 }
1193
1194 /**
1195 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1196 * @alloc: binder_alloc for this proc
1197 * @buffer: binder buffer to be accessed
1198 * @buffer_offset: offset into @buffer data
1199 * @from: userspace pointer to source buffer
1200 * @bytes: bytes to copy
1201 *
1202 * Copy bytes from source userspace to target buffer.
1203 *
1204 * Return: bytes remaining to be copied
1205 */
1206 unsigned long
binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, struct binder_buffer *buffer, binder_size_t buffer_offset, const void __user *from, size_t bytes)1207 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1208 struct binder_buffer *buffer,
1209 binder_size_t buffer_offset,
1210 const void __user *from,
1211 size_t bytes)
1212 {
1213 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1214 return bytes;
1215
1216 while (bytes) {
1217 unsigned long size;
1218 unsigned long ret;
1219 struct page *page;
1220 pgoff_t pgoff;
1221 void *kptr;
1222
1223 page = binder_alloc_get_page(alloc, buffer,
1224 buffer_offset, &pgoff);
1225 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1226 kptr = kmap(page) + pgoff;
1227 ret = copy_from_user(kptr, from, size);
1228 kunmap(page);
1229 if (ret)
1230 return bytes - size + ret;
1231 bytes -= size;
1232 from += size;
1233 buffer_offset += size;
1234 }
1235 return 0;
1236 }
1237
binder_alloc_do_buffer_copy(struct binder_alloc *alloc, bool to_buffer, struct binder_buffer *buffer, binder_size_t buffer_offset, void *ptr, size_t bytes)1238 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1239 bool to_buffer,
1240 struct binder_buffer *buffer,
1241 binder_size_t buffer_offset,
1242 void *ptr,
1243 size_t bytes)
1244 {
1245 /* All copies must be 32-bit aligned and 32-bit size */
1246 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1247 return -EINVAL;
1248
1249 while (bytes) {
1250 unsigned long size;
1251 struct page *page;
1252 pgoff_t pgoff;
1253 void *tmpptr;
1254 void *base_ptr;
1255
1256 page = binder_alloc_get_page(alloc, buffer,
1257 buffer_offset, &pgoff);
1258 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1259 base_ptr = kmap_atomic(page);
1260 tmpptr = base_ptr + pgoff;
1261 if (to_buffer)
1262 memcpy(tmpptr, ptr, size);
1263 else
1264 memcpy(ptr, tmpptr, size);
1265 /*
1266 * kunmap_atomic() takes care of flushing the cache
1267 * if this device has VIVT cache arch
1268 */
1269 kunmap_atomic(base_ptr);
1270 bytes -= size;
1271 pgoff = 0;
1272 ptr = ptr + size;
1273 buffer_offset += size;
1274 }
1275 return 0;
1276 }
1277
binder_alloc_copy_to_buffer(struct binder_alloc *alloc, struct binder_buffer *buffer, binder_size_t buffer_offset, void *src, size_t bytes)1278 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1279 struct binder_buffer *buffer,
1280 binder_size_t buffer_offset,
1281 void *src,
1282 size_t bytes)
1283 {
1284 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1285 src, bytes);
1286 }
1287
binder_alloc_copy_from_buffer(struct binder_alloc *alloc, void *dest, struct binder_buffer *buffer, binder_size_t buffer_offset, size_t bytes)1288 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1289 void *dest,
1290 struct binder_buffer *buffer,
1291 binder_size_t buffer_offset,
1292 size_t bytes)
1293 {
1294 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1295 dest, bytes);
1296 }
1297
1298