1 ########################################################################
2 # Implement fast SHA-512 with SSSE3 instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 #     James Guilford <james.guilford@intel.com>
8 #     Kirk Yap <kirk.s.yap@intel.com>
9 #     David Cote <david.m.cote@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 #     Redistribution and use in source and binary forms, with or
19 #     without modification, are permitted provided that the following
20 #     conditions are met:
21 #
22 #      - Redistributions of source code must retain the above
23 #        copyright notice, this list of conditions and the following
24 #        disclaimer.
25 #
26 #      - Redistributions in binary form must reproduce the above
27 #        copyright notice, this list of conditions and the following
28 #        disclaimer in the documentation and/or other materials
29 #        provided with the distribution.
30 #
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
39 #
40 ########################################################################
41 #
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
44 #
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
47 #
48 ########################################################################
49 
50 #include <linux/linkage.h>
51 
52 .text
53 
54 # Virtual Registers
55 # ARG1
56 digest =	%rdi
57 # ARG2
58 msg =		%rsi
59 # ARG3
60 msglen =	%rdx
61 T1 =		%rcx
62 T2 =		%r8
63 a_64 =		%r9
64 b_64 =		%r10
65 c_64 =		%r11
66 d_64 =		%r12
67 e_64 =		%r13
68 f_64 =		%r14
69 g_64 =		%r15
70 h_64 =		%rbx
71 tmp0 =		%rax
72 
73 # Local variables (stack frame)
74 
75 W_SIZE = 80*8
76 WK_SIZE = 2*8
77 RSPSAVE_SIZE = 1*8
78 GPRSAVE_SIZE = 5*8
79 
80 frame_W = 0
81 frame_WK = frame_W + W_SIZE
82 frame_RSPSAVE = frame_WK + WK_SIZE
83 frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
84 frame_size = frame_GPRSAVE + GPRSAVE_SIZE
85 
86 # Useful QWORD "arrays" for simpler memory references
87 # MSG, DIGEST, K_t, W_t are arrays
88 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
89 
90 # Input message (arg1)
91 #define MSG(i)    8*i(msg)
92 
93 # Output Digest (arg2)
94 #define DIGEST(i) 8*i(digest)
95 
96 # SHA Constants (static mem)
97 #define K_t(i)    8*i+K512(%rip)
98 
99 # Message Schedule (stack frame)
100 #define W_t(i)    8*i+frame_W(%rsp)
101 
102 # W[t]+K[t] (stack frame)
103 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
104 
105 .macro RotateState
106 	# Rotate symbols a..h right
107 	TMP   = h_64
108 	h_64  = g_64
109 	g_64  = f_64
110 	f_64  = e_64
111 	e_64  = d_64
112 	d_64  = c_64
113 	c_64  = b_64
114 	b_64  = a_64
115 	a_64  = TMP
116 .endm
117 
118 .macro SHA512_Round rnd
119 
120 	# Compute Round %%t
121 	mov	f_64, T1          # T1 = f
122 	mov	e_64, tmp0        # tmp = e
123 	xor	g_64, T1          # T1 = f ^ g
124 	ror	$23, tmp0 # 41    # tmp = e ror 23
125 	and	e_64, T1          # T1 = (f ^ g) & e
126 	xor	e_64, tmp0        # tmp = (e ror 23) ^ e
127 	xor	g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
128 	idx = \rnd
129 	add	WK_2(idx), T1     # W[t] + K[t] from message scheduler
130 	ror	$4, tmp0  # 18    # tmp = ((e ror 23) ^ e) ror 4
131 	xor	e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
132 	mov	a_64, T2          # T2 = a
133 	add	h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
134 	ror	$14, tmp0 # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
135 	add	tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
136 	mov	a_64, tmp0        # tmp = a
137 	xor	c_64, T2          # T2 = a ^ c
138 	and	c_64, tmp0        # tmp = a & c
139 	and	b_64, T2          # T2 = (a ^ c) & b
140 	xor	tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
141 	mov	a_64, tmp0        # tmp = a
142 	ror	$5, tmp0 # 39     # tmp = a ror 5
143 	xor	a_64, tmp0        # tmp = (a ror 5) ^ a
144 	add	T1, d_64          # e(next_state) = d + T1
145 	ror	$6, tmp0 # 34     # tmp = ((a ror 5) ^ a) ror 6
146 	xor	a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
147 	lea	(T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
148 	ror	$28, tmp0 # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
149 	add	tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
150 	RotateState
151 .endm
152 
153 .macro SHA512_2Sched_2Round_sse rnd
154 
155 	# Compute rounds t-2 and t-1
156 	# Compute message schedule QWORDS t and t+1
157 
158 	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
159 	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
160 	# scheduler.
161 	#   The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
162 	# They are then added to their respective SHA512 constants at
163 	# [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
164 	#   For brievity, the comments following vectored instructions only refer to
165 	# the first of a pair of QWORDS.
166 	# Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
167 	#   The computation of the message schedule and the rounds are tightly
168 	# stitched to take advantage of instruction-level parallelism.
169 	# For clarity, integer instructions (for the rounds calculation) are indented
170 	# by one tab. Vectored instructions (for the message scheduler) are indented
171 	# by two tabs.
172 
173 	mov	f_64, T1
174 	idx = \rnd -2
175 	movdqa	W_t(idx), %xmm2		    # XMM2 = W[t-2]
176 	xor	g_64, T1
177 	and	e_64, T1
178 	movdqa	%xmm2, %xmm0	            # XMM0 = W[t-2]
179 	xor	g_64, T1
180 	idx = \rnd
181 	add	WK_2(idx), T1
182 	idx = \rnd - 15
183 	movdqu	W_t(idx), %xmm5		    # XMM5 = W[t-15]
184 	mov	e_64, tmp0
185 	ror	$23, tmp0 # 41
186 	movdqa	%xmm5, %xmm3	            # XMM3 = W[t-15]
187 	xor	e_64, tmp0
188 	ror	$4, tmp0 # 18
189 	psrlq	$61-19, %xmm0		    # XMM0 = W[t-2] >> 42
190 	xor	e_64, tmp0
191 	ror	$14, tmp0 # 14
192 	psrlq	$(8-7), %xmm3		    # XMM3 = W[t-15] >> 1
193 	add	tmp0, T1
194 	add	h_64, T1
195 	pxor	%xmm2, %xmm0                # XMM0 = (W[t-2] >> 42) ^ W[t-2]
196 	mov	a_64, T2
197 	xor	c_64, T2
198 	pxor	%xmm5, %xmm3                # XMM3 = (W[t-15] >> 1) ^ W[t-15]
199 	and	b_64, T2
200 	mov	a_64, tmp0
201 	psrlq	$(19-6), %xmm0		    # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
202 	and	c_64, tmp0
203 	xor	tmp0, T2
204 	psrlq	$(7-1), %xmm3		    # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
205 	mov	a_64, tmp0
206 	ror	$5, tmp0 # 39
207 	pxor	%xmm2, %xmm0	            # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
208 	xor	a_64, tmp0
209 	ror	$6, tmp0 # 34
210 	pxor	%xmm5, %xmm3                # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
211 	xor	a_64, tmp0
212 	ror	$28, tmp0 # 28
213 	psrlq	$6, %xmm0                   # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
214 	add	tmp0, T2
215 	add	T1, d_64
216 	psrlq	$1, %xmm3                   # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
217 	lea	(T1, T2), h_64
218 	RotateState
219 	movdqa	%xmm2, %xmm1	            # XMM1 = W[t-2]
220 	mov	f_64, T1
221 	xor	g_64, T1
222 	movdqa	%xmm5, %xmm4		    # XMM4 = W[t-15]
223 	and	e_64, T1
224 	xor	g_64, T1
225 	psllq	$(64-19)-(64-61) , %xmm1    # XMM1 = W[t-2] << 42
226 	idx = \rnd + 1
227 	add	WK_2(idx), T1
228 	mov	e_64, tmp0
229 	psllq	$(64-1)-(64-8), %xmm4	    # XMM4 = W[t-15] << 7
230 	ror	$23, tmp0 # 41
231 	xor	e_64, tmp0
232 	pxor	%xmm2, %xmm1		    # XMM1 = (W[t-2] << 42)^W[t-2]
233 	ror	$4, tmp0 # 18
234 	xor	e_64, tmp0
235 	pxor	%xmm5, %xmm4		    # XMM4 = (W[t-15]<<7)^W[t-15]
236 	ror	$14, tmp0 # 14
237 	add	tmp0, T1
238 	psllq	$(64-61), %xmm1		    # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
239 	add	h_64, T1
240 	mov	a_64, T2
241 	psllq	$(64-8), %xmm4		    # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
242 	xor	c_64, T2
243 	and	b_64, T2
244 	pxor	%xmm1, %xmm0		    # XMM0 = s1(W[t-2])
245 	mov	a_64, tmp0
246 	and	c_64, tmp0
247 	idx = \rnd - 7
248 	movdqu	W_t(idx), %xmm1		    # XMM1 = W[t-7]
249 	xor	tmp0, T2
250 	pxor	%xmm4, %xmm3                # XMM3 = s0(W[t-15])
251 	mov	a_64, tmp0
252 	paddq	%xmm3, %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15])
253 	ror	$5, tmp0 # 39
254 	idx =\rnd-16
255 	paddq	W_t(idx), %xmm0		    # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
256 	xor	a_64, tmp0
257 	paddq	%xmm1, %xmm0	            # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
258 	ror	$6, tmp0 # 34
259 	movdqa	%xmm0, W_t(\rnd)	    # Store scheduled qwords
260 	xor	a_64, tmp0
261 	paddq	K_t(\rnd), %xmm0	    # Compute W[t]+K[t]
262 	ror	$28, tmp0 # 28
263 	idx = \rnd
264 	movdqa	%xmm0, WK_2(idx)	    # Store W[t]+K[t] for next rounds
265 	add	tmp0, T2
266 	add	T1, d_64
267 	lea	(T1, T2), h_64
268 	RotateState
269 .endm
270 
271 ########################################################################
272 ## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data,
273 ##			       int blocks);
274 # (struct sha512_state is assumed to begin with u64 state[8])
275 # Purpose: Updates the SHA512 digest stored at "state" with the message
276 # stored in "data".
277 # The size of the message pointed to by "data" must be an integer multiple
278 # of SHA512 message blocks.
279 # "blocks" is the message length in SHA512 blocks.
280 ########################################################################
281 SYM_FUNC_START(sha512_transform_ssse3)
282 
283 	cmp $0, msglen
284 	je nowork
285 
286 	# Allocate Stack Space
287 	mov	%rsp, %rax
288 	sub	$frame_size, %rsp
289 	and	$~(0x20 - 1), %rsp
290 	mov	%rax, frame_RSPSAVE(%rsp)
291 
292 	# Save GPRs
293 	mov	%rbx, frame_GPRSAVE(%rsp)
294 	mov	%r12, frame_GPRSAVE +8*1(%rsp)
295 	mov	%r13, frame_GPRSAVE +8*2(%rsp)
296 	mov	%r14, frame_GPRSAVE +8*3(%rsp)
297 	mov	%r15, frame_GPRSAVE +8*4(%rsp)
298 
299 updateblock:
300 
301 # Load state variables
302 	mov	DIGEST(0), a_64
303 	mov	DIGEST(1), b_64
304 	mov	DIGEST(2), c_64
305 	mov	DIGEST(3), d_64
306 	mov	DIGEST(4), e_64
307 	mov	DIGEST(5), f_64
308 	mov	DIGEST(6), g_64
309 	mov	DIGEST(7), h_64
310 
311 	t = 0
312 	.rept 80/2 + 1
313 	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
314 	# +1 iteration because the scheduler leads hashing by 1 iteration
315 		.if t < 2
316 			# BSWAP 2 QWORDS
317 			movdqa	XMM_QWORD_BSWAP(%rip), %xmm1
318 			movdqu	MSG(t), %xmm0
319 			pshufb	%xmm1, %xmm0	# BSWAP
320 			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
321 			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
322 			movdqa	%xmm0, WK_2(t)	# Store into WK for rounds
323 		.elseif t < 16
324 			# BSWAP 2 QWORDS# Compute 2 Rounds
325 			movdqu	MSG(t), %xmm0
326 			pshufb	%xmm1, %xmm0	# BSWAP
327 			SHA512_Round t-2	# Round t-2
328 			movdqa	%xmm0, W_t(t)	# Store Scheduled Pair
329 			paddq	K_t(t), %xmm0	# Compute W[t]+K[t]
330 			SHA512_Round t-1	# Round t-1
331 			movdqa	%xmm0, WK_2(t)	# Store W[t]+K[t] into WK
332 		.elseif t < 79
333 			# Schedule 2 QWORDS# Compute 2 Rounds
334 			SHA512_2Sched_2Round_sse t
335 		.else
336 			# Compute 2 Rounds
337 			SHA512_Round t-2
338 			SHA512_Round t-1
339 		.endif
340 		t = t+2
341 	.endr
342 
343 	# Update digest
344 	add	a_64, DIGEST(0)
345 	add	b_64, DIGEST(1)
346 	add	c_64, DIGEST(2)
347 	add	d_64, DIGEST(3)
348 	add	e_64, DIGEST(4)
349 	add	f_64, DIGEST(5)
350 	add	g_64, DIGEST(6)
351 	add	h_64, DIGEST(7)
352 
353 	# Advance to next message block
354 	add	$16*8, msg
355 	dec	msglen
356 	jnz	updateblock
357 
358 	# Restore GPRs
359 	mov	frame_GPRSAVE(%rsp),      %rbx
360 	mov	frame_GPRSAVE +8*1(%rsp), %r12
361 	mov	frame_GPRSAVE +8*2(%rsp), %r13
362 	mov	frame_GPRSAVE +8*3(%rsp), %r14
363 	mov	frame_GPRSAVE +8*4(%rsp), %r15
364 
365 	# Restore Stack Pointer
366 	mov	frame_RSPSAVE(%rsp), %rsp
367 
368 nowork:
369 	RET
370 SYM_FUNC_END(sha512_transform_ssse3)
371 
372 ########################################################################
373 ### Binary Data
374 
375 .section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
376 .align 16
377 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
378 XMM_QWORD_BSWAP:
379 	.octa 0x08090a0b0c0d0e0f0001020304050607
380 
381 # Mergeable 640-byte rodata section. This allows linker to merge the table
382 # with other, exactly the same 640-byte fragment of another rodata section
383 # (if such section exists).
384 .section	.rodata.cst640.K512, "aM", @progbits, 640
385 .align 64
386 # K[t] used in SHA512 hashing
387 K512:
388 	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
389 	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
390 	.quad 0x3956c25bf348b538,0x59f111f1b605d019
391 	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
392 	.quad 0xd807aa98a3030242,0x12835b0145706fbe
393 	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
394 	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
395 	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
396 	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
397 	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
398 	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
399 	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
400 	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
401 	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
402 	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
403 	.quad 0x06ca6351e003826f,0x142929670a0e6e70
404 	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
405 	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
406 	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
407 	.quad 0x81c2c92e47edaee6,0x92722c851482353b
408 	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
409 	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
410 	.quad 0xd192e819d6ef5218,0xd69906245565a910
411 	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
412 	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
413 	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
414 	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
415 	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
416 	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
417 	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
418 	.quad 0x90befffa23631e28,0xa4506cebde82bde9
419 	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
420 	.quad 0xca273eceea26619c,0xd186b8c721c0c207
421 	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
422 	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
423 	.quad 0x113f9804bef90dae,0x1b710b35131c471b
424 	.quad 0x28db77f523047d84,0x32caab7b40c72493
425 	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
426 	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
427 	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
428