1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86
87 #define emul_to_vcpu(ctxt) \
88 ((struct kvm_vcpu *)(ctxt)->vcpu)
89
90 /* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32 __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64 __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143
144 /*
145 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
146 * adaptive tuning starting from default advancment of 1000ns. '0' disables
147 * advancement entirely. Any other value is used as-is and disables adaptive
148 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149 */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165
166 /*
167 * Restoring the host value for MSRs that are only consumed when running in
168 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169 * returns to userspace, i.e. the kernel can run with the guest's value.
170 */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172
173 struct kvm_user_return_msrs_global {
174 int nr;
175 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177
178 struct kvm_user_return_msrs {
179 struct user_return_notifier urn;
180 bool registered;
181 struct kvm_user_return_msr_values {
182 u64 host;
183 u64 curr;
184 } values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189
190 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 | XFEATURE_MASK_PKRU)
194
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 VCPU_STAT("pf_fixed", pf_fixed),
207 VCPU_STAT("pf_guest", pf_guest),
208 VCPU_STAT("tlb_flush", tlb_flush),
209 VCPU_STAT("invlpg", invlpg),
210 VCPU_STAT("exits", exits),
211 VCPU_STAT("io_exits", io_exits),
212 VCPU_STAT("mmio_exits", mmio_exits),
213 VCPU_STAT("signal_exits", signal_exits),
214 VCPU_STAT("irq_window", irq_window_exits),
215 VCPU_STAT("nmi_window", nmi_window_exits),
216 VCPU_STAT("halt_exits", halt_exits),
217 VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 VCPU_STAT("halt_wakeup", halt_wakeup),
221 VCPU_STAT("hypercalls", hypercalls),
222 VCPU_STAT("request_irq", request_irq_exits),
223 VCPU_STAT("irq_exits", irq_exits),
224 VCPU_STAT("host_state_reload", host_state_reload),
225 VCPU_STAT("fpu_reload", fpu_reload),
226 VCPU_STAT("insn_emulation", insn_emulation),
227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 VCPU_STAT("irq_injections", irq_injections),
229 VCPU_STAT("nmi_injections", nmi_injections),
230 VCPU_STAT("req_event", req_event),
231 VCPU_STAT("l1d_flush", l1d_flush),
232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 VCPU_STAT("preemption_reported", preemption_reported),
235 VCPU_STAT("preemption_other", preemption_other),
236 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 VM_STAT("mmu_pte_write", mmu_pte_write),
238 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 VM_STAT("mmu_flooded", mmu_flooded),
240 VM_STAT("mmu_recycled", mmu_recycled),
241 VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 VM_STAT("mmu_unsync", mmu_unsync),
243 VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 VM_STAT("largepages", lpages, .mode = 0444),
245 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 { NULL }
248 };
249
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253
254 static struct kmem_cache *x86_fpu_cache;
255
256 static struct kmem_cache *x86_emulator_cache;
257
258 /*
259 * When called, it means the previous get/set msr reached an invalid msr.
260 * Return true if we want to ignore/silent this failed msr access.
261 */
kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 u64 data, bool write)
264 {
265 const char *op = write ? "wrmsr" : "rdmsr";
266
267 if (ignore_msrs) {
268 if (report_ignored_msrs)
269 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 op, msr, data);
271 /* Mask the error */
272 return true;
273 } else {
274 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 op, msr, data);
276 return false;
277 }
278 }
279
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 unsigned int size = sizeof(struct x86_emulate_ctxt);
284
285 return kmem_cache_create_usercopy("x86_emulator", size,
286 __alignof__(struct x86_emulate_ctxt),
287 SLAB_ACCOUNT, useroffset,
288 size - useroffset, NULL);
289 }
290
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292
kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 int i;
296 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 vcpu->arch.apf.gfns[i] = ~0;
298 }
299
kvm_on_user_return(struct user_return_notifier *urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 unsigned slot;
303 struct kvm_user_return_msrs *msrs
304 = container_of(urn, struct kvm_user_return_msrs, urn);
305 struct kvm_user_return_msr_values *values;
306 unsigned long flags;
307
308 /*
309 * Disabling irqs at this point since the following code could be
310 * interrupted and executed through kvm_arch_hardware_disable()
311 */
312 local_irq_save(flags);
313 if (msrs->registered) {
314 msrs->registered = false;
315 user_return_notifier_unregister(urn);
316 }
317 local_irq_restore(flags);
318 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 values = &msrs->values[slot];
320 if (values->host != values->curr) {
321 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 values->curr = values->host;
323 }
324 }
325 }
326
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 u64 val;
330 int ret;
331
332 preempt_disable();
333 ret = rdmsrl_safe(msr, &val);
334 if (ret)
335 goto out;
336 ret = wrmsrl_safe(msr, val);
337 out:
338 preempt_enable();
339 return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342
kvm_define_user_return_msr(unsigned slot, u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 user_return_msrs_global.msrs[slot] = msr;
347 if (slot >= user_return_msrs_global.nr)
348 user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 unsigned int cpu = smp_processor_id();
355 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 u64 value;
357 int i;
358
359 for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 msrs->values[i].host = value;
362 msrs->values[i].curr = value;
363 }
364 }
365
kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 unsigned int cpu = smp_processor_id();
369 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 int err;
371
372 value = (value & mask) | (msrs->values[slot].host & ~mask);
373 if (value == msrs->values[slot].curr)
374 return 0;
375 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 if (err)
377 return 1;
378
379 msrs->values[slot].curr = value;
380 if (!msrs->registered) {
381 msrs->urn.on_user_return = kvm_on_user_return;
382 user_return_notifier_register(&msrs->urn);
383 msrs->registered = true;
384 }
385 return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 unsigned int cpu = smp_processor_id();
392 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393
394 if (msrs->registered)
395 kvm_on_user_return(&msrs->urn);
396 }
397
kvm_get_apic_base(struct kvm_vcpu *vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403
kvm_get_apic_mode(struct kvm_vcpu *vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409
kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416
417 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 return 1;
419 if (!msr_info->host_initiated) {
420 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 return 1;
422 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 return 1;
424 }
425
426 kvm_lapic_set_base(vcpu, msr_info->data);
427 kvm_recalculate_apic_map(vcpu->kvm);
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 /* Fault while not rebooting. We want the trace. */
435 BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438
439 #define EXCPT_BENIGN 0
440 #define EXCPT_CONTRIBUTORY 1
441 #define EXCPT_PF 2
442
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 switch (vector) {
446 case PF_VECTOR:
447 return EXCPT_PF;
448 case DE_VECTOR:
449 case TS_VECTOR:
450 case NP_VECTOR:
451 case SS_VECTOR:
452 case GP_VECTOR:
453 return EXCPT_CONTRIBUTORY;
454 default:
455 break;
456 }
457 return EXCPT_BENIGN;
458 }
459
460 #define EXCPT_FAULT 0
461 #define EXCPT_TRAP 1
462 #define EXCPT_ABORT 2
463 #define EXCPT_INTERRUPT 3
464 #define EXCPT_DB 4
465
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 unsigned int mask;
469
470 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 return EXCPT_INTERRUPT;
472
473 mask = 1 << vector;
474
475 /*
476 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 */
479 if (mask & (1 << DB_VECTOR))
480 return EXCPT_DB;
481
482 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 return EXCPT_TRAP;
484
485 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 return EXCPT_ABORT;
487
488 /* Reserved exceptions will result in fault */
489 return EXCPT_FAULT;
490 }
491
kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 unsigned nr = vcpu->arch.exception.nr;
495 bool has_payload = vcpu->arch.exception.has_payload;
496 unsigned long payload = vcpu->arch.exception.payload;
497
498 if (!has_payload)
499 return;
500
501 switch (nr) {
502 case DB_VECTOR:
503 /*
504 * "Certain debug exceptions may clear bit 0-3. The
505 * remaining contents of the DR6 register are never
506 * cleared by the processor".
507 */
508 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 /*
510 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 */
512 vcpu->arch.dr6 |= DR6_RTM;
513 vcpu->arch.dr6 |= payload;
514 /*
515 * Bit 16 should be set in the payload whenever the #DB
516 * exception should clear DR6.RTM. This makes the payload
517 * compatible with the pending debug exceptions under VMX.
518 * Though not currently documented in the SDM, this also
519 * makes the payload compatible with the exit qualification
520 * for #DB exceptions under VMX.
521 */
522 vcpu->arch.dr6 ^= payload & DR6_RTM;
523
524 /*
525 * The #DB payload is defined as compatible with the 'pending
526 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 * defined in the 'pending debug exceptions' field (enabled
528 * breakpoint), it is reserved and must be zero in DR6.
529 */
530 vcpu->arch.dr6 &= ~BIT(12);
531 break;
532 case PF_VECTOR:
533 vcpu->arch.cr2 = payload;
534 break;
535 }
536
537 vcpu->arch.exception.has_payload = false;
538 vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541
kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error, u32 error_code, bool has_payload, unsigned long payload, bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 unsigned nr, bool has_error, u32 error_code,
544 bool has_payload, unsigned long payload, bool reinject)
545 {
546 u32 prev_nr;
547 int class1, class2;
548
549 kvm_make_request(KVM_REQ_EVENT, vcpu);
550
551 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 queue:
553 if (reinject) {
554 /*
555 * On vmentry, vcpu->arch.exception.pending is only
556 * true if an event injection was blocked by
557 * nested_run_pending. In that case, however,
558 * vcpu_enter_guest requests an immediate exit,
559 * and the guest shouldn't proceed far enough to
560 * need reinjection.
561 */
562 WARN_ON_ONCE(vcpu->arch.exception.pending);
563 vcpu->arch.exception.injected = true;
564 if (WARN_ON_ONCE(has_payload)) {
565 /*
566 * A reinjected event has already
567 * delivered its payload.
568 */
569 has_payload = false;
570 payload = 0;
571 }
572 } else {
573 vcpu->arch.exception.pending = true;
574 vcpu->arch.exception.injected = false;
575 }
576 vcpu->arch.exception.has_error_code = has_error;
577 vcpu->arch.exception.nr = nr;
578 vcpu->arch.exception.error_code = error_code;
579 vcpu->arch.exception.has_payload = has_payload;
580 vcpu->arch.exception.payload = payload;
581 if (!is_guest_mode(vcpu))
582 kvm_deliver_exception_payload(vcpu);
583 return;
584 }
585
586 /* to check exception */
587 prev_nr = vcpu->arch.exception.nr;
588 if (prev_nr == DF_VECTOR) {
589 /* triple fault -> shutdown */
590 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 return;
592 }
593 class1 = exception_class(prev_nr);
594 class2 = exception_class(nr);
595 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 /*
598 * Generate double fault per SDM Table 5-5. Set
599 * exception.pending = true so that the double fault
600 * can trigger a nested vmexit.
601 */
602 vcpu->arch.exception.pending = true;
603 vcpu->arch.exception.injected = false;
604 vcpu->arch.exception.has_error_code = true;
605 vcpu->arch.exception.nr = DF_VECTOR;
606 vcpu->arch.exception.error_code = 0;
607 vcpu->arch.exception.has_payload = false;
608 vcpu->arch.exception.payload = 0;
609 } else
610 /* replace previous exception with a new one in a hope
611 that instruction re-execution will regenerate lost
612 exception */
613 goto queue;
614 }
615
kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621
kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627
kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 unsigned long payload)
630 {
631 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634
kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code, unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 u32 error_code, unsigned long payload)
637 {
638 kvm_multiple_exception(vcpu, nr, true, error_code,
639 true, payload, false);
640 }
641
kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 if (err)
645 kvm_inject_gp(vcpu, 0);
646 else
647 return kvm_skip_emulated_instruction(vcpu);
648
649 return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652
kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 ++vcpu->stat.pf_guest;
656 vcpu->arch.exception.nested_apf =
657 is_guest_mode(vcpu) && fault->async_page_fault;
658 if (vcpu->arch.exception.nested_apf) {
659 vcpu->arch.apf.nested_apf_token = fault->address;
660 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 } else {
662 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 fault->address);
664 }
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667
kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 struct x86_exception *fault)
670 {
671 struct kvm_mmu *fault_mmu;
672 WARN_ON_ONCE(fault->vector != PF_VECTOR);
673
674 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 vcpu->arch.walk_mmu;
676
677 /*
678 * Invalidate the TLB entry for the faulting address, if it exists,
679 * else the access will fault indefinitely (and to emulate hardware).
680 */
681 if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 !(fault->error_code & PFERR_RSVD_MASK))
683 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 fault_mmu->root_hpa);
685
686 fault_mmu->inject_page_fault(vcpu, fault);
687 return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690
kvm_inject_nmi(struct kvm_vcpu *vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 atomic_inc(&vcpu->arch.nmi_queued);
694 kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697
kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703
kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709
710 /*
711 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
712 * a #GP and return false.
713 */
kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 return true;
718 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722
kvm_require_dr(struct kvm_vcpu *vcpu, int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 return true;
727
728 kvm_queue_exception(vcpu, UD_VECTOR);
729 return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732
733 /*
734 * This function will be used to read from the physical memory of the currently
735 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736 * can read from guest physical or from the guest's guest physical memory.
737 */
kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t ngfn, void *data, int offset, int len, u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 gfn_t ngfn, void *data, int offset, int len,
740 u32 access)
741 {
742 struct x86_exception exception;
743 gfn_t real_gfn;
744 gpa_t ngpa;
745
746 ngpa = gfn_to_gpa(ngfn);
747 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 if (real_gfn == UNMAPPED_GVA)
749 return -EFAULT;
750
751 real_gfn = gpa_to_gfn(real_gfn);
752
753 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756
kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len, u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 void *data, int offset, int len, u32 access)
759 {
760 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 data, offset, len, access);
762 }
763
pdptr_rsvd_bits(struct kvm_vcpu *vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 rsvd_bits(1, 2);
768 }
769
770 /*
771 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
772 */
load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 int i;
778 int ret;
779 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780
781 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 offset * sizeof(u64), sizeof(pdpte),
783 PFERR_USER_MASK|PFERR_WRITE_MASK);
784 if (ret < 0) {
785 ret = 0;
786 goto out;
787 }
788 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 if ((pdpte[i] & PT_PRESENT_MASK) &&
790 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 ret = 0;
792 goto out;
793 }
794 }
795 ret = 1;
796
797 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799
800 out:
801
802 return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805
pdptrs_changed(struct kvm_vcpu *vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 int offset;
810 gfn_t gfn;
811 int r;
812
813 if (!is_pae_paging(vcpu))
814 return false;
815
816 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 return true;
818
819 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 PFERR_USER_MASK | PFERR_WRITE_MASK);
823 if (r < 0)
824 return true;
825
826 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829
kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835
836 cr0 |= X86_CR0_ET;
837
838 #ifdef CONFIG_X86_64
839 if (cr0 & 0xffffffff00000000UL)
840 return 1;
841 #endif
842
843 cr0 &= ~CR0_RESERVED_BITS;
844
845 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 return 1;
847
848 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 return 1;
850
851 #ifdef CONFIG_X86_64
852 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 (cr0 & X86_CR0_PG)) {
854 int cs_db, cs_l;
855
856 if (!is_pae(vcpu))
857 return 1;
858 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 if (cs_l)
860 return 1;
861 }
862 #endif
863 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 return 1;
867
868 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 return 1;
870
871 kvm_x86_ops.set_cr0(vcpu, cr0);
872
873 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 kvm_clear_async_pf_completion_queue(vcpu);
875 kvm_async_pf_hash_reset(vcpu);
876 }
877
878 if ((cr0 ^ old_cr0) & update_bits)
879 kvm_mmu_reset_context(vcpu);
880
881 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889
kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895
kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899
900 if (vcpu->arch.xcr0 != host_xcr0)
901 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902
903 if (vcpu->arch.xsaves_enabled &&
904 vcpu->arch.ia32_xss != host_xss)
905 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 }
907
908 if (static_cpu_has(X86_FEATURE_PKU) &&
909 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 vcpu->arch.pkru != vcpu->arch.host_pkru)
912 __write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915
kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 if (static_cpu_has(X86_FEATURE_PKU) &&
919 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 vcpu->arch.pkru = rdpkru();
922 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 __write_pkru(vcpu->arch.host_pkru);
924 }
925
926 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927
928 if (vcpu->arch.xcr0 != host_xcr0)
929 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930
931 if (vcpu->arch.xsaves_enabled &&
932 vcpu->arch.ia32_xss != host_xss)
933 wrmsrl(MSR_IA32_XSS, host_xss);
934 }
935
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938
__kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 u64 xcr0 = xcr;
942 u64 old_xcr0 = vcpu->arch.xcr0;
943 u64 valid_bits;
944
945 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
946 if (index != XCR_XFEATURE_ENABLED_MASK)
947 return 1;
948 if (!(xcr0 & XFEATURE_MASK_FP))
949 return 1;
950 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 return 1;
952
953 /*
954 * Do not allow the guest to set bits that we do not support
955 * saving. However, xcr0 bit 0 is always set, even if the
956 * emulated CPU does not support XSAVE (see fx_init).
957 */
958 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 if (xcr0 & ~valid_bits)
960 return 1;
961
962 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 return 1;
965
966 if (xcr0 & XFEATURE_MASK_AVX512) {
967 if (!(xcr0 & XFEATURE_MASK_YMM))
968 return 1;
969 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 return 1;
971 }
972 vcpu->arch.xcr0 = xcr0;
973
974 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 kvm_update_cpuid_runtime(vcpu);
976 return 0;
977 }
978
kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 __kvm_set_xcr(vcpu, index, xcr)) {
983 kvm_inject_gp(vcpu, 0);
984 return 1;
985 }
986 return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989
kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 if (cr4 & cr4_reserved_bits)
993 return -EINVAL;
994
995 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 return -EINVAL;
997
998 if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 return -EINVAL;
1000
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004
kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 X86_CR4_SMEP;
1010 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011
1012 if (kvm_valid_cr4(vcpu, cr4))
1013 return 1;
1014
1015 if (is_long_mode(vcpu)) {
1016 if (!(cr4 & X86_CR4_PAE))
1017 return 1;
1018 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 return 1;
1020 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 && ((cr4 ^ old_cr4) & pdptr_bits)
1022 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 kvm_read_cr3(vcpu)))
1024 return 1;
1025
1026 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 return 1;
1029
1030 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 return 1;
1033 }
1034
1035 kvm_x86_ops.set_cr4(vcpu, cr4);
1036
1037 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 kvm_mmu_reset_context(vcpu);
1040
1041 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 kvm_update_cpuid_runtime(vcpu);
1043
1044 return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047
kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053
1054 if (pcid_enabled) {
1055 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 }
1058 #endif
1059
1060 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 if (!skip_tlb_flush) {
1062 kvm_mmu_sync_roots(vcpu);
1063 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 }
1065 return 0;
1066 }
1067
1068 if (is_long_mode(vcpu) &&
1069 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 return 1;
1071 else if (is_pae_paging(vcpu) &&
1072 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 return 1;
1074
1075 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 vcpu->arch.cr3 = cr3;
1077 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078
1079 return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082
kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 if (cr8 & CR8_RESERVED_BITS)
1086 return 1;
1087 if (lapic_in_kernel(vcpu))
1088 kvm_lapic_set_tpr(vcpu, cr8);
1089 else
1090 vcpu->arch.cr8 = cr8;
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094
kvm_get_cr8(struct kvm_vcpu *vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 if (lapic_in_kernel(vcpu))
1098 return kvm_lapic_get_cr8(vcpu);
1099 else
1100 return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103
kvm_update_dr0123(struct kvm_vcpu *vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 int i;
1107
1108 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 }
1113 }
1114
kvm_update_dr7(struct kvm_vcpu *vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 unsigned long dr7;
1118
1119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 dr7 = vcpu->arch.guest_debug_dr7;
1121 else
1122 dr7 = vcpu->arch.dr7;
1123 kvm_x86_ops.set_dr7(vcpu, dr7);
1124 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 if (dr7 & DR7_BP_EN_MASK)
1126 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129
kvm_dr6_fixed(struct kvm_vcpu *vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 u64 fixed = DR6_FIXED_1;
1133
1134 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 fixed |= DR6_RTM;
1136 return fixed;
1137 }
1138
__kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 size_t size = ARRAY_SIZE(vcpu->arch.db);
1142
1143 switch (dr) {
1144 case 0 ... 3:
1145 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 vcpu->arch.eff_db[dr] = val;
1148 break;
1149 case 4:
1150 case 6:
1151 if (!kvm_dr6_valid(val))
1152 return -1; /* #GP */
1153 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 break;
1155 case 5:
1156 default: /* 7 */
1157 if (!kvm_dr7_valid(val))
1158 return -1; /* #GP */
1159 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 kvm_update_dr7(vcpu);
1161 break;
1162 }
1163
1164 return 0;
1165 }
1166
kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 if (__kvm_set_dr(vcpu, dr, val)) {
1170 kvm_inject_gp(vcpu, 0);
1171 return 1;
1172 }
1173 return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176
kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 size_t size = ARRAY_SIZE(vcpu->arch.db);
1180
1181 switch (dr) {
1182 case 0 ... 3:
1183 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 break;
1185 case 4:
1186 case 6:
1187 *val = vcpu->arch.dr6;
1188 break;
1189 case 5:
1190 default: /* 7 */
1191 *val = vcpu->arch.dr7;
1192 break;
1193 }
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197
kvm_rdpmc(struct kvm_vcpu *vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 u32 ecx = kvm_rcx_read(vcpu);
1201 u64 data;
1202 int err;
1203
1204 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 if (err)
1206 return err;
1207 kvm_rax_write(vcpu, (u32)data);
1208 kvm_rdx_write(vcpu, data >> 32);
1209 return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212
1213 /*
1214 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216 *
1217 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218 * extract the supported MSRs from the related const lists.
1219 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220 * capabilities of the host cpu. This capabilities test skips MSRs that are
1221 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222 * may depend on host virtualization features rather than host cpu features.
1223 */
1224
1225 static const u32 msrs_to_save_all[] = {
1226 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 MSR_IA32_SPEC_CTRL,
1234 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 MSR_IA32_UMWAIT_CONTROL,
1241
1242 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264
1265 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275
1276 static const u32 emulated_msrs_all[] = {
1277 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 HV_X64_MSR_RESET,
1285 HV_X64_MSR_VP_INDEX,
1286 HV_X64_MSR_VP_RUNTIME,
1287 HV_X64_MSR_SCONTROL,
1288 HV_X64_MSR_STIMER0_CONFIG,
1289 HV_X64_MSR_VP_ASSIST_PAGE,
1290 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 HV_X64_MSR_TSC_EMULATION_STATUS,
1292 HV_X64_MSR_SYNDBG_OPTIONS,
1293 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296
1297 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299
1300 MSR_IA32_TSC_ADJUST,
1301 MSR_IA32_TSCDEADLINE,
1302 MSR_IA32_ARCH_CAPABILITIES,
1303 MSR_IA32_PERF_CAPABILITIES,
1304 MSR_IA32_MISC_ENABLE,
1305 MSR_IA32_MCG_STATUS,
1306 MSR_IA32_MCG_CTL,
1307 MSR_IA32_MCG_EXT_CTL,
1308 MSR_IA32_SMBASE,
1309 MSR_SMI_COUNT,
1310 MSR_PLATFORM_INFO,
1311 MSR_MISC_FEATURES_ENABLES,
1312 MSR_AMD64_VIRT_SPEC_CTRL,
1313 MSR_IA32_POWER_CTL,
1314 MSR_IA32_UCODE_REV,
1315
1316 /*
1317 * The following list leaves out MSRs whose values are determined
1318 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 * We always support the "true" VMX control MSRs, even if the host
1320 * processor does not, so I am putting these registers here rather
1321 * than in msrs_to_save_all.
1322 */
1323 MSR_IA32_VMX_BASIC,
1324 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 MSR_IA32_VMX_MISC,
1329 MSR_IA32_VMX_CR0_FIXED0,
1330 MSR_IA32_VMX_CR4_FIXED0,
1331 MSR_IA32_VMX_VMCS_ENUM,
1332 MSR_IA32_VMX_PROCBASED_CTLS2,
1333 MSR_IA32_VMX_EPT_VPID_CAP,
1334 MSR_IA32_VMX_VMFUNC,
1335
1336 MSR_K7_HWCR,
1337 MSR_KVM_POLL_CONTROL,
1338 };
1339
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342
1343 /*
1344 * List of msr numbers which are used to expose MSR-based features that
1345 * can be used by a hypervisor to validate requested CPU features.
1346 */
1347 static const u32 msr_based_features_all[] = {
1348 MSR_IA32_VMX_BASIC,
1349 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 MSR_IA32_VMX_PINBASED_CTLS,
1351 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 MSR_IA32_VMX_PROCBASED_CTLS,
1353 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 MSR_IA32_VMX_EXIT_CTLS,
1355 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 MSR_IA32_VMX_ENTRY_CTLS,
1357 MSR_IA32_VMX_MISC,
1358 MSR_IA32_VMX_CR0_FIXED0,
1359 MSR_IA32_VMX_CR0_FIXED1,
1360 MSR_IA32_VMX_CR4_FIXED0,
1361 MSR_IA32_VMX_CR4_FIXED1,
1362 MSR_IA32_VMX_VMCS_ENUM,
1363 MSR_IA32_VMX_PROCBASED_CTLS2,
1364 MSR_IA32_VMX_EPT_VPID_CAP,
1365 MSR_IA32_VMX_VMFUNC,
1366
1367 MSR_AMD64_DE_CFG,
1368 MSR_IA32_UCODE_REV,
1369 MSR_IA32_ARCH_CAPABILITIES,
1370 MSR_IA32_PERF_CAPABILITIES,
1371 };
1372
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375
1376 /*
1377 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378 * does not yet virtualize. These include:
1379 * 10 - MISC_PACKAGE_CTRLS
1380 * 11 - ENERGY_FILTERING_CTL
1381 * 12 - DOITM
1382 * 18 - FB_CLEAR_CTRL
1383 * 21 - XAPIC_DISABLE_STATUS
1384 * 23 - OVERCLOCKING_STATUS
1385 */
1386
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1393 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR)
1394
kvm_get_arch_capabilities(void)1395 static u64 kvm_get_arch_capabilities(void)
1396 {
1397 u64 data = 0;
1398
1399 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1400 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1401 data &= KVM_SUPPORTED_ARCH_CAP;
1402 }
1403
1404 /*
1405 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1406 * the nested hypervisor runs with NX huge pages. If it is not,
1407 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1408 * L1 guests, so it need not worry about its own (L2) guests.
1409 */
1410 data |= ARCH_CAP_PSCHANGE_MC_NO;
1411
1412 /*
1413 * If we're doing cache flushes (either "always" or "cond")
1414 * we will do one whenever the guest does a vmlaunch/vmresume.
1415 * If an outer hypervisor is doing the cache flush for us
1416 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1417 * capability to the guest too, and if EPT is disabled we're not
1418 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1419 * require a nested hypervisor to do a flush of its own.
1420 */
1421 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1422 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1423
1424 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1425 data |= ARCH_CAP_RDCL_NO;
1426 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1427 data |= ARCH_CAP_SSB_NO;
1428 if (!boot_cpu_has_bug(X86_BUG_MDS))
1429 data |= ARCH_CAP_MDS_NO;
1430 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1431 data |= ARCH_CAP_RFDS_NO;
1432
1433 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1434 /*
1435 * If RTM=0 because the kernel has disabled TSX, the host might
1436 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1437 * and therefore knows that there cannot be TAA) but keep
1438 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1439 * and we want to allow migrating those guests to tsx=off hosts.
1440 */
1441 data &= ~ARCH_CAP_TAA_NO;
1442 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1443 data |= ARCH_CAP_TAA_NO;
1444 } else {
1445 /*
1446 * Nothing to do here; we emulate TSX_CTRL if present on the
1447 * host so the guest can choose between disabling TSX or
1448 * using VERW to clear CPU buffers.
1449 */
1450 }
1451
1452 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1453 data |= ARCH_CAP_GDS_NO;
1454
1455 return data;
1456 }
1457
kvm_get_msr_feature(struct kvm_msr_entry *msr)1458 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1459 {
1460 switch (msr->index) {
1461 case MSR_IA32_ARCH_CAPABILITIES:
1462 msr->data = kvm_get_arch_capabilities();
1463 break;
1464 case MSR_IA32_UCODE_REV:
1465 rdmsrl_safe(msr->index, &msr->data);
1466 break;
1467 default:
1468 return kvm_x86_ops.get_msr_feature(msr);
1469 }
1470 return 0;
1471 }
1472
do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1473 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1474 {
1475 struct kvm_msr_entry msr;
1476 int r;
1477
1478 msr.index = index;
1479 r = kvm_get_msr_feature(&msr);
1480
1481 if (r == KVM_MSR_RET_INVALID) {
1482 /* Unconditionally clear the output for simplicity */
1483 *data = 0;
1484 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1485 r = 0;
1486 }
1487
1488 if (r)
1489 return r;
1490
1491 *data = msr.data;
1492
1493 return 0;
1494 }
1495
__kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)1496 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1497 {
1498 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1499 return false;
1500
1501 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1502 return false;
1503
1504 if (efer & (EFER_LME | EFER_LMA) &&
1505 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1506 return false;
1507
1508 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1509 return false;
1510
1511 return true;
1512
1513 }
kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)1514 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1515 {
1516 if (efer & efer_reserved_bits)
1517 return false;
1518
1519 return __kvm_valid_efer(vcpu, efer);
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1522
set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)1523 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1524 {
1525 u64 old_efer = vcpu->arch.efer;
1526 u64 efer = msr_info->data;
1527 int r;
1528
1529 if (efer & efer_reserved_bits)
1530 return 1;
1531
1532 if (!msr_info->host_initiated) {
1533 if (!__kvm_valid_efer(vcpu, efer))
1534 return 1;
1535
1536 if (is_paging(vcpu) &&
1537 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1538 return 1;
1539 }
1540
1541 efer &= ~EFER_LMA;
1542 efer |= vcpu->arch.efer & EFER_LMA;
1543
1544 r = kvm_x86_ops.set_efer(vcpu, efer);
1545 if (r) {
1546 WARN_ON(r > 0);
1547 return r;
1548 }
1549
1550 /* Update reserved bits */
1551 if ((efer ^ old_efer) & EFER_NX)
1552 kvm_mmu_reset_context(vcpu);
1553
1554 return 0;
1555 }
1556
kvm_enable_efer_bits(u64 mask)1557 void kvm_enable_efer_bits(u64 mask)
1558 {
1559 efer_reserved_bits &= ~mask;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1562
kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)1563 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1564 {
1565 struct kvm_x86_msr_filter *msr_filter;
1566 struct msr_bitmap_range *ranges;
1567 struct kvm *kvm = vcpu->kvm;
1568 bool allowed;
1569 int idx;
1570 u32 i;
1571
1572 /* x2APIC MSRs do not support filtering. */
1573 if (index >= 0x800 && index <= 0x8ff)
1574 return true;
1575
1576 idx = srcu_read_lock(&kvm->srcu);
1577
1578 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1579 if (!msr_filter) {
1580 allowed = true;
1581 goto out;
1582 }
1583
1584 allowed = msr_filter->default_allow;
1585 ranges = msr_filter->ranges;
1586
1587 for (i = 0; i < msr_filter->count; i++) {
1588 u32 start = ranges[i].base;
1589 u32 end = start + ranges[i].nmsrs;
1590 u32 flags = ranges[i].flags;
1591 unsigned long *bitmap = ranges[i].bitmap;
1592
1593 if ((index >= start) && (index < end) && (flags & type)) {
1594 allowed = !!test_bit(index - start, bitmap);
1595 break;
1596 }
1597
1598 /* Note, VM-Exits that go down the "slow" path are accounted below. */
1599 ++vcpu->stat.exits;
1600 }
1601
1602 out:
1603 srcu_read_unlock(&kvm->srcu, idx);
1604
1605 return allowed;
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1608
1609 /*
1610 * Write @data into the MSR specified by @index. Select MSR specific fault
1611 * checks are bypassed if @host_initiated is %true.
1612 * Returns 0 on success, non-0 otherwise.
1613 * Assumes vcpu_load() was already called.
1614 */
__kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, bool host_initiated)1615 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1616 bool host_initiated)
1617 {
1618 struct msr_data msr;
1619
1620 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1621 return KVM_MSR_RET_FILTERED;
1622
1623 switch (index) {
1624 case MSR_FS_BASE:
1625 case MSR_GS_BASE:
1626 case MSR_KERNEL_GS_BASE:
1627 case MSR_CSTAR:
1628 case MSR_LSTAR:
1629 if (is_noncanonical_address(data, vcpu))
1630 return 1;
1631 break;
1632 case MSR_IA32_SYSENTER_EIP:
1633 case MSR_IA32_SYSENTER_ESP:
1634 /*
1635 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1636 * non-canonical address is written on Intel but not on
1637 * AMD (which ignores the top 32-bits, because it does
1638 * not implement 64-bit SYSENTER).
1639 *
1640 * 64-bit code should hence be able to write a non-canonical
1641 * value on AMD. Making the address canonical ensures that
1642 * vmentry does not fail on Intel after writing a non-canonical
1643 * value, and that something deterministic happens if the guest
1644 * invokes 64-bit SYSENTER.
1645 */
1646 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1647 }
1648
1649 msr.data = data;
1650 msr.index = index;
1651 msr.host_initiated = host_initiated;
1652
1653 return kvm_x86_ops.set_msr(vcpu, &msr);
1654 }
1655
kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, u32 index, u64 data, bool host_initiated)1656 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1657 u32 index, u64 data, bool host_initiated)
1658 {
1659 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1660
1661 if (ret == KVM_MSR_RET_INVALID)
1662 if (kvm_msr_ignored_check(vcpu, index, data, true))
1663 ret = 0;
1664
1665 return ret;
1666 }
1667
1668 /*
1669 * Read the MSR specified by @index into @data. Select MSR specific fault
1670 * checks are bypassed if @host_initiated is %true.
1671 * Returns 0 on success, non-0 otherwise.
1672 * Assumes vcpu_load() was already called.
1673 */
__kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated)1674 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1675 bool host_initiated)
1676 {
1677 struct msr_data msr;
1678 int ret;
1679
1680 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1681 return KVM_MSR_RET_FILTERED;
1682
1683 msr.index = index;
1684 msr.host_initiated = host_initiated;
1685
1686 ret = kvm_x86_ops.get_msr(vcpu, &msr);
1687 if (!ret)
1688 *data = msr.data;
1689 return ret;
1690 }
1691
kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated)1692 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1693 u32 index, u64 *data, bool host_initiated)
1694 {
1695 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1696
1697 if (ret == KVM_MSR_RET_INVALID) {
1698 /* Unconditionally clear *data for simplicity */
1699 *data = 0;
1700 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1701 ret = 0;
1702 }
1703
1704 return ret;
1705 }
1706
kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)1707 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1708 {
1709 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_msr);
1712
kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)1713 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1714 {
1715 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_msr);
1718
complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)1719 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1720 {
1721 if (vcpu->run->msr.error) {
1722 kvm_inject_gp(vcpu, 0);
1723 return 1;
1724 } else if (is_read) {
1725 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1726 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1727 }
1728
1729 return kvm_skip_emulated_instruction(vcpu);
1730 }
1731
complete_emulated_rdmsr(struct kvm_vcpu *vcpu)1732 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1733 {
1734 return complete_emulated_msr(vcpu, true);
1735 }
1736
complete_emulated_wrmsr(struct kvm_vcpu *vcpu)1737 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1738 {
1739 return complete_emulated_msr(vcpu, false);
1740 }
1741
kvm_msr_reason(int r)1742 static u64 kvm_msr_reason(int r)
1743 {
1744 switch (r) {
1745 case KVM_MSR_RET_INVALID:
1746 return KVM_MSR_EXIT_REASON_UNKNOWN;
1747 case KVM_MSR_RET_FILTERED:
1748 return KVM_MSR_EXIT_REASON_FILTER;
1749 default:
1750 return KVM_MSR_EXIT_REASON_INVAL;
1751 }
1752 }
1753
kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u32 exit_reason, u64 data, int (*completion)(struct kvm_vcpu *vcpu), int r)1754 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1755 u32 exit_reason, u64 data,
1756 int (*completion)(struct kvm_vcpu *vcpu),
1757 int r)
1758 {
1759 u64 msr_reason = kvm_msr_reason(r);
1760
1761 /* Check if the user wanted to know about this MSR fault */
1762 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1763 return 0;
1764
1765 vcpu->run->exit_reason = exit_reason;
1766 vcpu->run->msr.error = 0;
1767 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1768 vcpu->run->msr.reason = msr_reason;
1769 vcpu->run->msr.index = index;
1770 vcpu->run->msr.data = data;
1771 vcpu->arch.complete_userspace_io = completion;
1772
1773 return 1;
1774 }
1775
kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)1776 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1777 {
1778 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1779 complete_emulated_rdmsr, r);
1780 }
1781
kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)1782 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1783 {
1784 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1785 complete_emulated_wrmsr, r);
1786 }
1787
kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)1788 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1789 {
1790 u32 ecx = kvm_rcx_read(vcpu);
1791 u64 data;
1792 int r;
1793
1794 r = kvm_get_msr(vcpu, ecx, &data);
1795
1796 /* MSR read failed? See if we should ask user space */
1797 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1798 /* Bounce to user space */
1799 return 0;
1800 }
1801
1802 /* MSR read failed? Inject a #GP */
1803 if (r) {
1804 trace_kvm_msr_read_ex(ecx);
1805 kvm_inject_gp(vcpu, 0);
1806 return 1;
1807 }
1808
1809 trace_kvm_msr_read(ecx, data);
1810
1811 kvm_rax_write(vcpu, data & -1u);
1812 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1813 return kvm_skip_emulated_instruction(vcpu);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1816
kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)1817 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1818 {
1819 u32 ecx = kvm_rcx_read(vcpu);
1820 u64 data = kvm_read_edx_eax(vcpu);
1821 int r;
1822
1823 r = kvm_set_msr(vcpu, ecx, data);
1824
1825 /* MSR write failed? See if we should ask user space */
1826 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1827 /* Bounce to user space */
1828 return 0;
1829
1830 /* Signal all other negative errors to userspace */
1831 if (r < 0)
1832 return r;
1833
1834 /* MSR write failed? Inject a #GP */
1835 if (r > 0) {
1836 trace_kvm_msr_write_ex(ecx, data);
1837 kvm_inject_gp(vcpu, 0);
1838 return 1;
1839 }
1840
1841 trace_kvm_msr_write(ecx, data);
1842 return kvm_skip_emulated_instruction(vcpu);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1845
kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)1846 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1847 {
1848 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1849 xfer_to_guest_mode_work_pending();
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1852
1853 /*
1854 * The fast path for frequent and performance sensitive wrmsr emulation,
1855 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1856 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1857 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1858 * other cases which must be called after interrupts are enabled on the host.
1859 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)1860 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1861 {
1862 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1863 return 1;
1864
1865 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1866 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1867 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1868 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1869
1870 data &= ~(1 << 12);
1871 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1872 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1873 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1874 trace_kvm_apic_write(APIC_ICR, (u32)data);
1875 return 0;
1876 }
1877
1878 return 1;
1879 }
1880
handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)1881 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1882 {
1883 if (!kvm_can_use_hv_timer(vcpu))
1884 return 1;
1885
1886 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1887 return 0;
1888 }
1889
handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)1890 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1891 {
1892 u32 msr = kvm_rcx_read(vcpu);
1893 u64 data;
1894 fastpath_t ret = EXIT_FASTPATH_NONE;
1895
1896 switch (msr) {
1897 case APIC_BASE_MSR + (APIC_ICR >> 4):
1898 data = kvm_read_edx_eax(vcpu);
1899 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1900 kvm_skip_emulated_instruction(vcpu);
1901 ret = EXIT_FASTPATH_EXIT_HANDLED;
1902 }
1903 break;
1904 case MSR_IA32_TSCDEADLINE:
1905 data = kvm_read_edx_eax(vcpu);
1906 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1907 kvm_skip_emulated_instruction(vcpu);
1908 ret = EXIT_FASTPATH_REENTER_GUEST;
1909 }
1910 break;
1911 default:
1912 break;
1913 }
1914
1915 if (ret != EXIT_FASTPATH_NONE)
1916 trace_kvm_msr_write(msr, data);
1917
1918 return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1921
1922 /*
1923 * Adapt set_msr() to msr_io()'s calling convention
1924 */
do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1925 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1926 {
1927 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1928 }
1929
do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)1930 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1931 {
1932 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1933 }
1934
1935 #ifdef CONFIG_X86_64
1936 struct pvclock_clock {
1937 int vclock_mode;
1938 u64 cycle_last;
1939 u64 mask;
1940 u32 mult;
1941 u32 shift;
1942 u64 base_cycles;
1943 u64 offset;
1944 };
1945
1946 struct pvclock_gtod_data {
1947 seqcount_t seq;
1948
1949 struct pvclock_clock clock; /* extract of a clocksource struct */
1950 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1951
1952 ktime_t offs_boot;
1953 u64 wall_time_sec;
1954 };
1955
1956 static struct pvclock_gtod_data pvclock_gtod_data;
1957
update_pvclock_gtod(struct timekeeper *tk)1958 static void update_pvclock_gtod(struct timekeeper *tk)
1959 {
1960 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1961
1962 write_seqcount_begin(&vdata->seq);
1963
1964 /* copy pvclock gtod data */
1965 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1966 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1967 vdata->clock.mask = tk->tkr_mono.mask;
1968 vdata->clock.mult = tk->tkr_mono.mult;
1969 vdata->clock.shift = tk->tkr_mono.shift;
1970 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1971 vdata->clock.offset = tk->tkr_mono.base;
1972
1973 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1974 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1975 vdata->raw_clock.mask = tk->tkr_raw.mask;
1976 vdata->raw_clock.mult = tk->tkr_raw.mult;
1977 vdata->raw_clock.shift = tk->tkr_raw.shift;
1978 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1979 vdata->raw_clock.offset = tk->tkr_raw.base;
1980
1981 vdata->wall_time_sec = tk->xtime_sec;
1982
1983 vdata->offs_boot = tk->offs_boot;
1984
1985 write_seqcount_end(&vdata->seq);
1986 }
1987
get_kvmclock_base_ns(void)1988 static s64 get_kvmclock_base_ns(void)
1989 {
1990 /* Count up from boot time, but with the frequency of the raw clock. */
1991 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1992 }
1993 #else
get_kvmclock_base_ns(void)1994 static s64 get_kvmclock_base_ns(void)
1995 {
1996 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1997 return ktime_get_boottime_ns();
1998 }
1999 #endif
2000
kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)2001 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
2002 {
2003 int version;
2004 int r;
2005 struct pvclock_wall_clock wc;
2006 u64 wall_nsec;
2007
2008 kvm->arch.wall_clock = wall_clock;
2009
2010 if (!wall_clock)
2011 return;
2012
2013 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2014 if (r)
2015 return;
2016
2017 if (version & 1)
2018 ++version; /* first time write, random junk */
2019
2020 ++version;
2021
2022 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2023 return;
2024
2025 /*
2026 * The guest calculates current wall clock time by adding
2027 * system time (updated by kvm_guest_time_update below) to the
2028 * wall clock specified here. We do the reverse here.
2029 */
2030 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2031
2032 wc.nsec = do_div(wall_nsec, 1000000000);
2033 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2034 wc.version = version;
2035
2036 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2037
2038 version++;
2039 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2040 }
2041
kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, bool old_msr, bool host_initiated)2042 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2043 bool old_msr, bool host_initiated)
2044 {
2045 struct kvm_arch *ka = &vcpu->kvm->arch;
2046
2047 if (vcpu->vcpu_id == 0 && !host_initiated) {
2048 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2049 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2050
2051 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2052 }
2053
2054 vcpu->arch.time = system_time;
2055 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2056
2057 /* we verify if the enable bit is set... */
2058 vcpu->arch.pv_time_enabled = false;
2059 if (!(system_time & 1))
2060 return;
2061
2062 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2063 &vcpu->arch.pv_time, system_time & ~1ULL,
2064 sizeof(struct pvclock_vcpu_time_info)))
2065 vcpu->arch.pv_time_enabled = true;
2066
2067 return;
2068 }
2069
div_frac(uint32_t dividend, uint32_t divisor)2070 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2071 {
2072 do_shl32_div32(dividend, divisor);
2073 return dividend;
2074 }
2075
kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, s8 *pshift, u32 *pmultiplier)2076 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2077 s8 *pshift, u32 *pmultiplier)
2078 {
2079 uint64_t scaled64;
2080 int32_t shift = 0;
2081 uint64_t tps64;
2082 uint32_t tps32;
2083
2084 tps64 = base_hz;
2085 scaled64 = scaled_hz;
2086 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2087 tps64 >>= 1;
2088 shift--;
2089 }
2090
2091 tps32 = (uint32_t)tps64;
2092 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2093 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2094 scaled64 >>= 1;
2095 else
2096 tps32 <<= 1;
2097 shift++;
2098 }
2099
2100 *pshift = shift;
2101 *pmultiplier = div_frac(scaled64, tps32);
2102 }
2103
2104 #ifdef CONFIG_X86_64
2105 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2106 #endif
2107
2108 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2109 static unsigned long max_tsc_khz;
2110
adjust_tsc_khz(u32 khz, s32 ppm)2111 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2112 {
2113 u64 v = (u64)khz * (1000000 + ppm);
2114 do_div(v, 1000000);
2115 return v;
2116 }
2117
set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)2118 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2119 {
2120 u64 ratio;
2121
2122 /* Guest TSC same frequency as host TSC? */
2123 if (!scale) {
2124 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2125 return 0;
2126 }
2127
2128 /* TSC scaling supported? */
2129 if (!kvm_has_tsc_control) {
2130 if (user_tsc_khz > tsc_khz) {
2131 vcpu->arch.tsc_catchup = 1;
2132 vcpu->arch.tsc_always_catchup = 1;
2133 return 0;
2134 } else {
2135 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2136 return -1;
2137 }
2138 }
2139
2140 /* TSC scaling required - calculate ratio */
2141 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2142 user_tsc_khz, tsc_khz);
2143
2144 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2145 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2146 user_tsc_khz);
2147 return -1;
2148 }
2149
2150 vcpu->arch.tsc_scaling_ratio = ratio;
2151 return 0;
2152 }
2153
kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)2154 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2155 {
2156 u32 thresh_lo, thresh_hi;
2157 int use_scaling = 0;
2158
2159 /* tsc_khz can be zero if TSC calibration fails */
2160 if (user_tsc_khz == 0) {
2161 /* set tsc_scaling_ratio to a safe value */
2162 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2163 return -1;
2164 }
2165
2166 /* Compute a scale to convert nanoseconds in TSC cycles */
2167 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2168 &vcpu->arch.virtual_tsc_shift,
2169 &vcpu->arch.virtual_tsc_mult);
2170 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2171
2172 /*
2173 * Compute the variation in TSC rate which is acceptable
2174 * within the range of tolerance and decide if the
2175 * rate being applied is within that bounds of the hardware
2176 * rate. If so, no scaling or compensation need be done.
2177 */
2178 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2179 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2180 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2181 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2182 use_scaling = 1;
2183 }
2184 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2185 }
2186
compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)2187 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2188 {
2189 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2190 vcpu->arch.virtual_tsc_mult,
2191 vcpu->arch.virtual_tsc_shift);
2192 tsc += vcpu->arch.this_tsc_write;
2193 return tsc;
2194 }
2195
gtod_is_based_on_tsc(int mode)2196 static inline int gtod_is_based_on_tsc(int mode)
2197 {
2198 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2199 }
2200
kvm_track_tsc_matching(struct kvm_vcpu *vcpu)2201 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2202 {
2203 #ifdef CONFIG_X86_64
2204 bool vcpus_matched;
2205 struct kvm_arch *ka = &vcpu->kvm->arch;
2206 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2207
2208 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2209 atomic_read(&vcpu->kvm->online_vcpus));
2210
2211 /*
2212 * Once the masterclock is enabled, always perform request in
2213 * order to update it.
2214 *
2215 * In order to enable masterclock, the host clocksource must be TSC
2216 * and the vcpus need to have matched TSCs. When that happens,
2217 * perform request to enable masterclock.
2218 */
2219 if (ka->use_master_clock ||
2220 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2221 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2222
2223 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2224 atomic_read(&vcpu->kvm->online_vcpus),
2225 ka->use_master_clock, gtod->clock.vclock_mode);
2226 #endif
2227 }
2228
2229 /*
2230 * Multiply tsc by a fixed point number represented by ratio.
2231 *
2232 * The most significant 64-N bits (mult) of ratio represent the
2233 * integral part of the fixed point number; the remaining N bits
2234 * (frac) represent the fractional part, ie. ratio represents a fixed
2235 * point number (mult + frac * 2^(-N)).
2236 *
2237 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2238 */
__scale_tsc(u64 ratio, u64 tsc)2239 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2240 {
2241 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2242 }
2243
kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)2244 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2245 {
2246 u64 _tsc = tsc;
2247 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2248
2249 if (ratio != kvm_default_tsc_scaling_ratio)
2250 _tsc = __scale_tsc(ratio, tsc);
2251
2252 return _tsc;
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2255
kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)2256 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2257 {
2258 u64 tsc;
2259
2260 tsc = kvm_scale_tsc(vcpu, rdtsc());
2261
2262 return target_tsc - tsc;
2263 }
2264
kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)2265 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2266 {
2267 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2270
kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)2271 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2272 {
2273 vcpu->arch.l1_tsc_offset = offset;
2274 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2275 }
2276
kvm_check_tsc_unstable(void)2277 static inline bool kvm_check_tsc_unstable(void)
2278 {
2279 #ifdef CONFIG_X86_64
2280 /*
2281 * TSC is marked unstable when we're running on Hyper-V,
2282 * 'TSC page' clocksource is good.
2283 */
2284 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2285 return false;
2286 #endif
2287 return check_tsc_unstable();
2288 }
2289
kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)2290 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2291 {
2292 struct kvm *kvm = vcpu->kvm;
2293 u64 offset, ns, elapsed;
2294 unsigned long flags;
2295 bool matched;
2296 bool already_matched;
2297 bool synchronizing = false;
2298
2299 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2300 offset = kvm_compute_tsc_offset(vcpu, data);
2301 ns = get_kvmclock_base_ns();
2302 elapsed = ns - kvm->arch.last_tsc_nsec;
2303
2304 if (vcpu->arch.virtual_tsc_khz) {
2305 if (data == 0) {
2306 /*
2307 * detection of vcpu initialization -- need to sync
2308 * with other vCPUs. This particularly helps to keep
2309 * kvm_clock stable after CPU hotplug
2310 */
2311 synchronizing = true;
2312 } else {
2313 u64 tsc_exp = kvm->arch.last_tsc_write +
2314 nsec_to_cycles(vcpu, elapsed);
2315 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2316 /*
2317 * Special case: TSC write with a small delta (1 second)
2318 * of virtual cycle time against real time is
2319 * interpreted as an attempt to synchronize the CPU.
2320 */
2321 synchronizing = data < tsc_exp + tsc_hz &&
2322 data + tsc_hz > tsc_exp;
2323 }
2324 }
2325
2326 /*
2327 * For a reliable TSC, we can match TSC offsets, and for an unstable
2328 * TSC, we add elapsed time in this computation. We could let the
2329 * compensation code attempt to catch up if we fall behind, but
2330 * it's better to try to match offsets from the beginning.
2331 */
2332 if (synchronizing &&
2333 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2334 if (!kvm_check_tsc_unstable()) {
2335 offset = kvm->arch.cur_tsc_offset;
2336 } else {
2337 u64 delta = nsec_to_cycles(vcpu, elapsed);
2338 data += delta;
2339 offset = kvm_compute_tsc_offset(vcpu, data);
2340 }
2341 matched = true;
2342 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2343 } else {
2344 /*
2345 * We split periods of matched TSC writes into generations.
2346 * For each generation, we track the original measured
2347 * nanosecond time, offset, and write, so if TSCs are in
2348 * sync, we can match exact offset, and if not, we can match
2349 * exact software computation in compute_guest_tsc()
2350 *
2351 * These values are tracked in kvm->arch.cur_xxx variables.
2352 */
2353 kvm->arch.cur_tsc_generation++;
2354 kvm->arch.cur_tsc_nsec = ns;
2355 kvm->arch.cur_tsc_write = data;
2356 kvm->arch.cur_tsc_offset = offset;
2357 matched = false;
2358 }
2359
2360 /*
2361 * We also track th most recent recorded KHZ, write and time to
2362 * allow the matching interval to be extended at each write.
2363 */
2364 kvm->arch.last_tsc_nsec = ns;
2365 kvm->arch.last_tsc_write = data;
2366 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2367
2368 vcpu->arch.last_guest_tsc = data;
2369
2370 /* Keep track of which generation this VCPU has synchronized to */
2371 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2372 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2373 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2374
2375 kvm_vcpu_write_tsc_offset(vcpu, offset);
2376 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2377
2378 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2379 if (!matched) {
2380 kvm->arch.nr_vcpus_matched_tsc = 0;
2381 } else if (!already_matched) {
2382 kvm->arch.nr_vcpus_matched_tsc++;
2383 }
2384
2385 kvm_track_tsc_matching(vcpu);
2386 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2387 }
2388
adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)2389 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2390 s64 adjustment)
2391 {
2392 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2393 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2394 }
2395
adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)2396 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2397 {
2398 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2399 WARN_ON(adjustment < 0);
2400 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2401 adjust_tsc_offset_guest(vcpu, adjustment);
2402 }
2403
2404 #ifdef CONFIG_X86_64
2405
read_tsc(void)2406 static u64 read_tsc(void)
2407 {
2408 u64 ret = (u64)rdtsc_ordered();
2409 u64 last = pvclock_gtod_data.clock.cycle_last;
2410
2411 if (likely(ret >= last))
2412 return ret;
2413
2414 /*
2415 * GCC likes to generate cmov here, but this branch is extremely
2416 * predictable (it's just a function of time and the likely is
2417 * very likely) and there's a data dependence, so force GCC
2418 * to generate a branch instead. I don't barrier() because
2419 * we don't actually need a barrier, and if this function
2420 * ever gets inlined it will generate worse code.
2421 */
2422 asm volatile ("");
2423 return last;
2424 }
2425
vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, int *mode)2426 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2427 int *mode)
2428 {
2429 long v;
2430 u64 tsc_pg_val;
2431
2432 switch (clock->vclock_mode) {
2433 case VDSO_CLOCKMODE_HVCLOCK:
2434 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2435 tsc_timestamp);
2436 if (tsc_pg_val != U64_MAX) {
2437 /* TSC page valid */
2438 *mode = VDSO_CLOCKMODE_HVCLOCK;
2439 v = (tsc_pg_val - clock->cycle_last) &
2440 clock->mask;
2441 } else {
2442 /* TSC page invalid */
2443 *mode = VDSO_CLOCKMODE_NONE;
2444 }
2445 break;
2446 case VDSO_CLOCKMODE_TSC:
2447 *mode = VDSO_CLOCKMODE_TSC;
2448 *tsc_timestamp = read_tsc();
2449 v = (*tsc_timestamp - clock->cycle_last) &
2450 clock->mask;
2451 break;
2452 default:
2453 *mode = VDSO_CLOCKMODE_NONE;
2454 }
2455
2456 if (*mode == VDSO_CLOCKMODE_NONE)
2457 *tsc_timestamp = v = 0;
2458
2459 return v * clock->mult;
2460 }
2461
do_monotonic_raw(s64 *t, u64 *tsc_timestamp)2462 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2463 {
2464 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2465 unsigned long seq;
2466 int mode;
2467 u64 ns;
2468
2469 do {
2470 seq = read_seqcount_begin(>od->seq);
2471 ns = gtod->raw_clock.base_cycles;
2472 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2473 ns >>= gtod->raw_clock.shift;
2474 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2475 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2476 *t = ns;
2477
2478 return mode;
2479 }
2480
do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)2481 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2482 {
2483 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2484 unsigned long seq;
2485 int mode;
2486 u64 ns;
2487
2488 do {
2489 seq = read_seqcount_begin(>od->seq);
2490 ts->tv_sec = gtod->wall_time_sec;
2491 ns = gtod->clock.base_cycles;
2492 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2493 ns >>= gtod->clock.shift;
2494 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2495
2496 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2497 ts->tv_nsec = ns;
2498
2499 return mode;
2500 }
2501
2502 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)2503 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2504 {
2505 /* checked again under seqlock below */
2506 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2507 return false;
2508
2509 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2510 tsc_timestamp));
2511 }
2512
2513 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 *ts, u64 *tsc_timestamp)2514 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2515 u64 *tsc_timestamp)
2516 {
2517 /* checked again under seqlock below */
2518 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2519 return false;
2520
2521 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2522 }
2523 #endif
2524
2525 /*
2526 *
2527 * Assuming a stable TSC across physical CPUS, and a stable TSC
2528 * across virtual CPUs, the following condition is possible.
2529 * Each numbered line represents an event visible to both
2530 * CPUs at the next numbered event.
2531 *
2532 * "timespecX" represents host monotonic time. "tscX" represents
2533 * RDTSC value.
2534 *
2535 * VCPU0 on CPU0 | VCPU1 on CPU1
2536 *
2537 * 1. read timespec0,tsc0
2538 * 2. | timespec1 = timespec0 + N
2539 * | tsc1 = tsc0 + M
2540 * 3. transition to guest | transition to guest
2541 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2542 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2543 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2544 *
2545 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2546 *
2547 * - ret0 < ret1
2548 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2549 * ...
2550 * - 0 < N - M => M < N
2551 *
2552 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2553 * always the case (the difference between two distinct xtime instances
2554 * might be smaller then the difference between corresponding TSC reads,
2555 * when updating guest vcpus pvclock areas).
2556 *
2557 * To avoid that problem, do not allow visibility of distinct
2558 * system_timestamp/tsc_timestamp values simultaneously: use a master
2559 * copy of host monotonic time values. Update that master copy
2560 * in lockstep.
2561 *
2562 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2563 *
2564 */
2565
pvclock_update_vm_gtod_copy(struct kvm *kvm)2566 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2567 {
2568 #ifdef CONFIG_X86_64
2569 struct kvm_arch *ka = &kvm->arch;
2570 int vclock_mode;
2571 bool host_tsc_clocksource, vcpus_matched;
2572
2573 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2574 atomic_read(&kvm->online_vcpus));
2575
2576 /*
2577 * If the host uses TSC clock, then passthrough TSC as stable
2578 * to the guest.
2579 */
2580 host_tsc_clocksource = kvm_get_time_and_clockread(
2581 &ka->master_kernel_ns,
2582 &ka->master_cycle_now);
2583
2584 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2585 && !ka->backwards_tsc_observed
2586 && !ka->boot_vcpu_runs_old_kvmclock;
2587
2588 if (ka->use_master_clock)
2589 atomic_set(&kvm_guest_has_master_clock, 1);
2590
2591 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2592 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2593 vcpus_matched);
2594 #endif
2595 }
2596
kvm_make_mclock_inprogress_request(struct kvm *kvm)2597 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2598 {
2599 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2600 }
2601
kvm_gen_update_masterclock(struct kvm *kvm)2602 static void kvm_gen_update_masterclock(struct kvm *kvm)
2603 {
2604 #ifdef CONFIG_X86_64
2605 int i;
2606 struct kvm_vcpu *vcpu;
2607 struct kvm_arch *ka = &kvm->arch;
2608
2609 spin_lock(&ka->pvclock_gtod_sync_lock);
2610 kvm_make_mclock_inprogress_request(kvm);
2611 /* no guest entries from this point */
2612 pvclock_update_vm_gtod_copy(kvm);
2613
2614 kvm_for_each_vcpu(i, vcpu, kvm)
2615 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2616
2617 /* guest entries allowed */
2618 kvm_for_each_vcpu(i, vcpu, kvm)
2619 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2620
2621 spin_unlock(&ka->pvclock_gtod_sync_lock);
2622 #endif
2623 }
2624
get_kvmclock_ns(struct kvm *kvm)2625 u64 get_kvmclock_ns(struct kvm *kvm)
2626 {
2627 struct kvm_arch *ka = &kvm->arch;
2628 struct pvclock_vcpu_time_info hv_clock;
2629 u64 ret;
2630
2631 spin_lock(&ka->pvclock_gtod_sync_lock);
2632 if (!ka->use_master_clock) {
2633 spin_unlock(&ka->pvclock_gtod_sync_lock);
2634 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2635 }
2636
2637 hv_clock.tsc_timestamp = ka->master_cycle_now;
2638 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2639 spin_unlock(&ka->pvclock_gtod_sync_lock);
2640
2641 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2642 get_cpu();
2643
2644 if (__this_cpu_read(cpu_tsc_khz)) {
2645 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2646 &hv_clock.tsc_shift,
2647 &hv_clock.tsc_to_system_mul);
2648 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2649 } else
2650 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2651
2652 put_cpu();
2653
2654 return ret;
2655 }
2656
kvm_setup_pvclock_page(struct kvm_vcpu *v)2657 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2658 {
2659 struct kvm_vcpu_arch *vcpu = &v->arch;
2660 struct pvclock_vcpu_time_info guest_hv_clock;
2661
2662 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2663 &guest_hv_clock, sizeof(guest_hv_clock))))
2664 return;
2665
2666 /* This VCPU is paused, but it's legal for a guest to read another
2667 * VCPU's kvmclock, so we really have to follow the specification where
2668 * it says that version is odd if data is being modified, and even after
2669 * it is consistent.
2670 *
2671 * Version field updates must be kept separate. This is because
2672 * kvm_write_guest_cached might use a "rep movs" instruction, and
2673 * writes within a string instruction are weakly ordered. So there
2674 * are three writes overall.
2675 *
2676 * As a small optimization, only write the version field in the first
2677 * and third write. The vcpu->pv_time cache is still valid, because the
2678 * version field is the first in the struct.
2679 */
2680 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2681
2682 if (guest_hv_clock.version & 1)
2683 ++guest_hv_clock.version; /* first time write, random junk */
2684
2685 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2686 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2687 &vcpu->hv_clock,
2688 sizeof(vcpu->hv_clock.version));
2689
2690 smp_wmb();
2691
2692 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2693 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2694
2695 if (vcpu->pvclock_set_guest_stopped_request) {
2696 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2697 vcpu->pvclock_set_guest_stopped_request = false;
2698 }
2699
2700 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2701
2702 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2703 &vcpu->hv_clock,
2704 sizeof(vcpu->hv_clock));
2705
2706 smp_wmb();
2707
2708 vcpu->hv_clock.version++;
2709 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2710 &vcpu->hv_clock,
2711 sizeof(vcpu->hv_clock.version));
2712 }
2713
kvm_guest_time_update(struct kvm_vcpu *v)2714 static int kvm_guest_time_update(struct kvm_vcpu *v)
2715 {
2716 unsigned long flags, tgt_tsc_khz;
2717 struct kvm_vcpu_arch *vcpu = &v->arch;
2718 struct kvm_arch *ka = &v->kvm->arch;
2719 s64 kernel_ns;
2720 u64 tsc_timestamp, host_tsc;
2721 u8 pvclock_flags;
2722 bool use_master_clock;
2723
2724 kernel_ns = 0;
2725 host_tsc = 0;
2726
2727 /*
2728 * If the host uses TSC clock, then passthrough TSC as stable
2729 * to the guest.
2730 */
2731 spin_lock(&ka->pvclock_gtod_sync_lock);
2732 use_master_clock = ka->use_master_clock;
2733 if (use_master_clock) {
2734 host_tsc = ka->master_cycle_now;
2735 kernel_ns = ka->master_kernel_ns;
2736 }
2737 spin_unlock(&ka->pvclock_gtod_sync_lock);
2738
2739 /* Keep irq disabled to prevent changes to the clock */
2740 local_irq_save(flags);
2741 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2742 if (unlikely(tgt_tsc_khz == 0)) {
2743 local_irq_restore(flags);
2744 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2745 return 1;
2746 }
2747 if (!use_master_clock) {
2748 host_tsc = rdtsc();
2749 kernel_ns = get_kvmclock_base_ns();
2750 }
2751
2752 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2753
2754 /*
2755 * We may have to catch up the TSC to match elapsed wall clock
2756 * time for two reasons, even if kvmclock is used.
2757 * 1) CPU could have been running below the maximum TSC rate
2758 * 2) Broken TSC compensation resets the base at each VCPU
2759 * entry to avoid unknown leaps of TSC even when running
2760 * again on the same CPU. This may cause apparent elapsed
2761 * time to disappear, and the guest to stand still or run
2762 * very slowly.
2763 */
2764 if (vcpu->tsc_catchup) {
2765 u64 tsc = compute_guest_tsc(v, kernel_ns);
2766 if (tsc > tsc_timestamp) {
2767 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2768 tsc_timestamp = tsc;
2769 }
2770 }
2771
2772 local_irq_restore(flags);
2773
2774 /* With all the info we got, fill in the values */
2775
2776 if (kvm_has_tsc_control)
2777 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2778
2779 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2780 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2781 &vcpu->hv_clock.tsc_shift,
2782 &vcpu->hv_clock.tsc_to_system_mul);
2783 vcpu->hw_tsc_khz = tgt_tsc_khz;
2784 }
2785
2786 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2787 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2788 vcpu->last_guest_tsc = tsc_timestamp;
2789
2790 /* If the host uses TSC clocksource, then it is stable */
2791 pvclock_flags = 0;
2792 if (use_master_clock)
2793 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2794
2795 vcpu->hv_clock.flags = pvclock_flags;
2796
2797 if (vcpu->pv_time_enabled)
2798 kvm_setup_pvclock_page(v);
2799 if (v == kvm_get_vcpu(v->kvm, 0))
2800 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2801 return 0;
2802 }
2803
2804 /*
2805 * kvmclock updates which are isolated to a given vcpu, such as
2806 * vcpu->cpu migration, should not allow system_timestamp from
2807 * the rest of the vcpus to remain static. Otherwise ntp frequency
2808 * correction applies to one vcpu's system_timestamp but not
2809 * the others.
2810 *
2811 * So in those cases, request a kvmclock update for all vcpus.
2812 * We need to rate-limit these requests though, as they can
2813 * considerably slow guests that have a large number of vcpus.
2814 * The time for a remote vcpu to update its kvmclock is bound
2815 * by the delay we use to rate-limit the updates.
2816 */
2817
2818 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2819
kvmclock_update_fn(struct work_struct *work)2820 static void kvmclock_update_fn(struct work_struct *work)
2821 {
2822 int i;
2823 struct delayed_work *dwork = to_delayed_work(work);
2824 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2825 kvmclock_update_work);
2826 struct kvm *kvm = container_of(ka, struct kvm, arch);
2827 struct kvm_vcpu *vcpu;
2828
2829 kvm_for_each_vcpu(i, vcpu, kvm) {
2830 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2831 kvm_vcpu_kick(vcpu);
2832 }
2833 }
2834
kvm_gen_kvmclock_update(struct kvm_vcpu *v)2835 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2836 {
2837 struct kvm *kvm = v->kvm;
2838
2839 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2840 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2841 KVMCLOCK_UPDATE_DELAY);
2842 }
2843
2844 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2845
kvmclock_sync_fn(struct work_struct *work)2846 static void kvmclock_sync_fn(struct work_struct *work)
2847 {
2848 struct delayed_work *dwork = to_delayed_work(work);
2849 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2850 kvmclock_sync_work);
2851 struct kvm *kvm = container_of(ka, struct kvm, arch);
2852
2853 if (!kvmclock_periodic_sync)
2854 return;
2855
2856 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2857 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2858 KVMCLOCK_SYNC_PERIOD);
2859 }
2860
2861 /*
2862 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2863 */
can_set_mci_status(struct kvm_vcpu *vcpu)2864 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2865 {
2866 /* McStatusWrEn enabled? */
2867 if (guest_cpuid_is_amd_or_hygon(vcpu))
2868 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2869
2870 return false;
2871 }
2872
set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)2873 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2874 {
2875 u64 mcg_cap = vcpu->arch.mcg_cap;
2876 unsigned bank_num = mcg_cap & 0xff;
2877 u32 msr = msr_info->index;
2878 u64 data = msr_info->data;
2879
2880 switch (msr) {
2881 case MSR_IA32_MCG_STATUS:
2882 vcpu->arch.mcg_status = data;
2883 break;
2884 case MSR_IA32_MCG_CTL:
2885 if (!(mcg_cap & MCG_CTL_P) &&
2886 (data || !msr_info->host_initiated))
2887 return 1;
2888 if (data != 0 && data != ~(u64)0)
2889 return 1;
2890 vcpu->arch.mcg_ctl = data;
2891 break;
2892 default:
2893 if (msr >= MSR_IA32_MC0_CTL &&
2894 msr < MSR_IA32_MCx_CTL(bank_num)) {
2895 u32 offset = array_index_nospec(
2896 msr - MSR_IA32_MC0_CTL,
2897 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2898
2899 /* only 0 or all 1s can be written to IA32_MCi_CTL
2900 * some Linux kernels though clear bit 10 in bank 4 to
2901 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2902 * this to avoid an uncatched #GP in the guest.
2903 *
2904 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2905 * correctable, single-bit ECC data errors.
2906 */
2907 if ((offset & 0x3) == 0 &&
2908 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2909 return 1;
2910
2911 /* MCi_STATUS */
2912 if (!msr_info->host_initiated &&
2913 (offset & 0x3) == 1 && data != 0) {
2914 if (!can_set_mci_status(vcpu))
2915 return 1;
2916 }
2917
2918 vcpu->arch.mce_banks[offset] = data;
2919 break;
2920 }
2921 return 1;
2922 }
2923 return 0;
2924 }
2925
xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)2926 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2927 {
2928 struct kvm *kvm = vcpu->kvm;
2929 int lm = is_long_mode(vcpu);
2930 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2931 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2932 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2933 : kvm->arch.xen_hvm_config.blob_size_32;
2934 u32 page_num = data & ~PAGE_MASK;
2935 u64 page_addr = data & PAGE_MASK;
2936 u8 *page;
2937
2938 if (page_num >= blob_size)
2939 return 1;
2940
2941 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2942 if (IS_ERR(page))
2943 return PTR_ERR(page);
2944
2945 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2946 kfree(page);
2947 return 1;
2948 }
2949 return 0;
2950 }
2951
kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)2952 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2953 {
2954 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2955
2956 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2957 }
2958
kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)2959 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2960 {
2961 gpa_t gpa = data & ~0x3f;
2962
2963 /* Bits 4:5 are reserved, Should be zero */
2964 if (data & 0x30)
2965 return 1;
2966
2967 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2968 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2969 return 1;
2970
2971 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2972 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2973 return 1;
2974
2975 if (!lapic_in_kernel(vcpu))
2976 return data ? 1 : 0;
2977
2978 vcpu->arch.apf.msr_en_val = data;
2979
2980 if (!kvm_pv_async_pf_enabled(vcpu)) {
2981 kvm_clear_async_pf_completion_queue(vcpu);
2982 kvm_async_pf_hash_reset(vcpu);
2983 return 0;
2984 }
2985
2986 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2987 sizeof(u64)))
2988 return 1;
2989
2990 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2991 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2992
2993 kvm_async_pf_wakeup_all(vcpu);
2994
2995 return 0;
2996 }
2997
kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)2998 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2999 {
3000 /* Bits 8-63 are reserved */
3001 if (data >> 8)
3002 return 1;
3003
3004 if (!lapic_in_kernel(vcpu))
3005 return 1;
3006
3007 vcpu->arch.apf.msr_int_val = data;
3008
3009 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3010
3011 return 0;
3012 }
3013
kvmclock_reset(struct kvm_vcpu *vcpu)3014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3015 {
3016 vcpu->arch.pv_time_enabled = false;
3017 vcpu->arch.time = 0;
3018 }
3019
kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)3020 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3021 {
3022 ++vcpu->stat.tlb_flush;
3023 kvm_x86_ops.tlb_flush_all(vcpu);
3024 }
3025
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)3026 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3027 {
3028 ++vcpu->stat.tlb_flush;
3029 kvm_x86_ops.tlb_flush_guest(vcpu);
3030 }
3031
record_steal_time(struct kvm_vcpu *vcpu)3032 static void record_steal_time(struct kvm_vcpu *vcpu)
3033 {
3034 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3035 struct kvm_steal_time __user *st;
3036 struct kvm_memslots *slots;
3037 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3038 u64 steal;
3039 u32 version;
3040
3041 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3042 return;
3043
3044 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3045 return;
3046
3047 slots = kvm_memslots(vcpu->kvm);
3048
3049 if (unlikely(slots->generation != ghc->generation ||
3050 gpa != ghc->gpa ||
3051 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3052 /* We rely on the fact that it fits in a single page. */
3053 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3054
3055 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3056 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3057 return;
3058 }
3059
3060 st = (struct kvm_steal_time __user *)ghc->hva;
3061 /*
3062 * Doing a TLB flush here, on the guest's behalf, can avoid
3063 * expensive IPIs.
3064 */
3065 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3066 u8 st_preempted = 0;
3067 int err = -EFAULT;
3068
3069 if (!user_access_begin(st, sizeof(*st)))
3070 return;
3071
3072 asm volatile("1: xchgb %0, %2\n"
3073 "xor %1, %1\n"
3074 "2:\n"
3075 _ASM_EXTABLE_UA(1b, 2b)
3076 : "+q" (st_preempted),
3077 "+&r" (err),
3078 "+m" (st->preempted));
3079 if (err)
3080 goto out;
3081
3082 user_access_end();
3083
3084 vcpu->arch.st.preempted = 0;
3085
3086 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3087 st_preempted & KVM_VCPU_FLUSH_TLB);
3088 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3089 kvm_vcpu_flush_tlb_guest(vcpu);
3090
3091 if (!user_access_begin(st, sizeof(*st)))
3092 goto dirty;
3093 } else {
3094 if (!user_access_begin(st, sizeof(*st)))
3095 return;
3096
3097 unsafe_put_user(0, &st->preempted, out);
3098 vcpu->arch.st.preempted = 0;
3099 }
3100
3101 unsafe_get_user(version, &st->version, out);
3102 if (version & 1)
3103 version += 1; /* first time write, random junk */
3104
3105 version += 1;
3106 unsafe_put_user(version, &st->version, out);
3107
3108 smp_wmb();
3109
3110 unsafe_get_user(steal, &st->steal, out);
3111 steal += current->sched_info.run_delay -
3112 vcpu->arch.st.last_steal;
3113 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3114 unsafe_put_user(steal, &st->steal, out);
3115
3116 version += 1;
3117 unsafe_put_user(version, &st->version, out);
3118
3119 out:
3120 user_access_end();
3121 dirty:
3122 mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
3123 }
3124
kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)3125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3126 {
3127 bool pr = false;
3128 u32 msr = msr_info->index;
3129 u64 data = msr_info->data;
3130
3131 switch (msr) {
3132 case MSR_AMD64_NB_CFG:
3133 case MSR_IA32_UCODE_WRITE:
3134 case MSR_VM_HSAVE_PA:
3135 case MSR_AMD64_PATCH_LOADER:
3136 case MSR_AMD64_BU_CFG2:
3137 case MSR_AMD64_DC_CFG:
3138 case MSR_AMD64_TW_CFG:
3139 case MSR_F15H_EX_CFG:
3140 break;
3141
3142 case MSR_IA32_UCODE_REV:
3143 if (msr_info->host_initiated)
3144 vcpu->arch.microcode_version = data;
3145 break;
3146 case MSR_IA32_ARCH_CAPABILITIES:
3147 if (!msr_info->host_initiated)
3148 return 1;
3149 vcpu->arch.arch_capabilities = data;
3150 break;
3151 case MSR_IA32_PERF_CAPABILITIES: {
3152 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3153
3154 if (!msr_info->host_initiated)
3155 return 1;
3156 if (kvm_get_msr_feature(&msr_ent))
3157 return 1;
3158 if (data & ~msr_ent.data)
3159 return 1;
3160
3161 vcpu->arch.perf_capabilities = data;
3162
3163 return 0;
3164 }
3165 case MSR_EFER:
3166 return set_efer(vcpu, msr_info);
3167 case MSR_K7_HWCR:
3168 data &= ~(u64)0x40; /* ignore flush filter disable */
3169 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3170 data &= ~(u64)0x8; /* ignore TLB cache disable */
3171
3172 /* Handle McStatusWrEn */
3173 if (data == BIT_ULL(18)) {
3174 vcpu->arch.msr_hwcr = data;
3175 } else if (data != 0) {
3176 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3177 data);
3178 return 1;
3179 }
3180 break;
3181 case MSR_FAM10H_MMIO_CONF_BASE:
3182 if (data != 0) {
3183 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3184 "0x%llx\n", data);
3185 return 1;
3186 }
3187 break;
3188 case MSR_IA32_DEBUGCTLMSR:
3189 if (!data) {
3190 /* We support the non-activated case already */
3191 break;
3192 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3193 /* Values other than LBR and BTF are vendor-specific,
3194 thus reserved and should throw a #GP */
3195 return 1;
3196 } else if (report_ignored_msrs)
3197 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3198 __func__, data);
3199 break;
3200 case 0x200 ... 0x2ff:
3201 return kvm_mtrr_set_msr(vcpu, msr, data);
3202 case MSR_IA32_APICBASE:
3203 return kvm_set_apic_base(vcpu, msr_info);
3204 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3205 return kvm_x2apic_msr_write(vcpu, msr, data);
3206 case MSR_IA32_TSCDEADLINE:
3207 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3208 break;
3209 case MSR_IA32_TSC_ADJUST:
3210 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3211 if (!msr_info->host_initiated) {
3212 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3213 adjust_tsc_offset_guest(vcpu, adj);
3214 /* Before back to guest, tsc_timestamp must be adjusted
3215 * as well, otherwise guest's percpu pvclock time could jump.
3216 */
3217 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218 }
3219 vcpu->arch.ia32_tsc_adjust_msr = data;
3220 }
3221 break;
3222 case MSR_IA32_MISC_ENABLE:
3223 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3224 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3225 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3226 return 1;
3227 vcpu->arch.ia32_misc_enable_msr = data;
3228 kvm_update_cpuid_runtime(vcpu);
3229 } else {
3230 vcpu->arch.ia32_misc_enable_msr = data;
3231 }
3232 break;
3233 case MSR_IA32_SMBASE:
3234 if (!msr_info->host_initiated)
3235 return 1;
3236 vcpu->arch.smbase = data;
3237 break;
3238 case MSR_IA32_POWER_CTL:
3239 vcpu->arch.msr_ia32_power_ctl = data;
3240 break;
3241 case MSR_IA32_TSC:
3242 if (msr_info->host_initiated) {
3243 kvm_synchronize_tsc(vcpu, data);
3244 } else {
3245 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3246 adjust_tsc_offset_guest(vcpu, adj);
3247 vcpu->arch.ia32_tsc_adjust_msr += adj;
3248 }
3249 break;
3250 case MSR_IA32_XSS:
3251 if (!msr_info->host_initiated &&
3252 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3253 return 1;
3254 /*
3255 * KVM supports exposing PT to the guest, but does not support
3256 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3257 * XSAVES/XRSTORS to save/restore PT MSRs.
3258 */
3259 if (data & ~supported_xss)
3260 return 1;
3261 vcpu->arch.ia32_xss = data;
3262 kvm_update_cpuid_runtime(vcpu);
3263 break;
3264 case MSR_SMI_COUNT:
3265 if (!msr_info->host_initiated)
3266 return 1;
3267 vcpu->arch.smi_count = data;
3268 break;
3269 case MSR_KVM_WALL_CLOCK_NEW:
3270 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3271 return 1;
3272
3273 kvm_write_wall_clock(vcpu->kvm, data);
3274 break;
3275 case MSR_KVM_WALL_CLOCK:
3276 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3277 return 1;
3278
3279 kvm_write_wall_clock(vcpu->kvm, data);
3280 break;
3281 case MSR_KVM_SYSTEM_TIME_NEW:
3282 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3283 return 1;
3284
3285 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3286 break;
3287 case MSR_KVM_SYSTEM_TIME:
3288 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3289 return 1;
3290
3291 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3292 break;
3293 case MSR_KVM_ASYNC_PF_EN:
3294 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3295 return 1;
3296
3297 if (kvm_pv_enable_async_pf(vcpu, data))
3298 return 1;
3299 break;
3300 case MSR_KVM_ASYNC_PF_INT:
3301 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3302 return 1;
3303
3304 if (kvm_pv_enable_async_pf_int(vcpu, data))
3305 return 1;
3306 break;
3307 case MSR_KVM_ASYNC_PF_ACK:
3308 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3309 return 1;
3310 if (data & 0x1) {
3311 vcpu->arch.apf.pageready_pending = false;
3312 kvm_check_async_pf_completion(vcpu);
3313 }
3314 break;
3315 case MSR_KVM_STEAL_TIME:
3316 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3317 return 1;
3318
3319 if (unlikely(!sched_info_on()))
3320 return 1;
3321
3322 if (data & KVM_STEAL_RESERVED_MASK)
3323 return 1;
3324
3325 vcpu->arch.st.msr_val = data;
3326
3327 if (!(data & KVM_MSR_ENABLED))
3328 break;
3329
3330 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3331
3332 break;
3333 case MSR_KVM_PV_EOI_EN:
3334 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3335 return 1;
3336
3337 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3338 return 1;
3339 break;
3340
3341 case MSR_KVM_POLL_CONTROL:
3342 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3343 return 1;
3344
3345 /* only enable bit supported */
3346 if (data & (-1ULL << 1))
3347 return 1;
3348
3349 vcpu->arch.msr_kvm_poll_control = data;
3350 break;
3351
3352 case MSR_IA32_MCG_CTL:
3353 case MSR_IA32_MCG_STATUS:
3354 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3355 return set_msr_mce(vcpu, msr_info);
3356
3357 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3358 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3359 pr = true;
3360 fallthrough;
3361 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3362 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3363 if (kvm_pmu_is_valid_msr(vcpu, msr))
3364 return kvm_pmu_set_msr(vcpu, msr_info);
3365
3366 if (pr || data != 0)
3367 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3368 "0x%x data 0x%llx\n", msr, data);
3369 break;
3370 case MSR_K7_CLK_CTL:
3371 /*
3372 * Ignore all writes to this no longer documented MSR.
3373 * Writes are only relevant for old K7 processors,
3374 * all pre-dating SVM, but a recommended workaround from
3375 * AMD for these chips. It is possible to specify the
3376 * affected processor models on the command line, hence
3377 * the need to ignore the workaround.
3378 */
3379 break;
3380 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3381 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3382 case HV_X64_MSR_SYNDBG_OPTIONS:
3383 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3384 case HV_X64_MSR_CRASH_CTL:
3385 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3386 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3387 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3388 case HV_X64_MSR_TSC_EMULATION_STATUS:
3389 return kvm_hv_set_msr_common(vcpu, msr, data,
3390 msr_info->host_initiated);
3391 case MSR_IA32_BBL_CR_CTL3:
3392 /* Drop writes to this legacy MSR -- see rdmsr
3393 * counterpart for further detail.
3394 */
3395 if (report_ignored_msrs)
3396 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3397 msr, data);
3398 break;
3399 case MSR_AMD64_OSVW_ID_LENGTH:
3400 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3401 return 1;
3402 vcpu->arch.osvw.length = data;
3403 break;
3404 case MSR_AMD64_OSVW_STATUS:
3405 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3406 return 1;
3407 vcpu->arch.osvw.status = data;
3408 break;
3409 case MSR_PLATFORM_INFO:
3410 if (!msr_info->host_initiated ||
3411 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3412 cpuid_fault_enabled(vcpu)))
3413 return 1;
3414 vcpu->arch.msr_platform_info = data;
3415 break;
3416 case MSR_MISC_FEATURES_ENABLES:
3417 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3418 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3419 !supports_cpuid_fault(vcpu)))
3420 return 1;
3421 vcpu->arch.msr_misc_features_enables = data;
3422 break;
3423 default:
3424 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3425 return xen_hvm_config(vcpu, data);
3426 if (kvm_pmu_is_valid_msr(vcpu, msr))
3427 return kvm_pmu_set_msr(vcpu, msr_info);
3428 return KVM_MSR_RET_INVALID;
3429 }
3430 return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3433
get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)3434 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3435 {
3436 u64 data;
3437 u64 mcg_cap = vcpu->arch.mcg_cap;
3438 unsigned bank_num = mcg_cap & 0xff;
3439
3440 switch (msr) {
3441 case MSR_IA32_P5_MC_ADDR:
3442 case MSR_IA32_P5_MC_TYPE:
3443 data = 0;
3444 break;
3445 case MSR_IA32_MCG_CAP:
3446 data = vcpu->arch.mcg_cap;
3447 break;
3448 case MSR_IA32_MCG_CTL:
3449 if (!(mcg_cap & MCG_CTL_P) && !host)
3450 return 1;
3451 data = vcpu->arch.mcg_ctl;
3452 break;
3453 case MSR_IA32_MCG_STATUS:
3454 data = vcpu->arch.mcg_status;
3455 break;
3456 default:
3457 if (msr >= MSR_IA32_MC0_CTL &&
3458 msr < MSR_IA32_MCx_CTL(bank_num)) {
3459 u32 offset = array_index_nospec(
3460 msr - MSR_IA32_MC0_CTL,
3461 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3462
3463 data = vcpu->arch.mce_banks[offset];
3464 break;
3465 }
3466 return 1;
3467 }
3468 *pdata = data;
3469 return 0;
3470 }
3471
kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)3472 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3473 {
3474 switch (msr_info->index) {
3475 case MSR_IA32_PLATFORM_ID:
3476 case MSR_IA32_EBL_CR_POWERON:
3477 case MSR_IA32_DEBUGCTLMSR:
3478 case MSR_IA32_LASTBRANCHFROMIP:
3479 case MSR_IA32_LASTBRANCHTOIP:
3480 case MSR_IA32_LASTINTFROMIP:
3481 case MSR_IA32_LASTINTTOIP:
3482 case MSR_K8_SYSCFG:
3483 case MSR_K8_TSEG_ADDR:
3484 case MSR_K8_TSEG_MASK:
3485 case MSR_VM_HSAVE_PA:
3486 case MSR_K8_INT_PENDING_MSG:
3487 case MSR_AMD64_NB_CFG:
3488 case MSR_FAM10H_MMIO_CONF_BASE:
3489 case MSR_AMD64_BU_CFG2:
3490 case MSR_IA32_PERF_CTL:
3491 case MSR_AMD64_DC_CFG:
3492 case MSR_AMD64_TW_CFG:
3493 case MSR_F15H_EX_CFG:
3494 /*
3495 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3496 * limit) MSRs. Just return 0, as we do not want to expose the host
3497 * data here. Do not conditionalize this on CPUID, as KVM does not do
3498 * so for existing CPU-specific MSRs.
3499 */
3500 case MSR_RAPL_POWER_UNIT:
3501 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3502 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3503 case MSR_PKG_ENERGY_STATUS: /* Total package */
3504 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3505 msr_info->data = 0;
3506 break;
3507 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3508 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3509 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3510 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3511 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3512 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3513 return kvm_pmu_get_msr(vcpu, msr_info);
3514 msr_info->data = 0;
3515 break;
3516 case MSR_IA32_UCODE_REV:
3517 msr_info->data = vcpu->arch.microcode_version;
3518 break;
3519 case MSR_IA32_ARCH_CAPABILITIES:
3520 if (!msr_info->host_initiated &&
3521 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3522 return 1;
3523 msr_info->data = vcpu->arch.arch_capabilities;
3524 break;
3525 case MSR_IA32_PERF_CAPABILITIES:
3526 if (!msr_info->host_initiated &&
3527 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3528 return 1;
3529 msr_info->data = vcpu->arch.perf_capabilities;
3530 break;
3531 case MSR_IA32_POWER_CTL:
3532 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3533 break;
3534 case MSR_IA32_TSC: {
3535 /*
3536 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3537 * even when not intercepted. AMD manual doesn't explicitly
3538 * state this but appears to behave the same.
3539 *
3540 * On userspace reads and writes, however, we unconditionally
3541 * return L1's TSC value to ensure backwards-compatible
3542 * behavior for migration.
3543 */
3544 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3545 vcpu->arch.tsc_offset;
3546
3547 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3548 break;
3549 }
3550 case MSR_MTRRcap:
3551 case 0x200 ... 0x2ff:
3552 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3553 case 0xcd: /* fsb frequency */
3554 msr_info->data = 3;
3555 break;
3556 /*
3557 * MSR_EBC_FREQUENCY_ID
3558 * Conservative value valid for even the basic CPU models.
3559 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3560 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3561 * and 266MHz for model 3, or 4. Set Core Clock
3562 * Frequency to System Bus Frequency Ratio to 1 (bits
3563 * 31:24) even though these are only valid for CPU
3564 * models > 2, however guests may end up dividing or
3565 * multiplying by zero otherwise.
3566 */
3567 case MSR_EBC_FREQUENCY_ID:
3568 msr_info->data = 1 << 24;
3569 break;
3570 case MSR_IA32_APICBASE:
3571 msr_info->data = kvm_get_apic_base(vcpu);
3572 break;
3573 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3574 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3575 case MSR_IA32_TSCDEADLINE:
3576 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3577 break;
3578 case MSR_IA32_TSC_ADJUST:
3579 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3580 break;
3581 case MSR_IA32_MISC_ENABLE:
3582 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3583 break;
3584 case MSR_IA32_SMBASE:
3585 if (!msr_info->host_initiated)
3586 return 1;
3587 msr_info->data = vcpu->arch.smbase;
3588 break;
3589 case MSR_SMI_COUNT:
3590 msr_info->data = vcpu->arch.smi_count;
3591 break;
3592 case MSR_IA32_PERF_STATUS:
3593 /* TSC increment by tick */
3594 msr_info->data = 1000ULL;
3595 /* CPU multiplier */
3596 msr_info->data |= (((uint64_t)4ULL) << 40);
3597 break;
3598 case MSR_EFER:
3599 msr_info->data = vcpu->arch.efer;
3600 break;
3601 case MSR_KVM_WALL_CLOCK:
3602 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3603 return 1;
3604
3605 msr_info->data = vcpu->kvm->arch.wall_clock;
3606 break;
3607 case MSR_KVM_WALL_CLOCK_NEW:
3608 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3609 return 1;
3610
3611 msr_info->data = vcpu->kvm->arch.wall_clock;
3612 break;
3613 case MSR_KVM_SYSTEM_TIME:
3614 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3615 return 1;
3616
3617 msr_info->data = vcpu->arch.time;
3618 break;
3619 case MSR_KVM_SYSTEM_TIME_NEW:
3620 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3621 return 1;
3622
3623 msr_info->data = vcpu->arch.time;
3624 break;
3625 case MSR_KVM_ASYNC_PF_EN:
3626 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3627 return 1;
3628
3629 msr_info->data = vcpu->arch.apf.msr_en_val;
3630 break;
3631 case MSR_KVM_ASYNC_PF_INT:
3632 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3633 return 1;
3634
3635 msr_info->data = vcpu->arch.apf.msr_int_val;
3636 break;
3637 case MSR_KVM_ASYNC_PF_ACK:
3638 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3639 return 1;
3640
3641 msr_info->data = 0;
3642 break;
3643 case MSR_KVM_STEAL_TIME:
3644 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3645 return 1;
3646
3647 msr_info->data = vcpu->arch.st.msr_val;
3648 break;
3649 case MSR_KVM_PV_EOI_EN:
3650 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3651 return 1;
3652
3653 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3654 break;
3655 case MSR_KVM_POLL_CONTROL:
3656 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3657 return 1;
3658
3659 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3660 break;
3661 case MSR_IA32_P5_MC_ADDR:
3662 case MSR_IA32_P5_MC_TYPE:
3663 case MSR_IA32_MCG_CAP:
3664 case MSR_IA32_MCG_CTL:
3665 case MSR_IA32_MCG_STATUS:
3666 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3667 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3668 msr_info->host_initiated);
3669 case MSR_IA32_XSS:
3670 if (!msr_info->host_initiated &&
3671 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3672 return 1;
3673 msr_info->data = vcpu->arch.ia32_xss;
3674 break;
3675 case MSR_K7_CLK_CTL:
3676 /*
3677 * Provide expected ramp-up count for K7. All other
3678 * are set to zero, indicating minimum divisors for
3679 * every field.
3680 *
3681 * This prevents guest kernels on AMD host with CPU
3682 * type 6, model 8 and higher from exploding due to
3683 * the rdmsr failing.
3684 */
3685 msr_info->data = 0x20000000;
3686 break;
3687 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3688 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3689 case HV_X64_MSR_SYNDBG_OPTIONS:
3690 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3691 case HV_X64_MSR_CRASH_CTL:
3692 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3693 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3694 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3695 case HV_X64_MSR_TSC_EMULATION_STATUS:
3696 return kvm_hv_get_msr_common(vcpu,
3697 msr_info->index, &msr_info->data,
3698 msr_info->host_initiated);
3699 case MSR_IA32_BBL_CR_CTL3:
3700 /* This legacy MSR exists but isn't fully documented in current
3701 * silicon. It is however accessed by winxp in very narrow
3702 * scenarios where it sets bit #19, itself documented as
3703 * a "reserved" bit. Best effort attempt to source coherent
3704 * read data here should the balance of the register be
3705 * interpreted by the guest:
3706 *
3707 * L2 cache control register 3: 64GB range, 256KB size,
3708 * enabled, latency 0x1, configured
3709 */
3710 msr_info->data = 0xbe702111;
3711 break;
3712 case MSR_AMD64_OSVW_ID_LENGTH:
3713 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3714 return 1;
3715 msr_info->data = vcpu->arch.osvw.length;
3716 break;
3717 case MSR_AMD64_OSVW_STATUS:
3718 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3719 return 1;
3720 msr_info->data = vcpu->arch.osvw.status;
3721 break;
3722 case MSR_PLATFORM_INFO:
3723 if (!msr_info->host_initiated &&
3724 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3725 return 1;
3726 msr_info->data = vcpu->arch.msr_platform_info;
3727 break;
3728 case MSR_MISC_FEATURES_ENABLES:
3729 msr_info->data = vcpu->arch.msr_misc_features_enables;
3730 break;
3731 case MSR_K7_HWCR:
3732 msr_info->data = vcpu->arch.msr_hwcr;
3733 break;
3734 default:
3735 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3736 return kvm_pmu_get_msr(vcpu, msr_info);
3737 return KVM_MSR_RET_INVALID;
3738 }
3739 return 0;
3740 }
3741 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3742
3743 /*
3744 * Read or write a bunch of msrs. All parameters are kernel addresses.
3745 *
3746 * @return number of msrs set successfully.
3747 */
__msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data))3748 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3749 struct kvm_msr_entry *entries,
3750 int (*do_msr)(struct kvm_vcpu *vcpu,
3751 unsigned index, u64 *data))
3752 {
3753 int i;
3754
3755 for (i = 0; i < msrs->nmsrs; ++i)
3756 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3757 break;
3758
3759 return i;
3760 }
3761
3762 /*
3763 * Read or write a bunch of msrs. Parameters are user addresses.
3764 *
3765 * @return number of msrs set successfully.
3766 */
msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback)3767 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3768 int (*do_msr)(struct kvm_vcpu *vcpu,
3769 unsigned index, u64 *data),
3770 int writeback)
3771 {
3772 struct kvm_msrs msrs;
3773 struct kvm_msr_entry *entries;
3774 int r, n;
3775 unsigned size;
3776
3777 r = -EFAULT;
3778 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3779 goto out;
3780
3781 r = -E2BIG;
3782 if (msrs.nmsrs >= MAX_IO_MSRS)
3783 goto out;
3784
3785 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3786 entries = memdup_user(user_msrs->entries, size);
3787 if (IS_ERR(entries)) {
3788 r = PTR_ERR(entries);
3789 goto out;
3790 }
3791
3792 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3793 if (r < 0)
3794 goto out_free;
3795
3796 r = -EFAULT;
3797 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3798 goto out_free;
3799
3800 r = n;
3801
3802 out_free:
3803 kfree(entries);
3804 out:
3805 return r;
3806 }
3807
kvm_can_mwait_in_guest(void)3808 static inline bool kvm_can_mwait_in_guest(void)
3809 {
3810 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3811 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3812 boot_cpu_has(X86_FEATURE_ARAT);
3813 }
3814
kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)3815 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3816 {
3817 int r = 0;
3818
3819 switch (ext) {
3820 case KVM_CAP_IRQCHIP:
3821 case KVM_CAP_HLT:
3822 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3823 case KVM_CAP_SET_TSS_ADDR:
3824 case KVM_CAP_EXT_CPUID:
3825 case KVM_CAP_EXT_EMUL_CPUID:
3826 case KVM_CAP_CLOCKSOURCE:
3827 case KVM_CAP_PIT:
3828 case KVM_CAP_NOP_IO_DELAY:
3829 case KVM_CAP_MP_STATE:
3830 case KVM_CAP_SYNC_MMU:
3831 case KVM_CAP_USER_NMI:
3832 case KVM_CAP_REINJECT_CONTROL:
3833 case KVM_CAP_IRQ_INJECT_STATUS:
3834 case KVM_CAP_IOEVENTFD:
3835 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3836 case KVM_CAP_PIT2:
3837 case KVM_CAP_PIT_STATE2:
3838 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3839 case KVM_CAP_XEN_HVM:
3840 case KVM_CAP_VCPU_EVENTS:
3841 case KVM_CAP_HYPERV:
3842 case KVM_CAP_HYPERV_VAPIC:
3843 case KVM_CAP_HYPERV_SPIN:
3844 case KVM_CAP_HYPERV_SYNIC:
3845 case KVM_CAP_HYPERV_SYNIC2:
3846 case KVM_CAP_HYPERV_VP_INDEX:
3847 case KVM_CAP_HYPERV_EVENTFD:
3848 case KVM_CAP_HYPERV_TLBFLUSH:
3849 case KVM_CAP_HYPERV_SEND_IPI:
3850 case KVM_CAP_HYPERV_CPUID:
3851 case KVM_CAP_PCI_SEGMENT:
3852 case KVM_CAP_DEBUGREGS:
3853 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3854 case KVM_CAP_XSAVE:
3855 case KVM_CAP_ASYNC_PF:
3856 case KVM_CAP_ASYNC_PF_INT:
3857 case KVM_CAP_GET_TSC_KHZ:
3858 case KVM_CAP_KVMCLOCK_CTRL:
3859 case KVM_CAP_READONLY_MEM:
3860 case KVM_CAP_HYPERV_TIME:
3861 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3862 case KVM_CAP_TSC_DEADLINE_TIMER:
3863 case KVM_CAP_DISABLE_QUIRKS:
3864 case KVM_CAP_SET_BOOT_CPU_ID:
3865 case KVM_CAP_SPLIT_IRQCHIP:
3866 case KVM_CAP_IMMEDIATE_EXIT:
3867 case KVM_CAP_PMU_EVENT_FILTER:
3868 case KVM_CAP_GET_MSR_FEATURES:
3869 case KVM_CAP_MSR_PLATFORM_INFO:
3870 case KVM_CAP_EXCEPTION_PAYLOAD:
3871 case KVM_CAP_SET_GUEST_DEBUG:
3872 case KVM_CAP_LAST_CPU:
3873 case KVM_CAP_X86_USER_SPACE_MSR:
3874 case KVM_CAP_X86_MSR_FILTER:
3875 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3876 r = 1;
3877 break;
3878 case KVM_CAP_SYNC_REGS:
3879 r = KVM_SYNC_X86_VALID_FIELDS;
3880 break;
3881 case KVM_CAP_ADJUST_CLOCK:
3882 r = KVM_CLOCK_TSC_STABLE;
3883 break;
3884 case KVM_CAP_X86_DISABLE_EXITS:
3885 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3886 KVM_X86_DISABLE_EXITS_CSTATE;
3887 if(kvm_can_mwait_in_guest())
3888 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3889 break;
3890 case KVM_CAP_X86_SMM:
3891 /* SMBASE is usually relocated above 1M on modern chipsets,
3892 * and SMM handlers might indeed rely on 4G segment limits,
3893 * so do not report SMM to be available if real mode is
3894 * emulated via vm86 mode. Still, do not go to great lengths
3895 * to avoid userspace's usage of the feature, because it is a
3896 * fringe case that is not enabled except via specific settings
3897 * of the module parameters.
3898 */
3899 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3900 break;
3901 case KVM_CAP_VAPIC:
3902 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3903 break;
3904 case KVM_CAP_NR_VCPUS:
3905 r = KVM_SOFT_MAX_VCPUS;
3906 break;
3907 case KVM_CAP_MAX_VCPUS:
3908 r = KVM_MAX_VCPUS;
3909 break;
3910 case KVM_CAP_MAX_VCPU_ID:
3911 r = KVM_MAX_VCPU_ID;
3912 break;
3913 case KVM_CAP_PV_MMU: /* obsolete */
3914 r = 0;
3915 break;
3916 case KVM_CAP_MCE:
3917 r = KVM_MAX_MCE_BANKS;
3918 break;
3919 case KVM_CAP_XCRS:
3920 r = boot_cpu_has(X86_FEATURE_XSAVE);
3921 break;
3922 case KVM_CAP_TSC_CONTROL:
3923 r = kvm_has_tsc_control;
3924 break;
3925 case KVM_CAP_X2APIC_API:
3926 r = KVM_X2APIC_API_VALID_FLAGS;
3927 break;
3928 case KVM_CAP_NESTED_STATE:
3929 r = kvm_x86_ops.nested_ops->get_state ?
3930 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3931 break;
3932 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3933 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3934 break;
3935 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3936 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3937 break;
3938 case KVM_CAP_SMALLER_MAXPHYADDR:
3939 r = (int) allow_smaller_maxphyaddr;
3940 break;
3941 case KVM_CAP_STEAL_TIME:
3942 r = sched_info_on();
3943 break;
3944 default:
3945 break;
3946 }
3947 return r;
3948
3949 }
3950
kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)3951 long kvm_arch_dev_ioctl(struct file *filp,
3952 unsigned int ioctl, unsigned long arg)
3953 {
3954 void __user *argp = (void __user *)arg;
3955 long r;
3956
3957 switch (ioctl) {
3958 case KVM_GET_MSR_INDEX_LIST: {
3959 struct kvm_msr_list __user *user_msr_list = argp;
3960 struct kvm_msr_list msr_list;
3961 unsigned n;
3962
3963 r = -EFAULT;
3964 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3965 goto out;
3966 n = msr_list.nmsrs;
3967 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3968 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3969 goto out;
3970 r = -E2BIG;
3971 if (n < msr_list.nmsrs)
3972 goto out;
3973 r = -EFAULT;
3974 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3975 num_msrs_to_save * sizeof(u32)))
3976 goto out;
3977 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3978 &emulated_msrs,
3979 num_emulated_msrs * sizeof(u32)))
3980 goto out;
3981 r = 0;
3982 break;
3983 }
3984 case KVM_GET_SUPPORTED_CPUID:
3985 case KVM_GET_EMULATED_CPUID: {
3986 struct kvm_cpuid2 __user *cpuid_arg = argp;
3987 struct kvm_cpuid2 cpuid;
3988
3989 r = -EFAULT;
3990 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3991 goto out;
3992
3993 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3994 ioctl);
3995 if (r)
3996 goto out;
3997
3998 r = -EFAULT;
3999 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4000 goto out;
4001 r = 0;
4002 break;
4003 }
4004 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4005 r = -EFAULT;
4006 if (copy_to_user(argp, &kvm_mce_cap_supported,
4007 sizeof(kvm_mce_cap_supported)))
4008 goto out;
4009 r = 0;
4010 break;
4011 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4012 struct kvm_msr_list __user *user_msr_list = argp;
4013 struct kvm_msr_list msr_list;
4014 unsigned int n;
4015
4016 r = -EFAULT;
4017 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4018 goto out;
4019 n = msr_list.nmsrs;
4020 msr_list.nmsrs = num_msr_based_features;
4021 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4022 goto out;
4023 r = -E2BIG;
4024 if (n < msr_list.nmsrs)
4025 goto out;
4026 r = -EFAULT;
4027 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4028 num_msr_based_features * sizeof(u32)))
4029 goto out;
4030 r = 0;
4031 break;
4032 }
4033 case KVM_GET_MSRS:
4034 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4035 break;
4036 default:
4037 r = -EINVAL;
4038 break;
4039 }
4040 out:
4041 return r;
4042 }
4043
wbinvd_ipi(void *garbage)4044 static void wbinvd_ipi(void *garbage)
4045 {
4046 wbinvd();
4047 }
4048
need_emulate_wbinvd(struct kvm_vcpu *vcpu)4049 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4050 {
4051 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4052 }
4053
kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)4054 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4055 {
4056 /* Address WBINVD may be executed by guest */
4057 if (need_emulate_wbinvd(vcpu)) {
4058 if (kvm_x86_ops.has_wbinvd_exit())
4059 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4060 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4061 smp_call_function_single(vcpu->cpu,
4062 wbinvd_ipi, NULL, 1);
4063 }
4064
4065 kvm_x86_ops.vcpu_load(vcpu, cpu);
4066
4067 /* Save host pkru register if supported */
4068 vcpu->arch.host_pkru = read_pkru();
4069
4070 /* Apply any externally detected TSC adjustments (due to suspend) */
4071 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4072 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4073 vcpu->arch.tsc_offset_adjustment = 0;
4074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4075 }
4076
4077 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4078 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4079 rdtsc() - vcpu->arch.last_host_tsc;
4080 if (tsc_delta < 0)
4081 mark_tsc_unstable("KVM discovered backwards TSC");
4082
4083 if (kvm_check_tsc_unstable()) {
4084 u64 offset = kvm_compute_tsc_offset(vcpu,
4085 vcpu->arch.last_guest_tsc);
4086 kvm_vcpu_write_tsc_offset(vcpu, offset);
4087 vcpu->arch.tsc_catchup = 1;
4088 }
4089
4090 if (kvm_lapic_hv_timer_in_use(vcpu))
4091 kvm_lapic_restart_hv_timer(vcpu);
4092
4093 /*
4094 * On a host with synchronized TSC, there is no need to update
4095 * kvmclock on vcpu->cpu migration
4096 */
4097 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4098 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4099 if (vcpu->cpu != cpu)
4100 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4101 vcpu->cpu = cpu;
4102 }
4103
4104 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4105 }
4106
kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)4107 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4108 {
4109 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4110 struct kvm_steal_time __user *st;
4111 struct kvm_memslots *slots;
4112 static const u8 preempted = KVM_VCPU_PREEMPTED;
4113 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4114
4115 /*
4116 * The vCPU can be marked preempted if and only if the VM-Exit was on
4117 * an instruction boundary and will not trigger guest emulation of any
4118 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4119 * when this is true, for example allowing the vCPU to be marked
4120 * preempted if and only if the VM-Exit was due to a host interrupt.
4121 */
4122 if (!vcpu->arch.at_instruction_boundary) {
4123 vcpu->stat.preemption_other++;
4124 return;
4125 }
4126
4127 vcpu->stat.preemption_reported++;
4128 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4129 return;
4130
4131 if (vcpu->arch.st.preempted)
4132 return;
4133
4134 /* This happens on process exit */
4135 if (unlikely(current->mm != vcpu->kvm->mm))
4136 return;
4137
4138 slots = kvm_memslots(vcpu->kvm);
4139
4140 if (unlikely(slots->generation != ghc->generation ||
4141 gpa != ghc->gpa ||
4142 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4143 return;
4144
4145 st = (struct kvm_steal_time __user *)ghc->hva;
4146 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4147
4148 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4149 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4150
4151 mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
4152 }
4153
kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)4154 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4155 {
4156 int idx;
4157
4158 if (vcpu->preempted) {
4159 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4160
4161 /*
4162 * Take the srcu lock as memslots will be accessed to check the gfn
4163 * cache generation against the memslots generation.
4164 */
4165 idx = srcu_read_lock(&vcpu->kvm->srcu);
4166 kvm_steal_time_set_preempted(vcpu);
4167 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4168 }
4169
4170 kvm_x86_ops.vcpu_put(vcpu);
4171 vcpu->arch.last_host_tsc = rdtsc();
4172 /*
4173 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4174 * on every vmexit, but if not, we might have a stale dr6 from the
4175 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4176 */
4177 set_debugreg(0, 6);
4178 }
4179
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)4180 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4181 struct kvm_lapic_state *s)
4182 {
4183 if (vcpu->arch.apicv_active)
4184 kvm_x86_ops.sync_pir_to_irr(vcpu);
4185
4186 return kvm_apic_get_state(vcpu, s);
4187 }
4188
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)4189 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4190 struct kvm_lapic_state *s)
4191 {
4192 int r;
4193
4194 r = kvm_apic_set_state(vcpu, s);
4195 if (r)
4196 return r;
4197 update_cr8_intercept(vcpu);
4198
4199 return 0;
4200 }
4201
kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)4202 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4203 {
4204 /*
4205 * We can accept userspace's request for interrupt injection
4206 * as long as we have a place to store the interrupt number.
4207 * The actual injection will happen when the CPU is able to
4208 * deliver the interrupt.
4209 */
4210 if (kvm_cpu_has_extint(vcpu))
4211 return false;
4212
4213 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4214 return (!lapic_in_kernel(vcpu) ||
4215 kvm_apic_accept_pic_intr(vcpu));
4216 }
4217
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)4218 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4219 {
4220 /*
4221 * Do not cause an interrupt window exit if an exception
4222 * is pending or an event needs reinjection; userspace
4223 * might want to inject the interrupt manually using KVM_SET_REGS
4224 * or KVM_SET_SREGS. For that to work, we must be at an
4225 * instruction boundary and with no events half-injected.
4226 */
4227 return (kvm_arch_interrupt_allowed(vcpu) &&
4228 kvm_cpu_accept_dm_intr(vcpu) &&
4229 !kvm_event_needs_reinjection(vcpu) &&
4230 !vcpu->arch.exception.pending);
4231 }
4232
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)4233 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4234 struct kvm_interrupt *irq)
4235 {
4236 if (irq->irq >= KVM_NR_INTERRUPTS)
4237 return -EINVAL;
4238
4239 if (!irqchip_in_kernel(vcpu->kvm)) {
4240 kvm_queue_interrupt(vcpu, irq->irq, false);
4241 kvm_make_request(KVM_REQ_EVENT, vcpu);
4242 return 0;
4243 }
4244
4245 /*
4246 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4247 * fail for in-kernel 8259.
4248 */
4249 if (pic_in_kernel(vcpu->kvm))
4250 return -ENXIO;
4251
4252 if (vcpu->arch.pending_external_vector != -1)
4253 return -EEXIST;
4254
4255 vcpu->arch.pending_external_vector = irq->irq;
4256 kvm_make_request(KVM_REQ_EVENT, vcpu);
4257 return 0;
4258 }
4259
kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)4260 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4261 {
4262 kvm_inject_nmi(vcpu);
4263
4264 return 0;
4265 }
4266
kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)4267 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4268 {
4269 kvm_make_request(KVM_REQ_SMI, vcpu);
4270
4271 return 0;
4272 }
4273
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac)4274 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4275 struct kvm_tpr_access_ctl *tac)
4276 {
4277 if (tac->flags)
4278 return -EINVAL;
4279 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4280 return 0;
4281 }
4282
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, u64 mcg_cap)4283 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4284 u64 mcg_cap)
4285 {
4286 int r;
4287 unsigned bank_num = mcg_cap & 0xff, bank;
4288
4289 r = -EINVAL;
4290 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4291 goto out;
4292 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4293 goto out;
4294 r = 0;
4295 vcpu->arch.mcg_cap = mcg_cap;
4296 /* Init IA32_MCG_CTL to all 1s */
4297 if (mcg_cap & MCG_CTL_P)
4298 vcpu->arch.mcg_ctl = ~(u64)0;
4299 /* Init IA32_MCi_CTL to all 1s */
4300 for (bank = 0; bank < bank_num; bank++)
4301 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4302
4303 kvm_x86_ops.setup_mce(vcpu);
4304 out:
4305 return r;
4306 }
4307
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce)4308 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4309 struct kvm_x86_mce *mce)
4310 {
4311 u64 mcg_cap = vcpu->arch.mcg_cap;
4312 unsigned bank_num = mcg_cap & 0xff;
4313 u64 *banks = vcpu->arch.mce_banks;
4314
4315 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4316 return -EINVAL;
4317 /*
4318 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4319 * reporting is disabled
4320 */
4321 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4322 vcpu->arch.mcg_ctl != ~(u64)0)
4323 return 0;
4324 banks += 4 * mce->bank;
4325 /*
4326 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4327 * reporting is disabled for the bank
4328 */
4329 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4330 return 0;
4331 if (mce->status & MCI_STATUS_UC) {
4332 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4333 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4335 return 0;
4336 }
4337 if (banks[1] & MCI_STATUS_VAL)
4338 mce->status |= MCI_STATUS_OVER;
4339 banks[2] = mce->addr;
4340 banks[3] = mce->misc;
4341 vcpu->arch.mcg_status = mce->mcg_status;
4342 banks[1] = mce->status;
4343 kvm_queue_exception(vcpu, MC_VECTOR);
4344 } else if (!(banks[1] & MCI_STATUS_VAL)
4345 || !(banks[1] & MCI_STATUS_UC)) {
4346 if (banks[1] & MCI_STATUS_VAL)
4347 mce->status |= MCI_STATUS_OVER;
4348 banks[2] = mce->addr;
4349 banks[3] = mce->misc;
4350 banks[1] = mce->status;
4351 } else
4352 banks[1] |= MCI_STATUS_OVER;
4353 return 0;
4354 }
4355
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)4356 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4357 struct kvm_vcpu_events *events)
4358 {
4359 process_nmi(vcpu);
4360
4361 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4362 process_smi(vcpu);
4363
4364 /*
4365 * In guest mode, payload delivery should be deferred,
4366 * so that the L1 hypervisor can intercept #PF before
4367 * CR2 is modified (or intercept #DB before DR6 is
4368 * modified under nVMX). Unless the per-VM capability,
4369 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4370 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4371 * opportunistically defer the exception payload, deliver it if the
4372 * capability hasn't been requested before processing a
4373 * KVM_GET_VCPU_EVENTS.
4374 */
4375 if (!vcpu->kvm->arch.exception_payload_enabled &&
4376 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4377 kvm_deliver_exception_payload(vcpu);
4378
4379 /*
4380 * The API doesn't provide the instruction length for software
4381 * exceptions, so don't report them. As long as the guest RIP
4382 * isn't advanced, we should expect to encounter the exception
4383 * again.
4384 */
4385 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4386 events->exception.injected = 0;
4387 events->exception.pending = 0;
4388 } else {
4389 events->exception.injected = vcpu->arch.exception.injected;
4390 events->exception.pending = vcpu->arch.exception.pending;
4391 /*
4392 * For ABI compatibility, deliberately conflate
4393 * pending and injected exceptions when
4394 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4395 */
4396 if (!vcpu->kvm->arch.exception_payload_enabled)
4397 events->exception.injected |=
4398 vcpu->arch.exception.pending;
4399 }
4400 events->exception.nr = vcpu->arch.exception.nr;
4401 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4402 events->exception.error_code = vcpu->arch.exception.error_code;
4403 events->exception_has_payload = vcpu->arch.exception.has_payload;
4404 events->exception_payload = vcpu->arch.exception.payload;
4405
4406 events->interrupt.injected =
4407 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4408 events->interrupt.nr = vcpu->arch.interrupt.nr;
4409 events->interrupt.soft = 0;
4410 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4411
4412 events->nmi.injected = vcpu->arch.nmi_injected;
4413 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4414 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4415 events->nmi.pad = 0;
4416
4417 events->sipi_vector = 0; /* never valid when reporting to user space */
4418
4419 events->smi.smm = is_smm(vcpu);
4420 events->smi.pending = vcpu->arch.smi_pending;
4421 events->smi.smm_inside_nmi =
4422 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4423 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4424
4425 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4426 | KVM_VCPUEVENT_VALID_SHADOW
4427 | KVM_VCPUEVENT_VALID_SMM);
4428 if (vcpu->kvm->arch.exception_payload_enabled)
4429 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4430
4431 memset(&events->reserved, 0, sizeof(events->reserved));
4432 }
4433
4434 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4435
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events)4436 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4437 struct kvm_vcpu_events *events)
4438 {
4439 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4440 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4441 | KVM_VCPUEVENT_VALID_SHADOW
4442 | KVM_VCPUEVENT_VALID_SMM
4443 | KVM_VCPUEVENT_VALID_PAYLOAD))
4444 return -EINVAL;
4445
4446 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4447 if (!vcpu->kvm->arch.exception_payload_enabled)
4448 return -EINVAL;
4449 if (events->exception.pending)
4450 events->exception.injected = 0;
4451 else
4452 events->exception_has_payload = 0;
4453 } else {
4454 events->exception.pending = 0;
4455 events->exception_has_payload = 0;
4456 }
4457
4458 if ((events->exception.injected || events->exception.pending) &&
4459 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4460 return -EINVAL;
4461
4462 /* INITs are latched while in SMM */
4463 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4464 (events->smi.smm || events->smi.pending) &&
4465 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4466 return -EINVAL;
4467
4468 process_nmi(vcpu);
4469 vcpu->arch.exception.injected = events->exception.injected;
4470 vcpu->arch.exception.pending = events->exception.pending;
4471 vcpu->arch.exception.nr = events->exception.nr;
4472 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4473 vcpu->arch.exception.error_code = events->exception.error_code;
4474 vcpu->arch.exception.has_payload = events->exception_has_payload;
4475 vcpu->arch.exception.payload = events->exception_payload;
4476
4477 vcpu->arch.interrupt.injected = events->interrupt.injected;
4478 vcpu->arch.interrupt.nr = events->interrupt.nr;
4479 vcpu->arch.interrupt.soft = events->interrupt.soft;
4480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4481 kvm_x86_ops.set_interrupt_shadow(vcpu,
4482 events->interrupt.shadow);
4483
4484 vcpu->arch.nmi_injected = events->nmi.injected;
4485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4486 vcpu->arch.nmi_pending = events->nmi.pending;
4487 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4488
4489 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4490 lapic_in_kernel(vcpu))
4491 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4492
4493 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4494 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4495 if (events->smi.smm)
4496 vcpu->arch.hflags |= HF_SMM_MASK;
4497 else
4498 vcpu->arch.hflags &= ~HF_SMM_MASK;
4499
4500 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4501 kvm_smm_changed(vcpu);
4502 }
4503
4504 vcpu->arch.smi_pending = events->smi.pending;
4505
4506 if (events->smi.smm) {
4507 if (events->smi.smm_inside_nmi)
4508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4509 else
4510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4511 }
4512
4513 if (lapic_in_kernel(vcpu)) {
4514 if (events->smi.latched_init)
4515 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4516 else
4517 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4518 }
4519 }
4520
4521 kvm_make_request(KVM_REQ_EVENT, vcpu);
4522
4523 return 0;
4524 }
4525
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs)4526 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4527 struct kvm_debugregs *dbgregs)
4528 {
4529 unsigned long val;
4530
4531 memset(dbgregs, 0, sizeof(*dbgregs));
4532 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4533 kvm_get_dr(vcpu, 6, &val);
4534 dbgregs->dr6 = val;
4535 dbgregs->dr7 = vcpu->arch.dr7;
4536 }
4537
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, struct kvm_debugregs *dbgregs)4538 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4539 struct kvm_debugregs *dbgregs)
4540 {
4541 if (dbgregs->flags)
4542 return -EINVAL;
4543
4544 if (dbgregs->dr6 & ~0xffffffffull)
4545 return -EINVAL;
4546 if (dbgregs->dr7 & ~0xffffffffull)
4547 return -EINVAL;
4548
4549 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4550 kvm_update_dr0123(vcpu);
4551 vcpu->arch.dr6 = dbgregs->dr6;
4552 vcpu->arch.dr7 = dbgregs->dr7;
4553 kvm_update_dr7(vcpu);
4554
4555 return 0;
4556 }
4557
4558 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4559
fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)4560 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4561 {
4562 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4563 u64 xstate_bv = xsave->header.xfeatures;
4564 u64 valid;
4565
4566 /*
4567 * Copy legacy XSAVE area, to avoid complications with CPUID
4568 * leaves 0 and 1 in the loop below.
4569 */
4570 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4571
4572 /* Set XSTATE_BV */
4573 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4574 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4575
4576 /*
4577 * Copy each region from the possibly compacted offset to the
4578 * non-compacted offset.
4579 */
4580 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4581 while (valid) {
4582 u64 xfeature_mask = valid & -valid;
4583 int xfeature_nr = fls64(xfeature_mask) - 1;
4584 void *src = get_xsave_addr(xsave, xfeature_nr);
4585
4586 if (src) {
4587 u32 size, offset, ecx, edx;
4588 cpuid_count(XSTATE_CPUID, xfeature_nr,
4589 &size, &offset, &ecx, &edx);
4590 if (xfeature_nr == XFEATURE_PKRU)
4591 memcpy(dest + offset, &vcpu->arch.pkru,
4592 sizeof(vcpu->arch.pkru));
4593 else
4594 memcpy(dest + offset, src, size);
4595
4596 }
4597
4598 valid -= xfeature_mask;
4599 }
4600 }
4601
load_xsave(struct kvm_vcpu *vcpu, u8 *src)4602 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4603 {
4604 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4605 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4606 u64 valid;
4607
4608 /*
4609 * Copy legacy XSAVE area, to avoid complications with CPUID
4610 * leaves 0 and 1 in the loop below.
4611 */
4612 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4613
4614 /* Set XSTATE_BV and possibly XCOMP_BV. */
4615 xsave->header.xfeatures = xstate_bv;
4616 if (boot_cpu_has(X86_FEATURE_XSAVES))
4617 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4618
4619 /*
4620 * Copy each region from the non-compacted offset to the
4621 * possibly compacted offset.
4622 */
4623 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4624 while (valid) {
4625 u64 xfeature_mask = valid & -valid;
4626 int xfeature_nr = fls64(xfeature_mask) - 1;
4627 void *dest = get_xsave_addr(xsave, xfeature_nr);
4628
4629 if (dest) {
4630 u32 size, offset, ecx, edx;
4631 cpuid_count(XSTATE_CPUID, xfeature_nr,
4632 &size, &offset, &ecx, &edx);
4633 if (xfeature_nr == XFEATURE_PKRU)
4634 memcpy(&vcpu->arch.pkru, src + offset,
4635 sizeof(vcpu->arch.pkru));
4636 else
4637 memcpy(dest, src + offset, size);
4638 }
4639
4640 valid -= xfeature_mask;
4641 }
4642 }
4643
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave)4644 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4645 struct kvm_xsave *guest_xsave)
4646 {
4647 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4648 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4649 fill_xsave((u8 *) guest_xsave->region, vcpu);
4650 } else {
4651 memcpy(guest_xsave->region,
4652 &vcpu->arch.guest_fpu->state.fxsave,
4653 sizeof(struct fxregs_state));
4654 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4655 XFEATURE_MASK_FPSSE;
4656 }
4657 }
4658
4659 #define XSAVE_MXCSR_OFFSET 24
4660
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, struct kvm_xsave *guest_xsave)4661 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4662 struct kvm_xsave *guest_xsave)
4663 {
4664 u64 xstate_bv =
4665 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4666 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4667
4668 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4669 /*
4670 * Here we allow setting states that are not present in
4671 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4672 * with old userspace.
4673 */
4674 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4675 return -EINVAL;
4676 load_xsave(vcpu, (u8 *)guest_xsave->region);
4677 } else {
4678 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4679 mxcsr & ~mxcsr_feature_mask)
4680 return -EINVAL;
4681 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4682 guest_xsave->region, sizeof(struct fxregs_state));
4683 }
4684 return 0;
4685 }
4686
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs)4687 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4688 struct kvm_xcrs *guest_xcrs)
4689 {
4690 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4691 guest_xcrs->nr_xcrs = 0;
4692 return;
4693 }
4694
4695 guest_xcrs->nr_xcrs = 1;
4696 guest_xcrs->flags = 0;
4697 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4698 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4699 }
4700
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, struct kvm_xcrs *guest_xcrs)4701 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4702 struct kvm_xcrs *guest_xcrs)
4703 {
4704 int i, r = 0;
4705
4706 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4707 return -EINVAL;
4708
4709 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4710 return -EINVAL;
4711
4712 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4713 /* Only support XCR0 currently */
4714 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4715 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4716 guest_xcrs->xcrs[i].value);
4717 break;
4718 }
4719 if (r)
4720 r = -EINVAL;
4721 return r;
4722 }
4723
4724 /*
4725 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4726 * stopped by the hypervisor. This function will be called from the host only.
4727 * EINVAL is returned when the host attempts to set the flag for a guest that
4728 * does not support pv clocks.
4729 */
kvm_set_guest_paused(struct kvm_vcpu *vcpu)4730 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4731 {
4732 if (!vcpu->arch.pv_time_enabled)
4733 return -EINVAL;
4734 vcpu->arch.pvclock_set_guest_stopped_request = true;
4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4736 return 0;
4737 }
4738
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap)4739 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4740 struct kvm_enable_cap *cap)
4741 {
4742 int r;
4743 uint16_t vmcs_version;
4744 void __user *user_ptr;
4745
4746 if (cap->flags)
4747 return -EINVAL;
4748
4749 switch (cap->cap) {
4750 case KVM_CAP_HYPERV_SYNIC2:
4751 if (cap->args[0])
4752 return -EINVAL;
4753 fallthrough;
4754
4755 case KVM_CAP_HYPERV_SYNIC:
4756 if (!irqchip_in_kernel(vcpu->kvm))
4757 return -EINVAL;
4758 return kvm_hv_activate_synic(vcpu, cap->cap ==
4759 KVM_CAP_HYPERV_SYNIC2);
4760 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4761 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4762 return -ENOTTY;
4763 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4764 if (!r) {
4765 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4766 if (copy_to_user(user_ptr, &vmcs_version,
4767 sizeof(vmcs_version)))
4768 r = -EFAULT;
4769 }
4770 return r;
4771 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4772 if (!kvm_x86_ops.enable_direct_tlbflush)
4773 return -ENOTTY;
4774
4775 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4776
4777 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4778 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4779 if (vcpu->arch.pv_cpuid.enforce)
4780 kvm_update_pv_runtime(vcpu);
4781
4782 return 0;
4783
4784 default:
4785 return -EINVAL;
4786 }
4787 }
4788
kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)4789 long kvm_arch_vcpu_ioctl(struct file *filp,
4790 unsigned int ioctl, unsigned long arg)
4791 {
4792 struct kvm_vcpu *vcpu = filp->private_data;
4793 void __user *argp = (void __user *)arg;
4794 int r;
4795 union {
4796 struct kvm_lapic_state *lapic;
4797 struct kvm_xsave *xsave;
4798 struct kvm_xcrs *xcrs;
4799 void *buffer;
4800 } u;
4801
4802 vcpu_load(vcpu);
4803
4804 u.buffer = NULL;
4805 switch (ioctl) {
4806 case KVM_GET_LAPIC: {
4807 r = -EINVAL;
4808 if (!lapic_in_kernel(vcpu))
4809 goto out;
4810 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4811 GFP_KERNEL_ACCOUNT);
4812
4813 r = -ENOMEM;
4814 if (!u.lapic)
4815 goto out;
4816 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4817 if (r)
4818 goto out;
4819 r = -EFAULT;
4820 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4821 goto out;
4822 r = 0;
4823 break;
4824 }
4825 case KVM_SET_LAPIC: {
4826 r = -EINVAL;
4827 if (!lapic_in_kernel(vcpu))
4828 goto out;
4829 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4830 if (IS_ERR(u.lapic)) {
4831 r = PTR_ERR(u.lapic);
4832 goto out_nofree;
4833 }
4834
4835 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4836 break;
4837 }
4838 case KVM_INTERRUPT: {
4839 struct kvm_interrupt irq;
4840
4841 r = -EFAULT;
4842 if (copy_from_user(&irq, argp, sizeof(irq)))
4843 goto out;
4844 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4845 break;
4846 }
4847 case KVM_NMI: {
4848 r = kvm_vcpu_ioctl_nmi(vcpu);
4849 break;
4850 }
4851 case KVM_SMI: {
4852 r = kvm_vcpu_ioctl_smi(vcpu);
4853 break;
4854 }
4855 case KVM_SET_CPUID: {
4856 struct kvm_cpuid __user *cpuid_arg = argp;
4857 struct kvm_cpuid cpuid;
4858
4859 r = -EFAULT;
4860 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4861 goto out;
4862 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4863 break;
4864 }
4865 case KVM_SET_CPUID2: {
4866 struct kvm_cpuid2 __user *cpuid_arg = argp;
4867 struct kvm_cpuid2 cpuid;
4868
4869 r = -EFAULT;
4870 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4871 goto out;
4872 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4873 cpuid_arg->entries);
4874 break;
4875 }
4876 case KVM_GET_CPUID2: {
4877 struct kvm_cpuid2 __user *cpuid_arg = argp;
4878 struct kvm_cpuid2 cpuid;
4879
4880 r = -EFAULT;
4881 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4882 goto out;
4883 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4884 cpuid_arg->entries);
4885 if (r)
4886 goto out;
4887 r = -EFAULT;
4888 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4889 goto out;
4890 r = 0;
4891 break;
4892 }
4893 case KVM_GET_MSRS: {
4894 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4895 r = msr_io(vcpu, argp, do_get_msr, 1);
4896 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4897 break;
4898 }
4899 case KVM_SET_MSRS: {
4900 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4901 r = msr_io(vcpu, argp, do_set_msr, 0);
4902 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4903 break;
4904 }
4905 case KVM_TPR_ACCESS_REPORTING: {
4906 struct kvm_tpr_access_ctl tac;
4907
4908 r = -EFAULT;
4909 if (copy_from_user(&tac, argp, sizeof(tac)))
4910 goto out;
4911 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4912 if (r)
4913 goto out;
4914 r = -EFAULT;
4915 if (copy_to_user(argp, &tac, sizeof(tac)))
4916 goto out;
4917 r = 0;
4918 break;
4919 };
4920 case KVM_SET_VAPIC_ADDR: {
4921 struct kvm_vapic_addr va;
4922 int idx;
4923
4924 r = -EINVAL;
4925 if (!lapic_in_kernel(vcpu))
4926 goto out;
4927 r = -EFAULT;
4928 if (copy_from_user(&va, argp, sizeof(va)))
4929 goto out;
4930 idx = srcu_read_lock(&vcpu->kvm->srcu);
4931 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4932 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4933 break;
4934 }
4935 case KVM_X86_SETUP_MCE: {
4936 u64 mcg_cap;
4937
4938 r = -EFAULT;
4939 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4940 goto out;
4941 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4942 break;
4943 }
4944 case KVM_X86_SET_MCE: {
4945 struct kvm_x86_mce mce;
4946
4947 r = -EFAULT;
4948 if (copy_from_user(&mce, argp, sizeof(mce)))
4949 goto out;
4950 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4951 break;
4952 }
4953 case KVM_GET_VCPU_EVENTS: {
4954 struct kvm_vcpu_events events;
4955
4956 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4957
4958 r = -EFAULT;
4959 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4960 break;
4961 r = 0;
4962 break;
4963 }
4964 case KVM_SET_VCPU_EVENTS: {
4965 struct kvm_vcpu_events events;
4966
4967 r = -EFAULT;
4968 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4969 break;
4970
4971 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4972 break;
4973 }
4974 case KVM_GET_DEBUGREGS: {
4975 struct kvm_debugregs dbgregs;
4976
4977 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4978
4979 r = -EFAULT;
4980 if (copy_to_user(argp, &dbgregs,
4981 sizeof(struct kvm_debugregs)))
4982 break;
4983 r = 0;
4984 break;
4985 }
4986 case KVM_SET_DEBUGREGS: {
4987 struct kvm_debugregs dbgregs;
4988
4989 r = -EFAULT;
4990 if (copy_from_user(&dbgregs, argp,
4991 sizeof(struct kvm_debugregs)))
4992 break;
4993
4994 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4995 break;
4996 }
4997 case KVM_GET_XSAVE: {
4998 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4999 r = -ENOMEM;
5000 if (!u.xsave)
5001 break;
5002
5003 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5004
5005 r = -EFAULT;
5006 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5007 break;
5008 r = 0;
5009 break;
5010 }
5011 case KVM_SET_XSAVE: {
5012 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5013 if (IS_ERR(u.xsave)) {
5014 r = PTR_ERR(u.xsave);
5015 goto out_nofree;
5016 }
5017
5018 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5019 break;
5020 }
5021 case KVM_GET_XCRS: {
5022 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5023 r = -ENOMEM;
5024 if (!u.xcrs)
5025 break;
5026
5027 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5028
5029 r = -EFAULT;
5030 if (copy_to_user(argp, u.xcrs,
5031 sizeof(struct kvm_xcrs)))
5032 break;
5033 r = 0;
5034 break;
5035 }
5036 case KVM_SET_XCRS: {
5037 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5038 if (IS_ERR(u.xcrs)) {
5039 r = PTR_ERR(u.xcrs);
5040 goto out_nofree;
5041 }
5042
5043 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5044 break;
5045 }
5046 case KVM_SET_TSC_KHZ: {
5047 u32 user_tsc_khz;
5048
5049 r = -EINVAL;
5050 user_tsc_khz = (u32)arg;
5051
5052 if (kvm_has_tsc_control &&
5053 user_tsc_khz >= kvm_max_guest_tsc_khz)
5054 goto out;
5055
5056 if (user_tsc_khz == 0)
5057 user_tsc_khz = tsc_khz;
5058
5059 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5060 r = 0;
5061
5062 goto out;
5063 }
5064 case KVM_GET_TSC_KHZ: {
5065 r = vcpu->arch.virtual_tsc_khz;
5066 goto out;
5067 }
5068 case KVM_KVMCLOCK_CTRL: {
5069 r = kvm_set_guest_paused(vcpu);
5070 goto out;
5071 }
5072 case KVM_ENABLE_CAP: {
5073 struct kvm_enable_cap cap;
5074
5075 r = -EFAULT;
5076 if (copy_from_user(&cap, argp, sizeof(cap)))
5077 goto out;
5078 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5079 break;
5080 }
5081 case KVM_GET_NESTED_STATE: {
5082 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5083 u32 user_data_size;
5084
5085 r = -EINVAL;
5086 if (!kvm_x86_ops.nested_ops->get_state)
5087 break;
5088
5089 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5090 r = -EFAULT;
5091 if (get_user(user_data_size, &user_kvm_nested_state->size))
5092 break;
5093
5094 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5095 user_data_size);
5096 if (r < 0)
5097 break;
5098
5099 if (r > user_data_size) {
5100 if (put_user(r, &user_kvm_nested_state->size))
5101 r = -EFAULT;
5102 else
5103 r = -E2BIG;
5104 break;
5105 }
5106
5107 r = 0;
5108 break;
5109 }
5110 case KVM_SET_NESTED_STATE: {
5111 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5112 struct kvm_nested_state kvm_state;
5113 int idx;
5114
5115 r = -EINVAL;
5116 if (!kvm_x86_ops.nested_ops->set_state)
5117 break;
5118
5119 r = -EFAULT;
5120 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5121 break;
5122
5123 r = -EINVAL;
5124 if (kvm_state.size < sizeof(kvm_state))
5125 break;
5126
5127 if (kvm_state.flags &
5128 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5129 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5130 | KVM_STATE_NESTED_GIF_SET))
5131 break;
5132
5133 /* nested_run_pending implies guest_mode. */
5134 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5135 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5136 break;
5137
5138 idx = srcu_read_lock(&vcpu->kvm->srcu);
5139 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5140 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5141 break;
5142 }
5143 case KVM_GET_SUPPORTED_HV_CPUID: {
5144 struct kvm_cpuid2 __user *cpuid_arg = argp;
5145 struct kvm_cpuid2 cpuid;
5146
5147 r = -EFAULT;
5148 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5149 goto out;
5150
5151 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5152 cpuid_arg->entries);
5153 if (r)
5154 goto out;
5155
5156 r = -EFAULT;
5157 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5158 goto out;
5159 r = 0;
5160 break;
5161 }
5162 default:
5163 r = -EINVAL;
5164 }
5165 out:
5166 kfree(u.buffer);
5167 out_nofree:
5168 vcpu_put(vcpu);
5169 return r;
5170 }
5171
kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)5172 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5173 {
5174 return VM_FAULT_SIGBUS;
5175 }
5176
kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)5177 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5178 {
5179 int ret;
5180
5181 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5182 return -EINVAL;
5183 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5184 return ret;
5185 }
5186
kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)5187 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5188 u64 ident_addr)
5189 {
5190 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5191 }
5192
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages)5193 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5194 unsigned long kvm_nr_mmu_pages)
5195 {
5196 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5197 return -EINVAL;
5198
5199 mutex_lock(&kvm->slots_lock);
5200
5201 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5202 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5203
5204 mutex_unlock(&kvm->slots_lock);
5205 return 0;
5206 }
5207
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)5208 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5209 {
5210 return kvm->arch.n_max_mmu_pages;
5211 }
5212
kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)5213 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5214 {
5215 struct kvm_pic *pic = kvm->arch.vpic;
5216 int r;
5217
5218 r = 0;
5219 switch (chip->chip_id) {
5220 case KVM_IRQCHIP_PIC_MASTER:
5221 memcpy(&chip->chip.pic, &pic->pics[0],
5222 sizeof(struct kvm_pic_state));
5223 break;
5224 case KVM_IRQCHIP_PIC_SLAVE:
5225 memcpy(&chip->chip.pic, &pic->pics[1],
5226 sizeof(struct kvm_pic_state));
5227 break;
5228 case KVM_IRQCHIP_IOAPIC:
5229 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5230 break;
5231 default:
5232 r = -EINVAL;
5233 break;
5234 }
5235 return r;
5236 }
5237
kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)5238 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5239 {
5240 struct kvm_pic *pic = kvm->arch.vpic;
5241 int r;
5242
5243 r = 0;
5244 switch (chip->chip_id) {
5245 case KVM_IRQCHIP_PIC_MASTER:
5246 spin_lock(&pic->lock);
5247 memcpy(&pic->pics[0], &chip->chip.pic,
5248 sizeof(struct kvm_pic_state));
5249 spin_unlock(&pic->lock);
5250 break;
5251 case KVM_IRQCHIP_PIC_SLAVE:
5252 spin_lock(&pic->lock);
5253 memcpy(&pic->pics[1], &chip->chip.pic,
5254 sizeof(struct kvm_pic_state));
5255 spin_unlock(&pic->lock);
5256 break;
5257 case KVM_IRQCHIP_IOAPIC:
5258 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5259 break;
5260 default:
5261 r = -EINVAL;
5262 break;
5263 }
5264 kvm_pic_update_irq(pic);
5265 return r;
5266 }
5267
kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)5268 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5269 {
5270 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5271
5272 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5273
5274 mutex_lock(&kps->lock);
5275 memcpy(ps, &kps->channels, sizeof(*ps));
5276 mutex_unlock(&kps->lock);
5277 return 0;
5278 }
5279
kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)5280 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5281 {
5282 int i;
5283 struct kvm_pit *pit = kvm->arch.vpit;
5284
5285 mutex_lock(&pit->pit_state.lock);
5286 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5287 for (i = 0; i < 3; i++)
5288 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5289 mutex_unlock(&pit->pit_state.lock);
5290 return 0;
5291 }
5292
kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)5293 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5294 {
5295 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5296 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5297 sizeof(ps->channels));
5298 ps->flags = kvm->arch.vpit->pit_state.flags;
5299 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5300 memset(&ps->reserved, 0, sizeof(ps->reserved));
5301 return 0;
5302 }
5303
kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)5304 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5305 {
5306 int start = 0;
5307 int i;
5308 u32 prev_legacy, cur_legacy;
5309 struct kvm_pit *pit = kvm->arch.vpit;
5310
5311 mutex_lock(&pit->pit_state.lock);
5312 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5313 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5314 if (!prev_legacy && cur_legacy)
5315 start = 1;
5316 memcpy(&pit->pit_state.channels, &ps->channels,
5317 sizeof(pit->pit_state.channels));
5318 pit->pit_state.flags = ps->flags;
5319 for (i = 0; i < 3; i++)
5320 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5321 start && i == 0);
5322 mutex_unlock(&pit->pit_state.lock);
5323 return 0;
5324 }
5325
kvm_vm_ioctl_reinject(struct kvm *kvm, struct kvm_reinject_control *control)5326 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5327 struct kvm_reinject_control *control)
5328 {
5329 struct kvm_pit *pit = kvm->arch.vpit;
5330
5331 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5332 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5333 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5334 */
5335 mutex_lock(&pit->pit_state.lock);
5336 kvm_pit_set_reinject(pit, control->pit_reinject);
5337 mutex_unlock(&pit->pit_state.lock);
5338
5339 return 0;
5340 }
5341
kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)5342 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5343 {
5344 /*
5345 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5346 */
5347 if (kvm_x86_ops.flush_log_dirty)
5348 kvm_x86_ops.flush_log_dirty(kvm);
5349 }
5350
kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, bool line_status)5351 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5352 bool line_status)
5353 {
5354 if (!irqchip_in_kernel(kvm))
5355 return -ENXIO;
5356
5357 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5358 irq_event->irq, irq_event->level,
5359 line_status);
5360 return 0;
5361 }
5362
kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)5363 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5364 struct kvm_enable_cap *cap)
5365 {
5366 int r;
5367
5368 if (cap->flags)
5369 return -EINVAL;
5370
5371 switch (cap->cap) {
5372 case KVM_CAP_DISABLE_QUIRKS:
5373 kvm->arch.disabled_quirks = cap->args[0];
5374 r = 0;
5375 break;
5376 case KVM_CAP_SPLIT_IRQCHIP: {
5377 mutex_lock(&kvm->lock);
5378 r = -EINVAL;
5379 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5380 goto split_irqchip_unlock;
5381 r = -EEXIST;
5382 if (irqchip_in_kernel(kvm))
5383 goto split_irqchip_unlock;
5384 if (kvm->created_vcpus)
5385 goto split_irqchip_unlock;
5386 r = kvm_setup_empty_irq_routing(kvm);
5387 if (r)
5388 goto split_irqchip_unlock;
5389 /* Pairs with irqchip_in_kernel. */
5390 smp_wmb();
5391 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5392 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5393 r = 0;
5394 split_irqchip_unlock:
5395 mutex_unlock(&kvm->lock);
5396 break;
5397 }
5398 case KVM_CAP_X2APIC_API:
5399 r = -EINVAL;
5400 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5401 break;
5402
5403 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5404 kvm->arch.x2apic_format = true;
5405 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5406 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5407
5408 r = 0;
5409 break;
5410 case KVM_CAP_X86_DISABLE_EXITS:
5411 r = -EINVAL;
5412 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5413 break;
5414
5415 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5416 kvm_can_mwait_in_guest())
5417 kvm->arch.mwait_in_guest = true;
5418 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5419 kvm->arch.hlt_in_guest = true;
5420 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5421 kvm->arch.pause_in_guest = true;
5422 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5423 kvm->arch.cstate_in_guest = true;
5424 r = 0;
5425 break;
5426 case KVM_CAP_MSR_PLATFORM_INFO:
5427 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5428 r = 0;
5429 break;
5430 case KVM_CAP_EXCEPTION_PAYLOAD:
5431 kvm->arch.exception_payload_enabled = cap->args[0];
5432 r = 0;
5433 break;
5434 case KVM_CAP_X86_USER_SPACE_MSR:
5435 r = -EINVAL;
5436 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5437 KVM_MSR_EXIT_REASON_UNKNOWN |
5438 KVM_MSR_EXIT_REASON_FILTER))
5439 break;
5440 kvm->arch.user_space_msr_mask = cap->args[0];
5441 r = 0;
5442 break;
5443 default:
5444 r = -EINVAL;
5445 break;
5446 }
5447 return r;
5448 }
5449
kvm_alloc_msr_filter(bool default_allow)5450 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5451 {
5452 struct kvm_x86_msr_filter *msr_filter;
5453
5454 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5455 if (!msr_filter)
5456 return NULL;
5457
5458 msr_filter->default_allow = default_allow;
5459 return msr_filter;
5460 }
5461
kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)5462 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5463 {
5464 u32 i;
5465
5466 if (!msr_filter)
5467 return;
5468
5469 for (i = 0; i < msr_filter->count; i++)
5470 kfree(msr_filter->ranges[i].bitmap);
5471
5472 kfree(msr_filter);
5473 }
5474
kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, struct kvm_msr_filter_range *user_range)5475 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5476 struct kvm_msr_filter_range *user_range)
5477 {
5478 struct msr_bitmap_range range;
5479 unsigned long *bitmap = NULL;
5480 size_t bitmap_size;
5481 int r;
5482
5483 if (!user_range->nmsrs)
5484 return 0;
5485
5486 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5487 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5488 return -EINVAL;
5489
5490 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5491 if (IS_ERR(bitmap))
5492 return PTR_ERR(bitmap);
5493
5494 range = (struct msr_bitmap_range) {
5495 .flags = user_range->flags,
5496 .base = user_range->base,
5497 .nmsrs = user_range->nmsrs,
5498 .bitmap = bitmap,
5499 };
5500
5501 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5502 r = -EINVAL;
5503 goto err;
5504 }
5505
5506 if (!range.flags) {
5507 r = -EINVAL;
5508 goto err;
5509 }
5510
5511 /* Everything ok, add this range identifier. */
5512 msr_filter->ranges[msr_filter->count] = range;
5513 msr_filter->count++;
5514
5515 return 0;
5516 err:
5517 kfree(bitmap);
5518 return r;
5519 }
5520
kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, struct kvm_msr_filter *filter)5521 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5522 struct kvm_msr_filter *filter)
5523 {
5524 struct kvm_x86_msr_filter *new_filter, *old_filter;
5525 bool default_allow;
5526 bool empty = true;
5527 int r = 0;
5528 u32 i;
5529
5530 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5531 return -EINVAL;
5532
5533 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5534 empty &= !filter->ranges[i].nmsrs;
5535
5536 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5537 if (empty && !default_allow)
5538 return -EINVAL;
5539
5540 new_filter = kvm_alloc_msr_filter(default_allow);
5541 if (!new_filter)
5542 return -ENOMEM;
5543
5544 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5545 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5546 if (r) {
5547 kvm_free_msr_filter(new_filter);
5548 return r;
5549 }
5550 }
5551
5552 mutex_lock(&kvm->lock);
5553
5554 /* The per-VM filter is protected by kvm->lock... */
5555 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5556
5557 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5558 synchronize_srcu(&kvm->srcu);
5559
5560 kvm_free_msr_filter(old_filter);
5561
5562 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5563 mutex_unlock(&kvm->lock);
5564
5565 return 0;
5566 }
5567
5568 #ifdef CONFIG_KVM_COMPAT
5569 /* for KVM_X86_SET_MSR_FILTER */
5570 struct kvm_msr_filter_range_compat {
5571 __u32 flags;
5572 __u32 nmsrs;
5573 __u32 base;
5574 __u32 bitmap;
5575 };
5576
5577 struct kvm_msr_filter_compat {
5578 __u32 flags;
5579 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5580 };
5581
5582 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5583
kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)5584 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5585 unsigned long arg)
5586 {
5587 void __user *argp = (void __user *)arg;
5588 struct kvm *kvm = filp->private_data;
5589 long r = -ENOTTY;
5590
5591 switch (ioctl) {
5592 case KVM_X86_SET_MSR_FILTER_COMPAT: {
5593 struct kvm_msr_filter __user *user_msr_filter = argp;
5594 struct kvm_msr_filter_compat filter_compat;
5595 struct kvm_msr_filter filter;
5596 int i;
5597
5598 if (copy_from_user(&filter_compat, user_msr_filter,
5599 sizeof(filter_compat)))
5600 return -EFAULT;
5601
5602 filter.flags = filter_compat.flags;
5603 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5604 struct kvm_msr_filter_range_compat *cr;
5605
5606 cr = &filter_compat.ranges[i];
5607 filter.ranges[i] = (struct kvm_msr_filter_range) {
5608 .flags = cr->flags,
5609 .nmsrs = cr->nmsrs,
5610 .base = cr->base,
5611 .bitmap = (__u8 *)(ulong)cr->bitmap,
5612 };
5613 }
5614
5615 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5616 break;
5617 }
5618 }
5619
5620 return r;
5621 }
5622 #endif
5623
kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)5624 long kvm_arch_vm_ioctl(struct file *filp,
5625 unsigned int ioctl, unsigned long arg)
5626 {
5627 struct kvm *kvm = filp->private_data;
5628 void __user *argp = (void __user *)arg;
5629 int r = -ENOTTY;
5630 /*
5631 * This union makes it completely explicit to gcc-3.x
5632 * that these two variables' stack usage should be
5633 * combined, not added together.
5634 */
5635 union {
5636 struct kvm_pit_state ps;
5637 struct kvm_pit_state2 ps2;
5638 struct kvm_pit_config pit_config;
5639 } u;
5640
5641 switch (ioctl) {
5642 case KVM_SET_TSS_ADDR:
5643 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5644 break;
5645 case KVM_SET_IDENTITY_MAP_ADDR: {
5646 u64 ident_addr;
5647
5648 mutex_lock(&kvm->lock);
5649 r = -EINVAL;
5650 if (kvm->created_vcpus)
5651 goto set_identity_unlock;
5652 r = -EFAULT;
5653 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5654 goto set_identity_unlock;
5655 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5656 set_identity_unlock:
5657 mutex_unlock(&kvm->lock);
5658 break;
5659 }
5660 case KVM_SET_NR_MMU_PAGES:
5661 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5662 break;
5663 case KVM_GET_NR_MMU_PAGES:
5664 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5665 break;
5666 case KVM_CREATE_IRQCHIP: {
5667 mutex_lock(&kvm->lock);
5668
5669 r = -EEXIST;
5670 if (irqchip_in_kernel(kvm))
5671 goto create_irqchip_unlock;
5672
5673 r = -EINVAL;
5674 if (kvm->created_vcpus)
5675 goto create_irqchip_unlock;
5676
5677 r = kvm_pic_init(kvm);
5678 if (r)
5679 goto create_irqchip_unlock;
5680
5681 r = kvm_ioapic_init(kvm);
5682 if (r) {
5683 kvm_pic_destroy(kvm);
5684 goto create_irqchip_unlock;
5685 }
5686
5687 r = kvm_setup_default_irq_routing(kvm);
5688 if (r) {
5689 kvm_ioapic_destroy(kvm);
5690 kvm_pic_destroy(kvm);
5691 goto create_irqchip_unlock;
5692 }
5693 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5694 smp_wmb();
5695 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5696 create_irqchip_unlock:
5697 mutex_unlock(&kvm->lock);
5698 break;
5699 }
5700 case KVM_CREATE_PIT:
5701 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5702 goto create_pit;
5703 case KVM_CREATE_PIT2:
5704 r = -EFAULT;
5705 if (copy_from_user(&u.pit_config, argp,
5706 sizeof(struct kvm_pit_config)))
5707 goto out;
5708 create_pit:
5709 mutex_lock(&kvm->lock);
5710 r = -EEXIST;
5711 if (kvm->arch.vpit)
5712 goto create_pit_unlock;
5713 r = -ENOMEM;
5714 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5715 if (kvm->arch.vpit)
5716 r = 0;
5717 create_pit_unlock:
5718 mutex_unlock(&kvm->lock);
5719 break;
5720 case KVM_GET_IRQCHIP: {
5721 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5722 struct kvm_irqchip *chip;
5723
5724 chip = memdup_user(argp, sizeof(*chip));
5725 if (IS_ERR(chip)) {
5726 r = PTR_ERR(chip);
5727 goto out;
5728 }
5729
5730 r = -ENXIO;
5731 if (!irqchip_kernel(kvm))
5732 goto get_irqchip_out;
5733 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5734 if (r)
5735 goto get_irqchip_out;
5736 r = -EFAULT;
5737 if (copy_to_user(argp, chip, sizeof(*chip)))
5738 goto get_irqchip_out;
5739 r = 0;
5740 get_irqchip_out:
5741 kfree(chip);
5742 break;
5743 }
5744 case KVM_SET_IRQCHIP: {
5745 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5746 struct kvm_irqchip *chip;
5747
5748 chip = memdup_user(argp, sizeof(*chip));
5749 if (IS_ERR(chip)) {
5750 r = PTR_ERR(chip);
5751 goto out;
5752 }
5753
5754 r = -ENXIO;
5755 if (!irqchip_kernel(kvm))
5756 goto set_irqchip_out;
5757 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5758 set_irqchip_out:
5759 kfree(chip);
5760 break;
5761 }
5762 case KVM_GET_PIT: {
5763 r = -EFAULT;
5764 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5765 goto out;
5766 r = -ENXIO;
5767 if (!kvm->arch.vpit)
5768 goto out;
5769 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5770 if (r)
5771 goto out;
5772 r = -EFAULT;
5773 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5774 goto out;
5775 r = 0;
5776 break;
5777 }
5778 case KVM_SET_PIT: {
5779 r = -EFAULT;
5780 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5781 goto out;
5782 mutex_lock(&kvm->lock);
5783 r = -ENXIO;
5784 if (!kvm->arch.vpit)
5785 goto set_pit_out;
5786 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5787 set_pit_out:
5788 mutex_unlock(&kvm->lock);
5789 break;
5790 }
5791 case KVM_GET_PIT2: {
5792 r = -ENXIO;
5793 if (!kvm->arch.vpit)
5794 goto out;
5795 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5796 if (r)
5797 goto out;
5798 r = -EFAULT;
5799 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5800 goto out;
5801 r = 0;
5802 break;
5803 }
5804 case KVM_SET_PIT2: {
5805 r = -EFAULT;
5806 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5807 goto out;
5808 mutex_lock(&kvm->lock);
5809 r = -ENXIO;
5810 if (!kvm->arch.vpit)
5811 goto set_pit2_out;
5812 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5813 set_pit2_out:
5814 mutex_unlock(&kvm->lock);
5815 break;
5816 }
5817 case KVM_REINJECT_CONTROL: {
5818 struct kvm_reinject_control control;
5819 r = -EFAULT;
5820 if (copy_from_user(&control, argp, sizeof(control)))
5821 goto out;
5822 r = -ENXIO;
5823 if (!kvm->arch.vpit)
5824 goto out;
5825 r = kvm_vm_ioctl_reinject(kvm, &control);
5826 break;
5827 }
5828 case KVM_SET_BOOT_CPU_ID:
5829 r = 0;
5830 mutex_lock(&kvm->lock);
5831 if (kvm->created_vcpus)
5832 r = -EBUSY;
5833 else
5834 kvm->arch.bsp_vcpu_id = arg;
5835 mutex_unlock(&kvm->lock);
5836 break;
5837 case KVM_XEN_HVM_CONFIG: {
5838 struct kvm_xen_hvm_config xhc;
5839 r = -EFAULT;
5840 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5841 goto out;
5842 r = -EINVAL;
5843 if (xhc.flags)
5844 goto out;
5845 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5846 r = 0;
5847 break;
5848 }
5849 case KVM_SET_CLOCK: {
5850 struct kvm_clock_data user_ns;
5851 u64 now_ns;
5852
5853 r = -EFAULT;
5854 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5855 goto out;
5856
5857 r = -EINVAL;
5858 if (user_ns.flags)
5859 goto out;
5860
5861 r = 0;
5862 /*
5863 * TODO: userspace has to take care of races with VCPU_RUN, so
5864 * kvm_gen_update_masterclock() can be cut down to locked
5865 * pvclock_update_vm_gtod_copy().
5866 */
5867 kvm_gen_update_masterclock(kvm);
5868 now_ns = get_kvmclock_ns(kvm);
5869 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5870 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5871 break;
5872 }
5873 case KVM_GET_CLOCK: {
5874 struct kvm_clock_data user_ns;
5875 u64 now_ns;
5876
5877 now_ns = get_kvmclock_ns(kvm);
5878 user_ns.clock = now_ns;
5879 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5880 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5881
5882 r = -EFAULT;
5883 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5884 goto out;
5885 r = 0;
5886 break;
5887 }
5888 case KVM_MEMORY_ENCRYPT_OP: {
5889 r = -ENOTTY;
5890 if (kvm_x86_ops.mem_enc_op)
5891 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5892 break;
5893 }
5894 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5895 struct kvm_enc_region region;
5896
5897 r = -EFAULT;
5898 if (copy_from_user(®ion, argp, sizeof(region)))
5899 goto out;
5900
5901 r = -ENOTTY;
5902 if (kvm_x86_ops.mem_enc_reg_region)
5903 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion);
5904 break;
5905 }
5906 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5907 struct kvm_enc_region region;
5908
5909 r = -EFAULT;
5910 if (copy_from_user(®ion, argp, sizeof(region)))
5911 goto out;
5912
5913 r = -ENOTTY;
5914 if (kvm_x86_ops.mem_enc_unreg_region)
5915 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion);
5916 break;
5917 }
5918 case KVM_HYPERV_EVENTFD: {
5919 struct kvm_hyperv_eventfd hvevfd;
5920
5921 r = -EFAULT;
5922 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5923 goto out;
5924 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5925 break;
5926 }
5927 case KVM_SET_PMU_EVENT_FILTER:
5928 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5929 break;
5930 case KVM_X86_SET_MSR_FILTER: {
5931 struct kvm_msr_filter __user *user_msr_filter = argp;
5932 struct kvm_msr_filter filter;
5933
5934 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5935 return -EFAULT;
5936
5937 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5938 break;
5939 }
5940 default:
5941 r = -ENOTTY;
5942 }
5943 out:
5944 return r;
5945 }
5946
kvm_init_msr_list(void)5947 static void kvm_init_msr_list(void)
5948 {
5949 struct x86_pmu_capability x86_pmu;
5950 u32 dummy[2];
5951 unsigned i;
5952
5953 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5954 "Please update the fixed PMCs in msrs_to_saved_all[]");
5955
5956 perf_get_x86_pmu_capability(&x86_pmu);
5957
5958 num_msrs_to_save = 0;
5959 num_emulated_msrs = 0;
5960 num_msr_based_features = 0;
5961
5962 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5963 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5964 continue;
5965
5966 /*
5967 * Even MSRs that are valid in the host may not be exposed
5968 * to the guests in some cases.
5969 */
5970 switch (msrs_to_save_all[i]) {
5971 case MSR_IA32_BNDCFGS:
5972 if (!kvm_mpx_supported())
5973 continue;
5974 break;
5975 case MSR_TSC_AUX:
5976 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5977 continue;
5978 break;
5979 case MSR_IA32_UMWAIT_CONTROL:
5980 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5981 continue;
5982 break;
5983 case MSR_IA32_RTIT_CTL:
5984 case MSR_IA32_RTIT_STATUS:
5985 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5986 continue;
5987 break;
5988 case MSR_IA32_RTIT_CR3_MATCH:
5989 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5990 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5991 continue;
5992 break;
5993 case MSR_IA32_RTIT_OUTPUT_BASE:
5994 case MSR_IA32_RTIT_OUTPUT_MASK:
5995 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5996 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5997 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5998 continue;
5999 break;
6000 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6001 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6002 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6003 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6004 continue;
6005 break;
6006 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6007 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6008 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6009 continue;
6010 break;
6011 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6012 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6013 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6014 continue;
6015 break;
6016 default:
6017 break;
6018 }
6019
6020 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6021 }
6022
6023 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6024 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
6025 continue;
6026
6027 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6028 }
6029
6030 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6031 struct kvm_msr_entry msr;
6032
6033 msr.index = msr_based_features_all[i];
6034 if (kvm_get_msr_feature(&msr))
6035 continue;
6036
6037 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6038 }
6039 }
6040
vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, const void *v)6041 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6042 const void *v)
6043 {
6044 int handled = 0;
6045 int n;
6046
6047 do {
6048 n = min(len, 8);
6049 if (!(lapic_in_kernel(vcpu) &&
6050 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6051 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6052 break;
6053 handled += n;
6054 addr += n;
6055 len -= n;
6056 v += n;
6057 } while (len);
6058
6059 return handled;
6060 }
6061
vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)6062 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6063 {
6064 int handled = 0;
6065 int n;
6066
6067 do {
6068 n = min(len, 8);
6069 if (!(lapic_in_kernel(vcpu) &&
6070 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6071 addr, n, v))
6072 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6073 break;
6074 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6075 handled += n;
6076 addr += n;
6077 len -= n;
6078 v += n;
6079 } while (len);
6080
6081 return handled;
6082 }
6083
kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)6084 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6085 struct kvm_segment *var, int seg)
6086 {
6087 kvm_x86_ops.set_segment(vcpu, var, seg);
6088 }
6089
kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)6090 void kvm_get_segment(struct kvm_vcpu *vcpu,
6091 struct kvm_segment *var, int seg)
6092 {
6093 kvm_x86_ops.get_segment(vcpu, var, seg);
6094 }
6095
translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception)6096 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6097 struct x86_exception *exception)
6098 {
6099 gpa_t t_gpa;
6100
6101 BUG_ON(!mmu_is_nested(vcpu));
6102
6103 /* NPT walks are always user-walks */
6104 access |= PFERR_USER_MASK;
6105 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6106
6107 return t_gpa;
6108 }
6109
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6110 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6111 struct x86_exception *exception)
6112 {
6113 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6114 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6115 }
6116
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6117 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6118 struct x86_exception *exception)
6119 {
6120 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6121 access |= PFERR_FETCH_MASK;
6122 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6123 }
6124
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6125 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6126 struct x86_exception *exception)
6127 {
6128 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6129 access |= PFERR_WRITE_MASK;
6130 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6131 }
6132
6133 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception)6134 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6135 struct x86_exception *exception)
6136 {
6137 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6138 }
6139
kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception)6140 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6141 struct kvm_vcpu *vcpu, u32 access,
6142 struct x86_exception *exception)
6143 {
6144 void *data = val;
6145 int r = X86EMUL_CONTINUE;
6146
6147 while (bytes) {
6148 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6149 exception);
6150 unsigned offset = addr & (PAGE_SIZE-1);
6151 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6152 int ret;
6153
6154 if (gpa == UNMAPPED_GVA)
6155 return X86EMUL_PROPAGATE_FAULT;
6156 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6157 offset, toread);
6158 if (ret < 0) {
6159 r = X86EMUL_IO_NEEDED;
6160 goto out;
6161 }
6162
6163 bytes -= toread;
6164 data += toread;
6165 addr += toread;
6166 }
6167 out:
6168 return r;
6169 }
6170
6171 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6172 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6173 gva_t addr, void *val, unsigned int bytes,
6174 struct x86_exception *exception)
6175 {
6176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6177 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6178 unsigned offset;
6179 int ret;
6180
6181 /* Inline kvm_read_guest_virt_helper for speed. */
6182 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6183 exception);
6184 if (unlikely(gpa == UNMAPPED_GVA))
6185 return X86EMUL_PROPAGATE_FAULT;
6186
6187 offset = addr & (PAGE_SIZE-1);
6188 if (WARN_ON(offset + bytes > PAGE_SIZE))
6189 bytes = (unsigned)PAGE_SIZE - offset;
6190 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6191 offset, bytes);
6192 if (unlikely(ret < 0))
6193 return X86EMUL_IO_NEEDED;
6194
6195 return X86EMUL_CONTINUE;
6196 }
6197
kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6198 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6199 gva_t addr, void *val, unsigned int bytes,
6200 struct x86_exception *exception)
6201 {
6202 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6203
6204 /*
6205 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6206 * is returned, but our callers are not ready for that and they blindly
6207 * call kvm_inject_page_fault. Ensure that they at least do not leak
6208 * uninitialized kernel stack memory into cr2 and error code.
6209 */
6210 memset(exception, 0, sizeof(*exception));
6211 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6212 exception);
6213 }
6214 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6215
emulator_read_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system)6216 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6217 gva_t addr, void *val, unsigned int bytes,
6218 struct x86_exception *exception, bool system)
6219 {
6220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6221 u32 access = 0;
6222
6223 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6224 access |= PFERR_USER_MASK;
6225
6226 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6227 }
6228
kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes)6229 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6230 unsigned long addr, void *val, unsigned int bytes)
6231 {
6232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6233 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6234
6235 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6236 }
6237
kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, u32 access, struct x86_exception *exception)6238 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6239 struct kvm_vcpu *vcpu, u32 access,
6240 struct x86_exception *exception)
6241 {
6242 void *data = val;
6243 int r = X86EMUL_CONTINUE;
6244
6245 while (bytes) {
6246 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6247 access,
6248 exception);
6249 unsigned offset = addr & (PAGE_SIZE-1);
6250 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6251 int ret;
6252
6253 if (gpa == UNMAPPED_GVA)
6254 return X86EMUL_PROPAGATE_FAULT;
6255 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6256 if (ret < 0) {
6257 r = X86EMUL_IO_NEEDED;
6258 goto out;
6259 }
6260
6261 bytes -= towrite;
6262 data += towrite;
6263 addr += towrite;
6264 }
6265 out:
6266 return r;
6267 }
6268
emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception, bool system)6269 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6270 unsigned int bytes, struct x86_exception *exception,
6271 bool system)
6272 {
6273 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6274 u32 access = PFERR_WRITE_MASK;
6275
6276 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6277 access |= PFERR_USER_MASK;
6278
6279 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6280 access, exception);
6281 }
6282
kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception)6283 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6284 unsigned int bytes, struct x86_exception *exception)
6285 {
6286 /* kvm_write_guest_virt_system can pull in tons of pages. */
6287 vcpu->arch.l1tf_flush_l1d = true;
6288
6289 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6290 PFERR_WRITE_MASK, exception);
6291 }
6292 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6293
handle_ud(struct kvm_vcpu *vcpu)6294 int handle_ud(struct kvm_vcpu *vcpu)
6295 {
6296 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6297 int emul_type = EMULTYPE_TRAP_UD;
6298 char sig[5]; /* ud2; .ascii "kvm" */
6299 struct x86_exception e;
6300
6301 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6302 return 1;
6303
6304 if (force_emulation_prefix &&
6305 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6306 sig, sizeof(sig), &e) == 0 &&
6307 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6308 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6309 emul_type = EMULTYPE_TRAP_UD_FORCED;
6310 }
6311
6312 return kvm_emulate_instruction(vcpu, emul_type);
6313 }
6314 EXPORT_SYMBOL_GPL(handle_ud);
6315
vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t gpa, bool write)6316 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6317 gpa_t gpa, bool write)
6318 {
6319 /* For APIC access vmexit */
6320 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6321 return 1;
6322
6323 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6324 trace_vcpu_match_mmio(gva, gpa, write, true);
6325 return 1;
6326 }
6327
6328 return 0;
6329 }
6330
vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t *gpa, struct x86_exception *exception, bool write)6331 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6332 gpa_t *gpa, struct x86_exception *exception,
6333 bool write)
6334 {
6335 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6336 | (write ? PFERR_WRITE_MASK : 0);
6337
6338 /*
6339 * currently PKRU is only applied to ept enabled guest so
6340 * there is no pkey in EPT page table for L1 guest or EPT
6341 * shadow page table for L2 guest.
6342 */
6343 if (vcpu_match_mmio_gva(vcpu, gva)
6344 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6345 vcpu->arch.mmio_access, 0, access)) {
6346 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6347 (gva & (PAGE_SIZE - 1));
6348 trace_vcpu_match_mmio(gva, *gpa, write, false);
6349 return 1;
6350 }
6351
6352 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6353
6354 if (*gpa == UNMAPPED_GVA)
6355 return -1;
6356
6357 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6358 }
6359
emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes)6360 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6361 const void *val, int bytes)
6362 {
6363 int ret;
6364
6365 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6366 if (ret < 0)
6367 return 0;
6368 kvm_page_track_write(vcpu, gpa, val, bytes);
6369 return 1;
6370 }
6371
6372 struct read_write_emulator_ops {
6373 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6374 int bytes);
6375 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6376 void *val, int bytes);
6377 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6378 int bytes, void *val);
6379 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6380 void *val, int bytes);
6381 bool write;
6382 };
6383
read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)6384 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6385 {
6386 if (vcpu->mmio_read_completed) {
6387 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6388 vcpu->mmio_fragments[0].gpa, val);
6389 vcpu->mmio_read_completed = 0;
6390 return 1;
6391 }
6392
6393 return 0;
6394 }
6395
read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6396 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6397 void *val, int bytes)
6398 {
6399 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6400 }
6401
write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6402 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6403 void *val, int bytes)
6404 {
6405 return emulator_write_phys(vcpu, gpa, val, bytes);
6406 }
6407
write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)6408 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6409 {
6410 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6411 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6412 }
6413
read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6414 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6415 void *val, int bytes)
6416 {
6417 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6418 return X86EMUL_IO_NEEDED;
6419 }
6420
write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, void *val, int bytes)6421 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6422 void *val, int bytes)
6423 {
6424 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6425
6426 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6427 return X86EMUL_CONTINUE;
6428 }
6429
6430 static const struct read_write_emulator_ops read_emultor = {
6431 .read_write_prepare = read_prepare,
6432 .read_write_emulate = read_emulate,
6433 .read_write_mmio = vcpu_mmio_read,
6434 .read_write_exit_mmio = read_exit_mmio,
6435 };
6436
6437 static const struct read_write_emulator_ops write_emultor = {
6438 .read_write_emulate = write_emulate,
6439 .read_write_mmio = write_mmio,
6440 .read_write_exit_mmio = write_exit_mmio,
6441 .write = true,
6442 };
6443
emulator_read_write_onepage(unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, struct kvm_vcpu *vcpu, const struct read_write_emulator_ops *ops)6444 static int emulator_read_write_onepage(unsigned long addr, void *val,
6445 unsigned int bytes,
6446 struct x86_exception *exception,
6447 struct kvm_vcpu *vcpu,
6448 const struct read_write_emulator_ops *ops)
6449 {
6450 gpa_t gpa;
6451 int handled, ret;
6452 bool write = ops->write;
6453 struct kvm_mmio_fragment *frag;
6454 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6455
6456 /*
6457 * If the exit was due to a NPF we may already have a GPA.
6458 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6459 * Note, this cannot be used on string operations since string
6460 * operation using rep will only have the initial GPA from the NPF
6461 * occurred.
6462 */
6463 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6464 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6465 gpa = ctxt->gpa_val;
6466 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6467 } else {
6468 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6469 if (ret < 0)
6470 return X86EMUL_PROPAGATE_FAULT;
6471 }
6472
6473 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6474 return X86EMUL_CONTINUE;
6475
6476 /*
6477 * Is this MMIO handled locally?
6478 */
6479 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6480 if (handled == bytes)
6481 return X86EMUL_CONTINUE;
6482
6483 gpa += handled;
6484 bytes -= handled;
6485 val += handled;
6486
6487 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6488 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6489 frag->gpa = gpa;
6490 frag->data = val;
6491 frag->len = bytes;
6492 return X86EMUL_CONTINUE;
6493 }
6494
emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception, const struct read_write_emulator_ops *ops)6495 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6496 unsigned long addr,
6497 void *val, unsigned int bytes,
6498 struct x86_exception *exception,
6499 const struct read_write_emulator_ops *ops)
6500 {
6501 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6502 gpa_t gpa;
6503 int rc;
6504
6505 if (ops->read_write_prepare &&
6506 ops->read_write_prepare(vcpu, val, bytes))
6507 return X86EMUL_CONTINUE;
6508
6509 vcpu->mmio_nr_fragments = 0;
6510
6511 /* Crossing a page boundary? */
6512 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6513 int now;
6514
6515 now = -addr & ~PAGE_MASK;
6516 rc = emulator_read_write_onepage(addr, val, now, exception,
6517 vcpu, ops);
6518
6519 if (rc != X86EMUL_CONTINUE)
6520 return rc;
6521 addr += now;
6522 if (ctxt->mode != X86EMUL_MODE_PROT64)
6523 addr = (u32)addr;
6524 val += now;
6525 bytes -= now;
6526 }
6527
6528 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6529 vcpu, ops);
6530 if (rc != X86EMUL_CONTINUE)
6531 return rc;
6532
6533 if (!vcpu->mmio_nr_fragments)
6534 return rc;
6535
6536 gpa = vcpu->mmio_fragments[0].gpa;
6537
6538 vcpu->mmio_needed = 1;
6539 vcpu->mmio_cur_fragment = 0;
6540
6541 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6542 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6543 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6544 vcpu->run->mmio.phys_addr = gpa;
6545
6546 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6547 }
6548
emulator_read_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *val, unsigned int bytes, struct x86_exception *exception)6549 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6550 unsigned long addr,
6551 void *val,
6552 unsigned int bytes,
6553 struct x86_exception *exception)
6554 {
6555 return emulator_read_write(ctxt, addr, val, bytes,
6556 exception, &read_emultor);
6557 }
6558
emulator_write_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *val, unsigned int bytes, struct x86_exception *exception)6559 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6560 unsigned long addr,
6561 const void *val,
6562 unsigned int bytes,
6563 struct x86_exception *exception)
6564 {
6565 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6566 exception, &write_emultor);
6567 }
6568
6569 #define CMPXCHG_TYPE(t, ptr, old, new) \
6570 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6571
6572 #ifdef CONFIG_X86_64
6573 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6574 #else
6575 # define CMPXCHG64(ptr, old, new) \
6576 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6577 #endif
6578
emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, const void *old, const void *new, unsigned int bytes, struct x86_exception *exception)6579 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6580 unsigned long addr,
6581 const void *old,
6582 const void *new,
6583 unsigned int bytes,
6584 struct x86_exception *exception)
6585 {
6586 struct kvm_host_map map;
6587 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588 u64 page_line_mask;
6589 gpa_t gpa;
6590 char *kaddr;
6591 bool exchanged;
6592
6593 /* guests cmpxchg8b have to be emulated atomically */
6594 if (bytes > 8 || (bytes & (bytes - 1)))
6595 goto emul_write;
6596
6597 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6598
6599 if (gpa == UNMAPPED_GVA ||
6600 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6601 goto emul_write;
6602
6603 /*
6604 * Emulate the atomic as a straight write to avoid #AC if SLD is
6605 * enabled in the host and the access splits a cache line.
6606 */
6607 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6608 page_line_mask = ~(cache_line_size() - 1);
6609 else
6610 page_line_mask = PAGE_MASK;
6611
6612 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6613 goto emul_write;
6614
6615 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6616 goto emul_write;
6617
6618 kaddr = map.hva + offset_in_page(gpa);
6619
6620 switch (bytes) {
6621 case 1:
6622 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6623 break;
6624 case 2:
6625 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6626 break;
6627 case 4:
6628 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6629 break;
6630 case 8:
6631 exchanged = CMPXCHG64(kaddr, old, new);
6632 break;
6633 default:
6634 BUG();
6635 }
6636
6637 kvm_vcpu_unmap(vcpu, &map, true);
6638
6639 if (!exchanged)
6640 return X86EMUL_CMPXCHG_FAILED;
6641
6642 kvm_page_track_write(vcpu, gpa, new, bytes);
6643
6644 return X86EMUL_CONTINUE;
6645
6646 emul_write:
6647 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6648
6649 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6650 }
6651
kernel_pio(struct kvm_vcpu *vcpu, void *pd)6652 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6653 {
6654 int r = 0, i;
6655
6656 for (i = 0; i < vcpu->arch.pio.count; i++) {
6657 if (vcpu->arch.pio.in)
6658 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6659 vcpu->arch.pio.size, pd);
6660 else
6661 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6662 vcpu->arch.pio.port, vcpu->arch.pio.size,
6663 pd);
6664 if (r)
6665 break;
6666 pd += vcpu->arch.pio.size;
6667 }
6668 return r;
6669 }
6670
emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count, bool in)6671 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6672 unsigned short port, void *val,
6673 unsigned int count, bool in)
6674 {
6675 vcpu->arch.pio.port = port;
6676 vcpu->arch.pio.in = in;
6677 vcpu->arch.pio.count = count;
6678 vcpu->arch.pio.size = size;
6679
6680 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6681 vcpu->arch.pio.count = 0;
6682 return 1;
6683 }
6684
6685 vcpu->run->exit_reason = KVM_EXIT_IO;
6686 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6687 vcpu->run->io.size = size;
6688 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6689 vcpu->run->io.count = count;
6690 vcpu->run->io.port = port;
6691
6692 return 0;
6693 }
6694
emulator_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port, void *val, unsigned int count)6695 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6696 unsigned short port, void *val, unsigned int count)
6697 {
6698 int ret;
6699
6700 if (vcpu->arch.pio.count)
6701 goto data_avail;
6702
6703 memset(vcpu->arch.pio_data, 0, size * count);
6704
6705 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6706 if (ret) {
6707 data_avail:
6708 memcpy(val, vcpu->arch.pio_data, size * count);
6709 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6710 vcpu->arch.pio.count = 0;
6711 return 1;
6712 }
6713
6714 return 0;
6715 }
6716
emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, void *val, unsigned int count)6717 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6718 int size, unsigned short port, void *val,
6719 unsigned int count)
6720 {
6721 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6722
6723 }
6724
emulator_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port, const void *val, unsigned int count)6725 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6726 unsigned short port, const void *val,
6727 unsigned int count)
6728 {
6729 memcpy(vcpu->arch.pio_data, val, size * count);
6730 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6731 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6732 }
6733
emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, int size, unsigned short port, const void *val, unsigned int count)6734 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6735 int size, unsigned short port,
6736 const void *val, unsigned int count)
6737 {
6738 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6739 }
6740
get_segment_base(struct kvm_vcpu *vcpu, int seg)6741 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6742 {
6743 return kvm_x86_ops.get_segment_base(vcpu, seg);
6744 }
6745
emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)6746 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6747 {
6748 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6749 }
6750
kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)6751 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6752 {
6753 if (!need_emulate_wbinvd(vcpu))
6754 return X86EMUL_CONTINUE;
6755
6756 if (kvm_x86_ops.has_wbinvd_exit()) {
6757 int cpu = get_cpu();
6758
6759 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6760 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6761 wbinvd_ipi, NULL, 1);
6762 put_cpu();
6763 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6764 } else
6765 wbinvd();
6766 return X86EMUL_CONTINUE;
6767 }
6768
kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)6769 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6770 {
6771 kvm_emulate_wbinvd_noskip(vcpu);
6772 return kvm_skip_emulated_instruction(vcpu);
6773 }
6774 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6775
6776
6777
emulator_wbinvd(struct x86_emulate_ctxt *ctxt)6778 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6779 {
6780 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6781 }
6782
emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)6783 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6784 unsigned long *dest)
6785 {
6786 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6787 }
6788
emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)6789 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6790 unsigned long value)
6791 {
6792
6793 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6794 }
6795
mk_cr_64(u64 curr_cr, u32 new_val)6796 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6797 {
6798 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6799 }
6800
emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)6801 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6802 {
6803 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6804 unsigned long value;
6805
6806 switch (cr) {
6807 case 0:
6808 value = kvm_read_cr0(vcpu);
6809 break;
6810 case 2:
6811 value = vcpu->arch.cr2;
6812 break;
6813 case 3:
6814 value = kvm_read_cr3(vcpu);
6815 break;
6816 case 4:
6817 value = kvm_read_cr4(vcpu);
6818 break;
6819 case 8:
6820 value = kvm_get_cr8(vcpu);
6821 break;
6822 default:
6823 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6824 return 0;
6825 }
6826
6827 return value;
6828 }
6829
emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)6830 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6831 {
6832 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6833 int res = 0;
6834
6835 switch (cr) {
6836 case 0:
6837 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6838 break;
6839 case 2:
6840 vcpu->arch.cr2 = val;
6841 break;
6842 case 3:
6843 res = kvm_set_cr3(vcpu, val);
6844 break;
6845 case 4:
6846 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6847 break;
6848 case 8:
6849 res = kvm_set_cr8(vcpu, val);
6850 break;
6851 default:
6852 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6853 res = -1;
6854 }
6855
6856 return res;
6857 }
6858
emulator_get_cpl(struct x86_emulate_ctxt *ctxt)6859 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6860 {
6861 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6862 }
6863
emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6864 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6865 {
6866 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6867 }
6868
emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6869 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6870 {
6871 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6872 }
6873
emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6874 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6875 {
6876 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6877 }
6878
emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)6879 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6880 {
6881 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6882 }
6883
emulator_get_cached_segment_base( struct x86_emulate_ctxt *ctxt, int seg)6884 static unsigned long emulator_get_cached_segment_base(
6885 struct x86_emulate_ctxt *ctxt, int seg)
6886 {
6887 return get_segment_base(emul_to_vcpu(ctxt), seg);
6888 }
6889
emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, struct desc_struct *desc, u32 *base3, int seg)6890 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6891 struct desc_struct *desc, u32 *base3,
6892 int seg)
6893 {
6894 struct kvm_segment var;
6895
6896 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6897 *selector = var.selector;
6898
6899 if (var.unusable) {
6900 memset(desc, 0, sizeof(*desc));
6901 if (base3)
6902 *base3 = 0;
6903 return false;
6904 }
6905
6906 if (var.g)
6907 var.limit >>= 12;
6908 set_desc_limit(desc, var.limit);
6909 set_desc_base(desc, (unsigned long)var.base);
6910 #ifdef CONFIG_X86_64
6911 if (base3)
6912 *base3 = var.base >> 32;
6913 #endif
6914 desc->type = var.type;
6915 desc->s = var.s;
6916 desc->dpl = var.dpl;
6917 desc->p = var.present;
6918 desc->avl = var.avl;
6919 desc->l = var.l;
6920 desc->d = var.db;
6921 desc->g = var.g;
6922
6923 return true;
6924 }
6925
emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, u32 base3, int seg)6926 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6927 struct desc_struct *desc, u32 base3,
6928 int seg)
6929 {
6930 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6931 struct kvm_segment var;
6932
6933 var.selector = selector;
6934 var.base = get_desc_base(desc);
6935 #ifdef CONFIG_X86_64
6936 var.base |= ((u64)base3) << 32;
6937 #endif
6938 var.limit = get_desc_limit(desc);
6939 if (desc->g)
6940 var.limit = (var.limit << 12) | 0xfff;
6941 var.type = desc->type;
6942 var.dpl = desc->dpl;
6943 var.db = desc->d;
6944 var.s = desc->s;
6945 var.l = desc->l;
6946 var.g = desc->g;
6947 var.avl = desc->avl;
6948 var.present = desc->p;
6949 var.unusable = !var.present;
6950 var.padding = 0;
6951
6952 kvm_set_segment(vcpu, &var, seg);
6953 return;
6954 }
6955
emulator_get_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 *pdata)6956 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6957 u32 msr_index, u64 *pdata)
6958 {
6959 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6960 int r;
6961
6962 r = kvm_get_msr(vcpu, msr_index, pdata);
6963
6964 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6965 /* Bounce to user space */
6966 return X86EMUL_IO_NEEDED;
6967 }
6968
6969 return r;
6970 }
6971
emulator_set_msr(struct x86_emulate_ctxt *ctxt, u32 msr_index, u64 data)6972 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6973 u32 msr_index, u64 data)
6974 {
6975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6976 int r;
6977
6978 r = kvm_set_msr(vcpu, msr_index, data);
6979
6980 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6981 /* Bounce to user space */
6982 return X86EMUL_IO_NEEDED;
6983 }
6984
6985 return r;
6986 }
6987
emulator_get_smbase(struct x86_emulate_ctxt *ctxt)6988 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6989 {
6990 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6991
6992 return vcpu->arch.smbase;
6993 }
6994
emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)6995 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6996 {
6997 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6998
6999 vcpu->arch.smbase = smbase;
7000 }
7001
emulator_check_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc)7002 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7003 u32 pmc)
7004 {
7005 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7006 }
7007
emulator_read_pmc(struct x86_emulate_ctxt *ctxt, u32 pmc, u64 *pdata)7008 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7009 u32 pmc, u64 *pdata)
7010 {
7011 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7012 }
7013
emulator_halt(struct x86_emulate_ctxt *ctxt)7014 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7015 {
7016 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7017 }
7018
emulator_intercept(struct x86_emulate_ctxt *ctxt, struct x86_instruction_info *info, enum x86_intercept_stage stage)7019 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7020 struct x86_instruction_info *info,
7021 enum x86_intercept_stage stage)
7022 {
7023 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
7024 &ctxt->exception);
7025 }
7026
emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only)7027 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7028 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7029 bool exact_only)
7030 {
7031 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7032 }
7033
emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)7034 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7035 {
7036 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7037 }
7038
emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)7039 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7040 {
7041 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7042 }
7043
emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)7044 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7045 {
7046 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7047 }
7048
emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)7049 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7050 {
7051 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7052 }
7053
emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)7054 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7055 {
7056 return kvm_register_read(emul_to_vcpu(ctxt), reg);
7057 }
7058
emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)7059 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7060 {
7061 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7062 }
7063
emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)7064 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7065 {
7066 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7067 }
7068
emulator_get_hflags(struct x86_emulate_ctxt *ctxt)7069 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7070 {
7071 return emul_to_vcpu(ctxt)->arch.hflags;
7072 }
7073
emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)7074 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7075 {
7076 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7077
7078 vcpu->arch.hflags = emul_flags;
7079 kvm_mmu_reset_context(vcpu);
7080 }
7081
emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, const char *smstate)7082 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7083 const char *smstate)
7084 {
7085 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7086 }
7087
emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)7088 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7089 {
7090 kvm_smm_changed(emul_to_vcpu(ctxt));
7091 }
7092
emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)7093 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7094 {
7095 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7096 }
7097
7098 static const struct x86_emulate_ops emulate_ops = {
7099 .read_gpr = emulator_read_gpr,
7100 .write_gpr = emulator_write_gpr,
7101 .read_std = emulator_read_std,
7102 .write_std = emulator_write_std,
7103 .read_phys = kvm_read_guest_phys_system,
7104 .fetch = kvm_fetch_guest_virt,
7105 .read_emulated = emulator_read_emulated,
7106 .write_emulated = emulator_write_emulated,
7107 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7108 .invlpg = emulator_invlpg,
7109 .pio_in_emulated = emulator_pio_in_emulated,
7110 .pio_out_emulated = emulator_pio_out_emulated,
7111 .get_segment = emulator_get_segment,
7112 .set_segment = emulator_set_segment,
7113 .get_cached_segment_base = emulator_get_cached_segment_base,
7114 .get_gdt = emulator_get_gdt,
7115 .get_idt = emulator_get_idt,
7116 .set_gdt = emulator_set_gdt,
7117 .set_idt = emulator_set_idt,
7118 .get_cr = emulator_get_cr,
7119 .set_cr = emulator_set_cr,
7120 .cpl = emulator_get_cpl,
7121 .get_dr = emulator_get_dr,
7122 .set_dr = emulator_set_dr,
7123 .get_smbase = emulator_get_smbase,
7124 .set_smbase = emulator_set_smbase,
7125 .set_msr = emulator_set_msr,
7126 .get_msr = emulator_get_msr,
7127 .check_pmc = emulator_check_pmc,
7128 .read_pmc = emulator_read_pmc,
7129 .halt = emulator_halt,
7130 .wbinvd = emulator_wbinvd,
7131 .fix_hypercall = emulator_fix_hypercall,
7132 .intercept = emulator_intercept,
7133 .get_cpuid = emulator_get_cpuid,
7134 .guest_has_long_mode = emulator_guest_has_long_mode,
7135 .guest_has_movbe = emulator_guest_has_movbe,
7136 .guest_has_fxsr = emulator_guest_has_fxsr,
7137 .guest_has_rdpid = emulator_guest_has_rdpid,
7138 .set_nmi_mask = emulator_set_nmi_mask,
7139 .get_hflags = emulator_get_hflags,
7140 .set_hflags = emulator_set_hflags,
7141 .pre_leave_smm = emulator_pre_leave_smm,
7142 .post_leave_smm = emulator_post_leave_smm,
7143 .set_xcr = emulator_set_xcr,
7144 };
7145
toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)7146 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7147 {
7148 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7149 /*
7150 * an sti; sti; sequence only disable interrupts for the first
7151 * instruction. So, if the last instruction, be it emulated or
7152 * not, left the system with the INT_STI flag enabled, it
7153 * means that the last instruction is an sti. We should not
7154 * leave the flag on in this case. The same goes for mov ss
7155 */
7156 if (int_shadow & mask)
7157 mask = 0;
7158 if (unlikely(int_shadow || mask)) {
7159 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7160 if (!mask)
7161 kvm_make_request(KVM_REQ_EVENT, vcpu);
7162 }
7163 }
7164
inject_emulated_exception(struct kvm_vcpu *vcpu)7165 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7166 {
7167 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7168 if (ctxt->exception.vector == PF_VECTOR)
7169 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7170
7171 if (ctxt->exception.error_code_valid)
7172 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7173 ctxt->exception.error_code);
7174 else
7175 kvm_queue_exception(vcpu, ctxt->exception.vector);
7176 return false;
7177 }
7178
alloc_emulate_ctxt(struct kvm_vcpu *vcpu)7179 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7180 {
7181 struct x86_emulate_ctxt *ctxt;
7182
7183 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7184 if (!ctxt) {
7185 pr_err("kvm: failed to allocate vcpu's emulator\n");
7186 return NULL;
7187 }
7188
7189 ctxt->vcpu = vcpu;
7190 ctxt->ops = &emulate_ops;
7191 vcpu->arch.emulate_ctxt = ctxt;
7192
7193 return ctxt;
7194 }
7195
init_emulate_ctxt(struct kvm_vcpu *vcpu)7196 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7197 {
7198 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7199 int cs_db, cs_l;
7200
7201 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7202
7203 ctxt->gpa_available = false;
7204 ctxt->eflags = kvm_get_rflags(vcpu);
7205 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7206
7207 ctxt->eip = kvm_rip_read(vcpu);
7208 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7209 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7210 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7211 cs_db ? X86EMUL_MODE_PROT32 :
7212 X86EMUL_MODE_PROT16;
7213 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7214 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7215 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7216
7217 ctxt->interruptibility = 0;
7218 ctxt->have_exception = false;
7219 ctxt->exception.vector = -1;
7220 ctxt->perm_ok = false;
7221
7222 init_decode_cache(ctxt);
7223 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7224 }
7225
kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)7226 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7227 {
7228 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7229 int ret;
7230
7231 init_emulate_ctxt(vcpu);
7232
7233 ctxt->op_bytes = 2;
7234 ctxt->ad_bytes = 2;
7235 ctxt->_eip = ctxt->eip + inc_eip;
7236 ret = emulate_int_real(ctxt, irq);
7237
7238 if (ret != X86EMUL_CONTINUE) {
7239 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7240 } else {
7241 ctxt->eip = ctxt->_eip;
7242 kvm_rip_write(vcpu, ctxt->eip);
7243 kvm_set_rflags(vcpu, ctxt->eflags);
7244 }
7245 }
7246 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7247
handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)7248 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7249 {
7250 ++vcpu->stat.insn_emulation_fail;
7251 trace_kvm_emulate_insn_failed(vcpu);
7252
7253 if (emulation_type & EMULTYPE_VMWARE_GP) {
7254 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7255 return 1;
7256 }
7257
7258 if (emulation_type & EMULTYPE_SKIP) {
7259 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7260 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7261 vcpu->run->internal.ndata = 0;
7262 return 0;
7263 }
7264
7265 kvm_queue_exception(vcpu, UD_VECTOR);
7266
7267 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7268 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7269 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7270 vcpu->run->internal.ndata = 0;
7271 return 0;
7272 }
7273
7274 return 1;
7275 }
7276
reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, bool write_fault_to_shadow_pgtable, int emulation_type)7277 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7278 bool write_fault_to_shadow_pgtable,
7279 int emulation_type)
7280 {
7281 gpa_t gpa = cr2_or_gpa;
7282 kvm_pfn_t pfn;
7283
7284 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7285 return false;
7286
7287 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7288 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7289 return false;
7290
7291 if (!vcpu->arch.mmu->direct_map) {
7292 /*
7293 * Write permission should be allowed since only
7294 * write access need to be emulated.
7295 */
7296 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7297
7298 /*
7299 * If the mapping is invalid in guest, let cpu retry
7300 * it to generate fault.
7301 */
7302 if (gpa == UNMAPPED_GVA)
7303 return true;
7304 }
7305
7306 /*
7307 * Do not retry the unhandleable instruction if it faults on the
7308 * readonly host memory, otherwise it will goto a infinite loop:
7309 * retry instruction -> write #PF -> emulation fail -> retry
7310 * instruction -> ...
7311 */
7312 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7313
7314 /*
7315 * If the instruction failed on the error pfn, it can not be fixed,
7316 * report the error to userspace.
7317 */
7318 if (is_error_noslot_pfn(pfn))
7319 return false;
7320
7321 kvm_release_pfn_clean(pfn);
7322
7323 /* The instructions are well-emulated on direct mmu. */
7324 if (vcpu->arch.mmu->direct_map) {
7325 unsigned int indirect_shadow_pages;
7326
7327 spin_lock(&vcpu->kvm->mmu_lock);
7328 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7329 spin_unlock(&vcpu->kvm->mmu_lock);
7330
7331 if (indirect_shadow_pages)
7332 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7333
7334 return true;
7335 }
7336
7337 /*
7338 * if emulation was due to access to shadowed page table
7339 * and it failed try to unshadow page and re-enter the
7340 * guest to let CPU execute the instruction.
7341 */
7342 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7343
7344 /*
7345 * If the access faults on its page table, it can not
7346 * be fixed by unprotecting shadow page and it should
7347 * be reported to userspace.
7348 */
7349 return !write_fault_to_shadow_pgtable;
7350 }
7351
retry_instruction(struct x86_emulate_ctxt *ctxt, gpa_t cr2_or_gpa, int emulation_type)7352 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7353 gpa_t cr2_or_gpa, int emulation_type)
7354 {
7355 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7356 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7357
7358 last_retry_eip = vcpu->arch.last_retry_eip;
7359 last_retry_addr = vcpu->arch.last_retry_addr;
7360
7361 /*
7362 * If the emulation is caused by #PF and it is non-page_table
7363 * writing instruction, it means the VM-EXIT is caused by shadow
7364 * page protected, we can zap the shadow page and retry this
7365 * instruction directly.
7366 *
7367 * Note: if the guest uses a non-page-table modifying instruction
7368 * on the PDE that points to the instruction, then we will unmap
7369 * the instruction and go to an infinite loop. So, we cache the
7370 * last retried eip and the last fault address, if we meet the eip
7371 * and the address again, we can break out of the potential infinite
7372 * loop.
7373 */
7374 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7375
7376 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7377 return false;
7378
7379 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7380 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7381 return false;
7382
7383 if (x86_page_table_writing_insn(ctxt))
7384 return false;
7385
7386 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7387 return false;
7388
7389 vcpu->arch.last_retry_eip = ctxt->eip;
7390 vcpu->arch.last_retry_addr = cr2_or_gpa;
7391
7392 if (!vcpu->arch.mmu->direct_map)
7393 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7394
7395 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7396
7397 return true;
7398 }
7399
7400 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7401 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7402
kvm_smm_changed(struct kvm_vcpu *vcpu)7403 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7404 {
7405 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7406 /* This is a good place to trace that we are exiting SMM. */
7407 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7408
7409 /* Process a latched INIT or SMI, if any. */
7410 kvm_make_request(KVM_REQ_EVENT, vcpu);
7411 }
7412
7413 kvm_mmu_reset_context(vcpu);
7414 }
7415
kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, unsigned long *db)7416 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7417 unsigned long *db)
7418 {
7419 u32 dr6 = 0;
7420 int i;
7421 u32 enable, rwlen;
7422
7423 enable = dr7;
7424 rwlen = dr7 >> 16;
7425 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7426 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7427 dr6 |= (1 << i);
7428 return dr6;
7429 }
7430
kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)7431 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7432 {
7433 struct kvm_run *kvm_run = vcpu->run;
7434
7435 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7436 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7437 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7438 kvm_run->debug.arch.exception = DB_VECTOR;
7439 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7440 return 0;
7441 }
7442 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7443 return 1;
7444 }
7445
kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)7446 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7447 {
7448 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7449 int r;
7450
7451 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7452 if (unlikely(!r))
7453 return 0;
7454
7455 /*
7456 * rflags is the old, "raw" value of the flags. The new value has
7457 * not been saved yet.
7458 *
7459 * This is correct even for TF set by the guest, because "the
7460 * processor will not generate this exception after the instruction
7461 * that sets the TF flag".
7462 */
7463 if (unlikely(rflags & X86_EFLAGS_TF))
7464 r = kvm_vcpu_do_singlestep(vcpu);
7465 return r;
7466 }
7467 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7468
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)7469 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7470 {
7471 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7472 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7473 struct kvm_run *kvm_run = vcpu->run;
7474 unsigned long eip = kvm_get_linear_rip(vcpu);
7475 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7476 vcpu->arch.guest_debug_dr7,
7477 vcpu->arch.eff_db);
7478
7479 if (dr6 != 0) {
7480 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7481 kvm_run->debug.arch.pc = eip;
7482 kvm_run->debug.arch.exception = DB_VECTOR;
7483 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7484 *r = 0;
7485 return true;
7486 }
7487 }
7488
7489 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7490 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7491 unsigned long eip = kvm_get_linear_rip(vcpu);
7492 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7493 vcpu->arch.dr7,
7494 vcpu->arch.db);
7495
7496 if (dr6 != 0) {
7497 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7498 *r = 1;
7499 return true;
7500 }
7501 }
7502
7503 return false;
7504 }
7505
is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)7506 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7507 {
7508 switch (ctxt->opcode_len) {
7509 case 1:
7510 switch (ctxt->b) {
7511 case 0xe4: /* IN */
7512 case 0xe5:
7513 case 0xec:
7514 case 0xed:
7515 case 0xe6: /* OUT */
7516 case 0xe7:
7517 case 0xee:
7518 case 0xef:
7519 case 0x6c: /* INS */
7520 case 0x6d:
7521 case 0x6e: /* OUTS */
7522 case 0x6f:
7523 return true;
7524 }
7525 break;
7526 case 2:
7527 switch (ctxt->b) {
7528 case 0x33: /* RDPMC */
7529 return true;
7530 }
7531 break;
7532 }
7533
7534 return false;
7535 }
7536
7537 /*
7538 * Decode an instruction for emulation. The caller is responsible for handling
7539 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
7540 * (and wrong) when emulating on an intercepted fault-like exception[*], as
7541 * code breakpoints have higher priority and thus have already been done by
7542 * hardware.
7543 *
7544 * [*] Except #MC, which is higher priority, but KVM should never emulate in
7545 * response to a machine check.
7546 */
x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, void *insn, int insn_len)7547 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7548 void *insn, int insn_len)
7549 {
7550 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7551 int r;
7552
7553 init_emulate_ctxt(vcpu);
7554
7555 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7556
7557 r = x86_decode_insn(ctxt, insn, insn_len);
7558
7559 trace_kvm_emulate_insn_start(vcpu);
7560 ++vcpu->stat.insn_emulation;
7561
7562 return r;
7563 }
7564 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7565
x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int emulation_type, void *insn, int insn_len)7566 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7567 int emulation_type, void *insn, int insn_len)
7568 {
7569 int r;
7570 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7571 bool writeback = true;
7572 bool write_fault_to_spt;
7573
7574 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7575 return 1;
7576
7577 vcpu->arch.l1tf_flush_l1d = true;
7578
7579 /*
7580 * Clear write_fault_to_shadow_pgtable here to ensure it is
7581 * never reused.
7582 */
7583 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7584 vcpu->arch.write_fault_to_shadow_pgtable = false;
7585
7586 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7587 kvm_clear_exception_queue(vcpu);
7588
7589 /*
7590 * Return immediately if RIP hits a code breakpoint, such #DBs
7591 * are fault-like and are higher priority than any faults on
7592 * the code fetch itself.
7593 */
7594 if (!(emulation_type & EMULTYPE_SKIP) &&
7595 kvm_vcpu_check_code_breakpoint(vcpu, &r))
7596 return r;
7597
7598 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7599 insn, insn_len);
7600 if (r != EMULATION_OK) {
7601 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7602 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7603 kvm_queue_exception(vcpu, UD_VECTOR);
7604 return 1;
7605 }
7606 if (reexecute_instruction(vcpu, cr2_or_gpa,
7607 write_fault_to_spt,
7608 emulation_type))
7609 return 1;
7610
7611 if (ctxt->have_exception &&
7612 !(emulation_type & EMULTYPE_SKIP)) {
7613 /*
7614 * #UD should result in just EMULATION_FAILED, and trap-like
7615 * exception should not be encountered during decode.
7616 */
7617 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7618 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7619 inject_emulated_exception(vcpu);
7620 return 1;
7621 }
7622 return handle_emulation_failure(vcpu, emulation_type);
7623 }
7624 }
7625
7626 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7627 !is_vmware_backdoor_opcode(ctxt)) {
7628 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7629 return 1;
7630 }
7631
7632 /*
7633 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7634 * for kvm_skip_emulated_instruction(). The caller is responsible for
7635 * updating interruptibility state and injecting single-step #DBs.
7636 */
7637 if (emulation_type & EMULTYPE_SKIP) {
7638 kvm_rip_write(vcpu, ctxt->_eip);
7639 if (ctxt->eflags & X86_EFLAGS_RF)
7640 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7641 return 1;
7642 }
7643
7644 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7645 return 1;
7646
7647 /* this is needed for vmware backdoor interface to work since it
7648 changes registers values during IO operation */
7649 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7650 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7651 emulator_invalidate_register_cache(ctxt);
7652 }
7653
7654 restart:
7655 if (emulation_type & EMULTYPE_PF) {
7656 /* Save the faulting GPA (cr2) in the address field */
7657 ctxt->exception.address = cr2_or_gpa;
7658
7659 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7660 if (vcpu->arch.mmu->direct_map) {
7661 ctxt->gpa_available = true;
7662 ctxt->gpa_val = cr2_or_gpa;
7663 }
7664 } else {
7665 /* Sanitize the address out of an abundance of paranoia. */
7666 ctxt->exception.address = 0;
7667 }
7668
7669 r = x86_emulate_insn(ctxt);
7670
7671 if (r == EMULATION_INTERCEPTED)
7672 return 1;
7673
7674 if (r == EMULATION_FAILED) {
7675 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7676 emulation_type))
7677 return 1;
7678
7679 return handle_emulation_failure(vcpu, emulation_type);
7680 }
7681
7682 if (ctxt->have_exception) {
7683 r = 1;
7684 if (inject_emulated_exception(vcpu))
7685 return r;
7686 } else if (vcpu->arch.pio.count) {
7687 if (!vcpu->arch.pio.in) {
7688 /* FIXME: return into emulator if single-stepping. */
7689 vcpu->arch.pio.count = 0;
7690 } else {
7691 writeback = false;
7692 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7693 }
7694 r = 0;
7695 } else if (vcpu->mmio_needed) {
7696 ++vcpu->stat.mmio_exits;
7697
7698 if (!vcpu->mmio_is_write)
7699 writeback = false;
7700 r = 0;
7701 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7702 } else if (r == EMULATION_RESTART)
7703 goto restart;
7704 else
7705 r = 1;
7706
7707 if (writeback) {
7708 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7709 toggle_interruptibility(vcpu, ctxt->interruptibility);
7710 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7711
7712 /*
7713 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7714 * only supports code breakpoints and general detect #DB, both
7715 * of which are fault-like.
7716 */
7717 if (!ctxt->have_exception ||
7718 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7719 kvm_rip_write(vcpu, ctxt->eip);
7720 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7721 r = kvm_vcpu_do_singlestep(vcpu);
7722 if (kvm_x86_ops.update_emulated_instruction)
7723 kvm_x86_ops.update_emulated_instruction(vcpu);
7724 __kvm_set_rflags(vcpu, ctxt->eflags);
7725 }
7726
7727 /*
7728 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7729 * do nothing, and it will be requested again as soon as
7730 * the shadow expires. But we still need to check here,
7731 * because POPF has no interrupt shadow.
7732 */
7733 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7734 kvm_make_request(KVM_REQ_EVENT, vcpu);
7735 } else
7736 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7737
7738 return r;
7739 }
7740
kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)7741 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7742 {
7743 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7744 }
7745 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7746
kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, void *insn, int insn_len)7747 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7748 void *insn, int insn_len)
7749 {
7750 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7751 }
7752 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7753
complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)7754 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7755 {
7756 vcpu->arch.pio.count = 0;
7757 return 1;
7758 }
7759
complete_fast_pio_out(struct kvm_vcpu *vcpu)7760 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7761 {
7762 vcpu->arch.pio.count = 0;
7763
7764 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7765 return 1;
7766
7767 return kvm_skip_emulated_instruction(vcpu);
7768 }
7769
kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)7770 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7771 unsigned short port)
7772 {
7773 unsigned long val = kvm_rax_read(vcpu);
7774 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7775
7776 if (ret)
7777 return ret;
7778
7779 /*
7780 * Workaround userspace that relies on old KVM behavior of %rip being
7781 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7782 */
7783 if (port == 0x7e &&
7784 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7785 vcpu->arch.complete_userspace_io =
7786 complete_fast_pio_out_port_0x7e;
7787 kvm_skip_emulated_instruction(vcpu);
7788 } else {
7789 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7790 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7791 }
7792 return 0;
7793 }
7794
complete_fast_pio_in(struct kvm_vcpu *vcpu)7795 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7796 {
7797 unsigned long val;
7798
7799 /* We should only ever be called with arch.pio.count equal to 1 */
7800 BUG_ON(vcpu->arch.pio.count != 1);
7801
7802 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7803 vcpu->arch.pio.count = 0;
7804 return 1;
7805 }
7806
7807 /* For size less than 4 we merge, else we zero extend */
7808 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7809
7810 /*
7811 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7812 * the copy and tracing
7813 */
7814 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7815 kvm_rax_write(vcpu, val);
7816
7817 return kvm_skip_emulated_instruction(vcpu);
7818 }
7819
kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)7820 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7821 unsigned short port)
7822 {
7823 unsigned long val;
7824 int ret;
7825
7826 /* For size less than 4 we merge, else we zero extend */
7827 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7828
7829 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7830 if (ret) {
7831 kvm_rax_write(vcpu, val);
7832 return ret;
7833 }
7834
7835 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7836 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7837
7838 return 0;
7839 }
7840
kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)7841 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7842 {
7843 int ret;
7844
7845 if (in)
7846 ret = kvm_fast_pio_in(vcpu, size, port);
7847 else
7848 ret = kvm_fast_pio_out(vcpu, size, port);
7849 return ret && kvm_skip_emulated_instruction(vcpu);
7850 }
7851 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7852
kvmclock_cpu_down_prep(unsigned int cpu)7853 static int kvmclock_cpu_down_prep(unsigned int cpu)
7854 {
7855 __this_cpu_write(cpu_tsc_khz, 0);
7856 return 0;
7857 }
7858
tsc_khz_changed(void *data)7859 static void tsc_khz_changed(void *data)
7860 {
7861 struct cpufreq_freqs *freq = data;
7862 unsigned long khz = 0;
7863
7864 if (data)
7865 khz = freq->new;
7866 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7867 khz = cpufreq_quick_get(raw_smp_processor_id());
7868 if (!khz)
7869 khz = tsc_khz;
7870 __this_cpu_write(cpu_tsc_khz, khz);
7871 }
7872
7873 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7874 static void kvm_hyperv_tsc_notifier(void)
7875 {
7876 struct kvm *kvm;
7877 struct kvm_vcpu *vcpu;
7878 int cpu;
7879
7880 mutex_lock(&kvm_lock);
7881 list_for_each_entry(kvm, &vm_list, vm_list)
7882 kvm_make_mclock_inprogress_request(kvm);
7883
7884 hyperv_stop_tsc_emulation();
7885
7886 /* TSC frequency always matches when on Hyper-V */
7887 for_each_present_cpu(cpu)
7888 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7889 kvm_max_guest_tsc_khz = tsc_khz;
7890
7891 list_for_each_entry(kvm, &vm_list, vm_list) {
7892 struct kvm_arch *ka = &kvm->arch;
7893
7894 spin_lock(&ka->pvclock_gtod_sync_lock);
7895
7896 pvclock_update_vm_gtod_copy(kvm);
7897
7898 kvm_for_each_vcpu(cpu, vcpu, kvm)
7899 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7900
7901 kvm_for_each_vcpu(cpu, vcpu, kvm)
7902 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7903
7904 spin_unlock(&ka->pvclock_gtod_sync_lock);
7905 }
7906 mutex_unlock(&kvm_lock);
7907 }
7908 #endif
7909
__kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)7910 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7911 {
7912 struct kvm *kvm;
7913 struct kvm_vcpu *vcpu;
7914 int i, send_ipi = 0;
7915
7916 /*
7917 * We allow guests to temporarily run on slowing clocks,
7918 * provided we notify them after, or to run on accelerating
7919 * clocks, provided we notify them before. Thus time never
7920 * goes backwards.
7921 *
7922 * However, we have a problem. We can't atomically update
7923 * the frequency of a given CPU from this function; it is
7924 * merely a notifier, which can be called from any CPU.
7925 * Changing the TSC frequency at arbitrary points in time
7926 * requires a recomputation of local variables related to
7927 * the TSC for each VCPU. We must flag these local variables
7928 * to be updated and be sure the update takes place with the
7929 * new frequency before any guests proceed.
7930 *
7931 * Unfortunately, the combination of hotplug CPU and frequency
7932 * change creates an intractable locking scenario; the order
7933 * of when these callouts happen is undefined with respect to
7934 * CPU hotplug, and they can race with each other. As such,
7935 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7936 * undefined; you can actually have a CPU frequency change take
7937 * place in between the computation of X and the setting of the
7938 * variable. To protect against this problem, all updates of
7939 * the per_cpu tsc_khz variable are done in an interrupt
7940 * protected IPI, and all callers wishing to update the value
7941 * must wait for a synchronous IPI to complete (which is trivial
7942 * if the caller is on the CPU already). This establishes the
7943 * necessary total order on variable updates.
7944 *
7945 * Note that because a guest time update may take place
7946 * anytime after the setting of the VCPU's request bit, the
7947 * correct TSC value must be set before the request. However,
7948 * to ensure the update actually makes it to any guest which
7949 * starts running in hardware virtualization between the set
7950 * and the acquisition of the spinlock, we must also ping the
7951 * CPU after setting the request bit.
7952 *
7953 */
7954
7955 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7956
7957 mutex_lock(&kvm_lock);
7958 list_for_each_entry(kvm, &vm_list, vm_list) {
7959 kvm_for_each_vcpu(i, vcpu, kvm) {
7960 if (vcpu->cpu != cpu)
7961 continue;
7962 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7963 if (vcpu->cpu != raw_smp_processor_id())
7964 send_ipi = 1;
7965 }
7966 }
7967 mutex_unlock(&kvm_lock);
7968
7969 if (freq->old < freq->new && send_ipi) {
7970 /*
7971 * We upscale the frequency. Must make the guest
7972 * doesn't see old kvmclock values while running with
7973 * the new frequency, otherwise we risk the guest sees
7974 * time go backwards.
7975 *
7976 * In case we update the frequency for another cpu
7977 * (which might be in guest context) send an interrupt
7978 * to kick the cpu out of guest context. Next time
7979 * guest context is entered kvmclock will be updated,
7980 * so the guest will not see stale values.
7981 */
7982 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7983 }
7984 }
7985
kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)7986 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7987 void *data)
7988 {
7989 struct cpufreq_freqs *freq = data;
7990 int cpu;
7991
7992 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7993 return 0;
7994 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7995 return 0;
7996
7997 for_each_cpu(cpu, freq->policy->cpus)
7998 __kvmclock_cpufreq_notifier(freq, cpu);
7999
8000 return 0;
8001 }
8002
8003 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8004 .notifier_call = kvmclock_cpufreq_notifier
8005 };
8006
kvmclock_cpu_online(unsigned int cpu)8007 static int kvmclock_cpu_online(unsigned int cpu)
8008 {
8009 tsc_khz_changed(NULL);
8010 return 0;
8011 }
8012
kvm_timer_init(void)8013 static void kvm_timer_init(void)
8014 {
8015 max_tsc_khz = tsc_khz;
8016
8017 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8018 #ifdef CONFIG_CPU_FREQ
8019 struct cpufreq_policy *policy;
8020 int cpu;
8021
8022 cpu = get_cpu();
8023 policy = cpufreq_cpu_get(cpu);
8024 if (policy) {
8025 if (policy->cpuinfo.max_freq)
8026 max_tsc_khz = policy->cpuinfo.max_freq;
8027 cpufreq_cpu_put(policy);
8028 }
8029 put_cpu();
8030 #endif
8031 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8032 CPUFREQ_TRANSITION_NOTIFIER);
8033 }
8034
8035 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8036 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8037 }
8038
8039 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8040 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8041
kvm_is_in_guest(void)8042 int kvm_is_in_guest(void)
8043 {
8044 return __this_cpu_read(current_vcpu) != NULL;
8045 }
8046
kvm_is_user_mode(void)8047 static int kvm_is_user_mode(void)
8048 {
8049 int user_mode = 3;
8050
8051 if (__this_cpu_read(current_vcpu))
8052 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
8053
8054 return user_mode != 0;
8055 }
8056
kvm_get_guest_ip(void)8057 static unsigned long kvm_get_guest_ip(void)
8058 {
8059 unsigned long ip = 0;
8060
8061 if (__this_cpu_read(current_vcpu))
8062 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8063
8064 return ip;
8065 }
8066
kvm_handle_intel_pt_intr(void)8067 static void kvm_handle_intel_pt_intr(void)
8068 {
8069 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8070
8071 kvm_make_request(KVM_REQ_PMI, vcpu);
8072 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8073 (unsigned long *)&vcpu->arch.pmu.global_status);
8074 }
8075
8076 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8077 .is_in_guest = kvm_is_in_guest,
8078 .is_user_mode = kvm_is_user_mode,
8079 .get_guest_ip = kvm_get_guest_ip,
8080 .handle_intel_pt_intr = NULL,
8081 };
8082
8083 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct *work)8084 static void pvclock_gtod_update_fn(struct work_struct *work)
8085 {
8086 struct kvm *kvm;
8087
8088 struct kvm_vcpu *vcpu;
8089 int i;
8090
8091 mutex_lock(&kvm_lock);
8092 list_for_each_entry(kvm, &vm_list, vm_list)
8093 kvm_for_each_vcpu(i, vcpu, kvm)
8094 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8095 atomic_set(&kvm_guest_has_master_clock, 0);
8096 mutex_unlock(&kvm_lock);
8097 }
8098
8099 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8100
8101 /*
8102 * Indirection to move queue_work() out of the tk_core.seq write held
8103 * region to prevent possible deadlocks against time accessors which
8104 * are invoked with work related locks held.
8105 */
pvclock_irq_work_fn(struct irq_work *w)8106 static void pvclock_irq_work_fn(struct irq_work *w)
8107 {
8108 queue_work(system_long_wq, &pvclock_gtod_work);
8109 }
8110
8111 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8112
8113 /*
8114 * Notification about pvclock gtod data update.
8115 */
pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, void *priv)8116 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8117 void *priv)
8118 {
8119 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8120 struct timekeeper *tk = priv;
8121
8122 update_pvclock_gtod(tk);
8123
8124 /*
8125 * Disable master clock if host does not trust, or does not use,
8126 * TSC based clocksource. Delegate queue_work() to irq_work as
8127 * this is invoked with tk_core.seq write held.
8128 */
8129 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8130 atomic_read(&kvm_guest_has_master_clock) != 0)
8131 irq_work_queue(&pvclock_irq_work);
8132 return 0;
8133 }
8134
8135 static struct notifier_block pvclock_gtod_notifier = {
8136 .notifier_call = pvclock_gtod_notify,
8137 };
8138 #endif
8139
kvm_arch_init(void *opaque)8140 int kvm_arch_init(void *opaque)
8141 {
8142 struct kvm_x86_init_ops *ops = opaque;
8143 int r;
8144
8145 if (kvm_x86_ops.hardware_enable) {
8146 printk(KERN_ERR "kvm: already loaded the other module\n");
8147 r = -EEXIST;
8148 goto out;
8149 }
8150
8151 if (!ops->cpu_has_kvm_support()) {
8152 pr_err_ratelimited("kvm: no hardware support\n");
8153 r = -EOPNOTSUPP;
8154 goto out;
8155 }
8156 if (ops->disabled_by_bios()) {
8157 pr_err_ratelimited("kvm: disabled by bios\n");
8158 r = -EOPNOTSUPP;
8159 goto out;
8160 }
8161
8162 /*
8163 * KVM explicitly assumes that the guest has an FPU and
8164 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8165 * vCPU's FPU state as a fxregs_state struct.
8166 */
8167 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8168 printk(KERN_ERR "kvm: inadequate fpu\n");
8169 r = -EOPNOTSUPP;
8170 goto out;
8171 }
8172
8173 r = -ENOMEM;
8174 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8175 __alignof__(struct fpu), SLAB_ACCOUNT,
8176 NULL);
8177 if (!x86_fpu_cache) {
8178 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8179 goto out;
8180 }
8181
8182 x86_emulator_cache = kvm_alloc_emulator_cache();
8183 if (!x86_emulator_cache) {
8184 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8185 goto out_free_x86_fpu_cache;
8186 }
8187
8188 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8189 if (!user_return_msrs) {
8190 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8191 goto out_free_x86_emulator_cache;
8192 }
8193
8194 r = kvm_mmu_vendor_module_init();
8195 if (r)
8196 goto out_free_percpu;
8197
8198 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8199 PT_DIRTY_MASK, PT64_NX_MASK, 0,
8200 PT_PRESENT_MASK, 0, sme_me_mask);
8201 kvm_timer_init();
8202
8203 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8204 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8205 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8206
8207 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8208 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8209 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8210 }
8211
8212 kvm_lapic_init();
8213 if (pi_inject_timer == -1)
8214 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8215 #ifdef CONFIG_X86_64
8216 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8217
8218 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8219 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8220 #endif
8221
8222 return 0;
8223
8224 out_free_percpu:
8225 free_percpu(user_return_msrs);
8226 out_free_x86_emulator_cache:
8227 kmem_cache_destroy(x86_emulator_cache);
8228 out_free_x86_fpu_cache:
8229 kmem_cache_destroy(x86_fpu_cache);
8230 out:
8231 return r;
8232 }
8233
kvm_arch_exit(void)8234 void kvm_arch_exit(void)
8235 {
8236 #ifdef CONFIG_X86_64
8237 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8238 clear_hv_tscchange_cb();
8239 #endif
8240 kvm_lapic_exit();
8241 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8242 kvm_guest_cbs.handle_intel_pt_intr = NULL;
8243
8244 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8245 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8246 CPUFREQ_TRANSITION_NOTIFIER);
8247 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8248 #ifdef CONFIG_X86_64
8249 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8250 irq_work_sync(&pvclock_irq_work);
8251 cancel_work_sync(&pvclock_gtod_work);
8252 #endif
8253 kvm_x86_ops.hardware_enable = NULL;
8254 kvm_mmu_vendor_module_exit();
8255 free_percpu(user_return_msrs);
8256 kmem_cache_destroy(x86_emulator_cache);
8257 kmem_cache_destroy(x86_fpu_cache);
8258 }
8259
kvm_vcpu_halt(struct kvm_vcpu *vcpu)8260 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8261 {
8262 ++vcpu->stat.halt_exits;
8263 if (lapic_in_kernel(vcpu)) {
8264 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8265 return 1;
8266 } else {
8267 vcpu->run->exit_reason = KVM_EXIT_HLT;
8268 return 0;
8269 }
8270 }
8271 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8272
kvm_emulate_halt(struct kvm_vcpu *vcpu)8273 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8274 {
8275 int ret = kvm_skip_emulated_instruction(vcpu);
8276 /*
8277 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8278 * KVM_EXIT_DEBUG here.
8279 */
8280 return kvm_vcpu_halt(vcpu) && ret;
8281 }
8282 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8283
8284 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, unsigned long clock_type)8285 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8286 unsigned long clock_type)
8287 {
8288 struct kvm_clock_pairing clock_pairing;
8289 struct timespec64 ts;
8290 u64 cycle;
8291 int ret;
8292
8293 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8294 return -KVM_EOPNOTSUPP;
8295
8296 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8297 return -KVM_EOPNOTSUPP;
8298
8299 clock_pairing.sec = ts.tv_sec;
8300 clock_pairing.nsec = ts.tv_nsec;
8301 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8302 clock_pairing.flags = 0;
8303 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8304
8305 ret = 0;
8306 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8307 sizeof(struct kvm_clock_pairing)))
8308 ret = -KVM_EFAULT;
8309
8310 return ret;
8311 }
8312 #endif
8313
8314 /*
8315 * kvm_pv_kick_cpu_op: Kick a vcpu.
8316 *
8317 * @apicid - apicid of vcpu to be kicked.
8318 */
kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)8319 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8320 {
8321 /*
8322 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8323 * common code, e.g. for tracing. Defer initialization to the compiler.
8324 */
8325 struct kvm_lapic_irq lapic_irq = {
8326 .delivery_mode = APIC_DM_REMRD,
8327 .dest_mode = APIC_DEST_PHYSICAL,
8328 .shorthand = APIC_DEST_NOSHORT,
8329 .dest_id = apicid,
8330 };
8331
8332 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8333 }
8334
kvm_apicv_activated(struct kvm *kvm)8335 bool kvm_apicv_activated(struct kvm *kvm)
8336 {
8337 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8338 }
8339 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8340
kvm_apicv_init(struct kvm *kvm, bool enable)8341 void kvm_apicv_init(struct kvm *kvm, bool enable)
8342 {
8343 if (enable)
8344 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8345 &kvm->arch.apicv_inhibit_reasons);
8346 else
8347 set_bit(APICV_INHIBIT_REASON_DISABLE,
8348 &kvm->arch.apicv_inhibit_reasons);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8351
kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)8352 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8353 {
8354 struct kvm_vcpu *target = NULL;
8355 struct kvm_apic_map *map;
8356
8357 rcu_read_lock();
8358 map = rcu_dereference(kvm->arch.apic_map);
8359
8360 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8361 target = map->phys_map[dest_id]->vcpu;
8362
8363 rcu_read_unlock();
8364
8365 if (target && READ_ONCE(target->ready))
8366 kvm_vcpu_yield_to(target);
8367 }
8368
kvm_emulate_hypercall(struct kvm_vcpu *vcpu)8369 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8370 {
8371 unsigned long nr, a0, a1, a2, a3, ret;
8372 int op_64_bit;
8373
8374 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8375 return kvm_hv_hypercall(vcpu);
8376
8377 nr = kvm_rax_read(vcpu);
8378 a0 = kvm_rbx_read(vcpu);
8379 a1 = kvm_rcx_read(vcpu);
8380 a2 = kvm_rdx_read(vcpu);
8381 a3 = kvm_rsi_read(vcpu);
8382
8383 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8384
8385 op_64_bit = is_64_bit_mode(vcpu);
8386 if (!op_64_bit) {
8387 nr &= 0xFFFFFFFF;
8388 a0 &= 0xFFFFFFFF;
8389 a1 &= 0xFFFFFFFF;
8390 a2 &= 0xFFFFFFFF;
8391 a3 &= 0xFFFFFFFF;
8392 }
8393
8394 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8395 ret = -KVM_EPERM;
8396 goto out;
8397 }
8398
8399 ret = -KVM_ENOSYS;
8400
8401 switch (nr) {
8402 case KVM_HC_VAPIC_POLL_IRQ:
8403 ret = 0;
8404 break;
8405 case KVM_HC_KICK_CPU:
8406 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8407 break;
8408
8409 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8410 kvm_sched_yield(vcpu->kvm, a1);
8411 ret = 0;
8412 break;
8413 #ifdef CONFIG_X86_64
8414 case KVM_HC_CLOCK_PAIRING:
8415 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8416 break;
8417 #endif
8418 case KVM_HC_SEND_IPI:
8419 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8420 break;
8421
8422 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8423 break;
8424 case KVM_HC_SCHED_YIELD:
8425 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8426 break;
8427
8428 kvm_sched_yield(vcpu->kvm, a0);
8429 ret = 0;
8430 break;
8431 default:
8432 ret = -KVM_ENOSYS;
8433 break;
8434 }
8435 out:
8436 if (!op_64_bit)
8437 ret = (u32)ret;
8438 kvm_rax_write(vcpu, ret);
8439
8440 ++vcpu->stat.hypercalls;
8441 return kvm_skip_emulated_instruction(vcpu);
8442 }
8443 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8444
emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)8445 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8446 {
8447 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8448 char instruction[3];
8449 unsigned long rip = kvm_rip_read(vcpu);
8450
8451 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8452
8453 return emulator_write_emulated(ctxt, rip, instruction, 3,
8454 &ctxt->exception);
8455 }
8456
dm_request_for_irq_injection(struct kvm_vcpu *vcpu)8457 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8458 {
8459 return vcpu->run->request_interrupt_window &&
8460 likely(!pic_in_kernel(vcpu->kvm));
8461 }
8462
post_kvm_run_save(struct kvm_vcpu *vcpu)8463 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8464 {
8465 struct kvm_run *kvm_run = vcpu->run;
8466
8467 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8468 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8469 kvm_run->cr8 = kvm_get_cr8(vcpu);
8470 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8471 kvm_run->ready_for_interrupt_injection =
8472 pic_in_kernel(vcpu->kvm) ||
8473 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8474 }
8475
update_cr8_intercept(struct kvm_vcpu *vcpu)8476 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8477 {
8478 int max_irr, tpr;
8479
8480 if (!kvm_x86_ops.update_cr8_intercept)
8481 return;
8482
8483 if (!lapic_in_kernel(vcpu))
8484 return;
8485
8486 if (vcpu->arch.apicv_active)
8487 return;
8488
8489 if (!vcpu->arch.apic->vapic_addr)
8490 max_irr = kvm_lapic_find_highest_irr(vcpu);
8491 else
8492 max_irr = -1;
8493
8494 if (max_irr != -1)
8495 max_irr >>= 4;
8496
8497 tpr = kvm_lapic_get_cr8(vcpu);
8498
8499 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8500 }
8501
kvm_inject_exception(struct kvm_vcpu *vcpu)8502 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8503 {
8504 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8505 vcpu->arch.exception.has_error_code,
8506 vcpu->arch.exception.error_code,
8507 vcpu->arch.exception.injected);
8508
8509 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8510 vcpu->arch.exception.error_code = false;
8511 kvm_x86_ops.queue_exception(vcpu);
8512 }
8513
inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)8514 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8515 {
8516 int r;
8517 bool can_inject = true;
8518
8519 /* try to reinject previous events if any */
8520
8521 if (vcpu->arch.exception.injected) {
8522 kvm_inject_exception(vcpu);
8523 can_inject = false;
8524 }
8525 /*
8526 * Do not inject an NMI or interrupt if there is a pending
8527 * exception. Exceptions and interrupts are recognized at
8528 * instruction boundaries, i.e. the start of an instruction.
8529 * Trap-like exceptions, e.g. #DB, have higher priority than
8530 * NMIs and interrupts, i.e. traps are recognized before an
8531 * NMI/interrupt that's pending on the same instruction.
8532 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8533 * priority, but are only generated (pended) during instruction
8534 * execution, i.e. a pending fault-like exception means the
8535 * fault occurred on the *previous* instruction and must be
8536 * serviced prior to recognizing any new events in order to
8537 * fully complete the previous instruction.
8538 */
8539 else if (!vcpu->arch.exception.pending) {
8540 if (vcpu->arch.nmi_injected) {
8541 kvm_x86_ops.set_nmi(vcpu);
8542 can_inject = false;
8543 } else if (vcpu->arch.interrupt.injected) {
8544 kvm_x86_ops.set_irq(vcpu);
8545 can_inject = false;
8546 }
8547 }
8548
8549 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8550 vcpu->arch.exception.pending);
8551
8552 /*
8553 * Call check_nested_events() even if we reinjected a previous event
8554 * in order for caller to determine if it should require immediate-exit
8555 * from L2 to L1 due to pending L1 events which require exit
8556 * from L2 to L1.
8557 */
8558 if (is_guest_mode(vcpu)) {
8559 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8560 if (r < 0)
8561 goto busy;
8562 }
8563
8564 /* try to inject new event if pending */
8565 if (vcpu->arch.exception.pending) {
8566 /*
8567 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8568 * value pushed on the stack. Trap-like exception and all #DBs
8569 * leave RF as-is (KVM follows Intel's behavior in this regard;
8570 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8571 *
8572 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8573 * describe the behavior of General Detect #DBs, which are
8574 * fault-like. They do _not_ set RF, a la code breakpoints.
8575 */
8576 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8577 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8578 X86_EFLAGS_RF);
8579
8580 if (vcpu->arch.exception.nr == DB_VECTOR) {
8581 kvm_deliver_exception_payload(vcpu);
8582 if (vcpu->arch.dr7 & DR7_GD) {
8583 vcpu->arch.dr7 &= ~DR7_GD;
8584 kvm_update_dr7(vcpu);
8585 }
8586 }
8587
8588 kvm_inject_exception(vcpu);
8589
8590 vcpu->arch.exception.pending = false;
8591 vcpu->arch.exception.injected = true;
8592
8593 can_inject = false;
8594 }
8595
8596 /*
8597 * Finally, inject interrupt events. If an event cannot be injected
8598 * due to architectural conditions (e.g. IF=0) a window-open exit
8599 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8600 * and can architecturally be injected, but we cannot do it right now:
8601 * an interrupt could have arrived just now and we have to inject it
8602 * as a vmexit, or there could already an event in the queue, which is
8603 * indicated by can_inject. In that case we request an immediate exit
8604 * in order to make progress and get back here for another iteration.
8605 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8606 */
8607 if (vcpu->arch.smi_pending) {
8608 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8609 if (r < 0)
8610 goto busy;
8611 if (r) {
8612 vcpu->arch.smi_pending = false;
8613 ++vcpu->arch.smi_count;
8614 enter_smm(vcpu);
8615 can_inject = false;
8616 } else
8617 kvm_x86_ops.enable_smi_window(vcpu);
8618 }
8619
8620 if (vcpu->arch.nmi_pending) {
8621 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8622 if (r < 0)
8623 goto busy;
8624 if (r) {
8625 --vcpu->arch.nmi_pending;
8626 vcpu->arch.nmi_injected = true;
8627 kvm_x86_ops.set_nmi(vcpu);
8628 can_inject = false;
8629 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8630 }
8631 if (vcpu->arch.nmi_pending)
8632 kvm_x86_ops.enable_nmi_window(vcpu);
8633 }
8634
8635 if (kvm_cpu_has_injectable_intr(vcpu)) {
8636 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8637 if (r < 0)
8638 goto busy;
8639 if (r) {
8640 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8641 kvm_x86_ops.set_irq(vcpu);
8642 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8643 }
8644 if (kvm_cpu_has_injectable_intr(vcpu))
8645 kvm_x86_ops.enable_irq_window(vcpu);
8646 }
8647
8648 if (is_guest_mode(vcpu) &&
8649 kvm_x86_ops.nested_ops->hv_timer_pending &&
8650 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8651 *req_immediate_exit = true;
8652
8653 WARN_ON(vcpu->arch.exception.pending);
8654 return;
8655
8656 busy:
8657 *req_immediate_exit = true;
8658 return;
8659 }
8660
process_nmi(struct kvm_vcpu *vcpu)8661 static void process_nmi(struct kvm_vcpu *vcpu)
8662 {
8663 unsigned limit = 2;
8664
8665 /*
8666 * x86 is limited to one NMI running, and one NMI pending after it.
8667 * If an NMI is already in progress, limit further NMIs to just one.
8668 * Otherwise, allow two (and we'll inject the first one immediately).
8669 */
8670 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8671 limit = 1;
8672
8673 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8674 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8675 kvm_make_request(KVM_REQ_EVENT, vcpu);
8676 }
8677
enter_smm_get_segment_flags(struct kvm_segment *seg)8678 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8679 {
8680 u32 flags = 0;
8681 flags |= seg->g << 23;
8682 flags |= seg->db << 22;
8683 flags |= seg->l << 21;
8684 flags |= seg->avl << 20;
8685 flags |= seg->present << 15;
8686 flags |= seg->dpl << 13;
8687 flags |= seg->s << 12;
8688 flags |= seg->type << 8;
8689 return flags;
8690 }
8691
enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)8692 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8693 {
8694 struct kvm_segment seg;
8695 int offset;
8696
8697 kvm_get_segment(vcpu, &seg, n);
8698 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8699
8700 if (n < 3)
8701 offset = 0x7f84 + n * 12;
8702 else
8703 offset = 0x7f2c + (n - 3) * 12;
8704
8705 put_smstate(u32, buf, offset + 8, seg.base);
8706 put_smstate(u32, buf, offset + 4, seg.limit);
8707 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8708 }
8709
8710 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)8711 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8712 {
8713 struct kvm_segment seg;
8714 int offset;
8715 u16 flags;
8716
8717 kvm_get_segment(vcpu, &seg, n);
8718 offset = 0x7e00 + n * 16;
8719
8720 flags = enter_smm_get_segment_flags(&seg) >> 8;
8721 put_smstate(u16, buf, offset, seg.selector);
8722 put_smstate(u16, buf, offset + 2, flags);
8723 put_smstate(u32, buf, offset + 4, seg.limit);
8724 put_smstate(u64, buf, offset + 8, seg.base);
8725 }
8726 #endif
8727
enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)8728 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8729 {
8730 struct desc_ptr dt;
8731 struct kvm_segment seg;
8732 unsigned long val;
8733 int i;
8734
8735 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8736 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8737 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8738 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8739
8740 for (i = 0; i < 8; i++)
8741 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8742
8743 kvm_get_dr(vcpu, 6, &val);
8744 put_smstate(u32, buf, 0x7fcc, (u32)val);
8745 kvm_get_dr(vcpu, 7, &val);
8746 put_smstate(u32, buf, 0x7fc8, (u32)val);
8747
8748 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8749 put_smstate(u32, buf, 0x7fc4, seg.selector);
8750 put_smstate(u32, buf, 0x7f64, seg.base);
8751 put_smstate(u32, buf, 0x7f60, seg.limit);
8752 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8753
8754 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8755 put_smstate(u32, buf, 0x7fc0, seg.selector);
8756 put_smstate(u32, buf, 0x7f80, seg.base);
8757 put_smstate(u32, buf, 0x7f7c, seg.limit);
8758 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8759
8760 kvm_x86_ops.get_gdt(vcpu, &dt);
8761 put_smstate(u32, buf, 0x7f74, dt.address);
8762 put_smstate(u32, buf, 0x7f70, dt.size);
8763
8764 kvm_x86_ops.get_idt(vcpu, &dt);
8765 put_smstate(u32, buf, 0x7f58, dt.address);
8766 put_smstate(u32, buf, 0x7f54, dt.size);
8767
8768 for (i = 0; i < 6; i++)
8769 enter_smm_save_seg_32(vcpu, buf, i);
8770
8771 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8772
8773 /* revision id */
8774 put_smstate(u32, buf, 0x7efc, 0x00020000);
8775 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8776 }
8777
8778 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)8779 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8780 {
8781 struct desc_ptr dt;
8782 struct kvm_segment seg;
8783 unsigned long val;
8784 int i;
8785
8786 for (i = 0; i < 16; i++)
8787 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8788
8789 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8790 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8791
8792 kvm_get_dr(vcpu, 6, &val);
8793 put_smstate(u64, buf, 0x7f68, val);
8794 kvm_get_dr(vcpu, 7, &val);
8795 put_smstate(u64, buf, 0x7f60, val);
8796
8797 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8798 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8799 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8800
8801 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8802
8803 /* revision id */
8804 put_smstate(u32, buf, 0x7efc, 0x00020064);
8805
8806 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8807
8808 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8809 put_smstate(u16, buf, 0x7e90, seg.selector);
8810 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8811 put_smstate(u32, buf, 0x7e94, seg.limit);
8812 put_smstate(u64, buf, 0x7e98, seg.base);
8813
8814 kvm_x86_ops.get_idt(vcpu, &dt);
8815 put_smstate(u32, buf, 0x7e84, dt.size);
8816 put_smstate(u64, buf, 0x7e88, dt.address);
8817
8818 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8819 put_smstate(u16, buf, 0x7e70, seg.selector);
8820 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8821 put_smstate(u32, buf, 0x7e74, seg.limit);
8822 put_smstate(u64, buf, 0x7e78, seg.base);
8823
8824 kvm_x86_ops.get_gdt(vcpu, &dt);
8825 put_smstate(u32, buf, 0x7e64, dt.size);
8826 put_smstate(u64, buf, 0x7e68, dt.address);
8827
8828 for (i = 0; i < 6; i++)
8829 enter_smm_save_seg_64(vcpu, buf, i);
8830 }
8831 #endif
8832
enter_smm(struct kvm_vcpu *vcpu)8833 static void enter_smm(struct kvm_vcpu *vcpu)
8834 {
8835 struct kvm_segment cs, ds;
8836 struct desc_ptr dt;
8837 char buf[512];
8838 u32 cr0;
8839
8840 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8841 memset(buf, 0, 512);
8842 #ifdef CONFIG_X86_64
8843 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8844 enter_smm_save_state_64(vcpu, buf);
8845 else
8846 #endif
8847 enter_smm_save_state_32(vcpu, buf);
8848
8849 /*
8850 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8851 * vCPU state (e.g. leave guest mode) after we've saved the state into
8852 * the SMM state-save area.
8853 */
8854 kvm_x86_ops.pre_enter_smm(vcpu, buf);
8855
8856 vcpu->arch.hflags |= HF_SMM_MASK;
8857 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8858
8859 if (kvm_x86_ops.get_nmi_mask(vcpu))
8860 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8861 else
8862 kvm_x86_ops.set_nmi_mask(vcpu, true);
8863
8864 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8865 kvm_rip_write(vcpu, 0x8000);
8866
8867 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8868 kvm_x86_ops.set_cr0(vcpu, cr0);
8869 vcpu->arch.cr0 = cr0;
8870
8871 kvm_x86_ops.set_cr4(vcpu, 0);
8872
8873 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8874 dt.address = dt.size = 0;
8875 kvm_x86_ops.set_idt(vcpu, &dt);
8876
8877 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8878
8879 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8880 cs.base = vcpu->arch.smbase;
8881
8882 ds.selector = 0;
8883 ds.base = 0;
8884
8885 cs.limit = ds.limit = 0xffffffff;
8886 cs.type = ds.type = 0x3;
8887 cs.dpl = ds.dpl = 0;
8888 cs.db = ds.db = 0;
8889 cs.s = ds.s = 1;
8890 cs.l = ds.l = 0;
8891 cs.g = ds.g = 1;
8892 cs.avl = ds.avl = 0;
8893 cs.present = ds.present = 1;
8894 cs.unusable = ds.unusable = 0;
8895 cs.padding = ds.padding = 0;
8896
8897 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8898 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8899 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8900 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8901 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8902 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8903
8904 #ifdef CONFIG_X86_64
8905 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8906 kvm_x86_ops.set_efer(vcpu, 0);
8907 #endif
8908
8909 kvm_update_cpuid_runtime(vcpu);
8910 kvm_mmu_reset_context(vcpu);
8911 }
8912
process_smi(struct kvm_vcpu *vcpu)8913 static void process_smi(struct kvm_vcpu *vcpu)
8914 {
8915 vcpu->arch.smi_pending = true;
8916 kvm_make_request(KVM_REQ_EVENT, vcpu);
8917 }
8918
kvm_make_scan_ioapic_request_mask(struct kvm *kvm, unsigned long *vcpu_bitmap)8919 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8920 unsigned long *vcpu_bitmap)
8921 {
8922 cpumask_var_t cpus;
8923
8924 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8925
8926 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8927 NULL, vcpu_bitmap, cpus);
8928
8929 free_cpumask_var(cpus);
8930 }
8931
kvm_make_scan_ioapic_request(struct kvm *kvm)8932 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8933 {
8934 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8935 }
8936
kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)8937 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8938 {
8939 if (!lapic_in_kernel(vcpu))
8940 return;
8941
8942 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8943 kvm_apic_update_apicv(vcpu);
8944 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8945 }
8946 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8947
8948 /*
8949 * NOTE: Do not hold any lock prior to calling this.
8950 *
8951 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8952 * locked, because it calls __x86_set_memory_region() which does
8953 * synchronize_srcu(&kvm->srcu).
8954 */
kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)8955 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8956 {
8957 struct kvm_vcpu *except;
8958 unsigned long old, new, expected;
8959
8960 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8961 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8962 return;
8963
8964 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8965 do {
8966 expected = new = old;
8967 if (activate)
8968 __clear_bit(bit, &new);
8969 else
8970 __set_bit(bit, &new);
8971 if (new == old)
8972 break;
8973 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8974 } while (old != expected);
8975
8976 if (!!old == !!new)
8977 return;
8978
8979 trace_kvm_apicv_update_request(activate, bit);
8980 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8981 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8982
8983 /*
8984 * Sending request to update APICV for all other vcpus,
8985 * while update the calling vcpu immediately instead of
8986 * waiting for another #VMEXIT to handle the request.
8987 */
8988 except = kvm_get_running_vcpu();
8989 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8990 except);
8991 if (except)
8992 kvm_vcpu_update_apicv(except);
8993 }
8994 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8995
vcpu_scan_ioapic(struct kvm_vcpu *vcpu)8996 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8997 {
8998 if (!kvm_apic_present(vcpu))
8999 return;
9000
9001 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9002
9003 if (irqchip_split(vcpu->kvm))
9004 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9005 else {
9006 if (vcpu->arch.apicv_active)
9007 kvm_x86_ops.sync_pir_to_irr(vcpu);
9008 if (ioapic_in_kernel(vcpu->kvm))
9009 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9010 }
9011
9012 if (is_guest_mode(vcpu))
9013 vcpu->arch.load_eoi_exitmap_pending = true;
9014 else
9015 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9016 }
9017
vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)9018 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9019 {
9020 u64 eoi_exit_bitmap[4];
9021
9022 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9023 return;
9024
9025 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
9026 vcpu_to_synic(vcpu)->vec_bitmap, 256);
9027 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
9028 }
9029
kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, unsigned long start, unsigned long end)9030 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9031 unsigned long start, unsigned long end)
9032 {
9033 unsigned long apic_address;
9034
9035 /*
9036 * The physical address of apic access page is stored in the VMCS.
9037 * Update it when it becomes invalid.
9038 */
9039 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9040 if (start <= apic_address && apic_address < end)
9041 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9042 }
9043
kvm_arch_guest_memory_reclaimed(struct kvm *kvm)9044 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9045 {
9046 if (kvm_x86_ops.guest_memory_reclaimed)
9047 kvm_x86_ops.guest_memory_reclaimed(kvm);
9048 }
9049
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)9050 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9051 {
9052 if (!lapic_in_kernel(vcpu))
9053 return;
9054
9055 if (!kvm_x86_ops.set_apic_access_page_addr)
9056 return;
9057
9058 kvm_x86_ops.set_apic_access_page_addr(vcpu);
9059 }
9060
__kvm_request_immediate_exit(struct kvm_vcpu *vcpu)9061 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9062 {
9063 smp_send_reschedule(vcpu->cpu);
9064 }
9065 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9066
9067 /*
9068 * Returns 1 to let vcpu_run() continue the guest execution loop without
9069 * exiting to the userspace. Otherwise, the value will be returned to the
9070 * userspace.
9071 */
vcpu_enter_guest(struct kvm_vcpu *vcpu)9072 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9073 {
9074 int r;
9075 bool req_int_win =
9076 dm_request_for_irq_injection(vcpu) &&
9077 kvm_cpu_accept_dm_intr(vcpu);
9078 fastpath_t exit_fastpath;
9079
9080 bool req_immediate_exit = false;
9081
9082 if (kvm_request_pending(vcpu)) {
9083 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9084 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9085 r = 0;
9086 goto out;
9087 }
9088 }
9089 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9090 kvm_mmu_unload(vcpu);
9091 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9092 __kvm_migrate_timers(vcpu);
9093 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9094 kvm_gen_update_masterclock(vcpu->kvm);
9095 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9096 kvm_gen_kvmclock_update(vcpu);
9097 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9098 r = kvm_guest_time_update(vcpu);
9099 if (unlikely(r))
9100 goto out;
9101 }
9102 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9103 kvm_mmu_sync_roots(vcpu);
9104 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9105 kvm_mmu_load_pgd(vcpu);
9106 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9107 kvm_vcpu_flush_tlb_all(vcpu);
9108
9109 /* Flushing all ASIDs flushes the current ASID... */
9110 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9111 }
9112 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9113 kvm_vcpu_flush_tlb_current(vcpu);
9114 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9115 kvm_vcpu_flush_tlb_guest(vcpu);
9116
9117 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9118 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9119 r = 0;
9120 goto out;
9121 }
9122 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9123 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9124 vcpu->mmio_needed = 0;
9125 r = 0;
9126 goto out;
9127 }
9128 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9129 /* Page is swapped out. Do synthetic halt */
9130 vcpu->arch.apf.halted = true;
9131 r = 1;
9132 goto out;
9133 }
9134 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9135 record_steal_time(vcpu);
9136 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9137 process_smi(vcpu);
9138 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9139 process_nmi(vcpu);
9140 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9141 kvm_pmu_handle_event(vcpu);
9142 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9143 kvm_pmu_deliver_pmi(vcpu);
9144 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9145 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9146 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9147 vcpu->arch.ioapic_handled_vectors)) {
9148 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9149 vcpu->run->eoi.vector =
9150 vcpu->arch.pending_ioapic_eoi;
9151 r = 0;
9152 goto out;
9153 }
9154 }
9155 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9156 vcpu_scan_ioapic(vcpu);
9157 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9158 vcpu_load_eoi_exitmap(vcpu);
9159 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9160 kvm_vcpu_reload_apic_access_page(vcpu);
9161 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9162 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9163 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9164 r = 0;
9165 goto out;
9166 }
9167 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9168 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9169 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9170 r = 0;
9171 goto out;
9172 }
9173 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9174 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9175 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9176 r = 0;
9177 goto out;
9178 }
9179
9180 /*
9181 * KVM_REQ_HV_STIMER has to be processed after
9182 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9183 * depend on the guest clock being up-to-date
9184 */
9185 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9186 kvm_hv_process_stimers(vcpu);
9187 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9188 kvm_vcpu_update_apicv(vcpu);
9189 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9190 kvm_check_async_pf_completion(vcpu);
9191 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9192 kvm_x86_ops.msr_filter_changed(vcpu);
9193 }
9194
9195 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9196 ++vcpu->stat.req_event;
9197 kvm_apic_accept_events(vcpu);
9198 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9199 r = 1;
9200 goto out;
9201 }
9202
9203 inject_pending_event(vcpu, &req_immediate_exit);
9204 if (req_int_win)
9205 kvm_x86_ops.enable_irq_window(vcpu);
9206
9207 if (kvm_lapic_enabled(vcpu)) {
9208 update_cr8_intercept(vcpu);
9209 kvm_lapic_sync_to_vapic(vcpu);
9210 }
9211 }
9212
9213 r = kvm_mmu_reload(vcpu);
9214 if (unlikely(r)) {
9215 goto cancel_injection;
9216 }
9217
9218 preempt_disable();
9219
9220 kvm_x86_ops.prepare_guest_switch(vcpu);
9221
9222 /*
9223 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9224 * IPI are then delayed after guest entry, which ensures that they
9225 * result in virtual interrupt delivery.
9226 */
9227 local_irq_disable();
9228 vcpu->mode = IN_GUEST_MODE;
9229
9230 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9231
9232 /*
9233 * 1) We should set ->mode before checking ->requests. Please see
9234 * the comment in kvm_vcpu_exiting_guest_mode().
9235 *
9236 * 2) For APICv, we should set ->mode before checking PID.ON. This
9237 * pairs with the memory barrier implicit in pi_test_and_set_on
9238 * (see vmx_deliver_posted_interrupt).
9239 *
9240 * 3) This also orders the write to mode from any reads to the page
9241 * tables done while the VCPU is running. Please see the comment
9242 * in kvm_flush_remote_tlbs.
9243 */
9244 smp_mb__after_srcu_read_unlock();
9245
9246 /*
9247 * This handles the case where a posted interrupt was
9248 * notified with kvm_vcpu_kick.
9249 */
9250 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9251 kvm_x86_ops.sync_pir_to_irr(vcpu);
9252
9253 if (kvm_vcpu_exit_request(vcpu)) {
9254 vcpu->mode = OUTSIDE_GUEST_MODE;
9255 smp_wmb();
9256 local_irq_enable();
9257 preempt_enable();
9258 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9259 r = 1;
9260 goto cancel_injection;
9261 }
9262
9263 if (req_immediate_exit) {
9264 kvm_make_request(KVM_REQ_EVENT, vcpu);
9265 kvm_x86_ops.request_immediate_exit(vcpu);
9266 }
9267
9268 trace_kvm_entry(vcpu);
9269
9270 fpregs_assert_state_consistent();
9271 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9272 switch_fpu_return();
9273
9274 if (unlikely(vcpu->arch.switch_db_regs)) {
9275 set_debugreg(0, 7);
9276 set_debugreg(vcpu->arch.eff_db[0], 0);
9277 set_debugreg(vcpu->arch.eff_db[1], 1);
9278 set_debugreg(vcpu->arch.eff_db[2], 2);
9279 set_debugreg(vcpu->arch.eff_db[3], 3);
9280 set_debugreg(vcpu->arch.dr6, 6);
9281 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9282 } else if (unlikely(hw_breakpoint_active())) {
9283 set_debugreg(0, 7);
9284 }
9285
9286 exit_fastpath = kvm_x86_ops.run(vcpu);
9287
9288 /*
9289 * Do this here before restoring debug registers on the host. And
9290 * since we do this before handling the vmexit, a DR access vmexit
9291 * can (a) read the correct value of the debug registers, (b) set
9292 * KVM_DEBUGREG_WONT_EXIT again.
9293 */
9294 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9295 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9296 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9297 kvm_update_dr0123(vcpu);
9298 kvm_update_dr7(vcpu);
9299 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9300 }
9301
9302 /*
9303 * If the guest has used debug registers, at least dr7
9304 * will be disabled while returning to the host.
9305 * If we don't have active breakpoints in the host, we don't
9306 * care about the messed up debug address registers. But if
9307 * we have some of them active, restore the old state.
9308 */
9309 if (hw_breakpoint_active())
9310 hw_breakpoint_restore();
9311
9312 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9313 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9314
9315 vcpu->mode = OUTSIDE_GUEST_MODE;
9316 smp_wmb();
9317
9318 kvm_x86_ops.handle_exit_irqoff(vcpu);
9319
9320 /*
9321 * Consume any pending interrupts, including the possible source of
9322 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9323 * An instruction is required after local_irq_enable() to fully unblock
9324 * interrupts on processors that implement an interrupt shadow, the
9325 * stat.exits increment will do nicely.
9326 */
9327 kvm_before_interrupt(vcpu);
9328 local_irq_enable();
9329 ++vcpu->stat.exits;
9330 local_irq_disable();
9331 kvm_after_interrupt(vcpu);
9332
9333 /*
9334 * Wait until after servicing IRQs to account guest time so that any
9335 * ticks that occurred while running the guest are properly accounted
9336 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9337 * of accounting via context tracking, but the loss of accuracy is
9338 * acceptable for all known use cases.
9339 */
9340 vtime_account_guest_exit();
9341
9342 if (lapic_in_kernel(vcpu)) {
9343 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9344 if (delta != S64_MIN) {
9345 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9346 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9347 }
9348 }
9349
9350 local_irq_enable();
9351 preempt_enable();
9352
9353 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9354
9355 /*
9356 * Profile KVM exit RIPs:
9357 */
9358 if (unlikely(prof_on == KVM_PROFILING)) {
9359 unsigned long rip = kvm_rip_read(vcpu);
9360 profile_hit(KVM_PROFILING, (void *)rip);
9361 }
9362
9363 if (unlikely(vcpu->arch.tsc_always_catchup))
9364 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9365
9366 if (vcpu->arch.apic_attention)
9367 kvm_lapic_sync_from_vapic(vcpu);
9368
9369 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9370 return r;
9371
9372 cancel_injection:
9373 if (req_immediate_exit)
9374 kvm_make_request(KVM_REQ_EVENT, vcpu);
9375 kvm_x86_ops.cancel_injection(vcpu);
9376 if (unlikely(vcpu->arch.apic_attention))
9377 kvm_lapic_sync_from_vapic(vcpu);
9378 out:
9379 return r;
9380 }
9381
vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)9382 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9383 {
9384 if (!kvm_arch_vcpu_runnable(vcpu) &&
9385 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9386 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9387 kvm_vcpu_block(vcpu);
9388 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9389
9390 if (kvm_x86_ops.post_block)
9391 kvm_x86_ops.post_block(vcpu);
9392
9393 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9394 return 1;
9395 }
9396
9397 kvm_apic_accept_events(vcpu);
9398 switch(vcpu->arch.mp_state) {
9399 case KVM_MP_STATE_HALTED:
9400 vcpu->arch.pv.pv_unhalted = false;
9401 vcpu->arch.mp_state =
9402 KVM_MP_STATE_RUNNABLE;
9403 fallthrough;
9404 case KVM_MP_STATE_RUNNABLE:
9405 vcpu->arch.apf.halted = false;
9406 break;
9407 case KVM_MP_STATE_INIT_RECEIVED:
9408 break;
9409 default:
9410 return -EINTR;
9411 }
9412 return 1;
9413 }
9414
kvm_vcpu_running(struct kvm_vcpu *vcpu)9415 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9416 {
9417 if (is_guest_mode(vcpu))
9418 kvm_x86_ops.nested_ops->check_events(vcpu);
9419
9420 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9421 !vcpu->arch.apf.halted);
9422 }
9423
vcpu_run(struct kvm_vcpu *vcpu)9424 static int vcpu_run(struct kvm_vcpu *vcpu)
9425 {
9426 int r;
9427 struct kvm *kvm = vcpu->kvm;
9428
9429 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9430 vcpu->arch.l1tf_flush_l1d = true;
9431
9432 for (;;) {
9433 /*
9434 * If another guest vCPU requests a PV TLB flush in the middle
9435 * of instruction emulation, the rest of the emulation could
9436 * use a stale page translation. Assume that any code after
9437 * this point can start executing an instruction.
9438 */
9439 vcpu->arch.at_instruction_boundary = false;
9440 if (kvm_vcpu_running(vcpu)) {
9441 r = vcpu_enter_guest(vcpu);
9442 } else {
9443 r = vcpu_block(kvm, vcpu);
9444 }
9445
9446 if (r <= 0)
9447 break;
9448
9449 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9450 if (kvm_cpu_has_pending_timer(vcpu))
9451 kvm_inject_pending_timer_irqs(vcpu);
9452
9453 if (dm_request_for_irq_injection(vcpu) &&
9454 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9455 r = 0;
9456 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9457 ++vcpu->stat.request_irq_exits;
9458 break;
9459 }
9460
9461 if (__xfer_to_guest_mode_work_pending()) {
9462 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9463 r = xfer_to_guest_mode_handle_work(vcpu);
9464 if (r)
9465 return r;
9466 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9467 }
9468 }
9469
9470 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9471
9472 return r;
9473 }
9474
complete_emulated_io(struct kvm_vcpu *vcpu)9475 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9476 {
9477 int r;
9478
9479 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9480 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9481 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9482 return r;
9483 }
9484
complete_emulated_pio(struct kvm_vcpu *vcpu)9485 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9486 {
9487 BUG_ON(!vcpu->arch.pio.count);
9488
9489 return complete_emulated_io(vcpu);
9490 }
9491
9492 /*
9493 * Implements the following, as a state machine:
9494 *
9495 * read:
9496 * for each fragment
9497 * for each mmio piece in the fragment
9498 * write gpa, len
9499 * exit
9500 * copy data
9501 * execute insn
9502 *
9503 * write:
9504 * for each fragment
9505 * for each mmio piece in the fragment
9506 * write gpa, len
9507 * copy data
9508 * exit
9509 */
complete_emulated_mmio(struct kvm_vcpu *vcpu)9510 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9511 {
9512 struct kvm_run *run = vcpu->run;
9513 struct kvm_mmio_fragment *frag;
9514 unsigned len;
9515
9516 BUG_ON(!vcpu->mmio_needed);
9517
9518 /* Complete previous fragment */
9519 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9520 len = min(8u, frag->len);
9521 if (!vcpu->mmio_is_write)
9522 memcpy(frag->data, run->mmio.data, len);
9523
9524 if (frag->len <= 8) {
9525 /* Switch to the next fragment. */
9526 frag++;
9527 vcpu->mmio_cur_fragment++;
9528 } else {
9529 /* Go forward to the next mmio piece. */
9530 frag->data += len;
9531 frag->gpa += len;
9532 frag->len -= len;
9533 }
9534
9535 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9536 vcpu->mmio_needed = 0;
9537
9538 /* FIXME: return into emulator if single-stepping. */
9539 if (vcpu->mmio_is_write)
9540 return 1;
9541 vcpu->mmio_read_completed = 1;
9542 return complete_emulated_io(vcpu);
9543 }
9544
9545 run->exit_reason = KVM_EXIT_MMIO;
9546 run->mmio.phys_addr = frag->gpa;
9547 if (vcpu->mmio_is_write)
9548 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9549 run->mmio.len = min(8u, frag->len);
9550 run->mmio.is_write = vcpu->mmio_is_write;
9551 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9552 return 0;
9553 }
9554
kvm_save_current_fpu(struct fpu *fpu)9555 static void kvm_save_current_fpu(struct fpu *fpu)
9556 {
9557 /*
9558 * If the target FPU state is not resident in the CPU registers, just
9559 * memcpy() from current, else save CPU state directly to the target.
9560 */
9561 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9562 memcpy(&fpu->state, ¤t->thread.fpu.state,
9563 fpu_kernel_xstate_size);
9564 else
9565 copy_fpregs_to_fpstate(fpu);
9566 }
9567
9568 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu *vcpu)9569 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9570 {
9571 fpregs_lock();
9572
9573 kvm_save_current_fpu(vcpu->arch.user_fpu);
9574
9575 /* PKRU is separately restored in kvm_x86_ops.run. */
9576 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9577 ~XFEATURE_MASK_PKRU);
9578
9579 fpregs_mark_activate();
9580 fpregs_unlock();
9581
9582 trace_kvm_fpu(1);
9583 }
9584
9585 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu *vcpu)9586 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9587 {
9588 fpregs_lock();
9589
9590 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9591
9592 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9593
9594 fpregs_mark_activate();
9595 fpregs_unlock();
9596
9597 ++vcpu->stat.fpu_reload;
9598 trace_kvm_fpu(0);
9599 }
9600
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)9601 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9602 {
9603 struct kvm_run *kvm_run = vcpu->run;
9604 int r;
9605
9606 vcpu_load(vcpu);
9607 kvm_sigset_activate(vcpu);
9608 kvm_load_guest_fpu(vcpu);
9609
9610 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9611 if (kvm_run->immediate_exit) {
9612 r = -EINTR;
9613 goto out;
9614 }
9615 kvm_vcpu_block(vcpu);
9616 kvm_apic_accept_events(vcpu);
9617 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9618 r = -EAGAIN;
9619 if (signal_pending(current)) {
9620 r = -EINTR;
9621 kvm_run->exit_reason = KVM_EXIT_INTR;
9622 ++vcpu->stat.signal_exits;
9623 }
9624 goto out;
9625 }
9626
9627 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9628 r = -EINVAL;
9629 goto out;
9630 }
9631
9632 if (kvm_run->kvm_dirty_regs) {
9633 r = sync_regs(vcpu);
9634 if (r != 0)
9635 goto out;
9636 }
9637
9638 /* re-sync apic's tpr */
9639 if (!lapic_in_kernel(vcpu)) {
9640 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9641 r = -EINVAL;
9642 goto out;
9643 }
9644 }
9645
9646 if (unlikely(vcpu->arch.complete_userspace_io)) {
9647 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9648 vcpu->arch.complete_userspace_io = NULL;
9649 r = cui(vcpu);
9650 if (r <= 0)
9651 goto out;
9652 } else
9653 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9654
9655 if (kvm_run->immediate_exit)
9656 r = -EINTR;
9657 else
9658 r = vcpu_run(vcpu);
9659
9660 out:
9661 kvm_put_guest_fpu(vcpu);
9662 if (kvm_run->kvm_valid_regs)
9663 store_regs(vcpu);
9664 post_kvm_run_save(vcpu);
9665 kvm_sigset_deactivate(vcpu);
9666
9667 vcpu_put(vcpu);
9668 return r;
9669 }
9670
__get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9671 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9672 {
9673 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9674 /*
9675 * We are here if userspace calls get_regs() in the middle of
9676 * instruction emulation. Registers state needs to be copied
9677 * back from emulation context to vcpu. Userspace shouldn't do
9678 * that usually, but some bad designed PV devices (vmware
9679 * backdoor interface) need this to work
9680 */
9681 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9682 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9683 }
9684 regs->rax = kvm_rax_read(vcpu);
9685 regs->rbx = kvm_rbx_read(vcpu);
9686 regs->rcx = kvm_rcx_read(vcpu);
9687 regs->rdx = kvm_rdx_read(vcpu);
9688 regs->rsi = kvm_rsi_read(vcpu);
9689 regs->rdi = kvm_rdi_read(vcpu);
9690 regs->rsp = kvm_rsp_read(vcpu);
9691 regs->rbp = kvm_rbp_read(vcpu);
9692 #ifdef CONFIG_X86_64
9693 regs->r8 = kvm_r8_read(vcpu);
9694 regs->r9 = kvm_r9_read(vcpu);
9695 regs->r10 = kvm_r10_read(vcpu);
9696 regs->r11 = kvm_r11_read(vcpu);
9697 regs->r12 = kvm_r12_read(vcpu);
9698 regs->r13 = kvm_r13_read(vcpu);
9699 regs->r14 = kvm_r14_read(vcpu);
9700 regs->r15 = kvm_r15_read(vcpu);
9701 #endif
9702
9703 regs->rip = kvm_rip_read(vcpu);
9704 regs->rflags = kvm_get_rflags(vcpu);
9705 }
9706
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9707 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9708 {
9709 vcpu_load(vcpu);
9710 __get_regs(vcpu, regs);
9711 vcpu_put(vcpu);
9712 return 0;
9713 }
9714
__set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9715 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9716 {
9717 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9718 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9719
9720 kvm_rax_write(vcpu, regs->rax);
9721 kvm_rbx_write(vcpu, regs->rbx);
9722 kvm_rcx_write(vcpu, regs->rcx);
9723 kvm_rdx_write(vcpu, regs->rdx);
9724 kvm_rsi_write(vcpu, regs->rsi);
9725 kvm_rdi_write(vcpu, regs->rdi);
9726 kvm_rsp_write(vcpu, regs->rsp);
9727 kvm_rbp_write(vcpu, regs->rbp);
9728 #ifdef CONFIG_X86_64
9729 kvm_r8_write(vcpu, regs->r8);
9730 kvm_r9_write(vcpu, regs->r9);
9731 kvm_r10_write(vcpu, regs->r10);
9732 kvm_r11_write(vcpu, regs->r11);
9733 kvm_r12_write(vcpu, regs->r12);
9734 kvm_r13_write(vcpu, regs->r13);
9735 kvm_r14_write(vcpu, regs->r14);
9736 kvm_r15_write(vcpu, regs->r15);
9737 #endif
9738
9739 kvm_rip_write(vcpu, regs->rip);
9740 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9741
9742 vcpu->arch.exception.pending = false;
9743
9744 kvm_make_request(KVM_REQ_EVENT, vcpu);
9745 }
9746
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)9747 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9748 {
9749 vcpu_load(vcpu);
9750 __set_regs(vcpu, regs);
9751 vcpu_put(vcpu);
9752 return 0;
9753 }
9754
kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)9755 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9756 {
9757 struct kvm_segment cs;
9758
9759 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9760 *db = cs.db;
9761 *l = cs.l;
9762 }
9763 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9764
__get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9765 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9766 {
9767 struct desc_ptr dt;
9768
9769 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9770 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9771 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9772 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9773 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9774 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9775
9776 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9777 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9778
9779 kvm_x86_ops.get_idt(vcpu, &dt);
9780 sregs->idt.limit = dt.size;
9781 sregs->idt.base = dt.address;
9782 kvm_x86_ops.get_gdt(vcpu, &dt);
9783 sregs->gdt.limit = dt.size;
9784 sregs->gdt.base = dt.address;
9785
9786 sregs->cr0 = kvm_read_cr0(vcpu);
9787 sregs->cr2 = vcpu->arch.cr2;
9788 sregs->cr3 = kvm_read_cr3(vcpu);
9789 sregs->cr4 = kvm_read_cr4(vcpu);
9790 sregs->cr8 = kvm_get_cr8(vcpu);
9791 sregs->efer = vcpu->arch.efer;
9792 sregs->apic_base = kvm_get_apic_base(vcpu);
9793
9794 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9795
9796 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9797 set_bit(vcpu->arch.interrupt.nr,
9798 (unsigned long *)sregs->interrupt_bitmap);
9799 }
9800
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9801 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9802 struct kvm_sregs *sregs)
9803 {
9804 vcpu_load(vcpu);
9805 __get_sregs(vcpu, sregs);
9806 vcpu_put(vcpu);
9807 return 0;
9808 }
9809
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)9810 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9811 struct kvm_mp_state *mp_state)
9812 {
9813 vcpu_load(vcpu);
9814 if (kvm_mpx_supported())
9815 kvm_load_guest_fpu(vcpu);
9816
9817 kvm_apic_accept_events(vcpu);
9818 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9819 vcpu->arch.pv.pv_unhalted)
9820 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9821 else
9822 mp_state->mp_state = vcpu->arch.mp_state;
9823
9824 if (kvm_mpx_supported())
9825 kvm_put_guest_fpu(vcpu);
9826 vcpu_put(vcpu);
9827 return 0;
9828 }
9829
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state)9830 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9831 struct kvm_mp_state *mp_state)
9832 {
9833 int ret = -EINVAL;
9834
9835 vcpu_load(vcpu);
9836
9837 if (!lapic_in_kernel(vcpu) &&
9838 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9839 goto out;
9840
9841 /*
9842 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9843 * INIT state; latched init should be reported using
9844 * KVM_SET_VCPU_EVENTS, so reject it here.
9845 */
9846 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9847 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9848 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9849 goto out;
9850
9851 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9852 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9853 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9854 } else
9855 vcpu->arch.mp_state = mp_state->mp_state;
9856 kvm_make_request(KVM_REQ_EVENT, vcpu);
9857
9858 ret = 0;
9859 out:
9860 vcpu_put(vcpu);
9861 return ret;
9862 }
9863
kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code)9864 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9865 int reason, bool has_error_code, u32 error_code)
9866 {
9867 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9868 int ret;
9869
9870 init_emulate_ctxt(vcpu);
9871
9872 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9873 has_error_code, error_code);
9874 if (ret) {
9875 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9876 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9877 vcpu->run->internal.ndata = 0;
9878 return 0;
9879 }
9880
9881 kvm_rip_write(vcpu, ctxt->eip);
9882 kvm_set_rflags(vcpu, ctxt->eflags);
9883 return 1;
9884 }
9885 EXPORT_SYMBOL_GPL(kvm_task_switch);
9886
kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9887 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9888 {
9889 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9890 /*
9891 * When EFER.LME and CR0.PG are set, the processor is in
9892 * 64-bit mode (though maybe in a 32-bit code segment).
9893 * CR4.PAE and EFER.LMA must be set.
9894 */
9895 if (!(sregs->cr4 & X86_CR4_PAE)
9896 || !(sregs->efer & EFER_LMA))
9897 return -EINVAL;
9898 if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9899 return -EINVAL;
9900 } else {
9901 /*
9902 * Not in 64-bit mode: EFER.LMA is clear and the code
9903 * segment cannot be 64-bit.
9904 */
9905 if (sregs->efer & EFER_LMA || sregs->cs.l)
9906 return -EINVAL;
9907 }
9908
9909 return kvm_valid_cr4(vcpu, sregs->cr4);
9910 }
9911
__set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)9912 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9913 {
9914 struct msr_data apic_base_msr;
9915 int mmu_reset_needed = 0;
9916 int cpuid_update_needed = 0;
9917 int pending_vec, max_bits, idx;
9918 struct desc_ptr dt;
9919 int ret = -EINVAL;
9920
9921 if (kvm_valid_sregs(vcpu, sregs))
9922 goto out;
9923
9924 apic_base_msr.data = sregs->apic_base;
9925 apic_base_msr.host_initiated = true;
9926 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9927 goto out;
9928
9929 dt.size = sregs->idt.limit;
9930 dt.address = sregs->idt.base;
9931 kvm_x86_ops.set_idt(vcpu, &dt);
9932 dt.size = sregs->gdt.limit;
9933 dt.address = sregs->gdt.base;
9934 kvm_x86_ops.set_gdt(vcpu, &dt);
9935
9936 vcpu->arch.cr2 = sregs->cr2;
9937 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9938 vcpu->arch.cr3 = sregs->cr3;
9939 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9940
9941 kvm_set_cr8(vcpu, sregs->cr8);
9942
9943 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9944 kvm_x86_ops.set_efer(vcpu, sregs->efer);
9945
9946 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9947 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9948 vcpu->arch.cr0 = sregs->cr0;
9949
9950 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9951 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9952 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9953 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9954 if (cpuid_update_needed)
9955 kvm_update_cpuid_runtime(vcpu);
9956
9957 idx = srcu_read_lock(&vcpu->kvm->srcu);
9958 if (is_pae_paging(vcpu)) {
9959 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9960 mmu_reset_needed = 1;
9961 }
9962 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9963
9964 if (mmu_reset_needed)
9965 kvm_mmu_reset_context(vcpu);
9966
9967 max_bits = KVM_NR_INTERRUPTS;
9968 pending_vec = find_first_bit(
9969 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9970 if (pending_vec < max_bits) {
9971 kvm_queue_interrupt(vcpu, pending_vec, false);
9972 pr_debug("Set back pending irq %d\n", pending_vec);
9973 }
9974
9975 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9976 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9977 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9978 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9979 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9980 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9981
9982 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9983 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9984
9985 update_cr8_intercept(vcpu);
9986
9987 /* Older userspace won't unhalt the vcpu on reset. */
9988 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9989 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9990 !is_protmode(vcpu))
9991 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9992
9993 kvm_make_request(KVM_REQ_EVENT, vcpu);
9994
9995 ret = 0;
9996 out:
9997 return ret;
9998 }
9999
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)10000 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10001 struct kvm_sregs *sregs)
10002 {
10003 int ret;
10004
10005 vcpu_load(vcpu);
10006 ret = __set_sregs(vcpu, sregs);
10007 vcpu_put(vcpu);
10008 return ret;
10009 }
10010
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)10011 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10012 struct kvm_guest_debug *dbg)
10013 {
10014 unsigned long rflags;
10015 int i, r;
10016
10017 vcpu_load(vcpu);
10018
10019 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10020 r = -EBUSY;
10021 if (vcpu->arch.exception.pending)
10022 goto out;
10023 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10024 kvm_queue_exception(vcpu, DB_VECTOR);
10025 else
10026 kvm_queue_exception(vcpu, BP_VECTOR);
10027 }
10028
10029 /*
10030 * Read rflags as long as potentially injected trace flags are still
10031 * filtered out.
10032 */
10033 rflags = kvm_get_rflags(vcpu);
10034
10035 vcpu->guest_debug = dbg->control;
10036 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10037 vcpu->guest_debug = 0;
10038
10039 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10040 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10041 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10042 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10043 } else {
10044 for (i = 0; i < KVM_NR_DB_REGS; i++)
10045 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10046 }
10047 kvm_update_dr7(vcpu);
10048
10049 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10050 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10051 get_segment_base(vcpu, VCPU_SREG_CS);
10052
10053 /*
10054 * Trigger an rflags update that will inject or remove the trace
10055 * flags.
10056 */
10057 kvm_set_rflags(vcpu, rflags);
10058
10059 kvm_x86_ops.update_exception_bitmap(vcpu);
10060
10061 r = 0;
10062
10063 out:
10064 vcpu_put(vcpu);
10065 return r;
10066 }
10067
10068 /*
10069 * Translate a guest virtual address to a guest physical address.
10070 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)10071 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10072 struct kvm_translation *tr)
10073 {
10074 unsigned long vaddr = tr->linear_address;
10075 gpa_t gpa;
10076 int idx;
10077
10078 vcpu_load(vcpu);
10079
10080 idx = srcu_read_lock(&vcpu->kvm->srcu);
10081 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10082 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10083 tr->physical_address = gpa;
10084 tr->valid = gpa != UNMAPPED_GVA;
10085 tr->writeable = 1;
10086 tr->usermode = 0;
10087
10088 vcpu_put(vcpu);
10089 return 0;
10090 }
10091
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)10092 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10093 {
10094 struct fxregs_state *fxsave;
10095
10096 vcpu_load(vcpu);
10097
10098 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10099 memcpy(fpu->fpr, fxsave->st_space, 128);
10100 fpu->fcw = fxsave->cwd;
10101 fpu->fsw = fxsave->swd;
10102 fpu->ftwx = fxsave->twd;
10103 fpu->last_opcode = fxsave->fop;
10104 fpu->last_ip = fxsave->rip;
10105 fpu->last_dp = fxsave->rdp;
10106 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10107
10108 vcpu_put(vcpu);
10109 return 0;
10110 }
10111
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)10112 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10113 {
10114 struct fxregs_state *fxsave;
10115
10116 vcpu_load(vcpu);
10117
10118 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10119
10120 memcpy(fxsave->st_space, fpu->fpr, 128);
10121 fxsave->cwd = fpu->fcw;
10122 fxsave->swd = fpu->fsw;
10123 fxsave->twd = fpu->ftwx;
10124 fxsave->fop = fpu->last_opcode;
10125 fxsave->rip = fpu->last_ip;
10126 fxsave->rdp = fpu->last_dp;
10127 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10128
10129 vcpu_put(vcpu);
10130 return 0;
10131 }
10132
store_regs(struct kvm_vcpu *vcpu)10133 static void store_regs(struct kvm_vcpu *vcpu)
10134 {
10135 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10136
10137 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10138 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10139
10140 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10141 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10142
10143 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10144 kvm_vcpu_ioctl_x86_get_vcpu_events(
10145 vcpu, &vcpu->run->s.regs.events);
10146 }
10147
sync_regs(struct kvm_vcpu *vcpu)10148 static int sync_regs(struct kvm_vcpu *vcpu)
10149 {
10150 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10151 return -EINVAL;
10152
10153 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10154 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10155 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10156 }
10157 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10158 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10159 return -EINVAL;
10160 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10161 }
10162 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10163 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10164 vcpu, &vcpu->run->s.regs.events))
10165 return -EINVAL;
10166 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10167 }
10168
10169 return 0;
10170 }
10171
fx_init(struct kvm_vcpu *vcpu)10172 static void fx_init(struct kvm_vcpu *vcpu)
10173 {
10174 fpstate_init(&vcpu->arch.guest_fpu->state);
10175 if (boot_cpu_has(X86_FEATURE_XSAVES))
10176 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10177 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10178
10179 /*
10180 * Ensure guest xcr0 is valid for loading
10181 */
10182 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10183
10184 vcpu->arch.cr0 |= X86_CR0_ET;
10185 }
10186
kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)10187 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10188 {
10189 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10190 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10191 "guest TSC will not be reliable\n");
10192
10193 return 0;
10194 }
10195
kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)10196 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10197 {
10198 struct page *page;
10199 int r;
10200
10201 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10202 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10203 else
10204 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10205
10206 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10207
10208 r = kvm_mmu_create(vcpu);
10209 if (r < 0)
10210 return r;
10211
10212 if (irqchip_in_kernel(vcpu->kvm)) {
10213 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10214 if (r < 0)
10215 goto fail_mmu_destroy;
10216 if (kvm_apicv_activated(vcpu->kvm))
10217 vcpu->arch.apicv_active = true;
10218 } else
10219 static_key_slow_inc(&kvm_no_apic_vcpu);
10220
10221 r = -ENOMEM;
10222
10223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10224 if (!page)
10225 goto fail_free_lapic;
10226 vcpu->arch.pio_data = page_address(page);
10227
10228 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10229 GFP_KERNEL_ACCOUNT);
10230 if (!vcpu->arch.mce_banks)
10231 goto fail_free_pio_data;
10232 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10233
10234 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10235 GFP_KERNEL_ACCOUNT))
10236 goto fail_free_mce_banks;
10237
10238 if (!alloc_emulate_ctxt(vcpu))
10239 goto free_wbinvd_dirty_mask;
10240
10241 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10242 GFP_KERNEL_ACCOUNT);
10243 if (!vcpu->arch.user_fpu) {
10244 pr_err("kvm: failed to allocate userspace's fpu\n");
10245 goto free_emulate_ctxt;
10246 }
10247
10248 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10249 GFP_KERNEL_ACCOUNT);
10250 if (!vcpu->arch.guest_fpu) {
10251 pr_err("kvm: failed to allocate vcpu's fpu\n");
10252 goto free_user_fpu;
10253 }
10254 fx_init(vcpu);
10255
10256 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10257 vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10258
10259 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10260
10261 kvm_async_pf_hash_reset(vcpu);
10262 kvm_pmu_init(vcpu);
10263
10264 vcpu->arch.pending_external_vector = -1;
10265 vcpu->arch.preempted_in_kernel = false;
10266
10267 kvm_hv_vcpu_init(vcpu);
10268
10269 r = kvm_x86_ops.vcpu_create(vcpu);
10270 if (r)
10271 goto free_guest_fpu;
10272
10273 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10274 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10275 kvm_vcpu_mtrr_init(vcpu);
10276 vcpu_load(vcpu);
10277 kvm_vcpu_reset(vcpu, false);
10278 kvm_init_mmu(vcpu, false);
10279 vcpu_put(vcpu);
10280 return 0;
10281
10282 free_guest_fpu:
10283 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10284 free_user_fpu:
10285 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10286 free_emulate_ctxt:
10287 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10288 free_wbinvd_dirty_mask:
10289 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10290 fail_free_mce_banks:
10291 kfree(vcpu->arch.mce_banks);
10292 fail_free_pio_data:
10293 free_page((unsigned long)vcpu->arch.pio_data);
10294 fail_free_lapic:
10295 kvm_free_lapic(vcpu);
10296 fail_mmu_destroy:
10297 kvm_mmu_destroy(vcpu);
10298 return r;
10299 }
10300
kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)10301 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10302 {
10303 struct kvm *kvm = vcpu->kvm;
10304
10305 kvm_hv_vcpu_postcreate(vcpu);
10306
10307 if (mutex_lock_killable(&vcpu->mutex))
10308 return;
10309 vcpu_load(vcpu);
10310 kvm_synchronize_tsc(vcpu, 0);
10311 vcpu_put(vcpu);
10312
10313 /* poll control enabled by default */
10314 vcpu->arch.msr_kvm_poll_control = 1;
10315
10316 mutex_unlock(&vcpu->mutex);
10317
10318 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10319 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10320 KVMCLOCK_SYNC_PERIOD);
10321 }
10322
kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)10323 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10324 {
10325 int idx;
10326
10327 kvmclock_reset(vcpu);
10328
10329 kvm_x86_ops.vcpu_free(vcpu);
10330
10331 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10332 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10333 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10334 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10335
10336 kvm_hv_vcpu_uninit(vcpu);
10337 kvm_pmu_destroy(vcpu);
10338 kfree(vcpu->arch.mce_banks);
10339 kvm_free_lapic(vcpu);
10340 idx = srcu_read_lock(&vcpu->kvm->srcu);
10341 kvm_mmu_destroy(vcpu);
10342 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10343 free_page((unsigned long)vcpu->arch.pio_data);
10344 kvfree(vcpu->arch.cpuid_entries);
10345 if (!lapic_in_kernel(vcpu))
10346 static_key_slow_dec(&kvm_no_apic_vcpu);
10347 }
10348
kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)10349 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10350 {
10351 kvm_lapic_reset(vcpu, init_event);
10352
10353 vcpu->arch.hflags = 0;
10354
10355 vcpu->arch.smi_pending = 0;
10356 vcpu->arch.smi_count = 0;
10357 atomic_set(&vcpu->arch.nmi_queued, 0);
10358 vcpu->arch.nmi_pending = 0;
10359 vcpu->arch.nmi_injected = false;
10360 kvm_clear_interrupt_queue(vcpu);
10361 kvm_clear_exception_queue(vcpu);
10362
10363 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10364 kvm_update_dr0123(vcpu);
10365 vcpu->arch.dr6 = DR6_INIT;
10366 vcpu->arch.dr7 = DR7_FIXED_1;
10367 kvm_update_dr7(vcpu);
10368
10369 vcpu->arch.cr2 = 0;
10370
10371 kvm_make_request(KVM_REQ_EVENT, vcpu);
10372 vcpu->arch.apf.msr_en_val = 0;
10373 vcpu->arch.apf.msr_int_val = 0;
10374 vcpu->arch.st.msr_val = 0;
10375
10376 kvmclock_reset(vcpu);
10377
10378 kvm_clear_async_pf_completion_queue(vcpu);
10379 kvm_async_pf_hash_reset(vcpu);
10380 vcpu->arch.apf.halted = false;
10381
10382 if (kvm_mpx_supported()) {
10383 void *mpx_state_buffer;
10384
10385 /*
10386 * To avoid have the INIT path from kvm_apic_has_events() that be
10387 * called with loaded FPU and does not let userspace fix the state.
10388 */
10389 if (init_event)
10390 kvm_put_guest_fpu(vcpu);
10391 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10392 XFEATURE_BNDREGS);
10393 if (mpx_state_buffer)
10394 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10395 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10396 XFEATURE_BNDCSR);
10397 if (mpx_state_buffer)
10398 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10399 if (init_event)
10400 kvm_load_guest_fpu(vcpu);
10401 }
10402
10403 if (!init_event) {
10404 kvm_pmu_reset(vcpu);
10405 vcpu->arch.smbase = 0x30000;
10406
10407 vcpu->arch.msr_misc_features_enables = 0;
10408
10409 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10410 }
10411
10412 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10413 vcpu->arch.regs_avail = ~0;
10414 vcpu->arch.regs_dirty = ~0;
10415
10416 vcpu->arch.ia32_xss = 0;
10417
10418 kvm_x86_ops.vcpu_reset(vcpu, init_event);
10419 }
10420
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)10421 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10422 {
10423 struct kvm_segment cs;
10424
10425 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10426 cs.selector = vector << 8;
10427 cs.base = vector << 12;
10428 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10429 kvm_rip_write(vcpu, 0);
10430 }
10431
kvm_arch_hardware_enable(void)10432 int kvm_arch_hardware_enable(void)
10433 {
10434 struct kvm *kvm;
10435 struct kvm_vcpu *vcpu;
10436 int i;
10437 int ret;
10438 u64 local_tsc;
10439 u64 max_tsc = 0;
10440 bool stable, backwards_tsc = false;
10441
10442 kvm_user_return_msr_cpu_online();
10443 ret = kvm_x86_ops.hardware_enable();
10444 if (ret != 0)
10445 return ret;
10446
10447 local_tsc = rdtsc();
10448 stable = !kvm_check_tsc_unstable();
10449 list_for_each_entry(kvm, &vm_list, vm_list) {
10450 kvm_for_each_vcpu(i, vcpu, kvm) {
10451 if (!stable && vcpu->cpu == smp_processor_id())
10452 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10453 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10454 backwards_tsc = true;
10455 if (vcpu->arch.last_host_tsc > max_tsc)
10456 max_tsc = vcpu->arch.last_host_tsc;
10457 }
10458 }
10459 }
10460
10461 /*
10462 * Sometimes, even reliable TSCs go backwards. This happens on
10463 * platforms that reset TSC during suspend or hibernate actions, but
10464 * maintain synchronization. We must compensate. Fortunately, we can
10465 * detect that condition here, which happens early in CPU bringup,
10466 * before any KVM threads can be running. Unfortunately, we can't
10467 * bring the TSCs fully up to date with real time, as we aren't yet far
10468 * enough into CPU bringup that we know how much real time has actually
10469 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10470 * variables that haven't been updated yet.
10471 *
10472 * So we simply find the maximum observed TSC above, then record the
10473 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10474 * the adjustment will be applied. Note that we accumulate
10475 * adjustments, in case multiple suspend cycles happen before some VCPU
10476 * gets a chance to run again. In the event that no KVM threads get a
10477 * chance to run, we will miss the entire elapsed period, as we'll have
10478 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10479 * loose cycle time. This isn't too big a deal, since the loss will be
10480 * uniform across all VCPUs (not to mention the scenario is extremely
10481 * unlikely). It is possible that a second hibernate recovery happens
10482 * much faster than a first, causing the observed TSC here to be
10483 * smaller; this would require additional padding adjustment, which is
10484 * why we set last_host_tsc to the local tsc observed here.
10485 *
10486 * N.B. - this code below runs only on platforms with reliable TSC,
10487 * as that is the only way backwards_tsc is set above. Also note
10488 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10489 * have the same delta_cyc adjustment applied if backwards_tsc
10490 * is detected. Note further, this adjustment is only done once,
10491 * as we reset last_host_tsc on all VCPUs to stop this from being
10492 * called multiple times (one for each physical CPU bringup).
10493 *
10494 * Platforms with unreliable TSCs don't have to deal with this, they
10495 * will be compensated by the logic in vcpu_load, which sets the TSC to
10496 * catchup mode. This will catchup all VCPUs to real time, but cannot
10497 * guarantee that they stay in perfect synchronization.
10498 */
10499 if (backwards_tsc) {
10500 u64 delta_cyc = max_tsc - local_tsc;
10501 list_for_each_entry(kvm, &vm_list, vm_list) {
10502 kvm->arch.backwards_tsc_observed = true;
10503 kvm_for_each_vcpu(i, vcpu, kvm) {
10504 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10505 vcpu->arch.last_host_tsc = local_tsc;
10506 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10507 }
10508
10509 /*
10510 * We have to disable TSC offset matching.. if you were
10511 * booting a VM while issuing an S4 host suspend....
10512 * you may have some problem. Solving this issue is
10513 * left as an exercise to the reader.
10514 */
10515 kvm->arch.last_tsc_nsec = 0;
10516 kvm->arch.last_tsc_write = 0;
10517 }
10518
10519 }
10520 return 0;
10521 }
10522
kvm_arch_hardware_disable(void)10523 void kvm_arch_hardware_disable(void)
10524 {
10525 kvm_x86_ops.hardware_disable();
10526 drop_user_return_notifiers();
10527 }
10528
kvm_arch_hardware_setup(void *opaque)10529 int kvm_arch_hardware_setup(void *opaque)
10530 {
10531 struct kvm_x86_init_ops *ops = opaque;
10532 int r;
10533
10534 rdmsrl_safe(MSR_EFER, &host_efer);
10535
10536 if (boot_cpu_has(X86_FEATURE_XSAVES))
10537 rdmsrl(MSR_IA32_XSS, host_xss);
10538
10539 r = ops->hardware_setup();
10540 if (r != 0)
10541 return r;
10542
10543 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10544
10545 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10546 supported_xss = 0;
10547
10548 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10549 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10550 #undef __kvm_cpu_cap_has
10551
10552 if (kvm_has_tsc_control) {
10553 /*
10554 * Make sure the user can only configure tsc_khz values that
10555 * fit into a signed integer.
10556 * A min value is not calculated because it will always
10557 * be 1 on all machines.
10558 */
10559 u64 max = min(0x7fffffffULL,
10560 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10561 kvm_max_guest_tsc_khz = max;
10562
10563 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10564 }
10565
10566 kvm_init_msr_list();
10567 return 0;
10568 }
10569
kvm_arch_hardware_unsetup(void)10570 void kvm_arch_hardware_unsetup(void)
10571 {
10572 kvm_x86_ops.hardware_unsetup();
10573 }
10574
kvm_arch_check_processor_compat(void *opaque)10575 int kvm_arch_check_processor_compat(void *opaque)
10576 {
10577 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10578 struct kvm_x86_init_ops *ops = opaque;
10579
10580 WARN_ON(!irqs_disabled());
10581
10582 if (__cr4_reserved_bits(cpu_has, c) !=
10583 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10584 return -EIO;
10585
10586 return ops->check_processor_compatibility();
10587 }
10588
kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)10589 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10590 {
10591 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10592 }
10593 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10594
kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)10595 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10596 {
10597 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10598 }
10599
10600 struct static_key kvm_no_apic_vcpu __read_mostly;
10601 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10602
kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)10603 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10604 {
10605 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10606
10607 vcpu->arch.l1tf_flush_l1d = true;
10608 if (pmu->version && unlikely(pmu->event_count)) {
10609 pmu->need_cleanup = true;
10610 kvm_make_request(KVM_REQ_PMU, vcpu);
10611 }
10612 kvm_x86_ops.sched_in(vcpu, cpu);
10613 }
10614
kvm_arch_free_vm(struct kvm *kvm)10615 void kvm_arch_free_vm(struct kvm *kvm)
10616 {
10617 kfree(kvm->arch.hyperv.hv_pa_pg);
10618 vfree(kvm);
10619 }
10620
10621
kvm_arch_init_vm(struct kvm *kvm, unsigned long type)10622 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10623 {
10624 int ret;
10625
10626 if (type)
10627 return -EINVAL;
10628
10629 ret = kvm_page_track_init(kvm);
10630 if (ret)
10631 return ret;
10632
10633 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10634 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10635 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10636 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10637 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10638 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10639
10640 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10641 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10642 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10643 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10644 &kvm->arch.irq_sources_bitmap);
10645
10646 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10647 mutex_init(&kvm->arch.apic_map_lock);
10648 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10649
10650 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10651 pvclock_update_vm_gtod_copy(kvm);
10652
10653 kvm->arch.guest_can_read_msr_platform_info = true;
10654
10655 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10656 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10657
10658 kvm_hv_init_vm(kvm);
10659 kvm_mmu_init_vm(kvm);
10660
10661 return kvm_x86_ops.vm_init(kvm);
10662 }
10663
kvm_arch_post_init_vm(struct kvm *kvm)10664 int kvm_arch_post_init_vm(struct kvm *kvm)
10665 {
10666 return kvm_mmu_post_init_vm(kvm);
10667 }
10668
kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)10669 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10670 {
10671 vcpu_load(vcpu);
10672 kvm_mmu_unload(vcpu);
10673 vcpu_put(vcpu);
10674 }
10675
kvm_free_vcpus(struct kvm *kvm)10676 static void kvm_free_vcpus(struct kvm *kvm)
10677 {
10678 unsigned int i;
10679 struct kvm_vcpu *vcpu;
10680
10681 /*
10682 * Unpin any mmu pages first.
10683 */
10684 kvm_for_each_vcpu(i, vcpu, kvm) {
10685 kvm_clear_async_pf_completion_queue(vcpu);
10686 kvm_unload_vcpu_mmu(vcpu);
10687 }
10688 kvm_for_each_vcpu(i, vcpu, kvm)
10689 kvm_vcpu_destroy(vcpu);
10690
10691 mutex_lock(&kvm->lock);
10692 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10693 kvm->vcpus[i] = NULL;
10694
10695 atomic_set(&kvm->online_vcpus, 0);
10696 mutex_unlock(&kvm->lock);
10697 }
10698
kvm_arch_sync_events(struct kvm *kvm)10699 void kvm_arch_sync_events(struct kvm *kvm)
10700 {
10701 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10702 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10703 kvm_free_pit(kvm);
10704 }
10705
__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)10706 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10707 {
10708 int i, r;
10709 unsigned long hva, old_npages;
10710 struct kvm_memslots *slots = kvm_memslots(kvm);
10711 struct kvm_memory_slot *slot;
10712
10713 /* Called with kvm->slots_lock held. */
10714 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10715 return -EINVAL;
10716
10717 slot = id_to_memslot(slots, id);
10718 if (size) {
10719 if (slot && slot->npages)
10720 return -EEXIST;
10721
10722 /*
10723 * MAP_SHARED to prevent internal slot pages from being moved
10724 * by fork()/COW.
10725 */
10726 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10727 MAP_SHARED | MAP_ANONYMOUS, 0);
10728 if (IS_ERR((void *)hva))
10729 return PTR_ERR((void *)hva);
10730 } else {
10731 if (!slot || !slot->npages)
10732 return 0;
10733
10734 old_npages = slot->npages;
10735 hva = 0;
10736 }
10737
10738 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10739 struct kvm_userspace_memory_region m;
10740
10741 m.slot = id | (i << 16);
10742 m.flags = 0;
10743 m.guest_phys_addr = gpa;
10744 m.userspace_addr = hva;
10745 m.memory_size = size;
10746 r = __kvm_set_memory_region(kvm, &m);
10747 if (r < 0)
10748 return r;
10749 }
10750
10751 if (!size)
10752 vm_munmap(hva, old_npages * PAGE_SIZE);
10753
10754 return 0;
10755 }
10756 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10757
kvm_arch_pre_destroy_vm(struct kvm *kvm)10758 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10759 {
10760 kvm_mmu_pre_destroy_vm(kvm);
10761 }
10762
kvm_arch_destroy_vm(struct kvm *kvm)10763 void kvm_arch_destroy_vm(struct kvm *kvm)
10764 {
10765 if (current->mm == kvm->mm) {
10766 /*
10767 * Free memory regions allocated on behalf of userspace,
10768 * unless the the memory map has changed due to process exit
10769 * or fd copying.
10770 */
10771 mutex_lock(&kvm->slots_lock);
10772 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10773 0, 0);
10774 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10775 0, 0);
10776 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10777 mutex_unlock(&kvm->slots_lock);
10778 }
10779 if (kvm_x86_ops.vm_destroy)
10780 kvm_x86_ops.vm_destroy(kvm);
10781 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10782 kvm_pic_destroy(kvm);
10783 kvm_ioapic_destroy(kvm);
10784 kvm_free_vcpus(kvm);
10785 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10786 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10787 kvm_mmu_uninit_vm(kvm);
10788 kvm_page_track_cleanup(kvm);
10789 kvm_hv_destroy_vm(kvm);
10790 }
10791
kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)10792 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10793 {
10794 int i;
10795
10796 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10797 kvfree(slot->arch.rmap[i]);
10798 slot->arch.rmap[i] = NULL;
10799
10800 if (i == 0)
10801 continue;
10802
10803 kvfree(slot->arch.lpage_info[i - 1]);
10804 slot->arch.lpage_info[i - 1] = NULL;
10805 }
10806
10807 kvm_page_track_free_memslot(slot);
10808 }
10809
kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, unsigned long npages)10810 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10811 unsigned long npages)
10812 {
10813 int i;
10814
10815 /*
10816 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10817 * old arrays will be freed by __kvm_set_memory_region() if installing
10818 * the new memslot is successful.
10819 */
10820 memset(&slot->arch, 0, sizeof(slot->arch));
10821
10822 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10823 struct kvm_lpage_info *linfo;
10824 unsigned long ugfn;
10825 int lpages;
10826 int level = i + 1;
10827
10828 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10829 slot->base_gfn, level) + 1;
10830
10831 slot->arch.rmap[i] =
10832 __vcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10833 GFP_KERNEL_ACCOUNT);
10834 if (!slot->arch.rmap[i])
10835 goto out_free;
10836 if (i == 0)
10837 continue;
10838
10839 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10840 if (!linfo)
10841 goto out_free;
10842
10843 slot->arch.lpage_info[i - 1] = linfo;
10844
10845 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10846 linfo[0].disallow_lpage = 1;
10847 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10848 linfo[lpages - 1].disallow_lpage = 1;
10849 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10850 /*
10851 * If the gfn and userspace address are not aligned wrt each
10852 * other, disable large page support for this slot.
10853 */
10854 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10855 unsigned long j;
10856
10857 for (j = 0; j < lpages; ++j)
10858 linfo[j].disallow_lpage = 1;
10859 }
10860 }
10861
10862 if (kvm_page_track_create_memslot(slot, npages))
10863 goto out_free;
10864
10865 return 0;
10866
10867 out_free:
10868 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10869 kvfree(slot->arch.rmap[i]);
10870 slot->arch.rmap[i] = NULL;
10871 if (i == 0)
10872 continue;
10873
10874 kvfree(slot->arch.lpage_info[i - 1]);
10875 slot->arch.lpage_info[i - 1] = NULL;
10876 }
10877 return -ENOMEM;
10878 }
10879
kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)10880 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10881 {
10882 struct kvm_vcpu *vcpu;
10883 int i;
10884
10885 /*
10886 * memslots->generation has been incremented.
10887 * mmio generation may have reached its maximum value.
10888 */
10889 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10890
10891 /* Force re-initialization of steal_time cache */
10892 kvm_for_each_vcpu(i, vcpu, kvm)
10893 kvm_vcpu_kick(vcpu);
10894 }
10895
kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change)10896 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10897 struct kvm_memory_slot *memslot,
10898 const struct kvm_userspace_memory_region *mem,
10899 enum kvm_mr_change change)
10900 {
10901 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10902 return kvm_alloc_memslot_metadata(memslot,
10903 mem->memory_size >> PAGE_SHIFT);
10904 return 0;
10905 }
10906
kvm_mmu_slot_apply_flags(struct kvm *kvm, struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change)10907 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10908 struct kvm_memory_slot *old,
10909 struct kvm_memory_slot *new,
10910 enum kvm_mr_change change)
10911 {
10912 /*
10913 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10914 * See comments below.
10915 */
10916 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10917 return;
10918
10919 /*
10920 * Dirty logging tracks sptes in 4k granularity, meaning that large
10921 * sptes have to be split. If live migration is successful, the guest
10922 * in the source machine will be destroyed and large sptes will be
10923 * created in the destination. However, if the guest continues to run
10924 * in the source machine (for example if live migration fails), small
10925 * sptes will remain around and cause bad performance.
10926 *
10927 * Scan sptes if dirty logging has been stopped, dropping those
10928 * which can be collapsed into a single large-page spte. Later
10929 * page faults will create the large-page sptes.
10930 *
10931 * There is no need to do this in any of the following cases:
10932 * CREATE: No dirty mappings will already exist.
10933 * MOVE/DELETE: The old mappings will already have been cleaned up by
10934 * kvm_arch_flush_shadow_memslot()
10935 */
10936 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10937 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10938 kvm_mmu_zap_collapsible_sptes(kvm, new);
10939
10940 /*
10941 * Enable or disable dirty logging for the slot.
10942 *
10943 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10944 * slot have been zapped so no dirty logging updates are needed for
10945 * the old slot.
10946 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10947 * any mappings that might be created in it will consume the
10948 * properties of the new slot and do not need to be updated here.
10949 *
10950 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10951 * called to enable/disable dirty logging.
10952 *
10953 * When disabling dirty logging with PML enabled, the D-bit is set
10954 * for sptes in the slot in order to prevent unnecessary GPA
10955 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10956 * This guarantees leaving PML enabled for the guest's lifetime
10957 * won't have any additional overhead from PML when the guest is
10958 * running with dirty logging disabled.
10959 *
10960 * When enabling dirty logging, large sptes are write-protected
10961 * so they can be split on first write. New large sptes cannot
10962 * be created for this slot until the end of the logging.
10963 * See the comments in fast_page_fault().
10964 * For small sptes, nothing is done if the dirty log is in the
10965 * initial-all-set state. Otherwise, depending on whether pml
10966 * is enabled the D-bit or the W-bit will be cleared.
10967 */
10968 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10969 if (kvm_x86_ops.slot_enable_log_dirty) {
10970 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10971 } else {
10972 int level =
10973 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10974 PG_LEVEL_2M : PG_LEVEL_4K;
10975
10976 /*
10977 * If we're with initial-all-set, we don't need
10978 * to write protect any small page because
10979 * they're reported as dirty already. However
10980 * we still need to write-protect huge pages
10981 * so that the page split can happen lazily on
10982 * the first write to the huge page.
10983 */
10984 kvm_mmu_slot_remove_write_access(kvm, new, level);
10985 }
10986 } else {
10987 if (kvm_x86_ops.slot_disable_log_dirty)
10988 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10989 }
10990 }
10991
kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change)10992 void kvm_arch_commit_memory_region(struct kvm *kvm,
10993 const struct kvm_userspace_memory_region *mem,
10994 struct kvm_memory_slot *old,
10995 const struct kvm_memory_slot *new,
10996 enum kvm_mr_change change)
10997 {
10998 if (!kvm->arch.n_requested_mmu_pages)
10999 kvm_mmu_change_mmu_pages(kvm,
11000 kvm_mmu_calculate_default_mmu_pages(kvm));
11001
11002 /*
11003 * FIXME: const-ify all uses of struct kvm_memory_slot.
11004 */
11005 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11006
11007 /* Free the arrays associated with the old memslot. */
11008 if (change == KVM_MR_MOVE)
11009 kvm_arch_free_memslot(kvm, old);
11010 }
11011
kvm_arch_flush_shadow_all(struct kvm *kvm)11012 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11013 {
11014 kvm_mmu_zap_all(kvm);
11015 }
11016
kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)11017 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11018 struct kvm_memory_slot *slot)
11019 {
11020 kvm_page_track_flush_slot(kvm, slot);
11021 }
11022
kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)11023 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11024 {
11025 return (is_guest_mode(vcpu) &&
11026 kvm_x86_ops.guest_apic_has_interrupt &&
11027 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
11028 }
11029
kvm_vcpu_has_events(struct kvm_vcpu *vcpu)11030 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11031 {
11032 if (!list_empty_careful(&vcpu->async_pf.done))
11033 return true;
11034
11035 if (kvm_apic_has_events(vcpu))
11036 return true;
11037
11038 if (vcpu->arch.pv.pv_unhalted)
11039 return true;
11040
11041 if (vcpu->arch.exception.pending)
11042 return true;
11043
11044 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11045 (vcpu->arch.nmi_pending &&
11046 kvm_x86_ops.nmi_allowed(vcpu, false)))
11047 return true;
11048
11049 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11050 (vcpu->arch.smi_pending &&
11051 kvm_x86_ops.smi_allowed(vcpu, false)))
11052 return true;
11053
11054 if (kvm_arch_interrupt_allowed(vcpu) &&
11055 (kvm_cpu_has_interrupt(vcpu) ||
11056 kvm_guest_apic_has_interrupt(vcpu)))
11057 return true;
11058
11059 if (kvm_hv_has_stimer_pending(vcpu))
11060 return true;
11061
11062 if (is_guest_mode(vcpu) &&
11063 kvm_x86_ops.nested_ops->hv_timer_pending &&
11064 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11065 return true;
11066
11067 return false;
11068 }
11069
kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)11070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11071 {
11072 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11073 }
11074
kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)11075 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11076 {
11077 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11078 return true;
11079
11080 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11081 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11082 kvm_test_request(KVM_REQ_EVENT, vcpu))
11083 return true;
11084
11085 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11086 return true;
11087
11088 return false;
11089 }
11090
kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)11091 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11092 {
11093 return vcpu->arch.preempted_in_kernel;
11094 }
11095
kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)11096 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11097 {
11098 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11099 }
11100
kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)11101 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11102 {
11103 return kvm_x86_ops.interrupt_allowed(vcpu, false);
11104 }
11105
kvm_get_linear_rip(struct kvm_vcpu *vcpu)11106 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11107 {
11108 if (is_64_bit_mode(vcpu))
11109 return kvm_rip_read(vcpu);
11110 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11111 kvm_rip_read(vcpu));
11112 }
11113 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11114
kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)11115 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11116 {
11117 return kvm_get_linear_rip(vcpu) == linear_rip;
11118 }
11119 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11120
kvm_get_rflags(struct kvm_vcpu *vcpu)11121 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11122 {
11123 unsigned long rflags;
11124
11125 rflags = kvm_x86_ops.get_rflags(vcpu);
11126 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11127 rflags &= ~X86_EFLAGS_TF;
11128 return rflags;
11129 }
11130 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11131
__kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)11132 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11133 {
11134 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11135 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11136 rflags |= X86_EFLAGS_TF;
11137 kvm_x86_ops.set_rflags(vcpu, rflags);
11138 }
11139
kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)11140 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11141 {
11142 __kvm_set_rflags(vcpu, rflags);
11143 kvm_make_request(KVM_REQ_EVENT, vcpu);
11144 }
11145 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11146
kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11147 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11148 {
11149 int r;
11150
11151 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11152 work->wakeup_all)
11153 return;
11154
11155 r = kvm_mmu_reload(vcpu);
11156 if (unlikely(r))
11157 return;
11158
11159 if (!vcpu->arch.mmu->direct_map &&
11160 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11161 return;
11162
11163 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11164 }
11165
kvm_async_pf_hash_fn(gfn_t gfn)11166 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11167 {
11168 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11169
11170 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11171 }
11172
kvm_async_pf_next_probe(u32 key)11173 static inline u32 kvm_async_pf_next_probe(u32 key)
11174 {
11175 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11176 }
11177
kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11178 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11179 {
11180 u32 key = kvm_async_pf_hash_fn(gfn);
11181
11182 while (vcpu->arch.apf.gfns[key] != ~0)
11183 key = kvm_async_pf_next_probe(key);
11184
11185 vcpu->arch.apf.gfns[key] = gfn;
11186 }
11187
kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)11188 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11189 {
11190 int i;
11191 u32 key = kvm_async_pf_hash_fn(gfn);
11192
11193 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11194 (vcpu->arch.apf.gfns[key] != gfn &&
11195 vcpu->arch.apf.gfns[key] != ~0); i++)
11196 key = kvm_async_pf_next_probe(key);
11197
11198 return key;
11199 }
11200
kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11201 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11202 {
11203 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11204 }
11205
kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)11206 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11207 {
11208 u32 i, j, k;
11209
11210 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11211
11212 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11213 return;
11214
11215 while (true) {
11216 vcpu->arch.apf.gfns[i] = ~0;
11217 do {
11218 j = kvm_async_pf_next_probe(j);
11219 if (vcpu->arch.apf.gfns[j] == ~0)
11220 return;
11221 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11222 /*
11223 * k lies cyclically in ]i,j]
11224 * | i.k.j |
11225 * |....j i.k.| or |.k..j i...|
11226 */
11227 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11228 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11229 i = j;
11230 }
11231 }
11232
apf_put_user_notpresent(struct kvm_vcpu *vcpu)11233 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11234 {
11235 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11236
11237 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11238 sizeof(reason));
11239 }
11240
apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)11241 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11242 {
11243 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11244
11245 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11246 &token, offset, sizeof(token));
11247 }
11248
apf_pageready_slot_free(struct kvm_vcpu *vcpu)11249 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11250 {
11251 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11252 u32 val;
11253
11254 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11255 &val, offset, sizeof(val)))
11256 return false;
11257
11258 return !val;
11259 }
11260
kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)11261 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11262 {
11263 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11264 return false;
11265
11266 if (!kvm_pv_async_pf_enabled(vcpu) ||
11267 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11268 return false;
11269
11270 return true;
11271 }
11272
kvm_can_do_async_pf(struct kvm_vcpu *vcpu)11273 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11274 {
11275 if (unlikely(!lapic_in_kernel(vcpu) ||
11276 kvm_event_needs_reinjection(vcpu) ||
11277 vcpu->arch.exception.pending))
11278 return false;
11279
11280 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11281 return false;
11282
11283 /*
11284 * If interrupts are off we cannot even use an artificial
11285 * halt state.
11286 */
11287 return kvm_arch_interrupt_allowed(vcpu);
11288 }
11289
kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11290 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11291 struct kvm_async_pf *work)
11292 {
11293 struct x86_exception fault;
11294
11295 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11296 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11297
11298 if (kvm_can_deliver_async_pf(vcpu) &&
11299 !apf_put_user_notpresent(vcpu)) {
11300 fault.vector = PF_VECTOR;
11301 fault.error_code_valid = true;
11302 fault.error_code = 0;
11303 fault.nested_page_fault = false;
11304 fault.address = work->arch.token;
11305 fault.async_page_fault = true;
11306 kvm_inject_page_fault(vcpu, &fault);
11307 return true;
11308 } else {
11309 /*
11310 * It is not possible to deliver a paravirtualized asynchronous
11311 * page fault, but putting the guest in an artificial halt state
11312 * can be beneficial nevertheless: if an interrupt arrives, we
11313 * can deliver it timely and perhaps the guest will schedule
11314 * another process. When the instruction that triggered a page
11315 * fault is retried, hopefully the page will be ready in the host.
11316 */
11317 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11318 return false;
11319 }
11320 }
11321
kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)11322 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11323 struct kvm_async_pf *work)
11324 {
11325 struct kvm_lapic_irq irq = {
11326 .delivery_mode = APIC_DM_FIXED,
11327 .vector = vcpu->arch.apf.vec
11328 };
11329
11330 if (work->wakeup_all)
11331 work->arch.token = ~0; /* broadcast wakeup */
11332 else
11333 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11334 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11335
11336 if ((work->wakeup_all || work->notpresent_injected) &&
11337 kvm_pv_async_pf_enabled(vcpu) &&
11338 !apf_put_user_ready(vcpu, work->arch.token)) {
11339 vcpu->arch.apf.pageready_pending = true;
11340 kvm_apic_set_irq(vcpu, &irq, NULL);
11341 }
11342
11343 vcpu->arch.apf.halted = false;
11344 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11345 }
11346
kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)11347 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11348 {
11349 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11350 if (!vcpu->arch.apf.pageready_pending)
11351 kvm_vcpu_kick(vcpu);
11352 }
11353
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)11354 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11355 {
11356 if (!kvm_pv_async_pf_enabled(vcpu))
11357 return true;
11358 else
11359 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11360 }
11361
kvm_arch_start_assignment(struct kvm *kvm)11362 void kvm_arch_start_assignment(struct kvm *kvm)
11363 {
11364 atomic_inc(&kvm->arch.assigned_device_count);
11365 }
11366 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11367
kvm_arch_end_assignment(struct kvm *kvm)11368 void kvm_arch_end_assignment(struct kvm *kvm)
11369 {
11370 atomic_dec(&kvm->arch.assigned_device_count);
11371 }
11372 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11373
kvm_arch_has_assigned_device(struct kvm *kvm)11374 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11375 {
11376 return arch_atomic_read(&kvm->arch.assigned_device_count);
11377 }
11378 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11379
kvm_arch_register_noncoherent_dma(struct kvm *kvm)11380 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11381 {
11382 atomic_inc(&kvm->arch.noncoherent_dma_count);
11383 }
11384 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11385
kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)11386 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11387 {
11388 atomic_dec(&kvm->arch.noncoherent_dma_count);
11389 }
11390 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11391
kvm_arch_has_noncoherent_dma(struct kvm *kvm)11392 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11393 {
11394 return atomic_read(&kvm->arch.noncoherent_dma_count);
11395 }
11396 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11397
kvm_arch_has_irq_bypass(void)11398 bool kvm_arch_has_irq_bypass(void)
11399 {
11400 return true;
11401 }
11402
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)11403 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11404 struct irq_bypass_producer *prod)
11405 {
11406 struct kvm_kernel_irqfd *irqfd =
11407 container_of(cons, struct kvm_kernel_irqfd, consumer);
11408 int ret;
11409
11410 irqfd->producer = prod;
11411 kvm_arch_start_assignment(irqfd->kvm);
11412 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11413 prod->irq, irqfd->gsi, 1);
11414
11415 if (ret)
11416 kvm_arch_end_assignment(irqfd->kvm);
11417
11418 return ret;
11419 }
11420
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod)11421 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11422 struct irq_bypass_producer *prod)
11423 {
11424 int ret;
11425 struct kvm_kernel_irqfd *irqfd =
11426 container_of(cons, struct kvm_kernel_irqfd, consumer);
11427
11428 WARN_ON(irqfd->producer != prod);
11429 irqfd->producer = NULL;
11430
11431 /*
11432 * When producer of consumer is unregistered, we change back to
11433 * remapped mode, so we can re-use the current implementation
11434 * when the irq is masked/disabled or the consumer side (KVM
11435 * int this case doesn't want to receive the interrupts.
11436 */
11437 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11438 if (ret)
11439 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11440 " fails: %d\n", irqfd->consumer.token, ret);
11441
11442 kvm_arch_end_assignment(irqfd->kvm);
11443 }
11444
kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set)11445 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11446 uint32_t guest_irq, bool set)
11447 {
11448 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11449 }
11450
kvm_vector_hashing_enabled(void)11451 bool kvm_vector_hashing_enabled(void)
11452 {
11453 return vector_hashing;
11454 }
11455
kvm_arch_no_poll(struct kvm_vcpu *vcpu)11456 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11457 {
11458 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11459 }
11460 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11461
11462
kvm_spec_ctrl_test_value(u64 value)11463 int kvm_spec_ctrl_test_value(u64 value)
11464 {
11465 /*
11466 * test that setting IA32_SPEC_CTRL to given value
11467 * is allowed by the host processor
11468 */
11469
11470 u64 saved_value;
11471 unsigned long flags;
11472 int ret = 0;
11473
11474 local_irq_save(flags);
11475
11476 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11477 ret = 1;
11478 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11479 ret = 1;
11480 else
11481 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11482
11483 local_irq_restore(flags);
11484
11485 return ret;
11486 }
11487 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11488
kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)11489 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11490 {
11491 struct x86_exception fault;
11492 u32 access = error_code &
11493 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11494
11495 if (!(error_code & PFERR_PRESENT_MASK) ||
11496 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11497 /*
11498 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11499 * tables probably do not match the TLB. Just proceed
11500 * with the error code that the processor gave.
11501 */
11502 fault.vector = PF_VECTOR;
11503 fault.error_code_valid = true;
11504 fault.error_code = error_code;
11505 fault.nested_page_fault = false;
11506 fault.address = gva;
11507 }
11508 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11509 }
11510 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11511
11512 /*
11513 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11514 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11515 * indicates whether exit to userspace is needed.
11516 */
kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, struct x86_exception *e)11517 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11518 struct x86_exception *e)
11519 {
11520 if (r == X86EMUL_PROPAGATE_FAULT) {
11521 kvm_inject_emulated_page_fault(vcpu, e);
11522 return 1;
11523 }
11524
11525 /*
11526 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11527 * while handling a VMX instruction KVM could've handled the request
11528 * correctly by exiting to userspace and performing I/O but there
11529 * doesn't seem to be a real use-case behind such requests, just return
11530 * KVM_EXIT_INTERNAL_ERROR for now.
11531 */
11532 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11533 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11534 vcpu->run->internal.ndata = 0;
11535
11536 return 0;
11537 }
11538 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11539
kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)11540 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11541 {
11542 bool pcid_enabled;
11543 struct x86_exception e;
11544 unsigned i;
11545 unsigned long roots_to_free = 0;
11546 struct {
11547 u64 pcid;
11548 u64 gla;
11549 } operand;
11550 int r;
11551
11552 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11553 if (r != X86EMUL_CONTINUE)
11554 return kvm_handle_memory_failure(vcpu, r, &e);
11555
11556 if (operand.pcid >> 12 != 0) {
11557 kvm_inject_gp(vcpu, 0);
11558 return 1;
11559 }
11560
11561 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11562
11563 switch (type) {
11564 case INVPCID_TYPE_INDIV_ADDR:
11565 if ((!pcid_enabled && (operand.pcid != 0)) ||
11566 is_noncanonical_address(operand.gla, vcpu)) {
11567 kvm_inject_gp(vcpu, 0);
11568 return 1;
11569 }
11570 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11571 return kvm_skip_emulated_instruction(vcpu);
11572
11573 case INVPCID_TYPE_SINGLE_CTXT:
11574 if (!pcid_enabled && (operand.pcid != 0)) {
11575 kvm_inject_gp(vcpu, 0);
11576 return 1;
11577 }
11578
11579 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11580 kvm_mmu_sync_roots(vcpu);
11581 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11582 }
11583
11584 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11585 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11586 == operand.pcid)
11587 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11588
11589 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11590 /*
11591 * If neither the current cr3 nor any of the prev_roots use the
11592 * given PCID, then nothing needs to be done here because a
11593 * resync will happen anyway before switching to any other CR3.
11594 */
11595
11596 return kvm_skip_emulated_instruction(vcpu);
11597
11598 case INVPCID_TYPE_ALL_NON_GLOBAL:
11599 /*
11600 * Currently, KVM doesn't mark global entries in the shadow
11601 * page tables, so a non-global flush just degenerates to a
11602 * global flush. If needed, we could optimize this later by
11603 * keeping track of global entries in shadow page tables.
11604 */
11605
11606 fallthrough;
11607 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11608 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11609 return kvm_skip_emulated_instruction(vcpu);
11610
11611 default:
11612 BUG(); /* We have already checked above that type <= 3 */
11613 }
11614 }
11615 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11616
11617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11639
kvm_x86_init(void)11640 static int __init kvm_x86_init(void)
11641 {
11642 kvm_mmu_x86_module_init();
11643 return 0;
11644 }
11645 module_init(kvm_x86_init);
11646
kvm_x86_exit(void)11647 static void __exit kvm_x86_exit(void)
11648 {
11649 /*
11650 * If module_init() is implemented, module_exit() must also be
11651 * implemented to allow module unload.
11652 */
11653 }
11654 module_exit(kvm_x86_exit);
11655