xref: /kernel/linux/linux-5.10/arch/x86/power/cpu.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10#include <linux/suspend.h>
11#include <linux/export.h>
12#include <linux/smp.h>
13#include <linux/perf_event.h>
14#include <linux/tboot.h>
15#include <linux/dmi.h>
16#include <linux/pgtable.h>
17
18#include <asm/proto.h>
19#include <asm/mtrr.h>
20#include <asm/page.h>
21#include <asm/mce.h>
22#include <asm/suspend.h>
23#include <asm/fpu/internal.h>
24#include <asm/debugreg.h>
25#include <asm/cpu.h>
26#include <asm/mmu_context.h>
27#include <asm/cpu_device_id.h>
28#include <asm/microcode.h>
29
30#ifdef CONFIG_X86_32
31__visible unsigned long saved_context_ebx;
32__visible unsigned long saved_context_esp, saved_context_ebp;
33__visible unsigned long saved_context_esi, saved_context_edi;
34__visible unsigned long saved_context_eflags;
35#endif
36struct saved_context saved_context;
37
38static void msr_save_context(struct saved_context *ctxt)
39{
40	struct saved_msr *msr = ctxt->saved_msrs.array;
41	struct saved_msr *end = msr + ctxt->saved_msrs.num;
42
43	while (msr < end) {
44		if (msr->valid)
45			rdmsrl(msr->info.msr_no, msr->info.reg.q);
46		msr++;
47	}
48}
49
50static void msr_restore_context(struct saved_context *ctxt)
51{
52	struct saved_msr *msr = ctxt->saved_msrs.array;
53	struct saved_msr *end = msr + ctxt->saved_msrs.num;
54
55	while (msr < end) {
56		if (msr->valid)
57			wrmsrl(msr->info.msr_no, msr->info.reg.q);
58		msr++;
59	}
60}
61
62/**
63 *	__save_processor_state - save CPU registers before creating a
64 *		hibernation image and before restoring the memory state from it
65 *	@ctxt - structure to store the registers contents in
66 *
67 *	NOTE: If there is a CPU register the modification of which by the
68 *	boot kernel (ie. the kernel used for loading the hibernation image)
69 *	might affect the operations of the restored target kernel (ie. the one
70 *	saved in the hibernation image), then its contents must be saved by this
71 *	function.  In other words, if kernel A is hibernated and different
72 *	kernel B is used for loading the hibernation image into memory, the
73 *	kernel A's __save_processor_state() function must save all registers
74 *	needed by kernel A, so that it can operate correctly after the resume
75 *	regardless of what kernel B does in the meantime.
76 */
77static void __save_processor_state(struct saved_context *ctxt)
78{
79#ifdef CONFIG_X86_32
80	mtrr_save_fixed_ranges(NULL);
81#endif
82	kernel_fpu_begin();
83
84	/*
85	 * descriptor tables
86	 */
87	store_idt(&ctxt->idt);
88
89	/*
90	 * We save it here, but restore it only in the hibernate case.
91	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
92	 * mode in "secondary_startup_64". In 32-bit mode it is done via
93	 * 'pmode_gdt' in wakeup_start.
94	 */
95	ctxt->gdt_desc.size = GDT_SIZE - 1;
96	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
97
98	store_tr(ctxt->tr);
99
100	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
101	/*
102	 * segment registers
103	 */
104#ifdef CONFIG_X86_32_LAZY_GS
105	savesegment(gs, ctxt->gs);
106#endif
107#ifdef CONFIG_X86_64
108	savesegment(gs, ctxt->gs);
109	savesegment(fs, ctxt->fs);
110	savesegment(ds, ctxt->ds);
111	savesegment(es, ctxt->es);
112
113	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
114	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
115	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
116	mtrr_save_fixed_ranges(NULL);
117
118	rdmsrl(MSR_EFER, ctxt->efer);
119#endif
120
121	/*
122	 * control registers
123	 */
124	ctxt->cr0 = read_cr0();
125	ctxt->cr2 = read_cr2();
126	ctxt->cr3 = __read_cr3();
127	ctxt->cr4 = __read_cr4();
128	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
129					       &ctxt->misc_enable);
130	msr_save_context(ctxt);
131}
132
133/* Needed by apm.c */
134void save_processor_state(void)
135{
136	__save_processor_state(&saved_context);
137	x86_platform.save_sched_clock_state();
138}
139#ifdef CONFIG_X86_32
140EXPORT_SYMBOL(save_processor_state);
141#endif
142
143static void do_fpu_end(void)
144{
145	/*
146	 * Restore FPU regs if necessary.
147	 */
148	kernel_fpu_end();
149}
150
151static void fix_processor_context(void)
152{
153	int cpu = smp_processor_id();
154#ifdef CONFIG_X86_64
155	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
156	tss_desc tss;
157#endif
158
159	/*
160	 * We need to reload TR, which requires that we change the
161	 * GDT entry to indicate "available" first.
162	 *
163	 * XXX: This could probably all be replaced by a call to
164	 * force_reload_TR().
165	 */
166	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
167
168#ifdef CONFIG_X86_64
169	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
170	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
171	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
172
173	syscall_init();				/* This sets MSR_*STAR and related */
174#else
175	if (boot_cpu_has(X86_FEATURE_SEP))
176		enable_sep_cpu();
177#endif
178	load_TR_desc();				/* This does ltr */
179	load_mm_ldt(current->active_mm);	/* This does lldt */
180	initialize_tlbstate_and_flush();
181
182	fpu__resume_cpu();
183
184	/* The processor is back on the direct GDT, load back the fixmap */
185	load_fixmap_gdt(cpu);
186}
187
188/**
189 * __restore_processor_state - restore the contents of CPU registers saved
190 *                             by __save_processor_state()
191 * @ctxt - structure to load the registers contents from
192 *
193 * The asm code that gets us here will have restored a usable GDT, although
194 * it will be pointing to the wrong alias.
195 */
196static void notrace __restore_processor_state(struct saved_context *ctxt)
197{
198	struct cpuinfo_x86 *c;
199
200	if (ctxt->misc_enable_saved)
201		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
202	/*
203	 * control registers
204	 */
205	/* cr4 was introduced in the Pentium CPU */
206#ifdef CONFIG_X86_32
207	if (ctxt->cr4)
208		__write_cr4(ctxt->cr4);
209#else
210/* CONFIG X86_64 */
211	wrmsrl(MSR_EFER, ctxt->efer);
212	__write_cr4(ctxt->cr4);
213#endif
214	write_cr3(ctxt->cr3);
215	write_cr2(ctxt->cr2);
216	write_cr0(ctxt->cr0);
217
218	/* Restore the IDT. */
219	load_idt(&ctxt->idt);
220
221	/*
222	 * Just in case the asm code got us here with the SS, DS, or ES
223	 * out of sync with the GDT, update them.
224	 */
225	loadsegment(ss, __KERNEL_DS);
226	loadsegment(ds, __USER_DS);
227	loadsegment(es, __USER_DS);
228
229	/*
230	 * Restore percpu access.  Percpu access can happen in exception
231	 * handlers or in complicated helpers like load_gs_index().
232	 */
233#ifdef CONFIG_X86_64
234	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
235#else
236	loadsegment(fs, __KERNEL_PERCPU);
237	loadsegment(gs, __KERNEL_STACK_CANARY);
238#endif
239
240	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
241	fix_processor_context();
242
243	/*
244	 * Now that we have descriptor tables fully restored and working
245	 * exception handling, restore the usermode segments.
246	 */
247#ifdef CONFIG_X86_64
248	loadsegment(ds, ctxt->es);
249	loadsegment(es, ctxt->es);
250	loadsegment(fs, ctxt->fs);
251	load_gs_index(ctxt->gs);
252
253	/*
254	 * Restore FSBASE and GSBASE after restoring the selectors, since
255	 * restoring the selectors clobbers the bases.  Keep in mind
256	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
257	 */
258	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
259	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
260#elif defined(CONFIG_X86_32_LAZY_GS)
261	loadsegment(gs, ctxt->gs);
262#endif
263
264	do_fpu_end();
265	tsc_verify_tsc_adjust(true);
266	x86_platform.restore_sched_clock_state();
267	mtrr_bp_restore();
268	perf_restore_debug_store();
269
270	c = &cpu_data(smp_processor_id());
271	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
272		init_ia32_feat_ctl(c);
273
274	microcode_bsp_resume();
275
276	/*
277	 * This needs to happen after the microcode has been updated upon resume
278	 * because some of the MSRs are "emulated" in microcode.
279	 */
280	msr_restore_context(ctxt);
281}
282
283/* Needed by apm.c */
284void notrace restore_processor_state(void)
285{
286	__restore_processor_state(&saved_context);
287}
288#ifdef CONFIG_X86_32
289EXPORT_SYMBOL(restore_processor_state);
290#endif
291
292#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
293static void resume_play_dead(void)
294{
295	play_dead_common();
296	tboot_shutdown(TB_SHUTDOWN_WFS);
297	hlt_play_dead();
298}
299
300int hibernate_resume_nonboot_cpu_disable(void)
301{
302	void (*play_dead)(void) = smp_ops.play_dead;
303	int ret;
304
305	/*
306	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
307	 * during hibernate image restoration, because it is likely that the
308	 * monitored address will be actually written to at that time and then
309	 * the "dead" CPU will attempt to execute instructions again, but the
310	 * address in its instruction pointer may not be possible to resolve
311	 * any more at that point (the page tables used by it previously may
312	 * have been overwritten by hibernate image data).
313	 *
314	 * First, make sure that we wake up all the potentially disabled SMT
315	 * threads which have been initially brought up and then put into
316	 * mwait/cpuidle sleep.
317	 * Those will be put to proper (not interfering with hibernation
318	 * resume) sleep afterwards, and the resumed kernel will decide itself
319	 * what to do with them.
320	 */
321	ret = cpuhp_smt_enable();
322	if (ret)
323		return ret;
324	smp_ops.play_dead = resume_play_dead;
325	ret = freeze_secondary_cpus(0);
326	smp_ops.play_dead = play_dead;
327	return ret;
328}
329#endif
330
331/*
332 * When bsp_check() is called in hibernate and suspend, cpu hotplug
333 * is disabled already. So it's unnessary to handle race condition between
334 * cpumask query and cpu hotplug.
335 */
336static int bsp_check(void)
337{
338	if (cpumask_first(cpu_online_mask) != 0) {
339		pr_warn("CPU0 is offline.\n");
340		return -ENODEV;
341	}
342
343	return 0;
344}
345
346static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
347			   void *ptr)
348{
349	int ret = 0;
350
351	switch (action) {
352	case PM_SUSPEND_PREPARE:
353	case PM_HIBERNATION_PREPARE:
354		ret = bsp_check();
355		break;
356#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
357	case PM_RESTORE_PREPARE:
358		/*
359		 * When system resumes from hibernation, online CPU0 because
360		 * 1. it's required for resume and
361		 * 2. the CPU was online before hibernation
362		 */
363		if (!cpu_online(0))
364			_debug_hotplug_cpu(0, 1);
365		break;
366	case PM_POST_RESTORE:
367		/*
368		 * When a resume really happens, this code won't be called.
369		 *
370		 * This code is called only when user space hibernation software
371		 * prepares for snapshot device during boot time. So we just
372		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
373		 * preparing the snapshot device.
374		 *
375		 * This works for normal boot case in our CPU0 hotplug debug
376		 * mode, i.e. CPU0 is offline and user mode hibernation
377		 * software initializes during boot time.
378		 *
379		 * If CPU0 is online and user application accesses snapshot
380		 * device after boot time, this will offline CPU0 and user may
381		 * see different CPU0 state before and after accessing
382		 * the snapshot device. But hopefully this is not a case when
383		 * user debugging CPU0 hotplug. Even if users hit this case,
384		 * they can easily online CPU0 back.
385		 *
386		 * To simplify this debug code, we only consider normal boot
387		 * case. Otherwise we need to remember CPU0's state and restore
388		 * to that state and resolve racy conditions etc.
389		 */
390		_debug_hotplug_cpu(0, 0);
391		break;
392#endif
393	default:
394		break;
395	}
396	return notifier_from_errno(ret);
397}
398
399static int __init bsp_pm_check_init(void)
400{
401	/*
402	 * Set this bsp_pm_callback as lower priority than
403	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
404	 * earlier to disable cpu hotplug before bsp online check.
405	 */
406	pm_notifier(bsp_pm_callback, -INT_MAX);
407	return 0;
408}
409
410core_initcall(bsp_pm_check_init);
411
412static int msr_build_context(const u32 *msr_id, const int num)
413{
414	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
415	struct saved_msr *msr_array;
416	int total_num;
417	int i, j;
418
419	total_num = saved_msrs->num + num;
420
421	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
422	if (!msr_array) {
423		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
424		return -ENOMEM;
425	}
426
427	if (saved_msrs->array) {
428		/*
429		 * Multiple callbacks can invoke this function, so copy any
430		 * MSR save requests from previous invocations.
431		 */
432		memcpy(msr_array, saved_msrs->array,
433		       sizeof(struct saved_msr) * saved_msrs->num);
434
435		kfree(saved_msrs->array);
436	}
437
438	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
439		u64 dummy;
440
441		msr_array[i].info.msr_no	= msr_id[j];
442		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
443		msr_array[i].info.reg.q		= 0;
444	}
445	saved_msrs->num   = total_num;
446	saved_msrs->array = msr_array;
447
448	return 0;
449}
450
451/*
452 * The following sections are a quirk framework for problematic BIOSen:
453 * Sometimes MSRs are modified by the BIOSen after suspended to
454 * RAM, this might cause unexpected behavior after wakeup.
455 * Thus we save/restore these specified MSRs across suspend/resume
456 * in order to work around it.
457 *
458 * For any further problematic BIOSen/platforms,
459 * please add your own function similar to msr_initialize_bdw.
460 */
461static int msr_initialize_bdw(const struct dmi_system_id *d)
462{
463	/* Add any extra MSR ids into this array. */
464	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
465
466	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
467	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
468}
469
470static const struct dmi_system_id msr_save_dmi_table[] = {
471	{
472	 .callback = msr_initialize_bdw,
473	 .ident = "BROADWELL BDX_EP",
474	 .matches = {
475		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
476		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
477		},
478	},
479	{}
480};
481
482static int msr_save_cpuid_features(const struct x86_cpu_id *c)
483{
484	u32 cpuid_msr_id[] = {
485		MSR_AMD64_CPUID_FN_1,
486	};
487
488	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
489		c->family);
490
491	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
492}
493
494static const struct x86_cpu_id msr_save_cpu_table[] = {
495	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
496	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
497	{}
498};
499
500typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
501static int pm_cpu_check(const struct x86_cpu_id *c)
502{
503	const struct x86_cpu_id *m;
504	int ret = 0;
505
506	m = x86_match_cpu(msr_save_cpu_table);
507	if (m) {
508		pm_cpu_match_t fn;
509
510		fn = (pm_cpu_match_t)m->driver_data;
511		ret = fn(m);
512	}
513
514	return ret;
515}
516
517static void pm_save_spec_msr(void)
518{
519	struct msr_enumeration {
520		u32 msr_no;
521		u32 feature;
522	} msr_enum[] = {
523		{ MSR_IA32_SPEC_CTRL,	 X86_FEATURE_MSR_SPEC_CTRL },
524		{ MSR_IA32_TSX_CTRL,	 X86_FEATURE_MSR_TSX_CTRL },
525		{ MSR_TSX_FORCE_ABORT,	 X86_FEATURE_TSX_FORCE_ABORT },
526		{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
527		{ MSR_AMD64_LS_CFG,	 X86_FEATURE_LS_CFG_SSBD },
528		{ MSR_AMD64_DE_CFG,	 X86_FEATURE_LFENCE_RDTSC },
529	};
530	int i;
531
532	for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
533		if (boot_cpu_has(msr_enum[i].feature))
534			msr_build_context(&msr_enum[i].msr_no, 1);
535	}
536}
537
538static int pm_check_save_msr(void)
539{
540	dmi_check_system(msr_save_dmi_table);
541	pm_cpu_check(msr_save_cpu_table);
542	pm_save_spec_msr();
543
544	return 0;
545}
546
547device_initcall(pm_check_save_msr);
548