1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10#include <linux/suspend.h> 11#include <linux/export.h> 12#include <linux/smp.h> 13#include <linux/perf_event.h> 14#include <linux/tboot.h> 15#include <linux/dmi.h> 16#include <linux/pgtable.h> 17 18#include <asm/proto.h> 19#include <asm/mtrr.h> 20#include <asm/page.h> 21#include <asm/mce.h> 22#include <asm/suspend.h> 23#include <asm/fpu/internal.h> 24#include <asm/debugreg.h> 25#include <asm/cpu.h> 26#include <asm/mmu_context.h> 27#include <asm/cpu_device_id.h> 28#include <asm/microcode.h> 29 30#ifdef CONFIG_X86_32 31__visible unsigned long saved_context_ebx; 32__visible unsigned long saved_context_esp, saved_context_ebp; 33__visible unsigned long saved_context_esi, saved_context_edi; 34__visible unsigned long saved_context_eflags; 35#endif 36struct saved_context saved_context; 37 38static void msr_save_context(struct saved_context *ctxt) 39{ 40 struct saved_msr *msr = ctxt->saved_msrs.array; 41 struct saved_msr *end = msr + ctxt->saved_msrs.num; 42 43 while (msr < end) { 44 if (msr->valid) 45 rdmsrl(msr->info.msr_no, msr->info.reg.q); 46 msr++; 47 } 48} 49 50static void msr_restore_context(struct saved_context *ctxt) 51{ 52 struct saved_msr *msr = ctxt->saved_msrs.array; 53 struct saved_msr *end = msr + ctxt->saved_msrs.num; 54 55 while (msr < end) { 56 if (msr->valid) 57 wrmsrl(msr->info.msr_no, msr->info.reg.q); 58 msr++; 59 } 60} 61 62/** 63 * __save_processor_state - save CPU registers before creating a 64 * hibernation image and before restoring the memory state from it 65 * @ctxt - structure to store the registers contents in 66 * 67 * NOTE: If there is a CPU register the modification of which by the 68 * boot kernel (ie. the kernel used for loading the hibernation image) 69 * might affect the operations of the restored target kernel (ie. the one 70 * saved in the hibernation image), then its contents must be saved by this 71 * function. In other words, if kernel A is hibernated and different 72 * kernel B is used for loading the hibernation image into memory, the 73 * kernel A's __save_processor_state() function must save all registers 74 * needed by kernel A, so that it can operate correctly after the resume 75 * regardless of what kernel B does in the meantime. 76 */ 77static void __save_processor_state(struct saved_context *ctxt) 78{ 79#ifdef CONFIG_X86_32 80 mtrr_save_fixed_ranges(NULL); 81#endif 82 kernel_fpu_begin(); 83 84 /* 85 * descriptor tables 86 */ 87 store_idt(&ctxt->idt); 88 89 /* 90 * We save it here, but restore it only in the hibernate case. 91 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 92 * mode in "secondary_startup_64". In 32-bit mode it is done via 93 * 'pmode_gdt' in wakeup_start. 94 */ 95 ctxt->gdt_desc.size = GDT_SIZE - 1; 96 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 97 98 store_tr(ctxt->tr); 99 100 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 101 /* 102 * segment registers 103 */ 104#ifdef CONFIG_X86_32_LAZY_GS 105 savesegment(gs, ctxt->gs); 106#endif 107#ifdef CONFIG_X86_64 108 savesegment(gs, ctxt->gs); 109 savesegment(fs, ctxt->fs); 110 savesegment(ds, ctxt->ds); 111 savesegment(es, ctxt->es); 112 113 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 114 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 115 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 116 mtrr_save_fixed_ranges(NULL); 117 118 rdmsrl(MSR_EFER, ctxt->efer); 119#endif 120 121 /* 122 * control registers 123 */ 124 ctxt->cr0 = read_cr0(); 125 ctxt->cr2 = read_cr2(); 126 ctxt->cr3 = __read_cr3(); 127 ctxt->cr4 = __read_cr4(); 128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 129 &ctxt->misc_enable); 130 msr_save_context(ctxt); 131} 132 133/* Needed by apm.c */ 134void save_processor_state(void) 135{ 136 __save_processor_state(&saved_context); 137 x86_platform.save_sched_clock_state(); 138} 139#ifdef CONFIG_X86_32 140EXPORT_SYMBOL(save_processor_state); 141#endif 142 143static void do_fpu_end(void) 144{ 145 /* 146 * Restore FPU regs if necessary. 147 */ 148 kernel_fpu_end(); 149} 150 151static void fix_processor_context(void) 152{ 153 int cpu = smp_processor_id(); 154#ifdef CONFIG_X86_64 155 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 156 tss_desc tss; 157#endif 158 159 /* 160 * We need to reload TR, which requires that we change the 161 * GDT entry to indicate "available" first. 162 * 163 * XXX: This could probably all be replaced by a call to 164 * force_reload_TR(). 165 */ 166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 167 168#ifdef CONFIG_X86_64 169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 172 173 syscall_init(); /* This sets MSR_*STAR and related */ 174#else 175 if (boot_cpu_has(X86_FEATURE_SEP)) 176 enable_sep_cpu(); 177#endif 178 load_TR_desc(); /* This does ltr */ 179 load_mm_ldt(current->active_mm); /* This does lldt */ 180 initialize_tlbstate_and_flush(); 181 182 fpu__resume_cpu(); 183 184 /* The processor is back on the direct GDT, load back the fixmap */ 185 load_fixmap_gdt(cpu); 186} 187 188/** 189 * __restore_processor_state - restore the contents of CPU registers saved 190 * by __save_processor_state() 191 * @ctxt - structure to load the registers contents from 192 * 193 * The asm code that gets us here will have restored a usable GDT, although 194 * it will be pointing to the wrong alias. 195 */ 196static void notrace __restore_processor_state(struct saved_context *ctxt) 197{ 198 struct cpuinfo_x86 *c; 199 200 if (ctxt->misc_enable_saved) 201 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 202 /* 203 * control registers 204 */ 205 /* cr4 was introduced in the Pentium CPU */ 206#ifdef CONFIG_X86_32 207 if (ctxt->cr4) 208 __write_cr4(ctxt->cr4); 209#else 210/* CONFIG X86_64 */ 211 wrmsrl(MSR_EFER, ctxt->efer); 212 __write_cr4(ctxt->cr4); 213#endif 214 write_cr3(ctxt->cr3); 215 write_cr2(ctxt->cr2); 216 write_cr0(ctxt->cr0); 217 218 /* Restore the IDT. */ 219 load_idt(&ctxt->idt); 220 221 /* 222 * Just in case the asm code got us here with the SS, DS, or ES 223 * out of sync with the GDT, update them. 224 */ 225 loadsegment(ss, __KERNEL_DS); 226 loadsegment(ds, __USER_DS); 227 loadsegment(es, __USER_DS); 228 229 /* 230 * Restore percpu access. Percpu access can happen in exception 231 * handlers or in complicated helpers like load_gs_index(). 232 */ 233#ifdef CONFIG_X86_64 234 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 235#else 236 loadsegment(fs, __KERNEL_PERCPU); 237 loadsegment(gs, __KERNEL_STACK_CANARY); 238#endif 239 240 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 241 fix_processor_context(); 242 243 /* 244 * Now that we have descriptor tables fully restored and working 245 * exception handling, restore the usermode segments. 246 */ 247#ifdef CONFIG_X86_64 248 loadsegment(ds, ctxt->es); 249 loadsegment(es, ctxt->es); 250 loadsegment(fs, ctxt->fs); 251 load_gs_index(ctxt->gs); 252 253 /* 254 * Restore FSBASE and GSBASE after restoring the selectors, since 255 * restoring the selectors clobbers the bases. Keep in mind 256 * that MSR_KERNEL_GS_BASE is horribly misnamed. 257 */ 258 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 259 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 260#elif defined(CONFIG_X86_32_LAZY_GS) 261 loadsegment(gs, ctxt->gs); 262#endif 263 264 do_fpu_end(); 265 tsc_verify_tsc_adjust(true); 266 x86_platform.restore_sched_clock_state(); 267 mtrr_bp_restore(); 268 perf_restore_debug_store(); 269 270 c = &cpu_data(smp_processor_id()); 271 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 272 init_ia32_feat_ctl(c); 273 274 microcode_bsp_resume(); 275 276 /* 277 * This needs to happen after the microcode has been updated upon resume 278 * because some of the MSRs are "emulated" in microcode. 279 */ 280 msr_restore_context(ctxt); 281} 282 283/* Needed by apm.c */ 284void notrace restore_processor_state(void) 285{ 286 __restore_processor_state(&saved_context); 287} 288#ifdef CONFIG_X86_32 289EXPORT_SYMBOL(restore_processor_state); 290#endif 291 292#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 293static void resume_play_dead(void) 294{ 295 play_dead_common(); 296 tboot_shutdown(TB_SHUTDOWN_WFS); 297 hlt_play_dead(); 298} 299 300int hibernate_resume_nonboot_cpu_disable(void) 301{ 302 void (*play_dead)(void) = smp_ops.play_dead; 303 int ret; 304 305 /* 306 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 307 * during hibernate image restoration, because it is likely that the 308 * monitored address will be actually written to at that time and then 309 * the "dead" CPU will attempt to execute instructions again, but the 310 * address in its instruction pointer may not be possible to resolve 311 * any more at that point (the page tables used by it previously may 312 * have been overwritten by hibernate image data). 313 * 314 * First, make sure that we wake up all the potentially disabled SMT 315 * threads which have been initially brought up and then put into 316 * mwait/cpuidle sleep. 317 * Those will be put to proper (not interfering with hibernation 318 * resume) sleep afterwards, and the resumed kernel will decide itself 319 * what to do with them. 320 */ 321 ret = cpuhp_smt_enable(); 322 if (ret) 323 return ret; 324 smp_ops.play_dead = resume_play_dead; 325 ret = freeze_secondary_cpus(0); 326 smp_ops.play_dead = play_dead; 327 return ret; 328} 329#endif 330 331/* 332 * When bsp_check() is called in hibernate and suspend, cpu hotplug 333 * is disabled already. So it's unnessary to handle race condition between 334 * cpumask query and cpu hotplug. 335 */ 336static int bsp_check(void) 337{ 338 if (cpumask_first(cpu_online_mask) != 0) { 339 pr_warn("CPU0 is offline.\n"); 340 return -ENODEV; 341 } 342 343 return 0; 344} 345 346static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 347 void *ptr) 348{ 349 int ret = 0; 350 351 switch (action) { 352 case PM_SUSPEND_PREPARE: 353 case PM_HIBERNATION_PREPARE: 354 ret = bsp_check(); 355 break; 356#ifdef CONFIG_DEBUG_HOTPLUG_CPU0 357 case PM_RESTORE_PREPARE: 358 /* 359 * When system resumes from hibernation, online CPU0 because 360 * 1. it's required for resume and 361 * 2. the CPU was online before hibernation 362 */ 363 if (!cpu_online(0)) 364 _debug_hotplug_cpu(0, 1); 365 break; 366 case PM_POST_RESTORE: 367 /* 368 * When a resume really happens, this code won't be called. 369 * 370 * This code is called only when user space hibernation software 371 * prepares for snapshot device during boot time. So we just 372 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 373 * preparing the snapshot device. 374 * 375 * This works for normal boot case in our CPU0 hotplug debug 376 * mode, i.e. CPU0 is offline and user mode hibernation 377 * software initializes during boot time. 378 * 379 * If CPU0 is online and user application accesses snapshot 380 * device after boot time, this will offline CPU0 and user may 381 * see different CPU0 state before and after accessing 382 * the snapshot device. But hopefully this is not a case when 383 * user debugging CPU0 hotplug. Even if users hit this case, 384 * they can easily online CPU0 back. 385 * 386 * To simplify this debug code, we only consider normal boot 387 * case. Otherwise we need to remember CPU0's state and restore 388 * to that state and resolve racy conditions etc. 389 */ 390 _debug_hotplug_cpu(0, 0); 391 break; 392#endif 393 default: 394 break; 395 } 396 return notifier_from_errno(ret); 397} 398 399static int __init bsp_pm_check_init(void) 400{ 401 /* 402 * Set this bsp_pm_callback as lower priority than 403 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 404 * earlier to disable cpu hotplug before bsp online check. 405 */ 406 pm_notifier(bsp_pm_callback, -INT_MAX); 407 return 0; 408} 409 410core_initcall(bsp_pm_check_init); 411 412static int msr_build_context(const u32 *msr_id, const int num) 413{ 414 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 415 struct saved_msr *msr_array; 416 int total_num; 417 int i, j; 418 419 total_num = saved_msrs->num + num; 420 421 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 422 if (!msr_array) { 423 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 424 return -ENOMEM; 425 } 426 427 if (saved_msrs->array) { 428 /* 429 * Multiple callbacks can invoke this function, so copy any 430 * MSR save requests from previous invocations. 431 */ 432 memcpy(msr_array, saved_msrs->array, 433 sizeof(struct saved_msr) * saved_msrs->num); 434 435 kfree(saved_msrs->array); 436 } 437 438 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 439 u64 dummy; 440 441 msr_array[i].info.msr_no = msr_id[j]; 442 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); 443 msr_array[i].info.reg.q = 0; 444 } 445 saved_msrs->num = total_num; 446 saved_msrs->array = msr_array; 447 448 return 0; 449} 450 451/* 452 * The following sections are a quirk framework for problematic BIOSen: 453 * Sometimes MSRs are modified by the BIOSen after suspended to 454 * RAM, this might cause unexpected behavior after wakeup. 455 * Thus we save/restore these specified MSRs across suspend/resume 456 * in order to work around it. 457 * 458 * For any further problematic BIOSen/platforms, 459 * please add your own function similar to msr_initialize_bdw. 460 */ 461static int msr_initialize_bdw(const struct dmi_system_id *d) 462{ 463 /* Add any extra MSR ids into this array. */ 464 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 465 466 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 467 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 468} 469 470static const struct dmi_system_id msr_save_dmi_table[] = { 471 { 472 .callback = msr_initialize_bdw, 473 .ident = "BROADWELL BDX_EP", 474 .matches = { 475 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 476 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 477 }, 478 }, 479 {} 480}; 481 482static int msr_save_cpuid_features(const struct x86_cpu_id *c) 483{ 484 u32 cpuid_msr_id[] = { 485 MSR_AMD64_CPUID_FN_1, 486 }; 487 488 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 489 c->family); 490 491 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 492} 493 494static const struct x86_cpu_id msr_save_cpu_table[] = { 495 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 496 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 497 {} 498}; 499 500typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 501static int pm_cpu_check(const struct x86_cpu_id *c) 502{ 503 const struct x86_cpu_id *m; 504 int ret = 0; 505 506 m = x86_match_cpu(msr_save_cpu_table); 507 if (m) { 508 pm_cpu_match_t fn; 509 510 fn = (pm_cpu_match_t)m->driver_data; 511 ret = fn(m); 512 } 513 514 return ret; 515} 516 517static void pm_save_spec_msr(void) 518{ 519 struct msr_enumeration { 520 u32 msr_no; 521 u32 feature; 522 } msr_enum[] = { 523 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, 524 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, 525 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, 526 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, 527 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, 528 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, 529 }; 530 int i; 531 532 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { 533 if (boot_cpu_has(msr_enum[i].feature)) 534 msr_build_context(&msr_enum[i].msr_no, 1); 535 } 536} 537 538static int pm_check_save_msr(void) 539{ 540 dmi_check_system(msr_save_dmi_table); 541 pm_cpu_check(msr_save_cpu_table); 542 pm_save_spec_msr(); 543 544 return 0; 545} 546 547device_initcall(pm_check_save_msr); 548