1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113 
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116 
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122 
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128 
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139 
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143 
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155 
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159 
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162 
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165 
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172 
173 struct kvm_user_return_msrs_global {
174 	int nr;
175 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177 
178 struct kvm_user_return_msrs {
179 	struct user_return_notifier urn;
180 	bool registered;
181 	struct kvm_user_return_msr_values {
182 		u64 host;
183 		u64 curr;
184 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186 
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189 
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 				| XFEATURE_MASK_PKRU)
194 
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197 
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200 
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204 
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 	VCPU_STAT("pf_fixed", pf_fixed),
207 	VCPU_STAT("pf_guest", pf_guest),
208 	VCPU_STAT("tlb_flush", tlb_flush),
209 	VCPU_STAT("invlpg", invlpg),
210 	VCPU_STAT("exits", exits),
211 	VCPU_STAT("io_exits", io_exits),
212 	VCPU_STAT("mmio_exits", mmio_exits),
213 	VCPU_STAT("signal_exits", signal_exits),
214 	VCPU_STAT("irq_window", irq_window_exits),
215 	VCPU_STAT("nmi_window", nmi_window_exits),
216 	VCPU_STAT("halt_exits", halt_exits),
217 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 	VCPU_STAT("halt_wakeup", halt_wakeup),
221 	VCPU_STAT("hypercalls", hypercalls),
222 	VCPU_STAT("request_irq", request_irq_exits),
223 	VCPU_STAT("irq_exits", irq_exits),
224 	VCPU_STAT("host_state_reload", host_state_reload),
225 	VCPU_STAT("fpu_reload", fpu_reload),
226 	VCPU_STAT("insn_emulation", insn_emulation),
227 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 	VCPU_STAT("irq_injections", irq_injections),
229 	VCPU_STAT("nmi_injections", nmi_injections),
230 	VCPU_STAT("req_event", req_event),
231 	VCPU_STAT("l1d_flush", l1d_flush),
232 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 	VCPU_STAT("preemption_reported", preemption_reported),
235 	VCPU_STAT("preemption_other", preemption_other),
236 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 	VM_STAT("mmu_pte_write", mmu_pte_write),
238 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 	VM_STAT("mmu_flooded", mmu_flooded),
240 	VM_STAT("mmu_recycled", mmu_recycled),
241 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 	VM_STAT("mmu_unsync", mmu_unsync),
243 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 	VM_STAT("largepages", lpages, .mode = 0444),
245 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 	{ NULL }
248 };
249 
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253 
254 static struct kmem_cache *x86_fpu_cache;
255 
256 static struct kmem_cache *x86_emulator_cache;
257 
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 				  u64 data, bool write)
264 {
265 	const char *op = write ? "wrmsr" : "rdmsr";
266 
267 	if (ignore_msrs) {
268 		if (report_ignored_msrs)
269 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 				      op, msr, data);
271 		/* Mask the error */
272 		return true;
273 	} else {
274 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 				      op, msr, data);
276 		return false;
277 	}
278 }
279 
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 	unsigned int size = sizeof(struct x86_emulate_ctxt);
284 
285 	return kmem_cache_create_usercopy("x86_emulator", size,
286 					  __alignof__(struct x86_emulate_ctxt),
287 					  SLAB_ACCOUNT, useroffset,
288 					  size - useroffset, NULL);
289 }
290 
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292 
kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 	int i;
296 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 		vcpu->arch.apf.gfns[i] = ~0;
298 }
299 
kvm_on_user_return(struct user_return_notifier *urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 	unsigned slot;
303 	struct kvm_user_return_msrs *msrs
304 		= container_of(urn, struct kvm_user_return_msrs, urn);
305 	struct kvm_user_return_msr_values *values;
306 	unsigned long flags;
307 
308 	/*
309 	 * Disabling irqs at this point since the following code could be
310 	 * interrupted and executed through kvm_arch_hardware_disable()
311 	 */
312 	local_irq_save(flags);
313 	if (msrs->registered) {
314 		msrs->registered = false;
315 		user_return_notifier_unregister(urn);
316 	}
317 	local_irq_restore(flags);
318 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 		values = &msrs->values[slot];
320 		if (values->host != values->curr) {
321 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 			values->curr = values->host;
323 		}
324 	}
325 }
326 
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 	u64 val;
330 	int ret;
331 
332 	preempt_disable();
333 	ret = rdmsrl_safe(msr, &val);
334 	if (ret)
335 		goto out;
336 	ret = wrmsrl_safe(msr, val);
337 out:
338 	preempt_enable();
339 	return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342 
kvm_define_user_return_msr(unsigned slot, u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 	user_return_msrs_global.msrs[slot] = msr;
347 	if (slot >= user_return_msrs_global.nr)
348 		user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351 
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 	unsigned int cpu = smp_processor_id();
355 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 	u64 value;
357 	int i;
358 
359 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 		msrs->values[i].host = value;
362 		msrs->values[i].curr = value;
363 	}
364 }
365 
kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 	int err;
371 
372 	value = (value & mask) | (msrs->values[slot].host & ~mask);
373 	if (value == msrs->values[slot].curr)
374 		return 0;
375 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 	if (err)
377 		return 1;
378 
379 	msrs->values[slot].curr = value;
380 	if (!msrs->registered) {
381 		msrs->urn.on_user_return = kvm_on_user_return;
382 		user_return_notifier_register(&msrs->urn);
383 		msrs->registered = true;
384 	}
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388 
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 	unsigned int cpu = smp_processor_id();
392 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393 
394 	if (msrs->registered)
395 		kvm_on_user_return(&msrs->urn);
396 }
397 
kvm_get_apic_base(struct kvm_vcpu *vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 	return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403 
kvm_get_apic_mode(struct kvm_vcpu *vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409 
kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416 
417 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 		return 1;
419 	if (!msr_info->host_initiated) {
420 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 			return 1;
422 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 			return 1;
424 	}
425 
426 	kvm_lapic_set_base(vcpu, msr_info->data);
427 	kvm_recalculate_apic_map(vcpu->kvm);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431 
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 	/* Fault while not rebooting.  We want the trace. */
435 	BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438 
439 #define EXCPT_BENIGN		0
440 #define EXCPT_CONTRIBUTORY	1
441 #define EXCPT_PF		2
442 
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 	switch (vector) {
446 	case PF_VECTOR:
447 		return EXCPT_PF;
448 	case DE_VECTOR:
449 	case TS_VECTOR:
450 	case NP_VECTOR:
451 	case SS_VECTOR:
452 	case GP_VECTOR:
453 		return EXCPT_CONTRIBUTORY;
454 	default:
455 		break;
456 	}
457 	return EXCPT_BENIGN;
458 }
459 
460 #define EXCPT_FAULT		0
461 #define EXCPT_TRAP		1
462 #define EXCPT_ABORT		2
463 #define EXCPT_INTERRUPT		3
464 #define EXCPT_DB		4
465 
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 	unsigned int mask;
469 
470 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 		return EXCPT_INTERRUPT;
472 
473 	mask = 1 << vector;
474 
475 	/*
476 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 	 */
479 	if (mask & (1 << DB_VECTOR))
480 		return EXCPT_DB;
481 
482 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 		return EXCPT_TRAP;
484 
485 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 		return EXCPT_ABORT;
487 
488 	/* Reserved exceptions will result in fault */
489 	return EXCPT_FAULT;
490 }
491 
kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 	unsigned nr = vcpu->arch.exception.nr;
495 	bool has_payload = vcpu->arch.exception.has_payload;
496 	unsigned long payload = vcpu->arch.exception.payload;
497 
498 	if (!has_payload)
499 		return;
500 
501 	switch (nr) {
502 	case DB_VECTOR:
503 		/*
504 		 * "Certain debug exceptions may clear bit 0-3.  The
505 		 * remaining contents of the DR6 register are never
506 		 * cleared by the processor".
507 		 */
508 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 		/*
510 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 		 */
512 		vcpu->arch.dr6 |= DR6_RTM;
513 		vcpu->arch.dr6 |= payload;
514 		/*
515 		 * Bit 16 should be set in the payload whenever the #DB
516 		 * exception should clear DR6.RTM. This makes the payload
517 		 * compatible with the pending debug exceptions under VMX.
518 		 * Though not currently documented in the SDM, this also
519 		 * makes the payload compatible with the exit qualification
520 		 * for #DB exceptions under VMX.
521 		 */
522 		vcpu->arch.dr6 ^= payload & DR6_RTM;
523 
524 		/*
525 		 * The #DB payload is defined as compatible with the 'pending
526 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 		 * defined in the 'pending debug exceptions' field (enabled
528 		 * breakpoint), it is reserved and must be zero in DR6.
529 		 */
530 		vcpu->arch.dr6 &= ~BIT(12);
531 		break;
532 	case PF_VECTOR:
533 		vcpu->arch.cr2 = payload;
534 		break;
535 	}
536 
537 	vcpu->arch.exception.has_payload = false;
538 	vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541 
kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error, u32 error_code, bool has_payload, unsigned long payload, bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 		unsigned nr, bool has_error, u32 error_code,
544 	        bool has_payload, unsigned long payload, bool reinject)
545 {
546 	u32 prev_nr;
547 	int class1, class2;
548 
549 	kvm_make_request(KVM_REQ_EVENT, vcpu);
550 
551 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 	queue:
553 		if (reinject) {
554 			/*
555 			 * On vmentry, vcpu->arch.exception.pending is only
556 			 * true if an event injection was blocked by
557 			 * nested_run_pending.  In that case, however,
558 			 * vcpu_enter_guest requests an immediate exit,
559 			 * and the guest shouldn't proceed far enough to
560 			 * need reinjection.
561 			 */
562 			WARN_ON_ONCE(vcpu->arch.exception.pending);
563 			vcpu->arch.exception.injected = true;
564 			if (WARN_ON_ONCE(has_payload)) {
565 				/*
566 				 * A reinjected event has already
567 				 * delivered its payload.
568 				 */
569 				has_payload = false;
570 				payload = 0;
571 			}
572 		} else {
573 			vcpu->arch.exception.pending = true;
574 			vcpu->arch.exception.injected = false;
575 		}
576 		vcpu->arch.exception.has_error_code = has_error;
577 		vcpu->arch.exception.nr = nr;
578 		vcpu->arch.exception.error_code = error_code;
579 		vcpu->arch.exception.has_payload = has_payload;
580 		vcpu->arch.exception.payload = payload;
581 		if (!is_guest_mode(vcpu))
582 			kvm_deliver_exception_payload(vcpu);
583 		return;
584 	}
585 
586 	/* to check exception */
587 	prev_nr = vcpu->arch.exception.nr;
588 	if (prev_nr == DF_VECTOR) {
589 		/* triple fault -> shutdown */
590 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 		return;
592 	}
593 	class1 = exception_class(prev_nr);
594 	class2 = exception_class(nr);
595 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 		/*
598 		 * Generate double fault per SDM Table 5-5.  Set
599 		 * exception.pending = true so that the double fault
600 		 * can trigger a nested vmexit.
601 		 */
602 		vcpu->arch.exception.pending = true;
603 		vcpu->arch.exception.injected = false;
604 		vcpu->arch.exception.has_error_code = true;
605 		vcpu->arch.exception.nr = DF_VECTOR;
606 		vcpu->arch.exception.error_code = 0;
607 		vcpu->arch.exception.has_payload = false;
608 		vcpu->arch.exception.payload = 0;
609 	} else
610 		/* replace previous exception with a new one in a hope
611 		   that instruction re-execution will regenerate lost
612 		   exception */
613 		goto queue;
614 }
615 
kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621 
kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627 
kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 			   unsigned long payload)
630 {
631 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634 
kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code, unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 				    u32 error_code, unsigned long payload)
637 {
638 	kvm_multiple_exception(vcpu, nr, true, error_code,
639 			       true, payload, false);
640 }
641 
kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 	if (err)
645 		kvm_inject_gp(vcpu, 0);
646 	else
647 		return kvm_skip_emulated_instruction(vcpu);
648 
649 	return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652 
kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 	++vcpu->stat.pf_guest;
656 	vcpu->arch.exception.nested_apf =
657 		is_guest_mode(vcpu) && fault->async_page_fault;
658 	if (vcpu->arch.exception.nested_apf) {
659 		vcpu->arch.apf.nested_apf_token = fault->address;
660 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 	} else {
662 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 					fault->address);
664 	}
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667 
kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 				    struct x86_exception *fault)
670 {
671 	struct kvm_mmu *fault_mmu;
672 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
673 
674 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 					       vcpu->arch.walk_mmu;
676 
677 	/*
678 	 * Invalidate the TLB entry for the faulting address, if it exists,
679 	 * else the access will fault indefinitely (and to emulate hardware).
680 	 */
681 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 	    !(fault->error_code & PFERR_RSVD_MASK))
683 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 				       fault_mmu->root_hpa);
685 
686 	fault_mmu->inject_page_fault(vcpu, fault);
687 	return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690 
kvm_inject_nmi(struct kvm_vcpu *vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 	atomic_inc(&vcpu->arch.nmi_queued);
694 	kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697 
kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703 
kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709 
710 /*
711  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
712  * a #GP and return false.
713  */
kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 		return true;
718 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 	return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722 
kvm_require_dr(struct kvm_vcpu *vcpu, int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 		return true;
727 
728 	kvm_queue_exception(vcpu, UD_VECTOR);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732 
733 /*
734  * This function will be used to read from the physical memory of the currently
735  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736  * can read from guest physical or from the guest's guest physical memory.
737  */
kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t ngfn, void *data, int offset, int len, u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 			    gfn_t ngfn, void *data, int offset, int len,
740 			    u32 access)
741 {
742 	struct x86_exception exception;
743 	gfn_t real_gfn;
744 	gpa_t ngpa;
745 
746 	ngpa     = gfn_to_gpa(ngfn);
747 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 	if (real_gfn == UNMAPPED_GVA)
749 		return -EFAULT;
750 
751 	real_gfn = gpa_to_gfn(real_gfn);
752 
753 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756 
kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len, u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 			       void *data, int offset, int len, u32 access)
759 {
760 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 				       data, offset, len, access);
762 }
763 
pdptr_rsvd_bits(struct kvm_vcpu *vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 	       rsvd_bits(1, 2);
768 }
769 
770 /*
771  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
772  */
load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 	int i;
778 	int ret;
779 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780 
781 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 				      offset * sizeof(u64), sizeof(pdpte),
783 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
784 	if (ret < 0) {
785 		ret = 0;
786 		goto out;
787 	}
788 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 		if ((pdpte[i] & PT_PRESENT_MASK) &&
790 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 			ret = 0;
792 			goto out;
793 		}
794 	}
795 	ret = 1;
796 
797 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799 
800 out:
801 
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805 
pdptrs_changed(struct kvm_vcpu *vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 	int offset;
810 	gfn_t gfn;
811 	int r;
812 
813 	if (!is_pae_paging(vcpu))
814 		return false;
815 
816 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 		return true;
818 
819 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
823 	if (r < 0)
824 		return true;
825 
826 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829 
kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835 
836 	cr0 |= X86_CR0_ET;
837 
838 #ifdef CONFIG_X86_64
839 	if (cr0 & 0xffffffff00000000UL)
840 		return 1;
841 #endif
842 
843 	cr0 &= ~CR0_RESERVED_BITS;
844 
845 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 		return 1;
847 
848 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 		return 1;
850 
851 #ifdef CONFIG_X86_64
852 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 	    (cr0 & X86_CR0_PG)) {
854 		int cs_db, cs_l;
855 
856 		if (!is_pae(vcpu))
857 			return 1;
858 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 		if (cs_l)
860 			return 1;
861 	}
862 #endif
863 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 		return 1;
867 
868 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 		return 1;
870 
871 	kvm_x86_ops.set_cr0(vcpu, cr0);
872 
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 	}
877 
878 	if ((cr0 ^ old_cr0) & update_bits)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889 
kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895 
kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899 
900 		if (vcpu->arch.xcr0 != host_xcr0)
901 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902 
903 		if (vcpu->arch.xsaves_enabled &&
904 		    vcpu->arch.ia32_xss != host_xss)
905 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 	}
907 
908 	if (static_cpu_has(X86_FEATURE_PKU) &&
909 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
912 		__write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915 
kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 	if (static_cpu_has(X86_FEATURE_PKU) &&
919 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 		vcpu->arch.pkru = rdpkru();
922 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 			__write_pkru(vcpu->arch.host_pkru);
924 	}
925 
926 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927 
928 		if (vcpu->arch.xcr0 != host_xcr0)
929 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930 
931 		if (vcpu->arch.xsaves_enabled &&
932 		    vcpu->arch.ia32_xss != host_xss)
933 			wrmsrl(MSR_IA32_XSS, host_xss);
934 	}
935 
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938 
__kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 	u64 xcr0 = xcr;
942 	u64 old_xcr0 = vcpu->arch.xcr0;
943 	u64 valid_bits;
944 
945 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
946 	if (index != XCR_XFEATURE_ENABLED_MASK)
947 		return 1;
948 	if (!(xcr0 & XFEATURE_MASK_FP))
949 		return 1;
950 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 		return 1;
952 
953 	/*
954 	 * Do not allow the guest to set bits that we do not support
955 	 * saving.  However, xcr0 bit 0 is always set, even if the
956 	 * emulated CPU does not support XSAVE (see fx_init).
957 	 */
958 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 	if (xcr0 & ~valid_bits)
960 		return 1;
961 
962 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 		return 1;
965 
966 	if (xcr0 & XFEATURE_MASK_AVX512) {
967 		if (!(xcr0 & XFEATURE_MASK_YMM))
968 			return 1;
969 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 			return 1;
971 	}
972 	vcpu->arch.xcr0 = xcr0;
973 
974 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 		kvm_update_cpuid_runtime(vcpu);
976 	return 0;
977 }
978 
kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 	    __kvm_set_xcr(vcpu, index, xcr)) {
983 		kvm_inject_gp(vcpu, 0);
984 		return 1;
985 	}
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989 
kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 	if (cr4 & cr4_reserved_bits)
993 		return -EINVAL;
994 
995 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 		return -EINVAL;
997 
998 	if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 		return -EINVAL;
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004 
kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 				   X86_CR4_SMEP;
1010 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011 
1012 	if (kvm_valid_cr4(vcpu, cr4))
1013 		return 1;
1014 
1015 	if (is_long_mode(vcpu)) {
1016 		if (!(cr4 & X86_CR4_PAE))
1017 			return 1;
1018 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 			return 1;
1020 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1022 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 				   kvm_read_cr3(vcpu)))
1024 		return 1;
1025 
1026 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 			return 1;
1029 
1030 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 			return 1;
1033 	}
1034 
1035 	kvm_x86_ops.set_cr4(vcpu, cr4);
1036 
1037 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 		kvm_mmu_reset_context(vcpu);
1040 
1041 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 		kvm_update_cpuid_runtime(vcpu);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047 
kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 	bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053 
1054 	if (pcid_enabled) {
1055 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 	}
1058 #endif
1059 
1060 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 		if (!skip_tlb_flush) {
1062 			kvm_mmu_sync_roots(vcpu);
1063 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 		}
1065 		return 0;
1066 	}
1067 
1068 	if (is_long_mode(vcpu) &&
1069 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 		return 1;
1071 	else if (is_pae_paging(vcpu) &&
1072 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 		return 1;
1074 
1075 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 	vcpu->arch.cr3 = cr3;
1077 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082 
kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 	if (cr8 & CR8_RESERVED_BITS)
1086 		return 1;
1087 	if (lapic_in_kernel(vcpu))
1088 		kvm_lapic_set_tpr(vcpu, cr8);
1089 	else
1090 		vcpu->arch.cr8 = cr8;
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094 
kvm_get_cr8(struct kvm_vcpu *vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 	if (lapic_in_kernel(vcpu))
1098 		return kvm_lapic_get_cr8(vcpu);
1099 	else
1100 		return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103 
kvm_update_dr0123(struct kvm_vcpu *vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 	int i;
1107 
1108 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 	}
1113 }
1114 
kvm_update_dr7(struct kvm_vcpu *vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 	unsigned long dr7;
1118 
1119 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 		dr7 = vcpu->arch.guest_debug_dr7;
1121 	else
1122 		dr7 = vcpu->arch.dr7;
1123 	kvm_x86_ops.set_dr7(vcpu, dr7);
1124 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 	if (dr7 & DR7_BP_EN_MASK)
1126 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129 
kvm_dr6_fixed(struct kvm_vcpu *vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 	u64 fixed = DR6_FIXED_1;
1133 
1134 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 		fixed |= DR6_RTM;
1136 	return fixed;
1137 }
1138 
__kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1142 
1143 	switch (dr) {
1144 	case 0 ... 3:
1145 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 			vcpu->arch.eff_db[dr] = val;
1148 		break;
1149 	case 4:
1150 	case 6:
1151 		if (!kvm_dr6_valid(val))
1152 			return -1; /* #GP */
1153 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 		break;
1155 	case 5:
1156 	default: /* 7 */
1157 		if (!kvm_dr7_valid(val))
1158 			return -1; /* #GP */
1159 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 		kvm_update_dr7(vcpu);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 	if (__kvm_set_dr(vcpu, dr, val)) {
1170 		kvm_inject_gp(vcpu, 0);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176 
kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1180 
1181 	switch (dr) {
1182 	case 0 ... 3:
1183 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 		break;
1185 	case 4:
1186 	case 6:
1187 		*val = vcpu->arch.dr6;
1188 		break;
1189 	case 5:
1190 	default: /* 7 */
1191 		*val = vcpu->arch.dr7;
1192 		break;
1193 	}
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197 
kvm_rdpmc(struct kvm_vcpu *vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 	u32 ecx = kvm_rcx_read(vcpu);
1201 	u64 data;
1202 	int err;
1203 
1204 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 	if (err)
1206 		return err;
1207 	kvm_rax_write(vcpu, (u32)data);
1208 	kvm_rdx_write(vcpu, data >> 32);
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212 
1213 /*
1214  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216  *
1217  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218  * extract the supported MSRs from the related const lists.
1219  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220  * capabilities of the host cpu. This capabilities test skips MSRs that are
1221  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222  * may depend on host virtualization features rather than host cpu features.
1223  */
1224 
1225 static const u32 msrs_to_save_all[] = {
1226 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 	MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 	MSR_IA32_SPEC_CTRL,
1234 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 	MSR_IA32_UMWAIT_CONTROL,
1241 
1242 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264 
1265 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272 
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275 
1276 static const u32 emulated_msrs_all[] = {
1277 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 	HV_X64_MSR_RESET,
1285 	HV_X64_MSR_VP_INDEX,
1286 	HV_X64_MSR_VP_RUNTIME,
1287 	HV_X64_MSR_SCONTROL,
1288 	HV_X64_MSR_STIMER0_CONFIG,
1289 	HV_X64_MSR_VP_ASSIST_PAGE,
1290 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 	HV_X64_MSR_TSC_EMULATION_STATUS,
1292 	HV_X64_MSR_SYNDBG_OPTIONS,
1293 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296 
1297 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299 
1300 	MSR_IA32_TSC_ADJUST,
1301 	MSR_IA32_TSCDEADLINE,
1302 	MSR_IA32_ARCH_CAPABILITIES,
1303 	MSR_IA32_PERF_CAPABILITIES,
1304 	MSR_IA32_MISC_ENABLE,
1305 	MSR_IA32_MCG_STATUS,
1306 	MSR_IA32_MCG_CTL,
1307 	MSR_IA32_MCG_EXT_CTL,
1308 	MSR_IA32_SMBASE,
1309 	MSR_SMI_COUNT,
1310 	MSR_PLATFORM_INFO,
1311 	MSR_MISC_FEATURES_ENABLES,
1312 	MSR_AMD64_VIRT_SPEC_CTRL,
1313 	MSR_IA32_POWER_CTL,
1314 	MSR_IA32_UCODE_REV,
1315 
1316 	/*
1317 	 * The following list leaves out MSRs whose values are determined
1318 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 	 * We always support the "true" VMX control MSRs, even if the host
1320 	 * processor does not, so I am putting these registers here rather
1321 	 * than in msrs_to_save_all.
1322 	 */
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 	MSR_IA32_VMX_MISC,
1329 	MSR_IA32_VMX_CR0_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED0,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_K7_HWCR,
1337 	MSR_KVM_POLL_CONTROL,
1338 };
1339 
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342 
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348 	MSR_IA32_VMX_BASIC,
1349 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 	MSR_IA32_VMX_PINBASED_CTLS,
1351 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 	MSR_IA32_VMX_PROCBASED_CTLS,
1353 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 	MSR_IA32_VMX_EXIT_CTLS,
1355 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 	MSR_IA32_VMX_ENTRY_CTLS,
1357 	MSR_IA32_VMX_MISC,
1358 	MSR_IA32_VMX_CR0_FIXED0,
1359 	MSR_IA32_VMX_CR0_FIXED1,
1360 	MSR_IA32_VMX_CR4_FIXED0,
1361 	MSR_IA32_VMX_CR4_FIXED1,
1362 	MSR_IA32_VMX_VMCS_ENUM,
1363 	MSR_IA32_VMX_PROCBASED_CTLS2,
1364 	MSR_IA32_VMX_EPT_VPID_CAP,
1365 	MSR_IA32_VMX_VMFUNC,
1366 
1367 	MSR_AMD64_DE_CFG,
1368 	MSR_IA32_UCODE_REV,
1369 	MSR_IA32_ARCH_CAPABILITIES,
1370 	MSR_IA32_PERF_CAPABILITIES,
1371 };
1372 
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375 
1376 /*
1377  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378  * does not yet virtualize. These include:
1379  *   10 - MISC_PACKAGE_CTRLS
1380  *   11 - ENERGY_FILTERING_CTL
1381  *   12 - DOITM
1382  *   18 - FB_CLEAR_CTRL
1383  *   21 - XAPIC_DISABLE_STATUS
1384  *   23 - OVERCLOCKING_STATUS
1385  */
1386 
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1393 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR)
1394 
kvm_get_arch_capabilities(void)1395 static u64 kvm_get_arch_capabilities(void)
1396 {
1397 	u64 data = 0;
1398 
1399 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1400 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1401 		data &= KVM_SUPPORTED_ARCH_CAP;
1402 	}
1403 
1404 	/*
1405 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1406 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1407 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1408 	 * L1 guests, so it need not worry about its own (L2) guests.
1409 	 */
1410 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1411 
1412 	/*
1413 	 * If we're doing cache flushes (either "always" or "cond")
1414 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1415 	 * If an outer hypervisor is doing the cache flush for us
1416 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1417 	 * capability to the guest too, and if EPT is disabled we're not
1418 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1419 	 * require a nested hypervisor to do a flush of its own.
1420 	 */
1421 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1422 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1423 
1424 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1425 		data |= ARCH_CAP_RDCL_NO;
1426 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1427 		data |= ARCH_CAP_SSB_NO;
1428 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1429 		data |= ARCH_CAP_MDS_NO;
1430 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1431 		data |= ARCH_CAP_RFDS_NO;
1432 
1433 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1434 		/*
1435 		 * If RTM=0 because the kernel has disabled TSX, the host might
1436 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1437 		 * and therefore knows that there cannot be TAA) but keep
1438 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1439 		 * and we want to allow migrating those guests to tsx=off hosts.
1440 		 */
1441 		data &= ~ARCH_CAP_TAA_NO;
1442 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1443 		data |= ARCH_CAP_TAA_NO;
1444 	} else {
1445 		/*
1446 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1447 		 * host so the guest can choose between disabling TSX or
1448 		 * using VERW to clear CPU buffers.
1449 		 */
1450 	}
1451 
1452 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1453 		data |= ARCH_CAP_GDS_NO;
1454 
1455 	return data;
1456 }
1457 
kvm_get_msr_feature(struct kvm_msr_entry *msr)1458 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1459 {
1460 	switch (msr->index) {
1461 	case MSR_IA32_ARCH_CAPABILITIES:
1462 		msr->data = kvm_get_arch_capabilities();
1463 		break;
1464 	case MSR_IA32_UCODE_REV:
1465 		rdmsrl_safe(msr->index, &msr->data);
1466 		break;
1467 	default:
1468 		return kvm_x86_ops.get_msr_feature(msr);
1469 	}
1470 	return 0;
1471 }
1472 
do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1473 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1474 {
1475 	struct kvm_msr_entry msr;
1476 	int r;
1477 
1478 	msr.index = index;
1479 	r = kvm_get_msr_feature(&msr);
1480 
1481 	if (r == KVM_MSR_RET_INVALID) {
1482 		/* Unconditionally clear the output for simplicity */
1483 		*data = 0;
1484 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1485 			r = 0;
1486 	}
1487 
1488 	if (r)
1489 		return r;
1490 
1491 	*data = msr.data;
1492 
1493 	return 0;
1494 }
1495 
__kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)1496 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1497 {
1498 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1499 		return false;
1500 
1501 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1502 		return false;
1503 
1504 	if (efer & (EFER_LME | EFER_LMA) &&
1505 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1506 		return false;
1507 
1508 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1509 		return false;
1510 
1511 	return true;
1512 
1513 }
kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)1514 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1515 {
1516 	if (efer & efer_reserved_bits)
1517 		return false;
1518 
1519 	return __kvm_valid_efer(vcpu, efer);
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1522 
set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)1523 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1524 {
1525 	u64 old_efer = vcpu->arch.efer;
1526 	u64 efer = msr_info->data;
1527 	int r;
1528 
1529 	if (efer & efer_reserved_bits)
1530 		return 1;
1531 
1532 	if (!msr_info->host_initiated) {
1533 		if (!__kvm_valid_efer(vcpu, efer))
1534 			return 1;
1535 
1536 		if (is_paging(vcpu) &&
1537 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1538 			return 1;
1539 	}
1540 
1541 	efer &= ~EFER_LMA;
1542 	efer |= vcpu->arch.efer & EFER_LMA;
1543 
1544 	r = kvm_x86_ops.set_efer(vcpu, efer);
1545 	if (r) {
1546 		WARN_ON(r > 0);
1547 		return r;
1548 	}
1549 
1550 	/* Update reserved bits */
1551 	if ((efer ^ old_efer) & EFER_NX)
1552 		kvm_mmu_reset_context(vcpu);
1553 
1554 	return 0;
1555 }
1556 
kvm_enable_efer_bits(u64 mask)1557 void kvm_enable_efer_bits(u64 mask)
1558 {
1559        efer_reserved_bits &= ~mask;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1562 
kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)1563 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1564 {
1565 	struct kvm_x86_msr_filter *msr_filter;
1566 	struct msr_bitmap_range *ranges;
1567 	struct kvm *kvm = vcpu->kvm;
1568 	bool allowed;
1569 	int idx;
1570 	u32 i;
1571 
1572 	/* x2APIC MSRs do not support filtering. */
1573 	if (index >= 0x800 && index <= 0x8ff)
1574 		return true;
1575 
1576 	idx = srcu_read_lock(&kvm->srcu);
1577 
1578 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1579 	if (!msr_filter) {
1580 		allowed = true;
1581 		goto out;
1582 	}
1583 
1584 	allowed = msr_filter->default_allow;
1585 	ranges = msr_filter->ranges;
1586 
1587 	for (i = 0; i < msr_filter->count; i++) {
1588 		u32 start = ranges[i].base;
1589 		u32 end = start + ranges[i].nmsrs;
1590 		u32 flags = ranges[i].flags;
1591 		unsigned long *bitmap = ranges[i].bitmap;
1592 
1593 		if ((index >= start) && (index < end) && (flags & type)) {
1594 			allowed = !!test_bit(index - start, bitmap);
1595 			break;
1596 		}
1597 
1598 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
1599 		++vcpu->stat.exits;
1600 	}
1601 
1602 out:
1603 	srcu_read_unlock(&kvm->srcu, idx);
1604 
1605 	return allowed;
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1608 
1609 /*
1610  * Write @data into the MSR specified by @index.  Select MSR specific fault
1611  * checks are bypassed if @host_initiated is %true.
1612  * Returns 0 on success, non-0 otherwise.
1613  * Assumes vcpu_load() was already called.
1614  */
__kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, bool host_initiated)1615 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1616 			 bool host_initiated)
1617 {
1618 	struct msr_data msr;
1619 
1620 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1621 		return KVM_MSR_RET_FILTERED;
1622 
1623 	switch (index) {
1624 	case MSR_FS_BASE:
1625 	case MSR_GS_BASE:
1626 	case MSR_KERNEL_GS_BASE:
1627 	case MSR_CSTAR:
1628 	case MSR_LSTAR:
1629 		if (is_noncanonical_address(data, vcpu))
1630 			return 1;
1631 		break;
1632 	case MSR_IA32_SYSENTER_EIP:
1633 	case MSR_IA32_SYSENTER_ESP:
1634 		/*
1635 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1636 		 * non-canonical address is written on Intel but not on
1637 		 * AMD (which ignores the top 32-bits, because it does
1638 		 * not implement 64-bit SYSENTER).
1639 		 *
1640 		 * 64-bit code should hence be able to write a non-canonical
1641 		 * value on AMD.  Making the address canonical ensures that
1642 		 * vmentry does not fail on Intel after writing a non-canonical
1643 		 * value, and that something deterministic happens if the guest
1644 		 * invokes 64-bit SYSENTER.
1645 		 */
1646 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1647 	}
1648 
1649 	msr.data = data;
1650 	msr.index = index;
1651 	msr.host_initiated = host_initiated;
1652 
1653 	return kvm_x86_ops.set_msr(vcpu, &msr);
1654 }
1655 
kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, u32 index, u64 data, bool host_initiated)1656 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1657 				     u32 index, u64 data, bool host_initiated)
1658 {
1659 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1660 
1661 	if (ret == KVM_MSR_RET_INVALID)
1662 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1663 			ret = 0;
1664 
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Read the MSR specified by @index into @data.  Select MSR specific fault
1670  * checks are bypassed if @host_initiated is %true.
1671  * Returns 0 on success, non-0 otherwise.
1672  * Assumes vcpu_load() was already called.
1673  */
__kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated)1674 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1675 		  bool host_initiated)
1676 {
1677 	struct msr_data msr;
1678 	int ret;
1679 
1680 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1681 		return KVM_MSR_RET_FILTERED;
1682 
1683 	msr.index = index;
1684 	msr.host_initiated = host_initiated;
1685 
1686 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1687 	if (!ret)
1688 		*data = msr.data;
1689 	return ret;
1690 }
1691 
kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated)1692 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1693 				     u32 index, u64 *data, bool host_initiated)
1694 {
1695 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1696 
1697 	if (ret == KVM_MSR_RET_INVALID) {
1698 		/* Unconditionally clear *data for simplicity */
1699 		*data = 0;
1700 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1701 			ret = 0;
1702 	}
1703 
1704 	return ret;
1705 }
1706 
kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)1707 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1708 {
1709 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_msr);
1712 
kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)1713 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1714 {
1715 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_msr);
1718 
complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)1719 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1720 {
1721 	if (vcpu->run->msr.error) {
1722 		kvm_inject_gp(vcpu, 0);
1723 		return 1;
1724 	} else if (is_read) {
1725 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1726 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1727 	}
1728 
1729 	return kvm_skip_emulated_instruction(vcpu);
1730 }
1731 
complete_emulated_rdmsr(struct kvm_vcpu *vcpu)1732 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1733 {
1734 	return complete_emulated_msr(vcpu, true);
1735 }
1736 
complete_emulated_wrmsr(struct kvm_vcpu *vcpu)1737 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1738 {
1739 	return complete_emulated_msr(vcpu, false);
1740 }
1741 
kvm_msr_reason(int r)1742 static u64 kvm_msr_reason(int r)
1743 {
1744 	switch (r) {
1745 	case KVM_MSR_RET_INVALID:
1746 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1747 	case KVM_MSR_RET_FILTERED:
1748 		return KVM_MSR_EXIT_REASON_FILTER;
1749 	default:
1750 		return KVM_MSR_EXIT_REASON_INVAL;
1751 	}
1752 }
1753 
kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u32 exit_reason, u64 data, int (*completion)(struct kvm_vcpu *vcpu), int r)1754 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1755 			      u32 exit_reason, u64 data,
1756 			      int (*completion)(struct kvm_vcpu *vcpu),
1757 			      int r)
1758 {
1759 	u64 msr_reason = kvm_msr_reason(r);
1760 
1761 	/* Check if the user wanted to know about this MSR fault */
1762 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1763 		return 0;
1764 
1765 	vcpu->run->exit_reason = exit_reason;
1766 	vcpu->run->msr.error = 0;
1767 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1768 	vcpu->run->msr.reason = msr_reason;
1769 	vcpu->run->msr.index = index;
1770 	vcpu->run->msr.data = data;
1771 	vcpu->arch.complete_userspace_io = completion;
1772 
1773 	return 1;
1774 }
1775 
kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)1776 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1777 {
1778 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1779 				   complete_emulated_rdmsr, r);
1780 }
1781 
kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)1782 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1783 {
1784 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1785 				   complete_emulated_wrmsr, r);
1786 }
1787 
kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)1788 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1789 {
1790 	u32 ecx = kvm_rcx_read(vcpu);
1791 	u64 data;
1792 	int r;
1793 
1794 	r = kvm_get_msr(vcpu, ecx, &data);
1795 
1796 	/* MSR read failed? See if we should ask user space */
1797 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1798 		/* Bounce to user space */
1799 		return 0;
1800 	}
1801 
1802 	/* MSR read failed? Inject a #GP */
1803 	if (r) {
1804 		trace_kvm_msr_read_ex(ecx);
1805 		kvm_inject_gp(vcpu, 0);
1806 		return 1;
1807 	}
1808 
1809 	trace_kvm_msr_read(ecx, data);
1810 
1811 	kvm_rax_write(vcpu, data & -1u);
1812 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1813 	return kvm_skip_emulated_instruction(vcpu);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1816 
kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)1817 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1818 {
1819 	u32 ecx = kvm_rcx_read(vcpu);
1820 	u64 data = kvm_read_edx_eax(vcpu);
1821 	int r;
1822 
1823 	r = kvm_set_msr(vcpu, ecx, data);
1824 
1825 	/* MSR write failed? See if we should ask user space */
1826 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1827 		/* Bounce to user space */
1828 		return 0;
1829 
1830 	/* Signal all other negative errors to userspace */
1831 	if (r < 0)
1832 		return r;
1833 
1834 	/* MSR write failed? Inject a #GP */
1835 	if (r > 0) {
1836 		trace_kvm_msr_write_ex(ecx, data);
1837 		kvm_inject_gp(vcpu, 0);
1838 		return 1;
1839 	}
1840 
1841 	trace_kvm_msr_write(ecx, data);
1842 	return kvm_skip_emulated_instruction(vcpu);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1845 
kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)1846 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1847 {
1848 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1849 		xfer_to_guest_mode_work_pending();
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1852 
1853 /*
1854  * The fast path for frequent and performance sensitive wrmsr emulation,
1855  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1856  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1857  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1858  * other cases which must be called after interrupts are enabled on the host.
1859  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)1860 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1861 {
1862 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1863 		return 1;
1864 
1865 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1866 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1867 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1868 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1869 
1870 		data &= ~(1 << 12);
1871 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1872 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1873 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1874 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1875 		return 0;
1876 	}
1877 
1878 	return 1;
1879 }
1880 
handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)1881 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1882 {
1883 	if (!kvm_can_use_hv_timer(vcpu))
1884 		return 1;
1885 
1886 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1887 	return 0;
1888 }
1889 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)1890 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1891 {
1892 	u32 msr = kvm_rcx_read(vcpu);
1893 	u64 data;
1894 	fastpath_t ret = EXIT_FASTPATH_NONE;
1895 
1896 	switch (msr) {
1897 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1898 		data = kvm_read_edx_eax(vcpu);
1899 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1900 			kvm_skip_emulated_instruction(vcpu);
1901 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1902 		}
1903 		break;
1904 	case MSR_IA32_TSCDEADLINE:
1905 		data = kvm_read_edx_eax(vcpu);
1906 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1907 			kvm_skip_emulated_instruction(vcpu);
1908 			ret = EXIT_FASTPATH_REENTER_GUEST;
1909 		}
1910 		break;
1911 	default:
1912 		break;
1913 	}
1914 
1915 	if (ret != EXIT_FASTPATH_NONE)
1916 		trace_kvm_msr_write(msr, data);
1917 
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1921 
1922 /*
1923  * Adapt set_msr() to msr_io()'s calling convention
1924  */
do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1925 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1926 {
1927 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1928 }
1929 
do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1930 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1931 {
1932 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1933 }
1934 
1935 #ifdef CONFIG_X86_64
1936 struct pvclock_clock {
1937 	int vclock_mode;
1938 	u64 cycle_last;
1939 	u64 mask;
1940 	u32 mult;
1941 	u32 shift;
1942 	u64 base_cycles;
1943 	u64 offset;
1944 };
1945 
1946 struct pvclock_gtod_data {
1947 	seqcount_t	seq;
1948 
1949 	struct pvclock_clock clock; /* extract of a clocksource struct */
1950 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1951 
1952 	ktime_t		offs_boot;
1953 	u64		wall_time_sec;
1954 };
1955 
1956 static struct pvclock_gtod_data pvclock_gtod_data;
1957 
update_pvclock_gtod(struct timekeeper *tk)1958 static void update_pvclock_gtod(struct timekeeper *tk)
1959 {
1960 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1961 
1962 	write_seqcount_begin(&vdata->seq);
1963 
1964 	/* copy pvclock gtod data */
1965 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1966 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1967 	vdata->clock.mask		= tk->tkr_mono.mask;
1968 	vdata->clock.mult		= tk->tkr_mono.mult;
1969 	vdata->clock.shift		= tk->tkr_mono.shift;
1970 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1971 	vdata->clock.offset		= tk->tkr_mono.base;
1972 
1973 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1974 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1975 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1976 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1977 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1978 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1979 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1980 
1981 	vdata->wall_time_sec            = tk->xtime_sec;
1982 
1983 	vdata->offs_boot		= tk->offs_boot;
1984 
1985 	write_seqcount_end(&vdata->seq);
1986 }
1987 
get_kvmclock_base_ns(void)1988 static s64 get_kvmclock_base_ns(void)
1989 {
1990 	/* Count up from boot time, but with the frequency of the raw clock.  */
1991 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1992 }
1993 #else
get_kvmclock_base_ns(void)1994 static s64 get_kvmclock_base_ns(void)
1995 {
1996 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1997 	return ktime_get_boottime_ns();
1998 }
1999 #endif
2000 
kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)2001 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
2002 {
2003 	int version;
2004 	int r;
2005 	struct pvclock_wall_clock wc;
2006 	u64 wall_nsec;
2007 
2008 	kvm->arch.wall_clock = wall_clock;
2009 
2010 	if (!wall_clock)
2011 		return;
2012 
2013 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2014 	if (r)
2015 		return;
2016 
2017 	if (version & 1)
2018 		++version;  /* first time write, random junk */
2019 
2020 	++version;
2021 
2022 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2023 		return;
2024 
2025 	/*
2026 	 * The guest calculates current wall clock time by adding
2027 	 * system time (updated by kvm_guest_time_update below) to the
2028 	 * wall clock specified here.  We do the reverse here.
2029 	 */
2030 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2031 
2032 	wc.nsec = do_div(wall_nsec, 1000000000);
2033 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2034 	wc.version = version;
2035 
2036 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2037 
2038 	version++;
2039 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2040 }
2041 
kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, bool old_msr, bool host_initiated)2042 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2043 				  bool old_msr, bool host_initiated)
2044 {
2045 	struct kvm_arch *ka = &vcpu->kvm->arch;
2046 
2047 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2048 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2049 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2050 
2051 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2052 	}
2053 
2054 	vcpu->arch.time = system_time;
2055 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2056 
2057 	/* we verify if the enable bit is set... */
2058 	vcpu->arch.pv_time_enabled = false;
2059 	if (!(system_time & 1))
2060 		return;
2061 
2062 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2063 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2064 				       sizeof(struct pvclock_vcpu_time_info)))
2065 		vcpu->arch.pv_time_enabled = true;
2066 
2067 	return;
2068 }
2069 
div_frac(uint32_t dividend, uint32_t divisor)2070 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2071 {
2072 	do_shl32_div32(dividend, divisor);
2073 	return dividend;
2074 }
2075 
kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, s8 *pshift, u32 *pmultiplier)2076 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2077 			       s8 *pshift, u32 *pmultiplier)
2078 {
2079 	uint64_t scaled64;
2080 	int32_t  shift = 0;
2081 	uint64_t tps64;
2082 	uint32_t tps32;
2083 
2084 	tps64 = base_hz;
2085 	scaled64 = scaled_hz;
2086 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2087 		tps64 >>= 1;
2088 		shift--;
2089 	}
2090 
2091 	tps32 = (uint32_t)tps64;
2092 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2093 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2094 			scaled64 >>= 1;
2095 		else
2096 			tps32 <<= 1;
2097 		shift++;
2098 	}
2099 
2100 	*pshift = shift;
2101 	*pmultiplier = div_frac(scaled64, tps32);
2102 }
2103 
2104 #ifdef CONFIG_X86_64
2105 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2106 #endif
2107 
2108 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2109 static unsigned long max_tsc_khz;
2110 
adjust_tsc_khz(u32 khz, s32 ppm)2111 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2112 {
2113 	u64 v = (u64)khz * (1000000 + ppm);
2114 	do_div(v, 1000000);
2115 	return v;
2116 }
2117 
set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)2118 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2119 {
2120 	u64 ratio;
2121 
2122 	/* Guest TSC same frequency as host TSC? */
2123 	if (!scale) {
2124 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2125 		return 0;
2126 	}
2127 
2128 	/* TSC scaling supported? */
2129 	if (!kvm_has_tsc_control) {
2130 		if (user_tsc_khz > tsc_khz) {
2131 			vcpu->arch.tsc_catchup = 1;
2132 			vcpu->arch.tsc_always_catchup = 1;
2133 			return 0;
2134 		} else {
2135 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2136 			return -1;
2137 		}
2138 	}
2139 
2140 	/* TSC scaling required  - calculate ratio */
2141 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2142 				user_tsc_khz, tsc_khz);
2143 
2144 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2145 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2146 			            user_tsc_khz);
2147 		return -1;
2148 	}
2149 
2150 	vcpu->arch.tsc_scaling_ratio = ratio;
2151 	return 0;
2152 }
2153 
kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)2154 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2155 {
2156 	u32 thresh_lo, thresh_hi;
2157 	int use_scaling = 0;
2158 
2159 	/* tsc_khz can be zero if TSC calibration fails */
2160 	if (user_tsc_khz == 0) {
2161 		/* set tsc_scaling_ratio to a safe value */
2162 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2163 		return -1;
2164 	}
2165 
2166 	/* Compute a scale to convert nanoseconds in TSC cycles */
2167 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2168 			   &vcpu->arch.virtual_tsc_shift,
2169 			   &vcpu->arch.virtual_tsc_mult);
2170 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2171 
2172 	/*
2173 	 * Compute the variation in TSC rate which is acceptable
2174 	 * within the range of tolerance and decide if the
2175 	 * rate being applied is within that bounds of the hardware
2176 	 * rate.  If so, no scaling or compensation need be done.
2177 	 */
2178 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2179 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2180 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2181 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2182 		use_scaling = 1;
2183 	}
2184 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2185 }
2186 
compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)2187 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2188 {
2189 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2190 				      vcpu->arch.virtual_tsc_mult,
2191 				      vcpu->arch.virtual_tsc_shift);
2192 	tsc += vcpu->arch.this_tsc_write;
2193 	return tsc;
2194 }
2195 
gtod_is_based_on_tsc(int mode)2196 static inline int gtod_is_based_on_tsc(int mode)
2197 {
2198 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2199 }
2200 
kvm_track_tsc_matching(struct kvm_vcpu *vcpu)2201 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2202 {
2203 #ifdef CONFIG_X86_64
2204 	bool vcpus_matched;
2205 	struct kvm_arch *ka = &vcpu->kvm->arch;
2206 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2207 
2208 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2209 			 atomic_read(&vcpu->kvm->online_vcpus));
2210 
2211 	/*
2212 	 * Once the masterclock is enabled, always perform request in
2213 	 * order to update it.
2214 	 *
2215 	 * In order to enable masterclock, the host clocksource must be TSC
2216 	 * and the vcpus need to have matched TSCs.  When that happens,
2217 	 * perform request to enable masterclock.
2218 	 */
2219 	if (ka->use_master_clock ||
2220 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2221 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2222 
2223 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2224 			    atomic_read(&vcpu->kvm->online_vcpus),
2225 		            ka->use_master_clock, gtod->clock.vclock_mode);
2226 #endif
2227 }
2228 
2229 /*
2230  * Multiply tsc by a fixed point number represented by ratio.
2231  *
2232  * The most significant 64-N bits (mult) of ratio represent the
2233  * integral part of the fixed point number; the remaining N bits
2234  * (frac) represent the fractional part, ie. ratio represents a fixed
2235  * point number (mult + frac * 2^(-N)).
2236  *
2237  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2238  */
__scale_tsc(u64 ratio, u64 tsc)2239 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2240 {
2241 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2242 }
2243 
kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)2244 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2245 {
2246 	u64 _tsc = tsc;
2247 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2248 
2249 	if (ratio != kvm_default_tsc_scaling_ratio)
2250 		_tsc = __scale_tsc(ratio, tsc);
2251 
2252 	return _tsc;
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2255 
kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)2256 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2257 {
2258 	u64 tsc;
2259 
2260 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2261 
2262 	return target_tsc - tsc;
2263 }
2264 
kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)2265 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2266 {
2267 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2270 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)2271 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2272 {
2273 	vcpu->arch.l1_tsc_offset = offset;
2274 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2275 }
2276 
kvm_check_tsc_unstable(void)2277 static inline bool kvm_check_tsc_unstable(void)
2278 {
2279 #ifdef CONFIG_X86_64
2280 	/*
2281 	 * TSC is marked unstable when we're running on Hyper-V,
2282 	 * 'TSC page' clocksource is good.
2283 	 */
2284 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2285 		return false;
2286 #endif
2287 	return check_tsc_unstable();
2288 }
2289 
kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)2290 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2291 {
2292 	struct kvm *kvm = vcpu->kvm;
2293 	u64 offset, ns, elapsed;
2294 	unsigned long flags;
2295 	bool matched;
2296 	bool already_matched;
2297 	bool synchronizing = false;
2298 
2299 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2300 	offset = kvm_compute_tsc_offset(vcpu, data);
2301 	ns = get_kvmclock_base_ns();
2302 	elapsed = ns - kvm->arch.last_tsc_nsec;
2303 
2304 	if (vcpu->arch.virtual_tsc_khz) {
2305 		if (data == 0) {
2306 			/*
2307 			 * detection of vcpu initialization -- need to sync
2308 			 * with other vCPUs. This particularly helps to keep
2309 			 * kvm_clock stable after CPU hotplug
2310 			 */
2311 			synchronizing = true;
2312 		} else {
2313 			u64 tsc_exp = kvm->arch.last_tsc_write +
2314 						nsec_to_cycles(vcpu, elapsed);
2315 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2316 			/*
2317 			 * Special case: TSC write with a small delta (1 second)
2318 			 * of virtual cycle time against real time is
2319 			 * interpreted as an attempt to synchronize the CPU.
2320 			 */
2321 			synchronizing = data < tsc_exp + tsc_hz &&
2322 					data + tsc_hz > tsc_exp;
2323 		}
2324 	}
2325 
2326 	/*
2327 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2328 	 * TSC, we add elapsed time in this computation.  We could let the
2329 	 * compensation code attempt to catch up if we fall behind, but
2330 	 * it's better to try to match offsets from the beginning.
2331          */
2332 	if (synchronizing &&
2333 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2334 		if (!kvm_check_tsc_unstable()) {
2335 			offset = kvm->arch.cur_tsc_offset;
2336 		} else {
2337 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2338 			data += delta;
2339 			offset = kvm_compute_tsc_offset(vcpu, data);
2340 		}
2341 		matched = true;
2342 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2343 	} else {
2344 		/*
2345 		 * We split periods of matched TSC writes into generations.
2346 		 * For each generation, we track the original measured
2347 		 * nanosecond time, offset, and write, so if TSCs are in
2348 		 * sync, we can match exact offset, and if not, we can match
2349 		 * exact software computation in compute_guest_tsc()
2350 		 *
2351 		 * These values are tracked in kvm->arch.cur_xxx variables.
2352 		 */
2353 		kvm->arch.cur_tsc_generation++;
2354 		kvm->arch.cur_tsc_nsec = ns;
2355 		kvm->arch.cur_tsc_write = data;
2356 		kvm->arch.cur_tsc_offset = offset;
2357 		matched = false;
2358 	}
2359 
2360 	/*
2361 	 * We also track th most recent recorded KHZ, write and time to
2362 	 * allow the matching interval to be extended at each write.
2363 	 */
2364 	kvm->arch.last_tsc_nsec = ns;
2365 	kvm->arch.last_tsc_write = data;
2366 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2367 
2368 	vcpu->arch.last_guest_tsc = data;
2369 
2370 	/* Keep track of which generation this VCPU has synchronized to */
2371 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2372 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2373 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2374 
2375 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2376 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2377 
2378 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2379 	if (!matched) {
2380 		kvm->arch.nr_vcpus_matched_tsc = 0;
2381 	} else if (!already_matched) {
2382 		kvm->arch.nr_vcpus_matched_tsc++;
2383 	}
2384 
2385 	kvm_track_tsc_matching(vcpu);
2386 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2387 }
2388 
adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)2389 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2390 					   s64 adjustment)
2391 {
2392 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2393 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2394 }
2395 
adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)2396 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2397 {
2398 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2399 		WARN_ON(adjustment < 0);
2400 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2401 	adjust_tsc_offset_guest(vcpu, adjustment);
2402 }
2403 
2404 #ifdef CONFIG_X86_64
2405 
read_tsc(void)2406 static u64 read_tsc(void)
2407 {
2408 	u64 ret = (u64)rdtsc_ordered();
2409 	u64 last = pvclock_gtod_data.clock.cycle_last;
2410 
2411 	if (likely(ret >= last))
2412 		return ret;
2413 
2414 	/*
2415 	 * GCC likes to generate cmov here, but this branch is extremely
2416 	 * predictable (it's just a function of time and the likely is
2417 	 * very likely) and there's a data dependence, so force GCC
2418 	 * to generate a branch instead.  I don't barrier() because
2419 	 * we don't actually need a barrier, and if this function
2420 	 * ever gets inlined it will generate worse code.
2421 	 */
2422 	asm volatile ("");
2423 	return last;
2424 }
2425 
vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, int *mode)2426 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2427 			  int *mode)
2428 {
2429 	long v;
2430 	u64 tsc_pg_val;
2431 
2432 	switch (clock->vclock_mode) {
2433 	case VDSO_CLOCKMODE_HVCLOCK:
2434 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2435 						  tsc_timestamp);
2436 		if (tsc_pg_val != U64_MAX) {
2437 			/* TSC page valid */
2438 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2439 			v = (tsc_pg_val - clock->cycle_last) &
2440 				clock->mask;
2441 		} else {
2442 			/* TSC page invalid */
2443 			*mode = VDSO_CLOCKMODE_NONE;
2444 		}
2445 		break;
2446 	case VDSO_CLOCKMODE_TSC:
2447 		*mode = VDSO_CLOCKMODE_TSC;
2448 		*tsc_timestamp = read_tsc();
2449 		v = (*tsc_timestamp - clock->cycle_last) &
2450 			clock->mask;
2451 		break;
2452 	default:
2453 		*mode = VDSO_CLOCKMODE_NONE;
2454 	}
2455 
2456 	if (*mode == VDSO_CLOCKMODE_NONE)
2457 		*tsc_timestamp = v = 0;
2458 
2459 	return v * clock->mult;
2460 }
2461 
do_monotonic_raw(s64 *t, u64 *tsc_timestamp)2462 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2463 {
2464 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2465 	unsigned long seq;
2466 	int mode;
2467 	u64 ns;
2468 
2469 	do {
2470 		seq = read_seqcount_begin(&gtod->seq);
2471 		ns = gtod->raw_clock.base_cycles;
2472 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2473 		ns >>= gtod->raw_clock.shift;
2474 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2475 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2476 	*t = ns;
2477 
2478 	return mode;
2479 }
2480 
do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)2481 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2482 {
2483 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2484 	unsigned long seq;
2485 	int mode;
2486 	u64 ns;
2487 
2488 	do {
2489 		seq = read_seqcount_begin(&gtod->seq);
2490 		ts->tv_sec = gtod->wall_time_sec;
2491 		ns = gtod->clock.base_cycles;
2492 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2493 		ns >>= gtod->clock.shift;
2494 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2495 
2496 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2497 	ts->tv_nsec = ns;
2498 
2499 	return mode;
2500 }
2501 
2502 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)2503 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2504 {
2505 	/* checked again under seqlock below */
2506 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2507 		return false;
2508 
2509 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2510 						      tsc_timestamp));
2511 }
2512 
2513 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 *ts, u64 *tsc_timestamp)2514 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2515 					   u64 *tsc_timestamp)
2516 {
2517 	/* checked again under seqlock below */
2518 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2519 		return false;
2520 
2521 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2522 }
2523 #endif
2524 
2525 /*
2526  *
2527  * Assuming a stable TSC across physical CPUS, and a stable TSC
2528  * across virtual CPUs, the following condition is possible.
2529  * Each numbered line represents an event visible to both
2530  * CPUs at the next numbered event.
2531  *
2532  * "timespecX" represents host monotonic time. "tscX" represents
2533  * RDTSC value.
2534  *
2535  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2536  *
2537  * 1.  read timespec0,tsc0
2538  * 2.					| timespec1 = timespec0 + N
2539  * 					| tsc1 = tsc0 + M
2540  * 3. transition to guest		| transition to guest
2541  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2542  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2543  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2544  *
2545  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2546  *
2547  * 	- ret0 < ret1
2548  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2549  *		...
2550  *	- 0 < N - M => M < N
2551  *
2552  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2553  * always the case (the difference between two distinct xtime instances
2554  * might be smaller then the difference between corresponding TSC reads,
2555  * when updating guest vcpus pvclock areas).
2556  *
2557  * To avoid that problem, do not allow visibility of distinct
2558  * system_timestamp/tsc_timestamp values simultaneously: use a master
2559  * copy of host monotonic time values. Update that master copy
2560  * in lockstep.
2561  *
2562  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2563  *
2564  */
2565 
pvclock_update_vm_gtod_copy(struct kvm *kvm)2566 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2567 {
2568 #ifdef CONFIG_X86_64
2569 	struct kvm_arch *ka = &kvm->arch;
2570 	int vclock_mode;
2571 	bool host_tsc_clocksource, vcpus_matched;
2572 
2573 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2574 			atomic_read(&kvm->online_vcpus));
2575 
2576 	/*
2577 	 * If the host uses TSC clock, then passthrough TSC as stable
2578 	 * to the guest.
2579 	 */
2580 	host_tsc_clocksource = kvm_get_time_and_clockread(
2581 					&ka->master_kernel_ns,
2582 					&ka->master_cycle_now);
2583 
2584 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2585 				&& !ka->backwards_tsc_observed
2586 				&& !ka->boot_vcpu_runs_old_kvmclock;
2587 
2588 	if (ka->use_master_clock)
2589 		atomic_set(&kvm_guest_has_master_clock, 1);
2590 
2591 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2592 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2593 					vcpus_matched);
2594 #endif
2595 }
2596 
kvm_make_mclock_inprogress_request(struct kvm *kvm)2597 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2598 {
2599 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2600 }
2601 
kvm_gen_update_masterclock(struct kvm *kvm)2602 static void kvm_gen_update_masterclock(struct kvm *kvm)
2603 {
2604 #ifdef CONFIG_X86_64
2605 	int i;
2606 	struct kvm_vcpu *vcpu;
2607 	struct kvm_arch *ka = &kvm->arch;
2608 
2609 	spin_lock(&ka->pvclock_gtod_sync_lock);
2610 	kvm_make_mclock_inprogress_request(kvm);
2611 	/* no guest entries from this point */
2612 	pvclock_update_vm_gtod_copy(kvm);
2613 
2614 	kvm_for_each_vcpu(i, vcpu, kvm)
2615 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2616 
2617 	/* guest entries allowed */
2618 	kvm_for_each_vcpu(i, vcpu, kvm)
2619 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2620 
2621 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2622 #endif
2623 }
2624 
get_kvmclock_ns(struct kvm *kvm)2625 u64 get_kvmclock_ns(struct kvm *kvm)
2626 {
2627 	struct kvm_arch *ka = &kvm->arch;
2628 	struct pvclock_vcpu_time_info hv_clock;
2629 	u64 ret;
2630 
2631 	spin_lock(&ka->pvclock_gtod_sync_lock);
2632 	if (!ka->use_master_clock) {
2633 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2634 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2635 	}
2636 
2637 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2638 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2639 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2640 
2641 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2642 	get_cpu();
2643 
2644 	if (__this_cpu_read(cpu_tsc_khz)) {
2645 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2646 				   &hv_clock.tsc_shift,
2647 				   &hv_clock.tsc_to_system_mul);
2648 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2649 	} else
2650 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2651 
2652 	put_cpu();
2653 
2654 	return ret;
2655 }
2656 
kvm_setup_pvclock_page(struct kvm_vcpu *v)2657 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2658 {
2659 	struct kvm_vcpu_arch *vcpu = &v->arch;
2660 	struct pvclock_vcpu_time_info guest_hv_clock;
2661 
2662 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2663 		&guest_hv_clock, sizeof(guest_hv_clock))))
2664 		return;
2665 
2666 	/* This VCPU is paused, but it's legal for a guest to read another
2667 	 * VCPU's kvmclock, so we really have to follow the specification where
2668 	 * it says that version is odd if data is being modified, and even after
2669 	 * it is consistent.
2670 	 *
2671 	 * Version field updates must be kept separate.  This is because
2672 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2673 	 * writes within a string instruction are weakly ordered.  So there
2674 	 * are three writes overall.
2675 	 *
2676 	 * As a small optimization, only write the version field in the first
2677 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2678 	 * version field is the first in the struct.
2679 	 */
2680 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2681 
2682 	if (guest_hv_clock.version & 1)
2683 		++guest_hv_clock.version;  /* first time write, random junk */
2684 
2685 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2686 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2687 				&vcpu->hv_clock,
2688 				sizeof(vcpu->hv_clock.version));
2689 
2690 	smp_wmb();
2691 
2692 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2693 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2694 
2695 	if (vcpu->pvclock_set_guest_stopped_request) {
2696 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2697 		vcpu->pvclock_set_guest_stopped_request = false;
2698 	}
2699 
2700 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2701 
2702 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2703 				&vcpu->hv_clock,
2704 				sizeof(vcpu->hv_clock));
2705 
2706 	smp_wmb();
2707 
2708 	vcpu->hv_clock.version++;
2709 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2710 				&vcpu->hv_clock,
2711 				sizeof(vcpu->hv_clock.version));
2712 }
2713 
kvm_guest_time_update(struct kvm_vcpu *v)2714 static int kvm_guest_time_update(struct kvm_vcpu *v)
2715 {
2716 	unsigned long flags, tgt_tsc_khz;
2717 	struct kvm_vcpu_arch *vcpu = &v->arch;
2718 	struct kvm_arch *ka = &v->kvm->arch;
2719 	s64 kernel_ns;
2720 	u64 tsc_timestamp, host_tsc;
2721 	u8 pvclock_flags;
2722 	bool use_master_clock;
2723 
2724 	kernel_ns = 0;
2725 	host_tsc = 0;
2726 
2727 	/*
2728 	 * If the host uses TSC clock, then passthrough TSC as stable
2729 	 * to the guest.
2730 	 */
2731 	spin_lock(&ka->pvclock_gtod_sync_lock);
2732 	use_master_clock = ka->use_master_clock;
2733 	if (use_master_clock) {
2734 		host_tsc = ka->master_cycle_now;
2735 		kernel_ns = ka->master_kernel_ns;
2736 	}
2737 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2738 
2739 	/* Keep irq disabled to prevent changes to the clock */
2740 	local_irq_save(flags);
2741 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2742 	if (unlikely(tgt_tsc_khz == 0)) {
2743 		local_irq_restore(flags);
2744 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2745 		return 1;
2746 	}
2747 	if (!use_master_clock) {
2748 		host_tsc = rdtsc();
2749 		kernel_ns = get_kvmclock_base_ns();
2750 	}
2751 
2752 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2753 
2754 	/*
2755 	 * We may have to catch up the TSC to match elapsed wall clock
2756 	 * time for two reasons, even if kvmclock is used.
2757 	 *   1) CPU could have been running below the maximum TSC rate
2758 	 *   2) Broken TSC compensation resets the base at each VCPU
2759 	 *      entry to avoid unknown leaps of TSC even when running
2760 	 *      again on the same CPU.  This may cause apparent elapsed
2761 	 *      time to disappear, and the guest to stand still or run
2762 	 *	very slowly.
2763 	 */
2764 	if (vcpu->tsc_catchup) {
2765 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2766 		if (tsc > tsc_timestamp) {
2767 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2768 			tsc_timestamp = tsc;
2769 		}
2770 	}
2771 
2772 	local_irq_restore(flags);
2773 
2774 	/* With all the info we got, fill in the values */
2775 
2776 	if (kvm_has_tsc_control)
2777 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2778 
2779 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2780 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2781 				   &vcpu->hv_clock.tsc_shift,
2782 				   &vcpu->hv_clock.tsc_to_system_mul);
2783 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2784 	}
2785 
2786 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2787 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2788 	vcpu->last_guest_tsc = tsc_timestamp;
2789 
2790 	/* If the host uses TSC clocksource, then it is stable */
2791 	pvclock_flags = 0;
2792 	if (use_master_clock)
2793 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2794 
2795 	vcpu->hv_clock.flags = pvclock_flags;
2796 
2797 	if (vcpu->pv_time_enabled)
2798 		kvm_setup_pvclock_page(v);
2799 	if (v == kvm_get_vcpu(v->kvm, 0))
2800 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2801 	return 0;
2802 }
2803 
2804 /*
2805  * kvmclock updates which are isolated to a given vcpu, such as
2806  * vcpu->cpu migration, should not allow system_timestamp from
2807  * the rest of the vcpus to remain static. Otherwise ntp frequency
2808  * correction applies to one vcpu's system_timestamp but not
2809  * the others.
2810  *
2811  * So in those cases, request a kvmclock update for all vcpus.
2812  * We need to rate-limit these requests though, as they can
2813  * considerably slow guests that have a large number of vcpus.
2814  * The time for a remote vcpu to update its kvmclock is bound
2815  * by the delay we use to rate-limit the updates.
2816  */
2817 
2818 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2819 
kvmclock_update_fn(struct work_struct *work)2820 static void kvmclock_update_fn(struct work_struct *work)
2821 {
2822 	int i;
2823 	struct delayed_work *dwork = to_delayed_work(work);
2824 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2825 					   kvmclock_update_work);
2826 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2827 	struct kvm_vcpu *vcpu;
2828 
2829 	kvm_for_each_vcpu(i, vcpu, kvm) {
2830 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2831 		kvm_vcpu_kick(vcpu);
2832 	}
2833 }
2834 
kvm_gen_kvmclock_update(struct kvm_vcpu *v)2835 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2836 {
2837 	struct kvm *kvm = v->kvm;
2838 
2839 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2840 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2841 					KVMCLOCK_UPDATE_DELAY);
2842 }
2843 
2844 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2845 
kvmclock_sync_fn(struct work_struct *work)2846 static void kvmclock_sync_fn(struct work_struct *work)
2847 {
2848 	struct delayed_work *dwork = to_delayed_work(work);
2849 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2850 					   kvmclock_sync_work);
2851 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2852 
2853 	if (!kvmclock_periodic_sync)
2854 		return;
2855 
2856 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2857 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2858 					KVMCLOCK_SYNC_PERIOD);
2859 }
2860 
2861 /*
2862  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2863  */
can_set_mci_status(struct kvm_vcpu *vcpu)2864 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2865 {
2866 	/* McStatusWrEn enabled? */
2867 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2868 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2869 
2870 	return false;
2871 }
2872 
set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)2873 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2874 {
2875 	u64 mcg_cap = vcpu->arch.mcg_cap;
2876 	unsigned bank_num = mcg_cap & 0xff;
2877 	u32 msr = msr_info->index;
2878 	u64 data = msr_info->data;
2879 
2880 	switch (msr) {
2881 	case MSR_IA32_MCG_STATUS:
2882 		vcpu->arch.mcg_status = data;
2883 		break;
2884 	case MSR_IA32_MCG_CTL:
2885 		if (!(mcg_cap & MCG_CTL_P) &&
2886 		    (data || !msr_info->host_initiated))
2887 			return 1;
2888 		if (data != 0 && data != ~(u64)0)
2889 			return 1;
2890 		vcpu->arch.mcg_ctl = data;
2891 		break;
2892 	default:
2893 		if (msr >= MSR_IA32_MC0_CTL &&
2894 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2895 			u32 offset = array_index_nospec(
2896 				msr - MSR_IA32_MC0_CTL,
2897 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2898 
2899 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2900 			 * some Linux kernels though clear bit 10 in bank 4 to
2901 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2902 			 * this to avoid an uncatched #GP in the guest.
2903 			 *
2904 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2905 			 * correctable, single-bit ECC data errors.
2906 			 */
2907 			if ((offset & 0x3) == 0 &&
2908 			    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2909 				return 1;
2910 
2911 			/* MCi_STATUS */
2912 			if (!msr_info->host_initiated &&
2913 			    (offset & 0x3) == 1 && data != 0) {
2914 				if (!can_set_mci_status(vcpu))
2915 					return 1;
2916 			}
2917 
2918 			vcpu->arch.mce_banks[offset] = data;
2919 			break;
2920 		}
2921 		return 1;
2922 	}
2923 	return 0;
2924 }
2925 
xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)2926 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2927 {
2928 	struct kvm *kvm = vcpu->kvm;
2929 	int lm = is_long_mode(vcpu);
2930 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2931 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2932 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2933 		: kvm->arch.xen_hvm_config.blob_size_32;
2934 	u32 page_num = data & ~PAGE_MASK;
2935 	u64 page_addr = data & PAGE_MASK;
2936 	u8 *page;
2937 
2938 	if (page_num >= blob_size)
2939 		return 1;
2940 
2941 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2942 	if (IS_ERR(page))
2943 		return PTR_ERR(page);
2944 
2945 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2946 		kfree(page);
2947 		return 1;
2948 	}
2949 	return 0;
2950 }
2951 
kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)2952 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2953 {
2954 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2955 
2956 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2957 }
2958 
kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)2959 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2960 {
2961 	gpa_t gpa = data & ~0x3f;
2962 
2963 	/* Bits 4:5 are reserved, Should be zero */
2964 	if (data & 0x30)
2965 		return 1;
2966 
2967 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2968 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2969 		return 1;
2970 
2971 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2972 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2973 		return 1;
2974 
2975 	if (!lapic_in_kernel(vcpu))
2976 		return data ? 1 : 0;
2977 
2978 	vcpu->arch.apf.msr_en_val = data;
2979 
2980 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2981 		kvm_clear_async_pf_completion_queue(vcpu);
2982 		kvm_async_pf_hash_reset(vcpu);
2983 		return 0;
2984 	}
2985 
2986 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2987 					sizeof(u64)))
2988 		return 1;
2989 
2990 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2991 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2992 
2993 	kvm_async_pf_wakeup_all(vcpu);
2994 
2995 	return 0;
2996 }
2997 
kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)2998 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2999 {
3000 	/* Bits 8-63 are reserved */
3001 	if (data >> 8)
3002 		return 1;
3003 
3004 	if (!lapic_in_kernel(vcpu))
3005 		return 1;
3006 
3007 	vcpu->arch.apf.msr_int_val = data;
3008 
3009 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3010 
3011 	return 0;
3012 }
3013 
kvmclock_reset(struct kvm_vcpu *vcpu)3014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3015 {
3016 	vcpu->arch.pv_time_enabled = false;
3017 	vcpu->arch.time = 0;
3018 }
3019 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)3020 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3021 {
3022 	++vcpu->stat.tlb_flush;
3023 	kvm_x86_ops.tlb_flush_all(vcpu);
3024 }
3025 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)3026 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3027 {
3028 	++vcpu->stat.tlb_flush;
3029 	kvm_x86_ops.tlb_flush_guest(vcpu);
3030 }
3031 
record_steal_time(struct kvm_vcpu *vcpu)3032 static void record_steal_time(struct kvm_vcpu *vcpu)
3033 {
3034 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3035 	struct kvm_steal_time __user *st;
3036 	struct kvm_memslots *slots;
3037 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3038 	u64 steal;
3039 	u32 version;
3040 
3041 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3042 		return;
3043 
3044 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3045 		return;
3046 
3047 	slots = kvm_memslots(vcpu->kvm);
3048 
3049 	if (unlikely(slots->generation != ghc->generation ||
3050 		     gpa != ghc->gpa ||
3051 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3052 		/* We rely on the fact that it fits in a single page. */
3053 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3054 
3055 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3056 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3057 			return;
3058 	}
3059 
3060 	st = (struct kvm_steal_time __user *)ghc->hva;
3061 	/*
3062 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3063 	 * expensive IPIs.
3064 	 */
3065 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3066 		u8 st_preempted = 0;
3067 		int err = -EFAULT;
3068 
3069 		if (!user_access_begin(st, sizeof(*st)))
3070 			return;
3071 
3072 		asm volatile("1: xchgb %0, %2\n"
3073 			     "xor %1, %1\n"
3074 			     "2:\n"
3075 			     _ASM_EXTABLE_UA(1b, 2b)
3076 			     : "+q" (st_preempted),
3077 			       "+&r" (err),
3078 			       "+m" (st->preempted));
3079 		if (err)
3080 			goto out;
3081 
3082 		user_access_end();
3083 
3084 		vcpu->arch.st.preempted = 0;
3085 
3086 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3087 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3088 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3089 			kvm_vcpu_flush_tlb_guest(vcpu);
3090 
3091 		if (!user_access_begin(st, sizeof(*st)))
3092 			goto dirty;
3093 	} else {
3094 		if (!user_access_begin(st, sizeof(*st)))
3095 			return;
3096 
3097 		unsafe_put_user(0, &st->preempted, out);
3098 		vcpu->arch.st.preempted = 0;
3099 	}
3100 
3101 	unsafe_get_user(version, &st->version, out);
3102 	if (version & 1)
3103 		version += 1;  /* first time write, random junk */
3104 
3105 	version += 1;
3106 	unsafe_put_user(version, &st->version, out);
3107 
3108 	smp_wmb();
3109 
3110 	unsafe_get_user(steal, &st->steal, out);
3111 	steal += current->sched_info.run_delay -
3112 		vcpu->arch.st.last_steal;
3113 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3114 	unsafe_put_user(steal, &st->steal, out);
3115 
3116 	version += 1;
3117 	unsafe_put_user(version, &st->version, out);
3118 
3119  out:
3120 	user_access_end();
3121  dirty:
3122 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
3123 }
3124 
kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)3125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3126 {
3127 	bool pr = false;
3128 	u32 msr = msr_info->index;
3129 	u64 data = msr_info->data;
3130 
3131 	switch (msr) {
3132 	case MSR_AMD64_NB_CFG:
3133 	case MSR_IA32_UCODE_WRITE:
3134 	case MSR_VM_HSAVE_PA:
3135 	case MSR_AMD64_PATCH_LOADER:
3136 	case MSR_AMD64_BU_CFG2:
3137 	case MSR_AMD64_DC_CFG:
3138 	case MSR_AMD64_TW_CFG:
3139 	case MSR_F15H_EX_CFG:
3140 		break;
3141 
3142 	case MSR_IA32_UCODE_REV:
3143 		if (msr_info->host_initiated)
3144 			vcpu->arch.microcode_version = data;
3145 		break;
3146 	case MSR_IA32_ARCH_CAPABILITIES:
3147 		if (!msr_info->host_initiated)
3148 			return 1;
3149 		vcpu->arch.arch_capabilities = data;
3150 		break;
3151 	case MSR_IA32_PERF_CAPABILITIES: {
3152 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3153 
3154 		if (!msr_info->host_initiated)
3155 			return 1;
3156 		if (kvm_get_msr_feature(&msr_ent))
3157 			return 1;
3158 		if (data & ~msr_ent.data)
3159 			return 1;
3160 
3161 		vcpu->arch.perf_capabilities = data;
3162 
3163 		return 0;
3164 		}
3165 	case MSR_EFER:
3166 		return set_efer(vcpu, msr_info);
3167 	case MSR_K7_HWCR:
3168 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3169 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3170 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3171 
3172 		/* Handle McStatusWrEn */
3173 		if (data == BIT_ULL(18)) {
3174 			vcpu->arch.msr_hwcr = data;
3175 		} else if (data != 0) {
3176 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3177 				    data);
3178 			return 1;
3179 		}
3180 		break;
3181 	case MSR_FAM10H_MMIO_CONF_BASE:
3182 		if (data != 0) {
3183 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3184 				    "0x%llx\n", data);
3185 			return 1;
3186 		}
3187 		break;
3188 	case MSR_IA32_DEBUGCTLMSR:
3189 		if (!data) {
3190 			/* We support the non-activated case already */
3191 			break;
3192 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3193 			/* Values other than LBR and BTF are vendor-specific,
3194 			   thus reserved and should throw a #GP */
3195 			return 1;
3196 		} else if (report_ignored_msrs)
3197 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3198 				    __func__, data);
3199 		break;
3200 	case 0x200 ... 0x2ff:
3201 		return kvm_mtrr_set_msr(vcpu, msr, data);
3202 	case MSR_IA32_APICBASE:
3203 		return kvm_set_apic_base(vcpu, msr_info);
3204 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3205 		return kvm_x2apic_msr_write(vcpu, msr, data);
3206 	case MSR_IA32_TSCDEADLINE:
3207 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3208 		break;
3209 	case MSR_IA32_TSC_ADJUST:
3210 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3211 			if (!msr_info->host_initiated) {
3212 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3213 				adjust_tsc_offset_guest(vcpu, adj);
3214 				/* Before back to guest, tsc_timestamp must be adjusted
3215 				 * as well, otherwise guest's percpu pvclock time could jump.
3216 				 */
3217 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218 			}
3219 			vcpu->arch.ia32_tsc_adjust_msr = data;
3220 		}
3221 		break;
3222 	case MSR_IA32_MISC_ENABLE:
3223 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3224 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3225 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3226 				return 1;
3227 			vcpu->arch.ia32_misc_enable_msr = data;
3228 			kvm_update_cpuid_runtime(vcpu);
3229 		} else {
3230 			vcpu->arch.ia32_misc_enable_msr = data;
3231 		}
3232 		break;
3233 	case MSR_IA32_SMBASE:
3234 		if (!msr_info->host_initiated)
3235 			return 1;
3236 		vcpu->arch.smbase = data;
3237 		break;
3238 	case MSR_IA32_POWER_CTL:
3239 		vcpu->arch.msr_ia32_power_ctl = data;
3240 		break;
3241 	case MSR_IA32_TSC:
3242 		if (msr_info->host_initiated) {
3243 			kvm_synchronize_tsc(vcpu, data);
3244 		} else {
3245 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3246 			adjust_tsc_offset_guest(vcpu, adj);
3247 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3248 		}
3249 		break;
3250 	case MSR_IA32_XSS:
3251 		if (!msr_info->host_initiated &&
3252 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3253 			return 1;
3254 		/*
3255 		 * KVM supports exposing PT to the guest, but does not support
3256 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3257 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3258 		 */
3259 		if (data & ~supported_xss)
3260 			return 1;
3261 		vcpu->arch.ia32_xss = data;
3262 		kvm_update_cpuid_runtime(vcpu);
3263 		break;
3264 	case MSR_SMI_COUNT:
3265 		if (!msr_info->host_initiated)
3266 			return 1;
3267 		vcpu->arch.smi_count = data;
3268 		break;
3269 	case MSR_KVM_WALL_CLOCK_NEW:
3270 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3271 			return 1;
3272 
3273 		kvm_write_wall_clock(vcpu->kvm, data);
3274 		break;
3275 	case MSR_KVM_WALL_CLOCK:
3276 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3277 			return 1;
3278 
3279 		kvm_write_wall_clock(vcpu->kvm, data);
3280 		break;
3281 	case MSR_KVM_SYSTEM_TIME_NEW:
3282 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3283 			return 1;
3284 
3285 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3286 		break;
3287 	case MSR_KVM_SYSTEM_TIME:
3288 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3289 			return 1;
3290 
3291 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3292 		break;
3293 	case MSR_KVM_ASYNC_PF_EN:
3294 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3295 			return 1;
3296 
3297 		if (kvm_pv_enable_async_pf(vcpu, data))
3298 			return 1;
3299 		break;
3300 	case MSR_KVM_ASYNC_PF_INT:
3301 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3302 			return 1;
3303 
3304 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3305 			return 1;
3306 		break;
3307 	case MSR_KVM_ASYNC_PF_ACK:
3308 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3309 			return 1;
3310 		if (data & 0x1) {
3311 			vcpu->arch.apf.pageready_pending = false;
3312 			kvm_check_async_pf_completion(vcpu);
3313 		}
3314 		break;
3315 	case MSR_KVM_STEAL_TIME:
3316 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3317 			return 1;
3318 
3319 		if (unlikely(!sched_info_on()))
3320 			return 1;
3321 
3322 		if (data & KVM_STEAL_RESERVED_MASK)
3323 			return 1;
3324 
3325 		vcpu->arch.st.msr_val = data;
3326 
3327 		if (!(data & KVM_MSR_ENABLED))
3328 			break;
3329 
3330 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3331 
3332 		break;
3333 	case MSR_KVM_PV_EOI_EN:
3334 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3335 			return 1;
3336 
3337 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3338 			return 1;
3339 		break;
3340 
3341 	case MSR_KVM_POLL_CONTROL:
3342 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3343 			return 1;
3344 
3345 		/* only enable bit supported */
3346 		if (data & (-1ULL << 1))
3347 			return 1;
3348 
3349 		vcpu->arch.msr_kvm_poll_control = data;
3350 		break;
3351 
3352 	case MSR_IA32_MCG_CTL:
3353 	case MSR_IA32_MCG_STATUS:
3354 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3355 		return set_msr_mce(vcpu, msr_info);
3356 
3357 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3358 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3359 		pr = true;
3360 		fallthrough;
3361 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3362 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3363 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3364 			return kvm_pmu_set_msr(vcpu, msr_info);
3365 
3366 		if (pr || data != 0)
3367 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3368 				    "0x%x data 0x%llx\n", msr, data);
3369 		break;
3370 	case MSR_K7_CLK_CTL:
3371 		/*
3372 		 * Ignore all writes to this no longer documented MSR.
3373 		 * Writes are only relevant for old K7 processors,
3374 		 * all pre-dating SVM, but a recommended workaround from
3375 		 * AMD for these chips. It is possible to specify the
3376 		 * affected processor models on the command line, hence
3377 		 * the need to ignore the workaround.
3378 		 */
3379 		break;
3380 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3381 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3382 	case HV_X64_MSR_SYNDBG_OPTIONS:
3383 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3384 	case HV_X64_MSR_CRASH_CTL:
3385 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3386 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3387 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3388 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3389 		return kvm_hv_set_msr_common(vcpu, msr, data,
3390 					     msr_info->host_initiated);
3391 	case MSR_IA32_BBL_CR_CTL3:
3392 		/* Drop writes to this legacy MSR -- see rdmsr
3393 		 * counterpart for further detail.
3394 		 */
3395 		if (report_ignored_msrs)
3396 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3397 				msr, data);
3398 		break;
3399 	case MSR_AMD64_OSVW_ID_LENGTH:
3400 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3401 			return 1;
3402 		vcpu->arch.osvw.length = data;
3403 		break;
3404 	case MSR_AMD64_OSVW_STATUS:
3405 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3406 			return 1;
3407 		vcpu->arch.osvw.status = data;
3408 		break;
3409 	case MSR_PLATFORM_INFO:
3410 		if (!msr_info->host_initiated ||
3411 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3412 		     cpuid_fault_enabled(vcpu)))
3413 			return 1;
3414 		vcpu->arch.msr_platform_info = data;
3415 		break;
3416 	case MSR_MISC_FEATURES_ENABLES:
3417 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3418 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3419 		     !supports_cpuid_fault(vcpu)))
3420 			return 1;
3421 		vcpu->arch.msr_misc_features_enables = data;
3422 		break;
3423 	default:
3424 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3425 			return xen_hvm_config(vcpu, data);
3426 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3427 			return kvm_pmu_set_msr(vcpu, msr_info);
3428 		return KVM_MSR_RET_INVALID;
3429 	}
3430 	return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3433 
get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)3434 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3435 {
3436 	u64 data;
3437 	u64 mcg_cap = vcpu->arch.mcg_cap;
3438 	unsigned bank_num = mcg_cap & 0xff;
3439 
3440 	switch (msr) {
3441 	case MSR_IA32_P5_MC_ADDR:
3442 	case MSR_IA32_P5_MC_TYPE:
3443 		data = 0;
3444 		break;
3445 	case MSR_IA32_MCG_CAP:
3446 		data = vcpu->arch.mcg_cap;
3447 		break;
3448 	case MSR_IA32_MCG_CTL:
3449 		if (!(mcg_cap & MCG_CTL_P) && !host)
3450 			return 1;
3451 		data = vcpu->arch.mcg_ctl;
3452 		break;
3453 	case MSR_IA32_MCG_STATUS:
3454 		data = vcpu->arch.mcg_status;
3455 		break;
3456 	default:
3457 		if (msr >= MSR_IA32_MC0_CTL &&
3458 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3459 			u32 offset = array_index_nospec(
3460 				msr - MSR_IA32_MC0_CTL,
3461 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3462 
3463 			data = vcpu->arch.mce_banks[offset];
3464 			break;
3465 		}
3466 		return 1;
3467 	}
3468 	*pdata = data;
3469 	return 0;
3470 }
3471 
kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)3472 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3473 {
3474 	switch (msr_info->index) {
3475 	case MSR_IA32_PLATFORM_ID:
3476 	case MSR_IA32_EBL_CR_POWERON:
3477 	case MSR_IA32_DEBUGCTLMSR:
3478 	case MSR_IA32_LASTBRANCHFROMIP:
3479 	case MSR_IA32_LASTBRANCHTOIP:
3480 	case MSR_IA32_LASTINTFROMIP:
3481 	case MSR_IA32_LASTINTTOIP:
3482 	case MSR_K8_SYSCFG:
3483 	case MSR_K8_TSEG_ADDR:
3484 	case MSR_K8_TSEG_MASK:
3485 	case MSR_VM_HSAVE_PA:
3486 	case MSR_K8_INT_PENDING_MSG:
3487 	case MSR_AMD64_NB_CFG:
3488 	case MSR_FAM10H_MMIO_CONF_BASE:
3489 	case MSR_AMD64_BU_CFG2:
3490 	case MSR_IA32_PERF_CTL:
3491 	case MSR_AMD64_DC_CFG:
3492 	case MSR_AMD64_TW_CFG:
3493 	case MSR_F15H_EX_CFG:
3494 	/*
3495 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3496 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3497 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3498 	 * so for existing CPU-specific MSRs.
3499 	 */
3500 	case MSR_RAPL_POWER_UNIT:
3501 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3502 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3503 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3504 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3505 		msr_info->data = 0;
3506 		break;
3507 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3508 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3509 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3510 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3511 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3512 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3513 			return kvm_pmu_get_msr(vcpu, msr_info);
3514 		msr_info->data = 0;
3515 		break;
3516 	case MSR_IA32_UCODE_REV:
3517 		msr_info->data = vcpu->arch.microcode_version;
3518 		break;
3519 	case MSR_IA32_ARCH_CAPABILITIES:
3520 		if (!msr_info->host_initiated &&
3521 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3522 			return 1;
3523 		msr_info->data = vcpu->arch.arch_capabilities;
3524 		break;
3525 	case MSR_IA32_PERF_CAPABILITIES:
3526 		if (!msr_info->host_initiated &&
3527 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3528 			return 1;
3529 		msr_info->data = vcpu->arch.perf_capabilities;
3530 		break;
3531 	case MSR_IA32_POWER_CTL:
3532 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3533 		break;
3534 	case MSR_IA32_TSC: {
3535 		/*
3536 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3537 		 * even when not intercepted. AMD manual doesn't explicitly
3538 		 * state this but appears to behave the same.
3539 		 *
3540 		 * On userspace reads and writes, however, we unconditionally
3541 		 * return L1's TSC value to ensure backwards-compatible
3542 		 * behavior for migration.
3543 		 */
3544 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3545 							    vcpu->arch.tsc_offset;
3546 
3547 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3548 		break;
3549 	}
3550 	case MSR_MTRRcap:
3551 	case 0x200 ... 0x2ff:
3552 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3553 	case 0xcd: /* fsb frequency */
3554 		msr_info->data = 3;
3555 		break;
3556 		/*
3557 		 * MSR_EBC_FREQUENCY_ID
3558 		 * Conservative value valid for even the basic CPU models.
3559 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3560 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3561 		 * and 266MHz for model 3, or 4. Set Core Clock
3562 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3563 		 * 31:24) even though these are only valid for CPU
3564 		 * models > 2, however guests may end up dividing or
3565 		 * multiplying by zero otherwise.
3566 		 */
3567 	case MSR_EBC_FREQUENCY_ID:
3568 		msr_info->data = 1 << 24;
3569 		break;
3570 	case MSR_IA32_APICBASE:
3571 		msr_info->data = kvm_get_apic_base(vcpu);
3572 		break;
3573 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3574 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3575 	case MSR_IA32_TSCDEADLINE:
3576 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3577 		break;
3578 	case MSR_IA32_TSC_ADJUST:
3579 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3580 		break;
3581 	case MSR_IA32_MISC_ENABLE:
3582 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3583 		break;
3584 	case MSR_IA32_SMBASE:
3585 		if (!msr_info->host_initiated)
3586 			return 1;
3587 		msr_info->data = vcpu->arch.smbase;
3588 		break;
3589 	case MSR_SMI_COUNT:
3590 		msr_info->data = vcpu->arch.smi_count;
3591 		break;
3592 	case MSR_IA32_PERF_STATUS:
3593 		/* TSC increment by tick */
3594 		msr_info->data = 1000ULL;
3595 		/* CPU multiplier */
3596 		msr_info->data |= (((uint64_t)4ULL) << 40);
3597 		break;
3598 	case MSR_EFER:
3599 		msr_info->data = vcpu->arch.efer;
3600 		break;
3601 	case MSR_KVM_WALL_CLOCK:
3602 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3603 			return 1;
3604 
3605 		msr_info->data = vcpu->kvm->arch.wall_clock;
3606 		break;
3607 	case MSR_KVM_WALL_CLOCK_NEW:
3608 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3609 			return 1;
3610 
3611 		msr_info->data = vcpu->kvm->arch.wall_clock;
3612 		break;
3613 	case MSR_KVM_SYSTEM_TIME:
3614 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3615 			return 1;
3616 
3617 		msr_info->data = vcpu->arch.time;
3618 		break;
3619 	case MSR_KVM_SYSTEM_TIME_NEW:
3620 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3621 			return 1;
3622 
3623 		msr_info->data = vcpu->arch.time;
3624 		break;
3625 	case MSR_KVM_ASYNC_PF_EN:
3626 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3627 			return 1;
3628 
3629 		msr_info->data = vcpu->arch.apf.msr_en_val;
3630 		break;
3631 	case MSR_KVM_ASYNC_PF_INT:
3632 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3633 			return 1;
3634 
3635 		msr_info->data = vcpu->arch.apf.msr_int_val;
3636 		break;
3637 	case MSR_KVM_ASYNC_PF_ACK:
3638 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3639 			return 1;
3640 
3641 		msr_info->data = 0;
3642 		break;
3643 	case MSR_KVM_STEAL_TIME:
3644 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3645 			return 1;
3646 
3647 		msr_info->data = vcpu->arch.st.msr_val;
3648 		break;
3649 	case MSR_KVM_PV_EOI_EN:
3650 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3651 			return 1;
3652 
3653 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3654 		break;
3655 	case MSR_KVM_POLL_CONTROL:
3656 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3657 			return 1;
3658 
3659 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3660 		break;
3661 	case MSR_IA32_P5_MC_ADDR:
3662 	case MSR_IA32_P5_MC_TYPE:
3663 	case MSR_IA32_MCG_CAP:
3664 	case MSR_IA32_MCG_CTL:
3665 	case MSR_IA32_MCG_STATUS:
3666 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3667 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3668 				   msr_info->host_initiated);
3669 	case MSR_IA32_XSS:
3670 		if (!msr_info->host_initiated &&
3671 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3672 			return 1;
3673 		msr_info->data = vcpu->arch.ia32_xss;
3674 		break;
3675 	case MSR_K7_CLK_CTL:
3676 		/*
3677 		 * Provide expected ramp-up count for K7. All other
3678 		 * are set to zero, indicating minimum divisors for
3679 		 * every field.
3680 		 *
3681 		 * This prevents guest kernels on AMD host with CPU
3682 		 * type 6, model 8 and higher from exploding due to
3683 		 * the rdmsr failing.
3684 		 */
3685 		msr_info->data = 0x20000000;
3686 		break;
3687 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3688 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3689 	case HV_X64_MSR_SYNDBG_OPTIONS:
3690 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3691 	case HV_X64_MSR_CRASH_CTL:
3692 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3693 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3694 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3695 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3696 		return kvm_hv_get_msr_common(vcpu,
3697 					     msr_info->index, &msr_info->data,
3698 					     msr_info->host_initiated);
3699 	case MSR_IA32_BBL_CR_CTL3:
3700 		/* This legacy MSR exists but isn't fully documented in current
3701 		 * silicon.  It is however accessed by winxp in very narrow
3702 		 * scenarios where it sets bit #19, itself documented as
3703 		 * a "reserved" bit.  Best effort attempt to source coherent
3704 		 * read data here should the balance of the register be
3705 		 * interpreted by the guest:
3706 		 *
3707 		 * L2 cache control register 3: 64GB range, 256KB size,
3708 		 * enabled, latency 0x1, configured
3709 		 */
3710 		msr_info->data = 0xbe702111;
3711 		break;
3712 	case MSR_AMD64_OSVW_ID_LENGTH:
3713 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3714 			return 1;
3715 		msr_info->data = vcpu->arch.osvw.length;
3716 		break;
3717 	case MSR_AMD64_OSVW_STATUS:
3718 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3719 			return 1;
3720 		msr_info->data = vcpu->arch.osvw.status;
3721 		break;
3722 	case MSR_PLATFORM_INFO:
3723 		if (!msr_info->host_initiated &&
3724 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3725 			return 1;
3726 		msr_info->data = vcpu->arch.msr_platform_info;
3727 		break;
3728 	case MSR_MISC_FEATURES_ENABLES:
3729 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3730 		break;
3731 	case MSR_K7_HWCR:
3732 		msr_info->data = vcpu->arch.msr_hwcr;
3733 		break;
3734 	default:
3735 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3736 			return kvm_pmu_get_msr(vcpu, msr_info);
3737 		return KVM_MSR_RET_INVALID;
3738 	}
3739 	return 0;
3740 }
3741 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3742 
3743 /*
3744  * Read or write a bunch of msrs. All parameters are kernel addresses.
3745  *
3746  * @return number of msrs set successfully.
3747  */
__msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data))3748 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3749 		    struct kvm_msr_entry *entries,
3750 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3751 				  unsigned index, u64 *data))
3752 {
3753 	int i;
3754 
3755 	for (i = 0; i < msrs->nmsrs; ++i)
3756 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3757 			break;
3758 
3759 	return i;
3760 }
3761 
3762 /*
3763  * Read or write a bunch of msrs. Parameters are user addresses.
3764  *
3765  * @return number of msrs set successfully.
3766  */
msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback)3767 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3768 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3769 				unsigned index, u64 *data),
3770 		  int writeback)
3771 {
3772 	struct kvm_msrs msrs;
3773 	struct kvm_msr_entry *entries;
3774 	int r, n;
3775 	unsigned size;
3776 
3777 	r = -EFAULT;
3778 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3779 		goto out;
3780 
3781 	r = -E2BIG;
3782 	if (msrs.nmsrs >= MAX_IO_MSRS)
3783 		goto out;
3784 
3785 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3786 	entries = memdup_user(user_msrs->entries, size);
3787 	if (IS_ERR(entries)) {
3788 		r = PTR_ERR(entries);
3789 		goto out;
3790 	}
3791 
3792 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3793 	if (r < 0)
3794 		goto out_free;
3795 
3796 	r = -EFAULT;
3797 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3798 		goto out_free;
3799 
3800 	r = n;
3801 
3802 out_free:
3803 	kfree(entries);
3804 out:
3805 	return r;
3806 }
3807 
kvm_can_mwait_in_guest(void)3808 static inline bool kvm_can_mwait_in_guest(void)
3809 {
3810 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3811 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3812 		boot_cpu_has(X86_FEATURE_ARAT);
3813 }
3814 
kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)3815 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3816 {
3817 	int r = 0;
3818 
3819 	switch (ext) {
3820 	case KVM_CAP_IRQCHIP:
3821 	case KVM_CAP_HLT:
3822 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3823 	case KVM_CAP_SET_TSS_ADDR:
3824 	case KVM_CAP_EXT_CPUID:
3825 	case KVM_CAP_EXT_EMUL_CPUID:
3826 	case KVM_CAP_CLOCKSOURCE:
3827 	case KVM_CAP_PIT:
3828 	case KVM_CAP_NOP_IO_DELAY:
3829 	case KVM_CAP_MP_STATE:
3830 	case KVM_CAP_SYNC_MMU:
3831 	case KVM_CAP_USER_NMI:
3832 	case KVM_CAP_REINJECT_CONTROL:
3833 	case KVM_CAP_IRQ_INJECT_STATUS:
3834 	case KVM_CAP_IOEVENTFD:
3835 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3836 	case KVM_CAP_PIT2:
3837 	case KVM_CAP_PIT_STATE2:
3838 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3839 	case KVM_CAP_XEN_HVM:
3840 	case KVM_CAP_VCPU_EVENTS:
3841 	case KVM_CAP_HYPERV:
3842 	case KVM_CAP_HYPERV_VAPIC:
3843 	case KVM_CAP_HYPERV_SPIN:
3844 	case KVM_CAP_HYPERV_SYNIC:
3845 	case KVM_CAP_HYPERV_SYNIC2:
3846 	case KVM_CAP_HYPERV_VP_INDEX:
3847 	case KVM_CAP_HYPERV_EVENTFD:
3848 	case KVM_CAP_HYPERV_TLBFLUSH:
3849 	case KVM_CAP_HYPERV_SEND_IPI:
3850 	case KVM_CAP_HYPERV_CPUID:
3851 	case KVM_CAP_PCI_SEGMENT:
3852 	case KVM_CAP_DEBUGREGS:
3853 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3854 	case KVM_CAP_XSAVE:
3855 	case KVM_CAP_ASYNC_PF:
3856 	case KVM_CAP_ASYNC_PF_INT:
3857 	case KVM_CAP_GET_TSC_KHZ:
3858 	case KVM_CAP_KVMCLOCK_CTRL:
3859 	case KVM_CAP_READONLY_MEM:
3860 	case KVM_CAP_HYPERV_TIME:
3861 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3862 	case KVM_CAP_TSC_DEADLINE_TIMER:
3863 	case KVM_CAP_DISABLE_QUIRKS:
3864 	case KVM_CAP_SET_BOOT_CPU_ID:
3865  	case KVM_CAP_SPLIT_IRQCHIP:
3866 	case KVM_CAP_IMMEDIATE_EXIT:
3867 	case KVM_CAP_PMU_EVENT_FILTER:
3868 	case KVM_CAP_GET_MSR_FEATURES:
3869 	case KVM_CAP_MSR_PLATFORM_INFO:
3870 	case KVM_CAP_EXCEPTION_PAYLOAD:
3871 	case KVM_CAP_SET_GUEST_DEBUG:
3872 	case KVM_CAP_LAST_CPU:
3873 	case KVM_CAP_X86_USER_SPACE_MSR:
3874 	case KVM_CAP_X86_MSR_FILTER:
3875 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3876 		r = 1;
3877 		break;
3878 	case KVM_CAP_SYNC_REGS:
3879 		r = KVM_SYNC_X86_VALID_FIELDS;
3880 		break;
3881 	case KVM_CAP_ADJUST_CLOCK:
3882 		r = KVM_CLOCK_TSC_STABLE;
3883 		break;
3884 	case KVM_CAP_X86_DISABLE_EXITS:
3885 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3886 		      KVM_X86_DISABLE_EXITS_CSTATE;
3887 		if(kvm_can_mwait_in_guest())
3888 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3889 		break;
3890 	case KVM_CAP_X86_SMM:
3891 		/* SMBASE is usually relocated above 1M on modern chipsets,
3892 		 * and SMM handlers might indeed rely on 4G segment limits,
3893 		 * so do not report SMM to be available if real mode is
3894 		 * emulated via vm86 mode.  Still, do not go to great lengths
3895 		 * to avoid userspace's usage of the feature, because it is a
3896 		 * fringe case that is not enabled except via specific settings
3897 		 * of the module parameters.
3898 		 */
3899 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3900 		break;
3901 	case KVM_CAP_VAPIC:
3902 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3903 		break;
3904 	case KVM_CAP_NR_VCPUS:
3905 		r = KVM_SOFT_MAX_VCPUS;
3906 		break;
3907 	case KVM_CAP_MAX_VCPUS:
3908 		r = KVM_MAX_VCPUS;
3909 		break;
3910 	case KVM_CAP_MAX_VCPU_ID:
3911 		r = KVM_MAX_VCPU_ID;
3912 		break;
3913 	case KVM_CAP_PV_MMU:	/* obsolete */
3914 		r = 0;
3915 		break;
3916 	case KVM_CAP_MCE:
3917 		r = KVM_MAX_MCE_BANKS;
3918 		break;
3919 	case KVM_CAP_XCRS:
3920 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3921 		break;
3922 	case KVM_CAP_TSC_CONTROL:
3923 		r = kvm_has_tsc_control;
3924 		break;
3925 	case KVM_CAP_X2APIC_API:
3926 		r = KVM_X2APIC_API_VALID_FLAGS;
3927 		break;
3928 	case KVM_CAP_NESTED_STATE:
3929 		r = kvm_x86_ops.nested_ops->get_state ?
3930 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3931 		break;
3932 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3933 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3934 		break;
3935 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3936 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3937 		break;
3938 	case KVM_CAP_SMALLER_MAXPHYADDR:
3939 		r = (int) allow_smaller_maxphyaddr;
3940 		break;
3941 	case KVM_CAP_STEAL_TIME:
3942 		r = sched_info_on();
3943 		break;
3944 	default:
3945 		break;
3946 	}
3947 	return r;
3948 
3949 }
3950 
kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)3951 long kvm_arch_dev_ioctl(struct file *filp,
3952 			unsigned int ioctl, unsigned long arg)
3953 {
3954 	void __user *argp = (void __user *)arg;
3955 	long r;
3956 
3957 	switch (ioctl) {
3958 	case KVM_GET_MSR_INDEX_LIST: {
3959 		struct kvm_msr_list __user *user_msr_list = argp;
3960 		struct kvm_msr_list msr_list;
3961 		unsigned n;
3962 
3963 		r = -EFAULT;
3964 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3965 			goto out;
3966 		n = msr_list.nmsrs;
3967 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3968 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3969 			goto out;
3970 		r = -E2BIG;
3971 		if (n < msr_list.nmsrs)
3972 			goto out;
3973 		r = -EFAULT;
3974 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3975 				 num_msrs_to_save * sizeof(u32)))
3976 			goto out;
3977 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3978 				 &emulated_msrs,
3979 				 num_emulated_msrs * sizeof(u32)))
3980 			goto out;
3981 		r = 0;
3982 		break;
3983 	}
3984 	case KVM_GET_SUPPORTED_CPUID:
3985 	case KVM_GET_EMULATED_CPUID: {
3986 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3987 		struct kvm_cpuid2 cpuid;
3988 
3989 		r = -EFAULT;
3990 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3991 			goto out;
3992 
3993 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3994 					    ioctl);
3995 		if (r)
3996 			goto out;
3997 
3998 		r = -EFAULT;
3999 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4000 			goto out;
4001 		r = 0;
4002 		break;
4003 	}
4004 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4005 		r = -EFAULT;
4006 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4007 				 sizeof(kvm_mce_cap_supported)))
4008 			goto out;
4009 		r = 0;
4010 		break;
4011 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4012 		struct kvm_msr_list __user *user_msr_list = argp;
4013 		struct kvm_msr_list msr_list;
4014 		unsigned int n;
4015 
4016 		r = -EFAULT;
4017 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4018 			goto out;
4019 		n = msr_list.nmsrs;
4020 		msr_list.nmsrs = num_msr_based_features;
4021 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4022 			goto out;
4023 		r = -E2BIG;
4024 		if (n < msr_list.nmsrs)
4025 			goto out;
4026 		r = -EFAULT;
4027 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4028 				 num_msr_based_features * sizeof(u32)))
4029 			goto out;
4030 		r = 0;
4031 		break;
4032 	}
4033 	case KVM_GET_MSRS:
4034 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4035 		break;
4036 	default:
4037 		r = -EINVAL;
4038 		break;
4039 	}
4040 out:
4041 	return r;
4042 }
4043 
wbinvd_ipi(void *garbage)4044 static void wbinvd_ipi(void *garbage)
4045 {
4046 	wbinvd();
4047 }
4048 
need_emulate_wbinvd(struct kvm_vcpu *vcpu)4049 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4050 {
4051 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4052 }
4053 
kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)4054 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4055 {
4056 	/* Address WBINVD may be executed by guest */
4057 	if (need_emulate_wbinvd(vcpu)) {
4058 		if (kvm_x86_ops.has_wbinvd_exit())
4059 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4060 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4061 			smp_call_function_single(vcpu->cpu,
4062 					wbinvd_ipi, NULL, 1);
4063 	}
4064 
4065 	kvm_x86_ops.vcpu_load(vcpu, cpu);
4066 
4067 	/* Save host pkru register if supported */
4068 	vcpu->arch.host_pkru = read_pkru();
4069 
4070 	/* Apply any externally detected TSC adjustments (due to suspend) */
4071 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4072 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4073 		vcpu->arch.tsc_offset_adjustment = 0;
4074 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4075 	}
4076 
4077 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4078 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4079 				rdtsc() - vcpu->arch.last_host_tsc;
4080 		if (tsc_delta < 0)
4081 			mark_tsc_unstable("KVM discovered backwards TSC");
4082 
4083 		if (kvm_check_tsc_unstable()) {
4084 			u64 offset = kvm_compute_tsc_offset(vcpu,
4085 						vcpu->arch.last_guest_tsc);
4086 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4087 			vcpu->arch.tsc_catchup = 1;
4088 		}
4089 
4090 		if (kvm_lapic_hv_timer_in_use(vcpu))
4091 			kvm_lapic_restart_hv_timer(vcpu);
4092 
4093 		/*
4094 		 * On a host with synchronized TSC, there is no need to update
4095 		 * kvmclock on vcpu->cpu migration
4096 		 */
4097 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4098 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4099 		if (vcpu->cpu != cpu)
4100 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4101 		vcpu->cpu = cpu;
4102 	}
4103 
4104 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4105 }
4106 
kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)4107 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4108 {
4109 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4110 	struct kvm_steal_time __user *st;
4111 	struct kvm_memslots *slots;
4112 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4113 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4114 
4115 	/*
4116 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4117 	 * an instruction boundary and will not trigger guest emulation of any
4118 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4119 	 * when this is true, for example allowing the vCPU to be marked
4120 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4121 	 */
4122 	if (!vcpu->arch.at_instruction_boundary) {
4123 		vcpu->stat.preemption_other++;
4124 		return;
4125 	}
4126 
4127 	vcpu->stat.preemption_reported++;
4128 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4129 		return;
4130 
4131 	if (vcpu->arch.st.preempted)
4132 		return;
4133 
4134 	/* This happens on process exit */
4135 	if (unlikely(current->mm != vcpu->kvm->mm))
4136 		return;
4137 
4138 	slots = kvm_memslots(vcpu->kvm);
4139 
4140 	if (unlikely(slots->generation != ghc->generation ||
4141 		     gpa != ghc->gpa ||
4142 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4143 		return;
4144 
4145 	st = (struct kvm_steal_time __user *)ghc->hva;
4146 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4147 
4148 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4149 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4150 
4151 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
4152 }
4153 
kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)4154 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4155 {
4156 	int idx;
4157 
4158 	if (vcpu->preempted) {
4159 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4160 
4161 		/*
4162 		 * Take the srcu lock as memslots will be accessed to check the gfn
4163 		 * cache generation against the memslots generation.
4164 		 */
4165 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4166 		kvm_steal_time_set_preempted(vcpu);
4167 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4168 	}
4169 
4170 	kvm_x86_ops.vcpu_put(vcpu);
4171 	vcpu->arch.last_host_tsc = rdtsc();
4172 	/*
4173 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4174 	 * on every vmexit, but if not, we might have a stale dr6 from the
4175 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4176 	 */
4177 	set_debugreg(0, 6);
4178 }
4179 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)4180 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4181 				    struct kvm_lapic_state *s)
4182 {
4183 	if (vcpu->arch.apicv_active)
4184 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4185 
4186 	return kvm_apic_get_state(vcpu, s);
4187 }
4188 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)4189 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4190 				    struct kvm_lapic_state *s)
4191 {
4192 	int r;
4193 
4194 	r = kvm_apic_set_state(vcpu, s);
4195 	if (r)
4196 		return r;
4197 	update_cr8_intercept(vcpu);
4198 
4199 	return 0;
4200 }
4201 
kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)4202 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4203 {
4204 	/*
4205 	 * We can accept userspace's request for interrupt injection
4206 	 * as long as we have a place to store the interrupt number.
4207 	 * The actual injection will happen when the CPU is able to
4208 	 * deliver the interrupt.
4209 	 */
4210 	if (kvm_cpu_has_extint(vcpu))
4211 		return false;
4212 
4213 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4214 	return (!lapic_in_kernel(vcpu) ||
4215 		kvm_apic_accept_pic_intr(vcpu));
4216 }
4217 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)4218 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4219 {
4220 	/*
4221 	 * Do not cause an interrupt window exit if an exception
4222 	 * is pending or an event needs reinjection; userspace
4223 	 * might want to inject the interrupt manually using KVM_SET_REGS
4224 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4225 	 * instruction boundary and with no events half-injected.
4226 	 */
4227 	return (kvm_arch_interrupt_allowed(vcpu) &&
4228 		kvm_cpu_accept_dm_intr(vcpu) &&
4229 		!kvm_event_needs_reinjection(vcpu) &&
4230 		!vcpu->arch.exception.pending);
4231 }
4232 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)4233 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4234 				    struct kvm_interrupt *irq)
4235 {
4236 	if (irq->irq >= KVM_NR_INTERRUPTS)
4237 		return -EINVAL;
4238 
4239 	if (!irqchip_in_kernel(vcpu->kvm)) {
4240 		kvm_queue_interrupt(vcpu, irq->irq, false);
4241 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4242 		return 0;
4243 	}
4244 
4245 	/*
4246 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4247 	 * fail for in-kernel 8259.
4248 	 */
4249 	if (pic_in_kernel(vcpu->kvm))
4250 		return -ENXIO;
4251 
4252 	if (vcpu->arch.pending_external_vector != -1)
4253 		return -EEXIST;
4254 
4255 	vcpu->arch.pending_external_vector = irq->irq;
4256 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4257 	return 0;
4258 }
4259 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)4260 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4261 {
4262 	kvm_inject_nmi(vcpu);
4263 
4264 	return 0;
4265 }
4266 
kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)4267 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4268 {
4269 	kvm_make_request(KVM_REQ_SMI, vcpu);
4270 
4271 	return 0;
4272 }
4273 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac)4274 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4275 					   struct kvm_tpr_access_ctl *tac)
4276 {
4277 	if (tac->flags)
4278 		return -EINVAL;
4279 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4280 	return 0;
4281 }
4282 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, u64 mcg_cap)4283 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4284 					u64 mcg_cap)
4285 {
4286 	int r;
4287 	unsigned bank_num = mcg_cap & 0xff, bank;
4288 
4289 	r = -EINVAL;
4290 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4291 		goto out;
4292 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4293 		goto out;
4294 	r = 0;
4295 	vcpu->arch.mcg_cap = mcg_cap;
4296 	/* Init IA32_MCG_CTL to all 1s */
4297 	if (mcg_cap & MCG_CTL_P)
4298 		vcpu->arch.mcg_ctl = ~(u64)0;
4299 	/* Init IA32_MCi_CTL to all 1s */
4300 	for (bank = 0; bank < bank_num; bank++)
4301 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4302 
4303 	kvm_x86_ops.setup_mce(vcpu);
4304 out:
4305 	return r;
4306 }
4307 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce)4308 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4309 				      struct kvm_x86_mce *mce)
4310 {
4311 	u64 mcg_cap = vcpu->arch.mcg_cap;
4312 	unsigned bank_num = mcg_cap & 0xff;
4313 	u64 *banks = vcpu->arch.mce_banks;
4314 
4315 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4316 		return -EINVAL;
4317 	/*
4318 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4319 	 * reporting is disabled
4320 	 */
4321 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4322 	    vcpu->arch.mcg_ctl != ~(u64)0)
4323 		return 0;
4324 	banks += 4 * mce->bank;
4325 	/*
4326 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4327 	 * reporting is disabled for the bank
4328 	 */
4329 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4330 		return 0;
4331 	if (mce->status & MCI_STATUS_UC) {
4332 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4333 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4334 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4335 			return 0;
4336 		}
4337 		if (banks[1] & MCI_STATUS_VAL)
4338 			mce->status |= MCI_STATUS_OVER;
4339 		banks[2] = mce->addr;
4340 		banks[3] = mce->misc;
4341 		vcpu->arch.mcg_status = mce->mcg_status;
4342 		banks[1] = mce->status;
4343 		kvm_queue_exception(vcpu, MC_VECTOR);
4344 	} else if (!(banks[1] & MCI_STATUS_VAL)
4345 		   || !(banks[1] & MCI_STATUS_UC)) {
4346 		if (banks[1] & MCI_STATUS_VAL)
4347 			mce->status |= MCI_STATUS_OVER;
4348 		banks[2] = mce->addr;
4349 		banks[3] = mce->misc;
4350 		banks[1] = mce->status;
4351 	} else
4352 		banks[1] |= MCI_STATUS_OVER;
4353 	return 0;
4354 }
4355 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)4356 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4357 					       struct kvm_vcpu_events *events)
4358 {
4359 	process_nmi(vcpu);
4360 
4361 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4362 		process_smi(vcpu);
4363 
4364 	/*
4365 	 * In guest mode, payload delivery should be deferred,
4366 	 * so that the L1 hypervisor can intercept #PF before
4367 	 * CR2 is modified (or intercept #DB before DR6 is
4368 	 * modified under nVMX). Unless the per-VM capability,
4369 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4370 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4371 	 * opportunistically defer the exception payload, deliver it if the
4372 	 * capability hasn't been requested before processing a
4373 	 * KVM_GET_VCPU_EVENTS.
4374 	 */
4375 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4376 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4377 		kvm_deliver_exception_payload(vcpu);
4378 
4379 	/*
4380 	 * The API doesn't provide the instruction length for software
4381 	 * exceptions, so don't report them. As long as the guest RIP
4382 	 * isn't advanced, we should expect to encounter the exception
4383 	 * again.
4384 	 */
4385 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4386 		events->exception.injected = 0;
4387 		events->exception.pending = 0;
4388 	} else {
4389 		events->exception.injected = vcpu->arch.exception.injected;
4390 		events->exception.pending = vcpu->arch.exception.pending;
4391 		/*
4392 		 * For ABI compatibility, deliberately conflate
4393 		 * pending and injected exceptions when
4394 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4395 		 */
4396 		if (!vcpu->kvm->arch.exception_payload_enabled)
4397 			events->exception.injected |=
4398 				vcpu->arch.exception.pending;
4399 	}
4400 	events->exception.nr = vcpu->arch.exception.nr;
4401 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4402 	events->exception.error_code = vcpu->arch.exception.error_code;
4403 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4404 	events->exception_payload = vcpu->arch.exception.payload;
4405 
4406 	events->interrupt.injected =
4407 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4408 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4409 	events->interrupt.soft = 0;
4410 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4411 
4412 	events->nmi.injected = vcpu->arch.nmi_injected;
4413 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4414 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4415 	events->nmi.pad = 0;
4416 
4417 	events->sipi_vector = 0; /* never valid when reporting to user space */
4418 
4419 	events->smi.smm = is_smm(vcpu);
4420 	events->smi.pending = vcpu->arch.smi_pending;
4421 	events->smi.smm_inside_nmi =
4422 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4423 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4424 
4425 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4426 			 | KVM_VCPUEVENT_VALID_SHADOW
4427 			 | KVM_VCPUEVENT_VALID_SMM);
4428 	if (vcpu->kvm->arch.exception_payload_enabled)
4429 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4430 
4431 	memset(&events->reserved, 0, sizeof(events->reserved));
4432 }
4433 
4434 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4435 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)4436 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4437 					      struct kvm_vcpu_events *events)
4438 {
4439 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4440 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4441 			      | KVM_VCPUEVENT_VALID_SHADOW
4442 			      | KVM_VCPUEVENT_VALID_SMM
4443 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4444 		return -EINVAL;
4445 
4446 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4447 		if (!vcpu->kvm->arch.exception_payload_enabled)
4448 			return -EINVAL;
4449 		if (events->exception.pending)
4450 			events->exception.injected = 0;
4451 		else
4452 			events->exception_has_payload = 0;
4453 	} else {
4454 		events->exception.pending = 0;
4455 		events->exception_has_payload = 0;
4456 	}
4457 
4458 	if ((events->exception.injected || events->exception.pending) &&
4459 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4460 		return -EINVAL;
4461 
4462 	/* INITs are latched while in SMM */
4463 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4464 	    (events->smi.smm || events->smi.pending) &&
4465 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4466 		return -EINVAL;
4467 
4468 	process_nmi(vcpu);
4469 	vcpu->arch.exception.injected = events->exception.injected;
4470 	vcpu->arch.exception.pending = events->exception.pending;
4471 	vcpu->arch.exception.nr = events->exception.nr;
4472 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4473 	vcpu->arch.exception.error_code = events->exception.error_code;
4474 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4475 	vcpu->arch.exception.payload = events->exception_payload;
4476 
4477 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4478 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4479 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4480 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4481 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4482 						  events->interrupt.shadow);
4483 
4484 	vcpu->arch.nmi_injected = events->nmi.injected;
4485 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4486 		vcpu->arch.nmi_pending = events->nmi.pending;
4487 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4488 
4489 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4490 	    lapic_in_kernel(vcpu))
4491 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4492 
4493 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4494 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4495 			if (events->smi.smm)
4496 				vcpu->arch.hflags |= HF_SMM_MASK;
4497 			else
4498 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4499 
4500 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4501 			kvm_smm_changed(vcpu);
4502 		}
4503 
4504 		vcpu->arch.smi_pending = events->smi.pending;
4505 
4506 		if (events->smi.smm) {
4507 			if (events->smi.smm_inside_nmi)
4508 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4509 			else
4510 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4511 		}
4512 
4513 		if (lapic_in_kernel(vcpu)) {
4514 			if (events->smi.latched_init)
4515 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4516 			else
4517 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4518 		}
4519 	}
4520 
4521 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4522 
4523 	return 0;
4524 }
4525 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs)4526 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4527 					     struct kvm_debugregs *dbgregs)
4528 {
4529 	unsigned long val;
4530 
4531 	memset(dbgregs, 0, sizeof(*dbgregs));
4532 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4533 	kvm_get_dr(vcpu, 6, &val);
4534 	dbgregs->dr6 = val;
4535 	dbgregs->dr7 = vcpu->arch.dr7;
4536 }
4537 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs)4538 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4539 					    struct kvm_debugregs *dbgregs)
4540 {
4541 	if (dbgregs->flags)
4542 		return -EINVAL;
4543 
4544 	if (dbgregs->dr6 & ~0xffffffffull)
4545 		return -EINVAL;
4546 	if (dbgregs->dr7 & ~0xffffffffull)
4547 		return -EINVAL;
4548 
4549 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4550 	kvm_update_dr0123(vcpu);
4551 	vcpu->arch.dr6 = dbgregs->dr6;
4552 	vcpu->arch.dr7 = dbgregs->dr7;
4553 	kvm_update_dr7(vcpu);
4554 
4555 	return 0;
4556 }
4557 
4558 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4559 
fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)4560 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4561 {
4562 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4563 	u64 xstate_bv = xsave->header.xfeatures;
4564 	u64 valid;
4565 
4566 	/*
4567 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4568 	 * leaves 0 and 1 in the loop below.
4569 	 */
4570 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4571 
4572 	/* Set XSTATE_BV */
4573 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4574 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4575 
4576 	/*
4577 	 * Copy each region from the possibly compacted offset to the
4578 	 * non-compacted offset.
4579 	 */
4580 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4581 	while (valid) {
4582 		u64 xfeature_mask = valid & -valid;
4583 		int xfeature_nr = fls64(xfeature_mask) - 1;
4584 		void *src = get_xsave_addr(xsave, xfeature_nr);
4585 
4586 		if (src) {
4587 			u32 size, offset, ecx, edx;
4588 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4589 				    &size, &offset, &ecx, &edx);
4590 			if (xfeature_nr == XFEATURE_PKRU)
4591 				memcpy(dest + offset, &vcpu->arch.pkru,
4592 				       sizeof(vcpu->arch.pkru));
4593 			else
4594 				memcpy(dest + offset, src, size);
4595 
4596 		}
4597 
4598 		valid -= xfeature_mask;
4599 	}
4600 }
4601 
load_xsave(struct kvm_vcpu *vcpu, u8 *src)4602 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4603 {
4604 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4605 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4606 	u64 valid;
4607 
4608 	/*
4609 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4610 	 * leaves 0 and 1 in the loop below.
4611 	 */
4612 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4613 
4614 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4615 	xsave->header.xfeatures = xstate_bv;
4616 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4617 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4618 
4619 	/*
4620 	 * Copy each region from the non-compacted offset to the
4621 	 * possibly compacted offset.
4622 	 */
4623 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4624 	while (valid) {
4625 		u64 xfeature_mask = valid & -valid;
4626 		int xfeature_nr = fls64(xfeature_mask) - 1;
4627 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4628 
4629 		if (dest) {
4630 			u32 size, offset, ecx, edx;
4631 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4632 				    &size, &offset, &ecx, &edx);
4633 			if (xfeature_nr == XFEATURE_PKRU)
4634 				memcpy(&vcpu->arch.pkru, src + offset,
4635 				       sizeof(vcpu->arch.pkru));
4636 			else
4637 				memcpy(dest, src + offset, size);
4638 		}
4639 
4640 		valid -= xfeature_mask;
4641 	}
4642 }
4643 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave)4644 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4645 					 struct kvm_xsave *guest_xsave)
4646 {
4647 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4648 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4649 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4650 	} else {
4651 		memcpy(guest_xsave->region,
4652 			&vcpu->arch.guest_fpu->state.fxsave,
4653 			sizeof(struct fxregs_state));
4654 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4655 			XFEATURE_MASK_FPSSE;
4656 	}
4657 }
4658 
4659 #define XSAVE_MXCSR_OFFSET 24
4660 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave)4661 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4662 					struct kvm_xsave *guest_xsave)
4663 {
4664 	u64 xstate_bv =
4665 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4666 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4667 
4668 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4669 		/*
4670 		 * Here we allow setting states that are not present in
4671 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4672 		 * with old userspace.
4673 		 */
4674 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4675 			return -EINVAL;
4676 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4677 	} else {
4678 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4679 			mxcsr & ~mxcsr_feature_mask)
4680 			return -EINVAL;
4681 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4682 			guest_xsave->region, sizeof(struct fxregs_state));
4683 	}
4684 	return 0;
4685 }
4686 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs)4687 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4688 					struct kvm_xcrs *guest_xcrs)
4689 {
4690 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4691 		guest_xcrs->nr_xcrs = 0;
4692 		return;
4693 	}
4694 
4695 	guest_xcrs->nr_xcrs = 1;
4696 	guest_xcrs->flags = 0;
4697 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4698 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4699 }
4700 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs)4701 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4702 				       struct kvm_xcrs *guest_xcrs)
4703 {
4704 	int i, r = 0;
4705 
4706 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4707 		return -EINVAL;
4708 
4709 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4710 		return -EINVAL;
4711 
4712 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4713 		/* Only support XCR0 currently */
4714 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4715 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4716 				guest_xcrs->xcrs[i].value);
4717 			break;
4718 		}
4719 	if (r)
4720 		r = -EINVAL;
4721 	return r;
4722 }
4723 
4724 /*
4725  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4726  * stopped by the hypervisor.  This function will be called from the host only.
4727  * EINVAL is returned when the host attempts to set the flag for a guest that
4728  * does not support pv clocks.
4729  */
kvm_set_guest_paused(struct kvm_vcpu *vcpu)4730 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4731 {
4732 	if (!vcpu->arch.pv_time_enabled)
4733 		return -EINVAL;
4734 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4735 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4736 	return 0;
4737 }
4738 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap)4739 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4740 				     struct kvm_enable_cap *cap)
4741 {
4742 	int r;
4743 	uint16_t vmcs_version;
4744 	void __user *user_ptr;
4745 
4746 	if (cap->flags)
4747 		return -EINVAL;
4748 
4749 	switch (cap->cap) {
4750 	case KVM_CAP_HYPERV_SYNIC2:
4751 		if (cap->args[0])
4752 			return -EINVAL;
4753 		fallthrough;
4754 
4755 	case KVM_CAP_HYPERV_SYNIC:
4756 		if (!irqchip_in_kernel(vcpu->kvm))
4757 			return -EINVAL;
4758 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4759 					     KVM_CAP_HYPERV_SYNIC2);
4760 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4761 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4762 			return -ENOTTY;
4763 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4764 		if (!r) {
4765 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4766 			if (copy_to_user(user_ptr, &vmcs_version,
4767 					 sizeof(vmcs_version)))
4768 				r = -EFAULT;
4769 		}
4770 		return r;
4771 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4772 		if (!kvm_x86_ops.enable_direct_tlbflush)
4773 			return -ENOTTY;
4774 
4775 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4776 
4777 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4778 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4779 		if (vcpu->arch.pv_cpuid.enforce)
4780 			kvm_update_pv_runtime(vcpu);
4781 
4782 		return 0;
4783 
4784 	default:
4785 		return -EINVAL;
4786 	}
4787 }
4788 
kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)4789 long kvm_arch_vcpu_ioctl(struct file *filp,
4790 			 unsigned int ioctl, unsigned long arg)
4791 {
4792 	struct kvm_vcpu *vcpu = filp->private_data;
4793 	void __user *argp = (void __user *)arg;
4794 	int r;
4795 	union {
4796 		struct kvm_lapic_state *lapic;
4797 		struct kvm_xsave *xsave;
4798 		struct kvm_xcrs *xcrs;
4799 		void *buffer;
4800 	} u;
4801 
4802 	vcpu_load(vcpu);
4803 
4804 	u.buffer = NULL;
4805 	switch (ioctl) {
4806 	case KVM_GET_LAPIC: {
4807 		r = -EINVAL;
4808 		if (!lapic_in_kernel(vcpu))
4809 			goto out;
4810 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4811 				GFP_KERNEL_ACCOUNT);
4812 
4813 		r = -ENOMEM;
4814 		if (!u.lapic)
4815 			goto out;
4816 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4817 		if (r)
4818 			goto out;
4819 		r = -EFAULT;
4820 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4821 			goto out;
4822 		r = 0;
4823 		break;
4824 	}
4825 	case KVM_SET_LAPIC: {
4826 		r = -EINVAL;
4827 		if (!lapic_in_kernel(vcpu))
4828 			goto out;
4829 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4830 		if (IS_ERR(u.lapic)) {
4831 			r = PTR_ERR(u.lapic);
4832 			goto out_nofree;
4833 		}
4834 
4835 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4836 		break;
4837 	}
4838 	case KVM_INTERRUPT: {
4839 		struct kvm_interrupt irq;
4840 
4841 		r = -EFAULT;
4842 		if (copy_from_user(&irq, argp, sizeof(irq)))
4843 			goto out;
4844 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4845 		break;
4846 	}
4847 	case KVM_NMI: {
4848 		r = kvm_vcpu_ioctl_nmi(vcpu);
4849 		break;
4850 	}
4851 	case KVM_SMI: {
4852 		r = kvm_vcpu_ioctl_smi(vcpu);
4853 		break;
4854 	}
4855 	case KVM_SET_CPUID: {
4856 		struct kvm_cpuid __user *cpuid_arg = argp;
4857 		struct kvm_cpuid cpuid;
4858 
4859 		r = -EFAULT;
4860 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4861 			goto out;
4862 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4863 		break;
4864 	}
4865 	case KVM_SET_CPUID2: {
4866 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4867 		struct kvm_cpuid2 cpuid;
4868 
4869 		r = -EFAULT;
4870 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4871 			goto out;
4872 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4873 					      cpuid_arg->entries);
4874 		break;
4875 	}
4876 	case KVM_GET_CPUID2: {
4877 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4878 		struct kvm_cpuid2 cpuid;
4879 
4880 		r = -EFAULT;
4881 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4882 			goto out;
4883 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4884 					      cpuid_arg->entries);
4885 		if (r)
4886 			goto out;
4887 		r = -EFAULT;
4888 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4889 			goto out;
4890 		r = 0;
4891 		break;
4892 	}
4893 	case KVM_GET_MSRS: {
4894 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4895 		r = msr_io(vcpu, argp, do_get_msr, 1);
4896 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4897 		break;
4898 	}
4899 	case KVM_SET_MSRS: {
4900 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4901 		r = msr_io(vcpu, argp, do_set_msr, 0);
4902 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4903 		break;
4904 	}
4905 	case KVM_TPR_ACCESS_REPORTING: {
4906 		struct kvm_tpr_access_ctl tac;
4907 
4908 		r = -EFAULT;
4909 		if (copy_from_user(&tac, argp, sizeof(tac)))
4910 			goto out;
4911 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4912 		if (r)
4913 			goto out;
4914 		r = -EFAULT;
4915 		if (copy_to_user(argp, &tac, sizeof(tac)))
4916 			goto out;
4917 		r = 0;
4918 		break;
4919 	};
4920 	case KVM_SET_VAPIC_ADDR: {
4921 		struct kvm_vapic_addr va;
4922 		int idx;
4923 
4924 		r = -EINVAL;
4925 		if (!lapic_in_kernel(vcpu))
4926 			goto out;
4927 		r = -EFAULT;
4928 		if (copy_from_user(&va, argp, sizeof(va)))
4929 			goto out;
4930 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4931 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4932 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4933 		break;
4934 	}
4935 	case KVM_X86_SETUP_MCE: {
4936 		u64 mcg_cap;
4937 
4938 		r = -EFAULT;
4939 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4940 			goto out;
4941 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4942 		break;
4943 	}
4944 	case KVM_X86_SET_MCE: {
4945 		struct kvm_x86_mce mce;
4946 
4947 		r = -EFAULT;
4948 		if (copy_from_user(&mce, argp, sizeof(mce)))
4949 			goto out;
4950 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4951 		break;
4952 	}
4953 	case KVM_GET_VCPU_EVENTS: {
4954 		struct kvm_vcpu_events events;
4955 
4956 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4957 
4958 		r = -EFAULT;
4959 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4960 			break;
4961 		r = 0;
4962 		break;
4963 	}
4964 	case KVM_SET_VCPU_EVENTS: {
4965 		struct kvm_vcpu_events events;
4966 
4967 		r = -EFAULT;
4968 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4969 			break;
4970 
4971 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4972 		break;
4973 	}
4974 	case KVM_GET_DEBUGREGS: {
4975 		struct kvm_debugregs dbgregs;
4976 
4977 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4978 
4979 		r = -EFAULT;
4980 		if (copy_to_user(argp, &dbgregs,
4981 				 sizeof(struct kvm_debugregs)))
4982 			break;
4983 		r = 0;
4984 		break;
4985 	}
4986 	case KVM_SET_DEBUGREGS: {
4987 		struct kvm_debugregs dbgregs;
4988 
4989 		r = -EFAULT;
4990 		if (copy_from_user(&dbgregs, argp,
4991 				   sizeof(struct kvm_debugregs)))
4992 			break;
4993 
4994 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4995 		break;
4996 	}
4997 	case KVM_GET_XSAVE: {
4998 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4999 		r = -ENOMEM;
5000 		if (!u.xsave)
5001 			break;
5002 
5003 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5004 
5005 		r = -EFAULT;
5006 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5007 			break;
5008 		r = 0;
5009 		break;
5010 	}
5011 	case KVM_SET_XSAVE: {
5012 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5013 		if (IS_ERR(u.xsave)) {
5014 			r = PTR_ERR(u.xsave);
5015 			goto out_nofree;
5016 		}
5017 
5018 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5019 		break;
5020 	}
5021 	case KVM_GET_XCRS: {
5022 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5023 		r = -ENOMEM;
5024 		if (!u.xcrs)
5025 			break;
5026 
5027 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5028 
5029 		r = -EFAULT;
5030 		if (copy_to_user(argp, u.xcrs,
5031 				 sizeof(struct kvm_xcrs)))
5032 			break;
5033 		r = 0;
5034 		break;
5035 	}
5036 	case KVM_SET_XCRS: {
5037 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5038 		if (IS_ERR(u.xcrs)) {
5039 			r = PTR_ERR(u.xcrs);
5040 			goto out_nofree;
5041 		}
5042 
5043 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5044 		break;
5045 	}
5046 	case KVM_SET_TSC_KHZ: {
5047 		u32 user_tsc_khz;
5048 
5049 		r = -EINVAL;
5050 		user_tsc_khz = (u32)arg;
5051 
5052 		if (kvm_has_tsc_control &&
5053 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5054 			goto out;
5055 
5056 		if (user_tsc_khz == 0)
5057 			user_tsc_khz = tsc_khz;
5058 
5059 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5060 			r = 0;
5061 
5062 		goto out;
5063 	}
5064 	case KVM_GET_TSC_KHZ: {
5065 		r = vcpu->arch.virtual_tsc_khz;
5066 		goto out;
5067 	}
5068 	case KVM_KVMCLOCK_CTRL: {
5069 		r = kvm_set_guest_paused(vcpu);
5070 		goto out;
5071 	}
5072 	case KVM_ENABLE_CAP: {
5073 		struct kvm_enable_cap cap;
5074 
5075 		r = -EFAULT;
5076 		if (copy_from_user(&cap, argp, sizeof(cap)))
5077 			goto out;
5078 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5079 		break;
5080 	}
5081 	case KVM_GET_NESTED_STATE: {
5082 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5083 		u32 user_data_size;
5084 
5085 		r = -EINVAL;
5086 		if (!kvm_x86_ops.nested_ops->get_state)
5087 			break;
5088 
5089 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5090 		r = -EFAULT;
5091 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5092 			break;
5093 
5094 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5095 						     user_data_size);
5096 		if (r < 0)
5097 			break;
5098 
5099 		if (r > user_data_size) {
5100 			if (put_user(r, &user_kvm_nested_state->size))
5101 				r = -EFAULT;
5102 			else
5103 				r = -E2BIG;
5104 			break;
5105 		}
5106 
5107 		r = 0;
5108 		break;
5109 	}
5110 	case KVM_SET_NESTED_STATE: {
5111 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5112 		struct kvm_nested_state kvm_state;
5113 		int idx;
5114 
5115 		r = -EINVAL;
5116 		if (!kvm_x86_ops.nested_ops->set_state)
5117 			break;
5118 
5119 		r = -EFAULT;
5120 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5121 			break;
5122 
5123 		r = -EINVAL;
5124 		if (kvm_state.size < sizeof(kvm_state))
5125 			break;
5126 
5127 		if (kvm_state.flags &
5128 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5129 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5130 		      | KVM_STATE_NESTED_GIF_SET))
5131 			break;
5132 
5133 		/* nested_run_pending implies guest_mode.  */
5134 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5135 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5136 			break;
5137 
5138 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5139 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5140 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5141 		break;
5142 	}
5143 	case KVM_GET_SUPPORTED_HV_CPUID: {
5144 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5145 		struct kvm_cpuid2 cpuid;
5146 
5147 		r = -EFAULT;
5148 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5149 			goto out;
5150 
5151 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5152 						cpuid_arg->entries);
5153 		if (r)
5154 			goto out;
5155 
5156 		r = -EFAULT;
5157 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5158 			goto out;
5159 		r = 0;
5160 		break;
5161 	}
5162 	default:
5163 		r = -EINVAL;
5164 	}
5165 out:
5166 	kfree(u.buffer);
5167 out_nofree:
5168 	vcpu_put(vcpu);
5169 	return r;
5170 }
5171 
kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)5172 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5173 {
5174 	return VM_FAULT_SIGBUS;
5175 }
5176 
kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)5177 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5178 {
5179 	int ret;
5180 
5181 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5182 		return -EINVAL;
5183 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5184 	return ret;
5185 }
5186 
kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)5187 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5188 					      u64 ident_addr)
5189 {
5190 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5191 }
5192 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages)5193 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5194 					 unsigned long kvm_nr_mmu_pages)
5195 {
5196 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5197 		return -EINVAL;
5198 
5199 	mutex_lock(&kvm->slots_lock);
5200 
5201 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5202 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5203 
5204 	mutex_unlock(&kvm->slots_lock);
5205 	return 0;
5206 }
5207 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)5208 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5209 {
5210 	return kvm->arch.n_max_mmu_pages;
5211 }
5212 
kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)5213 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5214 {
5215 	struct kvm_pic *pic = kvm->arch.vpic;
5216 	int r;
5217 
5218 	r = 0;
5219 	switch (chip->chip_id) {
5220 	case KVM_IRQCHIP_PIC_MASTER:
5221 		memcpy(&chip->chip.pic, &pic->pics[0],
5222 			sizeof(struct kvm_pic_state));
5223 		break;
5224 	case KVM_IRQCHIP_PIC_SLAVE:
5225 		memcpy(&chip->chip.pic, &pic->pics[1],
5226 			sizeof(struct kvm_pic_state));
5227 		break;
5228 	case KVM_IRQCHIP_IOAPIC:
5229 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5230 		break;
5231 	default:
5232 		r = -EINVAL;
5233 		break;
5234 	}
5235 	return r;
5236 }
5237 
kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)5238 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5239 {
5240 	struct kvm_pic *pic = kvm->arch.vpic;
5241 	int r;
5242 
5243 	r = 0;
5244 	switch (chip->chip_id) {
5245 	case KVM_IRQCHIP_PIC_MASTER:
5246 		spin_lock(&pic->lock);
5247 		memcpy(&pic->pics[0], &chip->chip.pic,
5248 			sizeof(struct kvm_pic_state));
5249 		spin_unlock(&pic->lock);
5250 		break;
5251 	case KVM_IRQCHIP_PIC_SLAVE:
5252 		spin_lock(&pic->lock);
5253 		memcpy(&pic->pics[1], &chip->chip.pic,
5254 			sizeof(struct kvm_pic_state));
5255 		spin_unlock(&pic->lock);
5256 		break;
5257 	case KVM_IRQCHIP_IOAPIC:
5258 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5259 		break;
5260 	default:
5261 		r = -EINVAL;
5262 		break;
5263 	}
5264 	kvm_pic_update_irq(pic);
5265 	return r;
5266 }
5267 
kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)5268 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5269 {
5270 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5271 
5272 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5273 
5274 	mutex_lock(&kps->lock);
5275 	memcpy(ps, &kps->channels, sizeof(*ps));
5276 	mutex_unlock(&kps->lock);
5277 	return 0;
5278 }
5279 
kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)5280 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5281 {
5282 	int i;
5283 	struct kvm_pit *pit = kvm->arch.vpit;
5284 
5285 	mutex_lock(&pit->pit_state.lock);
5286 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5287 	for (i = 0; i < 3; i++)
5288 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5289 	mutex_unlock(&pit->pit_state.lock);
5290 	return 0;
5291 }
5292 
kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)5293 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5294 {
5295 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5296 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5297 		sizeof(ps->channels));
5298 	ps->flags = kvm->arch.vpit->pit_state.flags;
5299 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5300 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5301 	return 0;
5302 }
5303 
kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)5304 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5305 {
5306 	int start = 0;
5307 	int i;
5308 	u32 prev_legacy, cur_legacy;
5309 	struct kvm_pit *pit = kvm->arch.vpit;
5310 
5311 	mutex_lock(&pit->pit_state.lock);
5312 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5313 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5314 	if (!prev_legacy && cur_legacy)
5315 		start = 1;
5316 	memcpy(&pit->pit_state.channels, &ps->channels,
5317 	       sizeof(pit->pit_state.channels));
5318 	pit->pit_state.flags = ps->flags;
5319 	for (i = 0; i < 3; i++)
5320 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5321 				   start && i == 0);
5322 	mutex_unlock(&pit->pit_state.lock);
5323 	return 0;
5324 }
5325 
kvm_vm_ioctl_reinject(struct kvm *kvm, struct kvm_reinject_control *control)5326 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5327 				 struct kvm_reinject_control *control)
5328 {
5329 	struct kvm_pit *pit = kvm->arch.vpit;
5330 
5331 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5332 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5333 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5334 	 */
5335 	mutex_lock(&pit->pit_state.lock);
5336 	kvm_pit_set_reinject(pit, control->pit_reinject);
5337 	mutex_unlock(&pit->pit_state.lock);
5338 
5339 	return 0;
5340 }
5341 
kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)5342 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5343 {
5344 	/*
5345 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5346 	 */
5347 	if (kvm_x86_ops.flush_log_dirty)
5348 		kvm_x86_ops.flush_log_dirty(kvm);
5349 }
5350 
kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, bool line_status)5351 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5352 			bool line_status)
5353 {
5354 	if (!irqchip_in_kernel(kvm))
5355 		return -ENXIO;
5356 
5357 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5358 					irq_event->irq, irq_event->level,
5359 					line_status);
5360 	return 0;
5361 }
5362 
kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)5363 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5364 			    struct kvm_enable_cap *cap)
5365 {
5366 	int r;
5367 
5368 	if (cap->flags)
5369 		return -EINVAL;
5370 
5371 	switch (cap->cap) {
5372 	case KVM_CAP_DISABLE_QUIRKS:
5373 		kvm->arch.disabled_quirks = cap->args[0];
5374 		r = 0;
5375 		break;
5376 	case KVM_CAP_SPLIT_IRQCHIP: {
5377 		mutex_lock(&kvm->lock);
5378 		r = -EINVAL;
5379 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5380 			goto split_irqchip_unlock;
5381 		r = -EEXIST;
5382 		if (irqchip_in_kernel(kvm))
5383 			goto split_irqchip_unlock;
5384 		if (kvm->created_vcpus)
5385 			goto split_irqchip_unlock;
5386 		r = kvm_setup_empty_irq_routing(kvm);
5387 		if (r)
5388 			goto split_irqchip_unlock;
5389 		/* Pairs with irqchip_in_kernel. */
5390 		smp_wmb();
5391 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5392 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5393 		r = 0;
5394 split_irqchip_unlock:
5395 		mutex_unlock(&kvm->lock);
5396 		break;
5397 	}
5398 	case KVM_CAP_X2APIC_API:
5399 		r = -EINVAL;
5400 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5401 			break;
5402 
5403 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5404 			kvm->arch.x2apic_format = true;
5405 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5406 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5407 
5408 		r = 0;
5409 		break;
5410 	case KVM_CAP_X86_DISABLE_EXITS:
5411 		r = -EINVAL;
5412 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5413 			break;
5414 
5415 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5416 			kvm_can_mwait_in_guest())
5417 			kvm->arch.mwait_in_guest = true;
5418 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5419 			kvm->arch.hlt_in_guest = true;
5420 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5421 			kvm->arch.pause_in_guest = true;
5422 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5423 			kvm->arch.cstate_in_guest = true;
5424 		r = 0;
5425 		break;
5426 	case KVM_CAP_MSR_PLATFORM_INFO:
5427 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5428 		r = 0;
5429 		break;
5430 	case KVM_CAP_EXCEPTION_PAYLOAD:
5431 		kvm->arch.exception_payload_enabled = cap->args[0];
5432 		r = 0;
5433 		break;
5434 	case KVM_CAP_X86_USER_SPACE_MSR:
5435 		r = -EINVAL;
5436 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5437 				     KVM_MSR_EXIT_REASON_UNKNOWN |
5438 				     KVM_MSR_EXIT_REASON_FILTER))
5439 			break;
5440 		kvm->arch.user_space_msr_mask = cap->args[0];
5441 		r = 0;
5442 		break;
5443 	default:
5444 		r = -EINVAL;
5445 		break;
5446 	}
5447 	return r;
5448 }
5449 
kvm_alloc_msr_filter(bool default_allow)5450 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5451 {
5452 	struct kvm_x86_msr_filter *msr_filter;
5453 
5454 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5455 	if (!msr_filter)
5456 		return NULL;
5457 
5458 	msr_filter->default_allow = default_allow;
5459 	return msr_filter;
5460 }
5461 
kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)5462 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5463 {
5464 	u32 i;
5465 
5466 	if (!msr_filter)
5467 		return;
5468 
5469 	for (i = 0; i < msr_filter->count; i++)
5470 		kfree(msr_filter->ranges[i].bitmap);
5471 
5472 	kfree(msr_filter);
5473 }
5474 
kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, struct kvm_msr_filter_range *user_range)5475 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5476 			      struct kvm_msr_filter_range *user_range)
5477 {
5478 	struct msr_bitmap_range range;
5479 	unsigned long *bitmap = NULL;
5480 	size_t bitmap_size;
5481 	int r;
5482 
5483 	if (!user_range->nmsrs)
5484 		return 0;
5485 
5486 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5487 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5488 		return -EINVAL;
5489 
5490 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5491 	if (IS_ERR(bitmap))
5492 		return PTR_ERR(bitmap);
5493 
5494 	range = (struct msr_bitmap_range) {
5495 		.flags = user_range->flags,
5496 		.base = user_range->base,
5497 		.nmsrs = user_range->nmsrs,
5498 		.bitmap = bitmap,
5499 	};
5500 
5501 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5502 		r = -EINVAL;
5503 		goto err;
5504 	}
5505 
5506 	if (!range.flags) {
5507 		r = -EINVAL;
5508 		goto err;
5509 	}
5510 
5511 	/* Everything ok, add this range identifier. */
5512 	msr_filter->ranges[msr_filter->count] = range;
5513 	msr_filter->count++;
5514 
5515 	return 0;
5516 err:
5517 	kfree(bitmap);
5518 	return r;
5519 }
5520 
kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, struct kvm_msr_filter *filter)5521 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5522 				       struct kvm_msr_filter *filter)
5523 {
5524 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5525 	bool default_allow;
5526 	bool empty = true;
5527 	int r = 0;
5528 	u32 i;
5529 
5530 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5531 		return -EINVAL;
5532 
5533 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5534 		empty &= !filter->ranges[i].nmsrs;
5535 
5536 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5537 	if (empty && !default_allow)
5538 		return -EINVAL;
5539 
5540 	new_filter = kvm_alloc_msr_filter(default_allow);
5541 	if (!new_filter)
5542 		return -ENOMEM;
5543 
5544 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5545 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5546 		if (r) {
5547 			kvm_free_msr_filter(new_filter);
5548 			return r;
5549 		}
5550 	}
5551 
5552 	mutex_lock(&kvm->lock);
5553 
5554 	/* The per-VM filter is protected by kvm->lock... */
5555 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5556 
5557 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5558 	synchronize_srcu(&kvm->srcu);
5559 
5560 	kvm_free_msr_filter(old_filter);
5561 
5562 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5563 	mutex_unlock(&kvm->lock);
5564 
5565 	return 0;
5566 }
5567 
5568 #ifdef CONFIG_KVM_COMPAT
5569 /* for KVM_X86_SET_MSR_FILTER */
5570 struct kvm_msr_filter_range_compat {
5571 	__u32 flags;
5572 	__u32 nmsrs;
5573 	__u32 base;
5574 	__u32 bitmap;
5575 };
5576 
5577 struct kvm_msr_filter_compat {
5578 	__u32 flags;
5579 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5580 };
5581 
5582 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5583 
kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)5584 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5585 			      unsigned long arg)
5586 {
5587 	void __user *argp = (void __user *)arg;
5588 	struct kvm *kvm = filp->private_data;
5589 	long r = -ENOTTY;
5590 
5591 	switch (ioctl) {
5592 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
5593 		struct kvm_msr_filter __user *user_msr_filter = argp;
5594 		struct kvm_msr_filter_compat filter_compat;
5595 		struct kvm_msr_filter filter;
5596 		int i;
5597 
5598 		if (copy_from_user(&filter_compat, user_msr_filter,
5599 				   sizeof(filter_compat)))
5600 			return -EFAULT;
5601 
5602 		filter.flags = filter_compat.flags;
5603 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5604 			struct kvm_msr_filter_range_compat *cr;
5605 
5606 			cr = &filter_compat.ranges[i];
5607 			filter.ranges[i] = (struct kvm_msr_filter_range) {
5608 				.flags = cr->flags,
5609 				.nmsrs = cr->nmsrs,
5610 				.base = cr->base,
5611 				.bitmap = (__u8 *)(ulong)cr->bitmap,
5612 			};
5613 		}
5614 
5615 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5616 		break;
5617 	}
5618 	}
5619 
5620 	return r;
5621 }
5622 #endif
5623 
kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)5624 long kvm_arch_vm_ioctl(struct file *filp,
5625 		       unsigned int ioctl, unsigned long arg)
5626 {
5627 	struct kvm *kvm = filp->private_data;
5628 	void __user *argp = (void __user *)arg;
5629 	int r = -ENOTTY;
5630 	/*
5631 	 * This union makes it completely explicit to gcc-3.x
5632 	 * that these two variables' stack usage should be
5633 	 * combined, not added together.
5634 	 */
5635 	union {
5636 		struct kvm_pit_state ps;
5637 		struct kvm_pit_state2 ps2;
5638 		struct kvm_pit_config pit_config;
5639 	} u;
5640 
5641 	switch (ioctl) {
5642 	case KVM_SET_TSS_ADDR:
5643 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5644 		break;
5645 	case KVM_SET_IDENTITY_MAP_ADDR: {
5646 		u64 ident_addr;
5647 
5648 		mutex_lock(&kvm->lock);
5649 		r = -EINVAL;
5650 		if (kvm->created_vcpus)
5651 			goto set_identity_unlock;
5652 		r = -EFAULT;
5653 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5654 			goto set_identity_unlock;
5655 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5656 set_identity_unlock:
5657 		mutex_unlock(&kvm->lock);
5658 		break;
5659 	}
5660 	case KVM_SET_NR_MMU_PAGES:
5661 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5662 		break;
5663 	case KVM_GET_NR_MMU_PAGES:
5664 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5665 		break;
5666 	case KVM_CREATE_IRQCHIP: {
5667 		mutex_lock(&kvm->lock);
5668 
5669 		r = -EEXIST;
5670 		if (irqchip_in_kernel(kvm))
5671 			goto create_irqchip_unlock;
5672 
5673 		r = -EINVAL;
5674 		if (kvm->created_vcpus)
5675 			goto create_irqchip_unlock;
5676 
5677 		r = kvm_pic_init(kvm);
5678 		if (r)
5679 			goto create_irqchip_unlock;
5680 
5681 		r = kvm_ioapic_init(kvm);
5682 		if (r) {
5683 			kvm_pic_destroy(kvm);
5684 			goto create_irqchip_unlock;
5685 		}
5686 
5687 		r = kvm_setup_default_irq_routing(kvm);
5688 		if (r) {
5689 			kvm_ioapic_destroy(kvm);
5690 			kvm_pic_destroy(kvm);
5691 			goto create_irqchip_unlock;
5692 		}
5693 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5694 		smp_wmb();
5695 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5696 	create_irqchip_unlock:
5697 		mutex_unlock(&kvm->lock);
5698 		break;
5699 	}
5700 	case KVM_CREATE_PIT:
5701 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5702 		goto create_pit;
5703 	case KVM_CREATE_PIT2:
5704 		r = -EFAULT;
5705 		if (copy_from_user(&u.pit_config, argp,
5706 				   sizeof(struct kvm_pit_config)))
5707 			goto out;
5708 	create_pit:
5709 		mutex_lock(&kvm->lock);
5710 		r = -EEXIST;
5711 		if (kvm->arch.vpit)
5712 			goto create_pit_unlock;
5713 		r = -ENOMEM;
5714 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5715 		if (kvm->arch.vpit)
5716 			r = 0;
5717 	create_pit_unlock:
5718 		mutex_unlock(&kvm->lock);
5719 		break;
5720 	case KVM_GET_IRQCHIP: {
5721 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5722 		struct kvm_irqchip *chip;
5723 
5724 		chip = memdup_user(argp, sizeof(*chip));
5725 		if (IS_ERR(chip)) {
5726 			r = PTR_ERR(chip);
5727 			goto out;
5728 		}
5729 
5730 		r = -ENXIO;
5731 		if (!irqchip_kernel(kvm))
5732 			goto get_irqchip_out;
5733 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5734 		if (r)
5735 			goto get_irqchip_out;
5736 		r = -EFAULT;
5737 		if (copy_to_user(argp, chip, sizeof(*chip)))
5738 			goto get_irqchip_out;
5739 		r = 0;
5740 	get_irqchip_out:
5741 		kfree(chip);
5742 		break;
5743 	}
5744 	case KVM_SET_IRQCHIP: {
5745 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5746 		struct kvm_irqchip *chip;
5747 
5748 		chip = memdup_user(argp, sizeof(*chip));
5749 		if (IS_ERR(chip)) {
5750 			r = PTR_ERR(chip);
5751 			goto out;
5752 		}
5753 
5754 		r = -ENXIO;
5755 		if (!irqchip_kernel(kvm))
5756 			goto set_irqchip_out;
5757 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5758 	set_irqchip_out:
5759 		kfree(chip);
5760 		break;
5761 	}
5762 	case KVM_GET_PIT: {
5763 		r = -EFAULT;
5764 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5765 			goto out;
5766 		r = -ENXIO;
5767 		if (!kvm->arch.vpit)
5768 			goto out;
5769 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5770 		if (r)
5771 			goto out;
5772 		r = -EFAULT;
5773 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5774 			goto out;
5775 		r = 0;
5776 		break;
5777 	}
5778 	case KVM_SET_PIT: {
5779 		r = -EFAULT;
5780 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5781 			goto out;
5782 		mutex_lock(&kvm->lock);
5783 		r = -ENXIO;
5784 		if (!kvm->arch.vpit)
5785 			goto set_pit_out;
5786 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5787 set_pit_out:
5788 		mutex_unlock(&kvm->lock);
5789 		break;
5790 	}
5791 	case KVM_GET_PIT2: {
5792 		r = -ENXIO;
5793 		if (!kvm->arch.vpit)
5794 			goto out;
5795 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5796 		if (r)
5797 			goto out;
5798 		r = -EFAULT;
5799 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5800 			goto out;
5801 		r = 0;
5802 		break;
5803 	}
5804 	case KVM_SET_PIT2: {
5805 		r = -EFAULT;
5806 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5807 			goto out;
5808 		mutex_lock(&kvm->lock);
5809 		r = -ENXIO;
5810 		if (!kvm->arch.vpit)
5811 			goto set_pit2_out;
5812 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5813 set_pit2_out:
5814 		mutex_unlock(&kvm->lock);
5815 		break;
5816 	}
5817 	case KVM_REINJECT_CONTROL: {
5818 		struct kvm_reinject_control control;
5819 		r =  -EFAULT;
5820 		if (copy_from_user(&control, argp, sizeof(control)))
5821 			goto out;
5822 		r = -ENXIO;
5823 		if (!kvm->arch.vpit)
5824 			goto out;
5825 		r = kvm_vm_ioctl_reinject(kvm, &control);
5826 		break;
5827 	}
5828 	case KVM_SET_BOOT_CPU_ID:
5829 		r = 0;
5830 		mutex_lock(&kvm->lock);
5831 		if (kvm->created_vcpus)
5832 			r = -EBUSY;
5833 		else
5834 			kvm->arch.bsp_vcpu_id = arg;
5835 		mutex_unlock(&kvm->lock);
5836 		break;
5837 	case KVM_XEN_HVM_CONFIG: {
5838 		struct kvm_xen_hvm_config xhc;
5839 		r = -EFAULT;
5840 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5841 			goto out;
5842 		r = -EINVAL;
5843 		if (xhc.flags)
5844 			goto out;
5845 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5846 		r = 0;
5847 		break;
5848 	}
5849 	case KVM_SET_CLOCK: {
5850 		struct kvm_clock_data user_ns;
5851 		u64 now_ns;
5852 
5853 		r = -EFAULT;
5854 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5855 			goto out;
5856 
5857 		r = -EINVAL;
5858 		if (user_ns.flags)
5859 			goto out;
5860 
5861 		r = 0;
5862 		/*
5863 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5864 		 * kvm_gen_update_masterclock() can be cut down to locked
5865 		 * pvclock_update_vm_gtod_copy().
5866 		 */
5867 		kvm_gen_update_masterclock(kvm);
5868 		now_ns = get_kvmclock_ns(kvm);
5869 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5870 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5871 		break;
5872 	}
5873 	case KVM_GET_CLOCK: {
5874 		struct kvm_clock_data user_ns;
5875 		u64 now_ns;
5876 
5877 		now_ns = get_kvmclock_ns(kvm);
5878 		user_ns.clock = now_ns;
5879 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5880 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5881 
5882 		r = -EFAULT;
5883 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5884 			goto out;
5885 		r = 0;
5886 		break;
5887 	}
5888 	case KVM_MEMORY_ENCRYPT_OP: {
5889 		r = -ENOTTY;
5890 		if (kvm_x86_ops.mem_enc_op)
5891 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5892 		break;
5893 	}
5894 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5895 		struct kvm_enc_region region;
5896 
5897 		r = -EFAULT;
5898 		if (copy_from_user(&region, argp, sizeof(region)))
5899 			goto out;
5900 
5901 		r = -ENOTTY;
5902 		if (kvm_x86_ops.mem_enc_reg_region)
5903 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5904 		break;
5905 	}
5906 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5907 		struct kvm_enc_region region;
5908 
5909 		r = -EFAULT;
5910 		if (copy_from_user(&region, argp, sizeof(region)))
5911 			goto out;
5912 
5913 		r = -ENOTTY;
5914 		if (kvm_x86_ops.mem_enc_unreg_region)
5915 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5916 		break;
5917 	}
5918 	case KVM_HYPERV_EVENTFD: {
5919 		struct kvm_hyperv_eventfd hvevfd;
5920 
5921 		r = -EFAULT;
5922 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5923 			goto out;
5924 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5925 		break;
5926 	}
5927 	case KVM_SET_PMU_EVENT_FILTER:
5928 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5929 		break;
5930 	case KVM_X86_SET_MSR_FILTER: {
5931 		struct kvm_msr_filter __user *user_msr_filter = argp;
5932 		struct kvm_msr_filter filter;
5933 
5934 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5935 			return -EFAULT;
5936 
5937 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5938 		break;
5939 	}
5940 	default:
5941 		r = -ENOTTY;
5942 	}
5943 out:
5944 	return r;
5945 }
5946 
kvm_init_msr_list(void)5947 static void kvm_init_msr_list(void)
5948 {
5949 	struct x86_pmu_capability x86_pmu;
5950 	u32 dummy[2];
5951 	unsigned i;
5952 
5953 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5954 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5955 
5956 	perf_get_x86_pmu_capability(&x86_pmu);
5957 
5958 	num_msrs_to_save = 0;
5959 	num_emulated_msrs = 0;
5960 	num_msr_based_features = 0;
5961 
5962 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5963 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5964 			continue;
5965 
5966 		/*
5967 		 * Even MSRs that are valid in the host may not be exposed
5968 		 * to the guests in some cases.
5969 		 */
5970 		switch (msrs_to_save_all[i]) {
5971 		case MSR_IA32_BNDCFGS:
5972 			if (!kvm_mpx_supported())
5973 				continue;
5974 			break;
5975 		case MSR_TSC_AUX:
5976 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5977 				continue;
5978 			break;
5979 		case MSR_IA32_UMWAIT_CONTROL:
5980 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5981 				continue;
5982 			break;
5983 		case MSR_IA32_RTIT_CTL:
5984 		case MSR_IA32_RTIT_STATUS:
5985 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5986 				continue;
5987 			break;
5988 		case MSR_IA32_RTIT_CR3_MATCH:
5989 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5990 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5991 				continue;
5992 			break;
5993 		case MSR_IA32_RTIT_OUTPUT_BASE:
5994 		case MSR_IA32_RTIT_OUTPUT_MASK:
5995 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5996 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5997 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5998 				continue;
5999 			break;
6000 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6001 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6002 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6003 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6004 				continue;
6005 			break;
6006 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6007 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6008 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6009 				continue;
6010 			break;
6011 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6012 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6013 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6014 				continue;
6015 			break;
6016 		default:
6017 			break;
6018 		}
6019 
6020 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6021 	}
6022 
6023 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6024 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
6025 			continue;
6026 
6027 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6028 	}
6029 
6030 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6031 		struct kvm_msr_entry msr;
6032 
6033 		msr.index = msr_based_features_all[i];
6034 		if (kvm_get_msr_feature(&msr))
6035 			continue;
6036 
6037 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6038 	}
6039 }
6040 
vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v)6041 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6042 			   const void *v)
6043 {
6044 	int handled = 0;
6045 	int n;
6046 
6047 	do {
6048 		n = min(len, 8);
6049 		if (!(lapic_in_kernel(vcpu) &&
6050 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6051 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6052 			break;
6053 		handled += n;
6054 		addr += n;
6055 		len -= n;
6056 		v += n;
6057 	} while (len);
6058 
6059 	return handled;
6060 }
6061 
vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)6062 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6063 {
6064 	int handled = 0;
6065 	int n;
6066 
6067 	do {
6068 		n = min(len, 8);
6069 		if (!(lapic_in_kernel(vcpu) &&
6070 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6071 					 addr, n, v))
6072 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6073 			break;
6074 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6075 		handled += n;
6076 		addr += n;
6077 		len -= n;
6078 		v += n;
6079 	} while (len);
6080 
6081 	return handled;
6082 }
6083 
kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)6084 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6085 			struct kvm_segment *var, int seg)
6086 {
6087 	kvm_x86_ops.set_segment(vcpu, var, seg);
6088 }
6089 
kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)6090 void kvm_get_segment(struct kvm_vcpu *vcpu,
6091 		     struct kvm_segment *var, int seg)
6092 {
6093 	kvm_x86_ops.get_segment(vcpu, var, seg);
6094 }
6095 
translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception)6096 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6097 			   struct x86_exception *exception)
6098 {
6099 	gpa_t t_gpa;
6100 
6101 	BUG_ON(!mmu_is_nested(vcpu));
6102 
6103 	/* NPT walks are always user-walks */
6104 	access |= PFERR_USER_MASK;
6105 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6106 
6107 	return t_gpa;
6108 }
6109 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6110 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6111 			      struct x86_exception *exception)
6112 {
6113 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6114 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6115 }
6116 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6117  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6118 				struct x86_exception *exception)
6119 {
6120 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6121 	access |= PFERR_FETCH_MASK;
6122 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6123 }
6124 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6125 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6126 			       struct x86_exception *exception)
6127 {
6128 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6129 	access |= PFERR_WRITE_MASK;
6130 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6131 }
6132 
6133 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6134 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6135 				struct x86_exception *exception)
6136 {
6137 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6138 }
6139 
kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception)6140 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6141 				      struct kvm_vcpu *vcpu, u32 access,
6142 				      struct x86_exception *exception)
6143 {
6144 	void *data = val;
6145 	int r = X86EMUL_CONTINUE;
6146 
6147 	while (bytes) {
6148 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6149 							    exception);
6150 		unsigned offset = addr & (PAGE_SIZE-1);
6151 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6152 		int ret;
6153 
6154 		if (gpa == UNMAPPED_GVA)
6155 			return X86EMUL_PROPAGATE_FAULT;
6156 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6157 					       offset, toread);
6158 		if (ret < 0) {
6159 			r = X86EMUL_IO_NEEDED;
6160 			goto out;
6161 		}
6162 
6163 		bytes -= toread;
6164 		data += toread;
6165 		addr += toread;
6166 	}
6167 out:
6168 	return r;
6169 }
6170 
6171 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6172 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6173 				gva_t addr, void *val, unsigned int bytes,
6174 				struct x86_exception *exception)
6175 {
6176 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6177 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6178 	unsigned offset;
6179 	int ret;
6180 
6181 	/* Inline kvm_read_guest_virt_helper for speed.  */
6182 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6183 						    exception);
6184 	if (unlikely(gpa == UNMAPPED_GVA))
6185 		return X86EMUL_PROPAGATE_FAULT;
6186 
6187 	offset = addr & (PAGE_SIZE-1);
6188 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6189 		bytes = (unsigned)PAGE_SIZE - offset;
6190 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6191 				       offset, bytes);
6192 	if (unlikely(ret < 0))
6193 		return X86EMUL_IO_NEEDED;
6194 
6195 	return X86EMUL_CONTINUE;
6196 }
6197 
kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6198 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6199 			       gva_t addr, void *val, unsigned int bytes,
6200 			       struct x86_exception *exception)
6201 {
6202 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6203 
6204 	/*
6205 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6206 	 * is returned, but our callers are not ready for that and they blindly
6207 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6208 	 * uninitialized kernel stack memory into cr2 and error code.
6209 	 */
6210 	memset(exception, 0, sizeof(*exception));
6211 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6212 					  exception);
6213 }
6214 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6215 
emulator_read_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system)6216 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6217 			     gva_t addr, void *val, unsigned int bytes,
6218 			     struct x86_exception *exception, bool system)
6219 {
6220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6221 	u32 access = 0;
6222 
6223 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6224 		access |= PFERR_USER_MASK;
6225 
6226 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6227 }
6228 
kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes)6229 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6230 		unsigned long addr, void *val, unsigned int bytes)
6231 {
6232 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6233 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6234 
6235 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6236 }
6237 
kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception)6238 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6239 				      struct kvm_vcpu *vcpu, u32 access,
6240 				      struct x86_exception *exception)
6241 {
6242 	void *data = val;
6243 	int r = X86EMUL_CONTINUE;
6244 
6245 	while (bytes) {
6246 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6247 							     access,
6248 							     exception);
6249 		unsigned offset = addr & (PAGE_SIZE-1);
6250 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6251 		int ret;
6252 
6253 		if (gpa == UNMAPPED_GVA)
6254 			return X86EMUL_PROPAGATE_FAULT;
6255 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6256 		if (ret < 0) {
6257 			r = X86EMUL_IO_NEEDED;
6258 			goto out;
6259 		}
6260 
6261 		bytes -= towrite;
6262 		data += towrite;
6263 		addr += towrite;
6264 	}
6265 out:
6266 	return r;
6267 }
6268 
emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system)6269 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6270 			      unsigned int bytes, struct x86_exception *exception,
6271 			      bool system)
6272 {
6273 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6274 	u32 access = PFERR_WRITE_MASK;
6275 
6276 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6277 		access |= PFERR_USER_MASK;
6278 
6279 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6280 					   access, exception);
6281 }
6282 
kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6283 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6284 				unsigned int bytes, struct x86_exception *exception)
6285 {
6286 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6287 	vcpu->arch.l1tf_flush_l1d = true;
6288 
6289 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6290 					   PFERR_WRITE_MASK, exception);
6291 }
6292 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6293 
handle_ud(struct kvm_vcpu *vcpu)6294 int handle_ud(struct kvm_vcpu *vcpu)
6295 {
6296 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6297 	int emul_type = EMULTYPE_TRAP_UD;
6298 	char sig[5]; /* ud2; .ascii "kvm" */
6299 	struct x86_exception e;
6300 
6301 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6302 		return 1;
6303 
6304 	if (force_emulation_prefix &&
6305 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6306 				sig, sizeof(sig), &e) == 0 &&
6307 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6308 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6309 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6310 	}
6311 
6312 	return kvm_emulate_instruction(vcpu, emul_type);
6313 }
6314 EXPORT_SYMBOL_GPL(handle_ud);
6315 
vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t gpa, bool write)6316 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6317 			    gpa_t gpa, bool write)
6318 {
6319 	/* For APIC access vmexit */
6320 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6321 		return 1;
6322 
6323 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6324 		trace_vcpu_match_mmio(gva, gpa, write, true);
6325 		return 1;
6326 	}
6327 
6328 	return 0;
6329 }
6330 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t *gpa, struct x86_exception *exception, bool write)6331 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6332 				gpa_t *gpa, struct x86_exception *exception,
6333 				bool write)
6334 {
6335 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6336 		| (write ? PFERR_WRITE_MASK : 0);
6337 
6338 	/*
6339 	 * currently PKRU is only applied to ept enabled guest so
6340 	 * there is no pkey in EPT page table for L1 guest or EPT
6341 	 * shadow page table for L2 guest.
6342 	 */
6343 	if (vcpu_match_mmio_gva(vcpu, gva)
6344 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6345 				 vcpu->arch.mmio_access, 0, access)) {
6346 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6347 					(gva & (PAGE_SIZE - 1));
6348 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6349 		return 1;
6350 	}
6351 
6352 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6353 
6354 	if (*gpa == UNMAPPED_GVA)
6355 		return -1;
6356 
6357 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6358 }
6359 
emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes)6360 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6361 			const void *val, int bytes)
6362 {
6363 	int ret;
6364 
6365 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6366 	if (ret < 0)
6367 		return 0;
6368 	kvm_page_track_write(vcpu, gpa, val, bytes);
6369 	return 1;
6370 }
6371 
6372 struct read_write_emulator_ops {
6373 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6374 				  int bytes);
6375 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6376 				  void *val, int bytes);
6377 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6378 			       int bytes, void *val);
6379 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6380 				    void *val, int bytes);
6381 	bool write;
6382 };
6383 
read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)6384 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6385 {
6386 	if (vcpu->mmio_read_completed) {
6387 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6388 			       vcpu->mmio_fragments[0].gpa, val);
6389 		vcpu->mmio_read_completed = 0;
6390 		return 1;
6391 	}
6392 
6393 	return 0;
6394 }
6395 
read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6396 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6397 			void *val, int bytes)
6398 {
6399 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6400 }
6401 
write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6402 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6403 			 void *val, int bytes)
6404 {
6405 	return emulator_write_phys(vcpu, gpa, val, bytes);
6406 }
6407 
write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)6408 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6409 {
6410 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6411 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6412 }
6413 
read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6414 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6415 			  void *val, int bytes)
6416 {
6417 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6418 	return X86EMUL_IO_NEEDED;
6419 }
6420 
write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6421 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6422 			   void *val, int bytes)
6423 {
6424 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6425 
6426 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6427 	return X86EMUL_CONTINUE;
6428 }
6429 
6430 static const struct read_write_emulator_ops read_emultor = {
6431 	.read_write_prepare = read_prepare,
6432 	.read_write_emulate = read_emulate,
6433 	.read_write_mmio = vcpu_mmio_read,
6434 	.read_write_exit_mmio = read_exit_mmio,
6435 };
6436 
6437 static const struct read_write_emulator_ops write_emultor = {
6438 	.read_write_emulate = write_emulate,
6439 	.read_write_mmio = write_mmio,
6440 	.read_write_exit_mmio = write_exit_mmio,
6441 	.write = true,
6442 };
6443 
emulator_read_write_onepage(unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu, const struct read_write_emulator_ops *ops)6444 static int emulator_read_write_onepage(unsigned long addr, void *val,
6445 				       unsigned int bytes,
6446 				       struct x86_exception *exception,
6447 				       struct kvm_vcpu *vcpu,
6448 				       const struct read_write_emulator_ops *ops)
6449 {
6450 	gpa_t gpa;
6451 	int handled, ret;
6452 	bool write = ops->write;
6453 	struct kvm_mmio_fragment *frag;
6454 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6455 
6456 	/*
6457 	 * If the exit was due to a NPF we may already have a GPA.
6458 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6459 	 * Note, this cannot be used on string operations since string
6460 	 * operation using rep will only have the initial GPA from the NPF
6461 	 * occurred.
6462 	 */
6463 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6464 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6465 		gpa = ctxt->gpa_val;
6466 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6467 	} else {
6468 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6469 		if (ret < 0)
6470 			return X86EMUL_PROPAGATE_FAULT;
6471 	}
6472 
6473 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6474 		return X86EMUL_CONTINUE;
6475 
6476 	/*
6477 	 * Is this MMIO handled locally?
6478 	 */
6479 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6480 	if (handled == bytes)
6481 		return X86EMUL_CONTINUE;
6482 
6483 	gpa += handled;
6484 	bytes -= handled;
6485 	val += handled;
6486 
6487 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6488 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6489 	frag->gpa = gpa;
6490 	frag->data = val;
6491 	frag->len = bytes;
6492 	return X86EMUL_CONTINUE;
6493 }
6494 
emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, const struct read_write_emulator_ops *ops)6495 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6496 			unsigned long addr,
6497 			void *val, unsigned int bytes,
6498 			struct x86_exception *exception,
6499 			const struct read_write_emulator_ops *ops)
6500 {
6501 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6502 	gpa_t gpa;
6503 	int rc;
6504 
6505 	if (ops->read_write_prepare &&
6506 		  ops->read_write_prepare(vcpu, val, bytes))
6507 		return X86EMUL_CONTINUE;
6508 
6509 	vcpu->mmio_nr_fragments = 0;
6510 
6511 	/* Crossing a page boundary? */
6512 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6513 		int now;
6514 
6515 		now = -addr & ~PAGE_MASK;
6516 		rc = emulator_read_write_onepage(addr, val, now, exception,
6517 						 vcpu, ops);
6518 
6519 		if (rc != X86EMUL_CONTINUE)
6520 			return rc;
6521 		addr += now;
6522 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6523 			addr = (u32)addr;
6524 		val += now;
6525 		bytes -= now;
6526 	}
6527 
6528 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6529 					 vcpu, ops);
6530 	if (rc != X86EMUL_CONTINUE)
6531 		return rc;
6532 
6533 	if (!vcpu->mmio_nr_fragments)
6534 		return rc;
6535 
6536 	gpa = vcpu->mmio_fragments[0].gpa;
6537 
6538 	vcpu->mmio_needed = 1;
6539 	vcpu->mmio_cur_fragment = 0;
6540 
6541 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6542 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6543 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6544 	vcpu->run->mmio.phys_addr = gpa;
6545 
6546 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6547 }
6548 
emulator_read_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception)6549 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6550 				  unsigned long addr,
6551 				  void *val,
6552 				  unsigned int bytes,
6553 				  struct x86_exception *exception)
6554 {
6555 	return emulator_read_write(ctxt, addr, val, bytes,
6556 				   exception, &read_emultor);
6557 }
6558 
emulator_write_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception)6559 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6560 			    unsigned long addr,
6561 			    const void *val,
6562 			    unsigned int bytes,
6563 			    struct x86_exception *exception)
6564 {
6565 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6566 				   exception, &write_emultor);
6567 }
6568 
6569 #define CMPXCHG_TYPE(t, ptr, old, new) \
6570 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6571 
6572 #ifdef CONFIG_X86_64
6573 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6574 #else
6575 #  define CMPXCHG64(ptr, old, new) \
6576 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6577 #endif
6578 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *exception)6579 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6580 				     unsigned long addr,
6581 				     const void *old,
6582 				     const void *new,
6583 				     unsigned int bytes,
6584 				     struct x86_exception *exception)
6585 {
6586 	struct kvm_host_map map;
6587 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588 	u64 page_line_mask;
6589 	gpa_t gpa;
6590 	char *kaddr;
6591 	bool exchanged;
6592 
6593 	/* guests cmpxchg8b have to be emulated atomically */
6594 	if (bytes > 8 || (bytes & (bytes - 1)))
6595 		goto emul_write;
6596 
6597 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6598 
6599 	if (gpa == UNMAPPED_GVA ||
6600 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6601 		goto emul_write;
6602 
6603 	/*
6604 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6605 	 * enabled in the host and the access splits a cache line.
6606 	 */
6607 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6608 		page_line_mask = ~(cache_line_size() - 1);
6609 	else
6610 		page_line_mask = PAGE_MASK;
6611 
6612 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6613 		goto emul_write;
6614 
6615 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6616 		goto emul_write;
6617 
6618 	kaddr = map.hva + offset_in_page(gpa);
6619 
6620 	switch (bytes) {
6621 	case 1:
6622 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6623 		break;
6624 	case 2:
6625 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6626 		break;
6627 	case 4:
6628 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6629 		break;
6630 	case 8:
6631 		exchanged = CMPXCHG64(kaddr, old, new);
6632 		break;
6633 	default:
6634 		BUG();
6635 	}
6636 
6637 	kvm_vcpu_unmap(vcpu, &map, true);
6638 
6639 	if (!exchanged)
6640 		return X86EMUL_CMPXCHG_FAILED;
6641 
6642 	kvm_page_track_write(vcpu, gpa, new, bytes);
6643 
6644 	return X86EMUL_CONTINUE;
6645 
6646 emul_write:
6647 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6648 
6649 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6650 }
6651 
kernel_pio(struct kvm_vcpu *vcpu, void *pd)6652 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6653 {
6654 	int r = 0, i;
6655 
6656 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6657 		if (vcpu->arch.pio.in)
6658 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6659 					    vcpu->arch.pio.size, pd);
6660 		else
6661 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6662 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6663 					     pd);
6664 		if (r)
6665 			break;
6666 		pd += vcpu->arch.pio.size;
6667 	}
6668 	return r;
6669 }
6670 
emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count, bool in)6671 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6672 			       unsigned short port, void *val,
6673 			       unsigned int count, bool in)
6674 {
6675 	vcpu->arch.pio.port = port;
6676 	vcpu->arch.pio.in = in;
6677 	vcpu->arch.pio.count  = count;
6678 	vcpu->arch.pio.size = size;
6679 
6680 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6681 		vcpu->arch.pio.count = 0;
6682 		return 1;
6683 	}
6684 
6685 	vcpu->run->exit_reason = KVM_EXIT_IO;
6686 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6687 	vcpu->run->io.size = size;
6688 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6689 	vcpu->run->io.count = count;
6690 	vcpu->run->io.port = port;
6691 
6692 	return 0;
6693 }
6694 
emulator_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count)6695 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6696 			   unsigned short port, void *val, unsigned int count)
6697 {
6698 	int ret;
6699 
6700 	if (vcpu->arch.pio.count)
6701 		goto data_avail;
6702 
6703 	memset(vcpu->arch.pio_data, 0, size * count);
6704 
6705 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6706 	if (ret) {
6707 data_avail:
6708 		memcpy(val, vcpu->arch.pio_data, size * count);
6709 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6710 		vcpu->arch.pio.count = 0;
6711 		return 1;
6712 	}
6713 
6714 	return 0;
6715 }
6716 
emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, void *val, unsigned int count)6717 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6718 				    int size, unsigned short port, void *val,
6719 				    unsigned int count)
6720 {
6721 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6722 
6723 }
6724 
emulator_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port, const void *val, unsigned int count)6725 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6726 			    unsigned short port, const void *val,
6727 			    unsigned int count)
6728 {
6729 	memcpy(vcpu->arch.pio_data, val, size * count);
6730 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6731 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6732 }
6733 
emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, const void *val, unsigned int count)6734 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6735 				     int size, unsigned short port,
6736 				     const void *val, unsigned int count)
6737 {
6738 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6739 }
6740 
get_segment_base(struct kvm_vcpu *vcpu, int seg)6741 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6742 {
6743 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6744 }
6745 
emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)6746 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6747 {
6748 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6749 }
6750 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)6751 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6752 {
6753 	if (!need_emulate_wbinvd(vcpu))
6754 		return X86EMUL_CONTINUE;
6755 
6756 	if (kvm_x86_ops.has_wbinvd_exit()) {
6757 		int cpu = get_cpu();
6758 
6759 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6760 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6761 				wbinvd_ipi, NULL, 1);
6762 		put_cpu();
6763 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6764 	} else
6765 		wbinvd();
6766 	return X86EMUL_CONTINUE;
6767 }
6768 
kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)6769 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6770 {
6771 	kvm_emulate_wbinvd_noskip(vcpu);
6772 	return kvm_skip_emulated_instruction(vcpu);
6773 }
6774 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6775 
6776 
6777 
emulator_wbinvd(struct x86_emulate_ctxt *ctxt)6778 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6779 {
6780 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6781 }
6782 
emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)6783 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6784 			   unsigned long *dest)
6785 {
6786 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6787 }
6788 
emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)6789 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6790 			   unsigned long value)
6791 {
6792 
6793 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6794 }
6795 
mk_cr_64(u64 curr_cr, u32 new_val)6796 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6797 {
6798 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6799 }
6800 
emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)6801 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6802 {
6803 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6804 	unsigned long value;
6805 
6806 	switch (cr) {
6807 	case 0:
6808 		value = kvm_read_cr0(vcpu);
6809 		break;
6810 	case 2:
6811 		value = vcpu->arch.cr2;
6812 		break;
6813 	case 3:
6814 		value = kvm_read_cr3(vcpu);
6815 		break;
6816 	case 4:
6817 		value = kvm_read_cr4(vcpu);
6818 		break;
6819 	case 8:
6820 		value = kvm_get_cr8(vcpu);
6821 		break;
6822 	default:
6823 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6824 		return 0;
6825 	}
6826 
6827 	return value;
6828 }
6829 
emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)6830 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6831 {
6832 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6833 	int res = 0;
6834 
6835 	switch (cr) {
6836 	case 0:
6837 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6838 		break;
6839 	case 2:
6840 		vcpu->arch.cr2 = val;
6841 		break;
6842 	case 3:
6843 		res = kvm_set_cr3(vcpu, val);
6844 		break;
6845 	case 4:
6846 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6847 		break;
6848 	case 8:
6849 		res = kvm_set_cr8(vcpu, val);
6850 		break;
6851 	default:
6852 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6853 		res = -1;
6854 	}
6855 
6856 	return res;
6857 }
6858 
emulator_get_cpl(struct x86_emulate_ctxt *ctxt)6859 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6860 {
6861 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6862 }
6863 
emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6864 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6865 {
6866 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6867 }
6868 
emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6869 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6870 {
6871 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6872 }
6873 
emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6874 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6875 {
6876 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6877 }
6878 
emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6879 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6880 {
6881 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6882 }
6883 
emulator_get_cached_segment_base( struct x86_emulate_ctxt *ctxt, int seg)6884 static unsigned long emulator_get_cached_segment_base(
6885 	struct x86_emulate_ctxt *ctxt, int seg)
6886 {
6887 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6888 }
6889 
emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, struct desc_struct *desc, u32 *base3, int seg)6890 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6891 				 struct desc_struct *desc, u32 *base3,
6892 				 int seg)
6893 {
6894 	struct kvm_segment var;
6895 
6896 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6897 	*selector = var.selector;
6898 
6899 	if (var.unusable) {
6900 		memset(desc, 0, sizeof(*desc));
6901 		if (base3)
6902 			*base3 = 0;
6903 		return false;
6904 	}
6905 
6906 	if (var.g)
6907 		var.limit >>= 12;
6908 	set_desc_limit(desc, var.limit);
6909 	set_desc_base(desc, (unsigned long)var.base);
6910 #ifdef CONFIG_X86_64
6911 	if (base3)
6912 		*base3 = var.base >> 32;
6913 #endif
6914 	desc->type = var.type;
6915 	desc->s = var.s;
6916 	desc->dpl = var.dpl;
6917 	desc->p = var.present;
6918 	desc->avl = var.avl;
6919 	desc->l = var.l;
6920 	desc->d = var.db;
6921 	desc->g = var.g;
6922 
6923 	return true;
6924 }
6925 
emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, u32 base3, int seg)6926 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6927 				 struct desc_struct *desc, u32 base3,
6928 				 int seg)
6929 {
6930 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6931 	struct kvm_segment var;
6932 
6933 	var.selector = selector;
6934 	var.base = get_desc_base(desc);
6935 #ifdef CONFIG_X86_64
6936 	var.base |= ((u64)base3) << 32;
6937 #endif
6938 	var.limit = get_desc_limit(desc);
6939 	if (desc->g)
6940 		var.limit = (var.limit << 12) | 0xfff;
6941 	var.type = desc->type;
6942 	var.dpl = desc->dpl;
6943 	var.db = desc->d;
6944 	var.s = desc->s;
6945 	var.l = desc->l;
6946 	var.g = desc->g;
6947 	var.avl = desc->avl;
6948 	var.present = desc->p;
6949 	var.unusable = !var.present;
6950 	var.padding = 0;
6951 
6952 	kvm_set_segment(vcpu, &var, seg);
6953 	return;
6954 }
6955 
emulator_get_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata)6956 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6957 			    u32 msr_index, u64 *pdata)
6958 {
6959 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6960 	int r;
6961 
6962 	r = kvm_get_msr(vcpu, msr_index, pdata);
6963 
6964 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6965 		/* Bounce to user space */
6966 		return X86EMUL_IO_NEEDED;
6967 	}
6968 
6969 	return r;
6970 }
6971 
emulator_set_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 data)6972 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6973 			    u32 msr_index, u64 data)
6974 {
6975 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6976 	int r;
6977 
6978 	r = kvm_set_msr(vcpu, msr_index, data);
6979 
6980 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6981 		/* Bounce to user space */
6982 		return X86EMUL_IO_NEEDED;
6983 	}
6984 
6985 	return r;
6986 }
6987 
emulator_get_smbase(struct x86_emulate_ctxt *ctxt)6988 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6989 {
6990 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6991 
6992 	return vcpu->arch.smbase;
6993 }
6994 
emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)6995 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6996 {
6997 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6998 
6999 	vcpu->arch.smbase = smbase;
7000 }
7001 
emulator_check_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc)7002 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7003 			      u32 pmc)
7004 {
7005 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7006 }
7007 
emulator_read_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc, u64 *pdata)7008 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7009 			     u32 pmc, u64 *pdata)
7010 {
7011 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7012 }
7013 
emulator_halt(struct x86_emulate_ctxt *ctxt)7014 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7015 {
7016 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7017 }
7018 
emulator_intercept(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage)7019 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7020 			      struct x86_instruction_info *info,
7021 			      enum x86_intercept_stage stage)
7022 {
7023 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
7024 					    &ctxt->exception);
7025 }
7026 
emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only)7027 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7028 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7029 			      bool exact_only)
7030 {
7031 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7032 }
7033 
emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)7034 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7035 {
7036 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7037 }
7038 
emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)7039 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7040 {
7041 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7042 }
7043 
emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)7044 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7045 {
7046 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7047 }
7048 
emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)7049 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7050 {
7051 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7052 }
7053 
emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)7054 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7055 {
7056 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
7057 }
7058 
emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)7059 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7060 {
7061 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7062 }
7063 
emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)7064 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7065 {
7066 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7067 }
7068 
emulator_get_hflags(struct x86_emulate_ctxt *ctxt)7069 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7070 {
7071 	return emul_to_vcpu(ctxt)->arch.hflags;
7072 }
7073 
emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)7074 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7075 {
7076 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7077 
7078 	vcpu->arch.hflags = emul_flags;
7079 	kvm_mmu_reset_context(vcpu);
7080 }
7081 
emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, const char *smstate)7082 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7083 				  const char *smstate)
7084 {
7085 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7086 }
7087 
emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)7088 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7089 {
7090 	kvm_smm_changed(emul_to_vcpu(ctxt));
7091 }
7092 
emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)7093 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7094 {
7095 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7096 }
7097 
7098 static const struct x86_emulate_ops emulate_ops = {
7099 	.read_gpr            = emulator_read_gpr,
7100 	.write_gpr           = emulator_write_gpr,
7101 	.read_std            = emulator_read_std,
7102 	.write_std           = emulator_write_std,
7103 	.read_phys           = kvm_read_guest_phys_system,
7104 	.fetch               = kvm_fetch_guest_virt,
7105 	.read_emulated       = emulator_read_emulated,
7106 	.write_emulated      = emulator_write_emulated,
7107 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7108 	.invlpg              = emulator_invlpg,
7109 	.pio_in_emulated     = emulator_pio_in_emulated,
7110 	.pio_out_emulated    = emulator_pio_out_emulated,
7111 	.get_segment         = emulator_get_segment,
7112 	.set_segment         = emulator_set_segment,
7113 	.get_cached_segment_base = emulator_get_cached_segment_base,
7114 	.get_gdt             = emulator_get_gdt,
7115 	.get_idt	     = emulator_get_idt,
7116 	.set_gdt             = emulator_set_gdt,
7117 	.set_idt	     = emulator_set_idt,
7118 	.get_cr              = emulator_get_cr,
7119 	.set_cr              = emulator_set_cr,
7120 	.cpl                 = emulator_get_cpl,
7121 	.get_dr              = emulator_get_dr,
7122 	.set_dr              = emulator_set_dr,
7123 	.get_smbase          = emulator_get_smbase,
7124 	.set_smbase          = emulator_set_smbase,
7125 	.set_msr             = emulator_set_msr,
7126 	.get_msr             = emulator_get_msr,
7127 	.check_pmc	     = emulator_check_pmc,
7128 	.read_pmc            = emulator_read_pmc,
7129 	.halt                = emulator_halt,
7130 	.wbinvd              = emulator_wbinvd,
7131 	.fix_hypercall       = emulator_fix_hypercall,
7132 	.intercept           = emulator_intercept,
7133 	.get_cpuid           = emulator_get_cpuid,
7134 	.guest_has_long_mode = emulator_guest_has_long_mode,
7135 	.guest_has_movbe     = emulator_guest_has_movbe,
7136 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7137 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7138 	.set_nmi_mask        = emulator_set_nmi_mask,
7139 	.get_hflags          = emulator_get_hflags,
7140 	.set_hflags          = emulator_set_hflags,
7141 	.pre_leave_smm       = emulator_pre_leave_smm,
7142 	.post_leave_smm      = emulator_post_leave_smm,
7143 	.set_xcr             = emulator_set_xcr,
7144 };
7145 
toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)7146 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7147 {
7148 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7149 	/*
7150 	 * an sti; sti; sequence only disable interrupts for the first
7151 	 * instruction. So, if the last instruction, be it emulated or
7152 	 * not, left the system with the INT_STI flag enabled, it
7153 	 * means that the last instruction is an sti. We should not
7154 	 * leave the flag on in this case. The same goes for mov ss
7155 	 */
7156 	if (int_shadow & mask)
7157 		mask = 0;
7158 	if (unlikely(int_shadow || mask)) {
7159 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7160 		if (!mask)
7161 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7162 	}
7163 }
7164 
inject_emulated_exception(struct kvm_vcpu *vcpu)7165 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7166 {
7167 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7168 	if (ctxt->exception.vector == PF_VECTOR)
7169 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7170 
7171 	if (ctxt->exception.error_code_valid)
7172 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7173 				      ctxt->exception.error_code);
7174 	else
7175 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7176 	return false;
7177 }
7178 
alloc_emulate_ctxt(struct kvm_vcpu *vcpu)7179 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7180 {
7181 	struct x86_emulate_ctxt *ctxt;
7182 
7183 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7184 	if (!ctxt) {
7185 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7186 		return NULL;
7187 	}
7188 
7189 	ctxt->vcpu = vcpu;
7190 	ctxt->ops = &emulate_ops;
7191 	vcpu->arch.emulate_ctxt = ctxt;
7192 
7193 	return ctxt;
7194 }
7195 
init_emulate_ctxt(struct kvm_vcpu *vcpu)7196 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7197 {
7198 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7199 	int cs_db, cs_l;
7200 
7201 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7202 
7203 	ctxt->gpa_available = false;
7204 	ctxt->eflags = kvm_get_rflags(vcpu);
7205 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7206 
7207 	ctxt->eip = kvm_rip_read(vcpu);
7208 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7209 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7210 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7211 		     cs_db				? X86EMUL_MODE_PROT32 :
7212 							  X86EMUL_MODE_PROT16;
7213 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7214 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7215 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7216 
7217 	ctxt->interruptibility = 0;
7218 	ctxt->have_exception = false;
7219 	ctxt->exception.vector = -1;
7220 	ctxt->perm_ok = false;
7221 
7222 	init_decode_cache(ctxt);
7223 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7224 }
7225 
kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)7226 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7227 {
7228 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7229 	int ret;
7230 
7231 	init_emulate_ctxt(vcpu);
7232 
7233 	ctxt->op_bytes = 2;
7234 	ctxt->ad_bytes = 2;
7235 	ctxt->_eip = ctxt->eip + inc_eip;
7236 	ret = emulate_int_real(ctxt, irq);
7237 
7238 	if (ret != X86EMUL_CONTINUE) {
7239 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7240 	} else {
7241 		ctxt->eip = ctxt->_eip;
7242 		kvm_rip_write(vcpu, ctxt->eip);
7243 		kvm_set_rflags(vcpu, ctxt->eflags);
7244 	}
7245 }
7246 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7247 
handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)7248 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7249 {
7250 	++vcpu->stat.insn_emulation_fail;
7251 	trace_kvm_emulate_insn_failed(vcpu);
7252 
7253 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7254 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7255 		return 1;
7256 	}
7257 
7258 	if (emulation_type & EMULTYPE_SKIP) {
7259 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7260 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7261 		vcpu->run->internal.ndata = 0;
7262 		return 0;
7263 	}
7264 
7265 	kvm_queue_exception(vcpu, UD_VECTOR);
7266 
7267 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7268 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7269 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7270 		vcpu->run->internal.ndata = 0;
7271 		return 0;
7272 	}
7273 
7274 	return 1;
7275 }
7276 
reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, bool write_fault_to_shadow_pgtable, int emulation_type)7277 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7278 				  bool write_fault_to_shadow_pgtable,
7279 				  int emulation_type)
7280 {
7281 	gpa_t gpa = cr2_or_gpa;
7282 	kvm_pfn_t pfn;
7283 
7284 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7285 		return false;
7286 
7287 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7288 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7289 		return false;
7290 
7291 	if (!vcpu->arch.mmu->direct_map) {
7292 		/*
7293 		 * Write permission should be allowed since only
7294 		 * write access need to be emulated.
7295 		 */
7296 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7297 
7298 		/*
7299 		 * If the mapping is invalid in guest, let cpu retry
7300 		 * it to generate fault.
7301 		 */
7302 		if (gpa == UNMAPPED_GVA)
7303 			return true;
7304 	}
7305 
7306 	/*
7307 	 * Do not retry the unhandleable instruction if it faults on the
7308 	 * readonly host memory, otherwise it will goto a infinite loop:
7309 	 * retry instruction -> write #PF -> emulation fail -> retry
7310 	 * instruction -> ...
7311 	 */
7312 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7313 
7314 	/*
7315 	 * If the instruction failed on the error pfn, it can not be fixed,
7316 	 * report the error to userspace.
7317 	 */
7318 	if (is_error_noslot_pfn(pfn))
7319 		return false;
7320 
7321 	kvm_release_pfn_clean(pfn);
7322 
7323 	/* The instructions are well-emulated on direct mmu. */
7324 	if (vcpu->arch.mmu->direct_map) {
7325 		unsigned int indirect_shadow_pages;
7326 
7327 		spin_lock(&vcpu->kvm->mmu_lock);
7328 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7329 		spin_unlock(&vcpu->kvm->mmu_lock);
7330 
7331 		if (indirect_shadow_pages)
7332 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7333 
7334 		return true;
7335 	}
7336 
7337 	/*
7338 	 * if emulation was due to access to shadowed page table
7339 	 * and it failed try to unshadow page and re-enter the
7340 	 * guest to let CPU execute the instruction.
7341 	 */
7342 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7343 
7344 	/*
7345 	 * If the access faults on its page table, it can not
7346 	 * be fixed by unprotecting shadow page and it should
7347 	 * be reported to userspace.
7348 	 */
7349 	return !write_fault_to_shadow_pgtable;
7350 }
7351 
retry_instruction(struct x86_emulate_ctxt *ctxt, gpa_t cr2_or_gpa, int emulation_type)7352 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7353 			      gpa_t cr2_or_gpa,  int emulation_type)
7354 {
7355 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7356 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7357 
7358 	last_retry_eip = vcpu->arch.last_retry_eip;
7359 	last_retry_addr = vcpu->arch.last_retry_addr;
7360 
7361 	/*
7362 	 * If the emulation is caused by #PF and it is non-page_table
7363 	 * writing instruction, it means the VM-EXIT is caused by shadow
7364 	 * page protected, we can zap the shadow page and retry this
7365 	 * instruction directly.
7366 	 *
7367 	 * Note: if the guest uses a non-page-table modifying instruction
7368 	 * on the PDE that points to the instruction, then we will unmap
7369 	 * the instruction and go to an infinite loop. So, we cache the
7370 	 * last retried eip and the last fault address, if we meet the eip
7371 	 * and the address again, we can break out of the potential infinite
7372 	 * loop.
7373 	 */
7374 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7375 
7376 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7377 		return false;
7378 
7379 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7380 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7381 		return false;
7382 
7383 	if (x86_page_table_writing_insn(ctxt))
7384 		return false;
7385 
7386 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7387 		return false;
7388 
7389 	vcpu->arch.last_retry_eip = ctxt->eip;
7390 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7391 
7392 	if (!vcpu->arch.mmu->direct_map)
7393 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7394 
7395 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7396 
7397 	return true;
7398 }
7399 
7400 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7401 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7402 
kvm_smm_changed(struct kvm_vcpu *vcpu)7403 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7404 {
7405 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7406 		/* This is a good place to trace that we are exiting SMM.  */
7407 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7408 
7409 		/* Process a latched INIT or SMI, if any.  */
7410 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7411 	}
7412 
7413 	kvm_mmu_reset_context(vcpu);
7414 }
7415 
kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, unsigned long *db)7416 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7417 				unsigned long *db)
7418 {
7419 	u32 dr6 = 0;
7420 	int i;
7421 	u32 enable, rwlen;
7422 
7423 	enable = dr7;
7424 	rwlen = dr7 >> 16;
7425 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7426 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7427 			dr6 |= (1 << i);
7428 	return dr6;
7429 }
7430 
kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)7431 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7432 {
7433 	struct kvm_run *kvm_run = vcpu->run;
7434 
7435 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7436 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7437 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7438 		kvm_run->debug.arch.exception = DB_VECTOR;
7439 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7440 		return 0;
7441 	}
7442 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7443 	return 1;
7444 }
7445 
kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)7446 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7447 {
7448 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7449 	int r;
7450 
7451 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7452 	if (unlikely(!r))
7453 		return 0;
7454 
7455 	/*
7456 	 * rflags is the old, "raw" value of the flags.  The new value has
7457 	 * not been saved yet.
7458 	 *
7459 	 * This is correct even for TF set by the guest, because "the
7460 	 * processor will not generate this exception after the instruction
7461 	 * that sets the TF flag".
7462 	 */
7463 	if (unlikely(rflags & X86_EFLAGS_TF))
7464 		r = kvm_vcpu_do_singlestep(vcpu);
7465 	return r;
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7468 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)7469 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7470 {
7471 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7472 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7473 		struct kvm_run *kvm_run = vcpu->run;
7474 		unsigned long eip = kvm_get_linear_rip(vcpu);
7475 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7476 					   vcpu->arch.guest_debug_dr7,
7477 					   vcpu->arch.eff_db);
7478 
7479 		if (dr6 != 0) {
7480 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7481 			kvm_run->debug.arch.pc = eip;
7482 			kvm_run->debug.arch.exception = DB_VECTOR;
7483 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7484 			*r = 0;
7485 			return true;
7486 		}
7487 	}
7488 
7489 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7490 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7491 		unsigned long eip = kvm_get_linear_rip(vcpu);
7492 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7493 					   vcpu->arch.dr7,
7494 					   vcpu->arch.db);
7495 
7496 		if (dr6 != 0) {
7497 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7498 			*r = 1;
7499 			return true;
7500 		}
7501 	}
7502 
7503 	return false;
7504 }
7505 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)7506 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7507 {
7508 	switch (ctxt->opcode_len) {
7509 	case 1:
7510 		switch (ctxt->b) {
7511 		case 0xe4:	/* IN */
7512 		case 0xe5:
7513 		case 0xec:
7514 		case 0xed:
7515 		case 0xe6:	/* OUT */
7516 		case 0xe7:
7517 		case 0xee:
7518 		case 0xef:
7519 		case 0x6c:	/* INS */
7520 		case 0x6d:
7521 		case 0x6e:	/* OUTS */
7522 		case 0x6f:
7523 			return true;
7524 		}
7525 		break;
7526 	case 2:
7527 		switch (ctxt->b) {
7528 		case 0x33:	/* RDPMC */
7529 			return true;
7530 		}
7531 		break;
7532 	}
7533 
7534 	return false;
7535 }
7536 
7537 /*
7538  * Decode an instruction for emulation.  The caller is responsible for handling
7539  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
7540  * (and wrong) when emulating on an intercepted fault-like exception[*], as
7541  * code breakpoints have higher priority and thus have already been done by
7542  * hardware.
7543  *
7544  * [*] Except #MC, which is higher priority, but KVM should never emulate in
7545  *     response to a machine check.
7546  */
x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, void *insn, int insn_len)7547 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7548 				    void *insn, int insn_len)
7549 {
7550 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7551 	int r;
7552 
7553 	init_emulate_ctxt(vcpu);
7554 
7555 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7556 
7557 	r = x86_decode_insn(ctxt, insn, insn_len);
7558 
7559 	trace_kvm_emulate_insn_start(vcpu);
7560 	++vcpu->stat.insn_emulation;
7561 
7562 	return r;
7563 }
7564 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7565 
x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int emulation_type, void *insn, int insn_len)7566 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7567 			    int emulation_type, void *insn, int insn_len)
7568 {
7569 	int r;
7570 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7571 	bool writeback = true;
7572 	bool write_fault_to_spt;
7573 
7574 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7575 		return 1;
7576 
7577 	vcpu->arch.l1tf_flush_l1d = true;
7578 
7579 	/*
7580 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7581 	 * never reused.
7582 	 */
7583 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7584 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7585 
7586 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7587 		kvm_clear_exception_queue(vcpu);
7588 
7589 		/*
7590 		 * Return immediately if RIP hits a code breakpoint, such #DBs
7591 		 * are fault-like and are higher priority than any faults on
7592 		 * the code fetch itself.
7593 		 */
7594 		if (!(emulation_type & EMULTYPE_SKIP) &&
7595 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
7596 			return r;
7597 
7598 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7599 						    insn, insn_len);
7600 		if (r != EMULATION_OK)  {
7601 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7602 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7603 				kvm_queue_exception(vcpu, UD_VECTOR);
7604 				return 1;
7605 			}
7606 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7607 						  write_fault_to_spt,
7608 						  emulation_type))
7609 				return 1;
7610 
7611 			if (ctxt->have_exception &&
7612 			    !(emulation_type & EMULTYPE_SKIP)) {
7613 				/*
7614 				 * #UD should result in just EMULATION_FAILED, and trap-like
7615 				 * exception should not be encountered during decode.
7616 				 */
7617 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7618 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7619 				inject_emulated_exception(vcpu);
7620 				return 1;
7621 			}
7622 			return handle_emulation_failure(vcpu, emulation_type);
7623 		}
7624 	}
7625 
7626 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7627 	    !is_vmware_backdoor_opcode(ctxt)) {
7628 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7629 		return 1;
7630 	}
7631 
7632 	/*
7633 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7634 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7635 	 * updating interruptibility state and injecting single-step #DBs.
7636 	 */
7637 	if (emulation_type & EMULTYPE_SKIP) {
7638 		kvm_rip_write(vcpu, ctxt->_eip);
7639 		if (ctxt->eflags & X86_EFLAGS_RF)
7640 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7641 		return 1;
7642 	}
7643 
7644 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7645 		return 1;
7646 
7647 	/* this is needed for vmware backdoor interface to work since it
7648 	   changes registers values  during IO operation */
7649 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7650 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7651 		emulator_invalidate_register_cache(ctxt);
7652 	}
7653 
7654 restart:
7655 	if (emulation_type & EMULTYPE_PF) {
7656 		/* Save the faulting GPA (cr2) in the address field */
7657 		ctxt->exception.address = cr2_or_gpa;
7658 
7659 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7660 		if (vcpu->arch.mmu->direct_map) {
7661 			ctxt->gpa_available = true;
7662 			ctxt->gpa_val = cr2_or_gpa;
7663 		}
7664 	} else {
7665 		/* Sanitize the address out of an abundance of paranoia. */
7666 		ctxt->exception.address = 0;
7667 	}
7668 
7669 	r = x86_emulate_insn(ctxt);
7670 
7671 	if (r == EMULATION_INTERCEPTED)
7672 		return 1;
7673 
7674 	if (r == EMULATION_FAILED) {
7675 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7676 					emulation_type))
7677 			return 1;
7678 
7679 		return handle_emulation_failure(vcpu, emulation_type);
7680 	}
7681 
7682 	if (ctxt->have_exception) {
7683 		r = 1;
7684 		if (inject_emulated_exception(vcpu))
7685 			return r;
7686 	} else if (vcpu->arch.pio.count) {
7687 		if (!vcpu->arch.pio.in) {
7688 			/* FIXME: return into emulator if single-stepping.  */
7689 			vcpu->arch.pio.count = 0;
7690 		} else {
7691 			writeback = false;
7692 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7693 		}
7694 		r = 0;
7695 	} else if (vcpu->mmio_needed) {
7696 		++vcpu->stat.mmio_exits;
7697 
7698 		if (!vcpu->mmio_is_write)
7699 			writeback = false;
7700 		r = 0;
7701 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7702 	} else if (r == EMULATION_RESTART)
7703 		goto restart;
7704 	else
7705 		r = 1;
7706 
7707 	if (writeback) {
7708 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7709 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7710 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7711 
7712 		/*
7713 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7714 		 * only supports code breakpoints and general detect #DB, both
7715 		 * of which are fault-like.
7716 		 */
7717 		if (!ctxt->have_exception ||
7718 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7719 			kvm_rip_write(vcpu, ctxt->eip);
7720 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7721 				r = kvm_vcpu_do_singlestep(vcpu);
7722 			if (kvm_x86_ops.update_emulated_instruction)
7723 				kvm_x86_ops.update_emulated_instruction(vcpu);
7724 			__kvm_set_rflags(vcpu, ctxt->eflags);
7725 		}
7726 
7727 		/*
7728 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7729 		 * do nothing, and it will be requested again as soon as
7730 		 * the shadow expires.  But we still need to check here,
7731 		 * because POPF has no interrupt shadow.
7732 		 */
7733 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7734 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7735 	} else
7736 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7737 
7738 	return r;
7739 }
7740 
kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)7741 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7742 {
7743 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7744 }
7745 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7746 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, void *insn, int insn_len)7747 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7748 					void *insn, int insn_len)
7749 {
7750 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7751 }
7752 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7753 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)7754 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7755 {
7756 	vcpu->arch.pio.count = 0;
7757 	return 1;
7758 }
7759 
complete_fast_pio_out(struct kvm_vcpu *vcpu)7760 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7761 {
7762 	vcpu->arch.pio.count = 0;
7763 
7764 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7765 		return 1;
7766 
7767 	return kvm_skip_emulated_instruction(vcpu);
7768 }
7769 
kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)7770 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7771 			    unsigned short port)
7772 {
7773 	unsigned long val = kvm_rax_read(vcpu);
7774 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7775 
7776 	if (ret)
7777 		return ret;
7778 
7779 	/*
7780 	 * Workaround userspace that relies on old KVM behavior of %rip being
7781 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7782 	 */
7783 	if (port == 0x7e &&
7784 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7785 		vcpu->arch.complete_userspace_io =
7786 			complete_fast_pio_out_port_0x7e;
7787 		kvm_skip_emulated_instruction(vcpu);
7788 	} else {
7789 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7790 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7791 	}
7792 	return 0;
7793 }
7794 
complete_fast_pio_in(struct kvm_vcpu *vcpu)7795 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7796 {
7797 	unsigned long val;
7798 
7799 	/* We should only ever be called with arch.pio.count equal to 1 */
7800 	BUG_ON(vcpu->arch.pio.count != 1);
7801 
7802 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7803 		vcpu->arch.pio.count = 0;
7804 		return 1;
7805 	}
7806 
7807 	/* For size less than 4 we merge, else we zero extend */
7808 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7809 
7810 	/*
7811 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7812 	 * the copy and tracing
7813 	 */
7814 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7815 	kvm_rax_write(vcpu, val);
7816 
7817 	return kvm_skip_emulated_instruction(vcpu);
7818 }
7819 
kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)7820 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7821 			   unsigned short port)
7822 {
7823 	unsigned long val;
7824 	int ret;
7825 
7826 	/* For size less than 4 we merge, else we zero extend */
7827 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7828 
7829 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7830 	if (ret) {
7831 		kvm_rax_write(vcpu, val);
7832 		return ret;
7833 	}
7834 
7835 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7836 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7837 
7838 	return 0;
7839 }
7840 
kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)7841 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7842 {
7843 	int ret;
7844 
7845 	if (in)
7846 		ret = kvm_fast_pio_in(vcpu, size, port);
7847 	else
7848 		ret = kvm_fast_pio_out(vcpu, size, port);
7849 	return ret && kvm_skip_emulated_instruction(vcpu);
7850 }
7851 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7852 
kvmclock_cpu_down_prep(unsigned int cpu)7853 static int kvmclock_cpu_down_prep(unsigned int cpu)
7854 {
7855 	__this_cpu_write(cpu_tsc_khz, 0);
7856 	return 0;
7857 }
7858 
tsc_khz_changed(void *data)7859 static void tsc_khz_changed(void *data)
7860 {
7861 	struct cpufreq_freqs *freq = data;
7862 	unsigned long khz = 0;
7863 
7864 	if (data)
7865 		khz = freq->new;
7866 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7867 		khz = cpufreq_quick_get(raw_smp_processor_id());
7868 	if (!khz)
7869 		khz = tsc_khz;
7870 	__this_cpu_write(cpu_tsc_khz, khz);
7871 }
7872 
7873 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7874 static void kvm_hyperv_tsc_notifier(void)
7875 {
7876 	struct kvm *kvm;
7877 	struct kvm_vcpu *vcpu;
7878 	int cpu;
7879 
7880 	mutex_lock(&kvm_lock);
7881 	list_for_each_entry(kvm, &vm_list, vm_list)
7882 		kvm_make_mclock_inprogress_request(kvm);
7883 
7884 	hyperv_stop_tsc_emulation();
7885 
7886 	/* TSC frequency always matches when on Hyper-V */
7887 	for_each_present_cpu(cpu)
7888 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7889 	kvm_max_guest_tsc_khz = tsc_khz;
7890 
7891 	list_for_each_entry(kvm, &vm_list, vm_list) {
7892 		struct kvm_arch *ka = &kvm->arch;
7893 
7894 		spin_lock(&ka->pvclock_gtod_sync_lock);
7895 
7896 		pvclock_update_vm_gtod_copy(kvm);
7897 
7898 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7899 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7900 
7901 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7902 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7903 
7904 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7905 	}
7906 	mutex_unlock(&kvm_lock);
7907 }
7908 #endif
7909 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)7910 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7911 {
7912 	struct kvm *kvm;
7913 	struct kvm_vcpu *vcpu;
7914 	int i, send_ipi = 0;
7915 
7916 	/*
7917 	 * We allow guests to temporarily run on slowing clocks,
7918 	 * provided we notify them after, or to run on accelerating
7919 	 * clocks, provided we notify them before.  Thus time never
7920 	 * goes backwards.
7921 	 *
7922 	 * However, we have a problem.  We can't atomically update
7923 	 * the frequency of a given CPU from this function; it is
7924 	 * merely a notifier, which can be called from any CPU.
7925 	 * Changing the TSC frequency at arbitrary points in time
7926 	 * requires a recomputation of local variables related to
7927 	 * the TSC for each VCPU.  We must flag these local variables
7928 	 * to be updated and be sure the update takes place with the
7929 	 * new frequency before any guests proceed.
7930 	 *
7931 	 * Unfortunately, the combination of hotplug CPU and frequency
7932 	 * change creates an intractable locking scenario; the order
7933 	 * of when these callouts happen is undefined with respect to
7934 	 * CPU hotplug, and they can race with each other.  As such,
7935 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7936 	 * undefined; you can actually have a CPU frequency change take
7937 	 * place in between the computation of X and the setting of the
7938 	 * variable.  To protect against this problem, all updates of
7939 	 * the per_cpu tsc_khz variable are done in an interrupt
7940 	 * protected IPI, and all callers wishing to update the value
7941 	 * must wait for a synchronous IPI to complete (which is trivial
7942 	 * if the caller is on the CPU already).  This establishes the
7943 	 * necessary total order on variable updates.
7944 	 *
7945 	 * Note that because a guest time update may take place
7946 	 * anytime after the setting of the VCPU's request bit, the
7947 	 * correct TSC value must be set before the request.  However,
7948 	 * to ensure the update actually makes it to any guest which
7949 	 * starts running in hardware virtualization between the set
7950 	 * and the acquisition of the spinlock, we must also ping the
7951 	 * CPU after setting the request bit.
7952 	 *
7953 	 */
7954 
7955 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7956 
7957 	mutex_lock(&kvm_lock);
7958 	list_for_each_entry(kvm, &vm_list, vm_list) {
7959 		kvm_for_each_vcpu(i, vcpu, kvm) {
7960 			if (vcpu->cpu != cpu)
7961 				continue;
7962 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7963 			if (vcpu->cpu != raw_smp_processor_id())
7964 				send_ipi = 1;
7965 		}
7966 	}
7967 	mutex_unlock(&kvm_lock);
7968 
7969 	if (freq->old < freq->new && send_ipi) {
7970 		/*
7971 		 * We upscale the frequency.  Must make the guest
7972 		 * doesn't see old kvmclock values while running with
7973 		 * the new frequency, otherwise we risk the guest sees
7974 		 * time go backwards.
7975 		 *
7976 		 * In case we update the frequency for another cpu
7977 		 * (which might be in guest context) send an interrupt
7978 		 * to kick the cpu out of guest context.  Next time
7979 		 * guest context is entered kvmclock will be updated,
7980 		 * so the guest will not see stale values.
7981 		 */
7982 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7983 	}
7984 }
7985 
kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)7986 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7987 				     void *data)
7988 {
7989 	struct cpufreq_freqs *freq = data;
7990 	int cpu;
7991 
7992 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7993 		return 0;
7994 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7995 		return 0;
7996 
7997 	for_each_cpu(cpu, freq->policy->cpus)
7998 		__kvmclock_cpufreq_notifier(freq, cpu);
7999 
8000 	return 0;
8001 }
8002 
8003 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8004 	.notifier_call  = kvmclock_cpufreq_notifier
8005 };
8006 
kvmclock_cpu_online(unsigned int cpu)8007 static int kvmclock_cpu_online(unsigned int cpu)
8008 {
8009 	tsc_khz_changed(NULL);
8010 	return 0;
8011 }
8012 
kvm_timer_init(void)8013 static void kvm_timer_init(void)
8014 {
8015 	max_tsc_khz = tsc_khz;
8016 
8017 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8018 #ifdef CONFIG_CPU_FREQ
8019 		struct cpufreq_policy *policy;
8020 		int cpu;
8021 
8022 		cpu = get_cpu();
8023 		policy = cpufreq_cpu_get(cpu);
8024 		if (policy) {
8025 			if (policy->cpuinfo.max_freq)
8026 				max_tsc_khz = policy->cpuinfo.max_freq;
8027 			cpufreq_cpu_put(policy);
8028 		}
8029 		put_cpu();
8030 #endif
8031 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8032 					  CPUFREQ_TRANSITION_NOTIFIER);
8033 	}
8034 
8035 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8036 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8037 }
8038 
8039 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8040 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8041 
kvm_is_in_guest(void)8042 int kvm_is_in_guest(void)
8043 {
8044 	return __this_cpu_read(current_vcpu) != NULL;
8045 }
8046 
kvm_is_user_mode(void)8047 static int kvm_is_user_mode(void)
8048 {
8049 	int user_mode = 3;
8050 
8051 	if (__this_cpu_read(current_vcpu))
8052 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
8053 
8054 	return user_mode != 0;
8055 }
8056 
kvm_get_guest_ip(void)8057 static unsigned long kvm_get_guest_ip(void)
8058 {
8059 	unsigned long ip = 0;
8060 
8061 	if (__this_cpu_read(current_vcpu))
8062 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8063 
8064 	return ip;
8065 }
8066 
kvm_handle_intel_pt_intr(void)8067 static void kvm_handle_intel_pt_intr(void)
8068 {
8069 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8070 
8071 	kvm_make_request(KVM_REQ_PMI, vcpu);
8072 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8073 			(unsigned long *)&vcpu->arch.pmu.global_status);
8074 }
8075 
8076 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8077 	.is_in_guest		= kvm_is_in_guest,
8078 	.is_user_mode		= kvm_is_user_mode,
8079 	.get_guest_ip		= kvm_get_guest_ip,
8080 	.handle_intel_pt_intr	= NULL,
8081 };
8082 
8083 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct *work)8084 static void pvclock_gtod_update_fn(struct work_struct *work)
8085 {
8086 	struct kvm *kvm;
8087 
8088 	struct kvm_vcpu *vcpu;
8089 	int i;
8090 
8091 	mutex_lock(&kvm_lock);
8092 	list_for_each_entry(kvm, &vm_list, vm_list)
8093 		kvm_for_each_vcpu(i, vcpu, kvm)
8094 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8095 	atomic_set(&kvm_guest_has_master_clock, 0);
8096 	mutex_unlock(&kvm_lock);
8097 }
8098 
8099 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8100 
8101 /*
8102  * Indirection to move queue_work() out of the tk_core.seq write held
8103  * region to prevent possible deadlocks against time accessors which
8104  * are invoked with work related locks held.
8105  */
pvclock_irq_work_fn(struct irq_work *w)8106 static void pvclock_irq_work_fn(struct irq_work *w)
8107 {
8108 	queue_work(system_long_wq, &pvclock_gtod_work);
8109 }
8110 
8111 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8112 
8113 /*
8114  * Notification about pvclock gtod data update.
8115  */
pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, void *priv)8116 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8117 			       void *priv)
8118 {
8119 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8120 	struct timekeeper *tk = priv;
8121 
8122 	update_pvclock_gtod(tk);
8123 
8124 	/*
8125 	 * Disable master clock if host does not trust, or does not use,
8126 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8127 	 * this is invoked with tk_core.seq write held.
8128 	 */
8129 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8130 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8131 		irq_work_queue(&pvclock_irq_work);
8132 	return 0;
8133 }
8134 
8135 static struct notifier_block pvclock_gtod_notifier = {
8136 	.notifier_call = pvclock_gtod_notify,
8137 };
8138 #endif
8139 
kvm_arch_init(void *opaque)8140 int kvm_arch_init(void *opaque)
8141 {
8142 	struct kvm_x86_init_ops *ops = opaque;
8143 	int r;
8144 
8145 	if (kvm_x86_ops.hardware_enable) {
8146 		printk(KERN_ERR "kvm: already loaded the other module\n");
8147 		r = -EEXIST;
8148 		goto out;
8149 	}
8150 
8151 	if (!ops->cpu_has_kvm_support()) {
8152 		pr_err_ratelimited("kvm: no hardware support\n");
8153 		r = -EOPNOTSUPP;
8154 		goto out;
8155 	}
8156 	if (ops->disabled_by_bios()) {
8157 		pr_err_ratelimited("kvm: disabled by bios\n");
8158 		r = -EOPNOTSUPP;
8159 		goto out;
8160 	}
8161 
8162 	/*
8163 	 * KVM explicitly assumes that the guest has an FPU and
8164 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8165 	 * vCPU's FPU state as a fxregs_state struct.
8166 	 */
8167 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8168 		printk(KERN_ERR "kvm: inadequate fpu\n");
8169 		r = -EOPNOTSUPP;
8170 		goto out;
8171 	}
8172 
8173 	r = -ENOMEM;
8174 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8175 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8176 					  NULL);
8177 	if (!x86_fpu_cache) {
8178 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8179 		goto out;
8180 	}
8181 
8182 	x86_emulator_cache = kvm_alloc_emulator_cache();
8183 	if (!x86_emulator_cache) {
8184 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8185 		goto out_free_x86_fpu_cache;
8186 	}
8187 
8188 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8189 	if (!user_return_msrs) {
8190 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8191 		goto out_free_x86_emulator_cache;
8192 	}
8193 
8194 	r = kvm_mmu_vendor_module_init();
8195 	if (r)
8196 		goto out_free_percpu;
8197 
8198 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8199 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8200 			PT_PRESENT_MASK, 0, sme_me_mask);
8201 	kvm_timer_init();
8202 
8203 	if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8204 		kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8205 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8206 
8207 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8208 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8209 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8210 	}
8211 
8212 	kvm_lapic_init();
8213 	if (pi_inject_timer == -1)
8214 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8215 #ifdef CONFIG_X86_64
8216 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8217 
8218 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8219 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8220 #endif
8221 
8222 	return 0;
8223 
8224 out_free_percpu:
8225 	free_percpu(user_return_msrs);
8226 out_free_x86_emulator_cache:
8227 	kmem_cache_destroy(x86_emulator_cache);
8228 out_free_x86_fpu_cache:
8229 	kmem_cache_destroy(x86_fpu_cache);
8230 out:
8231 	return r;
8232 }
8233 
kvm_arch_exit(void)8234 void kvm_arch_exit(void)
8235 {
8236 #ifdef CONFIG_X86_64
8237 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8238 		clear_hv_tscchange_cb();
8239 #endif
8240 	kvm_lapic_exit();
8241 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8242 	kvm_guest_cbs.handle_intel_pt_intr = NULL;
8243 
8244 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8245 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8246 					    CPUFREQ_TRANSITION_NOTIFIER);
8247 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8248 #ifdef CONFIG_X86_64
8249 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8250 	irq_work_sync(&pvclock_irq_work);
8251 	cancel_work_sync(&pvclock_gtod_work);
8252 #endif
8253 	kvm_x86_ops.hardware_enable = NULL;
8254 	kvm_mmu_vendor_module_exit();
8255 	free_percpu(user_return_msrs);
8256 	kmem_cache_destroy(x86_emulator_cache);
8257 	kmem_cache_destroy(x86_fpu_cache);
8258 }
8259 
kvm_vcpu_halt(struct kvm_vcpu *vcpu)8260 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8261 {
8262 	++vcpu->stat.halt_exits;
8263 	if (lapic_in_kernel(vcpu)) {
8264 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8265 		return 1;
8266 	} else {
8267 		vcpu->run->exit_reason = KVM_EXIT_HLT;
8268 		return 0;
8269 	}
8270 }
8271 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8272 
kvm_emulate_halt(struct kvm_vcpu *vcpu)8273 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8274 {
8275 	int ret = kvm_skip_emulated_instruction(vcpu);
8276 	/*
8277 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8278 	 * KVM_EXIT_DEBUG here.
8279 	 */
8280 	return kvm_vcpu_halt(vcpu) && ret;
8281 }
8282 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8283 
8284 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, unsigned long clock_type)8285 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8286 			        unsigned long clock_type)
8287 {
8288 	struct kvm_clock_pairing clock_pairing;
8289 	struct timespec64 ts;
8290 	u64 cycle;
8291 	int ret;
8292 
8293 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8294 		return -KVM_EOPNOTSUPP;
8295 
8296 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8297 		return -KVM_EOPNOTSUPP;
8298 
8299 	clock_pairing.sec = ts.tv_sec;
8300 	clock_pairing.nsec = ts.tv_nsec;
8301 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8302 	clock_pairing.flags = 0;
8303 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8304 
8305 	ret = 0;
8306 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8307 			    sizeof(struct kvm_clock_pairing)))
8308 		ret = -KVM_EFAULT;
8309 
8310 	return ret;
8311 }
8312 #endif
8313 
8314 /*
8315  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8316  *
8317  * @apicid - apicid of vcpu to be kicked.
8318  */
kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)8319 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8320 {
8321 	/*
8322 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8323 	 * common code, e.g. for tracing. Defer initialization to the compiler.
8324 	 */
8325 	struct kvm_lapic_irq lapic_irq = {
8326 		.delivery_mode = APIC_DM_REMRD,
8327 		.dest_mode = APIC_DEST_PHYSICAL,
8328 		.shorthand = APIC_DEST_NOSHORT,
8329 		.dest_id = apicid,
8330 	};
8331 
8332 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8333 }
8334 
kvm_apicv_activated(struct kvm *kvm)8335 bool kvm_apicv_activated(struct kvm *kvm)
8336 {
8337 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8338 }
8339 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8340 
kvm_apicv_init(struct kvm *kvm, bool enable)8341 void kvm_apicv_init(struct kvm *kvm, bool enable)
8342 {
8343 	if (enable)
8344 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8345 			  &kvm->arch.apicv_inhibit_reasons);
8346 	else
8347 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8348 			&kvm->arch.apicv_inhibit_reasons);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8351 
kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)8352 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8353 {
8354 	struct kvm_vcpu *target = NULL;
8355 	struct kvm_apic_map *map;
8356 
8357 	rcu_read_lock();
8358 	map = rcu_dereference(kvm->arch.apic_map);
8359 
8360 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8361 		target = map->phys_map[dest_id]->vcpu;
8362 
8363 	rcu_read_unlock();
8364 
8365 	if (target && READ_ONCE(target->ready))
8366 		kvm_vcpu_yield_to(target);
8367 }
8368 
kvm_emulate_hypercall(struct kvm_vcpu *vcpu)8369 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8370 {
8371 	unsigned long nr, a0, a1, a2, a3, ret;
8372 	int op_64_bit;
8373 
8374 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8375 		return kvm_hv_hypercall(vcpu);
8376 
8377 	nr = kvm_rax_read(vcpu);
8378 	a0 = kvm_rbx_read(vcpu);
8379 	a1 = kvm_rcx_read(vcpu);
8380 	a2 = kvm_rdx_read(vcpu);
8381 	a3 = kvm_rsi_read(vcpu);
8382 
8383 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8384 
8385 	op_64_bit = is_64_bit_mode(vcpu);
8386 	if (!op_64_bit) {
8387 		nr &= 0xFFFFFFFF;
8388 		a0 &= 0xFFFFFFFF;
8389 		a1 &= 0xFFFFFFFF;
8390 		a2 &= 0xFFFFFFFF;
8391 		a3 &= 0xFFFFFFFF;
8392 	}
8393 
8394 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8395 		ret = -KVM_EPERM;
8396 		goto out;
8397 	}
8398 
8399 	ret = -KVM_ENOSYS;
8400 
8401 	switch (nr) {
8402 	case KVM_HC_VAPIC_POLL_IRQ:
8403 		ret = 0;
8404 		break;
8405 	case KVM_HC_KICK_CPU:
8406 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8407 			break;
8408 
8409 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8410 		kvm_sched_yield(vcpu->kvm, a1);
8411 		ret = 0;
8412 		break;
8413 #ifdef CONFIG_X86_64
8414 	case KVM_HC_CLOCK_PAIRING:
8415 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8416 		break;
8417 #endif
8418 	case KVM_HC_SEND_IPI:
8419 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8420 			break;
8421 
8422 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8423 		break;
8424 	case KVM_HC_SCHED_YIELD:
8425 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8426 			break;
8427 
8428 		kvm_sched_yield(vcpu->kvm, a0);
8429 		ret = 0;
8430 		break;
8431 	default:
8432 		ret = -KVM_ENOSYS;
8433 		break;
8434 	}
8435 out:
8436 	if (!op_64_bit)
8437 		ret = (u32)ret;
8438 	kvm_rax_write(vcpu, ret);
8439 
8440 	++vcpu->stat.hypercalls;
8441 	return kvm_skip_emulated_instruction(vcpu);
8442 }
8443 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8444 
emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)8445 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8446 {
8447 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8448 	char instruction[3];
8449 	unsigned long rip = kvm_rip_read(vcpu);
8450 
8451 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8452 
8453 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8454 		&ctxt->exception);
8455 }
8456 
dm_request_for_irq_injection(struct kvm_vcpu *vcpu)8457 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8458 {
8459 	return vcpu->run->request_interrupt_window &&
8460 		likely(!pic_in_kernel(vcpu->kvm));
8461 }
8462 
post_kvm_run_save(struct kvm_vcpu *vcpu)8463 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8464 {
8465 	struct kvm_run *kvm_run = vcpu->run;
8466 
8467 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8468 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8469 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8470 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8471 	kvm_run->ready_for_interrupt_injection =
8472 		pic_in_kernel(vcpu->kvm) ||
8473 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8474 }
8475 
update_cr8_intercept(struct kvm_vcpu *vcpu)8476 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8477 {
8478 	int max_irr, tpr;
8479 
8480 	if (!kvm_x86_ops.update_cr8_intercept)
8481 		return;
8482 
8483 	if (!lapic_in_kernel(vcpu))
8484 		return;
8485 
8486 	if (vcpu->arch.apicv_active)
8487 		return;
8488 
8489 	if (!vcpu->arch.apic->vapic_addr)
8490 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8491 	else
8492 		max_irr = -1;
8493 
8494 	if (max_irr != -1)
8495 		max_irr >>= 4;
8496 
8497 	tpr = kvm_lapic_get_cr8(vcpu);
8498 
8499 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8500 }
8501 
kvm_inject_exception(struct kvm_vcpu *vcpu)8502 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8503 {
8504 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
8505 				vcpu->arch.exception.has_error_code,
8506 				vcpu->arch.exception.error_code,
8507 				vcpu->arch.exception.injected);
8508 
8509 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8510 		vcpu->arch.exception.error_code = false;
8511 	kvm_x86_ops.queue_exception(vcpu);
8512 }
8513 
inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)8514 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8515 {
8516 	int r;
8517 	bool can_inject = true;
8518 
8519 	/* try to reinject previous events if any */
8520 
8521 	if (vcpu->arch.exception.injected) {
8522 		kvm_inject_exception(vcpu);
8523 		can_inject = false;
8524 	}
8525 	/*
8526 	 * Do not inject an NMI or interrupt if there is a pending
8527 	 * exception.  Exceptions and interrupts are recognized at
8528 	 * instruction boundaries, i.e. the start of an instruction.
8529 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8530 	 * NMIs and interrupts, i.e. traps are recognized before an
8531 	 * NMI/interrupt that's pending on the same instruction.
8532 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8533 	 * priority, but are only generated (pended) during instruction
8534 	 * execution, i.e. a pending fault-like exception means the
8535 	 * fault occurred on the *previous* instruction and must be
8536 	 * serviced prior to recognizing any new events in order to
8537 	 * fully complete the previous instruction.
8538 	 */
8539 	else if (!vcpu->arch.exception.pending) {
8540 		if (vcpu->arch.nmi_injected) {
8541 			kvm_x86_ops.set_nmi(vcpu);
8542 			can_inject = false;
8543 		} else if (vcpu->arch.interrupt.injected) {
8544 			kvm_x86_ops.set_irq(vcpu);
8545 			can_inject = false;
8546 		}
8547 	}
8548 
8549 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8550 		     vcpu->arch.exception.pending);
8551 
8552 	/*
8553 	 * Call check_nested_events() even if we reinjected a previous event
8554 	 * in order for caller to determine if it should require immediate-exit
8555 	 * from L2 to L1 due to pending L1 events which require exit
8556 	 * from L2 to L1.
8557 	 */
8558 	if (is_guest_mode(vcpu)) {
8559 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8560 		if (r < 0)
8561 			goto busy;
8562 	}
8563 
8564 	/* try to inject new event if pending */
8565 	if (vcpu->arch.exception.pending) {
8566 		/*
8567 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8568 		 * value pushed on the stack.  Trap-like exception and all #DBs
8569 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
8570 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8571 		 *
8572 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8573 		 * describe the behavior of General Detect #DBs, which are
8574 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
8575 		 */
8576 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8577 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8578 					     X86_EFLAGS_RF);
8579 
8580 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8581 			kvm_deliver_exception_payload(vcpu);
8582 			if (vcpu->arch.dr7 & DR7_GD) {
8583 				vcpu->arch.dr7 &= ~DR7_GD;
8584 				kvm_update_dr7(vcpu);
8585 			}
8586 		}
8587 
8588 		kvm_inject_exception(vcpu);
8589 
8590 		vcpu->arch.exception.pending = false;
8591 		vcpu->arch.exception.injected = true;
8592 
8593 		can_inject = false;
8594 	}
8595 
8596 	/*
8597 	 * Finally, inject interrupt events.  If an event cannot be injected
8598 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8599 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8600 	 * and can architecturally be injected, but we cannot do it right now:
8601 	 * an interrupt could have arrived just now and we have to inject it
8602 	 * as a vmexit, or there could already an event in the queue, which is
8603 	 * indicated by can_inject.  In that case we request an immediate exit
8604 	 * in order to make progress and get back here for another iteration.
8605 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8606 	 */
8607 	if (vcpu->arch.smi_pending) {
8608 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8609 		if (r < 0)
8610 			goto busy;
8611 		if (r) {
8612 			vcpu->arch.smi_pending = false;
8613 			++vcpu->arch.smi_count;
8614 			enter_smm(vcpu);
8615 			can_inject = false;
8616 		} else
8617 			kvm_x86_ops.enable_smi_window(vcpu);
8618 	}
8619 
8620 	if (vcpu->arch.nmi_pending) {
8621 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8622 		if (r < 0)
8623 			goto busy;
8624 		if (r) {
8625 			--vcpu->arch.nmi_pending;
8626 			vcpu->arch.nmi_injected = true;
8627 			kvm_x86_ops.set_nmi(vcpu);
8628 			can_inject = false;
8629 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8630 		}
8631 		if (vcpu->arch.nmi_pending)
8632 			kvm_x86_ops.enable_nmi_window(vcpu);
8633 	}
8634 
8635 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8636 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8637 		if (r < 0)
8638 			goto busy;
8639 		if (r) {
8640 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8641 			kvm_x86_ops.set_irq(vcpu);
8642 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8643 		}
8644 		if (kvm_cpu_has_injectable_intr(vcpu))
8645 			kvm_x86_ops.enable_irq_window(vcpu);
8646 	}
8647 
8648 	if (is_guest_mode(vcpu) &&
8649 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8650 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8651 		*req_immediate_exit = true;
8652 
8653 	WARN_ON(vcpu->arch.exception.pending);
8654 	return;
8655 
8656 busy:
8657 	*req_immediate_exit = true;
8658 	return;
8659 }
8660 
process_nmi(struct kvm_vcpu *vcpu)8661 static void process_nmi(struct kvm_vcpu *vcpu)
8662 {
8663 	unsigned limit = 2;
8664 
8665 	/*
8666 	 * x86 is limited to one NMI running, and one NMI pending after it.
8667 	 * If an NMI is already in progress, limit further NMIs to just one.
8668 	 * Otherwise, allow two (and we'll inject the first one immediately).
8669 	 */
8670 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8671 		limit = 1;
8672 
8673 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8674 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8675 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8676 }
8677 
enter_smm_get_segment_flags(struct kvm_segment *seg)8678 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8679 {
8680 	u32 flags = 0;
8681 	flags |= seg->g       << 23;
8682 	flags |= seg->db      << 22;
8683 	flags |= seg->l       << 21;
8684 	flags |= seg->avl     << 20;
8685 	flags |= seg->present << 15;
8686 	flags |= seg->dpl     << 13;
8687 	flags |= seg->s       << 12;
8688 	flags |= seg->type    << 8;
8689 	return flags;
8690 }
8691 
enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)8692 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8693 {
8694 	struct kvm_segment seg;
8695 	int offset;
8696 
8697 	kvm_get_segment(vcpu, &seg, n);
8698 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8699 
8700 	if (n < 3)
8701 		offset = 0x7f84 + n * 12;
8702 	else
8703 		offset = 0x7f2c + (n - 3) * 12;
8704 
8705 	put_smstate(u32, buf, offset + 8, seg.base);
8706 	put_smstate(u32, buf, offset + 4, seg.limit);
8707 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8708 }
8709 
8710 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)8711 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8712 {
8713 	struct kvm_segment seg;
8714 	int offset;
8715 	u16 flags;
8716 
8717 	kvm_get_segment(vcpu, &seg, n);
8718 	offset = 0x7e00 + n * 16;
8719 
8720 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8721 	put_smstate(u16, buf, offset, seg.selector);
8722 	put_smstate(u16, buf, offset + 2, flags);
8723 	put_smstate(u32, buf, offset + 4, seg.limit);
8724 	put_smstate(u64, buf, offset + 8, seg.base);
8725 }
8726 #endif
8727 
enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)8728 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8729 {
8730 	struct desc_ptr dt;
8731 	struct kvm_segment seg;
8732 	unsigned long val;
8733 	int i;
8734 
8735 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8736 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8737 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8738 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8739 
8740 	for (i = 0; i < 8; i++)
8741 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8742 
8743 	kvm_get_dr(vcpu, 6, &val);
8744 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8745 	kvm_get_dr(vcpu, 7, &val);
8746 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8747 
8748 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8749 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8750 	put_smstate(u32, buf, 0x7f64, seg.base);
8751 	put_smstate(u32, buf, 0x7f60, seg.limit);
8752 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8753 
8754 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8755 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8756 	put_smstate(u32, buf, 0x7f80, seg.base);
8757 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8758 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8759 
8760 	kvm_x86_ops.get_gdt(vcpu, &dt);
8761 	put_smstate(u32, buf, 0x7f74, dt.address);
8762 	put_smstate(u32, buf, 0x7f70, dt.size);
8763 
8764 	kvm_x86_ops.get_idt(vcpu, &dt);
8765 	put_smstate(u32, buf, 0x7f58, dt.address);
8766 	put_smstate(u32, buf, 0x7f54, dt.size);
8767 
8768 	for (i = 0; i < 6; i++)
8769 		enter_smm_save_seg_32(vcpu, buf, i);
8770 
8771 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8772 
8773 	/* revision id */
8774 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8775 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8776 }
8777 
8778 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)8779 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8780 {
8781 	struct desc_ptr dt;
8782 	struct kvm_segment seg;
8783 	unsigned long val;
8784 	int i;
8785 
8786 	for (i = 0; i < 16; i++)
8787 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8788 
8789 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8790 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8791 
8792 	kvm_get_dr(vcpu, 6, &val);
8793 	put_smstate(u64, buf, 0x7f68, val);
8794 	kvm_get_dr(vcpu, 7, &val);
8795 	put_smstate(u64, buf, 0x7f60, val);
8796 
8797 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8798 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8799 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8800 
8801 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8802 
8803 	/* revision id */
8804 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8805 
8806 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8807 
8808 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8809 	put_smstate(u16, buf, 0x7e90, seg.selector);
8810 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8811 	put_smstate(u32, buf, 0x7e94, seg.limit);
8812 	put_smstate(u64, buf, 0x7e98, seg.base);
8813 
8814 	kvm_x86_ops.get_idt(vcpu, &dt);
8815 	put_smstate(u32, buf, 0x7e84, dt.size);
8816 	put_smstate(u64, buf, 0x7e88, dt.address);
8817 
8818 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8819 	put_smstate(u16, buf, 0x7e70, seg.selector);
8820 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8821 	put_smstate(u32, buf, 0x7e74, seg.limit);
8822 	put_smstate(u64, buf, 0x7e78, seg.base);
8823 
8824 	kvm_x86_ops.get_gdt(vcpu, &dt);
8825 	put_smstate(u32, buf, 0x7e64, dt.size);
8826 	put_smstate(u64, buf, 0x7e68, dt.address);
8827 
8828 	for (i = 0; i < 6; i++)
8829 		enter_smm_save_seg_64(vcpu, buf, i);
8830 }
8831 #endif
8832 
enter_smm(struct kvm_vcpu *vcpu)8833 static void enter_smm(struct kvm_vcpu *vcpu)
8834 {
8835 	struct kvm_segment cs, ds;
8836 	struct desc_ptr dt;
8837 	char buf[512];
8838 	u32 cr0;
8839 
8840 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8841 	memset(buf, 0, 512);
8842 #ifdef CONFIG_X86_64
8843 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8844 		enter_smm_save_state_64(vcpu, buf);
8845 	else
8846 #endif
8847 		enter_smm_save_state_32(vcpu, buf);
8848 
8849 	/*
8850 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8851 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8852 	 * the SMM state-save area.
8853 	 */
8854 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8855 
8856 	vcpu->arch.hflags |= HF_SMM_MASK;
8857 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8858 
8859 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8860 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8861 	else
8862 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8863 
8864 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8865 	kvm_rip_write(vcpu, 0x8000);
8866 
8867 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8868 	kvm_x86_ops.set_cr0(vcpu, cr0);
8869 	vcpu->arch.cr0 = cr0;
8870 
8871 	kvm_x86_ops.set_cr4(vcpu, 0);
8872 
8873 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8874 	dt.address = dt.size = 0;
8875 	kvm_x86_ops.set_idt(vcpu, &dt);
8876 
8877 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8878 
8879 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8880 	cs.base = vcpu->arch.smbase;
8881 
8882 	ds.selector = 0;
8883 	ds.base = 0;
8884 
8885 	cs.limit    = ds.limit = 0xffffffff;
8886 	cs.type     = ds.type = 0x3;
8887 	cs.dpl      = ds.dpl = 0;
8888 	cs.db       = ds.db = 0;
8889 	cs.s        = ds.s = 1;
8890 	cs.l        = ds.l = 0;
8891 	cs.g        = ds.g = 1;
8892 	cs.avl      = ds.avl = 0;
8893 	cs.present  = ds.present = 1;
8894 	cs.unusable = ds.unusable = 0;
8895 	cs.padding  = ds.padding = 0;
8896 
8897 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8898 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8899 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8900 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8901 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8902 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8903 
8904 #ifdef CONFIG_X86_64
8905 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8906 		kvm_x86_ops.set_efer(vcpu, 0);
8907 #endif
8908 
8909 	kvm_update_cpuid_runtime(vcpu);
8910 	kvm_mmu_reset_context(vcpu);
8911 }
8912 
process_smi(struct kvm_vcpu *vcpu)8913 static void process_smi(struct kvm_vcpu *vcpu)
8914 {
8915 	vcpu->arch.smi_pending = true;
8916 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8917 }
8918 
kvm_make_scan_ioapic_request_mask(struct kvm *kvm, unsigned long *vcpu_bitmap)8919 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8920 				       unsigned long *vcpu_bitmap)
8921 {
8922 	cpumask_var_t cpus;
8923 
8924 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8925 
8926 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8927 				    NULL, vcpu_bitmap, cpus);
8928 
8929 	free_cpumask_var(cpus);
8930 }
8931 
kvm_make_scan_ioapic_request(struct kvm *kvm)8932 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8933 {
8934 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8935 }
8936 
kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)8937 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8938 {
8939 	if (!lapic_in_kernel(vcpu))
8940 		return;
8941 
8942 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8943 	kvm_apic_update_apicv(vcpu);
8944 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8945 }
8946 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8947 
8948 /*
8949  * NOTE: Do not hold any lock prior to calling this.
8950  *
8951  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8952  * locked, because it calls __x86_set_memory_region() which does
8953  * synchronize_srcu(&kvm->srcu).
8954  */
kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)8955 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8956 {
8957 	struct kvm_vcpu *except;
8958 	unsigned long old, new, expected;
8959 
8960 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8961 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8962 		return;
8963 
8964 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8965 	do {
8966 		expected = new = old;
8967 		if (activate)
8968 			__clear_bit(bit, &new);
8969 		else
8970 			__set_bit(bit, &new);
8971 		if (new == old)
8972 			break;
8973 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8974 	} while (old != expected);
8975 
8976 	if (!!old == !!new)
8977 		return;
8978 
8979 	trace_kvm_apicv_update_request(activate, bit);
8980 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8981 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8982 
8983 	/*
8984 	 * Sending request to update APICV for all other vcpus,
8985 	 * while update the calling vcpu immediately instead of
8986 	 * waiting for another #VMEXIT to handle the request.
8987 	 */
8988 	except = kvm_get_running_vcpu();
8989 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8990 					 except);
8991 	if (except)
8992 		kvm_vcpu_update_apicv(except);
8993 }
8994 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8995 
vcpu_scan_ioapic(struct kvm_vcpu *vcpu)8996 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8997 {
8998 	if (!kvm_apic_present(vcpu))
8999 		return;
9000 
9001 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9002 
9003 	if (irqchip_split(vcpu->kvm))
9004 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9005 	else {
9006 		if (vcpu->arch.apicv_active)
9007 			kvm_x86_ops.sync_pir_to_irr(vcpu);
9008 		if (ioapic_in_kernel(vcpu->kvm))
9009 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9010 	}
9011 
9012 	if (is_guest_mode(vcpu))
9013 		vcpu->arch.load_eoi_exitmap_pending = true;
9014 	else
9015 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9016 }
9017 
vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)9018 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9019 {
9020 	u64 eoi_exit_bitmap[4];
9021 
9022 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9023 		return;
9024 
9025 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
9026 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
9027 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
9028 }
9029 
kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, unsigned long start, unsigned long end)9030 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9031 					    unsigned long start, unsigned long end)
9032 {
9033 	unsigned long apic_address;
9034 
9035 	/*
9036 	 * The physical address of apic access page is stored in the VMCS.
9037 	 * Update it when it becomes invalid.
9038 	 */
9039 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9040 	if (start <= apic_address && apic_address < end)
9041 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9042 }
9043 
kvm_arch_guest_memory_reclaimed(struct kvm *kvm)9044 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9045 {
9046 	if (kvm_x86_ops.guest_memory_reclaimed)
9047 		kvm_x86_ops.guest_memory_reclaimed(kvm);
9048 }
9049 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)9050 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9051 {
9052 	if (!lapic_in_kernel(vcpu))
9053 		return;
9054 
9055 	if (!kvm_x86_ops.set_apic_access_page_addr)
9056 		return;
9057 
9058 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
9059 }
9060 
__kvm_request_immediate_exit(struct kvm_vcpu *vcpu)9061 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9062 {
9063 	smp_send_reschedule(vcpu->cpu);
9064 }
9065 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9066 
9067 /*
9068  * Returns 1 to let vcpu_run() continue the guest execution loop without
9069  * exiting to the userspace.  Otherwise, the value will be returned to the
9070  * userspace.
9071  */
vcpu_enter_guest(struct kvm_vcpu *vcpu)9072 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9073 {
9074 	int r;
9075 	bool req_int_win =
9076 		dm_request_for_irq_injection(vcpu) &&
9077 		kvm_cpu_accept_dm_intr(vcpu);
9078 	fastpath_t exit_fastpath;
9079 
9080 	bool req_immediate_exit = false;
9081 
9082 	if (kvm_request_pending(vcpu)) {
9083 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9084 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9085 				r = 0;
9086 				goto out;
9087 			}
9088 		}
9089 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9090 			kvm_mmu_unload(vcpu);
9091 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9092 			__kvm_migrate_timers(vcpu);
9093 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9094 			kvm_gen_update_masterclock(vcpu->kvm);
9095 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9096 			kvm_gen_kvmclock_update(vcpu);
9097 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9098 			r = kvm_guest_time_update(vcpu);
9099 			if (unlikely(r))
9100 				goto out;
9101 		}
9102 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9103 			kvm_mmu_sync_roots(vcpu);
9104 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9105 			kvm_mmu_load_pgd(vcpu);
9106 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9107 			kvm_vcpu_flush_tlb_all(vcpu);
9108 
9109 			/* Flushing all ASIDs flushes the current ASID... */
9110 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9111 		}
9112 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9113 			kvm_vcpu_flush_tlb_current(vcpu);
9114 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9115 			kvm_vcpu_flush_tlb_guest(vcpu);
9116 
9117 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9118 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9119 			r = 0;
9120 			goto out;
9121 		}
9122 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9123 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9124 			vcpu->mmio_needed = 0;
9125 			r = 0;
9126 			goto out;
9127 		}
9128 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9129 			/* Page is swapped out. Do synthetic halt */
9130 			vcpu->arch.apf.halted = true;
9131 			r = 1;
9132 			goto out;
9133 		}
9134 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9135 			record_steal_time(vcpu);
9136 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9137 			process_smi(vcpu);
9138 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9139 			process_nmi(vcpu);
9140 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9141 			kvm_pmu_handle_event(vcpu);
9142 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9143 			kvm_pmu_deliver_pmi(vcpu);
9144 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9145 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9146 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9147 				     vcpu->arch.ioapic_handled_vectors)) {
9148 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9149 				vcpu->run->eoi.vector =
9150 						vcpu->arch.pending_ioapic_eoi;
9151 				r = 0;
9152 				goto out;
9153 			}
9154 		}
9155 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9156 			vcpu_scan_ioapic(vcpu);
9157 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9158 			vcpu_load_eoi_exitmap(vcpu);
9159 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9160 			kvm_vcpu_reload_apic_access_page(vcpu);
9161 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9162 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9163 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9164 			r = 0;
9165 			goto out;
9166 		}
9167 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9168 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9169 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9170 			r = 0;
9171 			goto out;
9172 		}
9173 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9174 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9175 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9176 			r = 0;
9177 			goto out;
9178 		}
9179 
9180 		/*
9181 		 * KVM_REQ_HV_STIMER has to be processed after
9182 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9183 		 * depend on the guest clock being up-to-date
9184 		 */
9185 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9186 			kvm_hv_process_stimers(vcpu);
9187 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9188 			kvm_vcpu_update_apicv(vcpu);
9189 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9190 			kvm_check_async_pf_completion(vcpu);
9191 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9192 			kvm_x86_ops.msr_filter_changed(vcpu);
9193 	}
9194 
9195 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9196 		++vcpu->stat.req_event;
9197 		kvm_apic_accept_events(vcpu);
9198 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9199 			r = 1;
9200 			goto out;
9201 		}
9202 
9203 		inject_pending_event(vcpu, &req_immediate_exit);
9204 		if (req_int_win)
9205 			kvm_x86_ops.enable_irq_window(vcpu);
9206 
9207 		if (kvm_lapic_enabled(vcpu)) {
9208 			update_cr8_intercept(vcpu);
9209 			kvm_lapic_sync_to_vapic(vcpu);
9210 		}
9211 	}
9212 
9213 	r = kvm_mmu_reload(vcpu);
9214 	if (unlikely(r)) {
9215 		goto cancel_injection;
9216 	}
9217 
9218 	preempt_disable();
9219 
9220 	kvm_x86_ops.prepare_guest_switch(vcpu);
9221 
9222 	/*
9223 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9224 	 * IPI are then delayed after guest entry, which ensures that they
9225 	 * result in virtual interrupt delivery.
9226 	 */
9227 	local_irq_disable();
9228 	vcpu->mode = IN_GUEST_MODE;
9229 
9230 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9231 
9232 	/*
9233 	 * 1) We should set ->mode before checking ->requests.  Please see
9234 	 * the comment in kvm_vcpu_exiting_guest_mode().
9235 	 *
9236 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9237 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9238 	 * (see vmx_deliver_posted_interrupt).
9239 	 *
9240 	 * 3) This also orders the write to mode from any reads to the page
9241 	 * tables done while the VCPU is running.  Please see the comment
9242 	 * in kvm_flush_remote_tlbs.
9243 	 */
9244 	smp_mb__after_srcu_read_unlock();
9245 
9246 	/*
9247 	 * This handles the case where a posted interrupt was
9248 	 * notified with kvm_vcpu_kick.
9249 	 */
9250 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9251 		kvm_x86_ops.sync_pir_to_irr(vcpu);
9252 
9253 	if (kvm_vcpu_exit_request(vcpu)) {
9254 		vcpu->mode = OUTSIDE_GUEST_MODE;
9255 		smp_wmb();
9256 		local_irq_enable();
9257 		preempt_enable();
9258 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9259 		r = 1;
9260 		goto cancel_injection;
9261 	}
9262 
9263 	if (req_immediate_exit) {
9264 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9265 		kvm_x86_ops.request_immediate_exit(vcpu);
9266 	}
9267 
9268 	trace_kvm_entry(vcpu);
9269 
9270 	fpregs_assert_state_consistent();
9271 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9272 		switch_fpu_return();
9273 
9274 	if (unlikely(vcpu->arch.switch_db_regs)) {
9275 		set_debugreg(0, 7);
9276 		set_debugreg(vcpu->arch.eff_db[0], 0);
9277 		set_debugreg(vcpu->arch.eff_db[1], 1);
9278 		set_debugreg(vcpu->arch.eff_db[2], 2);
9279 		set_debugreg(vcpu->arch.eff_db[3], 3);
9280 		set_debugreg(vcpu->arch.dr6, 6);
9281 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9282 	} else if (unlikely(hw_breakpoint_active())) {
9283 		set_debugreg(0, 7);
9284 	}
9285 
9286 	exit_fastpath = kvm_x86_ops.run(vcpu);
9287 
9288 	/*
9289 	 * Do this here before restoring debug registers on the host.  And
9290 	 * since we do this before handling the vmexit, a DR access vmexit
9291 	 * can (a) read the correct value of the debug registers, (b) set
9292 	 * KVM_DEBUGREG_WONT_EXIT again.
9293 	 */
9294 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9295 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9296 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9297 		kvm_update_dr0123(vcpu);
9298 		kvm_update_dr7(vcpu);
9299 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9300 	}
9301 
9302 	/*
9303 	 * If the guest has used debug registers, at least dr7
9304 	 * will be disabled while returning to the host.
9305 	 * If we don't have active breakpoints in the host, we don't
9306 	 * care about the messed up debug address registers. But if
9307 	 * we have some of them active, restore the old state.
9308 	 */
9309 	if (hw_breakpoint_active())
9310 		hw_breakpoint_restore();
9311 
9312 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9313 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9314 
9315 	vcpu->mode = OUTSIDE_GUEST_MODE;
9316 	smp_wmb();
9317 
9318 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9319 
9320 	/*
9321 	 * Consume any pending interrupts, including the possible source of
9322 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9323 	 * An instruction is required after local_irq_enable() to fully unblock
9324 	 * interrupts on processors that implement an interrupt shadow, the
9325 	 * stat.exits increment will do nicely.
9326 	 */
9327 	kvm_before_interrupt(vcpu);
9328 	local_irq_enable();
9329 	++vcpu->stat.exits;
9330 	local_irq_disable();
9331 	kvm_after_interrupt(vcpu);
9332 
9333 	/*
9334 	 * Wait until after servicing IRQs to account guest time so that any
9335 	 * ticks that occurred while running the guest are properly accounted
9336 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9337 	 * of accounting via context tracking, but the loss of accuracy is
9338 	 * acceptable for all known use cases.
9339 	 */
9340 	vtime_account_guest_exit();
9341 
9342 	if (lapic_in_kernel(vcpu)) {
9343 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9344 		if (delta != S64_MIN) {
9345 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9346 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9347 		}
9348 	}
9349 
9350 	local_irq_enable();
9351 	preempt_enable();
9352 
9353 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9354 
9355 	/*
9356 	 * Profile KVM exit RIPs:
9357 	 */
9358 	if (unlikely(prof_on == KVM_PROFILING)) {
9359 		unsigned long rip = kvm_rip_read(vcpu);
9360 		profile_hit(KVM_PROFILING, (void *)rip);
9361 	}
9362 
9363 	if (unlikely(vcpu->arch.tsc_always_catchup))
9364 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9365 
9366 	if (vcpu->arch.apic_attention)
9367 		kvm_lapic_sync_from_vapic(vcpu);
9368 
9369 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9370 	return r;
9371 
9372 cancel_injection:
9373 	if (req_immediate_exit)
9374 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9375 	kvm_x86_ops.cancel_injection(vcpu);
9376 	if (unlikely(vcpu->arch.apic_attention))
9377 		kvm_lapic_sync_from_vapic(vcpu);
9378 out:
9379 	return r;
9380 }
9381 
vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)9382 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9383 {
9384 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9385 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9386 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9387 		kvm_vcpu_block(vcpu);
9388 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9389 
9390 		if (kvm_x86_ops.post_block)
9391 			kvm_x86_ops.post_block(vcpu);
9392 
9393 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9394 			return 1;
9395 	}
9396 
9397 	kvm_apic_accept_events(vcpu);
9398 	switch(vcpu->arch.mp_state) {
9399 	case KVM_MP_STATE_HALTED:
9400 		vcpu->arch.pv.pv_unhalted = false;
9401 		vcpu->arch.mp_state =
9402 			KVM_MP_STATE_RUNNABLE;
9403 		fallthrough;
9404 	case KVM_MP_STATE_RUNNABLE:
9405 		vcpu->arch.apf.halted = false;
9406 		break;
9407 	case KVM_MP_STATE_INIT_RECEIVED:
9408 		break;
9409 	default:
9410 		return -EINTR;
9411 	}
9412 	return 1;
9413 }
9414 
kvm_vcpu_running(struct kvm_vcpu *vcpu)9415 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9416 {
9417 	if (is_guest_mode(vcpu))
9418 		kvm_x86_ops.nested_ops->check_events(vcpu);
9419 
9420 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9421 		!vcpu->arch.apf.halted);
9422 }
9423 
vcpu_run(struct kvm_vcpu *vcpu)9424 static int vcpu_run(struct kvm_vcpu *vcpu)
9425 {
9426 	int r;
9427 	struct kvm *kvm = vcpu->kvm;
9428 
9429 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9430 	vcpu->arch.l1tf_flush_l1d = true;
9431 
9432 	for (;;) {
9433 		/*
9434 		 * If another guest vCPU requests a PV TLB flush in the middle
9435 		 * of instruction emulation, the rest of the emulation could
9436 		 * use a stale page translation. Assume that any code after
9437 		 * this point can start executing an instruction.
9438 		 */
9439 		vcpu->arch.at_instruction_boundary = false;
9440 		if (kvm_vcpu_running(vcpu)) {
9441 			r = vcpu_enter_guest(vcpu);
9442 		} else {
9443 			r = vcpu_block(kvm, vcpu);
9444 		}
9445 
9446 		if (r <= 0)
9447 			break;
9448 
9449 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9450 		if (kvm_cpu_has_pending_timer(vcpu))
9451 			kvm_inject_pending_timer_irqs(vcpu);
9452 
9453 		if (dm_request_for_irq_injection(vcpu) &&
9454 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9455 			r = 0;
9456 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9457 			++vcpu->stat.request_irq_exits;
9458 			break;
9459 		}
9460 
9461 		if (__xfer_to_guest_mode_work_pending()) {
9462 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9463 			r = xfer_to_guest_mode_handle_work(vcpu);
9464 			if (r)
9465 				return r;
9466 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9467 		}
9468 	}
9469 
9470 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9471 
9472 	return r;
9473 }
9474 
complete_emulated_io(struct kvm_vcpu *vcpu)9475 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9476 {
9477 	int r;
9478 
9479 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9480 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9481 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9482 	return r;
9483 }
9484 
complete_emulated_pio(struct kvm_vcpu *vcpu)9485 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9486 {
9487 	BUG_ON(!vcpu->arch.pio.count);
9488 
9489 	return complete_emulated_io(vcpu);
9490 }
9491 
9492 /*
9493  * Implements the following, as a state machine:
9494  *
9495  * read:
9496  *   for each fragment
9497  *     for each mmio piece in the fragment
9498  *       write gpa, len
9499  *       exit
9500  *       copy data
9501  *   execute insn
9502  *
9503  * write:
9504  *   for each fragment
9505  *     for each mmio piece in the fragment
9506  *       write gpa, len
9507  *       copy data
9508  *       exit
9509  */
complete_emulated_mmio(struct kvm_vcpu *vcpu)9510 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9511 {
9512 	struct kvm_run *run = vcpu->run;
9513 	struct kvm_mmio_fragment *frag;
9514 	unsigned len;
9515 
9516 	BUG_ON(!vcpu->mmio_needed);
9517 
9518 	/* Complete previous fragment */
9519 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9520 	len = min(8u, frag->len);
9521 	if (!vcpu->mmio_is_write)
9522 		memcpy(frag->data, run->mmio.data, len);
9523 
9524 	if (frag->len <= 8) {
9525 		/* Switch to the next fragment. */
9526 		frag++;
9527 		vcpu->mmio_cur_fragment++;
9528 	} else {
9529 		/* Go forward to the next mmio piece. */
9530 		frag->data += len;
9531 		frag->gpa += len;
9532 		frag->len -= len;
9533 	}
9534 
9535 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9536 		vcpu->mmio_needed = 0;
9537 
9538 		/* FIXME: return into emulator if single-stepping.  */
9539 		if (vcpu->mmio_is_write)
9540 			return 1;
9541 		vcpu->mmio_read_completed = 1;
9542 		return complete_emulated_io(vcpu);
9543 	}
9544 
9545 	run->exit_reason = KVM_EXIT_MMIO;
9546 	run->mmio.phys_addr = frag->gpa;
9547 	if (vcpu->mmio_is_write)
9548 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9549 	run->mmio.len = min(8u, frag->len);
9550 	run->mmio.is_write = vcpu->mmio_is_write;
9551 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9552 	return 0;
9553 }
9554 
kvm_save_current_fpu(struct fpu *fpu)9555 static void kvm_save_current_fpu(struct fpu *fpu)
9556 {
9557 	/*
9558 	 * If the target FPU state is not resident in the CPU registers, just
9559 	 * memcpy() from current, else save CPU state directly to the target.
9560 	 */
9561 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9562 		memcpy(&fpu->state, &current->thread.fpu.state,
9563 		       fpu_kernel_xstate_size);
9564 	else
9565 		copy_fpregs_to_fpstate(fpu);
9566 }
9567 
9568 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu *vcpu)9569 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9570 {
9571 	fpregs_lock();
9572 
9573 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9574 
9575 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9576 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9577 				~XFEATURE_MASK_PKRU);
9578 
9579 	fpregs_mark_activate();
9580 	fpregs_unlock();
9581 
9582 	trace_kvm_fpu(1);
9583 }
9584 
9585 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu *vcpu)9586 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9587 {
9588 	fpregs_lock();
9589 
9590 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9591 
9592 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9593 
9594 	fpregs_mark_activate();
9595 	fpregs_unlock();
9596 
9597 	++vcpu->stat.fpu_reload;
9598 	trace_kvm_fpu(0);
9599 }
9600 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)9601 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9602 {
9603 	struct kvm_run *kvm_run = vcpu->run;
9604 	int r;
9605 
9606 	vcpu_load(vcpu);
9607 	kvm_sigset_activate(vcpu);
9608 	kvm_load_guest_fpu(vcpu);
9609 
9610 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9611 		if (kvm_run->immediate_exit) {
9612 			r = -EINTR;
9613 			goto out;
9614 		}
9615 		kvm_vcpu_block(vcpu);
9616 		kvm_apic_accept_events(vcpu);
9617 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9618 		r = -EAGAIN;
9619 		if (signal_pending(current)) {
9620 			r = -EINTR;
9621 			kvm_run->exit_reason = KVM_EXIT_INTR;
9622 			++vcpu->stat.signal_exits;
9623 		}
9624 		goto out;
9625 	}
9626 
9627 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9628 		r = -EINVAL;
9629 		goto out;
9630 	}
9631 
9632 	if (kvm_run->kvm_dirty_regs) {
9633 		r = sync_regs(vcpu);
9634 		if (r != 0)
9635 			goto out;
9636 	}
9637 
9638 	/* re-sync apic's tpr */
9639 	if (!lapic_in_kernel(vcpu)) {
9640 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9641 			r = -EINVAL;
9642 			goto out;
9643 		}
9644 	}
9645 
9646 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9647 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9648 		vcpu->arch.complete_userspace_io = NULL;
9649 		r = cui(vcpu);
9650 		if (r <= 0)
9651 			goto out;
9652 	} else
9653 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9654 
9655 	if (kvm_run->immediate_exit)
9656 		r = -EINTR;
9657 	else
9658 		r = vcpu_run(vcpu);
9659 
9660 out:
9661 	kvm_put_guest_fpu(vcpu);
9662 	if (kvm_run->kvm_valid_regs)
9663 		store_regs(vcpu);
9664 	post_kvm_run_save(vcpu);
9665 	kvm_sigset_deactivate(vcpu);
9666 
9667 	vcpu_put(vcpu);
9668 	return r;
9669 }
9670 
__get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9671 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9672 {
9673 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9674 		/*
9675 		 * We are here if userspace calls get_regs() in the middle of
9676 		 * instruction emulation. Registers state needs to be copied
9677 		 * back from emulation context to vcpu. Userspace shouldn't do
9678 		 * that usually, but some bad designed PV devices (vmware
9679 		 * backdoor interface) need this to work
9680 		 */
9681 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9682 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9683 	}
9684 	regs->rax = kvm_rax_read(vcpu);
9685 	regs->rbx = kvm_rbx_read(vcpu);
9686 	regs->rcx = kvm_rcx_read(vcpu);
9687 	regs->rdx = kvm_rdx_read(vcpu);
9688 	regs->rsi = kvm_rsi_read(vcpu);
9689 	regs->rdi = kvm_rdi_read(vcpu);
9690 	regs->rsp = kvm_rsp_read(vcpu);
9691 	regs->rbp = kvm_rbp_read(vcpu);
9692 #ifdef CONFIG_X86_64
9693 	regs->r8 = kvm_r8_read(vcpu);
9694 	regs->r9 = kvm_r9_read(vcpu);
9695 	regs->r10 = kvm_r10_read(vcpu);
9696 	regs->r11 = kvm_r11_read(vcpu);
9697 	regs->r12 = kvm_r12_read(vcpu);
9698 	regs->r13 = kvm_r13_read(vcpu);
9699 	regs->r14 = kvm_r14_read(vcpu);
9700 	regs->r15 = kvm_r15_read(vcpu);
9701 #endif
9702 
9703 	regs->rip = kvm_rip_read(vcpu);
9704 	regs->rflags = kvm_get_rflags(vcpu);
9705 }
9706 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9707 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9708 {
9709 	vcpu_load(vcpu);
9710 	__get_regs(vcpu, regs);
9711 	vcpu_put(vcpu);
9712 	return 0;
9713 }
9714 
__set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9715 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9716 {
9717 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9718 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9719 
9720 	kvm_rax_write(vcpu, regs->rax);
9721 	kvm_rbx_write(vcpu, regs->rbx);
9722 	kvm_rcx_write(vcpu, regs->rcx);
9723 	kvm_rdx_write(vcpu, regs->rdx);
9724 	kvm_rsi_write(vcpu, regs->rsi);
9725 	kvm_rdi_write(vcpu, regs->rdi);
9726 	kvm_rsp_write(vcpu, regs->rsp);
9727 	kvm_rbp_write(vcpu, regs->rbp);
9728 #ifdef CONFIG_X86_64
9729 	kvm_r8_write(vcpu, regs->r8);
9730 	kvm_r9_write(vcpu, regs->r9);
9731 	kvm_r10_write(vcpu, regs->r10);
9732 	kvm_r11_write(vcpu, regs->r11);
9733 	kvm_r12_write(vcpu, regs->r12);
9734 	kvm_r13_write(vcpu, regs->r13);
9735 	kvm_r14_write(vcpu, regs->r14);
9736 	kvm_r15_write(vcpu, regs->r15);
9737 #endif
9738 
9739 	kvm_rip_write(vcpu, regs->rip);
9740 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9741 
9742 	vcpu->arch.exception.pending = false;
9743 
9744 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9745 }
9746 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9747 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9748 {
9749 	vcpu_load(vcpu);
9750 	__set_regs(vcpu, regs);
9751 	vcpu_put(vcpu);
9752 	return 0;
9753 }
9754 
kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)9755 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9756 {
9757 	struct kvm_segment cs;
9758 
9759 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9760 	*db = cs.db;
9761 	*l = cs.l;
9762 }
9763 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9764 
__get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9765 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9766 {
9767 	struct desc_ptr dt;
9768 
9769 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9770 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9771 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9772 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9773 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9774 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9775 
9776 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9777 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9778 
9779 	kvm_x86_ops.get_idt(vcpu, &dt);
9780 	sregs->idt.limit = dt.size;
9781 	sregs->idt.base = dt.address;
9782 	kvm_x86_ops.get_gdt(vcpu, &dt);
9783 	sregs->gdt.limit = dt.size;
9784 	sregs->gdt.base = dt.address;
9785 
9786 	sregs->cr0 = kvm_read_cr0(vcpu);
9787 	sregs->cr2 = vcpu->arch.cr2;
9788 	sregs->cr3 = kvm_read_cr3(vcpu);
9789 	sregs->cr4 = kvm_read_cr4(vcpu);
9790 	sregs->cr8 = kvm_get_cr8(vcpu);
9791 	sregs->efer = vcpu->arch.efer;
9792 	sregs->apic_base = kvm_get_apic_base(vcpu);
9793 
9794 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9795 
9796 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9797 		set_bit(vcpu->arch.interrupt.nr,
9798 			(unsigned long *)sregs->interrupt_bitmap);
9799 }
9800 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9801 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9802 				  struct kvm_sregs *sregs)
9803 {
9804 	vcpu_load(vcpu);
9805 	__get_sregs(vcpu, sregs);
9806 	vcpu_put(vcpu);
9807 	return 0;
9808 }
9809 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)9810 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9811 				    struct kvm_mp_state *mp_state)
9812 {
9813 	vcpu_load(vcpu);
9814 	if (kvm_mpx_supported())
9815 		kvm_load_guest_fpu(vcpu);
9816 
9817 	kvm_apic_accept_events(vcpu);
9818 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9819 					vcpu->arch.pv.pv_unhalted)
9820 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9821 	else
9822 		mp_state->mp_state = vcpu->arch.mp_state;
9823 
9824 	if (kvm_mpx_supported())
9825 		kvm_put_guest_fpu(vcpu);
9826 	vcpu_put(vcpu);
9827 	return 0;
9828 }
9829 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)9830 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9831 				    struct kvm_mp_state *mp_state)
9832 {
9833 	int ret = -EINVAL;
9834 
9835 	vcpu_load(vcpu);
9836 
9837 	if (!lapic_in_kernel(vcpu) &&
9838 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9839 		goto out;
9840 
9841 	/*
9842 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9843 	 * INIT state; latched init should be reported using
9844 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9845 	 */
9846 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9847 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9848 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9849 		goto out;
9850 
9851 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9852 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9853 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9854 	} else
9855 		vcpu->arch.mp_state = mp_state->mp_state;
9856 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9857 
9858 	ret = 0;
9859 out:
9860 	vcpu_put(vcpu);
9861 	return ret;
9862 }
9863 
kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code)9864 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9865 		    int reason, bool has_error_code, u32 error_code)
9866 {
9867 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9868 	int ret;
9869 
9870 	init_emulate_ctxt(vcpu);
9871 
9872 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9873 				   has_error_code, error_code);
9874 	if (ret) {
9875 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9876 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9877 		vcpu->run->internal.ndata = 0;
9878 		return 0;
9879 	}
9880 
9881 	kvm_rip_write(vcpu, ctxt->eip);
9882 	kvm_set_rflags(vcpu, ctxt->eflags);
9883 	return 1;
9884 }
9885 EXPORT_SYMBOL_GPL(kvm_task_switch);
9886 
kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9887 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9888 {
9889 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9890 		/*
9891 		 * When EFER.LME and CR0.PG are set, the processor is in
9892 		 * 64-bit mode (though maybe in a 32-bit code segment).
9893 		 * CR4.PAE and EFER.LMA must be set.
9894 		 */
9895 		if (!(sregs->cr4 & X86_CR4_PAE)
9896 		    || !(sregs->efer & EFER_LMA))
9897 			return -EINVAL;
9898 		if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9899 			return -EINVAL;
9900 	} else {
9901 		/*
9902 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9903 		 * segment cannot be 64-bit.
9904 		 */
9905 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9906 			return -EINVAL;
9907 	}
9908 
9909 	return kvm_valid_cr4(vcpu, sregs->cr4);
9910 }
9911 
__set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9912 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9913 {
9914 	struct msr_data apic_base_msr;
9915 	int mmu_reset_needed = 0;
9916 	int cpuid_update_needed = 0;
9917 	int pending_vec, max_bits, idx;
9918 	struct desc_ptr dt;
9919 	int ret = -EINVAL;
9920 
9921 	if (kvm_valid_sregs(vcpu, sregs))
9922 		goto out;
9923 
9924 	apic_base_msr.data = sregs->apic_base;
9925 	apic_base_msr.host_initiated = true;
9926 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9927 		goto out;
9928 
9929 	dt.size = sregs->idt.limit;
9930 	dt.address = sregs->idt.base;
9931 	kvm_x86_ops.set_idt(vcpu, &dt);
9932 	dt.size = sregs->gdt.limit;
9933 	dt.address = sregs->gdt.base;
9934 	kvm_x86_ops.set_gdt(vcpu, &dt);
9935 
9936 	vcpu->arch.cr2 = sregs->cr2;
9937 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9938 	vcpu->arch.cr3 = sregs->cr3;
9939 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9940 
9941 	kvm_set_cr8(vcpu, sregs->cr8);
9942 
9943 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9944 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9945 
9946 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9947 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9948 	vcpu->arch.cr0 = sregs->cr0;
9949 
9950 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9951 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9952 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9953 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9954 	if (cpuid_update_needed)
9955 		kvm_update_cpuid_runtime(vcpu);
9956 
9957 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9958 	if (is_pae_paging(vcpu)) {
9959 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9960 		mmu_reset_needed = 1;
9961 	}
9962 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9963 
9964 	if (mmu_reset_needed)
9965 		kvm_mmu_reset_context(vcpu);
9966 
9967 	max_bits = KVM_NR_INTERRUPTS;
9968 	pending_vec = find_first_bit(
9969 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9970 	if (pending_vec < max_bits) {
9971 		kvm_queue_interrupt(vcpu, pending_vec, false);
9972 		pr_debug("Set back pending irq %d\n", pending_vec);
9973 	}
9974 
9975 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9976 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9977 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9978 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9979 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9980 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9981 
9982 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9983 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9984 
9985 	update_cr8_intercept(vcpu);
9986 
9987 	/* Older userspace won't unhalt the vcpu on reset. */
9988 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9989 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9990 	    !is_protmode(vcpu))
9991 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9992 
9993 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9994 
9995 	ret = 0;
9996 out:
9997 	return ret;
9998 }
9999 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)10000 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10001 				  struct kvm_sregs *sregs)
10002 {
10003 	int ret;
10004 
10005 	vcpu_load(vcpu);
10006 	ret = __set_sregs(vcpu, sregs);
10007 	vcpu_put(vcpu);
10008 	return ret;
10009 }
10010 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)10011 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10012 					struct kvm_guest_debug *dbg)
10013 {
10014 	unsigned long rflags;
10015 	int i, r;
10016 
10017 	vcpu_load(vcpu);
10018 
10019 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10020 		r = -EBUSY;
10021 		if (vcpu->arch.exception.pending)
10022 			goto out;
10023 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10024 			kvm_queue_exception(vcpu, DB_VECTOR);
10025 		else
10026 			kvm_queue_exception(vcpu, BP_VECTOR);
10027 	}
10028 
10029 	/*
10030 	 * Read rflags as long as potentially injected trace flags are still
10031 	 * filtered out.
10032 	 */
10033 	rflags = kvm_get_rflags(vcpu);
10034 
10035 	vcpu->guest_debug = dbg->control;
10036 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10037 		vcpu->guest_debug = 0;
10038 
10039 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10040 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10041 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10042 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10043 	} else {
10044 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10045 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10046 	}
10047 	kvm_update_dr7(vcpu);
10048 
10049 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10050 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10051 			get_segment_base(vcpu, VCPU_SREG_CS);
10052 
10053 	/*
10054 	 * Trigger an rflags update that will inject or remove the trace
10055 	 * flags.
10056 	 */
10057 	kvm_set_rflags(vcpu, rflags);
10058 
10059 	kvm_x86_ops.update_exception_bitmap(vcpu);
10060 
10061 	r = 0;
10062 
10063 out:
10064 	vcpu_put(vcpu);
10065 	return r;
10066 }
10067 
10068 /*
10069  * Translate a guest virtual address to a guest physical address.
10070  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)10071 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10072 				    struct kvm_translation *tr)
10073 {
10074 	unsigned long vaddr = tr->linear_address;
10075 	gpa_t gpa;
10076 	int idx;
10077 
10078 	vcpu_load(vcpu);
10079 
10080 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10081 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10082 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10083 	tr->physical_address = gpa;
10084 	tr->valid = gpa != UNMAPPED_GVA;
10085 	tr->writeable = 1;
10086 	tr->usermode = 0;
10087 
10088 	vcpu_put(vcpu);
10089 	return 0;
10090 }
10091 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)10092 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10093 {
10094 	struct fxregs_state *fxsave;
10095 
10096 	vcpu_load(vcpu);
10097 
10098 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10099 	memcpy(fpu->fpr, fxsave->st_space, 128);
10100 	fpu->fcw = fxsave->cwd;
10101 	fpu->fsw = fxsave->swd;
10102 	fpu->ftwx = fxsave->twd;
10103 	fpu->last_opcode = fxsave->fop;
10104 	fpu->last_ip = fxsave->rip;
10105 	fpu->last_dp = fxsave->rdp;
10106 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10107 
10108 	vcpu_put(vcpu);
10109 	return 0;
10110 }
10111 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)10112 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10113 {
10114 	struct fxregs_state *fxsave;
10115 
10116 	vcpu_load(vcpu);
10117 
10118 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10119 
10120 	memcpy(fxsave->st_space, fpu->fpr, 128);
10121 	fxsave->cwd = fpu->fcw;
10122 	fxsave->swd = fpu->fsw;
10123 	fxsave->twd = fpu->ftwx;
10124 	fxsave->fop = fpu->last_opcode;
10125 	fxsave->rip = fpu->last_ip;
10126 	fxsave->rdp = fpu->last_dp;
10127 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10128 
10129 	vcpu_put(vcpu);
10130 	return 0;
10131 }
10132 
store_regs(struct kvm_vcpu *vcpu)10133 static void store_regs(struct kvm_vcpu *vcpu)
10134 {
10135 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10136 
10137 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10138 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10139 
10140 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10141 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10142 
10143 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10144 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10145 				vcpu, &vcpu->run->s.regs.events);
10146 }
10147 
sync_regs(struct kvm_vcpu *vcpu)10148 static int sync_regs(struct kvm_vcpu *vcpu)
10149 {
10150 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10151 		return -EINVAL;
10152 
10153 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10154 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10155 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10156 	}
10157 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10158 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10159 			return -EINVAL;
10160 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10161 	}
10162 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10163 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10164 				vcpu, &vcpu->run->s.regs.events))
10165 			return -EINVAL;
10166 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10167 	}
10168 
10169 	return 0;
10170 }
10171 
fx_init(struct kvm_vcpu *vcpu)10172 static void fx_init(struct kvm_vcpu *vcpu)
10173 {
10174 	fpstate_init(&vcpu->arch.guest_fpu->state);
10175 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10176 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10177 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10178 
10179 	/*
10180 	 * Ensure guest xcr0 is valid for loading
10181 	 */
10182 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10183 
10184 	vcpu->arch.cr0 |= X86_CR0_ET;
10185 }
10186 
kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)10187 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10188 {
10189 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10190 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10191 			     "guest TSC will not be reliable\n");
10192 
10193 	return 0;
10194 }
10195 
kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)10196 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10197 {
10198 	struct page *page;
10199 	int r;
10200 
10201 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10202 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10203 	else
10204 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10205 
10206 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10207 
10208 	r = kvm_mmu_create(vcpu);
10209 	if (r < 0)
10210 		return r;
10211 
10212 	if (irqchip_in_kernel(vcpu->kvm)) {
10213 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10214 		if (r < 0)
10215 			goto fail_mmu_destroy;
10216 		if (kvm_apicv_activated(vcpu->kvm))
10217 			vcpu->arch.apicv_active = true;
10218 	} else
10219 		static_key_slow_inc(&kvm_no_apic_vcpu);
10220 
10221 	r = -ENOMEM;
10222 
10223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10224 	if (!page)
10225 		goto fail_free_lapic;
10226 	vcpu->arch.pio_data = page_address(page);
10227 
10228 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10229 				       GFP_KERNEL_ACCOUNT);
10230 	if (!vcpu->arch.mce_banks)
10231 		goto fail_free_pio_data;
10232 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10233 
10234 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10235 				GFP_KERNEL_ACCOUNT))
10236 		goto fail_free_mce_banks;
10237 
10238 	if (!alloc_emulate_ctxt(vcpu))
10239 		goto free_wbinvd_dirty_mask;
10240 
10241 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10242 						GFP_KERNEL_ACCOUNT);
10243 	if (!vcpu->arch.user_fpu) {
10244 		pr_err("kvm: failed to allocate userspace's fpu\n");
10245 		goto free_emulate_ctxt;
10246 	}
10247 
10248 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10249 						 GFP_KERNEL_ACCOUNT);
10250 	if (!vcpu->arch.guest_fpu) {
10251 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10252 		goto free_user_fpu;
10253 	}
10254 	fx_init(vcpu);
10255 
10256 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10257 	vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10258 
10259 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10260 
10261 	kvm_async_pf_hash_reset(vcpu);
10262 	kvm_pmu_init(vcpu);
10263 
10264 	vcpu->arch.pending_external_vector = -1;
10265 	vcpu->arch.preempted_in_kernel = false;
10266 
10267 	kvm_hv_vcpu_init(vcpu);
10268 
10269 	r = kvm_x86_ops.vcpu_create(vcpu);
10270 	if (r)
10271 		goto free_guest_fpu;
10272 
10273 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10274 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10275 	kvm_vcpu_mtrr_init(vcpu);
10276 	vcpu_load(vcpu);
10277 	kvm_vcpu_reset(vcpu, false);
10278 	kvm_init_mmu(vcpu, false);
10279 	vcpu_put(vcpu);
10280 	return 0;
10281 
10282 free_guest_fpu:
10283 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10284 free_user_fpu:
10285 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10286 free_emulate_ctxt:
10287 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10288 free_wbinvd_dirty_mask:
10289 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10290 fail_free_mce_banks:
10291 	kfree(vcpu->arch.mce_banks);
10292 fail_free_pio_data:
10293 	free_page((unsigned long)vcpu->arch.pio_data);
10294 fail_free_lapic:
10295 	kvm_free_lapic(vcpu);
10296 fail_mmu_destroy:
10297 	kvm_mmu_destroy(vcpu);
10298 	return r;
10299 }
10300 
kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)10301 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10302 {
10303 	struct kvm *kvm = vcpu->kvm;
10304 
10305 	kvm_hv_vcpu_postcreate(vcpu);
10306 
10307 	if (mutex_lock_killable(&vcpu->mutex))
10308 		return;
10309 	vcpu_load(vcpu);
10310 	kvm_synchronize_tsc(vcpu, 0);
10311 	vcpu_put(vcpu);
10312 
10313 	/* poll control enabled by default */
10314 	vcpu->arch.msr_kvm_poll_control = 1;
10315 
10316 	mutex_unlock(&vcpu->mutex);
10317 
10318 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10319 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10320 						KVMCLOCK_SYNC_PERIOD);
10321 }
10322 
kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)10323 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10324 {
10325 	int idx;
10326 
10327 	kvmclock_reset(vcpu);
10328 
10329 	kvm_x86_ops.vcpu_free(vcpu);
10330 
10331 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10332 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10333 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10334 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10335 
10336 	kvm_hv_vcpu_uninit(vcpu);
10337 	kvm_pmu_destroy(vcpu);
10338 	kfree(vcpu->arch.mce_banks);
10339 	kvm_free_lapic(vcpu);
10340 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10341 	kvm_mmu_destroy(vcpu);
10342 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10343 	free_page((unsigned long)vcpu->arch.pio_data);
10344 	kvfree(vcpu->arch.cpuid_entries);
10345 	if (!lapic_in_kernel(vcpu))
10346 		static_key_slow_dec(&kvm_no_apic_vcpu);
10347 }
10348 
kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)10349 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10350 {
10351 	kvm_lapic_reset(vcpu, init_event);
10352 
10353 	vcpu->arch.hflags = 0;
10354 
10355 	vcpu->arch.smi_pending = 0;
10356 	vcpu->arch.smi_count = 0;
10357 	atomic_set(&vcpu->arch.nmi_queued, 0);
10358 	vcpu->arch.nmi_pending = 0;
10359 	vcpu->arch.nmi_injected = false;
10360 	kvm_clear_interrupt_queue(vcpu);
10361 	kvm_clear_exception_queue(vcpu);
10362 
10363 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10364 	kvm_update_dr0123(vcpu);
10365 	vcpu->arch.dr6 = DR6_INIT;
10366 	vcpu->arch.dr7 = DR7_FIXED_1;
10367 	kvm_update_dr7(vcpu);
10368 
10369 	vcpu->arch.cr2 = 0;
10370 
10371 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10372 	vcpu->arch.apf.msr_en_val = 0;
10373 	vcpu->arch.apf.msr_int_val = 0;
10374 	vcpu->arch.st.msr_val = 0;
10375 
10376 	kvmclock_reset(vcpu);
10377 
10378 	kvm_clear_async_pf_completion_queue(vcpu);
10379 	kvm_async_pf_hash_reset(vcpu);
10380 	vcpu->arch.apf.halted = false;
10381 
10382 	if (kvm_mpx_supported()) {
10383 		void *mpx_state_buffer;
10384 
10385 		/*
10386 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10387 		 * called with loaded FPU and does not let userspace fix the state.
10388 		 */
10389 		if (init_event)
10390 			kvm_put_guest_fpu(vcpu);
10391 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10392 					XFEATURE_BNDREGS);
10393 		if (mpx_state_buffer)
10394 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10395 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10396 					XFEATURE_BNDCSR);
10397 		if (mpx_state_buffer)
10398 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10399 		if (init_event)
10400 			kvm_load_guest_fpu(vcpu);
10401 	}
10402 
10403 	if (!init_event) {
10404 		kvm_pmu_reset(vcpu);
10405 		vcpu->arch.smbase = 0x30000;
10406 
10407 		vcpu->arch.msr_misc_features_enables = 0;
10408 
10409 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10410 	}
10411 
10412 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10413 	vcpu->arch.regs_avail = ~0;
10414 	vcpu->arch.regs_dirty = ~0;
10415 
10416 	vcpu->arch.ia32_xss = 0;
10417 
10418 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10419 }
10420 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)10421 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10422 {
10423 	struct kvm_segment cs;
10424 
10425 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10426 	cs.selector = vector << 8;
10427 	cs.base = vector << 12;
10428 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10429 	kvm_rip_write(vcpu, 0);
10430 }
10431 
kvm_arch_hardware_enable(void)10432 int kvm_arch_hardware_enable(void)
10433 {
10434 	struct kvm *kvm;
10435 	struct kvm_vcpu *vcpu;
10436 	int i;
10437 	int ret;
10438 	u64 local_tsc;
10439 	u64 max_tsc = 0;
10440 	bool stable, backwards_tsc = false;
10441 
10442 	kvm_user_return_msr_cpu_online();
10443 	ret = kvm_x86_ops.hardware_enable();
10444 	if (ret != 0)
10445 		return ret;
10446 
10447 	local_tsc = rdtsc();
10448 	stable = !kvm_check_tsc_unstable();
10449 	list_for_each_entry(kvm, &vm_list, vm_list) {
10450 		kvm_for_each_vcpu(i, vcpu, kvm) {
10451 			if (!stable && vcpu->cpu == smp_processor_id())
10452 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10453 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10454 				backwards_tsc = true;
10455 				if (vcpu->arch.last_host_tsc > max_tsc)
10456 					max_tsc = vcpu->arch.last_host_tsc;
10457 			}
10458 		}
10459 	}
10460 
10461 	/*
10462 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10463 	 * platforms that reset TSC during suspend or hibernate actions, but
10464 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10465 	 * detect that condition here, which happens early in CPU bringup,
10466 	 * before any KVM threads can be running.  Unfortunately, we can't
10467 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10468 	 * enough into CPU bringup that we know how much real time has actually
10469 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10470 	 * variables that haven't been updated yet.
10471 	 *
10472 	 * So we simply find the maximum observed TSC above, then record the
10473 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10474 	 * the adjustment will be applied.  Note that we accumulate
10475 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10476 	 * gets a chance to run again.  In the event that no KVM threads get a
10477 	 * chance to run, we will miss the entire elapsed period, as we'll have
10478 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10479 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10480 	 * uniform across all VCPUs (not to mention the scenario is extremely
10481 	 * unlikely). It is possible that a second hibernate recovery happens
10482 	 * much faster than a first, causing the observed TSC here to be
10483 	 * smaller; this would require additional padding adjustment, which is
10484 	 * why we set last_host_tsc to the local tsc observed here.
10485 	 *
10486 	 * N.B. - this code below runs only on platforms with reliable TSC,
10487 	 * as that is the only way backwards_tsc is set above.  Also note
10488 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10489 	 * have the same delta_cyc adjustment applied if backwards_tsc
10490 	 * is detected.  Note further, this adjustment is only done once,
10491 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10492 	 * called multiple times (one for each physical CPU bringup).
10493 	 *
10494 	 * Platforms with unreliable TSCs don't have to deal with this, they
10495 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10496 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10497 	 * guarantee that they stay in perfect synchronization.
10498 	 */
10499 	if (backwards_tsc) {
10500 		u64 delta_cyc = max_tsc - local_tsc;
10501 		list_for_each_entry(kvm, &vm_list, vm_list) {
10502 			kvm->arch.backwards_tsc_observed = true;
10503 			kvm_for_each_vcpu(i, vcpu, kvm) {
10504 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10505 				vcpu->arch.last_host_tsc = local_tsc;
10506 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10507 			}
10508 
10509 			/*
10510 			 * We have to disable TSC offset matching.. if you were
10511 			 * booting a VM while issuing an S4 host suspend....
10512 			 * you may have some problem.  Solving this issue is
10513 			 * left as an exercise to the reader.
10514 			 */
10515 			kvm->arch.last_tsc_nsec = 0;
10516 			kvm->arch.last_tsc_write = 0;
10517 		}
10518 
10519 	}
10520 	return 0;
10521 }
10522 
kvm_arch_hardware_disable(void)10523 void kvm_arch_hardware_disable(void)
10524 {
10525 	kvm_x86_ops.hardware_disable();
10526 	drop_user_return_notifiers();
10527 }
10528 
kvm_arch_hardware_setup(void *opaque)10529 int kvm_arch_hardware_setup(void *opaque)
10530 {
10531 	struct kvm_x86_init_ops *ops = opaque;
10532 	int r;
10533 
10534 	rdmsrl_safe(MSR_EFER, &host_efer);
10535 
10536 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10537 		rdmsrl(MSR_IA32_XSS, host_xss);
10538 
10539 	r = ops->hardware_setup();
10540 	if (r != 0)
10541 		return r;
10542 
10543 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10544 
10545 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10546 		supported_xss = 0;
10547 
10548 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10549 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10550 #undef __kvm_cpu_cap_has
10551 
10552 	if (kvm_has_tsc_control) {
10553 		/*
10554 		 * Make sure the user can only configure tsc_khz values that
10555 		 * fit into a signed integer.
10556 		 * A min value is not calculated because it will always
10557 		 * be 1 on all machines.
10558 		 */
10559 		u64 max = min(0x7fffffffULL,
10560 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10561 		kvm_max_guest_tsc_khz = max;
10562 
10563 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10564 	}
10565 
10566 	kvm_init_msr_list();
10567 	return 0;
10568 }
10569 
kvm_arch_hardware_unsetup(void)10570 void kvm_arch_hardware_unsetup(void)
10571 {
10572 	kvm_x86_ops.hardware_unsetup();
10573 }
10574 
kvm_arch_check_processor_compat(void *opaque)10575 int kvm_arch_check_processor_compat(void *opaque)
10576 {
10577 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10578 	struct kvm_x86_init_ops *ops = opaque;
10579 
10580 	WARN_ON(!irqs_disabled());
10581 
10582 	if (__cr4_reserved_bits(cpu_has, c) !=
10583 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10584 		return -EIO;
10585 
10586 	return ops->check_processor_compatibility();
10587 }
10588 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)10589 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10590 {
10591 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10592 }
10593 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10594 
kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)10595 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10596 {
10597 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10598 }
10599 
10600 struct static_key kvm_no_apic_vcpu __read_mostly;
10601 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10602 
kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)10603 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10604 {
10605 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10606 
10607 	vcpu->arch.l1tf_flush_l1d = true;
10608 	if (pmu->version && unlikely(pmu->event_count)) {
10609 		pmu->need_cleanup = true;
10610 		kvm_make_request(KVM_REQ_PMU, vcpu);
10611 	}
10612 	kvm_x86_ops.sched_in(vcpu, cpu);
10613 }
10614 
kvm_arch_free_vm(struct kvm *kvm)10615 void kvm_arch_free_vm(struct kvm *kvm)
10616 {
10617 	kfree(kvm->arch.hyperv.hv_pa_pg);
10618 	vfree(kvm);
10619 }
10620 
10621 
kvm_arch_init_vm(struct kvm *kvm, unsigned long type)10622 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10623 {
10624 	int ret;
10625 
10626 	if (type)
10627 		return -EINVAL;
10628 
10629 	ret = kvm_page_track_init(kvm);
10630 	if (ret)
10631 		return ret;
10632 
10633 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10634 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10635 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10636 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10637 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10638 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10639 
10640 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10641 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10642 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10643 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10644 		&kvm->arch.irq_sources_bitmap);
10645 
10646 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10647 	mutex_init(&kvm->arch.apic_map_lock);
10648 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10649 
10650 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10651 	pvclock_update_vm_gtod_copy(kvm);
10652 
10653 	kvm->arch.guest_can_read_msr_platform_info = true;
10654 
10655 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10656 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10657 
10658 	kvm_hv_init_vm(kvm);
10659 	kvm_mmu_init_vm(kvm);
10660 
10661 	return kvm_x86_ops.vm_init(kvm);
10662 }
10663 
kvm_arch_post_init_vm(struct kvm *kvm)10664 int kvm_arch_post_init_vm(struct kvm *kvm)
10665 {
10666 	return kvm_mmu_post_init_vm(kvm);
10667 }
10668 
kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)10669 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10670 {
10671 	vcpu_load(vcpu);
10672 	kvm_mmu_unload(vcpu);
10673 	vcpu_put(vcpu);
10674 }
10675 
kvm_free_vcpus(struct kvm *kvm)10676 static void kvm_free_vcpus(struct kvm *kvm)
10677 {
10678 	unsigned int i;
10679 	struct kvm_vcpu *vcpu;
10680 
10681 	/*
10682 	 * Unpin any mmu pages first.
10683 	 */
10684 	kvm_for_each_vcpu(i, vcpu, kvm) {
10685 		kvm_clear_async_pf_completion_queue(vcpu);
10686 		kvm_unload_vcpu_mmu(vcpu);
10687 	}
10688 	kvm_for_each_vcpu(i, vcpu, kvm)
10689 		kvm_vcpu_destroy(vcpu);
10690 
10691 	mutex_lock(&kvm->lock);
10692 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10693 		kvm->vcpus[i] = NULL;
10694 
10695 	atomic_set(&kvm->online_vcpus, 0);
10696 	mutex_unlock(&kvm->lock);
10697 }
10698 
kvm_arch_sync_events(struct kvm *kvm)10699 void kvm_arch_sync_events(struct kvm *kvm)
10700 {
10701 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10702 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10703 	kvm_free_pit(kvm);
10704 }
10705 
__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)10706 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10707 {
10708 	int i, r;
10709 	unsigned long hva, old_npages;
10710 	struct kvm_memslots *slots = kvm_memslots(kvm);
10711 	struct kvm_memory_slot *slot;
10712 
10713 	/* Called with kvm->slots_lock held.  */
10714 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10715 		return -EINVAL;
10716 
10717 	slot = id_to_memslot(slots, id);
10718 	if (size) {
10719 		if (slot && slot->npages)
10720 			return -EEXIST;
10721 
10722 		/*
10723 		 * MAP_SHARED to prevent internal slot pages from being moved
10724 		 * by fork()/COW.
10725 		 */
10726 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10727 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10728 		if (IS_ERR((void *)hva))
10729 			return PTR_ERR((void *)hva);
10730 	} else {
10731 		if (!slot || !slot->npages)
10732 			return 0;
10733 
10734 		old_npages = slot->npages;
10735 		hva = 0;
10736 	}
10737 
10738 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10739 		struct kvm_userspace_memory_region m;
10740 
10741 		m.slot = id | (i << 16);
10742 		m.flags = 0;
10743 		m.guest_phys_addr = gpa;
10744 		m.userspace_addr = hva;
10745 		m.memory_size = size;
10746 		r = __kvm_set_memory_region(kvm, &m);
10747 		if (r < 0)
10748 			return r;
10749 	}
10750 
10751 	if (!size)
10752 		vm_munmap(hva, old_npages * PAGE_SIZE);
10753 
10754 	return 0;
10755 }
10756 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10757 
kvm_arch_pre_destroy_vm(struct kvm *kvm)10758 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10759 {
10760 	kvm_mmu_pre_destroy_vm(kvm);
10761 }
10762 
kvm_arch_destroy_vm(struct kvm *kvm)10763 void kvm_arch_destroy_vm(struct kvm *kvm)
10764 {
10765 	if (current->mm == kvm->mm) {
10766 		/*
10767 		 * Free memory regions allocated on behalf of userspace,
10768 		 * unless the the memory map has changed due to process exit
10769 		 * or fd copying.
10770 		 */
10771 		mutex_lock(&kvm->slots_lock);
10772 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10773 					0, 0);
10774 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10775 					0, 0);
10776 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10777 		mutex_unlock(&kvm->slots_lock);
10778 	}
10779 	if (kvm_x86_ops.vm_destroy)
10780 		kvm_x86_ops.vm_destroy(kvm);
10781 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10782 	kvm_pic_destroy(kvm);
10783 	kvm_ioapic_destroy(kvm);
10784 	kvm_free_vcpus(kvm);
10785 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10786 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10787 	kvm_mmu_uninit_vm(kvm);
10788 	kvm_page_track_cleanup(kvm);
10789 	kvm_hv_destroy_vm(kvm);
10790 }
10791 
kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)10792 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10793 {
10794 	int i;
10795 
10796 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10797 		kvfree(slot->arch.rmap[i]);
10798 		slot->arch.rmap[i] = NULL;
10799 
10800 		if (i == 0)
10801 			continue;
10802 
10803 		kvfree(slot->arch.lpage_info[i - 1]);
10804 		slot->arch.lpage_info[i - 1] = NULL;
10805 	}
10806 
10807 	kvm_page_track_free_memslot(slot);
10808 }
10809 
kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, unsigned long npages)10810 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10811 				      unsigned long npages)
10812 {
10813 	int i;
10814 
10815 	/*
10816 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10817 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10818 	 * the new memslot is successful.
10819 	 */
10820 	memset(&slot->arch, 0, sizeof(slot->arch));
10821 
10822 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10823 		struct kvm_lpage_info *linfo;
10824 		unsigned long ugfn;
10825 		int lpages;
10826 		int level = i + 1;
10827 
10828 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10829 				      slot->base_gfn, level) + 1;
10830 
10831 		slot->arch.rmap[i] =
10832 			__vcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10833 				 GFP_KERNEL_ACCOUNT);
10834 		if (!slot->arch.rmap[i])
10835 			goto out_free;
10836 		if (i == 0)
10837 			continue;
10838 
10839 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10840 		if (!linfo)
10841 			goto out_free;
10842 
10843 		slot->arch.lpage_info[i - 1] = linfo;
10844 
10845 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10846 			linfo[0].disallow_lpage = 1;
10847 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10848 			linfo[lpages - 1].disallow_lpage = 1;
10849 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10850 		/*
10851 		 * If the gfn and userspace address are not aligned wrt each
10852 		 * other, disable large page support for this slot.
10853 		 */
10854 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10855 			unsigned long j;
10856 
10857 			for (j = 0; j < lpages; ++j)
10858 				linfo[j].disallow_lpage = 1;
10859 		}
10860 	}
10861 
10862 	if (kvm_page_track_create_memslot(slot, npages))
10863 		goto out_free;
10864 
10865 	return 0;
10866 
10867 out_free:
10868 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10869 		kvfree(slot->arch.rmap[i]);
10870 		slot->arch.rmap[i] = NULL;
10871 		if (i == 0)
10872 			continue;
10873 
10874 		kvfree(slot->arch.lpage_info[i - 1]);
10875 		slot->arch.lpage_info[i - 1] = NULL;
10876 	}
10877 	return -ENOMEM;
10878 }
10879 
kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)10880 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10881 {
10882 	struct kvm_vcpu *vcpu;
10883 	int i;
10884 
10885 	/*
10886 	 * memslots->generation has been incremented.
10887 	 * mmio generation may have reached its maximum value.
10888 	 */
10889 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10890 
10891 	/* Force re-initialization of steal_time cache */
10892 	kvm_for_each_vcpu(i, vcpu, kvm)
10893 		kvm_vcpu_kick(vcpu);
10894 }
10895 
kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change)10896 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10897 				struct kvm_memory_slot *memslot,
10898 				const struct kvm_userspace_memory_region *mem,
10899 				enum kvm_mr_change change)
10900 {
10901 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10902 		return kvm_alloc_memslot_metadata(memslot,
10903 						  mem->memory_size >> PAGE_SHIFT);
10904 	return 0;
10905 }
10906 
kvm_mmu_slot_apply_flags(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change)10907 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10908 				     struct kvm_memory_slot *old,
10909 				     struct kvm_memory_slot *new,
10910 				     enum kvm_mr_change change)
10911 {
10912 	/*
10913 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10914 	 * See comments below.
10915 	 */
10916 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10917 		return;
10918 
10919 	/*
10920 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10921 	 * sptes have to be split.  If live migration is successful, the guest
10922 	 * in the source machine will be destroyed and large sptes will be
10923 	 * created in the destination. However, if the guest continues to run
10924 	 * in the source machine (for example if live migration fails), small
10925 	 * sptes will remain around and cause bad performance.
10926 	 *
10927 	 * Scan sptes if dirty logging has been stopped, dropping those
10928 	 * which can be collapsed into a single large-page spte.  Later
10929 	 * page faults will create the large-page sptes.
10930 	 *
10931 	 * There is no need to do this in any of the following cases:
10932 	 * CREATE:      No dirty mappings will already exist.
10933 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10934 	 *		kvm_arch_flush_shadow_memslot()
10935 	 */
10936 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10937 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10938 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10939 
10940 	/*
10941 	 * Enable or disable dirty logging for the slot.
10942 	 *
10943 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10944 	 * slot have been zapped so no dirty logging updates are needed for
10945 	 * the old slot.
10946 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10947 	 * any mappings that might be created in it will consume the
10948 	 * properties of the new slot and do not need to be updated here.
10949 	 *
10950 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10951 	 * called to enable/disable dirty logging.
10952 	 *
10953 	 * When disabling dirty logging with PML enabled, the D-bit is set
10954 	 * for sptes in the slot in order to prevent unnecessary GPA
10955 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10956 	 * This guarantees leaving PML enabled for the guest's lifetime
10957 	 * won't have any additional overhead from PML when the guest is
10958 	 * running with dirty logging disabled.
10959 	 *
10960 	 * When enabling dirty logging, large sptes are write-protected
10961 	 * so they can be split on first write.  New large sptes cannot
10962 	 * be created for this slot until the end of the logging.
10963 	 * See the comments in fast_page_fault().
10964 	 * For small sptes, nothing is done if the dirty log is in the
10965 	 * initial-all-set state.  Otherwise, depending on whether pml
10966 	 * is enabled the D-bit or the W-bit will be cleared.
10967 	 */
10968 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10969 		if (kvm_x86_ops.slot_enable_log_dirty) {
10970 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10971 		} else {
10972 			int level =
10973 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10974 				PG_LEVEL_2M : PG_LEVEL_4K;
10975 
10976 			/*
10977 			 * If we're with initial-all-set, we don't need
10978 			 * to write protect any small page because
10979 			 * they're reported as dirty already.  However
10980 			 * we still need to write-protect huge pages
10981 			 * so that the page split can happen lazily on
10982 			 * the first write to the huge page.
10983 			 */
10984 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10985 		}
10986 	} else {
10987 		if (kvm_x86_ops.slot_disable_log_dirty)
10988 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10989 	}
10990 }
10991 
kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change)10992 void kvm_arch_commit_memory_region(struct kvm *kvm,
10993 				const struct kvm_userspace_memory_region *mem,
10994 				struct kvm_memory_slot *old,
10995 				const struct kvm_memory_slot *new,
10996 				enum kvm_mr_change change)
10997 {
10998 	if (!kvm->arch.n_requested_mmu_pages)
10999 		kvm_mmu_change_mmu_pages(kvm,
11000 				kvm_mmu_calculate_default_mmu_pages(kvm));
11001 
11002 	/*
11003 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
11004 	 */
11005 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11006 
11007 	/* Free the arrays associated with the old memslot. */
11008 	if (change == KVM_MR_MOVE)
11009 		kvm_arch_free_memslot(kvm, old);
11010 }
11011 
kvm_arch_flush_shadow_all(struct kvm *kvm)11012 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11013 {
11014 	kvm_mmu_zap_all(kvm);
11015 }
11016 
kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)11017 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11018 				   struct kvm_memory_slot *slot)
11019 {
11020 	kvm_page_track_flush_slot(kvm, slot);
11021 }
11022 
kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)11023 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11024 {
11025 	return (is_guest_mode(vcpu) &&
11026 			kvm_x86_ops.guest_apic_has_interrupt &&
11027 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
11028 }
11029 
kvm_vcpu_has_events(struct kvm_vcpu *vcpu)11030 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11031 {
11032 	if (!list_empty_careful(&vcpu->async_pf.done))
11033 		return true;
11034 
11035 	if (kvm_apic_has_events(vcpu))
11036 		return true;
11037 
11038 	if (vcpu->arch.pv.pv_unhalted)
11039 		return true;
11040 
11041 	if (vcpu->arch.exception.pending)
11042 		return true;
11043 
11044 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11045 	    (vcpu->arch.nmi_pending &&
11046 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
11047 		return true;
11048 
11049 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11050 	    (vcpu->arch.smi_pending &&
11051 	     kvm_x86_ops.smi_allowed(vcpu, false)))
11052 		return true;
11053 
11054 	if (kvm_arch_interrupt_allowed(vcpu) &&
11055 	    (kvm_cpu_has_interrupt(vcpu) ||
11056 	    kvm_guest_apic_has_interrupt(vcpu)))
11057 		return true;
11058 
11059 	if (kvm_hv_has_stimer_pending(vcpu))
11060 		return true;
11061 
11062 	if (is_guest_mode(vcpu) &&
11063 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11064 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11065 		return true;
11066 
11067 	return false;
11068 }
11069 
kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)11070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11071 {
11072 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11073 }
11074 
kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)11075 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11076 {
11077 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11078 		return true;
11079 
11080 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11081 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11082 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11083 		return true;
11084 
11085 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11086 		return true;
11087 
11088 	return false;
11089 }
11090 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)11091 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11092 {
11093 	return vcpu->arch.preempted_in_kernel;
11094 }
11095 
kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)11096 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11097 {
11098 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11099 }
11100 
kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)11101 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11102 {
11103 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
11104 }
11105 
kvm_get_linear_rip(struct kvm_vcpu *vcpu)11106 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11107 {
11108 	if (is_64_bit_mode(vcpu))
11109 		return kvm_rip_read(vcpu);
11110 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11111 		     kvm_rip_read(vcpu));
11112 }
11113 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11114 
kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)11115 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11116 {
11117 	return kvm_get_linear_rip(vcpu) == linear_rip;
11118 }
11119 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11120 
kvm_get_rflags(struct kvm_vcpu *vcpu)11121 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11122 {
11123 	unsigned long rflags;
11124 
11125 	rflags = kvm_x86_ops.get_rflags(vcpu);
11126 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11127 		rflags &= ~X86_EFLAGS_TF;
11128 	return rflags;
11129 }
11130 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11131 
__kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)11132 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11133 {
11134 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11135 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11136 		rflags |= X86_EFLAGS_TF;
11137 	kvm_x86_ops.set_rflags(vcpu, rflags);
11138 }
11139 
kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)11140 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11141 {
11142 	__kvm_set_rflags(vcpu, rflags);
11143 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11144 }
11145 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11146 
kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11147 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11148 {
11149 	int r;
11150 
11151 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11152 	      work->wakeup_all)
11153 		return;
11154 
11155 	r = kvm_mmu_reload(vcpu);
11156 	if (unlikely(r))
11157 		return;
11158 
11159 	if (!vcpu->arch.mmu->direct_map &&
11160 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11161 		return;
11162 
11163 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11164 }
11165 
kvm_async_pf_hash_fn(gfn_t gfn)11166 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11167 {
11168 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11169 
11170 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11171 }
11172 
kvm_async_pf_next_probe(u32 key)11173 static inline u32 kvm_async_pf_next_probe(u32 key)
11174 {
11175 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11176 }
11177 
kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11178 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11179 {
11180 	u32 key = kvm_async_pf_hash_fn(gfn);
11181 
11182 	while (vcpu->arch.apf.gfns[key] != ~0)
11183 		key = kvm_async_pf_next_probe(key);
11184 
11185 	vcpu->arch.apf.gfns[key] = gfn;
11186 }
11187 
kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)11188 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11189 {
11190 	int i;
11191 	u32 key = kvm_async_pf_hash_fn(gfn);
11192 
11193 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11194 		     (vcpu->arch.apf.gfns[key] != gfn &&
11195 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11196 		key = kvm_async_pf_next_probe(key);
11197 
11198 	return key;
11199 }
11200 
kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11201 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11202 {
11203 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11204 }
11205 
kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11206 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11207 {
11208 	u32 i, j, k;
11209 
11210 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11211 
11212 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11213 		return;
11214 
11215 	while (true) {
11216 		vcpu->arch.apf.gfns[i] = ~0;
11217 		do {
11218 			j = kvm_async_pf_next_probe(j);
11219 			if (vcpu->arch.apf.gfns[j] == ~0)
11220 				return;
11221 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11222 			/*
11223 			 * k lies cyclically in ]i,j]
11224 			 * |    i.k.j |
11225 			 * |....j i.k.| or  |.k..j i...|
11226 			 */
11227 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11228 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11229 		i = j;
11230 	}
11231 }
11232 
apf_put_user_notpresent(struct kvm_vcpu *vcpu)11233 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11234 {
11235 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11236 
11237 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11238 				      sizeof(reason));
11239 }
11240 
apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)11241 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11242 {
11243 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11244 
11245 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11246 					     &token, offset, sizeof(token));
11247 }
11248 
apf_pageready_slot_free(struct kvm_vcpu *vcpu)11249 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11250 {
11251 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11252 	u32 val;
11253 
11254 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11255 					 &val, offset, sizeof(val)))
11256 		return false;
11257 
11258 	return !val;
11259 }
11260 
kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)11261 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11262 {
11263 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11264 		return false;
11265 
11266 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11267 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11268 		return false;
11269 
11270 	return true;
11271 }
11272 
kvm_can_do_async_pf(struct kvm_vcpu *vcpu)11273 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11274 {
11275 	if (unlikely(!lapic_in_kernel(vcpu) ||
11276 		     kvm_event_needs_reinjection(vcpu) ||
11277 		     vcpu->arch.exception.pending))
11278 		return false;
11279 
11280 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11281 		return false;
11282 
11283 	/*
11284 	 * If interrupts are off we cannot even use an artificial
11285 	 * halt state.
11286 	 */
11287 	return kvm_arch_interrupt_allowed(vcpu);
11288 }
11289 
kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11290 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11291 				     struct kvm_async_pf *work)
11292 {
11293 	struct x86_exception fault;
11294 
11295 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11296 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11297 
11298 	if (kvm_can_deliver_async_pf(vcpu) &&
11299 	    !apf_put_user_notpresent(vcpu)) {
11300 		fault.vector = PF_VECTOR;
11301 		fault.error_code_valid = true;
11302 		fault.error_code = 0;
11303 		fault.nested_page_fault = false;
11304 		fault.address = work->arch.token;
11305 		fault.async_page_fault = true;
11306 		kvm_inject_page_fault(vcpu, &fault);
11307 		return true;
11308 	} else {
11309 		/*
11310 		 * It is not possible to deliver a paravirtualized asynchronous
11311 		 * page fault, but putting the guest in an artificial halt state
11312 		 * can be beneficial nevertheless: if an interrupt arrives, we
11313 		 * can deliver it timely and perhaps the guest will schedule
11314 		 * another process.  When the instruction that triggered a page
11315 		 * fault is retried, hopefully the page will be ready in the host.
11316 		 */
11317 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11318 		return false;
11319 	}
11320 }
11321 
kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11322 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11323 				 struct kvm_async_pf *work)
11324 {
11325 	struct kvm_lapic_irq irq = {
11326 		.delivery_mode = APIC_DM_FIXED,
11327 		.vector = vcpu->arch.apf.vec
11328 	};
11329 
11330 	if (work->wakeup_all)
11331 		work->arch.token = ~0; /* broadcast wakeup */
11332 	else
11333 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11334 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11335 
11336 	if ((work->wakeup_all || work->notpresent_injected) &&
11337 	    kvm_pv_async_pf_enabled(vcpu) &&
11338 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11339 		vcpu->arch.apf.pageready_pending = true;
11340 		kvm_apic_set_irq(vcpu, &irq, NULL);
11341 	}
11342 
11343 	vcpu->arch.apf.halted = false;
11344 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11345 }
11346 
kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)11347 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11348 {
11349 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11350 	if (!vcpu->arch.apf.pageready_pending)
11351 		kvm_vcpu_kick(vcpu);
11352 }
11353 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)11354 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11355 {
11356 	if (!kvm_pv_async_pf_enabled(vcpu))
11357 		return true;
11358 	else
11359 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11360 }
11361 
kvm_arch_start_assignment(struct kvm *kvm)11362 void kvm_arch_start_assignment(struct kvm *kvm)
11363 {
11364 	atomic_inc(&kvm->arch.assigned_device_count);
11365 }
11366 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11367 
kvm_arch_end_assignment(struct kvm *kvm)11368 void kvm_arch_end_assignment(struct kvm *kvm)
11369 {
11370 	atomic_dec(&kvm->arch.assigned_device_count);
11371 }
11372 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11373 
kvm_arch_has_assigned_device(struct kvm *kvm)11374 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11375 {
11376 	return arch_atomic_read(&kvm->arch.assigned_device_count);
11377 }
11378 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11379 
kvm_arch_register_noncoherent_dma(struct kvm *kvm)11380 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11381 {
11382 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11383 }
11384 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11385 
kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)11386 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11387 {
11388 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11389 }
11390 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11391 
kvm_arch_has_noncoherent_dma(struct kvm *kvm)11392 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11393 {
11394 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11395 }
11396 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11397 
kvm_arch_has_irq_bypass(void)11398 bool kvm_arch_has_irq_bypass(void)
11399 {
11400 	return true;
11401 }
11402 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)11403 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11404 				      struct irq_bypass_producer *prod)
11405 {
11406 	struct kvm_kernel_irqfd *irqfd =
11407 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11408 	int ret;
11409 
11410 	irqfd->producer = prod;
11411 	kvm_arch_start_assignment(irqfd->kvm);
11412 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11413 					 prod->irq, irqfd->gsi, 1);
11414 
11415 	if (ret)
11416 		kvm_arch_end_assignment(irqfd->kvm);
11417 
11418 	return ret;
11419 }
11420 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)11421 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11422 				      struct irq_bypass_producer *prod)
11423 {
11424 	int ret;
11425 	struct kvm_kernel_irqfd *irqfd =
11426 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11427 
11428 	WARN_ON(irqfd->producer != prod);
11429 	irqfd->producer = NULL;
11430 
11431 	/*
11432 	 * When producer of consumer is unregistered, we change back to
11433 	 * remapped mode, so we can re-use the current implementation
11434 	 * when the irq is masked/disabled or the consumer side (KVM
11435 	 * int this case doesn't want to receive the interrupts.
11436 	*/
11437 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11438 	if (ret)
11439 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11440 		       " fails: %d\n", irqfd->consumer.token, ret);
11441 
11442 	kvm_arch_end_assignment(irqfd->kvm);
11443 }
11444 
kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set)11445 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11446 				   uint32_t guest_irq, bool set)
11447 {
11448 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11449 }
11450 
kvm_vector_hashing_enabled(void)11451 bool kvm_vector_hashing_enabled(void)
11452 {
11453 	return vector_hashing;
11454 }
11455 
kvm_arch_no_poll(struct kvm_vcpu *vcpu)11456 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11457 {
11458 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11459 }
11460 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11461 
11462 
kvm_spec_ctrl_test_value(u64 value)11463 int kvm_spec_ctrl_test_value(u64 value)
11464 {
11465 	/*
11466 	 * test that setting IA32_SPEC_CTRL to given value
11467 	 * is allowed by the host processor
11468 	 */
11469 
11470 	u64 saved_value;
11471 	unsigned long flags;
11472 	int ret = 0;
11473 
11474 	local_irq_save(flags);
11475 
11476 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11477 		ret = 1;
11478 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11479 		ret = 1;
11480 	else
11481 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11482 
11483 	local_irq_restore(flags);
11484 
11485 	return ret;
11486 }
11487 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11488 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)11489 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11490 {
11491 	struct x86_exception fault;
11492 	u32 access = error_code &
11493 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11494 
11495 	if (!(error_code & PFERR_PRESENT_MASK) ||
11496 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11497 		/*
11498 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11499 		 * tables probably do not match the TLB.  Just proceed
11500 		 * with the error code that the processor gave.
11501 		 */
11502 		fault.vector = PF_VECTOR;
11503 		fault.error_code_valid = true;
11504 		fault.error_code = error_code;
11505 		fault.nested_page_fault = false;
11506 		fault.address = gva;
11507 	}
11508 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11509 }
11510 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11511 
11512 /*
11513  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11514  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11515  * indicates whether exit to userspace is needed.
11516  */
kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, struct x86_exception *e)11517 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11518 			      struct x86_exception *e)
11519 {
11520 	if (r == X86EMUL_PROPAGATE_FAULT) {
11521 		kvm_inject_emulated_page_fault(vcpu, e);
11522 		return 1;
11523 	}
11524 
11525 	/*
11526 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11527 	 * while handling a VMX instruction KVM could've handled the request
11528 	 * correctly by exiting to userspace and performing I/O but there
11529 	 * doesn't seem to be a real use-case behind such requests, just return
11530 	 * KVM_EXIT_INTERNAL_ERROR for now.
11531 	 */
11532 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11533 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11534 	vcpu->run->internal.ndata = 0;
11535 
11536 	return 0;
11537 }
11538 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11539 
kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)11540 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11541 {
11542 	bool pcid_enabled;
11543 	struct x86_exception e;
11544 	unsigned i;
11545 	unsigned long roots_to_free = 0;
11546 	struct {
11547 		u64 pcid;
11548 		u64 gla;
11549 	} operand;
11550 	int r;
11551 
11552 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11553 	if (r != X86EMUL_CONTINUE)
11554 		return kvm_handle_memory_failure(vcpu, r, &e);
11555 
11556 	if (operand.pcid >> 12 != 0) {
11557 		kvm_inject_gp(vcpu, 0);
11558 		return 1;
11559 	}
11560 
11561 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11562 
11563 	switch (type) {
11564 	case INVPCID_TYPE_INDIV_ADDR:
11565 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11566 		    is_noncanonical_address(operand.gla, vcpu)) {
11567 			kvm_inject_gp(vcpu, 0);
11568 			return 1;
11569 		}
11570 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11571 		return kvm_skip_emulated_instruction(vcpu);
11572 
11573 	case INVPCID_TYPE_SINGLE_CTXT:
11574 		if (!pcid_enabled && (operand.pcid != 0)) {
11575 			kvm_inject_gp(vcpu, 0);
11576 			return 1;
11577 		}
11578 
11579 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11580 			kvm_mmu_sync_roots(vcpu);
11581 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11582 		}
11583 
11584 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11585 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11586 			    == operand.pcid)
11587 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11588 
11589 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11590 		/*
11591 		 * If neither the current cr3 nor any of the prev_roots use the
11592 		 * given PCID, then nothing needs to be done here because a
11593 		 * resync will happen anyway before switching to any other CR3.
11594 		 */
11595 
11596 		return kvm_skip_emulated_instruction(vcpu);
11597 
11598 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11599 		/*
11600 		 * Currently, KVM doesn't mark global entries in the shadow
11601 		 * page tables, so a non-global flush just degenerates to a
11602 		 * global flush. If needed, we could optimize this later by
11603 		 * keeping track of global entries in shadow page tables.
11604 		 */
11605 
11606 		fallthrough;
11607 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11608 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11609 		return kvm_skip_emulated_instruction(vcpu);
11610 
11611 	default:
11612 		BUG(); /* We have already checked above that type <= 3 */
11613 	}
11614 }
11615 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11616 
11617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11639 
kvm_x86_init(void)11640 static int __init kvm_x86_init(void)
11641 {
11642 	kvm_mmu_x86_module_init();
11643 	return 0;
11644 }
11645 module_init(kvm_x86_init);
11646 
kvm_x86_exit(void)11647 static void __exit kvm_x86_exit(void)
11648 {
11649 	/*
11650 	 * If module_init() is implemented, module_exit() must also be
11651 	 * implemented to allow module unload.
11652 	 */
11653 }
11654 module_exit(kvm_x86_exit);
11655