1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28 #include <asm/microcode.h>
29
30 #ifdef CONFIG_X86_32
31 __visible unsigned long saved_context_ebx;
32 __visible unsigned long saved_context_esp, saved_context_ebp;
33 __visible unsigned long saved_context_esi, saved_context_edi;
34 __visible unsigned long saved_context_eflags;
35 #endif
36 struct saved_context saved_context;
37
msr_save_context(struct saved_context *ctxt)38 static void msr_save_context(struct saved_context *ctxt)
39 {
40 struct saved_msr *msr = ctxt->saved_msrs.array;
41 struct saved_msr *end = msr + ctxt->saved_msrs.num;
42
43 while (msr < end) {
44 if (msr->valid)
45 rdmsrl(msr->info.msr_no, msr->info.reg.q);
46 msr++;
47 }
48 }
49
msr_restore_context(struct saved_context *ctxt)50 static void msr_restore_context(struct saved_context *ctxt)
51 {
52 struct saved_msr *msr = ctxt->saved_msrs.array;
53 struct saved_msr *end = msr + ctxt->saved_msrs.num;
54
55 while (msr < end) {
56 if (msr->valid)
57 wrmsrl(msr->info.msr_no, msr->info.reg.q);
58 msr++;
59 }
60 }
61
62 /**
63 * __save_processor_state - save CPU registers before creating a
64 * hibernation image and before restoring the memory state from it
65 * @ctxt - structure to store the registers contents in
66 *
67 * NOTE: If there is a CPU register the modification of which by the
68 * boot kernel (ie. the kernel used for loading the hibernation image)
69 * might affect the operations of the restored target kernel (ie. the one
70 * saved in the hibernation image), then its contents must be saved by this
71 * function. In other words, if kernel A is hibernated and different
72 * kernel B is used for loading the hibernation image into memory, the
73 * kernel A's __save_processor_state() function must save all registers
74 * needed by kernel A, so that it can operate correctly after the resume
75 * regardless of what kernel B does in the meantime.
76 */
__save_processor_state(struct saved_context *ctxt)77 static void __save_processor_state(struct saved_context *ctxt)
78 {
79 #ifdef CONFIG_X86_32
80 mtrr_save_fixed_ranges(NULL);
81 #endif
82 kernel_fpu_begin();
83
84 /*
85 * descriptor tables
86 */
87 store_idt(&ctxt->idt);
88
89 /*
90 * We save it here, but restore it only in the hibernate case.
91 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
92 * mode in "secondary_startup_64". In 32-bit mode it is done via
93 * 'pmode_gdt' in wakeup_start.
94 */
95 ctxt->gdt_desc.size = GDT_SIZE - 1;
96 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
97
98 store_tr(ctxt->tr);
99
100 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
101 /*
102 * segment registers
103 */
104 #ifdef CONFIG_X86_32_LAZY_GS
105 savesegment(gs, ctxt->gs);
106 #endif
107 #ifdef CONFIG_X86_64
108 savesegment(gs, ctxt->gs);
109 savesegment(fs, ctxt->fs);
110 savesegment(ds, ctxt->ds);
111 savesegment(es, ctxt->es);
112
113 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
114 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
115 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
116 mtrr_save_fixed_ranges(NULL);
117
118 rdmsrl(MSR_EFER, ctxt->efer);
119 #endif
120
121 /*
122 * control registers
123 */
124 ctxt->cr0 = read_cr0();
125 ctxt->cr2 = read_cr2();
126 ctxt->cr3 = __read_cr3();
127 ctxt->cr4 = __read_cr4();
128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
129 &ctxt->misc_enable);
130 msr_save_context(ctxt);
131 }
132
133 /* Needed by apm.c */
save_processor_state(void)134 void save_processor_state(void)
135 {
136 __save_processor_state(&saved_context);
137 x86_platform.save_sched_clock_state();
138 }
139 #ifdef CONFIG_X86_32
140 EXPORT_SYMBOL(save_processor_state);
141 #endif
142
do_fpu_end(void)143 static void do_fpu_end(void)
144 {
145 /*
146 * Restore FPU regs if necessary.
147 */
148 kernel_fpu_end();
149 }
150
fix_processor_context(void)151 static void fix_processor_context(void)
152 {
153 int cpu = smp_processor_id();
154 #ifdef CONFIG_X86_64
155 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
156 tss_desc tss;
157 #endif
158
159 /*
160 * We need to reload TR, which requires that we change the
161 * GDT entry to indicate "available" first.
162 *
163 * XXX: This could probably all be replaced by a call to
164 * force_reload_TR().
165 */
166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
167
168 #ifdef CONFIG_X86_64
169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
172
173 syscall_init(); /* This sets MSR_*STAR and related */
174 #else
175 if (boot_cpu_has(X86_FEATURE_SEP))
176 enable_sep_cpu();
177 #endif
178 load_TR_desc(); /* This does ltr */
179 load_mm_ldt(current->active_mm); /* This does lldt */
180 initialize_tlbstate_and_flush();
181
182 fpu__resume_cpu();
183
184 /* The processor is back on the direct GDT, load back the fixmap */
185 load_fixmap_gdt(cpu);
186 }
187
188 /**
189 * __restore_processor_state - restore the contents of CPU registers saved
190 * by __save_processor_state()
191 * @ctxt - structure to load the registers contents from
192 *
193 * The asm code that gets us here will have restored a usable GDT, although
194 * it will be pointing to the wrong alias.
195 */
__restore_processor_state(struct saved_context *ctxt)196 static void notrace __restore_processor_state(struct saved_context *ctxt)
197 {
198 struct cpuinfo_x86 *c;
199
200 if (ctxt->misc_enable_saved)
201 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
202 /*
203 * control registers
204 */
205 /* cr4 was introduced in the Pentium CPU */
206 #ifdef CONFIG_X86_32
207 if (ctxt->cr4)
208 __write_cr4(ctxt->cr4);
209 #else
210 /* CONFIG X86_64 */
211 wrmsrl(MSR_EFER, ctxt->efer);
212 __write_cr4(ctxt->cr4);
213 #endif
214 write_cr3(ctxt->cr3);
215 write_cr2(ctxt->cr2);
216 write_cr0(ctxt->cr0);
217
218 /* Restore the IDT. */
219 load_idt(&ctxt->idt);
220
221 /*
222 * Just in case the asm code got us here with the SS, DS, or ES
223 * out of sync with the GDT, update them.
224 */
225 loadsegment(ss, __KERNEL_DS);
226 loadsegment(ds, __USER_DS);
227 loadsegment(es, __USER_DS);
228
229 /*
230 * Restore percpu access. Percpu access can happen in exception
231 * handlers or in complicated helpers like load_gs_index().
232 */
233 #ifdef CONFIG_X86_64
234 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
235 #else
236 loadsegment(fs, __KERNEL_PERCPU);
237 loadsegment(gs, __KERNEL_STACK_CANARY);
238 #endif
239
240 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
241 fix_processor_context();
242
243 /*
244 * Now that we have descriptor tables fully restored and working
245 * exception handling, restore the usermode segments.
246 */
247 #ifdef CONFIG_X86_64
248 loadsegment(ds, ctxt->es);
249 loadsegment(es, ctxt->es);
250 loadsegment(fs, ctxt->fs);
251 load_gs_index(ctxt->gs);
252
253 /*
254 * Restore FSBASE and GSBASE after restoring the selectors, since
255 * restoring the selectors clobbers the bases. Keep in mind
256 * that MSR_KERNEL_GS_BASE is horribly misnamed.
257 */
258 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
259 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
260 #elif defined(CONFIG_X86_32_LAZY_GS)
261 loadsegment(gs, ctxt->gs);
262 #endif
263
264 do_fpu_end();
265 tsc_verify_tsc_adjust(true);
266 x86_platform.restore_sched_clock_state();
267 mtrr_bp_restore();
268 perf_restore_debug_store();
269
270 c = &cpu_data(smp_processor_id());
271 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
272 init_ia32_feat_ctl(c);
273
274 microcode_bsp_resume();
275
276 /*
277 * This needs to happen after the microcode has been updated upon resume
278 * because some of the MSRs are "emulated" in microcode.
279 */
280 msr_restore_context(ctxt);
281 }
282
283 /* Needed by apm.c */
restore_processor_state(void)284 void notrace restore_processor_state(void)
285 {
286 __restore_processor_state(&saved_context);
287 }
288 #ifdef CONFIG_X86_32
289 EXPORT_SYMBOL(restore_processor_state);
290 #endif
291
292 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
resume_play_dead(void)293 static void resume_play_dead(void)
294 {
295 play_dead_common();
296 tboot_shutdown(TB_SHUTDOWN_WFS);
297 hlt_play_dead();
298 }
299
hibernate_resume_nonboot_cpu_disable(void)300 int hibernate_resume_nonboot_cpu_disable(void)
301 {
302 void (*play_dead)(void) = smp_ops.play_dead;
303 int ret;
304
305 /*
306 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
307 * during hibernate image restoration, because it is likely that the
308 * monitored address will be actually written to at that time and then
309 * the "dead" CPU will attempt to execute instructions again, but the
310 * address in its instruction pointer may not be possible to resolve
311 * any more at that point (the page tables used by it previously may
312 * have been overwritten by hibernate image data).
313 *
314 * First, make sure that we wake up all the potentially disabled SMT
315 * threads which have been initially brought up and then put into
316 * mwait/cpuidle sleep.
317 * Those will be put to proper (not interfering with hibernation
318 * resume) sleep afterwards, and the resumed kernel will decide itself
319 * what to do with them.
320 */
321 ret = cpuhp_smt_enable();
322 if (ret)
323 return ret;
324 smp_ops.play_dead = resume_play_dead;
325 ret = freeze_secondary_cpus(0);
326 smp_ops.play_dead = play_dead;
327 return ret;
328 }
329 #endif
330
331 /*
332 * When bsp_check() is called in hibernate and suspend, cpu hotplug
333 * is disabled already. So it's unnessary to handle race condition between
334 * cpumask query and cpu hotplug.
335 */
bsp_check(void)336 static int bsp_check(void)
337 {
338 if (cpumask_first(cpu_online_mask) != 0) {
339 pr_warn("CPU0 is offline.\n");
340 return -ENODEV;
341 }
342
343 return 0;
344 }
345
bsp_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr)346 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
347 void *ptr)
348 {
349 int ret = 0;
350
351 switch (action) {
352 case PM_SUSPEND_PREPARE:
353 case PM_HIBERNATION_PREPARE:
354 ret = bsp_check();
355 break;
356 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
357 case PM_RESTORE_PREPARE:
358 /*
359 * When system resumes from hibernation, online CPU0 because
360 * 1. it's required for resume and
361 * 2. the CPU was online before hibernation
362 */
363 if (!cpu_online(0))
364 _debug_hotplug_cpu(0, 1);
365 break;
366 case PM_POST_RESTORE:
367 /*
368 * When a resume really happens, this code won't be called.
369 *
370 * This code is called only when user space hibernation software
371 * prepares for snapshot device during boot time. So we just
372 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
373 * preparing the snapshot device.
374 *
375 * This works for normal boot case in our CPU0 hotplug debug
376 * mode, i.e. CPU0 is offline and user mode hibernation
377 * software initializes during boot time.
378 *
379 * If CPU0 is online and user application accesses snapshot
380 * device after boot time, this will offline CPU0 and user may
381 * see different CPU0 state before and after accessing
382 * the snapshot device. But hopefully this is not a case when
383 * user debugging CPU0 hotplug. Even if users hit this case,
384 * they can easily online CPU0 back.
385 *
386 * To simplify this debug code, we only consider normal boot
387 * case. Otherwise we need to remember CPU0's state and restore
388 * to that state and resolve racy conditions etc.
389 */
390 _debug_hotplug_cpu(0, 0);
391 break;
392 #endif
393 default:
394 break;
395 }
396 return notifier_from_errno(ret);
397 }
398
bsp_pm_check_init(void)399 static int __init bsp_pm_check_init(void)
400 {
401 /*
402 * Set this bsp_pm_callback as lower priority than
403 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
404 * earlier to disable cpu hotplug before bsp online check.
405 */
406 pm_notifier(bsp_pm_callback, -INT_MAX);
407 return 0;
408 }
409
410 core_initcall(bsp_pm_check_init);
411
msr_build_context(const u32 *msr_id, const int num)412 static int msr_build_context(const u32 *msr_id, const int num)
413 {
414 struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
415 struct saved_msr *msr_array;
416 int total_num;
417 int i, j;
418
419 total_num = saved_msrs->num + num;
420
421 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
422 if (!msr_array) {
423 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
424 return -ENOMEM;
425 }
426
427 if (saved_msrs->array) {
428 /*
429 * Multiple callbacks can invoke this function, so copy any
430 * MSR save requests from previous invocations.
431 */
432 memcpy(msr_array, saved_msrs->array,
433 sizeof(struct saved_msr) * saved_msrs->num);
434
435 kfree(saved_msrs->array);
436 }
437
438 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
439 u64 dummy;
440
441 msr_array[i].info.msr_no = msr_id[j];
442 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy);
443 msr_array[i].info.reg.q = 0;
444 }
445 saved_msrs->num = total_num;
446 saved_msrs->array = msr_array;
447
448 return 0;
449 }
450
451 /*
452 * The following sections are a quirk framework for problematic BIOSen:
453 * Sometimes MSRs are modified by the BIOSen after suspended to
454 * RAM, this might cause unexpected behavior after wakeup.
455 * Thus we save/restore these specified MSRs across suspend/resume
456 * in order to work around it.
457 *
458 * For any further problematic BIOSen/platforms,
459 * please add your own function similar to msr_initialize_bdw.
460 */
msr_initialize_bdw(const struct dmi_system_id *d)461 static int msr_initialize_bdw(const struct dmi_system_id *d)
462 {
463 /* Add any extra MSR ids into this array. */
464 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
465
466 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
467 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
468 }
469
470 static const struct dmi_system_id msr_save_dmi_table[] = {
471 {
472 .callback = msr_initialize_bdw,
473 .ident = "BROADWELL BDX_EP",
474 .matches = {
475 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
476 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
477 },
478 },
479 {}
480 };
481
msr_save_cpuid_features(const struct x86_cpu_id *c)482 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
483 {
484 u32 cpuid_msr_id[] = {
485 MSR_AMD64_CPUID_FN_1,
486 };
487
488 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
489 c->family);
490
491 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
492 }
493
494 static const struct x86_cpu_id msr_save_cpu_table[] = {
495 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
496 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
497 {}
498 };
499
500 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
pm_cpu_check(const struct x86_cpu_id *c)501 static int pm_cpu_check(const struct x86_cpu_id *c)
502 {
503 const struct x86_cpu_id *m;
504 int ret = 0;
505
506 m = x86_match_cpu(msr_save_cpu_table);
507 if (m) {
508 pm_cpu_match_t fn;
509
510 fn = (pm_cpu_match_t)m->driver_data;
511 ret = fn(m);
512 }
513
514 return ret;
515 }
516
pm_save_spec_msr(void)517 static void pm_save_spec_msr(void)
518 {
519 struct msr_enumeration {
520 u32 msr_no;
521 u32 feature;
522 } msr_enum[] = {
523 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL },
524 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL },
525 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT },
526 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
527 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD },
528 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC },
529 };
530 int i;
531
532 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
533 if (boot_cpu_has(msr_enum[i].feature))
534 msr_build_context(&msr_enum[i].msr_no, 1);
535 }
536 }
537
pm_check_save_msr(void)538 static int pm_check_save_msr(void)
539 {
540 dmi_check_system(msr_save_dmi_table);
541 pm_cpu_check(msr_save_cpu_table);
542 pm_save_spec_msr();
543
544 return 0;
545 }
546
547 device_initcall(pm_check_save_msr);
548