1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19#include <linux/kvm_host.h> 20#include "irq.h" 21#include "ioapic.h" 22#include "mmu.h" 23#include "i8254.h" 24#include "tss.h" 25#include "kvm_cache_regs.h" 26#include "kvm_emulate.h" 27#include "x86.h" 28#include "cpuid.h" 29#include "pmu.h" 30#include "hyperv.h" 31#include "lapic.h" 32 33#include <linux/clocksource.h> 34#include <linux/interrupt.h> 35#include <linux/kvm.h> 36#include <linux/fs.h> 37#include <linux/vmalloc.h> 38#include <linux/export.h> 39#include <linux/moduleparam.h> 40#include <linux/mman.h> 41#include <linux/highmem.h> 42#include <linux/iommu.h> 43#include <linux/intel-iommu.h> 44#include <linux/cpufreq.h> 45#include <linux/user-return-notifier.h> 46#include <linux/srcu.h> 47#include <linux/slab.h> 48#include <linux/perf_event.h> 49#include <linux/uaccess.h> 50#include <linux/hash.h> 51#include <linux/pci.h> 52#include <linux/timekeeper_internal.h> 53#include <linux/pvclock_gtod.h> 54#include <linux/kvm_irqfd.h> 55#include <linux/irqbypass.h> 56#include <linux/sched/stat.h> 57#include <linux/sched/isolation.h> 58#include <linux/mem_encrypt.h> 59#include <linux/entry-kvm.h> 60 61#include <trace/events/kvm.h> 62 63#include <asm/debugreg.h> 64#include <asm/msr.h> 65#include <asm/desc.h> 66#include <asm/mce.h> 67#include <linux/kernel_stat.h> 68#include <asm/fpu/internal.h> /* Ugh! */ 69#include <asm/pvclock.h> 70#include <asm/div64.h> 71#include <asm/irq_remapping.h> 72#include <asm/mshyperv.h> 73#include <asm/hypervisor.h> 74#include <asm/tlbflush.h> 75#include <asm/intel_pt.h> 76#include <asm/emulate_prefix.h> 77#include <clocksource/hyperv_timer.h> 78 79#define CREATE_TRACE_POINTS 80#include "trace.h" 81 82#define MAX_IO_MSRS 256 83#define KVM_MAX_MCE_BANKS 32 84u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 85EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 86 87#define emul_to_vcpu(ctxt) \ 88 ((struct kvm_vcpu *)(ctxt)->vcpu) 89 90/* EFER defaults: 91 * - enable syscall per default because its emulated by KVM 92 * - enable LME and LMA per default on 64 bit KVM 93 */ 94#ifdef CONFIG_X86_64 95static 96u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 97#else 98static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 99#endif 100 101static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 102 103#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107static void process_nmi(struct kvm_vcpu *vcpu); 108static void process_smi(struct kvm_vcpu *vcpu); 109static void enter_smm(struct kvm_vcpu *vcpu); 110static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 111static void store_regs(struct kvm_vcpu *vcpu); 112static int sync_regs(struct kvm_vcpu *vcpu); 113 114struct kvm_x86_ops kvm_x86_ops __read_mostly; 115EXPORT_SYMBOL_GPL(kvm_x86_ops); 116 117static bool __read_mostly ignore_msrs = 0; 118module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 119 120static bool __read_mostly report_ignored_msrs = true; 121module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 122 123unsigned int min_timer_period_us = 200; 124module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 125 126static bool __read_mostly kvmclock_periodic_sync = true; 127module_param(kvmclock_periodic_sync, bool, S_IRUGO); 128 129bool __read_mostly kvm_has_tsc_control; 130EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 131u32 __read_mostly kvm_max_guest_tsc_khz; 132EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 133u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 134EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 135u64 __read_mostly kvm_max_tsc_scaling_ratio; 136EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 137u64 __read_mostly kvm_default_tsc_scaling_ratio; 138EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 139 140/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 141static u32 __read_mostly tsc_tolerance_ppm = 250; 142module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 143 144/* 145 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 146 * adaptive tuning starting from default advancment of 1000ns. '0' disables 147 * advancement entirely. Any other value is used as-is and disables adaptive 148 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 149 */ 150static int __read_mostly lapic_timer_advance_ns = -1; 151module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 152 153static bool __read_mostly vector_hashing = true; 154module_param(vector_hashing, bool, S_IRUGO); 155 156bool __read_mostly enable_vmware_backdoor = false; 157module_param(enable_vmware_backdoor, bool, S_IRUGO); 158EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 159 160static bool __read_mostly force_emulation_prefix = false; 161module_param(force_emulation_prefix, bool, S_IRUGO); 162 163int __read_mostly pi_inject_timer = -1; 164module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 165 166/* 167 * Restoring the host value for MSRs that are only consumed when running in 168 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 169 * returns to userspace, i.e. the kernel can run with the guest's value. 170 */ 171#define KVM_MAX_NR_USER_RETURN_MSRS 16 172 173struct kvm_user_return_msrs_global { 174 int nr; 175 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 176}; 177 178struct kvm_user_return_msrs { 179 struct user_return_notifier urn; 180 bool registered; 181 struct kvm_user_return_msr_values { 182 u64 host; 183 u64 curr; 184 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 185}; 186 187static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 188static struct kvm_user_return_msrs __percpu *user_return_msrs; 189 190#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 191 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 192 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 193 | XFEATURE_MASK_PKRU) 194 195u64 __read_mostly host_efer; 196EXPORT_SYMBOL_GPL(host_efer); 197 198bool __read_mostly allow_smaller_maxphyaddr = 0; 199EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 200 201static u64 __read_mostly host_xss; 202u64 __read_mostly supported_xss; 203EXPORT_SYMBOL_GPL(supported_xss); 204 205struct kvm_stats_debugfs_item debugfs_entries[] = { 206 VCPU_STAT("pf_fixed", pf_fixed), 207 VCPU_STAT("pf_guest", pf_guest), 208 VCPU_STAT("tlb_flush", tlb_flush), 209 VCPU_STAT("invlpg", invlpg), 210 VCPU_STAT("exits", exits), 211 VCPU_STAT("io_exits", io_exits), 212 VCPU_STAT("mmio_exits", mmio_exits), 213 VCPU_STAT("signal_exits", signal_exits), 214 VCPU_STAT("irq_window", irq_window_exits), 215 VCPU_STAT("nmi_window", nmi_window_exits), 216 VCPU_STAT("halt_exits", halt_exits), 217 VCPU_STAT("halt_successful_poll", halt_successful_poll), 218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 220 VCPU_STAT("halt_wakeup", halt_wakeup), 221 VCPU_STAT("hypercalls", hypercalls), 222 VCPU_STAT("request_irq", request_irq_exits), 223 VCPU_STAT("irq_exits", irq_exits), 224 VCPU_STAT("host_state_reload", host_state_reload), 225 VCPU_STAT("fpu_reload", fpu_reload), 226 VCPU_STAT("insn_emulation", insn_emulation), 227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 228 VCPU_STAT("irq_injections", irq_injections), 229 VCPU_STAT("nmi_injections", nmi_injections), 230 VCPU_STAT("req_event", req_event), 231 VCPU_STAT("l1d_flush", l1d_flush), 232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 234 VCPU_STAT("preemption_reported", preemption_reported), 235 VCPU_STAT("preemption_other", preemption_other), 236 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 237 VM_STAT("mmu_pte_write", mmu_pte_write), 238 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 239 VM_STAT("mmu_flooded", mmu_flooded), 240 VM_STAT("mmu_recycled", mmu_recycled), 241 VM_STAT("mmu_cache_miss", mmu_cache_miss), 242 VM_STAT("mmu_unsync", mmu_unsync), 243 VM_STAT("remote_tlb_flush", remote_tlb_flush), 244 VM_STAT("largepages", lpages, .mode = 0444), 245 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 246 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 247 { NULL } 248}; 249 250u64 __read_mostly host_xcr0; 251u64 __read_mostly supported_xcr0; 252EXPORT_SYMBOL_GPL(supported_xcr0); 253 254static struct kmem_cache *x86_fpu_cache; 255 256static struct kmem_cache *x86_emulator_cache; 257 258/* 259 * When called, it means the previous get/set msr reached an invalid msr. 260 * Return true if we want to ignore/silent this failed msr access. 261 */ 262static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 263 u64 data, bool write) 264{ 265 const char *op = write ? "wrmsr" : "rdmsr"; 266 267 if (ignore_msrs) { 268 if (report_ignored_msrs) 269 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 270 op, msr, data); 271 /* Mask the error */ 272 return true; 273 } else { 274 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 275 op, msr, data); 276 return false; 277 } 278} 279 280static struct kmem_cache *kvm_alloc_emulator_cache(void) 281{ 282 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 283 unsigned int size = sizeof(struct x86_emulate_ctxt); 284 285 return kmem_cache_create_usercopy("x86_emulator", size, 286 __alignof__(struct x86_emulate_ctxt), 287 SLAB_ACCOUNT, useroffset, 288 size - useroffset, NULL); 289} 290 291static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 292 293static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 294{ 295 int i; 296 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 297 vcpu->arch.apf.gfns[i] = ~0; 298} 299 300static void kvm_on_user_return(struct user_return_notifier *urn) 301{ 302 unsigned slot; 303 struct kvm_user_return_msrs *msrs 304 = container_of(urn, struct kvm_user_return_msrs, urn); 305 struct kvm_user_return_msr_values *values; 306 unsigned long flags; 307 308 /* 309 * Disabling irqs at this point since the following code could be 310 * interrupted and executed through kvm_arch_hardware_disable() 311 */ 312 local_irq_save(flags); 313 if (msrs->registered) { 314 msrs->registered = false; 315 user_return_notifier_unregister(urn); 316 } 317 local_irq_restore(flags); 318 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 319 values = &msrs->values[slot]; 320 if (values->host != values->curr) { 321 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 322 values->curr = values->host; 323 } 324 } 325} 326 327int kvm_probe_user_return_msr(u32 msr) 328{ 329 u64 val; 330 int ret; 331 332 preempt_disable(); 333 ret = rdmsrl_safe(msr, &val); 334 if (ret) 335 goto out; 336 ret = wrmsrl_safe(msr, val); 337out: 338 preempt_enable(); 339 return ret; 340} 341EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr); 342 343void kvm_define_user_return_msr(unsigned slot, u32 msr) 344{ 345 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 346 user_return_msrs_global.msrs[slot] = msr; 347 if (slot >= user_return_msrs_global.nr) 348 user_return_msrs_global.nr = slot + 1; 349} 350EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 351 352static void kvm_user_return_msr_cpu_online(void) 353{ 354 unsigned int cpu = smp_processor_id(); 355 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 356 u64 value; 357 int i; 358 359 for (i = 0; i < user_return_msrs_global.nr; ++i) { 360 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 361 msrs->values[i].host = value; 362 msrs->values[i].curr = value; 363 } 364} 365 366int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 367{ 368 unsigned int cpu = smp_processor_id(); 369 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 370 int err; 371 372 value = (value & mask) | (msrs->values[slot].host & ~mask); 373 if (value == msrs->values[slot].curr) 374 return 0; 375 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 376 if (err) 377 return 1; 378 379 msrs->values[slot].curr = value; 380 if (!msrs->registered) { 381 msrs->urn.on_user_return = kvm_on_user_return; 382 user_return_notifier_register(&msrs->urn); 383 msrs->registered = true; 384 } 385 return 0; 386} 387EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 388 389static void drop_user_return_notifiers(void) 390{ 391 unsigned int cpu = smp_processor_id(); 392 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 393 394 if (msrs->registered) 395 kvm_on_user_return(&msrs->urn); 396} 397 398u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 399{ 400 return vcpu->arch.apic_base; 401} 402EXPORT_SYMBOL_GPL(kvm_get_apic_base); 403 404enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 405{ 406 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 407} 408EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 409 410int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 411{ 412 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 413 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 414 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 415 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 416 417 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 418 return 1; 419 if (!msr_info->host_initiated) { 420 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 421 return 1; 422 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 423 return 1; 424 } 425 426 kvm_lapic_set_base(vcpu, msr_info->data); 427 kvm_recalculate_apic_map(vcpu->kvm); 428 return 0; 429} 430EXPORT_SYMBOL_GPL(kvm_set_apic_base); 431 432asmlinkage __visible noinstr void kvm_spurious_fault(void) 433{ 434 /* Fault while not rebooting. We want the trace. */ 435 BUG_ON(!kvm_rebooting); 436} 437EXPORT_SYMBOL_GPL(kvm_spurious_fault); 438 439#define EXCPT_BENIGN 0 440#define EXCPT_CONTRIBUTORY 1 441#define EXCPT_PF 2 442 443static int exception_class(int vector) 444{ 445 switch (vector) { 446 case PF_VECTOR: 447 return EXCPT_PF; 448 case DE_VECTOR: 449 case TS_VECTOR: 450 case NP_VECTOR: 451 case SS_VECTOR: 452 case GP_VECTOR: 453 return EXCPT_CONTRIBUTORY; 454 default: 455 break; 456 } 457 return EXCPT_BENIGN; 458} 459 460#define EXCPT_FAULT 0 461#define EXCPT_TRAP 1 462#define EXCPT_ABORT 2 463#define EXCPT_INTERRUPT 3 464#define EXCPT_DB 4 465 466static int exception_type(int vector) 467{ 468 unsigned int mask; 469 470 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 471 return EXCPT_INTERRUPT; 472 473 mask = 1 << vector; 474 475 /* 476 * #DBs can be trap-like or fault-like, the caller must check other CPU 477 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 478 */ 479 if (mask & (1 << DB_VECTOR)) 480 return EXCPT_DB; 481 482 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 483 return EXCPT_TRAP; 484 485 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 486 return EXCPT_ABORT; 487 488 /* Reserved exceptions will result in fault */ 489 return EXCPT_FAULT; 490} 491 492void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 493{ 494 unsigned nr = vcpu->arch.exception.nr; 495 bool has_payload = vcpu->arch.exception.has_payload; 496 unsigned long payload = vcpu->arch.exception.payload; 497 498 if (!has_payload) 499 return; 500 501 switch (nr) { 502 case DB_VECTOR: 503 /* 504 * "Certain debug exceptions may clear bit 0-3. The 505 * remaining contents of the DR6 register are never 506 * cleared by the processor". 507 */ 508 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 509 /* 510 * DR6.RTM is set by all #DB exceptions that don't clear it. 511 */ 512 vcpu->arch.dr6 |= DR6_RTM; 513 vcpu->arch.dr6 |= payload; 514 /* 515 * Bit 16 should be set in the payload whenever the #DB 516 * exception should clear DR6.RTM. This makes the payload 517 * compatible with the pending debug exceptions under VMX. 518 * Though not currently documented in the SDM, this also 519 * makes the payload compatible with the exit qualification 520 * for #DB exceptions under VMX. 521 */ 522 vcpu->arch.dr6 ^= payload & DR6_RTM; 523 524 /* 525 * The #DB payload is defined as compatible with the 'pending 526 * debug exceptions' field under VMX, not DR6. While bit 12 is 527 * defined in the 'pending debug exceptions' field (enabled 528 * breakpoint), it is reserved and must be zero in DR6. 529 */ 530 vcpu->arch.dr6 &= ~BIT(12); 531 break; 532 case PF_VECTOR: 533 vcpu->arch.cr2 = payload; 534 break; 535 } 536 537 vcpu->arch.exception.has_payload = false; 538 vcpu->arch.exception.payload = 0; 539} 540EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 541 542static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 543 unsigned nr, bool has_error, u32 error_code, 544 bool has_payload, unsigned long payload, bool reinject) 545{ 546 u32 prev_nr; 547 int class1, class2; 548 549 kvm_make_request(KVM_REQ_EVENT, vcpu); 550 551 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 552 queue: 553 if (reinject) { 554 /* 555 * On vmentry, vcpu->arch.exception.pending is only 556 * true if an event injection was blocked by 557 * nested_run_pending. In that case, however, 558 * vcpu_enter_guest requests an immediate exit, 559 * and the guest shouldn't proceed far enough to 560 * need reinjection. 561 */ 562 WARN_ON_ONCE(vcpu->arch.exception.pending); 563 vcpu->arch.exception.injected = true; 564 if (WARN_ON_ONCE(has_payload)) { 565 /* 566 * A reinjected event has already 567 * delivered its payload. 568 */ 569 has_payload = false; 570 payload = 0; 571 } 572 } else { 573 vcpu->arch.exception.pending = true; 574 vcpu->arch.exception.injected = false; 575 } 576 vcpu->arch.exception.has_error_code = has_error; 577 vcpu->arch.exception.nr = nr; 578 vcpu->arch.exception.error_code = error_code; 579 vcpu->arch.exception.has_payload = has_payload; 580 vcpu->arch.exception.payload = payload; 581 if (!is_guest_mode(vcpu)) 582 kvm_deliver_exception_payload(vcpu); 583 return; 584 } 585 586 /* to check exception */ 587 prev_nr = vcpu->arch.exception.nr; 588 if (prev_nr == DF_VECTOR) { 589 /* triple fault -> shutdown */ 590 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 591 return; 592 } 593 class1 = exception_class(prev_nr); 594 class2 = exception_class(nr); 595 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 596 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 597 /* 598 * Generate double fault per SDM Table 5-5. Set 599 * exception.pending = true so that the double fault 600 * can trigger a nested vmexit. 601 */ 602 vcpu->arch.exception.pending = true; 603 vcpu->arch.exception.injected = false; 604 vcpu->arch.exception.has_error_code = true; 605 vcpu->arch.exception.nr = DF_VECTOR; 606 vcpu->arch.exception.error_code = 0; 607 vcpu->arch.exception.has_payload = false; 608 vcpu->arch.exception.payload = 0; 609 } else 610 /* replace previous exception with a new one in a hope 611 that instruction re-execution will regenerate lost 612 exception */ 613 goto queue; 614} 615 616void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 617{ 618 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 619} 620EXPORT_SYMBOL_GPL(kvm_queue_exception); 621 622void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 623{ 624 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 625} 626EXPORT_SYMBOL_GPL(kvm_requeue_exception); 627 628void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 629 unsigned long payload) 630{ 631 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 632} 633EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 634 635static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 636 u32 error_code, unsigned long payload) 637{ 638 kvm_multiple_exception(vcpu, nr, true, error_code, 639 true, payload, false); 640} 641 642int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 643{ 644 if (err) 645 kvm_inject_gp(vcpu, 0); 646 else 647 return kvm_skip_emulated_instruction(vcpu); 648 649 return 1; 650} 651EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 652 653void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 654{ 655 ++vcpu->stat.pf_guest; 656 vcpu->arch.exception.nested_apf = 657 is_guest_mode(vcpu) && fault->async_page_fault; 658 if (vcpu->arch.exception.nested_apf) { 659 vcpu->arch.apf.nested_apf_token = fault->address; 660 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 661 } else { 662 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 663 fault->address); 664 } 665} 666EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 667 668bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 669 struct x86_exception *fault) 670{ 671 struct kvm_mmu *fault_mmu; 672 WARN_ON_ONCE(fault->vector != PF_VECTOR); 673 674 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 675 vcpu->arch.walk_mmu; 676 677 /* 678 * Invalidate the TLB entry for the faulting address, if it exists, 679 * else the access will fault indefinitely (and to emulate hardware). 680 */ 681 if ((fault->error_code & PFERR_PRESENT_MASK) && 682 !(fault->error_code & PFERR_RSVD_MASK)) 683 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 684 fault_mmu->root_hpa); 685 686 fault_mmu->inject_page_fault(vcpu, fault); 687 return fault->nested_page_fault; 688} 689EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 690 691void kvm_inject_nmi(struct kvm_vcpu *vcpu) 692{ 693 atomic_inc(&vcpu->arch.nmi_queued); 694 kvm_make_request(KVM_REQ_NMI, vcpu); 695} 696EXPORT_SYMBOL_GPL(kvm_inject_nmi); 697 698void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 699{ 700 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 701} 702EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 703 704void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 705{ 706 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 707} 708EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 709 710/* 711 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 712 * a #GP and return false. 713 */ 714bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 715{ 716 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 717 return true; 718 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 719 return false; 720} 721EXPORT_SYMBOL_GPL(kvm_require_cpl); 722 723bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 724{ 725 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 726 return true; 727 728 kvm_queue_exception(vcpu, UD_VECTOR); 729 return false; 730} 731EXPORT_SYMBOL_GPL(kvm_require_dr); 732 733/* 734 * This function will be used to read from the physical memory of the currently 735 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 736 * can read from guest physical or from the guest's guest physical memory. 737 */ 738int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 739 gfn_t ngfn, void *data, int offset, int len, 740 u32 access) 741{ 742 struct x86_exception exception; 743 gfn_t real_gfn; 744 gpa_t ngpa; 745 746 ngpa = gfn_to_gpa(ngfn); 747 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 748 if (real_gfn == UNMAPPED_GVA) 749 return -EFAULT; 750 751 real_gfn = gpa_to_gfn(real_gfn); 752 753 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 754} 755EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 756 757static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 758 void *data, int offset, int len, u32 access) 759{ 760 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 761 data, offset, len, access); 762} 763 764static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 765{ 766 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 767 rsvd_bits(1, 2); 768} 769 770/* 771 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 772 */ 773int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 774{ 775 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 776 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 777 int i; 778 int ret; 779 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 780 781 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 782 offset * sizeof(u64), sizeof(pdpte), 783 PFERR_USER_MASK|PFERR_WRITE_MASK); 784 if (ret < 0) { 785 ret = 0; 786 goto out; 787 } 788 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 789 if ((pdpte[i] & PT_PRESENT_MASK) && 790 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 791 ret = 0; 792 goto out; 793 } 794 } 795 ret = 1; 796 797 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 798 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 799 800out: 801 802 return ret; 803} 804EXPORT_SYMBOL_GPL(load_pdptrs); 805 806bool pdptrs_changed(struct kvm_vcpu *vcpu) 807{ 808 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 809 int offset; 810 gfn_t gfn; 811 int r; 812 813 if (!is_pae_paging(vcpu)) 814 return false; 815 816 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 817 return true; 818 819 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 820 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 821 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 822 PFERR_USER_MASK | PFERR_WRITE_MASK); 823 if (r < 0) 824 return true; 825 826 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 827} 828EXPORT_SYMBOL_GPL(pdptrs_changed); 829 830int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 831{ 832 unsigned long old_cr0 = kvm_read_cr0(vcpu); 833 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 834 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 835 836 cr0 |= X86_CR0_ET; 837 838#ifdef CONFIG_X86_64 839 if (cr0 & 0xffffffff00000000UL) 840 return 1; 841#endif 842 843 cr0 &= ~CR0_RESERVED_BITS; 844 845 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 846 return 1; 847 848 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 849 return 1; 850 851#ifdef CONFIG_X86_64 852 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 853 (cr0 & X86_CR0_PG)) { 854 int cs_db, cs_l; 855 856 if (!is_pae(vcpu)) 857 return 1; 858 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 859 if (cs_l) 860 return 1; 861 } 862#endif 863 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 864 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 865 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 866 return 1; 867 868 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 869 return 1; 870 871 kvm_x86_ops.set_cr0(vcpu, cr0); 872 873 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 874 kvm_clear_async_pf_completion_queue(vcpu); 875 kvm_async_pf_hash_reset(vcpu); 876 } 877 878 if ((cr0 ^ old_cr0) & update_bits) 879 kvm_mmu_reset_context(vcpu); 880 881 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 882 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 883 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 884 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 885 886 return 0; 887} 888EXPORT_SYMBOL_GPL(kvm_set_cr0); 889 890void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 891{ 892 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 893} 894EXPORT_SYMBOL_GPL(kvm_lmsw); 895 896void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 897{ 898 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 899 900 if (vcpu->arch.xcr0 != host_xcr0) 901 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 902 903 if (vcpu->arch.xsaves_enabled && 904 vcpu->arch.ia32_xss != host_xss) 905 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 906 } 907 908 if (static_cpu_has(X86_FEATURE_PKU) && 909 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 910 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 911 vcpu->arch.pkru != vcpu->arch.host_pkru) 912 __write_pkru(vcpu->arch.pkru); 913} 914EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 915 916void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 917{ 918 if (static_cpu_has(X86_FEATURE_PKU) && 919 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 920 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 921 vcpu->arch.pkru = rdpkru(); 922 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 923 __write_pkru(vcpu->arch.host_pkru); 924 } 925 926 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 927 928 if (vcpu->arch.xcr0 != host_xcr0) 929 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 930 931 if (vcpu->arch.xsaves_enabled && 932 vcpu->arch.ia32_xss != host_xss) 933 wrmsrl(MSR_IA32_XSS, host_xss); 934 } 935 936} 937EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 938 939static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 940{ 941 u64 xcr0 = xcr; 942 u64 old_xcr0 = vcpu->arch.xcr0; 943 u64 valid_bits; 944 945 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 946 if (index != XCR_XFEATURE_ENABLED_MASK) 947 return 1; 948 if (!(xcr0 & XFEATURE_MASK_FP)) 949 return 1; 950 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 951 return 1; 952 953 /* 954 * Do not allow the guest to set bits that we do not support 955 * saving. However, xcr0 bit 0 is always set, even if the 956 * emulated CPU does not support XSAVE (see fx_init). 957 */ 958 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 959 if (xcr0 & ~valid_bits) 960 return 1; 961 962 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 963 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 964 return 1; 965 966 if (xcr0 & XFEATURE_MASK_AVX512) { 967 if (!(xcr0 & XFEATURE_MASK_YMM)) 968 return 1; 969 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 970 return 1; 971 } 972 vcpu->arch.xcr0 = xcr0; 973 974 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 975 kvm_update_cpuid_runtime(vcpu); 976 return 0; 977} 978 979int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 980{ 981 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 982 __kvm_set_xcr(vcpu, index, xcr)) { 983 kvm_inject_gp(vcpu, 0); 984 return 1; 985 } 986 return 0; 987} 988EXPORT_SYMBOL_GPL(kvm_set_xcr); 989 990int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 991{ 992 if (cr4 & cr4_reserved_bits) 993 return -EINVAL; 994 995 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 996 return -EINVAL; 997 998 if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4)) 999 return -EINVAL; 1000 1001 return 0; 1002} 1003EXPORT_SYMBOL_GPL(kvm_valid_cr4); 1004 1005int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1006{ 1007 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1008 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 1009 X86_CR4_SMEP; 1010 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE; 1011 1012 if (kvm_valid_cr4(vcpu, cr4)) 1013 return 1; 1014 1015 if (is_long_mode(vcpu)) { 1016 if (!(cr4 & X86_CR4_PAE)) 1017 return 1; 1018 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1019 return 1; 1020 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1021 && ((cr4 ^ old_cr4) & pdptr_bits) 1022 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 1023 kvm_read_cr3(vcpu))) 1024 return 1; 1025 1026 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1027 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1028 return 1; 1029 1030 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1031 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1032 return 1; 1033 } 1034 1035 kvm_x86_ops.set_cr4(vcpu, cr4); 1036 1037 if (((cr4 ^ old_cr4) & mmu_role_bits) || 1038 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1039 kvm_mmu_reset_context(vcpu); 1040 1041 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1042 kvm_update_cpuid_runtime(vcpu); 1043 1044 return 0; 1045} 1046EXPORT_SYMBOL_GPL(kvm_set_cr4); 1047 1048int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1049{ 1050 bool skip_tlb_flush = false; 1051#ifdef CONFIG_X86_64 1052 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1053 1054 if (pcid_enabled) { 1055 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1056 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1057 } 1058#endif 1059 1060 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1061 if (!skip_tlb_flush) { 1062 kvm_mmu_sync_roots(vcpu); 1063 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1064 } 1065 return 0; 1066 } 1067 1068 if (is_long_mode(vcpu) && 1069 (cr3 & vcpu->arch.cr3_lm_rsvd_bits)) 1070 return 1; 1071 else if (is_pae_paging(vcpu) && 1072 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1073 return 1; 1074 1075 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1076 vcpu->arch.cr3 = cr3; 1077 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1078 1079 return 0; 1080} 1081EXPORT_SYMBOL_GPL(kvm_set_cr3); 1082 1083int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1084{ 1085 if (cr8 & CR8_RESERVED_BITS) 1086 return 1; 1087 if (lapic_in_kernel(vcpu)) 1088 kvm_lapic_set_tpr(vcpu, cr8); 1089 else 1090 vcpu->arch.cr8 = cr8; 1091 return 0; 1092} 1093EXPORT_SYMBOL_GPL(kvm_set_cr8); 1094 1095unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1096{ 1097 if (lapic_in_kernel(vcpu)) 1098 return kvm_lapic_get_cr8(vcpu); 1099 else 1100 return vcpu->arch.cr8; 1101} 1102EXPORT_SYMBOL_GPL(kvm_get_cr8); 1103 1104static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1105{ 1106 int i; 1107 1108 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1109 for (i = 0; i < KVM_NR_DB_REGS; i++) 1110 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1111 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1112 } 1113} 1114 1115void kvm_update_dr7(struct kvm_vcpu *vcpu) 1116{ 1117 unsigned long dr7; 1118 1119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1120 dr7 = vcpu->arch.guest_debug_dr7; 1121 else 1122 dr7 = vcpu->arch.dr7; 1123 kvm_x86_ops.set_dr7(vcpu, dr7); 1124 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1125 if (dr7 & DR7_BP_EN_MASK) 1126 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1127} 1128EXPORT_SYMBOL_GPL(kvm_update_dr7); 1129 1130static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1131{ 1132 u64 fixed = DR6_FIXED_1; 1133 1134 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1135 fixed |= DR6_RTM; 1136 return fixed; 1137} 1138 1139static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1140{ 1141 size_t size = ARRAY_SIZE(vcpu->arch.db); 1142 1143 switch (dr) { 1144 case 0 ... 3: 1145 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1146 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1147 vcpu->arch.eff_db[dr] = val; 1148 break; 1149 case 4: 1150 case 6: 1151 if (!kvm_dr6_valid(val)) 1152 return -1; /* #GP */ 1153 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1154 break; 1155 case 5: 1156 default: /* 7 */ 1157 if (!kvm_dr7_valid(val)) 1158 return -1; /* #GP */ 1159 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1160 kvm_update_dr7(vcpu); 1161 break; 1162 } 1163 1164 return 0; 1165} 1166 1167int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1168{ 1169 if (__kvm_set_dr(vcpu, dr, val)) { 1170 kvm_inject_gp(vcpu, 0); 1171 return 1; 1172 } 1173 return 0; 1174} 1175EXPORT_SYMBOL_GPL(kvm_set_dr); 1176 1177int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1178{ 1179 size_t size = ARRAY_SIZE(vcpu->arch.db); 1180 1181 switch (dr) { 1182 case 0 ... 3: 1183 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1184 break; 1185 case 4: 1186 case 6: 1187 *val = vcpu->arch.dr6; 1188 break; 1189 case 5: 1190 default: /* 7 */ 1191 *val = vcpu->arch.dr7; 1192 break; 1193 } 1194 return 0; 1195} 1196EXPORT_SYMBOL_GPL(kvm_get_dr); 1197 1198bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1199{ 1200 u32 ecx = kvm_rcx_read(vcpu); 1201 u64 data; 1202 int err; 1203 1204 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1205 if (err) 1206 return err; 1207 kvm_rax_write(vcpu, (u32)data); 1208 kvm_rdx_write(vcpu, data >> 32); 1209 return err; 1210} 1211EXPORT_SYMBOL_GPL(kvm_rdpmc); 1212 1213/* 1214 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1215 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1216 * 1217 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1218 * extract the supported MSRs from the related const lists. 1219 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1220 * capabilities of the host cpu. This capabilities test skips MSRs that are 1221 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1222 * may depend on host virtualization features rather than host cpu features. 1223 */ 1224 1225static const u32 msrs_to_save_all[] = { 1226 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1227 MSR_STAR, 1228#ifdef CONFIG_X86_64 1229 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1230#endif 1231 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1232 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1233 MSR_IA32_SPEC_CTRL, 1234 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1235 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1236 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1237 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1238 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1239 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1240 MSR_IA32_UMWAIT_CONTROL, 1241 1242 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1243 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1244 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1245 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1246 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1247 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1248 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1249 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1250 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1251 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1252 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1253 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1254 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1255 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1256 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1257 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1258 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1259 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1260 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1261 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1262 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1263 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1264 1265 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1266 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1267 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1268 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1269 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1270 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1271}; 1272 1273static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1274static unsigned num_msrs_to_save; 1275 1276static const u32 emulated_msrs_all[] = { 1277 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1278 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1279 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1280 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1281 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1282 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1283 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1284 HV_X64_MSR_RESET, 1285 HV_X64_MSR_VP_INDEX, 1286 HV_X64_MSR_VP_RUNTIME, 1287 HV_X64_MSR_SCONTROL, 1288 HV_X64_MSR_STIMER0_CONFIG, 1289 HV_X64_MSR_VP_ASSIST_PAGE, 1290 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1291 HV_X64_MSR_TSC_EMULATION_STATUS, 1292 HV_X64_MSR_SYNDBG_OPTIONS, 1293 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1294 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1295 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1296 1297 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1298 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1299 1300 MSR_IA32_TSC_ADJUST, 1301 MSR_IA32_TSCDEADLINE, 1302 MSR_IA32_ARCH_CAPABILITIES, 1303 MSR_IA32_PERF_CAPABILITIES, 1304 MSR_IA32_MISC_ENABLE, 1305 MSR_IA32_MCG_STATUS, 1306 MSR_IA32_MCG_CTL, 1307 MSR_IA32_MCG_EXT_CTL, 1308 MSR_IA32_SMBASE, 1309 MSR_SMI_COUNT, 1310 MSR_PLATFORM_INFO, 1311 MSR_MISC_FEATURES_ENABLES, 1312 MSR_AMD64_VIRT_SPEC_CTRL, 1313 MSR_IA32_POWER_CTL, 1314 MSR_IA32_UCODE_REV, 1315 1316 /* 1317 * The following list leaves out MSRs whose values are determined 1318 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1319 * We always support the "true" VMX control MSRs, even if the host 1320 * processor does not, so I am putting these registers here rather 1321 * than in msrs_to_save_all. 1322 */ 1323 MSR_IA32_VMX_BASIC, 1324 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1325 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1326 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1327 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1328 MSR_IA32_VMX_MISC, 1329 MSR_IA32_VMX_CR0_FIXED0, 1330 MSR_IA32_VMX_CR4_FIXED0, 1331 MSR_IA32_VMX_VMCS_ENUM, 1332 MSR_IA32_VMX_PROCBASED_CTLS2, 1333 MSR_IA32_VMX_EPT_VPID_CAP, 1334 MSR_IA32_VMX_VMFUNC, 1335 1336 MSR_K7_HWCR, 1337 MSR_KVM_POLL_CONTROL, 1338}; 1339 1340static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1341static unsigned num_emulated_msrs; 1342 1343/* 1344 * List of msr numbers which are used to expose MSR-based features that 1345 * can be used by a hypervisor to validate requested CPU features. 1346 */ 1347static const u32 msr_based_features_all[] = { 1348 MSR_IA32_VMX_BASIC, 1349 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1350 MSR_IA32_VMX_PINBASED_CTLS, 1351 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1352 MSR_IA32_VMX_PROCBASED_CTLS, 1353 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1354 MSR_IA32_VMX_EXIT_CTLS, 1355 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1356 MSR_IA32_VMX_ENTRY_CTLS, 1357 MSR_IA32_VMX_MISC, 1358 MSR_IA32_VMX_CR0_FIXED0, 1359 MSR_IA32_VMX_CR0_FIXED1, 1360 MSR_IA32_VMX_CR4_FIXED0, 1361 MSR_IA32_VMX_CR4_FIXED1, 1362 MSR_IA32_VMX_VMCS_ENUM, 1363 MSR_IA32_VMX_PROCBASED_CTLS2, 1364 MSR_IA32_VMX_EPT_VPID_CAP, 1365 MSR_IA32_VMX_VMFUNC, 1366 1367 MSR_AMD64_DE_CFG, 1368 MSR_IA32_UCODE_REV, 1369 MSR_IA32_ARCH_CAPABILITIES, 1370 MSR_IA32_PERF_CAPABILITIES, 1371}; 1372 1373static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1374static unsigned int num_msr_based_features; 1375 1376/* 1377 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1378 * does not yet virtualize. These include: 1379 * 10 - MISC_PACKAGE_CTRLS 1380 * 11 - ENERGY_FILTERING_CTL 1381 * 12 - DOITM 1382 * 18 - FB_CLEAR_CTRL 1383 * 21 - XAPIC_DISABLE_STATUS 1384 * 23 - OVERCLOCKING_STATUS 1385 */ 1386 1387#define KVM_SUPPORTED_ARCH_CAP \ 1388 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1389 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1390 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1391 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1392 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1393 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR) 1394 1395static u64 kvm_get_arch_capabilities(void) 1396{ 1397 u64 data = 0; 1398 1399 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1400 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1401 data &= KVM_SUPPORTED_ARCH_CAP; 1402 } 1403 1404 /* 1405 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1406 * the nested hypervisor runs with NX huge pages. If it is not, 1407 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1408 * L1 guests, so it need not worry about its own (L2) guests. 1409 */ 1410 data |= ARCH_CAP_PSCHANGE_MC_NO; 1411 1412 /* 1413 * If we're doing cache flushes (either "always" or "cond") 1414 * we will do one whenever the guest does a vmlaunch/vmresume. 1415 * If an outer hypervisor is doing the cache flush for us 1416 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1417 * capability to the guest too, and if EPT is disabled we're not 1418 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1419 * require a nested hypervisor to do a flush of its own. 1420 */ 1421 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1422 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1423 1424 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1425 data |= ARCH_CAP_RDCL_NO; 1426 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1427 data |= ARCH_CAP_SSB_NO; 1428 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1429 data |= ARCH_CAP_MDS_NO; 1430 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1431 data |= ARCH_CAP_RFDS_NO; 1432 1433 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1434 /* 1435 * If RTM=0 because the kernel has disabled TSX, the host might 1436 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1437 * and therefore knows that there cannot be TAA) but keep 1438 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1439 * and we want to allow migrating those guests to tsx=off hosts. 1440 */ 1441 data &= ~ARCH_CAP_TAA_NO; 1442 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1443 data |= ARCH_CAP_TAA_NO; 1444 } else { 1445 /* 1446 * Nothing to do here; we emulate TSX_CTRL if present on the 1447 * host so the guest can choose between disabling TSX or 1448 * using VERW to clear CPU buffers. 1449 */ 1450 } 1451 1452 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1453 data |= ARCH_CAP_GDS_NO; 1454 1455 return data; 1456} 1457 1458static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1459{ 1460 switch (msr->index) { 1461 case MSR_IA32_ARCH_CAPABILITIES: 1462 msr->data = kvm_get_arch_capabilities(); 1463 break; 1464 case MSR_IA32_UCODE_REV: 1465 rdmsrl_safe(msr->index, &msr->data); 1466 break; 1467 default: 1468 return kvm_x86_ops.get_msr_feature(msr); 1469 } 1470 return 0; 1471} 1472 1473static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1474{ 1475 struct kvm_msr_entry msr; 1476 int r; 1477 1478 msr.index = index; 1479 r = kvm_get_msr_feature(&msr); 1480 1481 if (r == KVM_MSR_RET_INVALID) { 1482 /* Unconditionally clear the output for simplicity */ 1483 *data = 0; 1484 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1485 r = 0; 1486 } 1487 1488 if (r) 1489 return r; 1490 1491 *data = msr.data; 1492 1493 return 0; 1494} 1495 1496static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1497{ 1498 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1499 return false; 1500 1501 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1502 return false; 1503 1504 if (efer & (EFER_LME | EFER_LMA) && 1505 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1506 return false; 1507 1508 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1509 return false; 1510 1511 return true; 1512 1513} 1514bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1515{ 1516 if (efer & efer_reserved_bits) 1517 return false; 1518 1519 return __kvm_valid_efer(vcpu, efer); 1520} 1521EXPORT_SYMBOL_GPL(kvm_valid_efer); 1522 1523static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1524{ 1525 u64 old_efer = vcpu->arch.efer; 1526 u64 efer = msr_info->data; 1527 int r; 1528 1529 if (efer & efer_reserved_bits) 1530 return 1; 1531 1532 if (!msr_info->host_initiated) { 1533 if (!__kvm_valid_efer(vcpu, efer)) 1534 return 1; 1535 1536 if (is_paging(vcpu) && 1537 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1538 return 1; 1539 } 1540 1541 efer &= ~EFER_LMA; 1542 efer |= vcpu->arch.efer & EFER_LMA; 1543 1544 r = kvm_x86_ops.set_efer(vcpu, efer); 1545 if (r) { 1546 WARN_ON(r > 0); 1547 return r; 1548 } 1549 1550 /* Update reserved bits */ 1551 if ((efer ^ old_efer) & EFER_NX) 1552 kvm_mmu_reset_context(vcpu); 1553 1554 return 0; 1555} 1556 1557void kvm_enable_efer_bits(u64 mask) 1558{ 1559 efer_reserved_bits &= ~mask; 1560} 1561EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1562 1563bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1564{ 1565 struct kvm_x86_msr_filter *msr_filter; 1566 struct msr_bitmap_range *ranges; 1567 struct kvm *kvm = vcpu->kvm; 1568 bool allowed; 1569 int idx; 1570 u32 i; 1571 1572 /* x2APIC MSRs do not support filtering. */ 1573 if (index >= 0x800 && index <= 0x8ff) 1574 return true; 1575 1576 idx = srcu_read_lock(&kvm->srcu); 1577 1578 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1579 if (!msr_filter) { 1580 allowed = true; 1581 goto out; 1582 } 1583 1584 allowed = msr_filter->default_allow; 1585 ranges = msr_filter->ranges; 1586 1587 for (i = 0; i < msr_filter->count; i++) { 1588 u32 start = ranges[i].base; 1589 u32 end = start + ranges[i].nmsrs; 1590 u32 flags = ranges[i].flags; 1591 unsigned long *bitmap = ranges[i].bitmap; 1592 1593 if ((index >= start) && (index < end) && (flags & type)) { 1594 allowed = !!test_bit(index - start, bitmap); 1595 break; 1596 } 1597 1598 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 1599 ++vcpu->stat.exits; 1600 } 1601 1602out: 1603 srcu_read_unlock(&kvm->srcu, idx); 1604 1605 return allowed; 1606} 1607EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1608 1609/* 1610 * Write @data into the MSR specified by @index. Select MSR specific fault 1611 * checks are bypassed if @host_initiated is %true. 1612 * Returns 0 on success, non-0 otherwise. 1613 * Assumes vcpu_load() was already called. 1614 */ 1615static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1616 bool host_initiated) 1617{ 1618 struct msr_data msr; 1619 1620 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1621 return KVM_MSR_RET_FILTERED; 1622 1623 switch (index) { 1624 case MSR_FS_BASE: 1625 case MSR_GS_BASE: 1626 case MSR_KERNEL_GS_BASE: 1627 case MSR_CSTAR: 1628 case MSR_LSTAR: 1629 if (is_noncanonical_address(data, vcpu)) 1630 return 1; 1631 break; 1632 case MSR_IA32_SYSENTER_EIP: 1633 case MSR_IA32_SYSENTER_ESP: 1634 /* 1635 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1636 * non-canonical address is written on Intel but not on 1637 * AMD (which ignores the top 32-bits, because it does 1638 * not implement 64-bit SYSENTER). 1639 * 1640 * 64-bit code should hence be able to write a non-canonical 1641 * value on AMD. Making the address canonical ensures that 1642 * vmentry does not fail on Intel after writing a non-canonical 1643 * value, and that something deterministic happens if the guest 1644 * invokes 64-bit SYSENTER. 1645 */ 1646 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1647 } 1648 1649 msr.data = data; 1650 msr.index = index; 1651 msr.host_initiated = host_initiated; 1652 1653 return kvm_x86_ops.set_msr(vcpu, &msr); 1654} 1655 1656static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1657 u32 index, u64 data, bool host_initiated) 1658{ 1659 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1660 1661 if (ret == KVM_MSR_RET_INVALID) 1662 if (kvm_msr_ignored_check(vcpu, index, data, true)) 1663 ret = 0; 1664 1665 return ret; 1666} 1667 1668/* 1669 * Read the MSR specified by @index into @data. Select MSR specific fault 1670 * checks are bypassed if @host_initiated is %true. 1671 * Returns 0 on success, non-0 otherwise. 1672 * Assumes vcpu_load() was already called. 1673 */ 1674int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1675 bool host_initiated) 1676{ 1677 struct msr_data msr; 1678 int ret; 1679 1680 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1681 return KVM_MSR_RET_FILTERED; 1682 1683 msr.index = index; 1684 msr.host_initiated = host_initiated; 1685 1686 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1687 if (!ret) 1688 *data = msr.data; 1689 return ret; 1690} 1691 1692static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1693 u32 index, u64 *data, bool host_initiated) 1694{ 1695 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1696 1697 if (ret == KVM_MSR_RET_INVALID) { 1698 /* Unconditionally clear *data for simplicity */ 1699 *data = 0; 1700 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1701 ret = 0; 1702 } 1703 1704 return ret; 1705} 1706 1707int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1708{ 1709 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1710} 1711EXPORT_SYMBOL_GPL(kvm_get_msr); 1712 1713int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1714{ 1715 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1716} 1717EXPORT_SYMBOL_GPL(kvm_set_msr); 1718 1719static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read) 1720{ 1721 if (vcpu->run->msr.error) { 1722 kvm_inject_gp(vcpu, 0); 1723 return 1; 1724 } else if (is_read) { 1725 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1726 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1727 } 1728 1729 return kvm_skip_emulated_instruction(vcpu); 1730} 1731 1732static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1733{ 1734 return complete_emulated_msr(vcpu, true); 1735} 1736 1737static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1738{ 1739 return complete_emulated_msr(vcpu, false); 1740} 1741 1742static u64 kvm_msr_reason(int r) 1743{ 1744 switch (r) { 1745 case KVM_MSR_RET_INVALID: 1746 return KVM_MSR_EXIT_REASON_UNKNOWN; 1747 case KVM_MSR_RET_FILTERED: 1748 return KVM_MSR_EXIT_REASON_FILTER; 1749 default: 1750 return KVM_MSR_EXIT_REASON_INVAL; 1751 } 1752} 1753 1754static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1755 u32 exit_reason, u64 data, 1756 int (*completion)(struct kvm_vcpu *vcpu), 1757 int r) 1758{ 1759 u64 msr_reason = kvm_msr_reason(r); 1760 1761 /* Check if the user wanted to know about this MSR fault */ 1762 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1763 return 0; 1764 1765 vcpu->run->exit_reason = exit_reason; 1766 vcpu->run->msr.error = 0; 1767 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1768 vcpu->run->msr.reason = msr_reason; 1769 vcpu->run->msr.index = index; 1770 vcpu->run->msr.data = data; 1771 vcpu->arch.complete_userspace_io = completion; 1772 1773 return 1; 1774} 1775 1776static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1777{ 1778 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1779 complete_emulated_rdmsr, r); 1780} 1781 1782static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1783{ 1784 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1785 complete_emulated_wrmsr, r); 1786} 1787 1788int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1789{ 1790 u32 ecx = kvm_rcx_read(vcpu); 1791 u64 data; 1792 int r; 1793 1794 r = kvm_get_msr(vcpu, ecx, &data); 1795 1796 /* MSR read failed? See if we should ask user space */ 1797 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1798 /* Bounce to user space */ 1799 return 0; 1800 } 1801 1802 /* MSR read failed? Inject a #GP */ 1803 if (r) { 1804 trace_kvm_msr_read_ex(ecx); 1805 kvm_inject_gp(vcpu, 0); 1806 return 1; 1807 } 1808 1809 trace_kvm_msr_read(ecx, data); 1810 1811 kvm_rax_write(vcpu, data & -1u); 1812 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1813 return kvm_skip_emulated_instruction(vcpu); 1814} 1815EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1816 1817int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1818{ 1819 u32 ecx = kvm_rcx_read(vcpu); 1820 u64 data = kvm_read_edx_eax(vcpu); 1821 int r; 1822 1823 r = kvm_set_msr(vcpu, ecx, data); 1824 1825 /* MSR write failed? See if we should ask user space */ 1826 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1827 /* Bounce to user space */ 1828 return 0; 1829 1830 /* Signal all other negative errors to userspace */ 1831 if (r < 0) 1832 return r; 1833 1834 /* MSR write failed? Inject a #GP */ 1835 if (r > 0) { 1836 trace_kvm_msr_write_ex(ecx, data); 1837 kvm_inject_gp(vcpu, 0); 1838 return 1; 1839 } 1840 1841 trace_kvm_msr_write(ecx, data); 1842 return kvm_skip_emulated_instruction(vcpu); 1843} 1844EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1845 1846bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1847{ 1848 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1849 xfer_to_guest_mode_work_pending(); 1850} 1851EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1852 1853/* 1854 * The fast path for frequent and performance sensitive wrmsr emulation, 1855 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1856 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1857 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1858 * other cases which must be called after interrupts are enabled on the host. 1859 */ 1860static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1861{ 1862 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1863 return 1; 1864 1865 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1866 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1867 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1868 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1869 1870 data &= ~(1 << 12); 1871 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1872 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1873 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1874 trace_kvm_apic_write(APIC_ICR, (u32)data); 1875 return 0; 1876 } 1877 1878 return 1; 1879} 1880 1881static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1882{ 1883 if (!kvm_can_use_hv_timer(vcpu)) 1884 return 1; 1885 1886 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1887 return 0; 1888} 1889 1890fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1891{ 1892 u32 msr = kvm_rcx_read(vcpu); 1893 u64 data; 1894 fastpath_t ret = EXIT_FASTPATH_NONE; 1895 1896 switch (msr) { 1897 case APIC_BASE_MSR + (APIC_ICR >> 4): 1898 data = kvm_read_edx_eax(vcpu); 1899 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1900 kvm_skip_emulated_instruction(vcpu); 1901 ret = EXIT_FASTPATH_EXIT_HANDLED; 1902 } 1903 break; 1904 case MSR_IA32_TSCDEADLINE: 1905 data = kvm_read_edx_eax(vcpu); 1906 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1907 kvm_skip_emulated_instruction(vcpu); 1908 ret = EXIT_FASTPATH_REENTER_GUEST; 1909 } 1910 break; 1911 default: 1912 break; 1913 } 1914 1915 if (ret != EXIT_FASTPATH_NONE) 1916 trace_kvm_msr_write(msr, data); 1917 1918 return ret; 1919} 1920EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1921 1922/* 1923 * Adapt set_msr() to msr_io()'s calling convention 1924 */ 1925static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1926{ 1927 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1928} 1929 1930static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1931{ 1932 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1933} 1934 1935#ifdef CONFIG_X86_64 1936struct pvclock_clock { 1937 int vclock_mode; 1938 u64 cycle_last; 1939 u64 mask; 1940 u32 mult; 1941 u32 shift; 1942 u64 base_cycles; 1943 u64 offset; 1944}; 1945 1946struct pvclock_gtod_data { 1947 seqcount_t seq; 1948 1949 struct pvclock_clock clock; /* extract of a clocksource struct */ 1950 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1951 1952 ktime_t offs_boot; 1953 u64 wall_time_sec; 1954}; 1955 1956static struct pvclock_gtod_data pvclock_gtod_data; 1957 1958static void update_pvclock_gtod(struct timekeeper *tk) 1959{ 1960 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1961 1962 write_seqcount_begin(&vdata->seq); 1963 1964 /* copy pvclock gtod data */ 1965 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1966 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1967 vdata->clock.mask = tk->tkr_mono.mask; 1968 vdata->clock.mult = tk->tkr_mono.mult; 1969 vdata->clock.shift = tk->tkr_mono.shift; 1970 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1971 vdata->clock.offset = tk->tkr_mono.base; 1972 1973 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1974 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1975 vdata->raw_clock.mask = tk->tkr_raw.mask; 1976 vdata->raw_clock.mult = tk->tkr_raw.mult; 1977 vdata->raw_clock.shift = tk->tkr_raw.shift; 1978 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1979 vdata->raw_clock.offset = tk->tkr_raw.base; 1980 1981 vdata->wall_time_sec = tk->xtime_sec; 1982 1983 vdata->offs_boot = tk->offs_boot; 1984 1985 write_seqcount_end(&vdata->seq); 1986} 1987 1988static s64 get_kvmclock_base_ns(void) 1989{ 1990 /* Count up from boot time, but with the frequency of the raw clock. */ 1991 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1992} 1993#else 1994static s64 get_kvmclock_base_ns(void) 1995{ 1996 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1997 return ktime_get_boottime_ns(); 1998} 1999#endif 2000 2001static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 2002{ 2003 int version; 2004 int r; 2005 struct pvclock_wall_clock wc; 2006 u64 wall_nsec; 2007 2008 kvm->arch.wall_clock = wall_clock; 2009 2010 if (!wall_clock) 2011 return; 2012 2013 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2014 if (r) 2015 return; 2016 2017 if (version & 1) 2018 ++version; /* first time write, random junk */ 2019 2020 ++version; 2021 2022 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2023 return; 2024 2025 /* 2026 * The guest calculates current wall clock time by adding 2027 * system time (updated by kvm_guest_time_update below) to the 2028 * wall clock specified here. We do the reverse here. 2029 */ 2030 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2031 2032 wc.nsec = do_div(wall_nsec, 1000000000); 2033 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2034 wc.version = version; 2035 2036 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2037 2038 version++; 2039 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2040} 2041 2042static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2043 bool old_msr, bool host_initiated) 2044{ 2045 struct kvm_arch *ka = &vcpu->kvm->arch; 2046 2047 if (vcpu->vcpu_id == 0 && !host_initiated) { 2048 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2049 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2050 2051 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2052 } 2053 2054 vcpu->arch.time = system_time; 2055 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2056 2057 /* we verify if the enable bit is set... */ 2058 vcpu->arch.pv_time_enabled = false; 2059 if (!(system_time & 1)) 2060 return; 2061 2062 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2063 &vcpu->arch.pv_time, system_time & ~1ULL, 2064 sizeof(struct pvclock_vcpu_time_info))) 2065 vcpu->arch.pv_time_enabled = true; 2066 2067 return; 2068} 2069 2070static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2071{ 2072 do_shl32_div32(dividend, divisor); 2073 return dividend; 2074} 2075 2076static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2077 s8 *pshift, u32 *pmultiplier) 2078{ 2079 uint64_t scaled64; 2080 int32_t shift = 0; 2081 uint64_t tps64; 2082 uint32_t tps32; 2083 2084 tps64 = base_hz; 2085 scaled64 = scaled_hz; 2086 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2087 tps64 >>= 1; 2088 shift--; 2089 } 2090 2091 tps32 = (uint32_t)tps64; 2092 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2093 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2094 scaled64 >>= 1; 2095 else 2096 tps32 <<= 1; 2097 shift++; 2098 } 2099 2100 *pshift = shift; 2101 *pmultiplier = div_frac(scaled64, tps32); 2102} 2103 2104#ifdef CONFIG_X86_64 2105static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2106#endif 2107 2108static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2109static unsigned long max_tsc_khz; 2110 2111static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2112{ 2113 u64 v = (u64)khz * (1000000 + ppm); 2114 do_div(v, 1000000); 2115 return v; 2116} 2117 2118static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2119{ 2120 u64 ratio; 2121 2122 /* Guest TSC same frequency as host TSC? */ 2123 if (!scale) { 2124 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2125 return 0; 2126 } 2127 2128 /* TSC scaling supported? */ 2129 if (!kvm_has_tsc_control) { 2130 if (user_tsc_khz > tsc_khz) { 2131 vcpu->arch.tsc_catchup = 1; 2132 vcpu->arch.tsc_always_catchup = 1; 2133 return 0; 2134 } else { 2135 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2136 return -1; 2137 } 2138 } 2139 2140 /* TSC scaling required - calculate ratio */ 2141 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2142 user_tsc_khz, tsc_khz); 2143 2144 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2145 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2146 user_tsc_khz); 2147 return -1; 2148 } 2149 2150 vcpu->arch.tsc_scaling_ratio = ratio; 2151 return 0; 2152} 2153 2154static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2155{ 2156 u32 thresh_lo, thresh_hi; 2157 int use_scaling = 0; 2158 2159 /* tsc_khz can be zero if TSC calibration fails */ 2160 if (user_tsc_khz == 0) { 2161 /* set tsc_scaling_ratio to a safe value */ 2162 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2163 return -1; 2164 } 2165 2166 /* Compute a scale to convert nanoseconds in TSC cycles */ 2167 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2168 &vcpu->arch.virtual_tsc_shift, 2169 &vcpu->arch.virtual_tsc_mult); 2170 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2171 2172 /* 2173 * Compute the variation in TSC rate which is acceptable 2174 * within the range of tolerance and decide if the 2175 * rate being applied is within that bounds of the hardware 2176 * rate. If so, no scaling or compensation need be done. 2177 */ 2178 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2179 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2180 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2181 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2182 use_scaling = 1; 2183 } 2184 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2185} 2186 2187static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2188{ 2189 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2190 vcpu->arch.virtual_tsc_mult, 2191 vcpu->arch.virtual_tsc_shift); 2192 tsc += vcpu->arch.this_tsc_write; 2193 return tsc; 2194} 2195 2196static inline int gtod_is_based_on_tsc(int mode) 2197{ 2198 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2199} 2200 2201static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2202{ 2203#ifdef CONFIG_X86_64 2204 bool vcpus_matched; 2205 struct kvm_arch *ka = &vcpu->kvm->arch; 2206 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2207 2208 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2209 atomic_read(&vcpu->kvm->online_vcpus)); 2210 2211 /* 2212 * Once the masterclock is enabled, always perform request in 2213 * order to update it. 2214 * 2215 * In order to enable masterclock, the host clocksource must be TSC 2216 * and the vcpus need to have matched TSCs. When that happens, 2217 * perform request to enable masterclock. 2218 */ 2219 if (ka->use_master_clock || 2220 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2221 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2222 2223 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2224 atomic_read(&vcpu->kvm->online_vcpus), 2225 ka->use_master_clock, gtod->clock.vclock_mode); 2226#endif 2227} 2228 2229/* 2230 * Multiply tsc by a fixed point number represented by ratio. 2231 * 2232 * The most significant 64-N bits (mult) of ratio represent the 2233 * integral part of the fixed point number; the remaining N bits 2234 * (frac) represent the fractional part, ie. ratio represents a fixed 2235 * point number (mult + frac * 2^(-N)). 2236 * 2237 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2238 */ 2239static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2240{ 2241 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2242} 2243 2244u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2245{ 2246 u64 _tsc = tsc; 2247 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2248 2249 if (ratio != kvm_default_tsc_scaling_ratio) 2250 _tsc = __scale_tsc(ratio, tsc); 2251 2252 return _tsc; 2253} 2254EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2255 2256static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2257{ 2258 u64 tsc; 2259 2260 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2261 2262 return target_tsc - tsc; 2263} 2264 2265u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2266{ 2267 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2268} 2269EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2270 2271static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2272{ 2273 vcpu->arch.l1_tsc_offset = offset; 2274 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2275} 2276 2277static inline bool kvm_check_tsc_unstable(void) 2278{ 2279#ifdef CONFIG_X86_64 2280 /* 2281 * TSC is marked unstable when we're running on Hyper-V, 2282 * 'TSC page' clocksource is good. 2283 */ 2284 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2285 return false; 2286#endif 2287 return check_tsc_unstable(); 2288} 2289 2290static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2291{ 2292 struct kvm *kvm = vcpu->kvm; 2293 u64 offset, ns, elapsed; 2294 unsigned long flags; 2295 bool matched; 2296 bool already_matched; 2297 bool synchronizing = false; 2298 2299 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2300 offset = kvm_compute_tsc_offset(vcpu, data); 2301 ns = get_kvmclock_base_ns(); 2302 elapsed = ns - kvm->arch.last_tsc_nsec; 2303 2304 if (vcpu->arch.virtual_tsc_khz) { 2305 if (data == 0) { 2306 /* 2307 * detection of vcpu initialization -- need to sync 2308 * with other vCPUs. This particularly helps to keep 2309 * kvm_clock stable after CPU hotplug 2310 */ 2311 synchronizing = true; 2312 } else { 2313 u64 tsc_exp = kvm->arch.last_tsc_write + 2314 nsec_to_cycles(vcpu, elapsed); 2315 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2316 /* 2317 * Special case: TSC write with a small delta (1 second) 2318 * of virtual cycle time against real time is 2319 * interpreted as an attempt to synchronize the CPU. 2320 */ 2321 synchronizing = data < tsc_exp + tsc_hz && 2322 data + tsc_hz > tsc_exp; 2323 } 2324 } 2325 2326 /* 2327 * For a reliable TSC, we can match TSC offsets, and for an unstable 2328 * TSC, we add elapsed time in this computation. We could let the 2329 * compensation code attempt to catch up if we fall behind, but 2330 * it's better to try to match offsets from the beginning. 2331 */ 2332 if (synchronizing && 2333 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2334 if (!kvm_check_tsc_unstable()) { 2335 offset = kvm->arch.cur_tsc_offset; 2336 } else { 2337 u64 delta = nsec_to_cycles(vcpu, elapsed); 2338 data += delta; 2339 offset = kvm_compute_tsc_offset(vcpu, data); 2340 } 2341 matched = true; 2342 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2343 } else { 2344 /* 2345 * We split periods of matched TSC writes into generations. 2346 * For each generation, we track the original measured 2347 * nanosecond time, offset, and write, so if TSCs are in 2348 * sync, we can match exact offset, and if not, we can match 2349 * exact software computation in compute_guest_tsc() 2350 * 2351 * These values are tracked in kvm->arch.cur_xxx variables. 2352 */ 2353 kvm->arch.cur_tsc_generation++; 2354 kvm->arch.cur_tsc_nsec = ns; 2355 kvm->arch.cur_tsc_write = data; 2356 kvm->arch.cur_tsc_offset = offset; 2357 matched = false; 2358 } 2359 2360 /* 2361 * We also track th most recent recorded KHZ, write and time to 2362 * allow the matching interval to be extended at each write. 2363 */ 2364 kvm->arch.last_tsc_nsec = ns; 2365 kvm->arch.last_tsc_write = data; 2366 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2367 2368 vcpu->arch.last_guest_tsc = data; 2369 2370 /* Keep track of which generation this VCPU has synchronized to */ 2371 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2372 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2373 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2374 2375 kvm_vcpu_write_tsc_offset(vcpu, offset); 2376 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2377 2378 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2379 if (!matched) { 2380 kvm->arch.nr_vcpus_matched_tsc = 0; 2381 } else if (!already_matched) { 2382 kvm->arch.nr_vcpus_matched_tsc++; 2383 } 2384 2385 kvm_track_tsc_matching(vcpu); 2386 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2387} 2388 2389static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2390 s64 adjustment) 2391{ 2392 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2393 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2394} 2395 2396static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2397{ 2398 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2399 WARN_ON(adjustment < 0); 2400 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2401 adjust_tsc_offset_guest(vcpu, adjustment); 2402} 2403 2404#ifdef CONFIG_X86_64 2405 2406static u64 read_tsc(void) 2407{ 2408 u64 ret = (u64)rdtsc_ordered(); 2409 u64 last = pvclock_gtod_data.clock.cycle_last; 2410 2411 if (likely(ret >= last)) 2412 return ret; 2413 2414 /* 2415 * GCC likes to generate cmov here, but this branch is extremely 2416 * predictable (it's just a function of time and the likely is 2417 * very likely) and there's a data dependence, so force GCC 2418 * to generate a branch instead. I don't barrier() because 2419 * we don't actually need a barrier, and if this function 2420 * ever gets inlined it will generate worse code. 2421 */ 2422 asm volatile (""); 2423 return last; 2424} 2425 2426static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2427 int *mode) 2428{ 2429 long v; 2430 u64 tsc_pg_val; 2431 2432 switch (clock->vclock_mode) { 2433 case VDSO_CLOCKMODE_HVCLOCK: 2434 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2435 tsc_timestamp); 2436 if (tsc_pg_val != U64_MAX) { 2437 /* TSC page valid */ 2438 *mode = VDSO_CLOCKMODE_HVCLOCK; 2439 v = (tsc_pg_val - clock->cycle_last) & 2440 clock->mask; 2441 } else { 2442 /* TSC page invalid */ 2443 *mode = VDSO_CLOCKMODE_NONE; 2444 } 2445 break; 2446 case VDSO_CLOCKMODE_TSC: 2447 *mode = VDSO_CLOCKMODE_TSC; 2448 *tsc_timestamp = read_tsc(); 2449 v = (*tsc_timestamp - clock->cycle_last) & 2450 clock->mask; 2451 break; 2452 default: 2453 *mode = VDSO_CLOCKMODE_NONE; 2454 } 2455 2456 if (*mode == VDSO_CLOCKMODE_NONE) 2457 *tsc_timestamp = v = 0; 2458 2459 return v * clock->mult; 2460} 2461 2462static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2463{ 2464 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2465 unsigned long seq; 2466 int mode; 2467 u64 ns; 2468 2469 do { 2470 seq = read_seqcount_begin(>od->seq); 2471 ns = gtod->raw_clock.base_cycles; 2472 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2473 ns >>= gtod->raw_clock.shift; 2474 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2475 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2476 *t = ns; 2477 2478 return mode; 2479} 2480 2481static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2482{ 2483 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2484 unsigned long seq; 2485 int mode; 2486 u64 ns; 2487 2488 do { 2489 seq = read_seqcount_begin(>od->seq); 2490 ts->tv_sec = gtod->wall_time_sec; 2491 ns = gtod->clock.base_cycles; 2492 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2493 ns >>= gtod->clock.shift; 2494 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2495 2496 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2497 ts->tv_nsec = ns; 2498 2499 return mode; 2500} 2501 2502/* returns true if host is using TSC based clocksource */ 2503static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2504{ 2505 /* checked again under seqlock below */ 2506 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2507 return false; 2508 2509 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2510 tsc_timestamp)); 2511} 2512 2513/* returns true if host is using TSC based clocksource */ 2514static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2515 u64 *tsc_timestamp) 2516{ 2517 /* checked again under seqlock below */ 2518 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2519 return false; 2520 2521 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2522} 2523#endif 2524 2525/* 2526 * 2527 * Assuming a stable TSC across physical CPUS, and a stable TSC 2528 * across virtual CPUs, the following condition is possible. 2529 * Each numbered line represents an event visible to both 2530 * CPUs at the next numbered event. 2531 * 2532 * "timespecX" represents host monotonic time. "tscX" represents 2533 * RDTSC value. 2534 * 2535 * VCPU0 on CPU0 | VCPU1 on CPU1 2536 * 2537 * 1. read timespec0,tsc0 2538 * 2. | timespec1 = timespec0 + N 2539 * | tsc1 = tsc0 + M 2540 * 3. transition to guest | transition to guest 2541 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2542 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2543 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2544 * 2545 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2546 * 2547 * - ret0 < ret1 2548 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2549 * ... 2550 * - 0 < N - M => M < N 2551 * 2552 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2553 * always the case (the difference between two distinct xtime instances 2554 * might be smaller then the difference between corresponding TSC reads, 2555 * when updating guest vcpus pvclock areas). 2556 * 2557 * To avoid that problem, do not allow visibility of distinct 2558 * system_timestamp/tsc_timestamp values simultaneously: use a master 2559 * copy of host monotonic time values. Update that master copy 2560 * in lockstep. 2561 * 2562 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2563 * 2564 */ 2565 2566static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2567{ 2568#ifdef CONFIG_X86_64 2569 struct kvm_arch *ka = &kvm->arch; 2570 int vclock_mode; 2571 bool host_tsc_clocksource, vcpus_matched; 2572 2573 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2574 atomic_read(&kvm->online_vcpus)); 2575 2576 /* 2577 * If the host uses TSC clock, then passthrough TSC as stable 2578 * to the guest. 2579 */ 2580 host_tsc_clocksource = kvm_get_time_and_clockread( 2581 &ka->master_kernel_ns, 2582 &ka->master_cycle_now); 2583 2584 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2585 && !ka->backwards_tsc_observed 2586 && !ka->boot_vcpu_runs_old_kvmclock; 2587 2588 if (ka->use_master_clock) 2589 atomic_set(&kvm_guest_has_master_clock, 1); 2590 2591 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2592 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2593 vcpus_matched); 2594#endif 2595} 2596 2597void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2598{ 2599 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2600} 2601 2602static void kvm_gen_update_masterclock(struct kvm *kvm) 2603{ 2604#ifdef CONFIG_X86_64 2605 int i; 2606 struct kvm_vcpu *vcpu; 2607 struct kvm_arch *ka = &kvm->arch; 2608 2609 spin_lock(&ka->pvclock_gtod_sync_lock); 2610 kvm_make_mclock_inprogress_request(kvm); 2611 /* no guest entries from this point */ 2612 pvclock_update_vm_gtod_copy(kvm); 2613 2614 kvm_for_each_vcpu(i, vcpu, kvm) 2615 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2616 2617 /* guest entries allowed */ 2618 kvm_for_each_vcpu(i, vcpu, kvm) 2619 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2620 2621 spin_unlock(&ka->pvclock_gtod_sync_lock); 2622#endif 2623} 2624 2625u64 get_kvmclock_ns(struct kvm *kvm) 2626{ 2627 struct kvm_arch *ka = &kvm->arch; 2628 struct pvclock_vcpu_time_info hv_clock; 2629 u64 ret; 2630 2631 spin_lock(&ka->pvclock_gtod_sync_lock); 2632 if (!ka->use_master_clock) { 2633 spin_unlock(&ka->pvclock_gtod_sync_lock); 2634 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2635 } 2636 2637 hv_clock.tsc_timestamp = ka->master_cycle_now; 2638 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2639 spin_unlock(&ka->pvclock_gtod_sync_lock); 2640 2641 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2642 get_cpu(); 2643 2644 if (__this_cpu_read(cpu_tsc_khz)) { 2645 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2646 &hv_clock.tsc_shift, 2647 &hv_clock.tsc_to_system_mul); 2648 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2649 } else 2650 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2651 2652 put_cpu(); 2653 2654 return ret; 2655} 2656 2657static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2658{ 2659 struct kvm_vcpu_arch *vcpu = &v->arch; 2660 struct pvclock_vcpu_time_info guest_hv_clock; 2661 2662 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2663 &guest_hv_clock, sizeof(guest_hv_clock)))) 2664 return; 2665 2666 /* This VCPU is paused, but it's legal for a guest to read another 2667 * VCPU's kvmclock, so we really have to follow the specification where 2668 * it says that version is odd if data is being modified, and even after 2669 * it is consistent. 2670 * 2671 * Version field updates must be kept separate. This is because 2672 * kvm_write_guest_cached might use a "rep movs" instruction, and 2673 * writes within a string instruction are weakly ordered. So there 2674 * are three writes overall. 2675 * 2676 * As a small optimization, only write the version field in the first 2677 * and third write. The vcpu->pv_time cache is still valid, because the 2678 * version field is the first in the struct. 2679 */ 2680 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2681 2682 if (guest_hv_clock.version & 1) 2683 ++guest_hv_clock.version; /* first time write, random junk */ 2684 2685 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2686 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2687 &vcpu->hv_clock, 2688 sizeof(vcpu->hv_clock.version)); 2689 2690 smp_wmb(); 2691 2692 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2693 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2694 2695 if (vcpu->pvclock_set_guest_stopped_request) { 2696 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2697 vcpu->pvclock_set_guest_stopped_request = false; 2698 } 2699 2700 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2701 2702 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2703 &vcpu->hv_clock, 2704 sizeof(vcpu->hv_clock)); 2705 2706 smp_wmb(); 2707 2708 vcpu->hv_clock.version++; 2709 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2710 &vcpu->hv_clock, 2711 sizeof(vcpu->hv_clock.version)); 2712} 2713 2714static int kvm_guest_time_update(struct kvm_vcpu *v) 2715{ 2716 unsigned long flags, tgt_tsc_khz; 2717 struct kvm_vcpu_arch *vcpu = &v->arch; 2718 struct kvm_arch *ka = &v->kvm->arch; 2719 s64 kernel_ns; 2720 u64 tsc_timestamp, host_tsc; 2721 u8 pvclock_flags; 2722 bool use_master_clock; 2723 2724 kernel_ns = 0; 2725 host_tsc = 0; 2726 2727 /* 2728 * If the host uses TSC clock, then passthrough TSC as stable 2729 * to the guest. 2730 */ 2731 spin_lock(&ka->pvclock_gtod_sync_lock); 2732 use_master_clock = ka->use_master_clock; 2733 if (use_master_clock) { 2734 host_tsc = ka->master_cycle_now; 2735 kernel_ns = ka->master_kernel_ns; 2736 } 2737 spin_unlock(&ka->pvclock_gtod_sync_lock); 2738 2739 /* Keep irq disabled to prevent changes to the clock */ 2740 local_irq_save(flags); 2741 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2742 if (unlikely(tgt_tsc_khz == 0)) { 2743 local_irq_restore(flags); 2744 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2745 return 1; 2746 } 2747 if (!use_master_clock) { 2748 host_tsc = rdtsc(); 2749 kernel_ns = get_kvmclock_base_ns(); 2750 } 2751 2752 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2753 2754 /* 2755 * We may have to catch up the TSC to match elapsed wall clock 2756 * time for two reasons, even if kvmclock is used. 2757 * 1) CPU could have been running below the maximum TSC rate 2758 * 2) Broken TSC compensation resets the base at each VCPU 2759 * entry to avoid unknown leaps of TSC even when running 2760 * again on the same CPU. This may cause apparent elapsed 2761 * time to disappear, and the guest to stand still or run 2762 * very slowly. 2763 */ 2764 if (vcpu->tsc_catchup) { 2765 u64 tsc = compute_guest_tsc(v, kernel_ns); 2766 if (tsc > tsc_timestamp) { 2767 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2768 tsc_timestamp = tsc; 2769 } 2770 } 2771 2772 local_irq_restore(flags); 2773 2774 /* With all the info we got, fill in the values */ 2775 2776 if (kvm_has_tsc_control) 2777 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2778 2779 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2780 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2781 &vcpu->hv_clock.tsc_shift, 2782 &vcpu->hv_clock.tsc_to_system_mul); 2783 vcpu->hw_tsc_khz = tgt_tsc_khz; 2784 } 2785 2786 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2787 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2788 vcpu->last_guest_tsc = tsc_timestamp; 2789 2790 /* If the host uses TSC clocksource, then it is stable */ 2791 pvclock_flags = 0; 2792 if (use_master_clock) 2793 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2794 2795 vcpu->hv_clock.flags = pvclock_flags; 2796 2797 if (vcpu->pv_time_enabled) 2798 kvm_setup_pvclock_page(v); 2799 if (v == kvm_get_vcpu(v->kvm, 0)) 2800 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2801 return 0; 2802} 2803 2804/* 2805 * kvmclock updates which are isolated to a given vcpu, such as 2806 * vcpu->cpu migration, should not allow system_timestamp from 2807 * the rest of the vcpus to remain static. Otherwise ntp frequency 2808 * correction applies to one vcpu's system_timestamp but not 2809 * the others. 2810 * 2811 * So in those cases, request a kvmclock update for all vcpus. 2812 * We need to rate-limit these requests though, as they can 2813 * considerably slow guests that have a large number of vcpus. 2814 * The time for a remote vcpu to update its kvmclock is bound 2815 * by the delay we use to rate-limit the updates. 2816 */ 2817 2818#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2819 2820static void kvmclock_update_fn(struct work_struct *work) 2821{ 2822 int i; 2823 struct delayed_work *dwork = to_delayed_work(work); 2824 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2825 kvmclock_update_work); 2826 struct kvm *kvm = container_of(ka, struct kvm, arch); 2827 struct kvm_vcpu *vcpu; 2828 2829 kvm_for_each_vcpu(i, vcpu, kvm) { 2830 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2831 kvm_vcpu_kick(vcpu); 2832 } 2833} 2834 2835static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2836{ 2837 struct kvm *kvm = v->kvm; 2838 2839 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2840 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2841 KVMCLOCK_UPDATE_DELAY); 2842} 2843 2844#define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2845 2846static void kvmclock_sync_fn(struct work_struct *work) 2847{ 2848 struct delayed_work *dwork = to_delayed_work(work); 2849 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2850 kvmclock_sync_work); 2851 struct kvm *kvm = container_of(ka, struct kvm, arch); 2852 2853 if (!kvmclock_periodic_sync) 2854 return; 2855 2856 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2857 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2858 KVMCLOCK_SYNC_PERIOD); 2859} 2860 2861/* 2862 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2863 */ 2864static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2865{ 2866 /* McStatusWrEn enabled? */ 2867 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2868 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2869 2870 return false; 2871} 2872 2873static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2874{ 2875 u64 mcg_cap = vcpu->arch.mcg_cap; 2876 unsigned bank_num = mcg_cap & 0xff; 2877 u32 msr = msr_info->index; 2878 u64 data = msr_info->data; 2879 2880 switch (msr) { 2881 case MSR_IA32_MCG_STATUS: 2882 vcpu->arch.mcg_status = data; 2883 break; 2884 case MSR_IA32_MCG_CTL: 2885 if (!(mcg_cap & MCG_CTL_P) && 2886 (data || !msr_info->host_initiated)) 2887 return 1; 2888 if (data != 0 && data != ~(u64)0) 2889 return 1; 2890 vcpu->arch.mcg_ctl = data; 2891 break; 2892 default: 2893 if (msr >= MSR_IA32_MC0_CTL && 2894 msr < MSR_IA32_MCx_CTL(bank_num)) { 2895 u32 offset = array_index_nospec( 2896 msr - MSR_IA32_MC0_CTL, 2897 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2898 2899 /* only 0 or all 1s can be written to IA32_MCi_CTL 2900 * some Linux kernels though clear bit 10 in bank 4 to 2901 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2902 * this to avoid an uncatched #GP in the guest. 2903 * 2904 * UNIXWARE clears bit 0 of MC1_CTL to ignore 2905 * correctable, single-bit ECC data errors. 2906 */ 2907 if ((offset & 0x3) == 0 && 2908 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 2909 return 1; 2910 2911 /* MCi_STATUS */ 2912 if (!msr_info->host_initiated && 2913 (offset & 0x3) == 1 && data != 0) { 2914 if (!can_set_mci_status(vcpu)) 2915 return 1; 2916 } 2917 2918 vcpu->arch.mce_banks[offset] = data; 2919 break; 2920 } 2921 return 1; 2922 } 2923 return 0; 2924} 2925 2926static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2927{ 2928 struct kvm *kvm = vcpu->kvm; 2929 int lm = is_long_mode(vcpu); 2930 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2931 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2932 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2933 : kvm->arch.xen_hvm_config.blob_size_32; 2934 u32 page_num = data & ~PAGE_MASK; 2935 u64 page_addr = data & PAGE_MASK; 2936 u8 *page; 2937 2938 if (page_num >= blob_size) 2939 return 1; 2940 2941 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2942 if (IS_ERR(page)) 2943 return PTR_ERR(page); 2944 2945 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 2946 kfree(page); 2947 return 1; 2948 } 2949 return 0; 2950} 2951 2952static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2953{ 2954 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2955 2956 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2957} 2958 2959static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2960{ 2961 gpa_t gpa = data & ~0x3f; 2962 2963 /* Bits 4:5 are reserved, Should be zero */ 2964 if (data & 0x30) 2965 return 1; 2966 2967 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2968 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2969 return 1; 2970 2971 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2972 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2973 return 1; 2974 2975 if (!lapic_in_kernel(vcpu)) 2976 return data ? 1 : 0; 2977 2978 vcpu->arch.apf.msr_en_val = data; 2979 2980 if (!kvm_pv_async_pf_enabled(vcpu)) { 2981 kvm_clear_async_pf_completion_queue(vcpu); 2982 kvm_async_pf_hash_reset(vcpu); 2983 return 0; 2984 } 2985 2986 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2987 sizeof(u64))) 2988 return 1; 2989 2990 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2991 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2992 2993 kvm_async_pf_wakeup_all(vcpu); 2994 2995 return 0; 2996} 2997 2998static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2999{ 3000 /* Bits 8-63 are reserved */ 3001 if (data >> 8) 3002 return 1; 3003 3004 if (!lapic_in_kernel(vcpu)) 3005 return 1; 3006 3007 vcpu->arch.apf.msr_int_val = data; 3008 3009 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3010 3011 return 0; 3012} 3013 3014static void kvmclock_reset(struct kvm_vcpu *vcpu) 3015{ 3016 vcpu->arch.pv_time_enabled = false; 3017 vcpu->arch.time = 0; 3018} 3019 3020static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3021{ 3022 ++vcpu->stat.tlb_flush; 3023 kvm_x86_ops.tlb_flush_all(vcpu); 3024} 3025 3026static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3027{ 3028 ++vcpu->stat.tlb_flush; 3029 kvm_x86_ops.tlb_flush_guest(vcpu); 3030} 3031 3032static void record_steal_time(struct kvm_vcpu *vcpu) 3033{ 3034 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3035 struct kvm_steal_time __user *st; 3036 struct kvm_memslots *slots; 3037 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3038 u64 steal; 3039 u32 version; 3040 3041 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3042 return; 3043 3044 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3045 return; 3046 3047 slots = kvm_memslots(vcpu->kvm); 3048 3049 if (unlikely(slots->generation != ghc->generation || 3050 gpa != ghc->gpa || 3051 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3052 /* We rely on the fact that it fits in a single page. */ 3053 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3054 3055 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3056 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3057 return; 3058 } 3059 3060 st = (struct kvm_steal_time __user *)ghc->hva; 3061 /* 3062 * Doing a TLB flush here, on the guest's behalf, can avoid 3063 * expensive IPIs. 3064 */ 3065 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3066 u8 st_preempted = 0; 3067 int err = -EFAULT; 3068 3069 if (!user_access_begin(st, sizeof(*st))) 3070 return; 3071 3072 asm volatile("1: xchgb %0, %2\n" 3073 "xor %1, %1\n" 3074 "2:\n" 3075 _ASM_EXTABLE_UA(1b, 2b) 3076 : "+q" (st_preempted), 3077 "+&r" (err), 3078 "+m" (st->preempted)); 3079 if (err) 3080 goto out; 3081 3082 user_access_end(); 3083 3084 vcpu->arch.st.preempted = 0; 3085 3086 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3087 st_preempted & KVM_VCPU_FLUSH_TLB); 3088 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3089 kvm_vcpu_flush_tlb_guest(vcpu); 3090 3091 if (!user_access_begin(st, sizeof(*st))) 3092 goto dirty; 3093 } else { 3094 if (!user_access_begin(st, sizeof(*st))) 3095 return; 3096 3097 unsafe_put_user(0, &st->preempted, out); 3098 vcpu->arch.st.preempted = 0; 3099 } 3100 3101 unsafe_get_user(version, &st->version, out); 3102 if (version & 1) 3103 version += 1; /* first time write, random junk */ 3104 3105 version += 1; 3106 unsafe_put_user(version, &st->version, out); 3107 3108 smp_wmb(); 3109 3110 unsafe_get_user(steal, &st->steal, out); 3111 steal += current->sched_info.run_delay - 3112 vcpu->arch.st.last_steal; 3113 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3114 unsafe_put_user(steal, &st->steal, out); 3115 3116 version += 1; 3117 unsafe_put_user(version, &st->version, out); 3118 3119 out: 3120 user_access_end(); 3121 dirty: 3122 mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa)); 3123} 3124 3125int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3126{ 3127 bool pr = false; 3128 u32 msr = msr_info->index; 3129 u64 data = msr_info->data; 3130 3131 switch (msr) { 3132 case MSR_AMD64_NB_CFG: 3133 case MSR_IA32_UCODE_WRITE: 3134 case MSR_VM_HSAVE_PA: 3135 case MSR_AMD64_PATCH_LOADER: 3136 case MSR_AMD64_BU_CFG2: 3137 case MSR_AMD64_DC_CFG: 3138 case MSR_AMD64_TW_CFG: 3139 case MSR_F15H_EX_CFG: 3140 break; 3141 3142 case MSR_IA32_UCODE_REV: 3143 if (msr_info->host_initiated) 3144 vcpu->arch.microcode_version = data; 3145 break; 3146 case MSR_IA32_ARCH_CAPABILITIES: 3147 if (!msr_info->host_initiated) 3148 return 1; 3149 vcpu->arch.arch_capabilities = data; 3150 break; 3151 case MSR_IA32_PERF_CAPABILITIES: { 3152 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3153 3154 if (!msr_info->host_initiated) 3155 return 1; 3156 if (kvm_get_msr_feature(&msr_ent)) 3157 return 1; 3158 if (data & ~msr_ent.data) 3159 return 1; 3160 3161 vcpu->arch.perf_capabilities = data; 3162 3163 return 0; 3164 } 3165 case MSR_EFER: 3166 return set_efer(vcpu, msr_info); 3167 case MSR_K7_HWCR: 3168 data &= ~(u64)0x40; /* ignore flush filter disable */ 3169 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3170 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3171 3172 /* Handle McStatusWrEn */ 3173 if (data == BIT_ULL(18)) { 3174 vcpu->arch.msr_hwcr = data; 3175 } else if (data != 0) { 3176 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3177 data); 3178 return 1; 3179 } 3180 break; 3181 case MSR_FAM10H_MMIO_CONF_BASE: 3182 if (data != 0) { 3183 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3184 "0x%llx\n", data); 3185 return 1; 3186 } 3187 break; 3188 case MSR_IA32_DEBUGCTLMSR: 3189 if (!data) { 3190 /* We support the non-activated case already */ 3191 break; 3192 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 3193 /* Values other than LBR and BTF are vendor-specific, 3194 thus reserved and should throw a #GP */ 3195 return 1; 3196 } else if (report_ignored_msrs) 3197 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 3198 __func__, data); 3199 break; 3200 case 0x200 ... 0x2ff: 3201 return kvm_mtrr_set_msr(vcpu, msr, data); 3202 case MSR_IA32_APICBASE: 3203 return kvm_set_apic_base(vcpu, msr_info); 3204 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3205 return kvm_x2apic_msr_write(vcpu, msr, data); 3206 case MSR_IA32_TSCDEADLINE: 3207 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3208 break; 3209 case MSR_IA32_TSC_ADJUST: 3210 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3211 if (!msr_info->host_initiated) { 3212 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3213 adjust_tsc_offset_guest(vcpu, adj); 3214 /* Before back to guest, tsc_timestamp must be adjusted 3215 * as well, otherwise guest's percpu pvclock time could jump. 3216 */ 3217 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3218 } 3219 vcpu->arch.ia32_tsc_adjust_msr = data; 3220 } 3221 break; 3222 case MSR_IA32_MISC_ENABLE: 3223 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3224 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3225 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3226 return 1; 3227 vcpu->arch.ia32_misc_enable_msr = data; 3228 kvm_update_cpuid_runtime(vcpu); 3229 } else { 3230 vcpu->arch.ia32_misc_enable_msr = data; 3231 } 3232 break; 3233 case MSR_IA32_SMBASE: 3234 if (!msr_info->host_initiated) 3235 return 1; 3236 vcpu->arch.smbase = data; 3237 break; 3238 case MSR_IA32_POWER_CTL: 3239 vcpu->arch.msr_ia32_power_ctl = data; 3240 break; 3241 case MSR_IA32_TSC: 3242 if (msr_info->host_initiated) { 3243 kvm_synchronize_tsc(vcpu, data); 3244 } else { 3245 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3246 adjust_tsc_offset_guest(vcpu, adj); 3247 vcpu->arch.ia32_tsc_adjust_msr += adj; 3248 } 3249 break; 3250 case MSR_IA32_XSS: 3251 if (!msr_info->host_initiated && 3252 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3253 return 1; 3254 /* 3255 * KVM supports exposing PT to the guest, but does not support 3256 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3257 * XSAVES/XRSTORS to save/restore PT MSRs. 3258 */ 3259 if (data & ~supported_xss) 3260 return 1; 3261 vcpu->arch.ia32_xss = data; 3262 kvm_update_cpuid_runtime(vcpu); 3263 break; 3264 case MSR_SMI_COUNT: 3265 if (!msr_info->host_initiated) 3266 return 1; 3267 vcpu->arch.smi_count = data; 3268 break; 3269 case MSR_KVM_WALL_CLOCK_NEW: 3270 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3271 return 1; 3272 3273 kvm_write_wall_clock(vcpu->kvm, data); 3274 break; 3275 case MSR_KVM_WALL_CLOCK: 3276 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3277 return 1; 3278 3279 kvm_write_wall_clock(vcpu->kvm, data); 3280 break; 3281 case MSR_KVM_SYSTEM_TIME_NEW: 3282 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3283 return 1; 3284 3285 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3286 break; 3287 case MSR_KVM_SYSTEM_TIME: 3288 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3289 return 1; 3290 3291 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3292 break; 3293 case MSR_KVM_ASYNC_PF_EN: 3294 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3295 return 1; 3296 3297 if (kvm_pv_enable_async_pf(vcpu, data)) 3298 return 1; 3299 break; 3300 case MSR_KVM_ASYNC_PF_INT: 3301 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3302 return 1; 3303 3304 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3305 return 1; 3306 break; 3307 case MSR_KVM_ASYNC_PF_ACK: 3308 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3309 return 1; 3310 if (data & 0x1) { 3311 vcpu->arch.apf.pageready_pending = false; 3312 kvm_check_async_pf_completion(vcpu); 3313 } 3314 break; 3315 case MSR_KVM_STEAL_TIME: 3316 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3317 return 1; 3318 3319 if (unlikely(!sched_info_on())) 3320 return 1; 3321 3322 if (data & KVM_STEAL_RESERVED_MASK) 3323 return 1; 3324 3325 vcpu->arch.st.msr_val = data; 3326 3327 if (!(data & KVM_MSR_ENABLED)) 3328 break; 3329 3330 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3331 3332 break; 3333 case MSR_KVM_PV_EOI_EN: 3334 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3335 return 1; 3336 3337 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3338 return 1; 3339 break; 3340 3341 case MSR_KVM_POLL_CONTROL: 3342 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3343 return 1; 3344 3345 /* only enable bit supported */ 3346 if (data & (-1ULL << 1)) 3347 return 1; 3348 3349 vcpu->arch.msr_kvm_poll_control = data; 3350 break; 3351 3352 case MSR_IA32_MCG_CTL: 3353 case MSR_IA32_MCG_STATUS: 3354 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3355 return set_msr_mce(vcpu, msr_info); 3356 3357 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3358 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3359 pr = true; 3360 fallthrough; 3361 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3362 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3363 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3364 return kvm_pmu_set_msr(vcpu, msr_info); 3365 3366 if (pr || data != 0) 3367 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3368 "0x%x data 0x%llx\n", msr, data); 3369 break; 3370 case MSR_K7_CLK_CTL: 3371 /* 3372 * Ignore all writes to this no longer documented MSR. 3373 * Writes are only relevant for old K7 processors, 3374 * all pre-dating SVM, but a recommended workaround from 3375 * AMD for these chips. It is possible to specify the 3376 * affected processor models on the command line, hence 3377 * the need to ignore the workaround. 3378 */ 3379 break; 3380 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3381 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3382 case HV_X64_MSR_SYNDBG_OPTIONS: 3383 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3384 case HV_X64_MSR_CRASH_CTL: 3385 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3386 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3387 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3388 case HV_X64_MSR_TSC_EMULATION_STATUS: 3389 return kvm_hv_set_msr_common(vcpu, msr, data, 3390 msr_info->host_initiated); 3391 case MSR_IA32_BBL_CR_CTL3: 3392 /* Drop writes to this legacy MSR -- see rdmsr 3393 * counterpart for further detail. 3394 */ 3395 if (report_ignored_msrs) 3396 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3397 msr, data); 3398 break; 3399 case MSR_AMD64_OSVW_ID_LENGTH: 3400 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3401 return 1; 3402 vcpu->arch.osvw.length = data; 3403 break; 3404 case MSR_AMD64_OSVW_STATUS: 3405 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3406 return 1; 3407 vcpu->arch.osvw.status = data; 3408 break; 3409 case MSR_PLATFORM_INFO: 3410 if (!msr_info->host_initiated || 3411 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3412 cpuid_fault_enabled(vcpu))) 3413 return 1; 3414 vcpu->arch.msr_platform_info = data; 3415 break; 3416 case MSR_MISC_FEATURES_ENABLES: 3417 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3418 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3419 !supports_cpuid_fault(vcpu))) 3420 return 1; 3421 vcpu->arch.msr_misc_features_enables = data; 3422 break; 3423 default: 3424 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3425 return xen_hvm_config(vcpu, data); 3426 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3427 return kvm_pmu_set_msr(vcpu, msr_info); 3428 return KVM_MSR_RET_INVALID; 3429 } 3430 return 0; 3431} 3432EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3433 3434static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3435{ 3436 u64 data; 3437 u64 mcg_cap = vcpu->arch.mcg_cap; 3438 unsigned bank_num = mcg_cap & 0xff; 3439 3440 switch (msr) { 3441 case MSR_IA32_P5_MC_ADDR: 3442 case MSR_IA32_P5_MC_TYPE: 3443 data = 0; 3444 break; 3445 case MSR_IA32_MCG_CAP: 3446 data = vcpu->arch.mcg_cap; 3447 break; 3448 case MSR_IA32_MCG_CTL: 3449 if (!(mcg_cap & MCG_CTL_P) && !host) 3450 return 1; 3451 data = vcpu->arch.mcg_ctl; 3452 break; 3453 case MSR_IA32_MCG_STATUS: 3454 data = vcpu->arch.mcg_status; 3455 break; 3456 default: 3457 if (msr >= MSR_IA32_MC0_CTL && 3458 msr < MSR_IA32_MCx_CTL(bank_num)) { 3459 u32 offset = array_index_nospec( 3460 msr - MSR_IA32_MC0_CTL, 3461 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3462 3463 data = vcpu->arch.mce_banks[offset]; 3464 break; 3465 } 3466 return 1; 3467 } 3468 *pdata = data; 3469 return 0; 3470} 3471 3472int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3473{ 3474 switch (msr_info->index) { 3475 case MSR_IA32_PLATFORM_ID: 3476 case MSR_IA32_EBL_CR_POWERON: 3477 case MSR_IA32_DEBUGCTLMSR: 3478 case MSR_IA32_LASTBRANCHFROMIP: 3479 case MSR_IA32_LASTBRANCHTOIP: 3480 case MSR_IA32_LASTINTFROMIP: 3481 case MSR_IA32_LASTINTTOIP: 3482 case MSR_K8_SYSCFG: 3483 case MSR_K8_TSEG_ADDR: 3484 case MSR_K8_TSEG_MASK: 3485 case MSR_VM_HSAVE_PA: 3486 case MSR_K8_INT_PENDING_MSG: 3487 case MSR_AMD64_NB_CFG: 3488 case MSR_FAM10H_MMIO_CONF_BASE: 3489 case MSR_AMD64_BU_CFG2: 3490 case MSR_IA32_PERF_CTL: 3491 case MSR_AMD64_DC_CFG: 3492 case MSR_AMD64_TW_CFG: 3493 case MSR_F15H_EX_CFG: 3494 /* 3495 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3496 * limit) MSRs. Just return 0, as we do not want to expose the host 3497 * data here. Do not conditionalize this on CPUID, as KVM does not do 3498 * so for existing CPU-specific MSRs. 3499 */ 3500 case MSR_RAPL_POWER_UNIT: 3501 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3502 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3503 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3504 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3505 msr_info->data = 0; 3506 break; 3507 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3508 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3509 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3510 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3511 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3512 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3513 return kvm_pmu_get_msr(vcpu, msr_info); 3514 msr_info->data = 0; 3515 break; 3516 case MSR_IA32_UCODE_REV: 3517 msr_info->data = vcpu->arch.microcode_version; 3518 break; 3519 case MSR_IA32_ARCH_CAPABILITIES: 3520 if (!msr_info->host_initiated && 3521 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3522 return 1; 3523 msr_info->data = vcpu->arch.arch_capabilities; 3524 break; 3525 case MSR_IA32_PERF_CAPABILITIES: 3526 if (!msr_info->host_initiated && 3527 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3528 return 1; 3529 msr_info->data = vcpu->arch.perf_capabilities; 3530 break; 3531 case MSR_IA32_POWER_CTL: 3532 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3533 break; 3534 case MSR_IA32_TSC: { 3535 /* 3536 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3537 * even when not intercepted. AMD manual doesn't explicitly 3538 * state this but appears to behave the same. 3539 * 3540 * On userspace reads and writes, however, we unconditionally 3541 * return L1's TSC value to ensure backwards-compatible 3542 * behavior for migration. 3543 */ 3544 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3545 vcpu->arch.tsc_offset; 3546 3547 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3548 break; 3549 } 3550 case MSR_MTRRcap: 3551 case 0x200 ... 0x2ff: 3552 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3553 case 0xcd: /* fsb frequency */ 3554 msr_info->data = 3; 3555 break; 3556 /* 3557 * MSR_EBC_FREQUENCY_ID 3558 * Conservative value valid for even the basic CPU models. 3559 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3560 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3561 * and 266MHz for model 3, or 4. Set Core Clock 3562 * Frequency to System Bus Frequency Ratio to 1 (bits 3563 * 31:24) even though these are only valid for CPU 3564 * models > 2, however guests may end up dividing or 3565 * multiplying by zero otherwise. 3566 */ 3567 case MSR_EBC_FREQUENCY_ID: 3568 msr_info->data = 1 << 24; 3569 break; 3570 case MSR_IA32_APICBASE: 3571 msr_info->data = kvm_get_apic_base(vcpu); 3572 break; 3573 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3574 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3575 case MSR_IA32_TSCDEADLINE: 3576 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3577 break; 3578 case MSR_IA32_TSC_ADJUST: 3579 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3580 break; 3581 case MSR_IA32_MISC_ENABLE: 3582 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3583 break; 3584 case MSR_IA32_SMBASE: 3585 if (!msr_info->host_initiated) 3586 return 1; 3587 msr_info->data = vcpu->arch.smbase; 3588 break; 3589 case MSR_SMI_COUNT: 3590 msr_info->data = vcpu->arch.smi_count; 3591 break; 3592 case MSR_IA32_PERF_STATUS: 3593 /* TSC increment by tick */ 3594 msr_info->data = 1000ULL; 3595 /* CPU multiplier */ 3596 msr_info->data |= (((uint64_t)4ULL) << 40); 3597 break; 3598 case MSR_EFER: 3599 msr_info->data = vcpu->arch.efer; 3600 break; 3601 case MSR_KVM_WALL_CLOCK: 3602 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3603 return 1; 3604 3605 msr_info->data = vcpu->kvm->arch.wall_clock; 3606 break; 3607 case MSR_KVM_WALL_CLOCK_NEW: 3608 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3609 return 1; 3610 3611 msr_info->data = vcpu->kvm->arch.wall_clock; 3612 break; 3613 case MSR_KVM_SYSTEM_TIME: 3614 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3615 return 1; 3616 3617 msr_info->data = vcpu->arch.time; 3618 break; 3619 case MSR_KVM_SYSTEM_TIME_NEW: 3620 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3621 return 1; 3622 3623 msr_info->data = vcpu->arch.time; 3624 break; 3625 case MSR_KVM_ASYNC_PF_EN: 3626 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3627 return 1; 3628 3629 msr_info->data = vcpu->arch.apf.msr_en_val; 3630 break; 3631 case MSR_KVM_ASYNC_PF_INT: 3632 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3633 return 1; 3634 3635 msr_info->data = vcpu->arch.apf.msr_int_val; 3636 break; 3637 case MSR_KVM_ASYNC_PF_ACK: 3638 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3639 return 1; 3640 3641 msr_info->data = 0; 3642 break; 3643 case MSR_KVM_STEAL_TIME: 3644 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3645 return 1; 3646 3647 msr_info->data = vcpu->arch.st.msr_val; 3648 break; 3649 case MSR_KVM_PV_EOI_EN: 3650 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3651 return 1; 3652 3653 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3654 break; 3655 case MSR_KVM_POLL_CONTROL: 3656 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3657 return 1; 3658 3659 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3660 break; 3661 case MSR_IA32_P5_MC_ADDR: 3662 case MSR_IA32_P5_MC_TYPE: 3663 case MSR_IA32_MCG_CAP: 3664 case MSR_IA32_MCG_CTL: 3665 case MSR_IA32_MCG_STATUS: 3666 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3667 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3668 msr_info->host_initiated); 3669 case MSR_IA32_XSS: 3670 if (!msr_info->host_initiated && 3671 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3672 return 1; 3673 msr_info->data = vcpu->arch.ia32_xss; 3674 break; 3675 case MSR_K7_CLK_CTL: 3676 /* 3677 * Provide expected ramp-up count for K7. All other 3678 * are set to zero, indicating minimum divisors for 3679 * every field. 3680 * 3681 * This prevents guest kernels on AMD host with CPU 3682 * type 6, model 8 and higher from exploding due to 3683 * the rdmsr failing. 3684 */ 3685 msr_info->data = 0x20000000; 3686 break; 3687 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3688 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3689 case HV_X64_MSR_SYNDBG_OPTIONS: 3690 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3691 case HV_X64_MSR_CRASH_CTL: 3692 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3693 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3694 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3695 case HV_X64_MSR_TSC_EMULATION_STATUS: 3696 return kvm_hv_get_msr_common(vcpu, 3697 msr_info->index, &msr_info->data, 3698 msr_info->host_initiated); 3699 case MSR_IA32_BBL_CR_CTL3: 3700 /* This legacy MSR exists but isn't fully documented in current 3701 * silicon. It is however accessed by winxp in very narrow 3702 * scenarios where it sets bit #19, itself documented as 3703 * a "reserved" bit. Best effort attempt to source coherent 3704 * read data here should the balance of the register be 3705 * interpreted by the guest: 3706 * 3707 * L2 cache control register 3: 64GB range, 256KB size, 3708 * enabled, latency 0x1, configured 3709 */ 3710 msr_info->data = 0xbe702111; 3711 break; 3712 case MSR_AMD64_OSVW_ID_LENGTH: 3713 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3714 return 1; 3715 msr_info->data = vcpu->arch.osvw.length; 3716 break; 3717 case MSR_AMD64_OSVW_STATUS: 3718 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3719 return 1; 3720 msr_info->data = vcpu->arch.osvw.status; 3721 break; 3722 case MSR_PLATFORM_INFO: 3723 if (!msr_info->host_initiated && 3724 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3725 return 1; 3726 msr_info->data = vcpu->arch.msr_platform_info; 3727 break; 3728 case MSR_MISC_FEATURES_ENABLES: 3729 msr_info->data = vcpu->arch.msr_misc_features_enables; 3730 break; 3731 case MSR_K7_HWCR: 3732 msr_info->data = vcpu->arch.msr_hwcr; 3733 break; 3734 default: 3735 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3736 return kvm_pmu_get_msr(vcpu, msr_info); 3737 return KVM_MSR_RET_INVALID; 3738 } 3739 return 0; 3740} 3741EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3742 3743/* 3744 * Read or write a bunch of msrs. All parameters are kernel addresses. 3745 * 3746 * @return number of msrs set successfully. 3747 */ 3748static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3749 struct kvm_msr_entry *entries, 3750 int (*do_msr)(struct kvm_vcpu *vcpu, 3751 unsigned index, u64 *data)) 3752{ 3753 int i; 3754 3755 for (i = 0; i < msrs->nmsrs; ++i) 3756 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3757 break; 3758 3759 return i; 3760} 3761 3762/* 3763 * Read or write a bunch of msrs. Parameters are user addresses. 3764 * 3765 * @return number of msrs set successfully. 3766 */ 3767static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3768 int (*do_msr)(struct kvm_vcpu *vcpu, 3769 unsigned index, u64 *data), 3770 int writeback) 3771{ 3772 struct kvm_msrs msrs; 3773 struct kvm_msr_entry *entries; 3774 int r, n; 3775 unsigned size; 3776 3777 r = -EFAULT; 3778 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3779 goto out; 3780 3781 r = -E2BIG; 3782 if (msrs.nmsrs >= MAX_IO_MSRS) 3783 goto out; 3784 3785 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3786 entries = memdup_user(user_msrs->entries, size); 3787 if (IS_ERR(entries)) { 3788 r = PTR_ERR(entries); 3789 goto out; 3790 } 3791 3792 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3793 if (r < 0) 3794 goto out_free; 3795 3796 r = -EFAULT; 3797 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3798 goto out_free; 3799 3800 r = n; 3801 3802out_free: 3803 kfree(entries); 3804out: 3805 return r; 3806} 3807 3808static inline bool kvm_can_mwait_in_guest(void) 3809{ 3810 return boot_cpu_has(X86_FEATURE_MWAIT) && 3811 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3812 boot_cpu_has(X86_FEATURE_ARAT); 3813} 3814 3815int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3816{ 3817 int r = 0; 3818 3819 switch (ext) { 3820 case KVM_CAP_IRQCHIP: 3821 case KVM_CAP_HLT: 3822 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3823 case KVM_CAP_SET_TSS_ADDR: 3824 case KVM_CAP_EXT_CPUID: 3825 case KVM_CAP_EXT_EMUL_CPUID: 3826 case KVM_CAP_CLOCKSOURCE: 3827 case KVM_CAP_PIT: 3828 case KVM_CAP_NOP_IO_DELAY: 3829 case KVM_CAP_MP_STATE: 3830 case KVM_CAP_SYNC_MMU: 3831 case KVM_CAP_USER_NMI: 3832 case KVM_CAP_REINJECT_CONTROL: 3833 case KVM_CAP_IRQ_INJECT_STATUS: 3834 case KVM_CAP_IOEVENTFD: 3835 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3836 case KVM_CAP_PIT2: 3837 case KVM_CAP_PIT_STATE2: 3838 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3839 case KVM_CAP_XEN_HVM: 3840 case KVM_CAP_VCPU_EVENTS: 3841 case KVM_CAP_HYPERV: 3842 case KVM_CAP_HYPERV_VAPIC: 3843 case KVM_CAP_HYPERV_SPIN: 3844 case KVM_CAP_HYPERV_SYNIC: 3845 case KVM_CAP_HYPERV_SYNIC2: 3846 case KVM_CAP_HYPERV_VP_INDEX: 3847 case KVM_CAP_HYPERV_EVENTFD: 3848 case KVM_CAP_HYPERV_TLBFLUSH: 3849 case KVM_CAP_HYPERV_SEND_IPI: 3850 case KVM_CAP_HYPERV_CPUID: 3851 case KVM_CAP_PCI_SEGMENT: 3852 case KVM_CAP_DEBUGREGS: 3853 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3854 case KVM_CAP_XSAVE: 3855 case KVM_CAP_ASYNC_PF: 3856 case KVM_CAP_ASYNC_PF_INT: 3857 case KVM_CAP_GET_TSC_KHZ: 3858 case KVM_CAP_KVMCLOCK_CTRL: 3859 case KVM_CAP_READONLY_MEM: 3860 case KVM_CAP_HYPERV_TIME: 3861 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3862 case KVM_CAP_TSC_DEADLINE_TIMER: 3863 case KVM_CAP_DISABLE_QUIRKS: 3864 case KVM_CAP_SET_BOOT_CPU_ID: 3865 case KVM_CAP_SPLIT_IRQCHIP: 3866 case KVM_CAP_IMMEDIATE_EXIT: 3867 case KVM_CAP_PMU_EVENT_FILTER: 3868 case KVM_CAP_GET_MSR_FEATURES: 3869 case KVM_CAP_MSR_PLATFORM_INFO: 3870 case KVM_CAP_EXCEPTION_PAYLOAD: 3871 case KVM_CAP_SET_GUEST_DEBUG: 3872 case KVM_CAP_LAST_CPU: 3873 case KVM_CAP_X86_USER_SPACE_MSR: 3874 case KVM_CAP_X86_MSR_FILTER: 3875 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3876 r = 1; 3877 break; 3878 case KVM_CAP_SYNC_REGS: 3879 r = KVM_SYNC_X86_VALID_FIELDS; 3880 break; 3881 case KVM_CAP_ADJUST_CLOCK: 3882 r = KVM_CLOCK_TSC_STABLE; 3883 break; 3884 case KVM_CAP_X86_DISABLE_EXITS: 3885 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3886 KVM_X86_DISABLE_EXITS_CSTATE; 3887 if(kvm_can_mwait_in_guest()) 3888 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3889 break; 3890 case KVM_CAP_X86_SMM: 3891 /* SMBASE is usually relocated above 1M on modern chipsets, 3892 * and SMM handlers might indeed rely on 4G segment limits, 3893 * so do not report SMM to be available if real mode is 3894 * emulated via vm86 mode. Still, do not go to great lengths 3895 * to avoid userspace's usage of the feature, because it is a 3896 * fringe case that is not enabled except via specific settings 3897 * of the module parameters. 3898 */ 3899 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3900 break; 3901 case KVM_CAP_VAPIC: 3902 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3903 break; 3904 case KVM_CAP_NR_VCPUS: 3905 r = KVM_SOFT_MAX_VCPUS; 3906 break; 3907 case KVM_CAP_MAX_VCPUS: 3908 r = KVM_MAX_VCPUS; 3909 break; 3910 case KVM_CAP_MAX_VCPU_ID: 3911 r = KVM_MAX_VCPU_ID; 3912 break; 3913 case KVM_CAP_PV_MMU: /* obsolete */ 3914 r = 0; 3915 break; 3916 case KVM_CAP_MCE: 3917 r = KVM_MAX_MCE_BANKS; 3918 break; 3919 case KVM_CAP_XCRS: 3920 r = boot_cpu_has(X86_FEATURE_XSAVE); 3921 break; 3922 case KVM_CAP_TSC_CONTROL: 3923 r = kvm_has_tsc_control; 3924 break; 3925 case KVM_CAP_X2APIC_API: 3926 r = KVM_X2APIC_API_VALID_FLAGS; 3927 break; 3928 case KVM_CAP_NESTED_STATE: 3929 r = kvm_x86_ops.nested_ops->get_state ? 3930 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3931 break; 3932 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3933 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3934 break; 3935 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3936 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3937 break; 3938 case KVM_CAP_SMALLER_MAXPHYADDR: 3939 r = (int) allow_smaller_maxphyaddr; 3940 break; 3941 case KVM_CAP_STEAL_TIME: 3942 r = sched_info_on(); 3943 break; 3944 default: 3945 break; 3946 } 3947 return r; 3948 3949} 3950 3951long kvm_arch_dev_ioctl(struct file *filp, 3952 unsigned int ioctl, unsigned long arg) 3953{ 3954 void __user *argp = (void __user *)arg; 3955 long r; 3956 3957 switch (ioctl) { 3958 case KVM_GET_MSR_INDEX_LIST: { 3959 struct kvm_msr_list __user *user_msr_list = argp; 3960 struct kvm_msr_list msr_list; 3961 unsigned n; 3962 3963 r = -EFAULT; 3964 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3965 goto out; 3966 n = msr_list.nmsrs; 3967 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3968 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3969 goto out; 3970 r = -E2BIG; 3971 if (n < msr_list.nmsrs) 3972 goto out; 3973 r = -EFAULT; 3974 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3975 num_msrs_to_save * sizeof(u32))) 3976 goto out; 3977 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3978 &emulated_msrs, 3979 num_emulated_msrs * sizeof(u32))) 3980 goto out; 3981 r = 0; 3982 break; 3983 } 3984 case KVM_GET_SUPPORTED_CPUID: 3985 case KVM_GET_EMULATED_CPUID: { 3986 struct kvm_cpuid2 __user *cpuid_arg = argp; 3987 struct kvm_cpuid2 cpuid; 3988 3989 r = -EFAULT; 3990 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3991 goto out; 3992 3993 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3994 ioctl); 3995 if (r) 3996 goto out; 3997 3998 r = -EFAULT; 3999 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4000 goto out; 4001 r = 0; 4002 break; 4003 } 4004 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4005 r = -EFAULT; 4006 if (copy_to_user(argp, &kvm_mce_cap_supported, 4007 sizeof(kvm_mce_cap_supported))) 4008 goto out; 4009 r = 0; 4010 break; 4011 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4012 struct kvm_msr_list __user *user_msr_list = argp; 4013 struct kvm_msr_list msr_list; 4014 unsigned int n; 4015 4016 r = -EFAULT; 4017 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4018 goto out; 4019 n = msr_list.nmsrs; 4020 msr_list.nmsrs = num_msr_based_features; 4021 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4022 goto out; 4023 r = -E2BIG; 4024 if (n < msr_list.nmsrs) 4025 goto out; 4026 r = -EFAULT; 4027 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4028 num_msr_based_features * sizeof(u32))) 4029 goto out; 4030 r = 0; 4031 break; 4032 } 4033 case KVM_GET_MSRS: 4034 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4035 break; 4036 default: 4037 r = -EINVAL; 4038 break; 4039 } 4040out: 4041 return r; 4042} 4043 4044static void wbinvd_ipi(void *garbage) 4045{ 4046 wbinvd(); 4047} 4048 4049static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4050{ 4051 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4052} 4053 4054void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4055{ 4056 /* Address WBINVD may be executed by guest */ 4057 if (need_emulate_wbinvd(vcpu)) { 4058 if (kvm_x86_ops.has_wbinvd_exit()) 4059 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4060 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4061 smp_call_function_single(vcpu->cpu, 4062 wbinvd_ipi, NULL, 1); 4063 } 4064 4065 kvm_x86_ops.vcpu_load(vcpu, cpu); 4066 4067 /* Save host pkru register if supported */ 4068 vcpu->arch.host_pkru = read_pkru(); 4069 4070 /* Apply any externally detected TSC adjustments (due to suspend) */ 4071 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4072 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4073 vcpu->arch.tsc_offset_adjustment = 0; 4074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4075 } 4076 4077 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4078 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4079 rdtsc() - vcpu->arch.last_host_tsc; 4080 if (tsc_delta < 0) 4081 mark_tsc_unstable("KVM discovered backwards TSC"); 4082 4083 if (kvm_check_tsc_unstable()) { 4084 u64 offset = kvm_compute_tsc_offset(vcpu, 4085 vcpu->arch.last_guest_tsc); 4086 kvm_vcpu_write_tsc_offset(vcpu, offset); 4087 vcpu->arch.tsc_catchup = 1; 4088 } 4089 4090 if (kvm_lapic_hv_timer_in_use(vcpu)) 4091 kvm_lapic_restart_hv_timer(vcpu); 4092 4093 /* 4094 * On a host with synchronized TSC, there is no need to update 4095 * kvmclock on vcpu->cpu migration 4096 */ 4097 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4098 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4099 if (vcpu->cpu != cpu) 4100 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4101 vcpu->cpu = cpu; 4102 } 4103 4104 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4105} 4106 4107static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4108{ 4109 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4110 struct kvm_steal_time __user *st; 4111 struct kvm_memslots *slots; 4112 static const u8 preempted = KVM_VCPU_PREEMPTED; 4113 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4114 4115 /* 4116 * The vCPU can be marked preempted if and only if the VM-Exit was on 4117 * an instruction boundary and will not trigger guest emulation of any 4118 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4119 * when this is true, for example allowing the vCPU to be marked 4120 * preempted if and only if the VM-Exit was due to a host interrupt. 4121 */ 4122 if (!vcpu->arch.at_instruction_boundary) { 4123 vcpu->stat.preemption_other++; 4124 return; 4125 } 4126 4127 vcpu->stat.preemption_reported++; 4128 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4129 return; 4130 4131 if (vcpu->arch.st.preempted) 4132 return; 4133 4134 /* This happens on process exit */ 4135 if (unlikely(current->mm != vcpu->kvm->mm)) 4136 return; 4137 4138 slots = kvm_memslots(vcpu->kvm); 4139 4140 if (unlikely(slots->generation != ghc->generation || 4141 gpa != ghc->gpa || 4142 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4143 return; 4144 4145 st = (struct kvm_steal_time __user *)ghc->hva; 4146 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4147 4148 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4149 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4150 4151 mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa)); 4152} 4153 4154void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4155{ 4156 int idx; 4157 4158 if (vcpu->preempted) { 4159 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 4160 4161 /* 4162 * Take the srcu lock as memslots will be accessed to check the gfn 4163 * cache generation against the memslots generation. 4164 */ 4165 idx = srcu_read_lock(&vcpu->kvm->srcu); 4166 kvm_steal_time_set_preempted(vcpu); 4167 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4168 } 4169 4170 kvm_x86_ops.vcpu_put(vcpu); 4171 vcpu->arch.last_host_tsc = rdtsc(); 4172 /* 4173 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4174 * on every vmexit, but if not, we might have a stale dr6 from the 4175 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4176 */ 4177 set_debugreg(0, 6); 4178} 4179 4180static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4181 struct kvm_lapic_state *s) 4182{ 4183 if (vcpu->arch.apicv_active) 4184 kvm_x86_ops.sync_pir_to_irr(vcpu); 4185 4186 return kvm_apic_get_state(vcpu, s); 4187} 4188 4189static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4190 struct kvm_lapic_state *s) 4191{ 4192 int r; 4193 4194 r = kvm_apic_set_state(vcpu, s); 4195 if (r) 4196 return r; 4197 update_cr8_intercept(vcpu); 4198 4199 return 0; 4200} 4201 4202static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4203{ 4204 /* 4205 * We can accept userspace's request for interrupt injection 4206 * as long as we have a place to store the interrupt number. 4207 * The actual injection will happen when the CPU is able to 4208 * deliver the interrupt. 4209 */ 4210 if (kvm_cpu_has_extint(vcpu)) 4211 return false; 4212 4213 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4214 return (!lapic_in_kernel(vcpu) || 4215 kvm_apic_accept_pic_intr(vcpu)); 4216} 4217 4218static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4219{ 4220 /* 4221 * Do not cause an interrupt window exit if an exception 4222 * is pending or an event needs reinjection; userspace 4223 * might want to inject the interrupt manually using KVM_SET_REGS 4224 * or KVM_SET_SREGS. For that to work, we must be at an 4225 * instruction boundary and with no events half-injected. 4226 */ 4227 return (kvm_arch_interrupt_allowed(vcpu) && 4228 kvm_cpu_accept_dm_intr(vcpu) && 4229 !kvm_event_needs_reinjection(vcpu) && 4230 !vcpu->arch.exception.pending); 4231} 4232 4233static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4234 struct kvm_interrupt *irq) 4235{ 4236 if (irq->irq >= KVM_NR_INTERRUPTS) 4237 return -EINVAL; 4238 4239 if (!irqchip_in_kernel(vcpu->kvm)) { 4240 kvm_queue_interrupt(vcpu, irq->irq, false); 4241 kvm_make_request(KVM_REQ_EVENT, vcpu); 4242 return 0; 4243 } 4244 4245 /* 4246 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4247 * fail for in-kernel 8259. 4248 */ 4249 if (pic_in_kernel(vcpu->kvm)) 4250 return -ENXIO; 4251 4252 if (vcpu->arch.pending_external_vector != -1) 4253 return -EEXIST; 4254 4255 vcpu->arch.pending_external_vector = irq->irq; 4256 kvm_make_request(KVM_REQ_EVENT, vcpu); 4257 return 0; 4258} 4259 4260static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4261{ 4262 kvm_inject_nmi(vcpu); 4263 4264 return 0; 4265} 4266 4267static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4268{ 4269 kvm_make_request(KVM_REQ_SMI, vcpu); 4270 4271 return 0; 4272} 4273 4274static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4275 struct kvm_tpr_access_ctl *tac) 4276{ 4277 if (tac->flags) 4278 return -EINVAL; 4279 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4280 return 0; 4281} 4282 4283static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4284 u64 mcg_cap) 4285{ 4286 int r; 4287 unsigned bank_num = mcg_cap & 0xff, bank; 4288 4289 r = -EINVAL; 4290 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4291 goto out; 4292 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4293 goto out; 4294 r = 0; 4295 vcpu->arch.mcg_cap = mcg_cap; 4296 /* Init IA32_MCG_CTL to all 1s */ 4297 if (mcg_cap & MCG_CTL_P) 4298 vcpu->arch.mcg_ctl = ~(u64)0; 4299 /* Init IA32_MCi_CTL to all 1s */ 4300 for (bank = 0; bank < bank_num; bank++) 4301 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4302 4303 kvm_x86_ops.setup_mce(vcpu); 4304out: 4305 return r; 4306} 4307 4308static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4309 struct kvm_x86_mce *mce) 4310{ 4311 u64 mcg_cap = vcpu->arch.mcg_cap; 4312 unsigned bank_num = mcg_cap & 0xff; 4313 u64 *banks = vcpu->arch.mce_banks; 4314 4315 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4316 return -EINVAL; 4317 /* 4318 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4319 * reporting is disabled 4320 */ 4321 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4322 vcpu->arch.mcg_ctl != ~(u64)0) 4323 return 0; 4324 banks += 4 * mce->bank; 4325 /* 4326 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4327 * reporting is disabled for the bank 4328 */ 4329 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4330 return 0; 4331 if (mce->status & MCI_STATUS_UC) { 4332 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4333 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4335 return 0; 4336 } 4337 if (banks[1] & MCI_STATUS_VAL) 4338 mce->status |= MCI_STATUS_OVER; 4339 banks[2] = mce->addr; 4340 banks[3] = mce->misc; 4341 vcpu->arch.mcg_status = mce->mcg_status; 4342 banks[1] = mce->status; 4343 kvm_queue_exception(vcpu, MC_VECTOR); 4344 } else if (!(banks[1] & MCI_STATUS_VAL) 4345 || !(banks[1] & MCI_STATUS_UC)) { 4346 if (banks[1] & MCI_STATUS_VAL) 4347 mce->status |= MCI_STATUS_OVER; 4348 banks[2] = mce->addr; 4349 banks[3] = mce->misc; 4350 banks[1] = mce->status; 4351 } else 4352 banks[1] |= MCI_STATUS_OVER; 4353 return 0; 4354} 4355 4356static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4357 struct kvm_vcpu_events *events) 4358{ 4359 process_nmi(vcpu); 4360 4361 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4362 process_smi(vcpu); 4363 4364 /* 4365 * In guest mode, payload delivery should be deferred, 4366 * so that the L1 hypervisor can intercept #PF before 4367 * CR2 is modified (or intercept #DB before DR6 is 4368 * modified under nVMX). Unless the per-VM capability, 4369 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4370 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4371 * opportunistically defer the exception payload, deliver it if the 4372 * capability hasn't been requested before processing a 4373 * KVM_GET_VCPU_EVENTS. 4374 */ 4375 if (!vcpu->kvm->arch.exception_payload_enabled && 4376 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4377 kvm_deliver_exception_payload(vcpu); 4378 4379 /* 4380 * The API doesn't provide the instruction length for software 4381 * exceptions, so don't report them. As long as the guest RIP 4382 * isn't advanced, we should expect to encounter the exception 4383 * again. 4384 */ 4385 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4386 events->exception.injected = 0; 4387 events->exception.pending = 0; 4388 } else { 4389 events->exception.injected = vcpu->arch.exception.injected; 4390 events->exception.pending = vcpu->arch.exception.pending; 4391 /* 4392 * For ABI compatibility, deliberately conflate 4393 * pending and injected exceptions when 4394 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4395 */ 4396 if (!vcpu->kvm->arch.exception_payload_enabled) 4397 events->exception.injected |= 4398 vcpu->arch.exception.pending; 4399 } 4400 events->exception.nr = vcpu->arch.exception.nr; 4401 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4402 events->exception.error_code = vcpu->arch.exception.error_code; 4403 events->exception_has_payload = vcpu->arch.exception.has_payload; 4404 events->exception_payload = vcpu->arch.exception.payload; 4405 4406 events->interrupt.injected = 4407 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4408 events->interrupt.nr = vcpu->arch.interrupt.nr; 4409 events->interrupt.soft = 0; 4410 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4411 4412 events->nmi.injected = vcpu->arch.nmi_injected; 4413 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4414 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4415 events->nmi.pad = 0; 4416 4417 events->sipi_vector = 0; /* never valid when reporting to user space */ 4418 4419 events->smi.smm = is_smm(vcpu); 4420 events->smi.pending = vcpu->arch.smi_pending; 4421 events->smi.smm_inside_nmi = 4422 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4423 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4424 4425 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4426 | KVM_VCPUEVENT_VALID_SHADOW 4427 | KVM_VCPUEVENT_VALID_SMM); 4428 if (vcpu->kvm->arch.exception_payload_enabled) 4429 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4430 4431 memset(&events->reserved, 0, sizeof(events->reserved)); 4432} 4433 4434static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4435 4436static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4437 struct kvm_vcpu_events *events) 4438{ 4439 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4440 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4441 | KVM_VCPUEVENT_VALID_SHADOW 4442 | KVM_VCPUEVENT_VALID_SMM 4443 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4444 return -EINVAL; 4445 4446 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4447 if (!vcpu->kvm->arch.exception_payload_enabled) 4448 return -EINVAL; 4449 if (events->exception.pending) 4450 events->exception.injected = 0; 4451 else 4452 events->exception_has_payload = 0; 4453 } else { 4454 events->exception.pending = 0; 4455 events->exception_has_payload = 0; 4456 } 4457 4458 if ((events->exception.injected || events->exception.pending) && 4459 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4460 return -EINVAL; 4461 4462 /* INITs are latched while in SMM */ 4463 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4464 (events->smi.smm || events->smi.pending) && 4465 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4466 return -EINVAL; 4467 4468 process_nmi(vcpu); 4469 vcpu->arch.exception.injected = events->exception.injected; 4470 vcpu->arch.exception.pending = events->exception.pending; 4471 vcpu->arch.exception.nr = events->exception.nr; 4472 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4473 vcpu->arch.exception.error_code = events->exception.error_code; 4474 vcpu->arch.exception.has_payload = events->exception_has_payload; 4475 vcpu->arch.exception.payload = events->exception_payload; 4476 4477 vcpu->arch.interrupt.injected = events->interrupt.injected; 4478 vcpu->arch.interrupt.nr = events->interrupt.nr; 4479 vcpu->arch.interrupt.soft = events->interrupt.soft; 4480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4481 kvm_x86_ops.set_interrupt_shadow(vcpu, 4482 events->interrupt.shadow); 4483 4484 vcpu->arch.nmi_injected = events->nmi.injected; 4485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4486 vcpu->arch.nmi_pending = events->nmi.pending; 4487 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4488 4489 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4490 lapic_in_kernel(vcpu)) 4491 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4492 4493 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4494 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4495 if (events->smi.smm) 4496 vcpu->arch.hflags |= HF_SMM_MASK; 4497 else 4498 vcpu->arch.hflags &= ~HF_SMM_MASK; 4499 4500 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4501 kvm_smm_changed(vcpu); 4502 } 4503 4504 vcpu->arch.smi_pending = events->smi.pending; 4505 4506 if (events->smi.smm) { 4507 if (events->smi.smm_inside_nmi) 4508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4509 else 4510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4511 } 4512 4513 if (lapic_in_kernel(vcpu)) { 4514 if (events->smi.latched_init) 4515 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4516 else 4517 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4518 } 4519 } 4520 4521 kvm_make_request(KVM_REQ_EVENT, vcpu); 4522 4523 return 0; 4524} 4525 4526static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4527 struct kvm_debugregs *dbgregs) 4528{ 4529 unsigned long val; 4530 4531 memset(dbgregs, 0, sizeof(*dbgregs)); 4532 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4533 kvm_get_dr(vcpu, 6, &val); 4534 dbgregs->dr6 = val; 4535 dbgregs->dr7 = vcpu->arch.dr7; 4536} 4537 4538static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4539 struct kvm_debugregs *dbgregs) 4540{ 4541 if (dbgregs->flags) 4542 return -EINVAL; 4543 4544 if (dbgregs->dr6 & ~0xffffffffull) 4545 return -EINVAL; 4546 if (dbgregs->dr7 & ~0xffffffffull) 4547 return -EINVAL; 4548 4549 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4550 kvm_update_dr0123(vcpu); 4551 vcpu->arch.dr6 = dbgregs->dr6; 4552 vcpu->arch.dr7 = dbgregs->dr7; 4553 kvm_update_dr7(vcpu); 4554 4555 return 0; 4556} 4557 4558#define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4559 4560static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4561{ 4562 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4563 u64 xstate_bv = xsave->header.xfeatures; 4564 u64 valid; 4565 4566 /* 4567 * Copy legacy XSAVE area, to avoid complications with CPUID 4568 * leaves 0 and 1 in the loop below. 4569 */ 4570 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4571 4572 /* Set XSTATE_BV */ 4573 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4574 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4575 4576 /* 4577 * Copy each region from the possibly compacted offset to the 4578 * non-compacted offset. 4579 */ 4580 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4581 while (valid) { 4582 u64 xfeature_mask = valid & -valid; 4583 int xfeature_nr = fls64(xfeature_mask) - 1; 4584 void *src = get_xsave_addr(xsave, xfeature_nr); 4585 4586 if (src) { 4587 u32 size, offset, ecx, edx; 4588 cpuid_count(XSTATE_CPUID, xfeature_nr, 4589 &size, &offset, &ecx, &edx); 4590 if (xfeature_nr == XFEATURE_PKRU) 4591 memcpy(dest + offset, &vcpu->arch.pkru, 4592 sizeof(vcpu->arch.pkru)); 4593 else 4594 memcpy(dest + offset, src, size); 4595 4596 } 4597 4598 valid -= xfeature_mask; 4599 } 4600} 4601 4602static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4603{ 4604 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4605 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4606 u64 valid; 4607 4608 /* 4609 * Copy legacy XSAVE area, to avoid complications with CPUID 4610 * leaves 0 and 1 in the loop below. 4611 */ 4612 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4613 4614 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4615 xsave->header.xfeatures = xstate_bv; 4616 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4617 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4618 4619 /* 4620 * Copy each region from the non-compacted offset to the 4621 * possibly compacted offset. 4622 */ 4623 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4624 while (valid) { 4625 u64 xfeature_mask = valid & -valid; 4626 int xfeature_nr = fls64(xfeature_mask) - 1; 4627 void *dest = get_xsave_addr(xsave, xfeature_nr); 4628 4629 if (dest) { 4630 u32 size, offset, ecx, edx; 4631 cpuid_count(XSTATE_CPUID, xfeature_nr, 4632 &size, &offset, &ecx, &edx); 4633 if (xfeature_nr == XFEATURE_PKRU) 4634 memcpy(&vcpu->arch.pkru, src + offset, 4635 sizeof(vcpu->arch.pkru)); 4636 else 4637 memcpy(dest, src + offset, size); 4638 } 4639 4640 valid -= xfeature_mask; 4641 } 4642} 4643 4644static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4645 struct kvm_xsave *guest_xsave) 4646{ 4647 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4648 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4649 fill_xsave((u8 *) guest_xsave->region, vcpu); 4650 } else { 4651 memcpy(guest_xsave->region, 4652 &vcpu->arch.guest_fpu->state.fxsave, 4653 sizeof(struct fxregs_state)); 4654 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4655 XFEATURE_MASK_FPSSE; 4656 } 4657} 4658 4659#define XSAVE_MXCSR_OFFSET 24 4660 4661static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4662 struct kvm_xsave *guest_xsave) 4663{ 4664 u64 xstate_bv = 4665 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4666 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4667 4668 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4669 /* 4670 * Here we allow setting states that are not present in 4671 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4672 * with old userspace. 4673 */ 4674 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4675 return -EINVAL; 4676 load_xsave(vcpu, (u8 *)guest_xsave->region); 4677 } else { 4678 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4679 mxcsr & ~mxcsr_feature_mask) 4680 return -EINVAL; 4681 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4682 guest_xsave->region, sizeof(struct fxregs_state)); 4683 } 4684 return 0; 4685} 4686 4687static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4688 struct kvm_xcrs *guest_xcrs) 4689{ 4690 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4691 guest_xcrs->nr_xcrs = 0; 4692 return; 4693 } 4694 4695 guest_xcrs->nr_xcrs = 1; 4696 guest_xcrs->flags = 0; 4697 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4698 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4699} 4700 4701static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4702 struct kvm_xcrs *guest_xcrs) 4703{ 4704 int i, r = 0; 4705 4706 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4707 return -EINVAL; 4708 4709 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4710 return -EINVAL; 4711 4712 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4713 /* Only support XCR0 currently */ 4714 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4715 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4716 guest_xcrs->xcrs[i].value); 4717 break; 4718 } 4719 if (r) 4720 r = -EINVAL; 4721 return r; 4722} 4723 4724/* 4725 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4726 * stopped by the hypervisor. This function will be called from the host only. 4727 * EINVAL is returned when the host attempts to set the flag for a guest that 4728 * does not support pv clocks. 4729 */ 4730static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4731{ 4732 if (!vcpu->arch.pv_time_enabled) 4733 return -EINVAL; 4734 vcpu->arch.pvclock_set_guest_stopped_request = true; 4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4736 return 0; 4737} 4738 4739static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4740 struct kvm_enable_cap *cap) 4741{ 4742 int r; 4743 uint16_t vmcs_version; 4744 void __user *user_ptr; 4745 4746 if (cap->flags) 4747 return -EINVAL; 4748 4749 switch (cap->cap) { 4750 case KVM_CAP_HYPERV_SYNIC2: 4751 if (cap->args[0]) 4752 return -EINVAL; 4753 fallthrough; 4754 4755 case KVM_CAP_HYPERV_SYNIC: 4756 if (!irqchip_in_kernel(vcpu->kvm)) 4757 return -EINVAL; 4758 return kvm_hv_activate_synic(vcpu, cap->cap == 4759 KVM_CAP_HYPERV_SYNIC2); 4760 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4761 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4762 return -ENOTTY; 4763 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4764 if (!r) { 4765 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4766 if (copy_to_user(user_ptr, &vmcs_version, 4767 sizeof(vmcs_version))) 4768 r = -EFAULT; 4769 } 4770 return r; 4771 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4772 if (!kvm_x86_ops.enable_direct_tlbflush) 4773 return -ENOTTY; 4774 4775 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4776 4777 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4778 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4779 if (vcpu->arch.pv_cpuid.enforce) 4780 kvm_update_pv_runtime(vcpu); 4781 4782 return 0; 4783 4784 default: 4785 return -EINVAL; 4786 } 4787} 4788 4789long kvm_arch_vcpu_ioctl(struct file *filp, 4790 unsigned int ioctl, unsigned long arg) 4791{ 4792 struct kvm_vcpu *vcpu = filp->private_data; 4793 void __user *argp = (void __user *)arg; 4794 int r; 4795 union { 4796 struct kvm_lapic_state *lapic; 4797 struct kvm_xsave *xsave; 4798 struct kvm_xcrs *xcrs; 4799 void *buffer; 4800 } u; 4801 4802 vcpu_load(vcpu); 4803 4804 u.buffer = NULL; 4805 switch (ioctl) { 4806 case KVM_GET_LAPIC: { 4807 r = -EINVAL; 4808 if (!lapic_in_kernel(vcpu)) 4809 goto out; 4810 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4811 GFP_KERNEL_ACCOUNT); 4812 4813 r = -ENOMEM; 4814 if (!u.lapic) 4815 goto out; 4816 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4817 if (r) 4818 goto out; 4819 r = -EFAULT; 4820 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4821 goto out; 4822 r = 0; 4823 break; 4824 } 4825 case KVM_SET_LAPIC: { 4826 r = -EINVAL; 4827 if (!lapic_in_kernel(vcpu)) 4828 goto out; 4829 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4830 if (IS_ERR(u.lapic)) { 4831 r = PTR_ERR(u.lapic); 4832 goto out_nofree; 4833 } 4834 4835 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4836 break; 4837 } 4838 case KVM_INTERRUPT: { 4839 struct kvm_interrupt irq; 4840 4841 r = -EFAULT; 4842 if (copy_from_user(&irq, argp, sizeof(irq))) 4843 goto out; 4844 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4845 break; 4846 } 4847 case KVM_NMI: { 4848 r = kvm_vcpu_ioctl_nmi(vcpu); 4849 break; 4850 } 4851 case KVM_SMI: { 4852 r = kvm_vcpu_ioctl_smi(vcpu); 4853 break; 4854 } 4855 case KVM_SET_CPUID: { 4856 struct kvm_cpuid __user *cpuid_arg = argp; 4857 struct kvm_cpuid cpuid; 4858 4859 r = -EFAULT; 4860 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4861 goto out; 4862 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4863 break; 4864 } 4865 case KVM_SET_CPUID2: { 4866 struct kvm_cpuid2 __user *cpuid_arg = argp; 4867 struct kvm_cpuid2 cpuid; 4868 4869 r = -EFAULT; 4870 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4871 goto out; 4872 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4873 cpuid_arg->entries); 4874 break; 4875 } 4876 case KVM_GET_CPUID2: { 4877 struct kvm_cpuid2 __user *cpuid_arg = argp; 4878 struct kvm_cpuid2 cpuid; 4879 4880 r = -EFAULT; 4881 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4882 goto out; 4883 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4884 cpuid_arg->entries); 4885 if (r) 4886 goto out; 4887 r = -EFAULT; 4888 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4889 goto out; 4890 r = 0; 4891 break; 4892 } 4893 case KVM_GET_MSRS: { 4894 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4895 r = msr_io(vcpu, argp, do_get_msr, 1); 4896 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4897 break; 4898 } 4899 case KVM_SET_MSRS: { 4900 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4901 r = msr_io(vcpu, argp, do_set_msr, 0); 4902 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4903 break; 4904 } 4905 case KVM_TPR_ACCESS_REPORTING: { 4906 struct kvm_tpr_access_ctl tac; 4907 4908 r = -EFAULT; 4909 if (copy_from_user(&tac, argp, sizeof(tac))) 4910 goto out; 4911 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4912 if (r) 4913 goto out; 4914 r = -EFAULT; 4915 if (copy_to_user(argp, &tac, sizeof(tac))) 4916 goto out; 4917 r = 0; 4918 break; 4919 }; 4920 case KVM_SET_VAPIC_ADDR: { 4921 struct kvm_vapic_addr va; 4922 int idx; 4923 4924 r = -EINVAL; 4925 if (!lapic_in_kernel(vcpu)) 4926 goto out; 4927 r = -EFAULT; 4928 if (copy_from_user(&va, argp, sizeof(va))) 4929 goto out; 4930 idx = srcu_read_lock(&vcpu->kvm->srcu); 4931 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4932 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4933 break; 4934 } 4935 case KVM_X86_SETUP_MCE: { 4936 u64 mcg_cap; 4937 4938 r = -EFAULT; 4939 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4940 goto out; 4941 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4942 break; 4943 } 4944 case KVM_X86_SET_MCE: { 4945 struct kvm_x86_mce mce; 4946 4947 r = -EFAULT; 4948 if (copy_from_user(&mce, argp, sizeof(mce))) 4949 goto out; 4950 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4951 break; 4952 } 4953 case KVM_GET_VCPU_EVENTS: { 4954 struct kvm_vcpu_events events; 4955 4956 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4957 4958 r = -EFAULT; 4959 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4960 break; 4961 r = 0; 4962 break; 4963 } 4964 case KVM_SET_VCPU_EVENTS: { 4965 struct kvm_vcpu_events events; 4966 4967 r = -EFAULT; 4968 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4969 break; 4970 4971 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4972 break; 4973 } 4974 case KVM_GET_DEBUGREGS: { 4975 struct kvm_debugregs dbgregs; 4976 4977 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4978 4979 r = -EFAULT; 4980 if (copy_to_user(argp, &dbgregs, 4981 sizeof(struct kvm_debugregs))) 4982 break; 4983 r = 0; 4984 break; 4985 } 4986 case KVM_SET_DEBUGREGS: { 4987 struct kvm_debugregs dbgregs; 4988 4989 r = -EFAULT; 4990 if (copy_from_user(&dbgregs, argp, 4991 sizeof(struct kvm_debugregs))) 4992 break; 4993 4994 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4995 break; 4996 } 4997 case KVM_GET_XSAVE: { 4998 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4999 r = -ENOMEM; 5000 if (!u.xsave) 5001 break; 5002 5003 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5004 5005 r = -EFAULT; 5006 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5007 break; 5008 r = 0; 5009 break; 5010 } 5011 case KVM_SET_XSAVE: { 5012 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 5013 if (IS_ERR(u.xsave)) { 5014 r = PTR_ERR(u.xsave); 5015 goto out_nofree; 5016 } 5017 5018 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5019 break; 5020 } 5021 case KVM_GET_XCRS: { 5022 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5023 r = -ENOMEM; 5024 if (!u.xcrs) 5025 break; 5026 5027 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5028 5029 r = -EFAULT; 5030 if (copy_to_user(argp, u.xcrs, 5031 sizeof(struct kvm_xcrs))) 5032 break; 5033 r = 0; 5034 break; 5035 } 5036 case KVM_SET_XCRS: { 5037 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5038 if (IS_ERR(u.xcrs)) { 5039 r = PTR_ERR(u.xcrs); 5040 goto out_nofree; 5041 } 5042 5043 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5044 break; 5045 } 5046 case KVM_SET_TSC_KHZ: { 5047 u32 user_tsc_khz; 5048 5049 r = -EINVAL; 5050 user_tsc_khz = (u32)arg; 5051 5052 if (kvm_has_tsc_control && 5053 user_tsc_khz >= kvm_max_guest_tsc_khz) 5054 goto out; 5055 5056 if (user_tsc_khz == 0) 5057 user_tsc_khz = tsc_khz; 5058 5059 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5060 r = 0; 5061 5062 goto out; 5063 } 5064 case KVM_GET_TSC_KHZ: { 5065 r = vcpu->arch.virtual_tsc_khz; 5066 goto out; 5067 } 5068 case KVM_KVMCLOCK_CTRL: { 5069 r = kvm_set_guest_paused(vcpu); 5070 goto out; 5071 } 5072 case KVM_ENABLE_CAP: { 5073 struct kvm_enable_cap cap; 5074 5075 r = -EFAULT; 5076 if (copy_from_user(&cap, argp, sizeof(cap))) 5077 goto out; 5078 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5079 break; 5080 } 5081 case KVM_GET_NESTED_STATE: { 5082 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5083 u32 user_data_size; 5084 5085 r = -EINVAL; 5086 if (!kvm_x86_ops.nested_ops->get_state) 5087 break; 5088 5089 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5090 r = -EFAULT; 5091 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5092 break; 5093 5094 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5095 user_data_size); 5096 if (r < 0) 5097 break; 5098 5099 if (r > user_data_size) { 5100 if (put_user(r, &user_kvm_nested_state->size)) 5101 r = -EFAULT; 5102 else 5103 r = -E2BIG; 5104 break; 5105 } 5106 5107 r = 0; 5108 break; 5109 } 5110 case KVM_SET_NESTED_STATE: { 5111 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5112 struct kvm_nested_state kvm_state; 5113 int idx; 5114 5115 r = -EINVAL; 5116 if (!kvm_x86_ops.nested_ops->set_state) 5117 break; 5118 5119 r = -EFAULT; 5120 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5121 break; 5122 5123 r = -EINVAL; 5124 if (kvm_state.size < sizeof(kvm_state)) 5125 break; 5126 5127 if (kvm_state.flags & 5128 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5129 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5130 | KVM_STATE_NESTED_GIF_SET)) 5131 break; 5132 5133 /* nested_run_pending implies guest_mode. */ 5134 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5135 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5136 break; 5137 5138 idx = srcu_read_lock(&vcpu->kvm->srcu); 5139 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5140 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5141 break; 5142 } 5143 case KVM_GET_SUPPORTED_HV_CPUID: { 5144 struct kvm_cpuid2 __user *cpuid_arg = argp; 5145 struct kvm_cpuid2 cpuid; 5146 5147 r = -EFAULT; 5148 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5149 goto out; 5150 5151 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 5152 cpuid_arg->entries); 5153 if (r) 5154 goto out; 5155 5156 r = -EFAULT; 5157 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5158 goto out; 5159 r = 0; 5160 break; 5161 } 5162 default: 5163 r = -EINVAL; 5164 } 5165out: 5166 kfree(u.buffer); 5167out_nofree: 5168 vcpu_put(vcpu); 5169 return r; 5170} 5171 5172vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5173{ 5174 return VM_FAULT_SIGBUS; 5175} 5176 5177static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5178{ 5179 int ret; 5180 5181 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5182 return -EINVAL; 5183 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 5184 return ret; 5185} 5186 5187static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5188 u64 ident_addr) 5189{ 5190 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 5191} 5192 5193static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5194 unsigned long kvm_nr_mmu_pages) 5195{ 5196 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5197 return -EINVAL; 5198 5199 mutex_lock(&kvm->slots_lock); 5200 5201 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5202 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5203 5204 mutex_unlock(&kvm->slots_lock); 5205 return 0; 5206} 5207 5208static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5209{ 5210 return kvm->arch.n_max_mmu_pages; 5211} 5212 5213static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5214{ 5215 struct kvm_pic *pic = kvm->arch.vpic; 5216 int r; 5217 5218 r = 0; 5219 switch (chip->chip_id) { 5220 case KVM_IRQCHIP_PIC_MASTER: 5221 memcpy(&chip->chip.pic, &pic->pics[0], 5222 sizeof(struct kvm_pic_state)); 5223 break; 5224 case KVM_IRQCHIP_PIC_SLAVE: 5225 memcpy(&chip->chip.pic, &pic->pics[1], 5226 sizeof(struct kvm_pic_state)); 5227 break; 5228 case KVM_IRQCHIP_IOAPIC: 5229 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5230 break; 5231 default: 5232 r = -EINVAL; 5233 break; 5234 } 5235 return r; 5236} 5237 5238static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5239{ 5240 struct kvm_pic *pic = kvm->arch.vpic; 5241 int r; 5242 5243 r = 0; 5244 switch (chip->chip_id) { 5245 case KVM_IRQCHIP_PIC_MASTER: 5246 spin_lock(&pic->lock); 5247 memcpy(&pic->pics[0], &chip->chip.pic, 5248 sizeof(struct kvm_pic_state)); 5249 spin_unlock(&pic->lock); 5250 break; 5251 case KVM_IRQCHIP_PIC_SLAVE: 5252 spin_lock(&pic->lock); 5253 memcpy(&pic->pics[1], &chip->chip.pic, 5254 sizeof(struct kvm_pic_state)); 5255 spin_unlock(&pic->lock); 5256 break; 5257 case KVM_IRQCHIP_IOAPIC: 5258 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5259 break; 5260 default: 5261 r = -EINVAL; 5262 break; 5263 } 5264 kvm_pic_update_irq(pic); 5265 return r; 5266} 5267 5268static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5269{ 5270 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5271 5272 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5273 5274 mutex_lock(&kps->lock); 5275 memcpy(ps, &kps->channels, sizeof(*ps)); 5276 mutex_unlock(&kps->lock); 5277 return 0; 5278} 5279 5280static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5281{ 5282 int i; 5283 struct kvm_pit *pit = kvm->arch.vpit; 5284 5285 mutex_lock(&pit->pit_state.lock); 5286 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5287 for (i = 0; i < 3; i++) 5288 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5289 mutex_unlock(&pit->pit_state.lock); 5290 return 0; 5291} 5292 5293static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5294{ 5295 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5296 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5297 sizeof(ps->channels)); 5298 ps->flags = kvm->arch.vpit->pit_state.flags; 5299 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5300 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5301 return 0; 5302} 5303 5304static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5305{ 5306 int start = 0; 5307 int i; 5308 u32 prev_legacy, cur_legacy; 5309 struct kvm_pit *pit = kvm->arch.vpit; 5310 5311 mutex_lock(&pit->pit_state.lock); 5312 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5313 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5314 if (!prev_legacy && cur_legacy) 5315 start = 1; 5316 memcpy(&pit->pit_state.channels, &ps->channels, 5317 sizeof(pit->pit_state.channels)); 5318 pit->pit_state.flags = ps->flags; 5319 for (i = 0; i < 3; i++) 5320 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5321 start && i == 0); 5322 mutex_unlock(&pit->pit_state.lock); 5323 return 0; 5324} 5325 5326static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5327 struct kvm_reinject_control *control) 5328{ 5329 struct kvm_pit *pit = kvm->arch.vpit; 5330 5331 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5332 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5333 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5334 */ 5335 mutex_lock(&pit->pit_state.lock); 5336 kvm_pit_set_reinject(pit, control->pit_reinject); 5337 mutex_unlock(&pit->pit_state.lock); 5338 5339 return 0; 5340} 5341 5342void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5343{ 5344 /* 5345 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 5346 */ 5347 if (kvm_x86_ops.flush_log_dirty) 5348 kvm_x86_ops.flush_log_dirty(kvm); 5349} 5350 5351int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5352 bool line_status) 5353{ 5354 if (!irqchip_in_kernel(kvm)) 5355 return -ENXIO; 5356 5357 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5358 irq_event->irq, irq_event->level, 5359 line_status); 5360 return 0; 5361} 5362 5363int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5364 struct kvm_enable_cap *cap) 5365{ 5366 int r; 5367 5368 if (cap->flags) 5369 return -EINVAL; 5370 5371 switch (cap->cap) { 5372 case KVM_CAP_DISABLE_QUIRKS: 5373 kvm->arch.disabled_quirks = cap->args[0]; 5374 r = 0; 5375 break; 5376 case KVM_CAP_SPLIT_IRQCHIP: { 5377 mutex_lock(&kvm->lock); 5378 r = -EINVAL; 5379 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5380 goto split_irqchip_unlock; 5381 r = -EEXIST; 5382 if (irqchip_in_kernel(kvm)) 5383 goto split_irqchip_unlock; 5384 if (kvm->created_vcpus) 5385 goto split_irqchip_unlock; 5386 r = kvm_setup_empty_irq_routing(kvm); 5387 if (r) 5388 goto split_irqchip_unlock; 5389 /* Pairs with irqchip_in_kernel. */ 5390 smp_wmb(); 5391 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5392 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5393 r = 0; 5394split_irqchip_unlock: 5395 mutex_unlock(&kvm->lock); 5396 break; 5397 } 5398 case KVM_CAP_X2APIC_API: 5399 r = -EINVAL; 5400 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5401 break; 5402 5403 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5404 kvm->arch.x2apic_format = true; 5405 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5406 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5407 5408 r = 0; 5409 break; 5410 case KVM_CAP_X86_DISABLE_EXITS: 5411 r = -EINVAL; 5412 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5413 break; 5414 5415 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5416 kvm_can_mwait_in_guest()) 5417 kvm->arch.mwait_in_guest = true; 5418 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5419 kvm->arch.hlt_in_guest = true; 5420 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5421 kvm->arch.pause_in_guest = true; 5422 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5423 kvm->arch.cstate_in_guest = true; 5424 r = 0; 5425 break; 5426 case KVM_CAP_MSR_PLATFORM_INFO: 5427 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5428 r = 0; 5429 break; 5430 case KVM_CAP_EXCEPTION_PAYLOAD: 5431 kvm->arch.exception_payload_enabled = cap->args[0]; 5432 r = 0; 5433 break; 5434 case KVM_CAP_X86_USER_SPACE_MSR: 5435 r = -EINVAL; 5436 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 5437 KVM_MSR_EXIT_REASON_UNKNOWN | 5438 KVM_MSR_EXIT_REASON_FILTER)) 5439 break; 5440 kvm->arch.user_space_msr_mask = cap->args[0]; 5441 r = 0; 5442 break; 5443 default: 5444 r = -EINVAL; 5445 break; 5446 } 5447 return r; 5448} 5449 5450static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 5451{ 5452 struct kvm_x86_msr_filter *msr_filter; 5453 5454 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 5455 if (!msr_filter) 5456 return NULL; 5457 5458 msr_filter->default_allow = default_allow; 5459 return msr_filter; 5460} 5461 5462static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 5463{ 5464 u32 i; 5465 5466 if (!msr_filter) 5467 return; 5468 5469 for (i = 0; i < msr_filter->count; i++) 5470 kfree(msr_filter->ranges[i].bitmap); 5471 5472 kfree(msr_filter); 5473} 5474 5475static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 5476 struct kvm_msr_filter_range *user_range) 5477{ 5478 struct msr_bitmap_range range; 5479 unsigned long *bitmap = NULL; 5480 size_t bitmap_size; 5481 int r; 5482 5483 if (!user_range->nmsrs) 5484 return 0; 5485 5486 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5487 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5488 return -EINVAL; 5489 5490 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5491 if (IS_ERR(bitmap)) 5492 return PTR_ERR(bitmap); 5493 5494 range = (struct msr_bitmap_range) { 5495 .flags = user_range->flags, 5496 .base = user_range->base, 5497 .nmsrs = user_range->nmsrs, 5498 .bitmap = bitmap, 5499 }; 5500 5501 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5502 r = -EINVAL; 5503 goto err; 5504 } 5505 5506 if (!range.flags) { 5507 r = -EINVAL; 5508 goto err; 5509 } 5510 5511 /* Everything ok, add this range identifier. */ 5512 msr_filter->ranges[msr_filter->count] = range; 5513 msr_filter->count++; 5514 5515 return 0; 5516err: 5517 kfree(bitmap); 5518 return r; 5519} 5520 5521static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 5522 struct kvm_msr_filter *filter) 5523{ 5524 struct kvm_x86_msr_filter *new_filter, *old_filter; 5525 bool default_allow; 5526 bool empty = true; 5527 int r = 0; 5528 u32 i; 5529 5530 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 5531 return -EINVAL; 5532 5533 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 5534 empty &= !filter->ranges[i].nmsrs; 5535 5536 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 5537 if (empty && !default_allow) 5538 return -EINVAL; 5539 5540 new_filter = kvm_alloc_msr_filter(default_allow); 5541 if (!new_filter) 5542 return -ENOMEM; 5543 5544 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 5545 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 5546 if (r) { 5547 kvm_free_msr_filter(new_filter); 5548 return r; 5549 } 5550 } 5551 5552 mutex_lock(&kvm->lock); 5553 5554 /* The per-VM filter is protected by kvm->lock... */ 5555 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 5556 5557 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 5558 synchronize_srcu(&kvm->srcu); 5559 5560 kvm_free_msr_filter(old_filter); 5561 5562 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5563 mutex_unlock(&kvm->lock); 5564 5565 return 0; 5566} 5567 5568#ifdef CONFIG_KVM_COMPAT 5569/* for KVM_X86_SET_MSR_FILTER */ 5570struct kvm_msr_filter_range_compat { 5571 __u32 flags; 5572 __u32 nmsrs; 5573 __u32 base; 5574 __u32 bitmap; 5575}; 5576 5577struct kvm_msr_filter_compat { 5578 __u32 flags; 5579 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 5580}; 5581 5582#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 5583 5584long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 5585 unsigned long arg) 5586{ 5587 void __user *argp = (void __user *)arg; 5588 struct kvm *kvm = filp->private_data; 5589 long r = -ENOTTY; 5590 5591 switch (ioctl) { 5592 case KVM_X86_SET_MSR_FILTER_COMPAT: { 5593 struct kvm_msr_filter __user *user_msr_filter = argp; 5594 struct kvm_msr_filter_compat filter_compat; 5595 struct kvm_msr_filter filter; 5596 int i; 5597 5598 if (copy_from_user(&filter_compat, user_msr_filter, 5599 sizeof(filter_compat))) 5600 return -EFAULT; 5601 5602 filter.flags = filter_compat.flags; 5603 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5604 struct kvm_msr_filter_range_compat *cr; 5605 5606 cr = &filter_compat.ranges[i]; 5607 filter.ranges[i] = (struct kvm_msr_filter_range) { 5608 .flags = cr->flags, 5609 .nmsrs = cr->nmsrs, 5610 .base = cr->base, 5611 .bitmap = (__u8 *)(ulong)cr->bitmap, 5612 }; 5613 } 5614 5615 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 5616 break; 5617 } 5618 } 5619 5620 return r; 5621} 5622#endif 5623 5624long kvm_arch_vm_ioctl(struct file *filp, 5625 unsigned int ioctl, unsigned long arg) 5626{ 5627 struct kvm *kvm = filp->private_data; 5628 void __user *argp = (void __user *)arg; 5629 int r = -ENOTTY; 5630 /* 5631 * This union makes it completely explicit to gcc-3.x 5632 * that these two variables' stack usage should be 5633 * combined, not added together. 5634 */ 5635 union { 5636 struct kvm_pit_state ps; 5637 struct kvm_pit_state2 ps2; 5638 struct kvm_pit_config pit_config; 5639 } u; 5640 5641 switch (ioctl) { 5642 case KVM_SET_TSS_ADDR: 5643 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5644 break; 5645 case KVM_SET_IDENTITY_MAP_ADDR: { 5646 u64 ident_addr; 5647 5648 mutex_lock(&kvm->lock); 5649 r = -EINVAL; 5650 if (kvm->created_vcpus) 5651 goto set_identity_unlock; 5652 r = -EFAULT; 5653 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5654 goto set_identity_unlock; 5655 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5656set_identity_unlock: 5657 mutex_unlock(&kvm->lock); 5658 break; 5659 } 5660 case KVM_SET_NR_MMU_PAGES: 5661 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5662 break; 5663 case KVM_GET_NR_MMU_PAGES: 5664 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5665 break; 5666 case KVM_CREATE_IRQCHIP: { 5667 mutex_lock(&kvm->lock); 5668 5669 r = -EEXIST; 5670 if (irqchip_in_kernel(kvm)) 5671 goto create_irqchip_unlock; 5672 5673 r = -EINVAL; 5674 if (kvm->created_vcpus) 5675 goto create_irqchip_unlock; 5676 5677 r = kvm_pic_init(kvm); 5678 if (r) 5679 goto create_irqchip_unlock; 5680 5681 r = kvm_ioapic_init(kvm); 5682 if (r) { 5683 kvm_pic_destroy(kvm); 5684 goto create_irqchip_unlock; 5685 } 5686 5687 r = kvm_setup_default_irq_routing(kvm); 5688 if (r) { 5689 kvm_ioapic_destroy(kvm); 5690 kvm_pic_destroy(kvm); 5691 goto create_irqchip_unlock; 5692 } 5693 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5694 smp_wmb(); 5695 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5696 create_irqchip_unlock: 5697 mutex_unlock(&kvm->lock); 5698 break; 5699 } 5700 case KVM_CREATE_PIT: 5701 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5702 goto create_pit; 5703 case KVM_CREATE_PIT2: 5704 r = -EFAULT; 5705 if (copy_from_user(&u.pit_config, argp, 5706 sizeof(struct kvm_pit_config))) 5707 goto out; 5708 create_pit: 5709 mutex_lock(&kvm->lock); 5710 r = -EEXIST; 5711 if (kvm->arch.vpit) 5712 goto create_pit_unlock; 5713 r = -ENOMEM; 5714 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5715 if (kvm->arch.vpit) 5716 r = 0; 5717 create_pit_unlock: 5718 mutex_unlock(&kvm->lock); 5719 break; 5720 case KVM_GET_IRQCHIP: { 5721 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5722 struct kvm_irqchip *chip; 5723 5724 chip = memdup_user(argp, sizeof(*chip)); 5725 if (IS_ERR(chip)) { 5726 r = PTR_ERR(chip); 5727 goto out; 5728 } 5729 5730 r = -ENXIO; 5731 if (!irqchip_kernel(kvm)) 5732 goto get_irqchip_out; 5733 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5734 if (r) 5735 goto get_irqchip_out; 5736 r = -EFAULT; 5737 if (copy_to_user(argp, chip, sizeof(*chip))) 5738 goto get_irqchip_out; 5739 r = 0; 5740 get_irqchip_out: 5741 kfree(chip); 5742 break; 5743 } 5744 case KVM_SET_IRQCHIP: { 5745 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5746 struct kvm_irqchip *chip; 5747 5748 chip = memdup_user(argp, sizeof(*chip)); 5749 if (IS_ERR(chip)) { 5750 r = PTR_ERR(chip); 5751 goto out; 5752 } 5753 5754 r = -ENXIO; 5755 if (!irqchip_kernel(kvm)) 5756 goto set_irqchip_out; 5757 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5758 set_irqchip_out: 5759 kfree(chip); 5760 break; 5761 } 5762 case KVM_GET_PIT: { 5763 r = -EFAULT; 5764 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5765 goto out; 5766 r = -ENXIO; 5767 if (!kvm->arch.vpit) 5768 goto out; 5769 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5770 if (r) 5771 goto out; 5772 r = -EFAULT; 5773 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5774 goto out; 5775 r = 0; 5776 break; 5777 } 5778 case KVM_SET_PIT: { 5779 r = -EFAULT; 5780 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5781 goto out; 5782 mutex_lock(&kvm->lock); 5783 r = -ENXIO; 5784 if (!kvm->arch.vpit) 5785 goto set_pit_out; 5786 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5787set_pit_out: 5788 mutex_unlock(&kvm->lock); 5789 break; 5790 } 5791 case KVM_GET_PIT2: { 5792 r = -ENXIO; 5793 if (!kvm->arch.vpit) 5794 goto out; 5795 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5796 if (r) 5797 goto out; 5798 r = -EFAULT; 5799 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5800 goto out; 5801 r = 0; 5802 break; 5803 } 5804 case KVM_SET_PIT2: { 5805 r = -EFAULT; 5806 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5807 goto out; 5808 mutex_lock(&kvm->lock); 5809 r = -ENXIO; 5810 if (!kvm->arch.vpit) 5811 goto set_pit2_out; 5812 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5813set_pit2_out: 5814 mutex_unlock(&kvm->lock); 5815 break; 5816 } 5817 case KVM_REINJECT_CONTROL: { 5818 struct kvm_reinject_control control; 5819 r = -EFAULT; 5820 if (copy_from_user(&control, argp, sizeof(control))) 5821 goto out; 5822 r = -ENXIO; 5823 if (!kvm->arch.vpit) 5824 goto out; 5825 r = kvm_vm_ioctl_reinject(kvm, &control); 5826 break; 5827 } 5828 case KVM_SET_BOOT_CPU_ID: 5829 r = 0; 5830 mutex_lock(&kvm->lock); 5831 if (kvm->created_vcpus) 5832 r = -EBUSY; 5833 else 5834 kvm->arch.bsp_vcpu_id = arg; 5835 mutex_unlock(&kvm->lock); 5836 break; 5837 case KVM_XEN_HVM_CONFIG: { 5838 struct kvm_xen_hvm_config xhc; 5839 r = -EFAULT; 5840 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5841 goto out; 5842 r = -EINVAL; 5843 if (xhc.flags) 5844 goto out; 5845 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5846 r = 0; 5847 break; 5848 } 5849 case KVM_SET_CLOCK: { 5850 struct kvm_clock_data user_ns; 5851 u64 now_ns; 5852 5853 r = -EFAULT; 5854 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5855 goto out; 5856 5857 r = -EINVAL; 5858 if (user_ns.flags) 5859 goto out; 5860 5861 r = 0; 5862 /* 5863 * TODO: userspace has to take care of races with VCPU_RUN, so 5864 * kvm_gen_update_masterclock() can be cut down to locked 5865 * pvclock_update_vm_gtod_copy(). 5866 */ 5867 kvm_gen_update_masterclock(kvm); 5868 now_ns = get_kvmclock_ns(kvm); 5869 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5870 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5871 break; 5872 } 5873 case KVM_GET_CLOCK: { 5874 struct kvm_clock_data user_ns; 5875 u64 now_ns; 5876 5877 now_ns = get_kvmclock_ns(kvm); 5878 user_ns.clock = now_ns; 5879 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5880 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5881 5882 r = -EFAULT; 5883 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5884 goto out; 5885 r = 0; 5886 break; 5887 } 5888 case KVM_MEMORY_ENCRYPT_OP: { 5889 r = -ENOTTY; 5890 if (kvm_x86_ops.mem_enc_op) 5891 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5892 break; 5893 } 5894 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5895 struct kvm_enc_region region; 5896 5897 r = -EFAULT; 5898 if (copy_from_user(®ion, argp, sizeof(region))) 5899 goto out; 5900 5901 r = -ENOTTY; 5902 if (kvm_x86_ops.mem_enc_reg_region) 5903 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5904 break; 5905 } 5906 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5907 struct kvm_enc_region region; 5908 5909 r = -EFAULT; 5910 if (copy_from_user(®ion, argp, sizeof(region))) 5911 goto out; 5912 5913 r = -ENOTTY; 5914 if (kvm_x86_ops.mem_enc_unreg_region) 5915 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5916 break; 5917 } 5918 case KVM_HYPERV_EVENTFD: { 5919 struct kvm_hyperv_eventfd hvevfd; 5920 5921 r = -EFAULT; 5922 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5923 goto out; 5924 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5925 break; 5926 } 5927 case KVM_SET_PMU_EVENT_FILTER: 5928 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5929 break; 5930 case KVM_X86_SET_MSR_FILTER: { 5931 struct kvm_msr_filter __user *user_msr_filter = argp; 5932 struct kvm_msr_filter filter; 5933 5934 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5935 return -EFAULT; 5936 5937 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 5938 break; 5939 } 5940 default: 5941 r = -ENOTTY; 5942 } 5943out: 5944 return r; 5945} 5946 5947static void kvm_init_msr_list(void) 5948{ 5949 struct x86_pmu_capability x86_pmu; 5950 u32 dummy[2]; 5951 unsigned i; 5952 5953 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5954 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5955 5956 perf_get_x86_pmu_capability(&x86_pmu); 5957 5958 num_msrs_to_save = 0; 5959 num_emulated_msrs = 0; 5960 num_msr_based_features = 0; 5961 5962 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5963 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5964 continue; 5965 5966 /* 5967 * Even MSRs that are valid in the host may not be exposed 5968 * to the guests in some cases. 5969 */ 5970 switch (msrs_to_save_all[i]) { 5971 case MSR_IA32_BNDCFGS: 5972 if (!kvm_mpx_supported()) 5973 continue; 5974 break; 5975 case MSR_TSC_AUX: 5976 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5977 continue; 5978 break; 5979 case MSR_IA32_UMWAIT_CONTROL: 5980 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5981 continue; 5982 break; 5983 case MSR_IA32_RTIT_CTL: 5984 case MSR_IA32_RTIT_STATUS: 5985 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5986 continue; 5987 break; 5988 case MSR_IA32_RTIT_CR3_MATCH: 5989 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5990 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5991 continue; 5992 break; 5993 case MSR_IA32_RTIT_OUTPUT_BASE: 5994 case MSR_IA32_RTIT_OUTPUT_MASK: 5995 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5996 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5997 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5998 continue; 5999 break; 6000 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6001 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6002 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6003 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6004 continue; 6005 break; 6006 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6007 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6008 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6009 continue; 6010 break; 6011 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6012 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6013 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6014 continue; 6015 break; 6016 default: 6017 break; 6018 } 6019 6020 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6021 } 6022 6023 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6024 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 6025 continue; 6026 6027 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6028 } 6029 6030 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6031 struct kvm_msr_entry msr; 6032 6033 msr.index = msr_based_features_all[i]; 6034 if (kvm_get_msr_feature(&msr)) 6035 continue; 6036 6037 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6038 } 6039} 6040 6041static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6042 const void *v) 6043{ 6044 int handled = 0; 6045 int n; 6046 6047 do { 6048 n = min(len, 8); 6049 if (!(lapic_in_kernel(vcpu) && 6050 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6051 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6052 break; 6053 handled += n; 6054 addr += n; 6055 len -= n; 6056 v += n; 6057 } while (len); 6058 6059 return handled; 6060} 6061 6062static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6063{ 6064 int handled = 0; 6065 int n; 6066 6067 do { 6068 n = min(len, 8); 6069 if (!(lapic_in_kernel(vcpu) && 6070 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6071 addr, n, v)) 6072 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6073 break; 6074 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6075 handled += n; 6076 addr += n; 6077 len -= n; 6078 v += n; 6079 } while (len); 6080 6081 return handled; 6082} 6083 6084static void kvm_set_segment(struct kvm_vcpu *vcpu, 6085 struct kvm_segment *var, int seg) 6086{ 6087 kvm_x86_ops.set_segment(vcpu, var, seg); 6088} 6089 6090void kvm_get_segment(struct kvm_vcpu *vcpu, 6091 struct kvm_segment *var, int seg) 6092{ 6093 kvm_x86_ops.get_segment(vcpu, var, seg); 6094} 6095 6096gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 6097 struct x86_exception *exception) 6098{ 6099 gpa_t t_gpa; 6100 6101 BUG_ON(!mmu_is_nested(vcpu)); 6102 6103 /* NPT walks are always user-walks */ 6104 access |= PFERR_USER_MASK; 6105 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 6106 6107 return t_gpa; 6108} 6109 6110gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6111 struct x86_exception *exception) 6112{ 6113 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 6114 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6115} 6116 6117 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6118 struct x86_exception *exception) 6119{ 6120 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 6121 access |= PFERR_FETCH_MASK; 6122 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6123} 6124 6125gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6126 struct x86_exception *exception) 6127{ 6128 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 6129 access |= PFERR_WRITE_MASK; 6130 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6131} 6132 6133/* uses this to access any guest's mapped memory without checking CPL */ 6134gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6135 struct x86_exception *exception) 6136{ 6137 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 6138} 6139 6140static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6141 struct kvm_vcpu *vcpu, u32 access, 6142 struct x86_exception *exception) 6143{ 6144 void *data = val; 6145 int r = X86EMUL_CONTINUE; 6146 6147 while (bytes) { 6148 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 6149 exception); 6150 unsigned offset = addr & (PAGE_SIZE-1); 6151 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6152 int ret; 6153 6154 if (gpa == UNMAPPED_GVA) 6155 return X86EMUL_PROPAGATE_FAULT; 6156 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6157 offset, toread); 6158 if (ret < 0) { 6159 r = X86EMUL_IO_NEEDED; 6160 goto out; 6161 } 6162 6163 bytes -= toread; 6164 data += toread; 6165 addr += toread; 6166 } 6167out: 6168 return r; 6169} 6170 6171/* used for instruction fetching */ 6172static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6173 gva_t addr, void *val, unsigned int bytes, 6174 struct x86_exception *exception) 6175{ 6176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6177 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 6178 unsigned offset; 6179 int ret; 6180 6181 /* Inline kvm_read_guest_virt_helper for speed. */ 6182 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 6183 exception); 6184 if (unlikely(gpa == UNMAPPED_GVA)) 6185 return X86EMUL_PROPAGATE_FAULT; 6186 6187 offset = addr & (PAGE_SIZE-1); 6188 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6189 bytes = (unsigned)PAGE_SIZE - offset; 6190 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6191 offset, bytes); 6192 if (unlikely(ret < 0)) 6193 return X86EMUL_IO_NEEDED; 6194 6195 return X86EMUL_CONTINUE; 6196} 6197 6198int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6199 gva_t addr, void *val, unsigned int bytes, 6200 struct x86_exception *exception) 6201{ 6202 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 6203 6204 /* 6205 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6206 * is returned, but our callers are not ready for that and they blindly 6207 * call kvm_inject_page_fault. Ensure that they at least do not leak 6208 * uninitialized kernel stack memory into cr2 and error code. 6209 */ 6210 memset(exception, 0, sizeof(*exception)); 6211 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6212 exception); 6213} 6214EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6215 6216static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6217 gva_t addr, void *val, unsigned int bytes, 6218 struct x86_exception *exception, bool system) 6219{ 6220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6221 u32 access = 0; 6222 6223 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6224 access |= PFERR_USER_MASK; 6225 6226 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6227} 6228 6229static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6230 unsigned long addr, void *val, unsigned int bytes) 6231{ 6232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6233 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6234 6235 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6236} 6237 6238static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6239 struct kvm_vcpu *vcpu, u32 access, 6240 struct x86_exception *exception) 6241{ 6242 void *data = val; 6243 int r = X86EMUL_CONTINUE; 6244 6245 while (bytes) { 6246 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6247 access, 6248 exception); 6249 unsigned offset = addr & (PAGE_SIZE-1); 6250 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6251 int ret; 6252 6253 if (gpa == UNMAPPED_GVA) 6254 return X86EMUL_PROPAGATE_FAULT; 6255 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6256 if (ret < 0) { 6257 r = X86EMUL_IO_NEEDED; 6258 goto out; 6259 } 6260 6261 bytes -= towrite; 6262 data += towrite; 6263 addr += towrite; 6264 } 6265out: 6266 return r; 6267} 6268 6269static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6270 unsigned int bytes, struct x86_exception *exception, 6271 bool system) 6272{ 6273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6274 u32 access = PFERR_WRITE_MASK; 6275 6276 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6277 access |= PFERR_USER_MASK; 6278 6279 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6280 access, exception); 6281} 6282 6283int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6284 unsigned int bytes, struct x86_exception *exception) 6285{ 6286 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6287 vcpu->arch.l1tf_flush_l1d = true; 6288 6289 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6290 PFERR_WRITE_MASK, exception); 6291} 6292EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6293 6294int handle_ud(struct kvm_vcpu *vcpu) 6295{ 6296 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6297 int emul_type = EMULTYPE_TRAP_UD; 6298 char sig[5]; /* ud2; .ascii "kvm" */ 6299 struct x86_exception e; 6300 6301 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0))) 6302 return 1; 6303 6304 if (force_emulation_prefix && 6305 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6306 sig, sizeof(sig), &e) == 0 && 6307 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6308 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6309 emul_type = EMULTYPE_TRAP_UD_FORCED; 6310 } 6311 6312 return kvm_emulate_instruction(vcpu, emul_type); 6313} 6314EXPORT_SYMBOL_GPL(handle_ud); 6315 6316static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6317 gpa_t gpa, bool write) 6318{ 6319 /* For APIC access vmexit */ 6320 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6321 return 1; 6322 6323 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6324 trace_vcpu_match_mmio(gva, gpa, write, true); 6325 return 1; 6326 } 6327 6328 return 0; 6329} 6330 6331static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6332 gpa_t *gpa, struct x86_exception *exception, 6333 bool write) 6334{ 6335 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 6336 | (write ? PFERR_WRITE_MASK : 0); 6337 6338 /* 6339 * currently PKRU is only applied to ept enabled guest so 6340 * there is no pkey in EPT page table for L1 guest or EPT 6341 * shadow page table for L2 guest. 6342 */ 6343 if (vcpu_match_mmio_gva(vcpu, gva) 6344 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6345 vcpu->arch.mmio_access, 0, access)) { 6346 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6347 (gva & (PAGE_SIZE - 1)); 6348 trace_vcpu_match_mmio(gva, *gpa, write, false); 6349 return 1; 6350 } 6351 6352 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6353 6354 if (*gpa == UNMAPPED_GVA) 6355 return -1; 6356 6357 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6358} 6359 6360int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6361 const void *val, int bytes) 6362{ 6363 int ret; 6364 6365 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6366 if (ret < 0) 6367 return 0; 6368 kvm_page_track_write(vcpu, gpa, val, bytes); 6369 return 1; 6370} 6371 6372struct read_write_emulator_ops { 6373 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6374 int bytes); 6375 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6376 void *val, int bytes); 6377 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6378 int bytes, void *val); 6379 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6380 void *val, int bytes); 6381 bool write; 6382}; 6383 6384static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6385{ 6386 if (vcpu->mmio_read_completed) { 6387 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6388 vcpu->mmio_fragments[0].gpa, val); 6389 vcpu->mmio_read_completed = 0; 6390 return 1; 6391 } 6392 6393 return 0; 6394} 6395 6396static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6397 void *val, int bytes) 6398{ 6399 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6400} 6401 6402static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6403 void *val, int bytes) 6404{ 6405 return emulator_write_phys(vcpu, gpa, val, bytes); 6406} 6407 6408static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6409{ 6410 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6411 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6412} 6413 6414static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6415 void *val, int bytes) 6416{ 6417 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6418 return X86EMUL_IO_NEEDED; 6419} 6420 6421static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6422 void *val, int bytes) 6423{ 6424 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6425 6426 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6427 return X86EMUL_CONTINUE; 6428} 6429 6430static const struct read_write_emulator_ops read_emultor = { 6431 .read_write_prepare = read_prepare, 6432 .read_write_emulate = read_emulate, 6433 .read_write_mmio = vcpu_mmio_read, 6434 .read_write_exit_mmio = read_exit_mmio, 6435}; 6436 6437static const struct read_write_emulator_ops write_emultor = { 6438 .read_write_emulate = write_emulate, 6439 .read_write_mmio = write_mmio, 6440 .read_write_exit_mmio = write_exit_mmio, 6441 .write = true, 6442}; 6443 6444static int emulator_read_write_onepage(unsigned long addr, void *val, 6445 unsigned int bytes, 6446 struct x86_exception *exception, 6447 struct kvm_vcpu *vcpu, 6448 const struct read_write_emulator_ops *ops) 6449{ 6450 gpa_t gpa; 6451 int handled, ret; 6452 bool write = ops->write; 6453 struct kvm_mmio_fragment *frag; 6454 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6455 6456 /* 6457 * If the exit was due to a NPF we may already have a GPA. 6458 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6459 * Note, this cannot be used on string operations since string 6460 * operation using rep will only have the initial GPA from the NPF 6461 * occurred. 6462 */ 6463 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6464 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6465 gpa = ctxt->gpa_val; 6466 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6467 } else { 6468 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6469 if (ret < 0) 6470 return X86EMUL_PROPAGATE_FAULT; 6471 } 6472 6473 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6474 return X86EMUL_CONTINUE; 6475 6476 /* 6477 * Is this MMIO handled locally? 6478 */ 6479 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6480 if (handled == bytes) 6481 return X86EMUL_CONTINUE; 6482 6483 gpa += handled; 6484 bytes -= handled; 6485 val += handled; 6486 6487 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6488 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6489 frag->gpa = gpa; 6490 frag->data = val; 6491 frag->len = bytes; 6492 return X86EMUL_CONTINUE; 6493} 6494 6495static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6496 unsigned long addr, 6497 void *val, unsigned int bytes, 6498 struct x86_exception *exception, 6499 const struct read_write_emulator_ops *ops) 6500{ 6501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6502 gpa_t gpa; 6503 int rc; 6504 6505 if (ops->read_write_prepare && 6506 ops->read_write_prepare(vcpu, val, bytes)) 6507 return X86EMUL_CONTINUE; 6508 6509 vcpu->mmio_nr_fragments = 0; 6510 6511 /* Crossing a page boundary? */ 6512 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6513 int now; 6514 6515 now = -addr & ~PAGE_MASK; 6516 rc = emulator_read_write_onepage(addr, val, now, exception, 6517 vcpu, ops); 6518 6519 if (rc != X86EMUL_CONTINUE) 6520 return rc; 6521 addr += now; 6522 if (ctxt->mode != X86EMUL_MODE_PROT64) 6523 addr = (u32)addr; 6524 val += now; 6525 bytes -= now; 6526 } 6527 6528 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6529 vcpu, ops); 6530 if (rc != X86EMUL_CONTINUE) 6531 return rc; 6532 6533 if (!vcpu->mmio_nr_fragments) 6534 return rc; 6535 6536 gpa = vcpu->mmio_fragments[0].gpa; 6537 6538 vcpu->mmio_needed = 1; 6539 vcpu->mmio_cur_fragment = 0; 6540 6541 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6542 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6543 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6544 vcpu->run->mmio.phys_addr = gpa; 6545 6546 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6547} 6548 6549static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6550 unsigned long addr, 6551 void *val, 6552 unsigned int bytes, 6553 struct x86_exception *exception) 6554{ 6555 return emulator_read_write(ctxt, addr, val, bytes, 6556 exception, &read_emultor); 6557} 6558 6559static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6560 unsigned long addr, 6561 const void *val, 6562 unsigned int bytes, 6563 struct x86_exception *exception) 6564{ 6565 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6566 exception, &write_emultor); 6567} 6568 6569#define CMPXCHG_TYPE(t, ptr, old, new) \ 6570 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6571 6572#ifdef CONFIG_X86_64 6573# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6574#else 6575# define CMPXCHG64(ptr, old, new) \ 6576 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6577#endif 6578 6579static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6580 unsigned long addr, 6581 const void *old, 6582 const void *new, 6583 unsigned int bytes, 6584 struct x86_exception *exception) 6585{ 6586 struct kvm_host_map map; 6587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6588 u64 page_line_mask; 6589 gpa_t gpa; 6590 char *kaddr; 6591 bool exchanged; 6592 6593 /* guests cmpxchg8b have to be emulated atomically */ 6594 if (bytes > 8 || (bytes & (bytes - 1))) 6595 goto emul_write; 6596 6597 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6598 6599 if (gpa == UNMAPPED_GVA || 6600 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6601 goto emul_write; 6602 6603 /* 6604 * Emulate the atomic as a straight write to avoid #AC if SLD is 6605 * enabled in the host and the access splits a cache line. 6606 */ 6607 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6608 page_line_mask = ~(cache_line_size() - 1); 6609 else 6610 page_line_mask = PAGE_MASK; 6611 6612 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6613 goto emul_write; 6614 6615 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6616 goto emul_write; 6617 6618 kaddr = map.hva + offset_in_page(gpa); 6619 6620 switch (bytes) { 6621 case 1: 6622 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6623 break; 6624 case 2: 6625 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6626 break; 6627 case 4: 6628 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6629 break; 6630 case 8: 6631 exchanged = CMPXCHG64(kaddr, old, new); 6632 break; 6633 default: 6634 BUG(); 6635 } 6636 6637 kvm_vcpu_unmap(vcpu, &map, true); 6638 6639 if (!exchanged) 6640 return X86EMUL_CMPXCHG_FAILED; 6641 6642 kvm_page_track_write(vcpu, gpa, new, bytes); 6643 6644 return X86EMUL_CONTINUE; 6645 6646emul_write: 6647 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6648 6649 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6650} 6651 6652static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6653{ 6654 int r = 0, i; 6655 6656 for (i = 0; i < vcpu->arch.pio.count; i++) { 6657 if (vcpu->arch.pio.in) 6658 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6659 vcpu->arch.pio.size, pd); 6660 else 6661 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6662 vcpu->arch.pio.port, vcpu->arch.pio.size, 6663 pd); 6664 if (r) 6665 break; 6666 pd += vcpu->arch.pio.size; 6667 } 6668 return r; 6669} 6670 6671static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6672 unsigned short port, void *val, 6673 unsigned int count, bool in) 6674{ 6675 vcpu->arch.pio.port = port; 6676 vcpu->arch.pio.in = in; 6677 vcpu->arch.pio.count = count; 6678 vcpu->arch.pio.size = size; 6679 6680 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6681 vcpu->arch.pio.count = 0; 6682 return 1; 6683 } 6684 6685 vcpu->run->exit_reason = KVM_EXIT_IO; 6686 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6687 vcpu->run->io.size = size; 6688 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6689 vcpu->run->io.count = count; 6690 vcpu->run->io.port = port; 6691 6692 return 0; 6693} 6694 6695static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6696 unsigned short port, void *val, unsigned int count) 6697{ 6698 int ret; 6699 6700 if (vcpu->arch.pio.count) 6701 goto data_avail; 6702 6703 memset(vcpu->arch.pio_data, 0, size * count); 6704 6705 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6706 if (ret) { 6707data_avail: 6708 memcpy(val, vcpu->arch.pio_data, size * count); 6709 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6710 vcpu->arch.pio.count = 0; 6711 return 1; 6712 } 6713 6714 return 0; 6715} 6716 6717static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6718 int size, unsigned short port, void *val, 6719 unsigned int count) 6720{ 6721 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6722 6723} 6724 6725static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6726 unsigned short port, const void *val, 6727 unsigned int count) 6728{ 6729 memcpy(vcpu->arch.pio_data, val, size * count); 6730 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6731 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6732} 6733 6734static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6735 int size, unsigned short port, 6736 const void *val, unsigned int count) 6737{ 6738 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6739} 6740 6741static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6742{ 6743 return kvm_x86_ops.get_segment_base(vcpu, seg); 6744} 6745 6746static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6747{ 6748 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6749} 6750 6751static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6752{ 6753 if (!need_emulate_wbinvd(vcpu)) 6754 return X86EMUL_CONTINUE; 6755 6756 if (kvm_x86_ops.has_wbinvd_exit()) { 6757 int cpu = get_cpu(); 6758 6759 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6760 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6761 wbinvd_ipi, NULL, 1); 6762 put_cpu(); 6763 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6764 } else 6765 wbinvd(); 6766 return X86EMUL_CONTINUE; 6767} 6768 6769int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6770{ 6771 kvm_emulate_wbinvd_noskip(vcpu); 6772 return kvm_skip_emulated_instruction(vcpu); 6773} 6774EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6775 6776 6777 6778static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6779{ 6780 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6781} 6782 6783static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6784 unsigned long *dest) 6785{ 6786 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6787} 6788 6789static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6790 unsigned long value) 6791{ 6792 6793 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6794} 6795 6796static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6797{ 6798 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6799} 6800 6801static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6802{ 6803 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6804 unsigned long value; 6805 6806 switch (cr) { 6807 case 0: 6808 value = kvm_read_cr0(vcpu); 6809 break; 6810 case 2: 6811 value = vcpu->arch.cr2; 6812 break; 6813 case 3: 6814 value = kvm_read_cr3(vcpu); 6815 break; 6816 case 4: 6817 value = kvm_read_cr4(vcpu); 6818 break; 6819 case 8: 6820 value = kvm_get_cr8(vcpu); 6821 break; 6822 default: 6823 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6824 return 0; 6825 } 6826 6827 return value; 6828} 6829 6830static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6831{ 6832 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6833 int res = 0; 6834 6835 switch (cr) { 6836 case 0: 6837 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6838 break; 6839 case 2: 6840 vcpu->arch.cr2 = val; 6841 break; 6842 case 3: 6843 res = kvm_set_cr3(vcpu, val); 6844 break; 6845 case 4: 6846 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6847 break; 6848 case 8: 6849 res = kvm_set_cr8(vcpu, val); 6850 break; 6851 default: 6852 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6853 res = -1; 6854 } 6855 6856 return res; 6857} 6858 6859static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6860{ 6861 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6862} 6863 6864static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6865{ 6866 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6867} 6868 6869static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6870{ 6871 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6872} 6873 6874static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6875{ 6876 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6877} 6878 6879static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6880{ 6881 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6882} 6883 6884static unsigned long emulator_get_cached_segment_base( 6885 struct x86_emulate_ctxt *ctxt, int seg) 6886{ 6887 return get_segment_base(emul_to_vcpu(ctxt), seg); 6888} 6889 6890static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6891 struct desc_struct *desc, u32 *base3, 6892 int seg) 6893{ 6894 struct kvm_segment var; 6895 6896 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6897 *selector = var.selector; 6898 6899 if (var.unusable) { 6900 memset(desc, 0, sizeof(*desc)); 6901 if (base3) 6902 *base3 = 0; 6903 return false; 6904 } 6905 6906 if (var.g) 6907 var.limit >>= 12; 6908 set_desc_limit(desc, var.limit); 6909 set_desc_base(desc, (unsigned long)var.base); 6910#ifdef CONFIG_X86_64 6911 if (base3) 6912 *base3 = var.base >> 32; 6913#endif 6914 desc->type = var.type; 6915 desc->s = var.s; 6916 desc->dpl = var.dpl; 6917 desc->p = var.present; 6918 desc->avl = var.avl; 6919 desc->l = var.l; 6920 desc->d = var.db; 6921 desc->g = var.g; 6922 6923 return true; 6924} 6925 6926static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6927 struct desc_struct *desc, u32 base3, 6928 int seg) 6929{ 6930 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6931 struct kvm_segment var; 6932 6933 var.selector = selector; 6934 var.base = get_desc_base(desc); 6935#ifdef CONFIG_X86_64 6936 var.base |= ((u64)base3) << 32; 6937#endif 6938 var.limit = get_desc_limit(desc); 6939 if (desc->g) 6940 var.limit = (var.limit << 12) | 0xfff; 6941 var.type = desc->type; 6942 var.dpl = desc->dpl; 6943 var.db = desc->d; 6944 var.s = desc->s; 6945 var.l = desc->l; 6946 var.g = desc->g; 6947 var.avl = desc->avl; 6948 var.present = desc->p; 6949 var.unusable = !var.present; 6950 var.padding = 0; 6951 6952 kvm_set_segment(vcpu, &var, seg); 6953 return; 6954} 6955 6956static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6957 u32 msr_index, u64 *pdata) 6958{ 6959 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6960 int r; 6961 6962 r = kvm_get_msr(vcpu, msr_index, pdata); 6963 6964 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6965 /* Bounce to user space */ 6966 return X86EMUL_IO_NEEDED; 6967 } 6968 6969 return r; 6970} 6971 6972static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6973 u32 msr_index, u64 data) 6974{ 6975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6976 int r; 6977 6978 r = kvm_set_msr(vcpu, msr_index, data); 6979 6980 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6981 /* Bounce to user space */ 6982 return X86EMUL_IO_NEEDED; 6983 } 6984 6985 return r; 6986} 6987 6988static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6989{ 6990 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6991 6992 return vcpu->arch.smbase; 6993} 6994 6995static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6996{ 6997 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6998 6999 vcpu->arch.smbase = smbase; 7000} 7001 7002static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7003 u32 pmc) 7004{ 7005 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 7006} 7007 7008static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7009 u32 pmc, u64 *pdata) 7010{ 7011 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7012} 7013 7014static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7015{ 7016 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7017} 7018 7019static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7020 struct x86_instruction_info *info, 7021 enum x86_intercept_stage stage) 7022{ 7023 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 7024 &ctxt->exception); 7025} 7026 7027static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7028 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7029 bool exact_only) 7030{ 7031 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7032} 7033 7034static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7035{ 7036 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7037} 7038 7039static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7040{ 7041 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7042} 7043 7044static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7045{ 7046 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7047} 7048 7049static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7050{ 7051 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7052} 7053 7054static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7055{ 7056 return kvm_register_read(emul_to_vcpu(ctxt), reg); 7057} 7058 7059static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7060{ 7061 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 7062} 7063 7064static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7065{ 7066 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 7067} 7068 7069static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7070{ 7071 return emul_to_vcpu(ctxt)->arch.hflags; 7072} 7073 7074static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 7075{ 7076 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7077 7078 vcpu->arch.hflags = emul_flags; 7079 kvm_mmu_reset_context(vcpu); 7080} 7081 7082static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 7083 const char *smstate) 7084{ 7085 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 7086} 7087 7088static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 7089{ 7090 kvm_smm_changed(emul_to_vcpu(ctxt)); 7091} 7092 7093static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7094{ 7095 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7096} 7097 7098static const struct x86_emulate_ops emulate_ops = { 7099 .read_gpr = emulator_read_gpr, 7100 .write_gpr = emulator_write_gpr, 7101 .read_std = emulator_read_std, 7102 .write_std = emulator_write_std, 7103 .read_phys = kvm_read_guest_phys_system, 7104 .fetch = kvm_fetch_guest_virt, 7105 .read_emulated = emulator_read_emulated, 7106 .write_emulated = emulator_write_emulated, 7107 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7108 .invlpg = emulator_invlpg, 7109 .pio_in_emulated = emulator_pio_in_emulated, 7110 .pio_out_emulated = emulator_pio_out_emulated, 7111 .get_segment = emulator_get_segment, 7112 .set_segment = emulator_set_segment, 7113 .get_cached_segment_base = emulator_get_cached_segment_base, 7114 .get_gdt = emulator_get_gdt, 7115 .get_idt = emulator_get_idt, 7116 .set_gdt = emulator_set_gdt, 7117 .set_idt = emulator_set_idt, 7118 .get_cr = emulator_get_cr, 7119 .set_cr = emulator_set_cr, 7120 .cpl = emulator_get_cpl, 7121 .get_dr = emulator_get_dr, 7122 .set_dr = emulator_set_dr, 7123 .get_smbase = emulator_get_smbase, 7124 .set_smbase = emulator_set_smbase, 7125 .set_msr = emulator_set_msr, 7126 .get_msr = emulator_get_msr, 7127 .check_pmc = emulator_check_pmc, 7128 .read_pmc = emulator_read_pmc, 7129 .halt = emulator_halt, 7130 .wbinvd = emulator_wbinvd, 7131 .fix_hypercall = emulator_fix_hypercall, 7132 .intercept = emulator_intercept, 7133 .get_cpuid = emulator_get_cpuid, 7134 .guest_has_long_mode = emulator_guest_has_long_mode, 7135 .guest_has_movbe = emulator_guest_has_movbe, 7136 .guest_has_fxsr = emulator_guest_has_fxsr, 7137 .guest_has_rdpid = emulator_guest_has_rdpid, 7138 .set_nmi_mask = emulator_set_nmi_mask, 7139 .get_hflags = emulator_get_hflags, 7140 .set_hflags = emulator_set_hflags, 7141 .pre_leave_smm = emulator_pre_leave_smm, 7142 .post_leave_smm = emulator_post_leave_smm, 7143 .set_xcr = emulator_set_xcr, 7144}; 7145 7146static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7147{ 7148 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 7149 /* 7150 * an sti; sti; sequence only disable interrupts for the first 7151 * instruction. So, if the last instruction, be it emulated or 7152 * not, left the system with the INT_STI flag enabled, it 7153 * means that the last instruction is an sti. We should not 7154 * leave the flag on in this case. The same goes for mov ss 7155 */ 7156 if (int_shadow & mask) 7157 mask = 0; 7158 if (unlikely(int_shadow || mask)) { 7159 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 7160 if (!mask) 7161 kvm_make_request(KVM_REQ_EVENT, vcpu); 7162 } 7163} 7164 7165static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7166{ 7167 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7168 if (ctxt->exception.vector == PF_VECTOR) 7169 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7170 7171 if (ctxt->exception.error_code_valid) 7172 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7173 ctxt->exception.error_code); 7174 else 7175 kvm_queue_exception(vcpu, ctxt->exception.vector); 7176 return false; 7177} 7178 7179static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7180{ 7181 struct x86_emulate_ctxt *ctxt; 7182 7183 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7184 if (!ctxt) { 7185 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7186 return NULL; 7187 } 7188 7189 ctxt->vcpu = vcpu; 7190 ctxt->ops = &emulate_ops; 7191 vcpu->arch.emulate_ctxt = ctxt; 7192 7193 return ctxt; 7194} 7195 7196static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7197{ 7198 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7199 int cs_db, cs_l; 7200 7201 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 7202 7203 ctxt->gpa_available = false; 7204 ctxt->eflags = kvm_get_rflags(vcpu); 7205 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7206 7207 ctxt->eip = kvm_rip_read(vcpu); 7208 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7209 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7210 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7211 cs_db ? X86EMUL_MODE_PROT32 : 7212 X86EMUL_MODE_PROT16; 7213 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7214 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7215 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7216 7217 ctxt->interruptibility = 0; 7218 ctxt->have_exception = false; 7219 ctxt->exception.vector = -1; 7220 ctxt->perm_ok = false; 7221 7222 init_decode_cache(ctxt); 7223 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7224} 7225 7226void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7227{ 7228 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7229 int ret; 7230 7231 init_emulate_ctxt(vcpu); 7232 7233 ctxt->op_bytes = 2; 7234 ctxt->ad_bytes = 2; 7235 ctxt->_eip = ctxt->eip + inc_eip; 7236 ret = emulate_int_real(ctxt, irq); 7237 7238 if (ret != X86EMUL_CONTINUE) { 7239 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7240 } else { 7241 ctxt->eip = ctxt->_eip; 7242 kvm_rip_write(vcpu, ctxt->eip); 7243 kvm_set_rflags(vcpu, ctxt->eflags); 7244 } 7245} 7246EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7247 7248static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7249{ 7250 ++vcpu->stat.insn_emulation_fail; 7251 trace_kvm_emulate_insn_failed(vcpu); 7252 7253 if (emulation_type & EMULTYPE_VMWARE_GP) { 7254 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7255 return 1; 7256 } 7257 7258 if (emulation_type & EMULTYPE_SKIP) { 7259 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7260 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7261 vcpu->run->internal.ndata = 0; 7262 return 0; 7263 } 7264 7265 kvm_queue_exception(vcpu, UD_VECTOR); 7266 7267 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 7268 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7269 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7270 vcpu->run->internal.ndata = 0; 7271 return 0; 7272 } 7273 7274 return 1; 7275} 7276 7277static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7278 bool write_fault_to_shadow_pgtable, 7279 int emulation_type) 7280{ 7281 gpa_t gpa = cr2_or_gpa; 7282 kvm_pfn_t pfn; 7283 7284 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7285 return false; 7286 7287 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7288 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7289 return false; 7290 7291 if (!vcpu->arch.mmu->direct_map) { 7292 /* 7293 * Write permission should be allowed since only 7294 * write access need to be emulated. 7295 */ 7296 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7297 7298 /* 7299 * If the mapping is invalid in guest, let cpu retry 7300 * it to generate fault. 7301 */ 7302 if (gpa == UNMAPPED_GVA) 7303 return true; 7304 } 7305 7306 /* 7307 * Do not retry the unhandleable instruction if it faults on the 7308 * readonly host memory, otherwise it will goto a infinite loop: 7309 * retry instruction -> write #PF -> emulation fail -> retry 7310 * instruction -> ... 7311 */ 7312 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7313 7314 /* 7315 * If the instruction failed on the error pfn, it can not be fixed, 7316 * report the error to userspace. 7317 */ 7318 if (is_error_noslot_pfn(pfn)) 7319 return false; 7320 7321 kvm_release_pfn_clean(pfn); 7322 7323 /* The instructions are well-emulated on direct mmu. */ 7324 if (vcpu->arch.mmu->direct_map) { 7325 unsigned int indirect_shadow_pages; 7326 7327 spin_lock(&vcpu->kvm->mmu_lock); 7328 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7329 spin_unlock(&vcpu->kvm->mmu_lock); 7330 7331 if (indirect_shadow_pages) 7332 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7333 7334 return true; 7335 } 7336 7337 /* 7338 * if emulation was due to access to shadowed page table 7339 * and it failed try to unshadow page and re-enter the 7340 * guest to let CPU execute the instruction. 7341 */ 7342 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7343 7344 /* 7345 * If the access faults on its page table, it can not 7346 * be fixed by unprotecting shadow page and it should 7347 * be reported to userspace. 7348 */ 7349 return !write_fault_to_shadow_pgtable; 7350} 7351 7352static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7353 gpa_t cr2_or_gpa, int emulation_type) 7354{ 7355 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7356 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7357 7358 last_retry_eip = vcpu->arch.last_retry_eip; 7359 last_retry_addr = vcpu->arch.last_retry_addr; 7360 7361 /* 7362 * If the emulation is caused by #PF and it is non-page_table 7363 * writing instruction, it means the VM-EXIT is caused by shadow 7364 * page protected, we can zap the shadow page and retry this 7365 * instruction directly. 7366 * 7367 * Note: if the guest uses a non-page-table modifying instruction 7368 * on the PDE that points to the instruction, then we will unmap 7369 * the instruction and go to an infinite loop. So, we cache the 7370 * last retried eip and the last fault address, if we meet the eip 7371 * and the address again, we can break out of the potential infinite 7372 * loop. 7373 */ 7374 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7375 7376 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7377 return false; 7378 7379 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7380 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7381 return false; 7382 7383 if (x86_page_table_writing_insn(ctxt)) 7384 return false; 7385 7386 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7387 return false; 7388 7389 vcpu->arch.last_retry_eip = ctxt->eip; 7390 vcpu->arch.last_retry_addr = cr2_or_gpa; 7391 7392 if (!vcpu->arch.mmu->direct_map) 7393 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7394 7395 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7396 7397 return true; 7398} 7399 7400static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7401static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7402 7403static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7404{ 7405 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7406 /* This is a good place to trace that we are exiting SMM. */ 7407 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7408 7409 /* Process a latched INIT or SMI, if any. */ 7410 kvm_make_request(KVM_REQ_EVENT, vcpu); 7411 } 7412 7413 kvm_mmu_reset_context(vcpu); 7414} 7415 7416static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7417 unsigned long *db) 7418{ 7419 u32 dr6 = 0; 7420 int i; 7421 u32 enable, rwlen; 7422 7423 enable = dr7; 7424 rwlen = dr7 >> 16; 7425 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7426 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7427 dr6 |= (1 << i); 7428 return dr6; 7429} 7430 7431static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7432{ 7433 struct kvm_run *kvm_run = vcpu->run; 7434 7435 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7436 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 7437 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7438 kvm_run->debug.arch.exception = DB_VECTOR; 7439 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7440 return 0; 7441 } 7442 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7443 return 1; 7444} 7445 7446int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7447{ 7448 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7449 int r; 7450 7451 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 7452 if (unlikely(!r)) 7453 return 0; 7454 7455 /* 7456 * rflags is the old, "raw" value of the flags. The new value has 7457 * not been saved yet. 7458 * 7459 * This is correct even for TF set by the guest, because "the 7460 * processor will not generate this exception after the instruction 7461 * that sets the TF flag". 7462 */ 7463 if (unlikely(rflags & X86_EFLAGS_TF)) 7464 r = kvm_vcpu_do_singlestep(vcpu); 7465 return r; 7466} 7467EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7468 7469static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 7470{ 7471 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7472 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7473 struct kvm_run *kvm_run = vcpu->run; 7474 unsigned long eip = kvm_get_linear_rip(vcpu); 7475 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7476 vcpu->arch.guest_debug_dr7, 7477 vcpu->arch.eff_db); 7478 7479 if (dr6 != 0) { 7480 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 7481 kvm_run->debug.arch.pc = eip; 7482 kvm_run->debug.arch.exception = DB_VECTOR; 7483 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7484 *r = 0; 7485 return true; 7486 } 7487 } 7488 7489 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7490 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7491 unsigned long eip = kvm_get_linear_rip(vcpu); 7492 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7493 vcpu->arch.dr7, 7494 vcpu->arch.db); 7495 7496 if (dr6 != 0) { 7497 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7498 *r = 1; 7499 return true; 7500 } 7501 } 7502 7503 return false; 7504} 7505 7506static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7507{ 7508 switch (ctxt->opcode_len) { 7509 case 1: 7510 switch (ctxt->b) { 7511 case 0xe4: /* IN */ 7512 case 0xe5: 7513 case 0xec: 7514 case 0xed: 7515 case 0xe6: /* OUT */ 7516 case 0xe7: 7517 case 0xee: 7518 case 0xef: 7519 case 0x6c: /* INS */ 7520 case 0x6d: 7521 case 0x6e: /* OUTS */ 7522 case 0x6f: 7523 return true; 7524 } 7525 break; 7526 case 2: 7527 switch (ctxt->b) { 7528 case 0x33: /* RDPMC */ 7529 return true; 7530 } 7531 break; 7532 } 7533 7534 return false; 7535} 7536 7537/* 7538 * Decode an instruction for emulation. The caller is responsible for handling 7539 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 7540 * (and wrong) when emulating on an intercepted fault-like exception[*], as 7541 * code breakpoints have higher priority and thus have already been done by 7542 * hardware. 7543 * 7544 * [*] Except #MC, which is higher priority, but KVM should never emulate in 7545 * response to a machine check. 7546 */ 7547int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 7548 void *insn, int insn_len) 7549{ 7550 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7551 int r; 7552 7553 init_emulate_ctxt(vcpu); 7554 7555 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7556 7557 r = x86_decode_insn(ctxt, insn, insn_len); 7558 7559 trace_kvm_emulate_insn_start(vcpu); 7560 ++vcpu->stat.insn_emulation; 7561 7562 return r; 7563} 7564EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 7565 7566int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7567 int emulation_type, void *insn, int insn_len) 7568{ 7569 int r; 7570 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7571 bool writeback = true; 7572 bool write_fault_to_spt; 7573 7574 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len))) 7575 return 1; 7576 7577 vcpu->arch.l1tf_flush_l1d = true; 7578 7579 /* 7580 * Clear write_fault_to_shadow_pgtable here to ensure it is 7581 * never reused. 7582 */ 7583 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7584 vcpu->arch.write_fault_to_shadow_pgtable = false; 7585 7586 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7587 kvm_clear_exception_queue(vcpu); 7588 7589 /* 7590 * Return immediately if RIP hits a code breakpoint, such #DBs 7591 * are fault-like and are higher priority than any faults on 7592 * the code fetch itself. 7593 */ 7594 if (!(emulation_type & EMULTYPE_SKIP) && 7595 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 7596 return r; 7597 7598 r = x86_decode_emulated_instruction(vcpu, emulation_type, 7599 insn, insn_len); 7600 if (r != EMULATION_OK) { 7601 if ((emulation_type & EMULTYPE_TRAP_UD) || 7602 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7603 kvm_queue_exception(vcpu, UD_VECTOR); 7604 return 1; 7605 } 7606 if (reexecute_instruction(vcpu, cr2_or_gpa, 7607 write_fault_to_spt, 7608 emulation_type)) 7609 return 1; 7610 7611 if (ctxt->have_exception && 7612 !(emulation_type & EMULTYPE_SKIP)) { 7613 /* 7614 * #UD should result in just EMULATION_FAILED, and trap-like 7615 * exception should not be encountered during decode. 7616 */ 7617 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7618 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7619 inject_emulated_exception(vcpu); 7620 return 1; 7621 } 7622 return handle_emulation_failure(vcpu, emulation_type); 7623 } 7624 } 7625 7626 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7627 !is_vmware_backdoor_opcode(ctxt)) { 7628 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7629 return 1; 7630 } 7631 7632 /* 7633 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7634 * for kvm_skip_emulated_instruction(). The caller is responsible for 7635 * updating interruptibility state and injecting single-step #DBs. 7636 */ 7637 if (emulation_type & EMULTYPE_SKIP) { 7638 kvm_rip_write(vcpu, ctxt->_eip); 7639 if (ctxt->eflags & X86_EFLAGS_RF) 7640 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7641 return 1; 7642 } 7643 7644 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7645 return 1; 7646 7647 /* this is needed for vmware backdoor interface to work since it 7648 changes registers values during IO operation */ 7649 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7650 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7651 emulator_invalidate_register_cache(ctxt); 7652 } 7653 7654restart: 7655 if (emulation_type & EMULTYPE_PF) { 7656 /* Save the faulting GPA (cr2) in the address field */ 7657 ctxt->exception.address = cr2_or_gpa; 7658 7659 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7660 if (vcpu->arch.mmu->direct_map) { 7661 ctxt->gpa_available = true; 7662 ctxt->gpa_val = cr2_or_gpa; 7663 } 7664 } else { 7665 /* Sanitize the address out of an abundance of paranoia. */ 7666 ctxt->exception.address = 0; 7667 } 7668 7669 r = x86_emulate_insn(ctxt); 7670 7671 if (r == EMULATION_INTERCEPTED) 7672 return 1; 7673 7674 if (r == EMULATION_FAILED) { 7675 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7676 emulation_type)) 7677 return 1; 7678 7679 return handle_emulation_failure(vcpu, emulation_type); 7680 } 7681 7682 if (ctxt->have_exception) { 7683 r = 1; 7684 if (inject_emulated_exception(vcpu)) 7685 return r; 7686 } else if (vcpu->arch.pio.count) { 7687 if (!vcpu->arch.pio.in) { 7688 /* FIXME: return into emulator if single-stepping. */ 7689 vcpu->arch.pio.count = 0; 7690 } else { 7691 writeback = false; 7692 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7693 } 7694 r = 0; 7695 } else if (vcpu->mmio_needed) { 7696 ++vcpu->stat.mmio_exits; 7697 7698 if (!vcpu->mmio_is_write) 7699 writeback = false; 7700 r = 0; 7701 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7702 } else if (r == EMULATION_RESTART) 7703 goto restart; 7704 else 7705 r = 1; 7706 7707 if (writeback) { 7708 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7709 toggle_interruptibility(vcpu, ctxt->interruptibility); 7710 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7711 7712 /* 7713 * Note, EXCPT_DB is assumed to be fault-like as the emulator 7714 * only supports code breakpoints and general detect #DB, both 7715 * of which are fault-like. 7716 */ 7717 if (!ctxt->have_exception || 7718 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7719 kvm_rip_write(vcpu, ctxt->eip); 7720 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7721 r = kvm_vcpu_do_singlestep(vcpu); 7722 if (kvm_x86_ops.update_emulated_instruction) 7723 kvm_x86_ops.update_emulated_instruction(vcpu); 7724 __kvm_set_rflags(vcpu, ctxt->eflags); 7725 } 7726 7727 /* 7728 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7729 * do nothing, and it will be requested again as soon as 7730 * the shadow expires. But we still need to check here, 7731 * because POPF has no interrupt shadow. 7732 */ 7733 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7734 kvm_make_request(KVM_REQ_EVENT, vcpu); 7735 } else 7736 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7737 7738 return r; 7739} 7740 7741int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7742{ 7743 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7744} 7745EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7746 7747int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7748 void *insn, int insn_len) 7749{ 7750 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7751} 7752EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7753 7754static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7755{ 7756 vcpu->arch.pio.count = 0; 7757 return 1; 7758} 7759 7760static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7761{ 7762 vcpu->arch.pio.count = 0; 7763 7764 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7765 return 1; 7766 7767 return kvm_skip_emulated_instruction(vcpu); 7768} 7769 7770static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7771 unsigned short port) 7772{ 7773 unsigned long val = kvm_rax_read(vcpu); 7774 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7775 7776 if (ret) 7777 return ret; 7778 7779 /* 7780 * Workaround userspace that relies on old KVM behavior of %rip being 7781 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7782 */ 7783 if (port == 0x7e && 7784 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7785 vcpu->arch.complete_userspace_io = 7786 complete_fast_pio_out_port_0x7e; 7787 kvm_skip_emulated_instruction(vcpu); 7788 } else { 7789 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7790 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7791 } 7792 return 0; 7793} 7794 7795static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7796{ 7797 unsigned long val; 7798 7799 /* We should only ever be called with arch.pio.count equal to 1 */ 7800 BUG_ON(vcpu->arch.pio.count != 1); 7801 7802 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7803 vcpu->arch.pio.count = 0; 7804 return 1; 7805 } 7806 7807 /* For size less than 4 we merge, else we zero extend */ 7808 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7809 7810 /* 7811 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7812 * the copy and tracing 7813 */ 7814 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7815 kvm_rax_write(vcpu, val); 7816 7817 return kvm_skip_emulated_instruction(vcpu); 7818} 7819 7820static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7821 unsigned short port) 7822{ 7823 unsigned long val; 7824 int ret; 7825 7826 /* For size less than 4 we merge, else we zero extend */ 7827 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7828 7829 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7830 if (ret) { 7831 kvm_rax_write(vcpu, val); 7832 return ret; 7833 } 7834 7835 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7836 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7837 7838 return 0; 7839} 7840 7841int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7842{ 7843 int ret; 7844 7845 if (in) 7846 ret = kvm_fast_pio_in(vcpu, size, port); 7847 else 7848 ret = kvm_fast_pio_out(vcpu, size, port); 7849 return ret && kvm_skip_emulated_instruction(vcpu); 7850} 7851EXPORT_SYMBOL_GPL(kvm_fast_pio); 7852 7853static int kvmclock_cpu_down_prep(unsigned int cpu) 7854{ 7855 __this_cpu_write(cpu_tsc_khz, 0); 7856 return 0; 7857} 7858 7859static void tsc_khz_changed(void *data) 7860{ 7861 struct cpufreq_freqs *freq = data; 7862 unsigned long khz = 0; 7863 7864 if (data) 7865 khz = freq->new; 7866 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7867 khz = cpufreq_quick_get(raw_smp_processor_id()); 7868 if (!khz) 7869 khz = tsc_khz; 7870 __this_cpu_write(cpu_tsc_khz, khz); 7871} 7872 7873#ifdef CONFIG_X86_64 7874static void kvm_hyperv_tsc_notifier(void) 7875{ 7876 struct kvm *kvm; 7877 struct kvm_vcpu *vcpu; 7878 int cpu; 7879 7880 mutex_lock(&kvm_lock); 7881 list_for_each_entry(kvm, &vm_list, vm_list) 7882 kvm_make_mclock_inprogress_request(kvm); 7883 7884 hyperv_stop_tsc_emulation(); 7885 7886 /* TSC frequency always matches when on Hyper-V */ 7887 for_each_present_cpu(cpu) 7888 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7889 kvm_max_guest_tsc_khz = tsc_khz; 7890 7891 list_for_each_entry(kvm, &vm_list, vm_list) { 7892 struct kvm_arch *ka = &kvm->arch; 7893 7894 spin_lock(&ka->pvclock_gtod_sync_lock); 7895 7896 pvclock_update_vm_gtod_copy(kvm); 7897 7898 kvm_for_each_vcpu(cpu, vcpu, kvm) 7899 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7900 7901 kvm_for_each_vcpu(cpu, vcpu, kvm) 7902 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7903 7904 spin_unlock(&ka->pvclock_gtod_sync_lock); 7905 } 7906 mutex_unlock(&kvm_lock); 7907} 7908#endif 7909 7910static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7911{ 7912 struct kvm *kvm; 7913 struct kvm_vcpu *vcpu; 7914 int i, send_ipi = 0; 7915 7916 /* 7917 * We allow guests to temporarily run on slowing clocks, 7918 * provided we notify them after, or to run on accelerating 7919 * clocks, provided we notify them before. Thus time never 7920 * goes backwards. 7921 * 7922 * However, we have a problem. We can't atomically update 7923 * the frequency of a given CPU from this function; it is 7924 * merely a notifier, which can be called from any CPU. 7925 * Changing the TSC frequency at arbitrary points in time 7926 * requires a recomputation of local variables related to 7927 * the TSC for each VCPU. We must flag these local variables 7928 * to be updated and be sure the update takes place with the 7929 * new frequency before any guests proceed. 7930 * 7931 * Unfortunately, the combination of hotplug CPU and frequency 7932 * change creates an intractable locking scenario; the order 7933 * of when these callouts happen is undefined with respect to 7934 * CPU hotplug, and they can race with each other. As such, 7935 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7936 * undefined; you can actually have a CPU frequency change take 7937 * place in between the computation of X and the setting of the 7938 * variable. To protect against this problem, all updates of 7939 * the per_cpu tsc_khz variable are done in an interrupt 7940 * protected IPI, and all callers wishing to update the value 7941 * must wait for a synchronous IPI to complete (which is trivial 7942 * if the caller is on the CPU already). This establishes the 7943 * necessary total order on variable updates. 7944 * 7945 * Note that because a guest time update may take place 7946 * anytime after the setting of the VCPU's request bit, the 7947 * correct TSC value must be set before the request. However, 7948 * to ensure the update actually makes it to any guest which 7949 * starts running in hardware virtualization between the set 7950 * and the acquisition of the spinlock, we must also ping the 7951 * CPU after setting the request bit. 7952 * 7953 */ 7954 7955 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7956 7957 mutex_lock(&kvm_lock); 7958 list_for_each_entry(kvm, &vm_list, vm_list) { 7959 kvm_for_each_vcpu(i, vcpu, kvm) { 7960 if (vcpu->cpu != cpu) 7961 continue; 7962 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7963 if (vcpu->cpu != raw_smp_processor_id()) 7964 send_ipi = 1; 7965 } 7966 } 7967 mutex_unlock(&kvm_lock); 7968 7969 if (freq->old < freq->new && send_ipi) { 7970 /* 7971 * We upscale the frequency. Must make the guest 7972 * doesn't see old kvmclock values while running with 7973 * the new frequency, otherwise we risk the guest sees 7974 * time go backwards. 7975 * 7976 * In case we update the frequency for another cpu 7977 * (which might be in guest context) send an interrupt 7978 * to kick the cpu out of guest context. Next time 7979 * guest context is entered kvmclock will be updated, 7980 * so the guest will not see stale values. 7981 */ 7982 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7983 } 7984} 7985 7986static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7987 void *data) 7988{ 7989 struct cpufreq_freqs *freq = data; 7990 int cpu; 7991 7992 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7993 return 0; 7994 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7995 return 0; 7996 7997 for_each_cpu(cpu, freq->policy->cpus) 7998 __kvmclock_cpufreq_notifier(freq, cpu); 7999 8000 return 0; 8001} 8002 8003static struct notifier_block kvmclock_cpufreq_notifier_block = { 8004 .notifier_call = kvmclock_cpufreq_notifier 8005}; 8006 8007static int kvmclock_cpu_online(unsigned int cpu) 8008{ 8009 tsc_khz_changed(NULL); 8010 return 0; 8011} 8012 8013static void kvm_timer_init(void) 8014{ 8015 max_tsc_khz = tsc_khz; 8016 8017 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8018#ifdef CONFIG_CPU_FREQ 8019 struct cpufreq_policy *policy; 8020 int cpu; 8021 8022 cpu = get_cpu(); 8023 policy = cpufreq_cpu_get(cpu); 8024 if (policy) { 8025 if (policy->cpuinfo.max_freq) 8026 max_tsc_khz = policy->cpuinfo.max_freq; 8027 cpufreq_cpu_put(policy); 8028 } 8029 put_cpu(); 8030#endif 8031 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8032 CPUFREQ_TRANSITION_NOTIFIER); 8033 } 8034 8035 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8036 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8037} 8038 8039DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 8040EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 8041 8042int kvm_is_in_guest(void) 8043{ 8044 return __this_cpu_read(current_vcpu) != NULL; 8045} 8046 8047static int kvm_is_user_mode(void) 8048{ 8049 int user_mode = 3; 8050 8051 if (__this_cpu_read(current_vcpu)) 8052 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 8053 8054 return user_mode != 0; 8055} 8056 8057static unsigned long kvm_get_guest_ip(void) 8058{ 8059 unsigned long ip = 0; 8060 8061 if (__this_cpu_read(current_vcpu)) 8062 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 8063 8064 return ip; 8065} 8066 8067static void kvm_handle_intel_pt_intr(void) 8068{ 8069 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 8070 8071 kvm_make_request(KVM_REQ_PMI, vcpu); 8072 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8073 (unsigned long *)&vcpu->arch.pmu.global_status); 8074} 8075 8076static struct perf_guest_info_callbacks kvm_guest_cbs = { 8077 .is_in_guest = kvm_is_in_guest, 8078 .is_user_mode = kvm_is_user_mode, 8079 .get_guest_ip = kvm_get_guest_ip, 8080 .handle_intel_pt_intr = NULL, 8081}; 8082 8083#ifdef CONFIG_X86_64 8084static void pvclock_gtod_update_fn(struct work_struct *work) 8085{ 8086 struct kvm *kvm; 8087 8088 struct kvm_vcpu *vcpu; 8089 int i; 8090 8091 mutex_lock(&kvm_lock); 8092 list_for_each_entry(kvm, &vm_list, vm_list) 8093 kvm_for_each_vcpu(i, vcpu, kvm) 8094 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8095 atomic_set(&kvm_guest_has_master_clock, 0); 8096 mutex_unlock(&kvm_lock); 8097} 8098 8099static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8100 8101/* 8102 * Indirection to move queue_work() out of the tk_core.seq write held 8103 * region to prevent possible deadlocks against time accessors which 8104 * are invoked with work related locks held. 8105 */ 8106static void pvclock_irq_work_fn(struct irq_work *w) 8107{ 8108 queue_work(system_long_wq, &pvclock_gtod_work); 8109} 8110 8111static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8112 8113/* 8114 * Notification about pvclock gtod data update. 8115 */ 8116static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8117 void *priv) 8118{ 8119 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8120 struct timekeeper *tk = priv; 8121 8122 update_pvclock_gtod(tk); 8123 8124 /* 8125 * Disable master clock if host does not trust, or does not use, 8126 * TSC based clocksource. Delegate queue_work() to irq_work as 8127 * this is invoked with tk_core.seq write held. 8128 */ 8129 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8130 atomic_read(&kvm_guest_has_master_clock) != 0) 8131 irq_work_queue(&pvclock_irq_work); 8132 return 0; 8133} 8134 8135static struct notifier_block pvclock_gtod_notifier = { 8136 .notifier_call = pvclock_gtod_notify, 8137}; 8138#endif 8139 8140int kvm_arch_init(void *opaque) 8141{ 8142 struct kvm_x86_init_ops *ops = opaque; 8143 int r; 8144 8145 if (kvm_x86_ops.hardware_enable) { 8146 printk(KERN_ERR "kvm: already loaded the other module\n"); 8147 r = -EEXIST; 8148 goto out; 8149 } 8150 8151 if (!ops->cpu_has_kvm_support()) { 8152 pr_err_ratelimited("kvm: no hardware support\n"); 8153 r = -EOPNOTSUPP; 8154 goto out; 8155 } 8156 if (ops->disabled_by_bios()) { 8157 pr_err_ratelimited("kvm: disabled by bios\n"); 8158 r = -EOPNOTSUPP; 8159 goto out; 8160 } 8161 8162 /* 8163 * KVM explicitly assumes that the guest has an FPU and 8164 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8165 * vCPU's FPU state as a fxregs_state struct. 8166 */ 8167 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8168 printk(KERN_ERR "kvm: inadequate fpu\n"); 8169 r = -EOPNOTSUPP; 8170 goto out; 8171 } 8172 8173 r = -ENOMEM; 8174 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 8175 __alignof__(struct fpu), SLAB_ACCOUNT, 8176 NULL); 8177 if (!x86_fpu_cache) { 8178 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 8179 goto out; 8180 } 8181 8182 x86_emulator_cache = kvm_alloc_emulator_cache(); 8183 if (!x86_emulator_cache) { 8184 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8185 goto out_free_x86_fpu_cache; 8186 } 8187 8188 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8189 if (!user_return_msrs) { 8190 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8191 goto out_free_x86_emulator_cache; 8192 } 8193 8194 r = kvm_mmu_vendor_module_init(); 8195 if (r) 8196 goto out_free_percpu; 8197 8198 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 8199 PT_DIRTY_MASK, PT64_NX_MASK, 0, 8200 PT_PRESENT_MASK, 0, sme_me_mask); 8201 kvm_timer_init(); 8202 8203 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest()) 8204 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr; 8205 perf_register_guest_info_callbacks(&kvm_guest_cbs); 8206 8207 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8208 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8209 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8210 } 8211 8212 kvm_lapic_init(); 8213 if (pi_inject_timer == -1) 8214 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 8215#ifdef CONFIG_X86_64 8216 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8217 8218 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8219 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8220#endif 8221 8222 return 0; 8223 8224out_free_percpu: 8225 free_percpu(user_return_msrs); 8226out_free_x86_emulator_cache: 8227 kmem_cache_destroy(x86_emulator_cache); 8228out_free_x86_fpu_cache: 8229 kmem_cache_destroy(x86_fpu_cache); 8230out: 8231 return r; 8232} 8233 8234void kvm_arch_exit(void) 8235{ 8236#ifdef CONFIG_X86_64 8237 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8238 clear_hv_tscchange_cb(); 8239#endif 8240 kvm_lapic_exit(); 8241 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 8242 kvm_guest_cbs.handle_intel_pt_intr = NULL; 8243 8244 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8245 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8246 CPUFREQ_TRANSITION_NOTIFIER); 8247 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8248#ifdef CONFIG_X86_64 8249 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8250 irq_work_sync(&pvclock_irq_work); 8251 cancel_work_sync(&pvclock_gtod_work); 8252#endif 8253 kvm_x86_ops.hardware_enable = NULL; 8254 kvm_mmu_vendor_module_exit(); 8255 free_percpu(user_return_msrs); 8256 kmem_cache_destroy(x86_emulator_cache); 8257 kmem_cache_destroy(x86_fpu_cache); 8258} 8259 8260int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 8261{ 8262 ++vcpu->stat.halt_exits; 8263 if (lapic_in_kernel(vcpu)) { 8264 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 8265 return 1; 8266 } else { 8267 vcpu->run->exit_reason = KVM_EXIT_HLT; 8268 return 0; 8269 } 8270} 8271EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 8272 8273int kvm_emulate_halt(struct kvm_vcpu *vcpu) 8274{ 8275 int ret = kvm_skip_emulated_instruction(vcpu); 8276 /* 8277 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 8278 * KVM_EXIT_DEBUG here. 8279 */ 8280 return kvm_vcpu_halt(vcpu) && ret; 8281} 8282EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8283 8284#ifdef CONFIG_X86_64 8285static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8286 unsigned long clock_type) 8287{ 8288 struct kvm_clock_pairing clock_pairing; 8289 struct timespec64 ts; 8290 u64 cycle; 8291 int ret; 8292 8293 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8294 return -KVM_EOPNOTSUPP; 8295 8296 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 8297 return -KVM_EOPNOTSUPP; 8298 8299 clock_pairing.sec = ts.tv_sec; 8300 clock_pairing.nsec = ts.tv_nsec; 8301 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8302 clock_pairing.flags = 0; 8303 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8304 8305 ret = 0; 8306 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8307 sizeof(struct kvm_clock_pairing))) 8308 ret = -KVM_EFAULT; 8309 8310 return ret; 8311} 8312#endif 8313 8314/* 8315 * kvm_pv_kick_cpu_op: Kick a vcpu. 8316 * 8317 * @apicid - apicid of vcpu to be kicked. 8318 */ 8319static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8320{ 8321 /* 8322 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 8323 * common code, e.g. for tracing. Defer initialization to the compiler. 8324 */ 8325 struct kvm_lapic_irq lapic_irq = { 8326 .delivery_mode = APIC_DM_REMRD, 8327 .dest_mode = APIC_DEST_PHYSICAL, 8328 .shorthand = APIC_DEST_NOSHORT, 8329 .dest_id = apicid, 8330 }; 8331 8332 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8333} 8334 8335bool kvm_apicv_activated(struct kvm *kvm) 8336{ 8337 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8338} 8339EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8340 8341void kvm_apicv_init(struct kvm *kvm, bool enable) 8342{ 8343 if (enable) 8344 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8345 &kvm->arch.apicv_inhibit_reasons); 8346 else 8347 set_bit(APICV_INHIBIT_REASON_DISABLE, 8348 &kvm->arch.apicv_inhibit_reasons); 8349} 8350EXPORT_SYMBOL_GPL(kvm_apicv_init); 8351 8352static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8353{ 8354 struct kvm_vcpu *target = NULL; 8355 struct kvm_apic_map *map; 8356 8357 rcu_read_lock(); 8358 map = rcu_dereference(kvm->arch.apic_map); 8359 8360 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8361 target = map->phys_map[dest_id]->vcpu; 8362 8363 rcu_read_unlock(); 8364 8365 if (target && READ_ONCE(target->ready)) 8366 kvm_vcpu_yield_to(target); 8367} 8368 8369int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8370{ 8371 unsigned long nr, a0, a1, a2, a3, ret; 8372 int op_64_bit; 8373 8374 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 8375 return kvm_hv_hypercall(vcpu); 8376 8377 nr = kvm_rax_read(vcpu); 8378 a0 = kvm_rbx_read(vcpu); 8379 a1 = kvm_rcx_read(vcpu); 8380 a2 = kvm_rdx_read(vcpu); 8381 a3 = kvm_rsi_read(vcpu); 8382 8383 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8384 8385 op_64_bit = is_64_bit_mode(vcpu); 8386 if (!op_64_bit) { 8387 nr &= 0xFFFFFFFF; 8388 a0 &= 0xFFFFFFFF; 8389 a1 &= 0xFFFFFFFF; 8390 a2 &= 0xFFFFFFFF; 8391 a3 &= 0xFFFFFFFF; 8392 } 8393 8394 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 8395 ret = -KVM_EPERM; 8396 goto out; 8397 } 8398 8399 ret = -KVM_ENOSYS; 8400 8401 switch (nr) { 8402 case KVM_HC_VAPIC_POLL_IRQ: 8403 ret = 0; 8404 break; 8405 case KVM_HC_KICK_CPU: 8406 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8407 break; 8408 8409 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8410 kvm_sched_yield(vcpu->kvm, a1); 8411 ret = 0; 8412 break; 8413#ifdef CONFIG_X86_64 8414 case KVM_HC_CLOCK_PAIRING: 8415 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8416 break; 8417#endif 8418 case KVM_HC_SEND_IPI: 8419 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8420 break; 8421 8422 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8423 break; 8424 case KVM_HC_SCHED_YIELD: 8425 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8426 break; 8427 8428 kvm_sched_yield(vcpu->kvm, a0); 8429 ret = 0; 8430 break; 8431 default: 8432 ret = -KVM_ENOSYS; 8433 break; 8434 } 8435out: 8436 if (!op_64_bit) 8437 ret = (u32)ret; 8438 kvm_rax_write(vcpu, ret); 8439 8440 ++vcpu->stat.hypercalls; 8441 return kvm_skip_emulated_instruction(vcpu); 8442} 8443EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8444 8445static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8446{ 8447 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8448 char instruction[3]; 8449 unsigned long rip = kvm_rip_read(vcpu); 8450 8451 kvm_x86_ops.patch_hypercall(vcpu, instruction); 8452 8453 return emulator_write_emulated(ctxt, rip, instruction, 3, 8454 &ctxt->exception); 8455} 8456 8457static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8458{ 8459 return vcpu->run->request_interrupt_window && 8460 likely(!pic_in_kernel(vcpu->kvm)); 8461} 8462 8463static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8464{ 8465 struct kvm_run *kvm_run = vcpu->run; 8466 8467 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8468 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 8469 kvm_run->cr8 = kvm_get_cr8(vcpu); 8470 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8471 kvm_run->ready_for_interrupt_injection = 8472 pic_in_kernel(vcpu->kvm) || 8473 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8474} 8475 8476static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8477{ 8478 int max_irr, tpr; 8479 8480 if (!kvm_x86_ops.update_cr8_intercept) 8481 return; 8482 8483 if (!lapic_in_kernel(vcpu)) 8484 return; 8485 8486 if (vcpu->arch.apicv_active) 8487 return; 8488 8489 if (!vcpu->arch.apic->vapic_addr) 8490 max_irr = kvm_lapic_find_highest_irr(vcpu); 8491 else 8492 max_irr = -1; 8493 8494 if (max_irr != -1) 8495 max_irr >>= 4; 8496 8497 tpr = kvm_lapic_get_cr8(vcpu); 8498 8499 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 8500} 8501 8502static void kvm_inject_exception(struct kvm_vcpu *vcpu) 8503{ 8504 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8505 vcpu->arch.exception.has_error_code, 8506 vcpu->arch.exception.error_code, 8507 vcpu->arch.exception.injected); 8508 8509 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 8510 vcpu->arch.exception.error_code = false; 8511 kvm_x86_ops.queue_exception(vcpu); 8512} 8513 8514static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8515{ 8516 int r; 8517 bool can_inject = true; 8518 8519 /* try to reinject previous events if any */ 8520 8521 if (vcpu->arch.exception.injected) { 8522 kvm_inject_exception(vcpu); 8523 can_inject = false; 8524 } 8525 /* 8526 * Do not inject an NMI or interrupt if there is a pending 8527 * exception. Exceptions and interrupts are recognized at 8528 * instruction boundaries, i.e. the start of an instruction. 8529 * Trap-like exceptions, e.g. #DB, have higher priority than 8530 * NMIs and interrupts, i.e. traps are recognized before an 8531 * NMI/interrupt that's pending on the same instruction. 8532 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8533 * priority, but are only generated (pended) during instruction 8534 * execution, i.e. a pending fault-like exception means the 8535 * fault occurred on the *previous* instruction and must be 8536 * serviced prior to recognizing any new events in order to 8537 * fully complete the previous instruction. 8538 */ 8539 else if (!vcpu->arch.exception.pending) { 8540 if (vcpu->arch.nmi_injected) { 8541 kvm_x86_ops.set_nmi(vcpu); 8542 can_inject = false; 8543 } else if (vcpu->arch.interrupt.injected) { 8544 kvm_x86_ops.set_irq(vcpu); 8545 can_inject = false; 8546 } 8547 } 8548 8549 WARN_ON_ONCE(vcpu->arch.exception.injected && 8550 vcpu->arch.exception.pending); 8551 8552 /* 8553 * Call check_nested_events() even if we reinjected a previous event 8554 * in order for caller to determine if it should require immediate-exit 8555 * from L2 to L1 due to pending L1 events which require exit 8556 * from L2 to L1. 8557 */ 8558 if (is_guest_mode(vcpu)) { 8559 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8560 if (r < 0) 8561 goto busy; 8562 } 8563 8564 /* try to inject new event if pending */ 8565 if (vcpu->arch.exception.pending) { 8566 /* 8567 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 8568 * value pushed on the stack. Trap-like exception and all #DBs 8569 * leave RF as-is (KVM follows Intel's behavior in this regard; 8570 * AMD states that code breakpoint #DBs excplitly clear RF=0). 8571 * 8572 * Note, most versions of Intel's SDM and AMD's APM incorrectly 8573 * describe the behavior of General Detect #DBs, which are 8574 * fault-like. They do _not_ set RF, a la code breakpoints. 8575 */ 8576 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8577 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8578 X86_EFLAGS_RF); 8579 8580 if (vcpu->arch.exception.nr == DB_VECTOR) { 8581 kvm_deliver_exception_payload(vcpu); 8582 if (vcpu->arch.dr7 & DR7_GD) { 8583 vcpu->arch.dr7 &= ~DR7_GD; 8584 kvm_update_dr7(vcpu); 8585 } 8586 } 8587 8588 kvm_inject_exception(vcpu); 8589 8590 vcpu->arch.exception.pending = false; 8591 vcpu->arch.exception.injected = true; 8592 8593 can_inject = false; 8594 } 8595 8596 /* 8597 * Finally, inject interrupt events. If an event cannot be injected 8598 * due to architectural conditions (e.g. IF=0) a window-open exit 8599 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8600 * and can architecturally be injected, but we cannot do it right now: 8601 * an interrupt could have arrived just now and we have to inject it 8602 * as a vmexit, or there could already an event in the queue, which is 8603 * indicated by can_inject. In that case we request an immediate exit 8604 * in order to make progress and get back here for another iteration. 8605 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8606 */ 8607 if (vcpu->arch.smi_pending) { 8608 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 8609 if (r < 0) 8610 goto busy; 8611 if (r) { 8612 vcpu->arch.smi_pending = false; 8613 ++vcpu->arch.smi_count; 8614 enter_smm(vcpu); 8615 can_inject = false; 8616 } else 8617 kvm_x86_ops.enable_smi_window(vcpu); 8618 } 8619 8620 if (vcpu->arch.nmi_pending) { 8621 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 8622 if (r < 0) 8623 goto busy; 8624 if (r) { 8625 --vcpu->arch.nmi_pending; 8626 vcpu->arch.nmi_injected = true; 8627 kvm_x86_ops.set_nmi(vcpu); 8628 can_inject = false; 8629 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 8630 } 8631 if (vcpu->arch.nmi_pending) 8632 kvm_x86_ops.enable_nmi_window(vcpu); 8633 } 8634 8635 if (kvm_cpu_has_injectable_intr(vcpu)) { 8636 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 8637 if (r < 0) 8638 goto busy; 8639 if (r) { 8640 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8641 kvm_x86_ops.set_irq(vcpu); 8642 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 8643 } 8644 if (kvm_cpu_has_injectable_intr(vcpu)) 8645 kvm_x86_ops.enable_irq_window(vcpu); 8646 } 8647 8648 if (is_guest_mode(vcpu) && 8649 kvm_x86_ops.nested_ops->hv_timer_pending && 8650 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8651 *req_immediate_exit = true; 8652 8653 WARN_ON(vcpu->arch.exception.pending); 8654 return; 8655 8656busy: 8657 *req_immediate_exit = true; 8658 return; 8659} 8660 8661static void process_nmi(struct kvm_vcpu *vcpu) 8662{ 8663 unsigned limit = 2; 8664 8665 /* 8666 * x86 is limited to one NMI running, and one NMI pending after it. 8667 * If an NMI is already in progress, limit further NMIs to just one. 8668 * Otherwise, allow two (and we'll inject the first one immediately). 8669 */ 8670 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 8671 limit = 1; 8672 8673 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8674 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8675 kvm_make_request(KVM_REQ_EVENT, vcpu); 8676} 8677 8678static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8679{ 8680 u32 flags = 0; 8681 flags |= seg->g << 23; 8682 flags |= seg->db << 22; 8683 flags |= seg->l << 21; 8684 flags |= seg->avl << 20; 8685 flags |= seg->present << 15; 8686 flags |= seg->dpl << 13; 8687 flags |= seg->s << 12; 8688 flags |= seg->type << 8; 8689 return flags; 8690} 8691 8692static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8693{ 8694 struct kvm_segment seg; 8695 int offset; 8696 8697 kvm_get_segment(vcpu, &seg, n); 8698 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8699 8700 if (n < 3) 8701 offset = 0x7f84 + n * 12; 8702 else 8703 offset = 0x7f2c + (n - 3) * 12; 8704 8705 put_smstate(u32, buf, offset + 8, seg.base); 8706 put_smstate(u32, buf, offset + 4, seg.limit); 8707 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8708} 8709 8710#ifdef CONFIG_X86_64 8711static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8712{ 8713 struct kvm_segment seg; 8714 int offset; 8715 u16 flags; 8716 8717 kvm_get_segment(vcpu, &seg, n); 8718 offset = 0x7e00 + n * 16; 8719 8720 flags = enter_smm_get_segment_flags(&seg) >> 8; 8721 put_smstate(u16, buf, offset, seg.selector); 8722 put_smstate(u16, buf, offset + 2, flags); 8723 put_smstate(u32, buf, offset + 4, seg.limit); 8724 put_smstate(u64, buf, offset + 8, seg.base); 8725} 8726#endif 8727 8728static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8729{ 8730 struct desc_ptr dt; 8731 struct kvm_segment seg; 8732 unsigned long val; 8733 int i; 8734 8735 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8736 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8737 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8738 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8739 8740 for (i = 0; i < 8; i++) 8741 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8742 8743 kvm_get_dr(vcpu, 6, &val); 8744 put_smstate(u32, buf, 0x7fcc, (u32)val); 8745 kvm_get_dr(vcpu, 7, &val); 8746 put_smstate(u32, buf, 0x7fc8, (u32)val); 8747 8748 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8749 put_smstate(u32, buf, 0x7fc4, seg.selector); 8750 put_smstate(u32, buf, 0x7f64, seg.base); 8751 put_smstate(u32, buf, 0x7f60, seg.limit); 8752 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8753 8754 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8755 put_smstate(u32, buf, 0x7fc0, seg.selector); 8756 put_smstate(u32, buf, 0x7f80, seg.base); 8757 put_smstate(u32, buf, 0x7f7c, seg.limit); 8758 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8759 8760 kvm_x86_ops.get_gdt(vcpu, &dt); 8761 put_smstate(u32, buf, 0x7f74, dt.address); 8762 put_smstate(u32, buf, 0x7f70, dt.size); 8763 8764 kvm_x86_ops.get_idt(vcpu, &dt); 8765 put_smstate(u32, buf, 0x7f58, dt.address); 8766 put_smstate(u32, buf, 0x7f54, dt.size); 8767 8768 for (i = 0; i < 6; i++) 8769 enter_smm_save_seg_32(vcpu, buf, i); 8770 8771 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8772 8773 /* revision id */ 8774 put_smstate(u32, buf, 0x7efc, 0x00020000); 8775 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8776} 8777 8778#ifdef CONFIG_X86_64 8779static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8780{ 8781 struct desc_ptr dt; 8782 struct kvm_segment seg; 8783 unsigned long val; 8784 int i; 8785 8786 for (i = 0; i < 16; i++) 8787 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8788 8789 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8790 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8791 8792 kvm_get_dr(vcpu, 6, &val); 8793 put_smstate(u64, buf, 0x7f68, val); 8794 kvm_get_dr(vcpu, 7, &val); 8795 put_smstate(u64, buf, 0x7f60, val); 8796 8797 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8798 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8799 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8800 8801 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8802 8803 /* revision id */ 8804 put_smstate(u32, buf, 0x7efc, 0x00020064); 8805 8806 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8807 8808 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8809 put_smstate(u16, buf, 0x7e90, seg.selector); 8810 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8811 put_smstate(u32, buf, 0x7e94, seg.limit); 8812 put_smstate(u64, buf, 0x7e98, seg.base); 8813 8814 kvm_x86_ops.get_idt(vcpu, &dt); 8815 put_smstate(u32, buf, 0x7e84, dt.size); 8816 put_smstate(u64, buf, 0x7e88, dt.address); 8817 8818 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8819 put_smstate(u16, buf, 0x7e70, seg.selector); 8820 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8821 put_smstate(u32, buf, 0x7e74, seg.limit); 8822 put_smstate(u64, buf, 0x7e78, seg.base); 8823 8824 kvm_x86_ops.get_gdt(vcpu, &dt); 8825 put_smstate(u32, buf, 0x7e64, dt.size); 8826 put_smstate(u64, buf, 0x7e68, dt.address); 8827 8828 for (i = 0; i < 6; i++) 8829 enter_smm_save_seg_64(vcpu, buf, i); 8830} 8831#endif 8832 8833static void enter_smm(struct kvm_vcpu *vcpu) 8834{ 8835 struct kvm_segment cs, ds; 8836 struct desc_ptr dt; 8837 char buf[512]; 8838 u32 cr0; 8839 8840 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8841 memset(buf, 0, 512); 8842#ifdef CONFIG_X86_64 8843 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8844 enter_smm_save_state_64(vcpu, buf); 8845 else 8846#endif 8847 enter_smm_save_state_32(vcpu, buf); 8848 8849 /* 8850 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8851 * vCPU state (e.g. leave guest mode) after we've saved the state into 8852 * the SMM state-save area. 8853 */ 8854 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8855 8856 vcpu->arch.hflags |= HF_SMM_MASK; 8857 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8858 8859 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8860 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8861 else 8862 kvm_x86_ops.set_nmi_mask(vcpu, true); 8863 8864 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8865 kvm_rip_write(vcpu, 0x8000); 8866 8867 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8868 kvm_x86_ops.set_cr0(vcpu, cr0); 8869 vcpu->arch.cr0 = cr0; 8870 8871 kvm_x86_ops.set_cr4(vcpu, 0); 8872 8873 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8874 dt.address = dt.size = 0; 8875 kvm_x86_ops.set_idt(vcpu, &dt); 8876 8877 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8878 8879 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8880 cs.base = vcpu->arch.smbase; 8881 8882 ds.selector = 0; 8883 ds.base = 0; 8884 8885 cs.limit = ds.limit = 0xffffffff; 8886 cs.type = ds.type = 0x3; 8887 cs.dpl = ds.dpl = 0; 8888 cs.db = ds.db = 0; 8889 cs.s = ds.s = 1; 8890 cs.l = ds.l = 0; 8891 cs.g = ds.g = 1; 8892 cs.avl = ds.avl = 0; 8893 cs.present = ds.present = 1; 8894 cs.unusable = ds.unusable = 0; 8895 cs.padding = ds.padding = 0; 8896 8897 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8898 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8899 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8900 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8901 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8902 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8903 8904#ifdef CONFIG_X86_64 8905 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8906 kvm_x86_ops.set_efer(vcpu, 0); 8907#endif 8908 8909 kvm_update_cpuid_runtime(vcpu); 8910 kvm_mmu_reset_context(vcpu); 8911} 8912 8913static void process_smi(struct kvm_vcpu *vcpu) 8914{ 8915 vcpu->arch.smi_pending = true; 8916 kvm_make_request(KVM_REQ_EVENT, vcpu); 8917} 8918 8919void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8920 unsigned long *vcpu_bitmap) 8921{ 8922 cpumask_var_t cpus; 8923 8924 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8925 8926 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8927 NULL, vcpu_bitmap, cpus); 8928 8929 free_cpumask_var(cpus); 8930} 8931 8932void kvm_make_scan_ioapic_request(struct kvm *kvm) 8933{ 8934 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8935} 8936 8937void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8938{ 8939 if (!lapic_in_kernel(vcpu)) 8940 return; 8941 8942 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8943 kvm_apic_update_apicv(vcpu); 8944 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8945} 8946EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8947 8948/* 8949 * NOTE: Do not hold any lock prior to calling this. 8950 * 8951 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8952 * locked, because it calls __x86_set_memory_region() which does 8953 * synchronize_srcu(&kvm->srcu). 8954 */ 8955void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8956{ 8957 struct kvm_vcpu *except; 8958 unsigned long old, new, expected; 8959 8960 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8961 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8962 return; 8963 8964 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8965 do { 8966 expected = new = old; 8967 if (activate) 8968 __clear_bit(bit, &new); 8969 else 8970 __set_bit(bit, &new); 8971 if (new == old) 8972 break; 8973 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8974 } while (old != expected); 8975 8976 if (!!old == !!new) 8977 return; 8978 8979 trace_kvm_apicv_update_request(activate, bit); 8980 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8981 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8982 8983 /* 8984 * Sending request to update APICV for all other vcpus, 8985 * while update the calling vcpu immediately instead of 8986 * waiting for another #VMEXIT to handle the request. 8987 */ 8988 except = kvm_get_running_vcpu(); 8989 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8990 except); 8991 if (except) 8992 kvm_vcpu_update_apicv(except); 8993} 8994EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8995 8996static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8997{ 8998 if (!kvm_apic_present(vcpu)) 8999 return; 9000 9001 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9002 9003 if (irqchip_split(vcpu->kvm)) 9004 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9005 else { 9006 if (vcpu->arch.apicv_active) 9007 kvm_x86_ops.sync_pir_to_irr(vcpu); 9008 if (ioapic_in_kernel(vcpu->kvm)) 9009 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9010 } 9011 9012 if (is_guest_mode(vcpu)) 9013 vcpu->arch.load_eoi_exitmap_pending = true; 9014 else 9015 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9016} 9017 9018static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9019{ 9020 u64 eoi_exit_bitmap[4]; 9021 9022 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9023 return; 9024 9025 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 9026 vcpu_to_synic(vcpu)->vec_bitmap, 256); 9027 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 9028} 9029 9030void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9031 unsigned long start, unsigned long end) 9032{ 9033 unsigned long apic_address; 9034 9035 /* 9036 * The physical address of apic access page is stored in the VMCS. 9037 * Update it when it becomes invalid. 9038 */ 9039 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9040 if (start <= apic_address && apic_address < end) 9041 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9042} 9043 9044void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 9045{ 9046 if (kvm_x86_ops.guest_memory_reclaimed) 9047 kvm_x86_ops.guest_memory_reclaimed(kvm); 9048} 9049 9050void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9051{ 9052 if (!lapic_in_kernel(vcpu)) 9053 return; 9054 9055 if (!kvm_x86_ops.set_apic_access_page_addr) 9056 return; 9057 9058 kvm_x86_ops.set_apic_access_page_addr(vcpu); 9059} 9060 9061void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9062{ 9063 smp_send_reschedule(vcpu->cpu); 9064} 9065EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9066 9067/* 9068 * Returns 1 to let vcpu_run() continue the guest execution loop without 9069 * exiting to the userspace. Otherwise, the value will be returned to the 9070 * userspace. 9071 */ 9072static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9073{ 9074 int r; 9075 bool req_int_win = 9076 dm_request_for_irq_injection(vcpu) && 9077 kvm_cpu_accept_dm_intr(vcpu); 9078 fastpath_t exit_fastpath; 9079 9080 bool req_immediate_exit = false; 9081 9082 if (kvm_request_pending(vcpu)) { 9083 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9084 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9085 r = 0; 9086 goto out; 9087 } 9088 } 9089 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 9090 kvm_mmu_unload(vcpu); 9091 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9092 __kvm_migrate_timers(vcpu); 9093 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9094 kvm_gen_update_masterclock(vcpu->kvm); 9095 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9096 kvm_gen_kvmclock_update(vcpu); 9097 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9098 r = kvm_guest_time_update(vcpu); 9099 if (unlikely(r)) 9100 goto out; 9101 } 9102 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9103 kvm_mmu_sync_roots(vcpu); 9104 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9105 kvm_mmu_load_pgd(vcpu); 9106 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9107 kvm_vcpu_flush_tlb_all(vcpu); 9108 9109 /* Flushing all ASIDs flushes the current ASID... */ 9110 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9111 } 9112 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 9113 kvm_vcpu_flush_tlb_current(vcpu); 9114 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 9115 kvm_vcpu_flush_tlb_guest(vcpu); 9116 9117 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9118 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9119 r = 0; 9120 goto out; 9121 } 9122 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9123 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9124 vcpu->mmio_needed = 0; 9125 r = 0; 9126 goto out; 9127 } 9128 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9129 /* Page is swapped out. Do synthetic halt */ 9130 vcpu->arch.apf.halted = true; 9131 r = 1; 9132 goto out; 9133 } 9134 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9135 record_steal_time(vcpu); 9136 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9137 process_smi(vcpu); 9138 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9139 process_nmi(vcpu); 9140 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 9141 kvm_pmu_handle_event(vcpu); 9142 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 9143 kvm_pmu_deliver_pmi(vcpu); 9144 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 9145 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 9146 if (test_bit(vcpu->arch.pending_ioapic_eoi, 9147 vcpu->arch.ioapic_handled_vectors)) { 9148 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 9149 vcpu->run->eoi.vector = 9150 vcpu->arch.pending_ioapic_eoi; 9151 r = 0; 9152 goto out; 9153 } 9154 } 9155 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 9156 vcpu_scan_ioapic(vcpu); 9157 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 9158 vcpu_load_eoi_exitmap(vcpu); 9159 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 9160 kvm_vcpu_reload_apic_access_page(vcpu); 9161 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 9162 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9163 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 9164 r = 0; 9165 goto out; 9166 } 9167 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 9168 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9169 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 9170 r = 0; 9171 goto out; 9172 } 9173 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 9174 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 9175 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 9176 r = 0; 9177 goto out; 9178 } 9179 9180 /* 9181 * KVM_REQ_HV_STIMER has to be processed after 9182 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 9183 * depend on the guest clock being up-to-date 9184 */ 9185 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 9186 kvm_hv_process_stimers(vcpu); 9187 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 9188 kvm_vcpu_update_apicv(vcpu); 9189 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 9190 kvm_check_async_pf_completion(vcpu); 9191 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 9192 kvm_x86_ops.msr_filter_changed(vcpu); 9193 } 9194 9195 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 9196 ++vcpu->stat.req_event; 9197 kvm_apic_accept_events(vcpu); 9198 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 9199 r = 1; 9200 goto out; 9201 } 9202 9203 inject_pending_event(vcpu, &req_immediate_exit); 9204 if (req_int_win) 9205 kvm_x86_ops.enable_irq_window(vcpu); 9206 9207 if (kvm_lapic_enabled(vcpu)) { 9208 update_cr8_intercept(vcpu); 9209 kvm_lapic_sync_to_vapic(vcpu); 9210 } 9211 } 9212 9213 r = kvm_mmu_reload(vcpu); 9214 if (unlikely(r)) { 9215 goto cancel_injection; 9216 } 9217 9218 preempt_disable(); 9219 9220 kvm_x86_ops.prepare_guest_switch(vcpu); 9221 9222 /* 9223 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 9224 * IPI are then delayed after guest entry, which ensures that they 9225 * result in virtual interrupt delivery. 9226 */ 9227 local_irq_disable(); 9228 vcpu->mode = IN_GUEST_MODE; 9229 9230 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9231 9232 /* 9233 * 1) We should set ->mode before checking ->requests. Please see 9234 * the comment in kvm_vcpu_exiting_guest_mode(). 9235 * 9236 * 2) For APICv, we should set ->mode before checking PID.ON. This 9237 * pairs with the memory barrier implicit in pi_test_and_set_on 9238 * (see vmx_deliver_posted_interrupt). 9239 * 9240 * 3) This also orders the write to mode from any reads to the page 9241 * tables done while the VCPU is running. Please see the comment 9242 * in kvm_flush_remote_tlbs. 9243 */ 9244 smp_mb__after_srcu_read_unlock(); 9245 9246 /* 9247 * This handles the case where a posted interrupt was 9248 * notified with kvm_vcpu_kick. 9249 */ 9250 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 9251 kvm_x86_ops.sync_pir_to_irr(vcpu); 9252 9253 if (kvm_vcpu_exit_request(vcpu)) { 9254 vcpu->mode = OUTSIDE_GUEST_MODE; 9255 smp_wmb(); 9256 local_irq_enable(); 9257 preempt_enable(); 9258 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9259 r = 1; 9260 goto cancel_injection; 9261 } 9262 9263 if (req_immediate_exit) { 9264 kvm_make_request(KVM_REQ_EVENT, vcpu); 9265 kvm_x86_ops.request_immediate_exit(vcpu); 9266 } 9267 9268 trace_kvm_entry(vcpu); 9269 9270 fpregs_assert_state_consistent(); 9271 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9272 switch_fpu_return(); 9273 9274 if (unlikely(vcpu->arch.switch_db_regs)) { 9275 set_debugreg(0, 7); 9276 set_debugreg(vcpu->arch.eff_db[0], 0); 9277 set_debugreg(vcpu->arch.eff_db[1], 1); 9278 set_debugreg(vcpu->arch.eff_db[2], 2); 9279 set_debugreg(vcpu->arch.eff_db[3], 3); 9280 set_debugreg(vcpu->arch.dr6, 6); 9281 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9282 } else if (unlikely(hw_breakpoint_active())) { 9283 set_debugreg(0, 7); 9284 } 9285 9286 exit_fastpath = kvm_x86_ops.run(vcpu); 9287 9288 /* 9289 * Do this here before restoring debug registers on the host. And 9290 * since we do this before handling the vmexit, a DR access vmexit 9291 * can (a) read the correct value of the debug registers, (b) set 9292 * KVM_DEBUGREG_WONT_EXIT again. 9293 */ 9294 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 9295 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 9296 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 9297 kvm_update_dr0123(vcpu); 9298 kvm_update_dr7(vcpu); 9299 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9300 } 9301 9302 /* 9303 * If the guest has used debug registers, at least dr7 9304 * will be disabled while returning to the host. 9305 * If we don't have active breakpoints in the host, we don't 9306 * care about the messed up debug address registers. But if 9307 * we have some of them active, restore the old state. 9308 */ 9309 if (hw_breakpoint_active()) 9310 hw_breakpoint_restore(); 9311 9312 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 9313 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 9314 9315 vcpu->mode = OUTSIDE_GUEST_MODE; 9316 smp_wmb(); 9317 9318 kvm_x86_ops.handle_exit_irqoff(vcpu); 9319 9320 /* 9321 * Consume any pending interrupts, including the possible source of 9322 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 9323 * An instruction is required after local_irq_enable() to fully unblock 9324 * interrupts on processors that implement an interrupt shadow, the 9325 * stat.exits increment will do nicely. 9326 */ 9327 kvm_before_interrupt(vcpu); 9328 local_irq_enable(); 9329 ++vcpu->stat.exits; 9330 local_irq_disable(); 9331 kvm_after_interrupt(vcpu); 9332 9333 /* 9334 * Wait until after servicing IRQs to account guest time so that any 9335 * ticks that occurred while running the guest are properly accounted 9336 * to the guest. Waiting until IRQs are enabled degrades the accuracy 9337 * of accounting via context tracking, but the loss of accuracy is 9338 * acceptable for all known use cases. 9339 */ 9340 vtime_account_guest_exit(); 9341 9342 if (lapic_in_kernel(vcpu)) { 9343 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9344 if (delta != S64_MIN) { 9345 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9346 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9347 } 9348 } 9349 9350 local_irq_enable(); 9351 preempt_enable(); 9352 9353 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9354 9355 /* 9356 * Profile KVM exit RIPs: 9357 */ 9358 if (unlikely(prof_on == KVM_PROFILING)) { 9359 unsigned long rip = kvm_rip_read(vcpu); 9360 profile_hit(KVM_PROFILING, (void *)rip); 9361 } 9362 9363 if (unlikely(vcpu->arch.tsc_always_catchup)) 9364 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9365 9366 if (vcpu->arch.apic_attention) 9367 kvm_lapic_sync_from_vapic(vcpu); 9368 9369 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 9370 return r; 9371 9372cancel_injection: 9373 if (req_immediate_exit) 9374 kvm_make_request(KVM_REQ_EVENT, vcpu); 9375 kvm_x86_ops.cancel_injection(vcpu); 9376 if (unlikely(vcpu->arch.apic_attention)) 9377 kvm_lapic_sync_from_vapic(vcpu); 9378out: 9379 return r; 9380} 9381 9382static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9383{ 9384 if (!kvm_arch_vcpu_runnable(vcpu) && 9385 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 9386 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9387 kvm_vcpu_block(vcpu); 9388 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9389 9390 if (kvm_x86_ops.post_block) 9391 kvm_x86_ops.post_block(vcpu); 9392 9393 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9394 return 1; 9395 } 9396 9397 kvm_apic_accept_events(vcpu); 9398 switch(vcpu->arch.mp_state) { 9399 case KVM_MP_STATE_HALTED: 9400 vcpu->arch.pv.pv_unhalted = false; 9401 vcpu->arch.mp_state = 9402 KVM_MP_STATE_RUNNABLE; 9403 fallthrough; 9404 case KVM_MP_STATE_RUNNABLE: 9405 vcpu->arch.apf.halted = false; 9406 break; 9407 case KVM_MP_STATE_INIT_RECEIVED: 9408 break; 9409 default: 9410 return -EINTR; 9411 } 9412 return 1; 9413} 9414 9415static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9416{ 9417 if (is_guest_mode(vcpu)) 9418 kvm_x86_ops.nested_ops->check_events(vcpu); 9419 9420 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9421 !vcpu->arch.apf.halted); 9422} 9423 9424static int vcpu_run(struct kvm_vcpu *vcpu) 9425{ 9426 int r; 9427 struct kvm *kvm = vcpu->kvm; 9428 9429 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9430 vcpu->arch.l1tf_flush_l1d = true; 9431 9432 for (;;) { 9433 /* 9434 * If another guest vCPU requests a PV TLB flush in the middle 9435 * of instruction emulation, the rest of the emulation could 9436 * use a stale page translation. Assume that any code after 9437 * this point can start executing an instruction. 9438 */ 9439 vcpu->arch.at_instruction_boundary = false; 9440 if (kvm_vcpu_running(vcpu)) { 9441 r = vcpu_enter_guest(vcpu); 9442 } else { 9443 r = vcpu_block(kvm, vcpu); 9444 } 9445 9446 if (r <= 0) 9447 break; 9448 9449 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9450 if (kvm_cpu_has_pending_timer(vcpu)) 9451 kvm_inject_pending_timer_irqs(vcpu); 9452 9453 if (dm_request_for_irq_injection(vcpu) && 9454 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9455 r = 0; 9456 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9457 ++vcpu->stat.request_irq_exits; 9458 break; 9459 } 9460 9461 if (__xfer_to_guest_mode_work_pending()) { 9462 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9463 r = xfer_to_guest_mode_handle_work(vcpu); 9464 if (r) 9465 return r; 9466 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9467 } 9468 } 9469 9470 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9471 9472 return r; 9473} 9474 9475static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9476{ 9477 int r; 9478 9479 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9480 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9481 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9482 return r; 9483} 9484 9485static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9486{ 9487 BUG_ON(!vcpu->arch.pio.count); 9488 9489 return complete_emulated_io(vcpu); 9490} 9491 9492/* 9493 * Implements the following, as a state machine: 9494 * 9495 * read: 9496 * for each fragment 9497 * for each mmio piece in the fragment 9498 * write gpa, len 9499 * exit 9500 * copy data 9501 * execute insn 9502 * 9503 * write: 9504 * for each fragment 9505 * for each mmio piece in the fragment 9506 * write gpa, len 9507 * copy data 9508 * exit 9509 */ 9510static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9511{ 9512 struct kvm_run *run = vcpu->run; 9513 struct kvm_mmio_fragment *frag; 9514 unsigned len; 9515 9516 BUG_ON(!vcpu->mmio_needed); 9517 9518 /* Complete previous fragment */ 9519 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9520 len = min(8u, frag->len); 9521 if (!vcpu->mmio_is_write) 9522 memcpy(frag->data, run->mmio.data, len); 9523 9524 if (frag->len <= 8) { 9525 /* Switch to the next fragment. */ 9526 frag++; 9527 vcpu->mmio_cur_fragment++; 9528 } else { 9529 /* Go forward to the next mmio piece. */ 9530 frag->data += len; 9531 frag->gpa += len; 9532 frag->len -= len; 9533 } 9534 9535 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9536 vcpu->mmio_needed = 0; 9537 9538 /* FIXME: return into emulator if single-stepping. */ 9539 if (vcpu->mmio_is_write) 9540 return 1; 9541 vcpu->mmio_read_completed = 1; 9542 return complete_emulated_io(vcpu); 9543 } 9544 9545 run->exit_reason = KVM_EXIT_MMIO; 9546 run->mmio.phys_addr = frag->gpa; 9547 if (vcpu->mmio_is_write) 9548 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9549 run->mmio.len = min(8u, frag->len); 9550 run->mmio.is_write = vcpu->mmio_is_write; 9551 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9552 return 0; 9553} 9554 9555static void kvm_save_current_fpu(struct fpu *fpu) 9556{ 9557 /* 9558 * If the target FPU state is not resident in the CPU registers, just 9559 * memcpy() from current, else save CPU state directly to the target. 9560 */ 9561 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9562 memcpy(&fpu->state, ¤t->thread.fpu.state, 9563 fpu_kernel_xstate_size); 9564 else 9565 copy_fpregs_to_fpstate(fpu); 9566} 9567 9568/* Swap (qemu) user FPU context for the guest FPU context. */ 9569static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9570{ 9571 fpregs_lock(); 9572 9573 kvm_save_current_fpu(vcpu->arch.user_fpu); 9574 9575 /* PKRU is separately restored in kvm_x86_ops.run. */ 9576 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9577 ~XFEATURE_MASK_PKRU); 9578 9579 fpregs_mark_activate(); 9580 fpregs_unlock(); 9581 9582 trace_kvm_fpu(1); 9583} 9584 9585/* When vcpu_run ends, restore user space FPU context. */ 9586static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9587{ 9588 fpregs_lock(); 9589 9590 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9591 9592 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9593 9594 fpregs_mark_activate(); 9595 fpregs_unlock(); 9596 9597 ++vcpu->stat.fpu_reload; 9598 trace_kvm_fpu(0); 9599} 9600 9601int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9602{ 9603 struct kvm_run *kvm_run = vcpu->run; 9604 int r; 9605 9606 vcpu_load(vcpu); 9607 kvm_sigset_activate(vcpu); 9608 kvm_load_guest_fpu(vcpu); 9609 9610 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9611 if (kvm_run->immediate_exit) { 9612 r = -EINTR; 9613 goto out; 9614 } 9615 kvm_vcpu_block(vcpu); 9616 kvm_apic_accept_events(vcpu); 9617 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9618 r = -EAGAIN; 9619 if (signal_pending(current)) { 9620 r = -EINTR; 9621 kvm_run->exit_reason = KVM_EXIT_INTR; 9622 ++vcpu->stat.signal_exits; 9623 } 9624 goto out; 9625 } 9626 9627 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9628 r = -EINVAL; 9629 goto out; 9630 } 9631 9632 if (kvm_run->kvm_dirty_regs) { 9633 r = sync_regs(vcpu); 9634 if (r != 0) 9635 goto out; 9636 } 9637 9638 /* re-sync apic's tpr */ 9639 if (!lapic_in_kernel(vcpu)) { 9640 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9641 r = -EINVAL; 9642 goto out; 9643 } 9644 } 9645 9646 if (unlikely(vcpu->arch.complete_userspace_io)) { 9647 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9648 vcpu->arch.complete_userspace_io = NULL; 9649 r = cui(vcpu); 9650 if (r <= 0) 9651 goto out; 9652 } else 9653 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9654 9655 if (kvm_run->immediate_exit) 9656 r = -EINTR; 9657 else 9658 r = vcpu_run(vcpu); 9659 9660out: 9661 kvm_put_guest_fpu(vcpu); 9662 if (kvm_run->kvm_valid_regs) 9663 store_regs(vcpu); 9664 post_kvm_run_save(vcpu); 9665 kvm_sigset_deactivate(vcpu); 9666 9667 vcpu_put(vcpu); 9668 return r; 9669} 9670 9671static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9672{ 9673 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9674 /* 9675 * We are here if userspace calls get_regs() in the middle of 9676 * instruction emulation. Registers state needs to be copied 9677 * back from emulation context to vcpu. Userspace shouldn't do 9678 * that usually, but some bad designed PV devices (vmware 9679 * backdoor interface) need this to work 9680 */ 9681 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9682 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9683 } 9684 regs->rax = kvm_rax_read(vcpu); 9685 regs->rbx = kvm_rbx_read(vcpu); 9686 regs->rcx = kvm_rcx_read(vcpu); 9687 regs->rdx = kvm_rdx_read(vcpu); 9688 regs->rsi = kvm_rsi_read(vcpu); 9689 regs->rdi = kvm_rdi_read(vcpu); 9690 regs->rsp = kvm_rsp_read(vcpu); 9691 regs->rbp = kvm_rbp_read(vcpu); 9692#ifdef CONFIG_X86_64 9693 regs->r8 = kvm_r8_read(vcpu); 9694 regs->r9 = kvm_r9_read(vcpu); 9695 regs->r10 = kvm_r10_read(vcpu); 9696 regs->r11 = kvm_r11_read(vcpu); 9697 regs->r12 = kvm_r12_read(vcpu); 9698 regs->r13 = kvm_r13_read(vcpu); 9699 regs->r14 = kvm_r14_read(vcpu); 9700 regs->r15 = kvm_r15_read(vcpu); 9701#endif 9702 9703 regs->rip = kvm_rip_read(vcpu); 9704 regs->rflags = kvm_get_rflags(vcpu); 9705} 9706 9707int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9708{ 9709 vcpu_load(vcpu); 9710 __get_regs(vcpu, regs); 9711 vcpu_put(vcpu); 9712 return 0; 9713} 9714 9715static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9716{ 9717 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9718 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9719 9720 kvm_rax_write(vcpu, regs->rax); 9721 kvm_rbx_write(vcpu, regs->rbx); 9722 kvm_rcx_write(vcpu, regs->rcx); 9723 kvm_rdx_write(vcpu, regs->rdx); 9724 kvm_rsi_write(vcpu, regs->rsi); 9725 kvm_rdi_write(vcpu, regs->rdi); 9726 kvm_rsp_write(vcpu, regs->rsp); 9727 kvm_rbp_write(vcpu, regs->rbp); 9728#ifdef CONFIG_X86_64 9729 kvm_r8_write(vcpu, regs->r8); 9730 kvm_r9_write(vcpu, regs->r9); 9731 kvm_r10_write(vcpu, regs->r10); 9732 kvm_r11_write(vcpu, regs->r11); 9733 kvm_r12_write(vcpu, regs->r12); 9734 kvm_r13_write(vcpu, regs->r13); 9735 kvm_r14_write(vcpu, regs->r14); 9736 kvm_r15_write(vcpu, regs->r15); 9737#endif 9738 9739 kvm_rip_write(vcpu, regs->rip); 9740 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9741 9742 vcpu->arch.exception.pending = false; 9743 9744 kvm_make_request(KVM_REQ_EVENT, vcpu); 9745} 9746 9747int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9748{ 9749 vcpu_load(vcpu); 9750 __set_regs(vcpu, regs); 9751 vcpu_put(vcpu); 9752 return 0; 9753} 9754 9755void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9756{ 9757 struct kvm_segment cs; 9758 9759 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9760 *db = cs.db; 9761 *l = cs.l; 9762} 9763EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9764 9765static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9766{ 9767 struct desc_ptr dt; 9768 9769 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9770 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9771 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9772 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9773 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9774 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9775 9776 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9777 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9778 9779 kvm_x86_ops.get_idt(vcpu, &dt); 9780 sregs->idt.limit = dt.size; 9781 sregs->idt.base = dt.address; 9782 kvm_x86_ops.get_gdt(vcpu, &dt); 9783 sregs->gdt.limit = dt.size; 9784 sregs->gdt.base = dt.address; 9785 9786 sregs->cr0 = kvm_read_cr0(vcpu); 9787 sregs->cr2 = vcpu->arch.cr2; 9788 sregs->cr3 = kvm_read_cr3(vcpu); 9789 sregs->cr4 = kvm_read_cr4(vcpu); 9790 sregs->cr8 = kvm_get_cr8(vcpu); 9791 sregs->efer = vcpu->arch.efer; 9792 sregs->apic_base = kvm_get_apic_base(vcpu); 9793 9794 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9795 9796 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9797 set_bit(vcpu->arch.interrupt.nr, 9798 (unsigned long *)sregs->interrupt_bitmap); 9799} 9800 9801int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9802 struct kvm_sregs *sregs) 9803{ 9804 vcpu_load(vcpu); 9805 __get_sregs(vcpu, sregs); 9806 vcpu_put(vcpu); 9807 return 0; 9808} 9809 9810int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9811 struct kvm_mp_state *mp_state) 9812{ 9813 vcpu_load(vcpu); 9814 if (kvm_mpx_supported()) 9815 kvm_load_guest_fpu(vcpu); 9816 9817 kvm_apic_accept_events(vcpu); 9818 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9819 vcpu->arch.pv.pv_unhalted) 9820 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9821 else 9822 mp_state->mp_state = vcpu->arch.mp_state; 9823 9824 if (kvm_mpx_supported()) 9825 kvm_put_guest_fpu(vcpu); 9826 vcpu_put(vcpu); 9827 return 0; 9828} 9829 9830int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9831 struct kvm_mp_state *mp_state) 9832{ 9833 int ret = -EINVAL; 9834 9835 vcpu_load(vcpu); 9836 9837 if (!lapic_in_kernel(vcpu) && 9838 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9839 goto out; 9840 9841 /* 9842 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9843 * INIT state; latched init should be reported using 9844 * KVM_SET_VCPU_EVENTS, so reject it here. 9845 */ 9846 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9847 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9848 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9849 goto out; 9850 9851 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9852 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9853 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9854 } else 9855 vcpu->arch.mp_state = mp_state->mp_state; 9856 kvm_make_request(KVM_REQ_EVENT, vcpu); 9857 9858 ret = 0; 9859out: 9860 vcpu_put(vcpu); 9861 return ret; 9862} 9863 9864int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9865 int reason, bool has_error_code, u32 error_code) 9866{ 9867 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9868 int ret; 9869 9870 init_emulate_ctxt(vcpu); 9871 9872 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9873 has_error_code, error_code); 9874 if (ret) { 9875 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9876 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9877 vcpu->run->internal.ndata = 0; 9878 return 0; 9879 } 9880 9881 kvm_rip_write(vcpu, ctxt->eip); 9882 kvm_set_rflags(vcpu, ctxt->eflags); 9883 return 1; 9884} 9885EXPORT_SYMBOL_GPL(kvm_task_switch); 9886 9887static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9888{ 9889 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9890 /* 9891 * When EFER.LME and CR0.PG are set, the processor is in 9892 * 64-bit mode (though maybe in a 32-bit code segment). 9893 * CR4.PAE and EFER.LMA must be set. 9894 */ 9895 if (!(sregs->cr4 & X86_CR4_PAE) 9896 || !(sregs->efer & EFER_LMA)) 9897 return -EINVAL; 9898 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits) 9899 return -EINVAL; 9900 } else { 9901 /* 9902 * Not in 64-bit mode: EFER.LMA is clear and the code 9903 * segment cannot be 64-bit. 9904 */ 9905 if (sregs->efer & EFER_LMA || sregs->cs.l) 9906 return -EINVAL; 9907 } 9908 9909 return kvm_valid_cr4(vcpu, sregs->cr4); 9910} 9911 9912static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9913{ 9914 struct msr_data apic_base_msr; 9915 int mmu_reset_needed = 0; 9916 int cpuid_update_needed = 0; 9917 int pending_vec, max_bits, idx; 9918 struct desc_ptr dt; 9919 int ret = -EINVAL; 9920 9921 if (kvm_valid_sregs(vcpu, sregs)) 9922 goto out; 9923 9924 apic_base_msr.data = sregs->apic_base; 9925 apic_base_msr.host_initiated = true; 9926 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9927 goto out; 9928 9929 dt.size = sregs->idt.limit; 9930 dt.address = sregs->idt.base; 9931 kvm_x86_ops.set_idt(vcpu, &dt); 9932 dt.size = sregs->gdt.limit; 9933 dt.address = sregs->gdt.base; 9934 kvm_x86_ops.set_gdt(vcpu, &dt); 9935 9936 vcpu->arch.cr2 = sregs->cr2; 9937 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9938 vcpu->arch.cr3 = sregs->cr3; 9939 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9940 9941 kvm_set_cr8(vcpu, sregs->cr8); 9942 9943 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9944 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9945 9946 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9947 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9948 vcpu->arch.cr0 = sregs->cr0; 9949 9950 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9951 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9952 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9953 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9954 if (cpuid_update_needed) 9955 kvm_update_cpuid_runtime(vcpu); 9956 9957 idx = srcu_read_lock(&vcpu->kvm->srcu); 9958 if (is_pae_paging(vcpu)) { 9959 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9960 mmu_reset_needed = 1; 9961 } 9962 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9963 9964 if (mmu_reset_needed) 9965 kvm_mmu_reset_context(vcpu); 9966 9967 max_bits = KVM_NR_INTERRUPTS; 9968 pending_vec = find_first_bit( 9969 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9970 if (pending_vec < max_bits) { 9971 kvm_queue_interrupt(vcpu, pending_vec, false); 9972 pr_debug("Set back pending irq %d\n", pending_vec); 9973 } 9974 9975 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9976 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9977 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9978 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9979 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9980 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9981 9982 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9983 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9984 9985 update_cr8_intercept(vcpu); 9986 9987 /* Older userspace won't unhalt the vcpu on reset. */ 9988 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9989 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9990 !is_protmode(vcpu)) 9991 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9992 9993 kvm_make_request(KVM_REQ_EVENT, vcpu); 9994 9995 ret = 0; 9996out: 9997 return ret; 9998} 9999 10000int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10001 struct kvm_sregs *sregs) 10002{ 10003 int ret; 10004 10005 vcpu_load(vcpu); 10006 ret = __set_sregs(vcpu, sregs); 10007 vcpu_put(vcpu); 10008 return ret; 10009} 10010 10011int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 10012 struct kvm_guest_debug *dbg) 10013{ 10014 unsigned long rflags; 10015 int i, r; 10016 10017 vcpu_load(vcpu); 10018 10019 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 10020 r = -EBUSY; 10021 if (vcpu->arch.exception.pending) 10022 goto out; 10023 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 10024 kvm_queue_exception(vcpu, DB_VECTOR); 10025 else 10026 kvm_queue_exception(vcpu, BP_VECTOR); 10027 } 10028 10029 /* 10030 * Read rflags as long as potentially injected trace flags are still 10031 * filtered out. 10032 */ 10033 rflags = kvm_get_rflags(vcpu); 10034 10035 vcpu->guest_debug = dbg->control; 10036 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 10037 vcpu->guest_debug = 0; 10038 10039 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 10040 for (i = 0; i < KVM_NR_DB_REGS; ++i) 10041 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 10042 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 10043 } else { 10044 for (i = 0; i < KVM_NR_DB_REGS; i++) 10045 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 10046 } 10047 kvm_update_dr7(vcpu); 10048 10049 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10050 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 10051 get_segment_base(vcpu, VCPU_SREG_CS); 10052 10053 /* 10054 * Trigger an rflags update that will inject or remove the trace 10055 * flags. 10056 */ 10057 kvm_set_rflags(vcpu, rflags); 10058 10059 kvm_x86_ops.update_exception_bitmap(vcpu); 10060 10061 r = 0; 10062 10063out: 10064 vcpu_put(vcpu); 10065 return r; 10066} 10067 10068/* 10069 * Translate a guest virtual address to a guest physical address. 10070 */ 10071int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 10072 struct kvm_translation *tr) 10073{ 10074 unsigned long vaddr = tr->linear_address; 10075 gpa_t gpa; 10076 int idx; 10077 10078 vcpu_load(vcpu); 10079 10080 idx = srcu_read_lock(&vcpu->kvm->srcu); 10081 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 10082 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10083 tr->physical_address = gpa; 10084 tr->valid = gpa != UNMAPPED_GVA; 10085 tr->writeable = 1; 10086 tr->usermode = 0; 10087 10088 vcpu_put(vcpu); 10089 return 0; 10090} 10091 10092int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 10093{ 10094 struct fxregs_state *fxsave; 10095 10096 vcpu_load(vcpu); 10097 10098 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 10099 memcpy(fpu->fpr, fxsave->st_space, 128); 10100 fpu->fcw = fxsave->cwd; 10101 fpu->fsw = fxsave->swd; 10102 fpu->ftwx = fxsave->twd; 10103 fpu->last_opcode = fxsave->fop; 10104 fpu->last_ip = fxsave->rip; 10105 fpu->last_dp = fxsave->rdp; 10106 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 10107 10108 vcpu_put(vcpu); 10109 return 0; 10110} 10111 10112int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 10113{ 10114 struct fxregs_state *fxsave; 10115 10116 vcpu_load(vcpu); 10117 10118 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 10119 10120 memcpy(fxsave->st_space, fpu->fpr, 128); 10121 fxsave->cwd = fpu->fcw; 10122 fxsave->swd = fpu->fsw; 10123 fxsave->twd = fpu->ftwx; 10124 fxsave->fop = fpu->last_opcode; 10125 fxsave->rip = fpu->last_ip; 10126 fxsave->rdp = fpu->last_dp; 10127 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 10128 10129 vcpu_put(vcpu); 10130 return 0; 10131} 10132 10133static void store_regs(struct kvm_vcpu *vcpu) 10134{ 10135 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 10136 10137 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 10138 __get_regs(vcpu, &vcpu->run->s.regs.regs); 10139 10140 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 10141 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 10142 10143 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 10144 kvm_vcpu_ioctl_x86_get_vcpu_events( 10145 vcpu, &vcpu->run->s.regs.events); 10146} 10147 10148static int sync_regs(struct kvm_vcpu *vcpu) 10149{ 10150 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 10151 return -EINVAL; 10152 10153 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 10154 __set_regs(vcpu, &vcpu->run->s.regs.regs); 10155 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 10156 } 10157 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 10158 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 10159 return -EINVAL; 10160 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 10161 } 10162 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 10163 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 10164 vcpu, &vcpu->run->s.regs.events)) 10165 return -EINVAL; 10166 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 10167 } 10168 10169 return 0; 10170} 10171 10172static void fx_init(struct kvm_vcpu *vcpu) 10173{ 10174 fpstate_init(&vcpu->arch.guest_fpu->state); 10175 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10176 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 10177 host_xcr0 | XSTATE_COMPACTION_ENABLED; 10178 10179 /* 10180 * Ensure guest xcr0 is valid for loading 10181 */ 10182 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10183 10184 vcpu->arch.cr0 |= X86_CR0_ET; 10185} 10186 10187int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 10188{ 10189 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 10190 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 10191 "guest TSC will not be reliable\n"); 10192 10193 return 0; 10194} 10195 10196int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 10197{ 10198 struct page *page; 10199 int r; 10200 10201 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 10202 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10203 else 10204 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 10205 10206 kvm_set_tsc_khz(vcpu, max_tsc_khz); 10207 10208 r = kvm_mmu_create(vcpu); 10209 if (r < 0) 10210 return r; 10211 10212 if (irqchip_in_kernel(vcpu->kvm)) { 10213 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 10214 if (r < 0) 10215 goto fail_mmu_destroy; 10216 if (kvm_apicv_activated(vcpu->kvm)) 10217 vcpu->arch.apicv_active = true; 10218 } else 10219 static_key_slow_inc(&kvm_no_apic_vcpu); 10220 10221 r = -ENOMEM; 10222 10223 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 10224 if (!page) 10225 goto fail_free_lapic; 10226 vcpu->arch.pio_data = page_address(page); 10227 10228 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 10229 GFP_KERNEL_ACCOUNT); 10230 if (!vcpu->arch.mce_banks) 10231 goto fail_free_pio_data; 10232 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 10233 10234 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 10235 GFP_KERNEL_ACCOUNT)) 10236 goto fail_free_mce_banks; 10237 10238 if (!alloc_emulate_ctxt(vcpu)) 10239 goto free_wbinvd_dirty_mask; 10240 10241 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 10242 GFP_KERNEL_ACCOUNT); 10243 if (!vcpu->arch.user_fpu) { 10244 pr_err("kvm: failed to allocate userspace's fpu\n"); 10245 goto free_emulate_ctxt; 10246 } 10247 10248 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 10249 GFP_KERNEL_ACCOUNT); 10250 if (!vcpu->arch.guest_fpu) { 10251 pr_err("kvm: failed to allocate vcpu's fpu\n"); 10252 goto free_user_fpu; 10253 } 10254 fx_init(vcpu); 10255 10256 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 10257 vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63); 10258 10259 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 10260 10261 kvm_async_pf_hash_reset(vcpu); 10262 kvm_pmu_init(vcpu); 10263 10264 vcpu->arch.pending_external_vector = -1; 10265 vcpu->arch.preempted_in_kernel = false; 10266 10267 kvm_hv_vcpu_init(vcpu); 10268 10269 r = kvm_x86_ops.vcpu_create(vcpu); 10270 if (r) 10271 goto free_guest_fpu; 10272 10273 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 10274 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 10275 kvm_vcpu_mtrr_init(vcpu); 10276 vcpu_load(vcpu); 10277 kvm_vcpu_reset(vcpu, false); 10278 kvm_init_mmu(vcpu, false); 10279 vcpu_put(vcpu); 10280 return 0; 10281 10282free_guest_fpu: 10283 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 10284free_user_fpu: 10285 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10286free_emulate_ctxt: 10287 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10288free_wbinvd_dirty_mask: 10289 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10290fail_free_mce_banks: 10291 kfree(vcpu->arch.mce_banks); 10292fail_free_pio_data: 10293 free_page((unsigned long)vcpu->arch.pio_data); 10294fail_free_lapic: 10295 kvm_free_lapic(vcpu); 10296fail_mmu_destroy: 10297 kvm_mmu_destroy(vcpu); 10298 return r; 10299} 10300 10301void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 10302{ 10303 struct kvm *kvm = vcpu->kvm; 10304 10305 kvm_hv_vcpu_postcreate(vcpu); 10306 10307 if (mutex_lock_killable(&vcpu->mutex)) 10308 return; 10309 vcpu_load(vcpu); 10310 kvm_synchronize_tsc(vcpu, 0); 10311 vcpu_put(vcpu); 10312 10313 /* poll control enabled by default */ 10314 vcpu->arch.msr_kvm_poll_control = 1; 10315 10316 mutex_unlock(&vcpu->mutex); 10317 10318 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 10319 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 10320 KVMCLOCK_SYNC_PERIOD); 10321} 10322 10323void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 10324{ 10325 int idx; 10326 10327 kvmclock_reset(vcpu); 10328 10329 kvm_x86_ops.vcpu_free(vcpu); 10330 10331 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10332 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10333 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10334 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 10335 10336 kvm_hv_vcpu_uninit(vcpu); 10337 kvm_pmu_destroy(vcpu); 10338 kfree(vcpu->arch.mce_banks); 10339 kvm_free_lapic(vcpu); 10340 idx = srcu_read_lock(&vcpu->kvm->srcu); 10341 kvm_mmu_destroy(vcpu); 10342 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10343 free_page((unsigned long)vcpu->arch.pio_data); 10344 kvfree(vcpu->arch.cpuid_entries); 10345 if (!lapic_in_kernel(vcpu)) 10346 static_key_slow_dec(&kvm_no_apic_vcpu); 10347} 10348 10349void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 10350{ 10351 kvm_lapic_reset(vcpu, init_event); 10352 10353 vcpu->arch.hflags = 0; 10354 10355 vcpu->arch.smi_pending = 0; 10356 vcpu->arch.smi_count = 0; 10357 atomic_set(&vcpu->arch.nmi_queued, 0); 10358 vcpu->arch.nmi_pending = 0; 10359 vcpu->arch.nmi_injected = false; 10360 kvm_clear_interrupt_queue(vcpu); 10361 kvm_clear_exception_queue(vcpu); 10362 10363 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10364 kvm_update_dr0123(vcpu); 10365 vcpu->arch.dr6 = DR6_INIT; 10366 vcpu->arch.dr7 = DR7_FIXED_1; 10367 kvm_update_dr7(vcpu); 10368 10369 vcpu->arch.cr2 = 0; 10370 10371 kvm_make_request(KVM_REQ_EVENT, vcpu); 10372 vcpu->arch.apf.msr_en_val = 0; 10373 vcpu->arch.apf.msr_int_val = 0; 10374 vcpu->arch.st.msr_val = 0; 10375 10376 kvmclock_reset(vcpu); 10377 10378 kvm_clear_async_pf_completion_queue(vcpu); 10379 kvm_async_pf_hash_reset(vcpu); 10380 vcpu->arch.apf.halted = false; 10381 10382 if (kvm_mpx_supported()) { 10383 void *mpx_state_buffer; 10384 10385 /* 10386 * To avoid have the INIT path from kvm_apic_has_events() that be 10387 * called with loaded FPU and does not let userspace fix the state. 10388 */ 10389 if (init_event) 10390 kvm_put_guest_fpu(vcpu); 10391 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10392 XFEATURE_BNDREGS); 10393 if (mpx_state_buffer) 10394 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10395 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10396 XFEATURE_BNDCSR); 10397 if (mpx_state_buffer) 10398 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10399 if (init_event) 10400 kvm_load_guest_fpu(vcpu); 10401 } 10402 10403 if (!init_event) { 10404 kvm_pmu_reset(vcpu); 10405 vcpu->arch.smbase = 0x30000; 10406 10407 vcpu->arch.msr_misc_features_enables = 0; 10408 10409 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10410 } 10411 10412 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10413 vcpu->arch.regs_avail = ~0; 10414 vcpu->arch.regs_dirty = ~0; 10415 10416 vcpu->arch.ia32_xss = 0; 10417 10418 kvm_x86_ops.vcpu_reset(vcpu, init_event); 10419} 10420 10421void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10422{ 10423 struct kvm_segment cs; 10424 10425 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10426 cs.selector = vector << 8; 10427 cs.base = vector << 12; 10428 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10429 kvm_rip_write(vcpu, 0); 10430} 10431 10432int kvm_arch_hardware_enable(void) 10433{ 10434 struct kvm *kvm; 10435 struct kvm_vcpu *vcpu; 10436 int i; 10437 int ret; 10438 u64 local_tsc; 10439 u64 max_tsc = 0; 10440 bool stable, backwards_tsc = false; 10441 10442 kvm_user_return_msr_cpu_online(); 10443 ret = kvm_x86_ops.hardware_enable(); 10444 if (ret != 0) 10445 return ret; 10446 10447 local_tsc = rdtsc(); 10448 stable = !kvm_check_tsc_unstable(); 10449 list_for_each_entry(kvm, &vm_list, vm_list) { 10450 kvm_for_each_vcpu(i, vcpu, kvm) { 10451 if (!stable && vcpu->cpu == smp_processor_id()) 10452 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10453 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10454 backwards_tsc = true; 10455 if (vcpu->arch.last_host_tsc > max_tsc) 10456 max_tsc = vcpu->arch.last_host_tsc; 10457 } 10458 } 10459 } 10460 10461 /* 10462 * Sometimes, even reliable TSCs go backwards. This happens on 10463 * platforms that reset TSC during suspend or hibernate actions, but 10464 * maintain synchronization. We must compensate. Fortunately, we can 10465 * detect that condition here, which happens early in CPU bringup, 10466 * before any KVM threads can be running. Unfortunately, we can't 10467 * bring the TSCs fully up to date with real time, as we aren't yet far 10468 * enough into CPU bringup that we know how much real time has actually 10469 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10470 * variables that haven't been updated yet. 10471 * 10472 * So we simply find the maximum observed TSC above, then record the 10473 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10474 * the adjustment will be applied. Note that we accumulate 10475 * adjustments, in case multiple suspend cycles happen before some VCPU 10476 * gets a chance to run again. In the event that no KVM threads get a 10477 * chance to run, we will miss the entire elapsed period, as we'll have 10478 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10479 * loose cycle time. This isn't too big a deal, since the loss will be 10480 * uniform across all VCPUs (not to mention the scenario is extremely 10481 * unlikely). It is possible that a second hibernate recovery happens 10482 * much faster than a first, causing the observed TSC here to be 10483 * smaller; this would require additional padding adjustment, which is 10484 * why we set last_host_tsc to the local tsc observed here. 10485 * 10486 * N.B. - this code below runs only on platforms with reliable TSC, 10487 * as that is the only way backwards_tsc is set above. Also note 10488 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10489 * have the same delta_cyc adjustment applied if backwards_tsc 10490 * is detected. Note further, this adjustment is only done once, 10491 * as we reset last_host_tsc on all VCPUs to stop this from being 10492 * called multiple times (one for each physical CPU bringup). 10493 * 10494 * Platforms with unreliable TSCs don't have to deal with this, they 10495 * will be compensated by the logic in vcpu_load, which sets the TSC to 10496 * catchup mode. This will catchup all VCPUs to real time, but cannot 10497 * guarantee that they stay in perfect synchronization. 10498 */ 10499 if (backwards_tsc) { 10500 u64 delta_cyc = max_tsc - local_tsc; 10501 list_for_each_entry(kvm, &vm_list, vm_list) { 10502 kvm->arch.backwards_tsc_observed = true; 10503 kvm_for_each_vcpu(i, vcpu, kvm) { 10504 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10505 vcpu->arch.last_host_tsc = local_tsc; 10506 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10507 } 10508 10509 /* 10510 * We have to disable TSC offset matching.. if you were 10511 * booting a VM while issuing an S4 host suspend.... 10512 * you may have some problem. Solving this issue is 10513 * left as an exercise to the reader. 10514 */ 10515 kvm->arch.last_tsc_nsec = 0; 10516 kvm->arch.last_tsc_write = 0; 10517 } 10518 10519 } 10520 return 0; 10521} 10522 10523void kvm_arch_hardware_disable(void) 10524{ 10525 kvm_x86_ops.hardware_disable(); 10526 drop_user_return_notifiers(); 10527} 10528 10529int kvm_arch_hardware_setup(void *opaque) 10530{ 10531 struct kvm_x86_init_ops *ops = opaque; 10532 int r; 10533 10534 rdmsrl_safe(MSR_EFER, &host_efer); 10535 10536 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10537 rdmsrl(MSR_IA32_XSS, host_xss); 10538 10539 r = ops->hardware_setup(); 10540 if (r != 0) 10541 return r; 10542 10543 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10544 10545 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10546 supported_xss = 0; 10547 10548#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10549 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10550#undef __kvm_cpu_cap_has 10551 10552 if (kvm_has_tsc_control) { 10553 /* 10554 * Make sure the user can only configure tsc_khz values that 10555 * fit into a signed integer. 10556 * A min value is not calculated because it will always 10557 * be 1 on all machines. 10558 */ 10559 u64 max = min(0x7fffffffULL, 10560 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10561 kvm_max_guest_tsc_khz = max; 10562 10563 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10564 } 10565 10566 kvm_init_msr_list(); 10567 return 0; 10568} 10569 10570void kvm_arch_hardware_unsetup(void) 10571{ 10572 kvm_x86_ops.hardware_unsetup(); 10573} 10574 10575int kvm_arch_check_processor_compat(void *opaque) 10576{ 10577 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10578 struct kvm_x86_init_ops *ops = opaque; 10579 10580 WARN_ON(!irqs_disabled()); 10581 10582 if (__cr4_reserved_bits(cpu_has, c) != 10583 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10584 return -EIO; 10585 10586 return ops->check_processor_compatibility(); 10587} 10588 10589bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10590{ 10591 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10592} 10593EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10594 10595bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10596{ 10597 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10598} 10599 10600struct static_key kvm_no_apic_vcpu __read_mostly; 10601EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 10602 10603void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10604{ 10605 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10606 10607 vcpu->arch.l1tf_flush_l1d = true; 10608 if (pmu->version && unlikely(pmu->event_count)) { 10609 pmu->need_cleanup = true; 10610 kvm_make_request(KVM_REQ_PMU, vcpu); 10611 } 10612 kvm_x86_ops.sched_in(vcpu, cpu); 10613} 10614 10615void kvm_arch_free_vm(struct kvm *kvm) 10616{ 10617 kfree(kvm->arch.hyperv.hv_pa_pg); 10618 vfree(kvm); 10619} 10620 10621 10622int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10623{ 10624 int ret; 10625 10626 if (type) 10627 return -EINVAL; 10628 10629 ret = kvm_page_track_init(kvm); 10630 if (ret) 10631 return ret; 10632 10633 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10634 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10635 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10636 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10637 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10638 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10639 10640 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10641 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10642 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10643 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10644 &kvm->arch.irq_sources_bitmap); 10645 10646 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10647 mutex_init(&kvm->arch.apic_map_lock); 10648 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10649 10650 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10651 pvclock_update_vm_gtod_copy(kvm); 10652 10653 kvm->arch.guest_can_read_msr_platform_info = true; 10654 10655 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10656 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10657 10658 kvm_hv_init_vm(kvm); 10659 kvm_mmu_init_vm(kvm); 10660 10661 return kvm_x86_ops.vm_init(kvm); 10662} 10663 10664int kvm_arch_post_init_vm(struct kvm *kvm) 10665{ 10666 return kvm_mmu_post_init_vm(kvm); 10667} 10668 10669static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10670{ 10671 vcpu_load(vcpu); 10672 kvm_mmu_unload(vcpu); 10673 vcpu_put(vcpu); 10674} 10675 10676static void kvm_free_vcpus(struct kvm *kvm) 10677{ 10678 unsigned int i; 10679 struct kvm_vcpu *vcpu; 10680 10681 /* 10682 * Unpin any mmu pages first. 10683 */ 10684 kvm_for_each_vcpu(i, vcpu, kvm) { 10685 kvm_clear_async_pf_completion_queue(vcpu); 10686 kvm_unload_vcpu_mmu(vcpu); 10687 } 10688 kvm_for_each_vcpu(i, vcpu, kvm) 10689 kvm_vcpu_destroy(vcpu); 10690 10691 mutex_lock(&kvm->lock); 10692 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10693 kvm->vcpus[i] = NULL; 10694 10695 atomic_set(&kvm->online_vcpus, 0); 10696 mutex_unlock(&kvm->lock); 10697} 10698 10699void kvm_arch_sync_events(struct kvm *kvm) 10700{ 10701 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10702 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10703 kvm_free_pit(kvm); 10704} 10705 10706int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 10707{ 10708 int i, r; 10709 unsigned long hva, old_npages; 10710 struct kvm_memslots *slots = kvm_memslots(kvm); 10711 struct kvm_memory_slot *slot; 10712 10713 /* Called with kvm->slots_lock held. */ 10714 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10715 return -EINVAL; 10716 10717 slot = id_to_memslot(slots, id); 10718 if (size) { 10719 if (slot && slot->npages) 10720 return -EEXIST; 10721 10722 /* 10723 * MAP_SHARED to prevent internal slot pages from being moved 10724 * by fork()/COW. 10725 */ 10726 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10727 MAP_SHARED | MAP_ANONYMOUS, 0); 10728 if (IS_ERR((void *)hva)) 10729 return PTR_ERR((void *)hva); 10730 } else { 10731 if (!slot || !slot->npages) 10732 return 0; 10733 10734 old_npages = slot->npages; 10735 hva = 0; 10736 } 10737 10738 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10739 struct kvm_userspace_memory_region m; 10740 10741 m.slot = id | (i << 16); 10742 m.flags = 0; 10743 m.guest_phys_addr = gpa; 10744 m.userspace_addr = hva; 10745 m.memory_size = size; 10746 r = __kvm_set_memory_region(kvm, &m); 10747 if (r < 0) 10748 return r; 10749 } 10750 10751 if (!size) 10752 vm_munmap(hva, old_npages * PAGE_SIZE); 10753 10754 return 0; 10755} 10756EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10757 10758void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10759{ 10760 kvm_mmu_pre_destroy_vm(kvm); 10761} 10762 10763void kvm_arch_destroy_vm(struct kvm *kvm) 10764{ 10765 if (current->mm == kvm->mm) { 10766 /* 10767 * Free memory regions allocated on behalf of userspace, 10768 * unless the the memory map has changed due to process exit 10769 * or fd copying. 10770 */ 10771 mutex_lock(&kvm->slots_lock); 10772 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10773 0, 0); 10774 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10775 0, 0); 10776 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10777 mutex_unlock(&kvm->slots_lock); 10778 } 10779 if (kvm_x86_ops.vm_destroy) 10780 kvm_x86_ops.vm_destroy(kvm); 10781 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 10782 kvm_pic_destroy(kvm); 10783 kvm_ioapic_destroy(kvm); 10784 kvm_free_vcpus(kvm); 10785 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10786 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10787 kvm_mmu_uninit_vm(kvm); 10788 kvm_page_track_cleanup(kvm); 10789 kvm_hv_destroy_vm(kvm); 10790} 10791 10792void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10793{ 10794 int i; 10795 10796 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10797 kvfree(slot->arch.rmap[i]); 10798 slot->arch.rmap[i] = NULL; 10799 10800 if (i == 0) 10801 continue; 10802 10803 kvfree(slot->arch.lpage_info[i - 1]); 10804 slot->arch.lpage_info[i - 1] = NULL; 10805 } 10806 10807 kvm_page_track_free_memslot(slot); 10808} 10809 10810static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10811 unsigned long npages) 10812{ 10813 int i; 10814 10815 /* 10816 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10817 * old arrays will be freed by __kvm_set_memory_region() if installing 10818 * the new memslot is successful. 10819 */ 10820 memset(&slot->arch, 0, sizeof(slot->arch)); 10821 10822 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10823 struct kvm_lpage_info *linfo; 10824 unsigned long ugfn; 10825 int lpages; 10826 int level = i + 1; 10827 10828 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10829 slot->base_gfn, level) + 1; 10830 10831 slot->arch.rmap[i] = 10832 __vcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10833 GFP_KERNEL_ACCOUNT); 10834 if (!slot->arch.rmap[i]) 10835 goto out_free; 10836 if (i == 0) 10837 continue; 10838 10839 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10840 if (!linfo) 10841 goto out_free; 10842 10843 slot->arch.lpage_info[i - 1] = linfo; 10844 10845 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10846 linfo[0].disallow_lpage = 1; 10847 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10848 linfo[lpages - 1].disallow_lpage = 1; 10849 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10850 /* 10851 * If the gfn and userspace address are not aligned wrt each 10852 * other, disable large page support for this slot. 10853 */ 10854 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10855 unsigned long j; 10856 10857 for (j = 0; j < lpages; ++j) 10858 linfo[j].disallow_lpage = 1; 10859 } 10860 } 10861 10862 if (kvm_page_track_create_memslot(slot, npages)) 10863 goto out_free; 10864 10865 return 0; 10866 10867out_free: 10868 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10869 kvfree(slot->arch.rmap[i]); 10870 slot->arch.rmap[i] = NULL; 10871 if (i == 0) 10872 continue; 10873 10874 kvfree(slot->arch.lpage_info[i - 1]); 10875 slot->arch.lpage_info[i - 1] = NULL; 10876 } 10877 return -ENOMEM; 10878} 10879 10880void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10881{ 10882 struct kvm_vcpu *vcpu; 10883 int i; 10884 10885 /* 10886 * memslots->generation has been incremented. 10887 * mmio generation may have reached its maximum value. 10888 */ 10889 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10890 10891 /* Force re-initialization of steal_time cache */ 10892 kvm_for_each_vcpu(i, vcpu, kvm) 10893 kvm_vcpu_kick(vcpu); 10894} 10895 10896int kvm_arch_prepare_memory_region(struct kvm *kvm, 10897 struct kvm_memory_slot *memslot, 10898 const struct kvm_userspace_memory_region *mem, 10899 enum kvm_mr_change change) 10900{ 10901 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10902 return kvm_alloc_memslot_metadata(memslot, 10903 mem->memory_size >> PAGE_SHIFT); 10904 return 0; 10905} 10906 10907static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10908 struct kvm_memory_slot *old, 10909 struct kvm_memory_slot *new, 10910 enum kvm_mr_change change) 10911{ 10912 /* 10913 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10914 * See comments below. 10915 */ 10916 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10917 return; 10918 10919 /* 10920 * Dirty logging tracks sptes in 4k granularity, meaning that large 10921 * sptes have to be split. If live migration is successful, the guest 10922 * in the source machine will be destroyed and large sptes will be 10923 * created in the destination. However, if the guest continues to run 10924 * in the source machine (for example if live migration fails), small 10925 * sptes will remain around and cause bad performance. 10926 * 10927 * Scan sptes if dirty logging has been stopped, dropping those 10928 * which can be collapsed into a single large-page spte. Later 10929 * page faults will create the large-page sptes. 10930 * 10931 * There is no need to do this in any of the following cases: 10932 * CREATE: No dirty mappings will already exist. 10933 * MOVE/DELETE: The old mappings will already have been cleaned up by 10934 * kvm_arch_flush_shadow_memslot() 10935 */ 10936 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10937 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10938 kvm_mmu_zap_collapsible_sptes(kvm, new); 10939 10940 /* 10941 * Enable or disable dirty logging for the slot. 10942 * 10943 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10944 * slot have been zapped so no dirty logging updates are needed for 10945 * the old slot. 10946 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10947 * any mappings that might be created in it will consume the 10948 * properties of the new slot and do not need to be updated here. 10949 * 10950 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10951 * called to enable/disable dirty logging. 10952 * 10953 * When disabling dirty logging with PML enabled, the D-bit is set 10954 * for sptes in the slot in order to prevent unnecessary GPA 10955 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10956 * This guarantees leaving PML enabled for the guest's lifetime 10957 * won't have any additional overhead from PML when the guest is 10958 * running with dirty logging disabled. 10959 * 10960 * When enabling dirty logging, large sptes are write-protected 10961 * so they can be split on first write. New large sptes cannot 10962 * be created for this slot until the end of the logging. 10963 * See the comments in fast_page_fault(). 10964 * For small sptes, nothing is done if the dirty log is in the 10965 * initial-all-set state. Otherwise, depending on whether pml 10966 * is enabled the D-bit or the W-bit will be cleared. 10967 */ 10968 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10969 if (kvm_x86_ops.slot_enable_log_dirty) { 10970 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10971 } else { 10972 int level = 10973 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10974 PG_LEVEL_2M : PG_LEVEL_4K; 10975 10976 /* 10977 * If we're with initial-all-set, we don't need 10978 * to write protect any small page because 10979 * they're reported as dirty already. However 10980 * we still need to write-protect huge pages 10981 * so that the page split can happen lazily on 10982 * the first write to the huge page. 10983 */ 10984 kvm_mmu_slot_remove_write_access(kvm, new, level); 10985 } 10986 } else { 10987 if (kvm_x86_ops.slot_disable_log_dirty) 10988 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10989 } 10990} 10991 10992void kvm_arch_commit_memory_region(struct kvm *kvm, 10993 const struct kvm_userspace_memory_region *mem, 10994 struct kvm_memory_slot *old, 10995 const struct kvm_memory_slot *new, 10996 enum kvm_mr_change change) 10997{ 10998 if (!kvm->arch.n_requested_mmu_pages) 10999 kvm_mmu_change_mmu_pages(kvm, 11000 kvm_mmu_calculate_default_mmu_pages(kvm)); 11001 11002 /* 11003 * FIXME: const-ify all uses of struct kvm_memory_slot. 11004 */ 11005 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 11006 11007 /* Free the arrays associated with the old memslot. */ 11008 if (change == KVM_MR_MOVE) 11009 kvm_arch_free_memslot(kvm, old); 11010} 11011 11012void kvm_arch_flush_shadow_all(struct kvm *kvm) 11013{ 11014 kvm_mmu_zap_all(kvm); 11015} 11016 11017void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 11018 struct kvm_memory_slot *slot) 11019{ 11020 kvm_page_track_flush_slot(kvm, slot); 11021} 11022 11023static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 11024{ 11025 return (is_guest_mode(vcpu) && 11026 kvm_x86_ops.guest_apic_has_interrupt && 11027 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 11028} 11029 11030static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11031{ 11032 if (!list_empty_careful(&vcpu->async_pf.done)) 11033 return true; 11034 11035 if (kvm_apic_has_events(vcpu)) 11036 return true; 11037 11038 if (vcpu->arch.pv.pv_unhalted) 11039 return true; 11040 11041 if (vcpu->arch.exception.pending) 11042 return true; 11043 11044 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11045 (vcpu->arch.nmi_pending && 11046 kvm_x86_ops.nmi_allowed(vcpu, false))) 11047 return true; 11048 11049 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11050 (vcpu->arch.smi_pending && 11051 kvm_x86_ops.smi_allowed(vcpu, false))) 11052 return true; 11053 11054 if (kvm_arch_interrupt_allowed(vcpu) && 11055 (kvm_cpu_has_interrupt(vcpu) || 11056 kvm_guest_apic_has_interrupt(vcpu))) 11057 return true; 11058 11059 if (kvm_hv_has_stimer_pending(vcpu)) 11060 return true; 11061 11062 if (is_guest_mode(vcpu) && 11063 kvm_x86_ops.nested_ops->hv_timer_pending && 11064 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 11065 return true; 11066 11067 return false; 11068} 11069 11070int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11071{ 11072 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11073} 11074 11075bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11076{ 11077 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11078 return true; 11079 11080 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11081 kvm_test_request(KVM_REQ_SMI, vcpu) || 11082 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11083 return true; 11084 11085 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 11086 return true; 11087 11088 return false; 11089} 11090 11091bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 11092{ 11093 return vcpu->arch.preempted_in_kernel; 11094} 11095 11096int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 11097{ 11098 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 11099} 11100 11101int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 11102{ 11103 return kvm_x86_ops.interrupt_allowed(vcpu, false); 11104} 11105 11106unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 11107{ 11108 if (is_64_bit_mode(vcpu)) 11109 return kvm_rip_read(vcpu); 11110 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 11111 kvm_rip_read(vcpu)); 11112} 11113EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 11114 11115bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 11116{ 11117 return kvm_get_linear_rip(vcpu) == linear_rip; 11118} 11119EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 11120 11121unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 11122{ 11123 unsigned long rflags; 11124 11125 rflags = kvm_x86_ops.get_rflags(vcpu); 11126 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11127 rflags &= ~X86_EFLAGS_TF; 11128 return rflags; 11129} 11130EXPORT_SYMBOL_GPL(kvm_get_rflags); 11131 11132static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11133{ 11134 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 11135 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 11136 rflags |= X86_EFLAGS_TF; 11137 kvm_x86_ops.set_rflags(vcpu, rflags); 11138} 11139 11140void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11141{ 11142 __kvm_set_rflags(vcpu, rflags); 11143 kvm_make_request(KVM_REQ_EVENT, vcpu); 11144} 11145EXPORT_SYMBOL_GPL(kvm_set_rflags); 11146 11147void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 11148{ 11149 int r; 11150 11151 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 11152 work->wakeup_all) 11153 return; 11154 11155 r = kvm_mmu_reload(vcpu); 11156 if (unlikely(r)) 11157 return; 11158 11159 if (!vcpu->arch.mmu->direct_map && 11160 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 11161 return; 11162 11163 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 11164} 11165 11166static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 11167{ 11168 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 11169 11170 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 11171} 11172 11173static inline u32 kvm_async_pf_next_probe(u32 key) 11174{ 11175 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 11176} 11177 11178static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11179{ 11180 u32 key = kvm_async_pf_hash_fn(gfn); 11181 11182 while (vcpu->arch.apf.gfns[key] != ~0) 11183 key = kvm_async_pf_next_probe(key); 11184 11185 vcpu->arch.apf.gfns[key] = gfn; 11186} 11187 11188static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 11189{ 11190 int i; 11191 u32 key = kvm_async_pf_hash_fn(gfn); 11192 11193 for (i = 0; i < ASYNC_PF_PER_VCPU && 11194 (vcpu->arch.apf.gfns[key] != gfn && 11195 vcpu->arch.apf.gfns[key] != ~0); i++) 11196 key = kvm_async_pf_next_probe(key); 11197 11198 return key; 11199} 11200 11201bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11202{ 11203 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 11204} 11205 11206static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11207{ 11208 u32 i, j, k; 11209 11210 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 11211 11212 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 11213 return; 11214 11215 while (true) { 11216 vcpu->arch.apf.gfns[i] = ~0; 11217 do { 11218 j = kvm_async_pf_next_probe(j); 11219 if (vcpu->arch.apf.gfns[j] == ~0) 11220 return; 11221 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 11222 /* 11223 * k lies cyclically in ]i,j] 11224 * | i.k.j | 11225 * |....j i.k.| or |.k..j i...| 11226 */ 11227 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 11228 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 11229 i = j; 11230 } 11231} 11232 11233static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 11234{ 11235 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 11236 11237 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 11238 sizeof(reason)); 11239} 11240 11241static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 11242{ 11243 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11244 11245 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11246 &token, offset, sizeof(token)); 11247} 11248 11249static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 11250{ 11251 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11252 u32 val; 11253 11254 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11255 &val, offset, sizeof(val))) 11256 return false; 11257 11258 return !val; 11259} 11260 11261static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 11262{ 11263 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 11264 return false; 11265 11266 if (!kvm_pv_async_pf_enabled(vcpu) || 11267 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 11268 return false; 11269 11270 return true; 11271} 11272 11273bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 11274{ 11275 if (unlikely(!lapic_in_kernel(vcpu) || 11276 kvm_event_needs_reinjection(vcpu) || 11277 vcpu->arch.exception.pending)) 11278 return false; 11279 11280 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 11281 return false; 11282 11283 /* 11284 * If interrupts are off we cannot even use an artificial 11285 * halt state. 11286 */ 11287 return kvm_arch_interrupt_allowed(vcpu); 11288} 11289 11290bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 11291 struct kvm_async_pf *work) 11292{ 11293 struct x86_exception fault; 11294 11295 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 11296 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 11297 11298 if (kvm_can_deliver_async_pf(vcpu) && 11299 !apf_put_user_notpresent(vcpu)) { 11300 fault.vector = PF_VECTOR; 11301 fault.error_code_valid = true; 11302 fault.error_code = 0; 11303 fault.nested_page_fault = false; 11304 fault.address = work->arch.token; 11305 fault.async_page_fault = true; 11306 kvm_inject_page_fault(vcpu, &fault); 11307 return true; 11308 } else { 11309 /* 11310 * It is not possible to deliver a paravirtualized asynchronous 11311 * page fault, but putting the guest in an artificial halt state 11312 * can be beneficial nevertheless: if an interrupt arrives, we 11313 * can deliver it timely and perhaps the guest will schedule 11314 * another process. When the instruction that triggered a page 11315 * fault is retried, hopefully the page will be ready in the host. 11316 */ 11317 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 11318 return false; 11319 } 11320} 11321 11322void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 11323 struct kvm_async_pf *work) 11324{ 11325 struct kvm_lapic_irq irq = { 11326 .delivery_mode = APIC_DM_FIXED, 11327 .vector = vcpu->arch.apf.vec 11328 }; 11329 11330 if (work->wakeup_all) 11331 work->arch.token = ~0; /* broadcast wakeup */ 11332 else 11333 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 11334 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 11335 11336 if ((work->wakeup_all || work->notpresent_injected) && 11337 kvm_pv_async_pf_enabled(vcpu) && 11338 !apf_put_user_ready(vcpu, work->arch.token)) { 11339 vcpu->arch.apf.pageready_pending = true; 11340 kvm_apic_set_irq(vcpu, &irq, NULL); 11341 } 11342 11343 vcpu->arch.apf.halted = false; 11344 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11345} 11346 11347void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 11348{ 11349 kvm_make_request(KVM_REQ_APF_READY, vcpu); 11350 if (!vcpu->arch.apf.pageready_pending) 11351 kvm_vcpu_kick(vcpu); 11352} 11353 11354bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11355{ 11356 if (!kvm_pv_async_pf_enabled(vcpu)) 11357 return true; 11358 else 11359 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 11360} 11361 11362void kvm_arch_start_assignment(struct kvm *kvm) 11363{ 11364 atomic_inc(&kvm->arch.assigned_device_count); 11365} 11366EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11367 11368void kvm_arch_end_assignment(struct kvm *kvm) 11369{ 11370 atomic_dec(&kvm->arch.assigned_device_count); 11371} 11372EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11373 11374bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 11375{ 11376 return arch_atomic_read(&kvm->arch.assigned_device_count); 11377} 11378EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11379 11380void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11381{ 11382 atomic_inc(&kvm->arch.noncoherent_dma_count); 11383} 11384EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11385 11386void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11387{ 11388 atomic_dec(&kvm->arch.noncoherent_dma_count); 11389} 11390EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11391 11392bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11393{ 11394 return atomic_read(&kvm->arch.noncoherent_dma_count); 11395} 11396EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11397 11398bool kvm_arch_has_irq_bypass(void) 11399{ 11400 return true; 11401} 11402 11403int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11404 struct irq_bypass_producer *prod) 11405{ 11406 struct kvm_kernel_irqfd *irqfd = 11407 container_of(cons, struct kvm_kernel_irqfd, consumer); 11408 int ret; 11409 11410 irqfd->producer = prod; 11411 kvm_arch_start_assignment(irqfd->kvm); 11412 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 11413 prod->irq, irqfd->gsi, 1); 11414 11415 if (ret) 11416 kvm_arch_end_assignment(irqfd->kvm); 11417 11418 return ret; 11419} 11420 11421void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11422 struct irq_bypass_producer *prod) 11423{ 11424 int ret; 11425 struct kvm_kernel_irqfd *irqfd = 11426 container_of(cons, struct kvm_kernel_irqfd, consumer); 11427 11428 WARN_ON(irqfd->producer != prod); 11429 irqfd->producer = NULL; 11430 11431 /* 11432 * When producer of consumer is unregistered, we change back to 11433 * remapped mode, so we can re-use the current implementation 11434 * when the irq is masked/disabled or the consumer side (KVM 11435 * int this case doesn't want to receive the interrupts. 11436 */ 11437 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11438 if (ret) 11439 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11440 " fails: %d\n", irqfd->consumer.token, ret); 11441 11442 kvm_arch_end_assignment(irqfd->kvm); 11443} 11444 11445int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11446 uint32_t guest_irq, bool set) 11447{ 11448 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 11449} 11450 11451bool kvm_vector_hashing_enabled(void) 11452{ 11453 return vector_hashing; 11454} 11455 11456bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11457{ 11458 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11459} 11460EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11461 11462 11463int kvm_spec_ctrl_test_value(u64 value) 11464{ 11465 /* 11466 * test that setting IA32_SPEC_CTRL to given value 11467 * is allowed by the host processor 11468 */ 11469 11470 u64 saved_value; 11471 unsigned long flags; 11472 int ret = 0; 11473 11474 local_irq_save(flags); 11475 11476 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11477 ret = 1; 11478 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11479 ret = 1; 11480 else 11481 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11482 11483 local_irq_restore(flags); 11484 11485 return ret; 11486} 11487EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11488 11489void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11490{ 11491 struct x86_exception fault; 11492 u32 access = error_code & 11493 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11494 11495 if (!(error_code & PFERR_PRESENT_MASK) || 11496 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11497 /* 11498 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11499 * tables probably do not match the TLB. Just proceed 11500 * with the error code that the processor gave. 11501 */ 11502 fault.vector = PF_VECTOR; 11503 fault.error_code_valid = true; 11504 fault.error_code = error_code; 11505 fault.nested_page_fault = false; 11506 fault.address = gva; 11507 } 11508 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11509} 11510EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11511 11512/* 11513 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11514 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11515 * indicates whether exit to userspace is needed. 11516 */ 11517int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11518 struct x86_exception *e) 11519{ 11520 if (r == X86EMUL_PROPAGATE_FAULT) { 11521 kvm_inject_emulated_page_fault(vcpu, e); 11522 return 1; 11523 } 11524 11525 /* 11526 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11527 * while handling a VMX instruction KVM could've handled the request 11528 * correctly by exiting to userspace and performing I/O but there 11529 * doesn't seem to be a real use-case behind such requests, just return 11530 * KVM_EXIT_INTERNAL_ERROR for now. 11531 */ 11532 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11533 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11534 vcpu->run->internal.ndata = 0; 11535 11536 return 0; 11537} 11538EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11539 11540int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11541{ 11542 bool pcid_enabled; 11543 struct x86_exception e; 11544 unsigned i; 11545 unsigned long roots_to_free = 0; 11546 struct { 11547 u64 pcid; 11548 u64 gla; 11549 } operand; 11550 int r; 11551 11552 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11553 if (r != X86EMUL_CONTINUE) 11554 return kvm_handle_memory_failure(vcpu, r, &e); 11555 11556 if (operand.pcid >> 12 != 0) { 11557 kvm_inject_gp(vcpu, 0); 11558 return 1; 11559 } 11560 11561 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11562 11563 switch (type) { 11564 case INVPCID_TYPE_INDIV_ADDR: 11565 if ((!pcid_enabled && (operand.pcid != 0)) || 11566 is_noncanonical_address(operand.gla, vcpu)) { 11567 kvm_inject_gp(vcpu, 0); 11568 return 1; 11569 } 11570 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11571 return kvm_skip_emulated_instruction(vcpu); 11572 11573 case INVPCID_TYPE_SINGLE_CTXT: 11574 if (!pcid_enabled && (operand.pcid != 0)) { 11575 kvm_inject_gp(vcpu, 0); 11576 return 1; 11577 } 11578 11579 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11580 kvm_mmu_sync_roots(vcpu); 11581 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11582 } 11583 11584 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11585 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11586 == operand.pcid) 11587 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11588 11589 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11590 /* 11591 * If neither the current cr3 nor any of the prev_roots use the 11592 * given PCID, then nothing needs to be done here because a 11593 * resync will happen anyway before switching to any other CR3. 11594 */ 11595 11596 return kvm_skip_emulated_instruction(vcpu); 11597 11598 case INVPCID_TYPE_ALL_NON_GLOBAL: 11599 /* 11600 * Currently, KVM doesn't mark global entries in the shadow 11601 * page tables, so a non-global flush just degenerates to a 11602 * global flush. If needed, we could optimize this later by 11603 * keeping track of global entries in shadow page tables. 11604 */ 11605 11606 fallthrough; 11607 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11608 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 11609 return kvm_skip_emulated_instruction(vcpu); 11610 11611 default: 11612 BUG(); /* We have already checked above that type <= 3 */ 11613 } 11614} 11615EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11616 11617EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11618EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11619EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11620EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11621EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11622EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11623EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11624EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11625EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11626EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11627EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11628EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11629EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11630EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11631EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11632EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11633EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11634EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11635EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11636EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11637EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11638EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11639 11640static int __init kvm_x86_init(void) 11641{ 11642 kvm_mmu_x86_module_init(); 11643 return 0; 11644} 11645module_init(kvm_x86_init); 11646 11647static void __exit kvm_x86_exit(void) 11648{ 11649 /* 11650 * If module_init() is implemented, module_exit() must also be 11651 * implemented to allow module unload. 11652 */ 11653} 11654module_exit(kvm_x86_exit); 11655