1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * x86_64/AVX2/AES-NI assembler implementation of Camellia
4  *
5  * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
6  */
7 
8 #include <linux/linkage.h>
9 #include <asm/frame.h>
10 #include <asm/nospec-branch.h>
11 
12 #define CAMELLIA_TABLE_BYTE_LEN 272
13 
14 /* struct camellia_ctx: */
15 #define key_table 0
16 #define key_length CAMELLIA_TABLE_BYTE_LEN
17 
18 /* register macros */
19 #define CTX %rdi
20 #define RIO %r8
21 
22 /**********************************************************************
23   helper macros
24  **********************************************************************/
25 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
26 	vpand x, mask4bit, tmp0; \
27 	vpandn x, mask4bit, x; \
28 	vpsrld $4, x, x; \
29 	\
30 	vpshufb tmp0, lo_t, tmp0; \
31 	vpshufb x, hi_t, x; \
32 	vpxor tmp0, x, x;
33 
34 #define ymm0_x xmm0
35 #define ymm1_x xmm1
36 #define ymm2_x xmm2
37 #define ymm3_x xmm3
38 #define ymm4_x xmm4
39 #define ymm5_x xmm5
40 #define ymm6_x xmm6
41 #define ymm7_x xmm7
42 #define ymm8_x xmm8
43 #define ymm9_x xmm9
44 #define ymm10_x xmm10
45 #define ymm11_x xmm11
46 #define ymm12_x xmm12
47 #define ymm13_x xmm13
48 #define ymm14_x xmm14
49 #define ymm15_x xmm15
50 
51 /**********************************************************************
52   32-way camellia
53  **********************************************************************/
54 
55 /*
56  * IN:
57  *   x0..x7: byte-sliced AB state
58  *   mem_cd: register pointer storing CD state
59  *   key: index for key material
60  * OUT:
61  *   x0..x7: new byte-sliced CD state
62  */
63 #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
64 		  t7, mem_cd, key) \
65 	/* \
66 	 * S-function with AES subbytes \
67 	 */ \
68 	vbroadcasti128 .Linv_shift_row, t4; \
69 	vpbroadcastd .L0f0f0f0f, t7; \
70 	vbroadcasti128 .Lpre_tf_lo_s1, t5; \
71 	vbroadcasti128 .Lpre_tf_hi_s1, t6; \
72 	vbroadcasti128 .Lpre_tf_lo_s4, t2; \
73 	vbroadcasti128 .Lpre_tf_hi_s4, t3; \
74 	\
75 	/* AES inverse shift rows */ \
76 	vpshufb t4, x0, x0; \
77 	vpshufb t4, x7, x7; \
78 	vpshufb t4, x3, x3; \
79 	vpshufb t4, x6, x6; \
80 	vpshufb t4, x2, x2; \
81 	vpshufb t4, x5, x5; \
82 	vpshufb t4, x1, x1; \
83 	vpshufb t4, x4, x4; \
84 	\
85 	/* prefilter sboxes 1, 2 and 3 */ \
86 	/* prefilter sbox 4 */ \
87 	filter_8bit(x0, t5, t6, t7, t4); \
88 	filter_8bit(x7, t5, t6, t7, t4); \
89 	vextracti128 $1, x0, t0##_x; \
90 	vextracti128 $1, x7, t1##_x; \
91 	filter_8bit(x3, t2, t3, t7, t4); \
92 	filter_8bit(x6, t2, t3, t7, t4); \
93 	vextracti128 $1, x3, t3##_x; \
94 	vextracti128 $1, x6, t2##_x; \
95 	filter_8bit(x2, t5, t6, t7, t4); \
96 	filter_8bit(x5, t5, t6, t7, t4); \
97 	filter_8bit(x1, t5, t6, t7, t4); \
98 	filter_8bit(x4, t5, t6, t7, t4); \
99 	\
100 	vpxor t4##_x, t4##_x, t4##_x; \
101 	\
102 	/* AES subbytes + AES shift rows */ \
103 	vextracti128 $1, x2, t6##_x; \
104 	vextracti128 $1, x5, t5##_x; \
105 	vaesenclast t4##_x, x0##_x, x0##_x; \
106 	vaesenclast t4##_x, t0##_x, t0##_x; \
107 	vinserti128 $1, t0##_x, x0, x0; \
108 	vaesenclast t4##_x, x7##_x, x7##_x; \
109 	vaesenclast t4##_x, t1##_x, t1##_x; \
110 	vinserti128 $1, t1##_x, x7, x7; \
111 	vaesenclast t4##_x, x3##_x, x3##_x; \
112 	vaesenclast t4##_x, t3##_x, t3##_x; \
113 	vinserti128 $1, t3##_x, x3, x3; \
114 	vaesenclast t4##_x, x6##_x, x6##_x; \
115 	vaesenclast t4##_x, t2##_x, t2##_x; \
116 	vinserti128 $1, t2##_x, x6, x6; \
117 	vextracti128 $1, x1, t3##_x; \
118 	vextracti128 $1, x4, t2##_x; \
119 	vbroadcasti128 .Lpost_tf_lo_s1, t0; \
120 	vbroadcasti128 .Lpost_tf_hi_s1, t1; \
121 	vaesenclast t4##_x, x2##_x, x2##_x; \
122 	vaesenclast t4##_x, t6##_x, t6##_x; \
123 	vinserti128 $1, t6##_x, x2, x2; \
124 	vaesenclast t4##_x, x5##_x, x5##_x; \
125 	vaesenclast t4##_x, t5##_x, t5##_x; \
126 	vinserti128 $1, t5##_x, x5, x5; \
127 	vaesenclast t4##_x, x1##_x, x1##_x; \
128 	vaesenclast t4##_x, t3##_x, t3##_x; \
129 	vinserti128 $1, t3##_x, x1, x1; \
130 	vaesenclast t4##_x, x4##_x, x4##_x; \
131 	vaesenclast t4##_x, t2##_x, t2##_x; \
132 	vinserti128 $1, t2##_x, x4, x4; \
133 	\
134 	/* postfilter sboxes 1 and 4 */ \
135 	vbroadcasti128 .Lpost_tf_lo_s3, t2; \
136 	vbroadcasti128 .Lpost_tf_hi_s3, t3; \
137 	filter_8bit(x0, t0, t1, t7, t6); \
138 	filter_8bit(x7, t0, t1, t7, t6); \
139 	filter_8bit(x3, t0, t1, t7, t6); \
140 	filter_8bit(x6, t0, t1, t7, t6); \
141 	\
142 	/* postfilter sbox 3 */ \
143 	vbroadcasti128 .Lpost_tf_lo_s2, t4; \
144 	vbroadcasti128 .Lpost_tf_hi_s2, t5; \
145 	filter_8bit(x2, t2, t3, t7, t6); \
146 	filter_8bit(x5, t2, t3, t7, t6); \
147 	\
148 	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
149 	\
150 	/* postfilter sbox 2 */ \
151 	filter_8bit(x1, t4, t5, t7, t2); \
152 	filter_8bit(x4, t4, t5, t7, t2); \
153 	vpxor t7, t7, t7; \
154 	\
155 	vpsrldq $1, t0, t1; \
156 	vpsrldq $2, t0, t2; \
157 	vpshufb t7, t1, t1; \
158 	vpsrldq $3, t0, t3; \
159 	\
160 	/* P-function */ \
161 	vpxor x5, x0, x0; \
162 	vpxor x6, x1, x1; \
163 	vpxor x7, x2, x2; \
164 	vpxor x4, x3, x3; \
165 	\
166 	vpshufb t7, t2, t2; \
167 	vpsrldq $4, t0, t4; \
168 	vpshufb t7, t3, t3; \
169 	vpsrldq $5, t0, t5; \
170 	vpshufb t7, t4, t4; \
171 	\
172 	vpxor x2, x4, x4; \
173 	vpxor x3, x5, x5; \
174 	vpxor x0, x6, x6; \
175 	vpxor x1, x7, x7; \
176 	\
177 	vpsrldq $6, t0, t6; \
178 	vpshufb t7, t5, t5; \
179 	vpshufb t7, t6, t6; \
180 	\
181 	vpxor x7, x0, x0; \
182 	vpxor x4, x1, x1; \
183 	vpxor x5, x2, x2; \
184 	vpxor x6, x3, x3; \
185 	\
186 	vpxor x3, x4, x4; \
187 	vpxor x0, x5, x5; \
188 	vpxor x1, x6, x6; \
189 	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
190 	\
191 	/* Add key material and result to CD (x becomes new CD) */ \
192 	\
193 	vpxor t6, x1, x1; \
194 	vpxor 5 * 32(mem_cd), x1, x1; \
195 	\
196 	vpsrldq $7, t0, t6; \
197 	vpshufb t7, t0, t0; \
198 	vpshufb t7, t6, t7; \
199 	\
200 	vpxor t7, x0, x0; \
201 	vpxor 4 * 32(mem_cd), x0, x0; \
202 	\
203 	vpxor t5, x2, x2; \
204 	vpxor 6 * 32(mem_cd), x2, x2; \
205 	\
206 	vpxor t4, x3, x3; \
207 	vpxor 7 * 32(mem_cd), x3, x3; \
208 	\
209 	vpxor t3, x4, x4; \
210 	vpxor 0 * 32(mem_cd), x4, x4; \
211 	\
212 	vpxor t2, x5, x5; \
213 	vpxor 1 * 32(mem_cd), x5, x5; \
214 	\
215 	vpxor t1, x6, x6; \
216 	vpxor 2 * 32(mem_cd), x6, x6; \
217 	\
218 	vpxor t0, x7, x7; \
219 	vpxor 3 * 32(mem_cd), x7, x7;
220 
221 /*
222  * Size optimization... with inlined roundsm32 binary would be over 5 times
223  * larger and would only marginally faster.
224  */
225 .align 8
226 SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
227 	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
228 		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
229 		  %rcx, (%r9));
230 	RET;
231 SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
232 
233 .align 8
234 SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
235 	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
236 		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
237 		  %rax, (%r9));
238 	RET;
239 SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
240 
241 /*
242  * IN/OUT:
243  *  x0..x7: byte-sliced AB state preloaded
244  *  mem_ab: byte-sliced AB state in memory
245  *  mem_cb: byte-sliced CD state in memory
246  */
247 #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
248 		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
249 	leaq (key_table + (i) * 8)(CTX), %r9; \
250 	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
251 	\
252 	vmovdqu x0, 4 * 32(mem_cd); \
253 	vmovdqu x1, 5 * 32(mem_cd); \
254 	vmovdqu x2, 6 * 32(mem_cd); \
255 	vmovdqu x3, 7 * 32(mem_cd); \
256 	vmovdqu x4, 0 * 32(mem_cd); \
257 	vmovdqu x5, 1 * 32(mem_cd); \
258 	vmovdqu x6, 2 * 32(mem_cd); \
259 	vmovdqu x7, 3 * 32(mem_cd); \
260 	\
261 	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
262 	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
263 	\
264 	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
265 
266 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
267 
268 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
269 	/* Store new AB state */ \
270 	vmovdqu x4, 4 * 32(mem_ab); \
271 	vmovdqu x5, 5 * 32(mem_ab); \
272 	vmovdqu x6, 6 * 32(mem_ab); \
273 	vmovdqu x7, 7 * 32(mem_ab); \
274 	vmovdqu x0, 0 * 32(mem_ab); \
275 	vmovdqu x1, 1 * 32(mem_ab); \
276 	vmovdqu x2, 2 * 32(mem_ab); \
277 	vmovdqu x3, 3 * 32(mem_ab);
278 
279 #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
280 		      y6, y7, mem_ab, mem_cd, i) \
281 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
282 		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
283 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
284 		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
285 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
286 		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
287 
288 #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
289 		      y6, y7, mem_ab, mem_cd, i) \
290 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
291 		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
292 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
293 		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
294 	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
295 		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
296 
297 /*
298  * IN:
299  *  v0..3: byte-sliced 32-bit integers
300  * OUT:
301  *  v0..3: (IN <<< 1)
302  */
303 #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
304 	vpcmpgtb v0, zero, t0; \
305 	vpaddb v0, v0, v0; \
306 	vpabsb t0, t0; \
307 	\
308 	vpcmpgtb v1, zero, t1; \
309 	vpaddb v1, v1, v1; \
310 	vpabsb t1, t1; \
311 	\
312 	vpcmpgtb v2, zero, t2; \
313 	vpaddb v2, v2, v2; \
314 	vpabsb t2, t2; \
315 	\
316 	vpor t0, v1, v1; \
317 	\
318 	vpcmpgtb v3, zero, t0; \
319 	vpaddb v3, v3, v3; \
320 	vpabsb t0, t0; \
321 	\
322 	vpor t1, v2, v2; \
323 	vpor t2, v3, v3; \
324 	vpor t0, v0, v0;
325 
326 /*
327  * IN:
328  *   r: byte-sliced AB state in memory
329  *   l: byte-sliced CD state in memory
330  * OUT:
331  *   x0..x7: new byte-sliced CD state
332  */
333 #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
334 	      tt1, tt2, tt3, kll, klr, krl, krr) \
335 	/* \
336 	 * t0 = kll; \
337 	 * t0 &= ll; \
338 	 * lr ^= rol32(t0, 1); \
339 	 */ \
340 	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
341 	vpxor tt0, tt0, tt0; \
342 	vpshufb tt0, t0, t3; \
343 	vpsrldq $1, t0, t0; \
344 	vpshufb tt0, t0, t2; \
345 	vpsrldq $1, t0, t0; \
346 	vpshufb tt0, t0, t1; \
347 	vpsrldq $1, t0, t0; \
348 	vpshufb tt0, t0, t0; \
349 	\
350 	vpand l0, t0, t0; \
351 	vpand l1, t1, t1; \
352 	vpand l2, t2, t2; \
353 	vpand l3, t3, t3; \
354 	\
355 	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
356 	\
357 	vpxor l4, t0, l4; \
358 	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
359 	vmovdqu l4, 4 * 32(l); \
360 	vpxor l5, t1, l5; \
361 	vmovdqu l5, 5 * 32(l); \
362 	vpxor l6, t2, l6; \
363 	vmovdqu l6, 6 * 32(l); \
364 	vpxor l7, t3, l7; \
365 	vmovdqu l7, 7 * 32(l); \
366 	\
367 	/* \
368 	 * t2 = krr; \
369 	 * t2 |= rr; \
370 	 * rl ^= t2; \
371 	 */ \
372 	\
373 	vpshufb tt0, t0, t3; \
374 	vpsrldq $1, t0, t0; \
375 	vpshufb tt0, t0, t2; \
376 	vpsrldq $1, t0, t0; \
377 	vpshufb tt0, t0, t1; \
378 	vpsrldq $1, t0, t0; \
379 	vpshufb tt0, t0, t0; \
380 	\
381 	vpor 4 * 32(r), t0, t0; \
382 	vpor 5 * 32(r), t1, t1; \
383 	vpor 6 * 32(r), t2, t2; \
384 	vpor 7 * 32(r), t3, t3; \
385 	\
386 	vpxor 0 * 32(r), t0, t0; \
387 	vpxor 1 * 32(r), t1, t1; \
388 	vpxor 2 * 32(r), t2, t2; \
389 	vpxor 3 * 32(r), t3, t3; \
390 	vmovdqu t0, 0 * 32(r); \
391 	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
392 	vmovdqu t1, 1 * 32(r); \
393 	vmovdqu t2, 2 * 32(r); \
394 	vmovdqu t3, 3 * 32(r); \
395 	\
396 	/* \
397 	 * t2 = krl; \
398 	 * t2 &= rl; \
399 	 * rr ^= rol32(t2, 1); \
400 	 */ \
401 	vpshufb tt0, t0, t3; \
402 	vpsrldq $1, t0, t0; \
403 	vpshufb tt0, t0, t2; \
404 	vpsrldq $1, t0, t0; \
405 	vpshufb tt0, t0, t1; \
406 	vpsrldq $1, t0, t0; \
407 	vpshufb tt0, t0, t0; \
408 	\
409 	vpand 0 * 32(r), t0, t0; \
410 	vpand 1 * 32(r), t1, t1; \
411 	vpand 2 * 32(r), t2, t2; \
412 	vpand 3 * 32(r), t3, t3; \
413 	\
414 	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
415 	\
416 	vpxor 4 * 32(r), t0, t0; \
417 	vpxor 5 * 32(r), t1, t1; \
418 	vpxor 6 * 32(r), t2, t2; \
419 	vpxor 7 * 32(r), t3, t3; \
420 	vmovdqu t0, 4 * 32(r); \
421 	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
422 	vmovdqu t1, 5 * 32(r); \
423 	vmovdqu t2, 6 * 32(r); \
424 	vmovdqu t3, 7 * 32(r); \
425 	\
426 	/* \
427 	 * t0 = klr; \
428 	 * t0 |= lr; \
429 	 * ll ^= t0; \
430 	 */ \
431 	\
432 	vpshufb tt0, t0, t3; \
433 	vpsrldq $1, t0, t0; \
434 	vpshufb tt0, t0, t2; \
435 	vpsrldq $1, t0, t0; \
436 	vpshufb tt0, t0, t1; \
437 	vpsrldq $1, t0, t0; \
438 	vpshufb tt0, t0, t0; \
439 	\
440 	vpor l4, t0, t0; \
441 	vpor l5, t1, t1; \
442 	vpor l6, t2, t2; \
443 	vpor l7, t3, t3; \
444 	\
445 	vpxor l0, t0, l0; \
446 	vmovdqu l0, 0 * 32(l); \
447 	vpxor l1, t1, l1; \
448 	vmovdqu l1, 1 * 32(l); \
449 	vpxor l2, t2, l2; \
450 	vmovdqu l2, 2 * 32(l); \
451 	vpxor l3, t3, l3; \
452 	vmovdqu l3, 3 * 32(l);
453 
454 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
455 	vpunpckhdq x1, x0, t2; \
456 	vpunpckldq x1, x0, x0; \
457 	\
458 	vpunpckldq x3, x2, t1; \
459 	vpunpckhdq x3, x2, x2; \
460 	\
461 	vpunpckhqdq t1, x0, x1; \
462 	vpunpcklqdq t1, x0, x0; \
463 	\
464 	vpunpckhqdq x2, t2, x3; \
465 	vpunpcklqdq x2, t2, x2;
466 
467 #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
468 			      a3, b3, c3, d3, st0, st1) \
469 	vmovdqu d2, st0; \
470 	vmovdqu d3, st1; \
471 	transpose_4x4(a0, a1, a2, a3, d2, d3); \
472 	transpose_4x4(b0, b1, b2, b3, d2, d3); \
473 	vmovdqu st0, d2; \
474 	vmovdqu st1, d3; \
475 	\
476 	vmovdqu a0, st0; \
477 	vmovdqu a1, st1; \
478 	transpose_4x4(c0, c1, c2, c3, a0, a1); \
479 	transpose_4x4(d0, d1, d2, d3, a0, a1); \
480 	\
481 	vbroadcasti128 .Lshufb_16x16b, a0; \
482 	vmovdqu st1, a1; \
483 	vpshufb a0, a2, a2; \
484 	vpshufb a0, a3, a3; \
485 	vpshufb a0, b0, b0; \
486 	vpshufb a0, b1, b1; \
487 	vpshufb a0, b2, b2; \
488 	vpshufb a0, b3, b3; \
489 	vpshufb a0, a1, a1; \
490 	vpshufb a0, c0, c0; \
491 	vpshufb a0, c1, c1; \
492 	vpshufb a0, c2, c2; \
493 	vpshufb a0, c3, c3; \
494 	vpshufb a0, d0, d0; \
495 	vpshufb a0, d1, d1; \
496 	vpshufb a0, d2, d2; \
497 	vpshufb a0, d3, d3; \
498 	vmovdqu d3, st1; \
499 	vmovdqu st0, d3; \
500 	vpshufb a0, d3, a0; \
501 	vmovdqu d2, st0; \
502 	\
503 	transpose_4x4(a0, b0, c0, d0, d2, d3); \
504 	transpose_4x4(a1, b1, c1, d1, d2, d3); \
505 	vmovdqu st0, d2; \
506 	vmovdqu st1, d3; \
507 	\
508 	vmovdqu b0, st0; \
509 	vmovdqu b1, st1; \
510 	transpose_4x4(a2, b2, c2, d2, b0, b1); \
511 	transpose_4x4(a3, b3, c3, d3, b0, b1); \
512 	vmovdqu st0, b0; \
513 	vmovdqu st1, b1; \
514 	/* does not adjust output bytes inside vectors */
515 
516 /* load blocks to registers and apply pre-whitening */
517 #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
518 		     y6, y7, rio, key) \
519 	vpbroadcastq key, x0; \
520 	vpshufb .Lpack_bswap, x0, x0; \
521 	\
522 	vpxor 0 * 32(rio), x0, y7; \
523 	vpxor 1 * 32(rio), x0, y6; \
524 	vpxor 2 * 32(rio), x0, y5; \
525 	vpxor 3 * 32(rio), x0, y4; \
526 	vpxor 4 * 32(rio), x0, y3; \
527 	vpxor 5 * 32(rio), x0, y2; \
528 	vpxor 6 * 32(rio), x0, y1; \
529 	vpxor 7 * 32(rio), x0, y0; \
530 	vpxor 8 * 32(rio), x0, x7; \
531 	vpxor 9 * 32(rio), x0, x6; \
532 	vpxor 10 * 32(rio), x0, x5; \
533 	vpxor 11 * 32(rio), x0, x4; \
534 	vpxor 12 * 32(rio), x0, x3; \
535 	vpxor 13 * 32(rio), x0, x2; \
536 	vpxor 14 * 32(rio), x0, x1; \
537 	vpxor 15 * 32(rio), x0, x0;
538 
539 /* byteslice pre-whitened blocks and store to temporary memory */
540 #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
541 		      y6, y7, mem_ab, mem_cd) \
542 	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
543 			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
544 	\
545 	vmovdqu x0, 0 * 32(mem_ab); \
546 	vmovdqu x1, 1 * 32(mem_ab); \
547 	vmovdqu x2, 2 * 32(mem_ab); \
548 	vmovdqu x3, 3 * 32(mem_ab); \
549 	vmovdqu x4, 4 * 32(mem_ab); \
550 	vmovdqu x5, 5 * 32(mem_ab); \
551 	vmovdqu x6, 6 * 32(mem_ab); \
552 	vmovdqu x7, 7 * 32(mem_ab); \
553 	vmovdqu y0, 0 * 32(mem_cd); \
554 	vmovdqu y1, 1 * 32(mem_cd); \
555 	vmovdqu y2, 2 * 32(mem_cd); \
556 	vmovdqu y3, 3 * 32(mem_cd); \
557 	vmovdqu y4, 4 * 32(mem_cd); \
558 	vmovdqu y5, 5 * 32(mem_cd); \
559 	vmovdqu y6, 6 * 32(mem_cd); \
560 	vmovdqu y7, 7 * 32(mem_cd);
561 
562 /* de-byteslice, apply post-whitening and store blocks */
563 #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
564 		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
565 	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
566 			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
567 	\
568 	vmovdqu x0, stack_tmp0; \
569 	\
570 	vpbroadcastq key, x0; \
571 	vpshufb .Lpack_bswap, x0, x0; \
572 	\
573 	vpxor x0, y7, y7; \
574 	vpxor x0, y6, y6; \
575 	vpxor x0, y5, y5; \
576 	vpxor x0, y4, y4; \
577 	vpxor x0, y3, y3; \
578 	vpxor x0, y2, y2; \
579 	vpxor x0, y1, y1; \
580 	vpxor x0, y0, y0; \
581 	vpxor x0, x7, x7; \
582 	vpxor x0, x6, x6; \
583 	vpxor x0, x5, x5; \
584 	vpxor x0, x4, x4; \
585 	vpxor x0, x3, x3; \
586 	vpxor x0, x2, x2; \
587 	vpxor x0, x1, x1; \
588 	vpxor stack_tmp0, x0, x0;
589 
590 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
591 		     y6, y7, rio) \
592 	vmovdqu x0, 0 * 32(rio); \
593 	vmovdqu x1, 1 * 32(rio); \
594 	vmovdqu x2, 2 * 32(rio); \
595 	vmovdqu x3, 3 * 32(rio); \
596 	vmovdqu x4, 4 * 32(rio); \
597 	vmovdqu x5, 5 * 32(rio); \
598 	vmovdqu x6, 6 * 32(rio); \
599 	vmovdqu x7, 7 * 32(rio); \
600 	vmovdqu y0, 8 * 32(rio); \
601 	vmovdqu y1, 9 * 32(rio); \
602 	vmovdqu y2, 10 * 32(rio); \
603 	vmovdqu y3, 11 * 32(rio); \
604 	vmovdqu y4, 12 * 32(rio); \
605 	vmovdqu y5, 13 * 32(rio); \
606 	vmovdqu y6, 14 * 32(rio); \
607 	vmovdqu y7, 15 * 32(rio);
608 
609 
610 .section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
611 .align 32
612 #define SHUFB_BYTES(idx) \
613 	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
614 .Lshufb_16x16b:
615 	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
616 	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
617 
618 .section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
619 .align 32
620 .Lpack_bswap:
621 	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
622 	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
623 
624 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
625 .section	.rodata.cst16, "aM", @progbits, 16
626 .align 16
627 
628 /* For CTR-mode IV byteswap */
629 .Lbswap128_mask:
630 	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
631 
632 /* For XTS mode */
633 .Lxts_gf128mul_and_shl1_mask_0:
634 	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
635 .Lxts_gf128mul_and_shl1_mask_1:
636 	.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
637 
638 /*
639  * pre-SubByte transform
640  *
641  * pre-lookup for sbox1, sbox2, sbox3:
642  *   swap_bitendianness(
643  *       isom_map_camellia_to_aes(
644  *           camellia_f(
645  *               swap_bitendianess(in)
646  *           )
647  *       )
648  *   )
649  *
650  * (note: '⊕ 0xc5' inside camellia_f())
651  */
652 .Lpre_tf_lo_s1:
653 	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
654 	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
655 .Lpre_tf_hi_s1:
656 	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
657 	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
658 
659 /*
660  * pre-SubByte transform
661  *
662  * pre-lookup for sbox4:
663  *   swap_bitendianness(
664  *       isom_map_camellia_to_aes(
665  *           camellia_f(
666  *               swap_bitendianess(in <<< 1)
667  *           )
668  *       )
669  *   )
670  *
671  * (note: '⊕ 0xc5' inside camellia_f())
672  */
673 .Lpre_tf_lo_s4:
674 	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
675 	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
676 .Lpre_tf_hi_s4:
677 	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
678 	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
679 
680 /*
681  * post-SubByte transform
682  *
683  * post-lookup for sbox1, sbox4:
684  *  swap_bitendianness(
685  *      camellia_h(
686  *          isom_map_aes_to_camellia(
687  *              swap_bitendianness(
688  *                  aes_inverse_affine_transform(in)
689  *              )
690  *          )
691  *      )
692  *  )
693  *
694  * (note: '⊕ 0x6e' inside camellia_h())
695  */
696 .Lpost_tf_lo_s1:
697 	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
698 	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
699 .Lpost_tf_hi_s1:
700 	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
701 	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
702 
703 /*
704  * post-SubByte transform
705  *
706  * post-lookup for sbox2:
707  *  swap_bitendianness(
708  *      camellia_h(
709  *          isom_map_aes_to_camellia(
710  *              swap_bitendianness(
711  *                  aes_inverse_affine_transform(in)
712  *              )
713  *          )
714  *      )
715  *  ) <<< 1
716  *
717  * (note: '⊕ 0x6e' inside camellia_h())
718  */
719 .Lpost_tf_lo_s2:
720 	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
721 	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
722 .Lpost_tf_hi_s2:
723 	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
724 	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
725 
726 /*
727  * post-SubByte transform
728  *
729  * post-lookup for sbox3:
730  *  swap_bitendianness(
731  *      camellia_h(
732  *          isom_map_aes_to_camellia(
733  *              swap_bitendianness(
734  *                  aes_inverse_affine_transform(in)
735  *              )
736  *          )
737  *      )
738  *  ) >>> 1
739  *
740  * (note: '⊕ 0x6e' inside camellia_h())
741  */
742 .Lpost_tf_lo_s3:
743 	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
744 	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
745 .Lpost_tf_hi_s3:
746 	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
747 	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
748 
749 /* For isolating SubBytes from AESENCLAST, inverse shift row */
750 .Linv_shift_row:
751 	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
752 	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
753 
754 .section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
755 .align 4
756 /* 4-bit mask */
757 .L0f0f0f0f:
758 	.long 0x0f0f0f0f
759 
760 .text
761 
762 .align 8
763 SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
764 	/* input:
765 	 *	%rdi: ctx, CTX
766 	 *	%rax: temporary storage, 512 bytes
767 	 *	%ymm0..%ymm15: 32 plaintext blocks
768 	 * output:
769 	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
770 	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
771 	 */
772 	FRAME_BEGIN
773 
774 	leaq 8 * 32(%rax), %rcx;
775 
776 	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
777 		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
778 		      %ymm15, %rax, %rcx);
779 
780 	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
781 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
782 		     %ymm15, %rax, %rcx, 0);
783 
784 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
785 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
786 	      %ymm15,
787 	      ((key_table + (8) * 8) + 0)(CTX),
788 	      ((key_table + (8) * 8) + 4)(CTX),
789 	      ((key_table + (8) * 8) + 8)(CTX),
790 	      ((key_table + (8) * 8) + 12)(CTX));
791 
792 	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
793 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
794 		     %ymm15, %rax, %rcx, 8);
795 
796 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
797 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
798 	      %ymm15,
799 	      ((key_table + (16) * 8) + 0)(CTX),
800 	      ((key_table + (16) * 8) + 4)(CTX),
801 	      ((key_table + (16) * 8) + 8)(CTX),
802 	      ((key_table + (16) * 8) + 12)(CTX));
803 
804 	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
805 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
806 		     %ymm15, %rax, %rcx, 16);
807 
808 	movl $24, %r8d;
809 	cmpl $16, key_length(CTX);
810 	jne .Lenc_max32;
811 
812 .Lenc_done:
813 	/* load CD for output */
814 	vmovdqu 0 * 32(%rcx), %ymm8;
815 	vmovdqu 1 * 32(%rcx), %ymm9;
816 	vmovdqu 2 * 32(%rcx), %ymm10;
817 	vmovdqu 3 * 32(%rcx), %ymm11;
818 	vmovdqu 4 * 32(%rcx), %ymm12;
819 	vmovdqu 5 * 32(%rcx), %ymm13;
820 	vmovdqu 6 * 32(%rcx), %ymm14;
821 	vmovdqu 7 * 32(%rcx), %ymm15;
822 
823 	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
824 		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
825 		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
826 
827 	FRAME_END
828 	RET;
829 
830 .align 8
831 .Lenc_max32:
832 	movl $32, %r8d;
833 
834 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
835 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
836 	      %ymm15,
837 	      ((key_table + (24) * 8) + 0)(CTX),
838 	      ((key_table + (24) * 8) + 4)(CTX),
839 	      ((key_table + (24) * 8) + 8)(CTX),
840 	      ((key_table + (24) * 8) + 12)(CTX));
841 
842 	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
843 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
844 		     %ymm15, %rax, %rcx, 24);
845 
846 	jmp .Lenc_done;
847 SYM_FUNC_END(__camellia_enc_blk32)
848 
849 .align 8
850 SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
851 	/* input:
852 	 *	%rdi: ctx, CTX
853 	 *	%rax: temporary storage, 512 bytes
854 	 *	%r8d: 24 for 16 byte key, 32 for larger
855 	 *	%ymm0..%ymm15: 16 encrypted blocks
856 	 * output:
857 	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
858 	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
859 	 */
860 	FRAME_BEGIN
861 
862 	leaq 8 * 32(%rax), %rcx;
863 
864 	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
865 		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
866 		      %ymm15, %rax, %rcx);
867 
868 	cmpl $32, %r8d;
869 	je .Ldec_max32;
870 
871 .Ldec_max24:
872 	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
873 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
874 		     %ymm15, %rax, %rcx, 16);
875 
876 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
877 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
878 	      %ymm15,
879 	      ((key_table + (16) * 8) + 8)(CTX),
880 	      ((key_table + (16) * 8) + 12)(CTX),
881 	      ((key_table + (16) * 8) + 0)(CTX),
882 	      ((key_table + (16) * 8) + 4)(CTX));
883 
884 	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
885 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
886 		     %ymm15, %rax, %rcx, 8);
887 
888 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
889 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
890 	      %ymm15,
891 	      ((key_table + (8) * 8) + 8)(CTX),
892 	      ((key_table + (8) * 8) + 12)(CTX),
893 	      ((key_table + (8) * 8) + 0)(CTX),
894 	      ((key_table + (8) * 8) + 4)(CTX));
895 
896 	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
897 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
898 		     %ymm15, %rax, %rcx, 0);
899 
900 	/* load CD for output */
901 	vmovdqu 0 * 32(%rcx), %ymm8;
902 	vmovdqu 1 * 32(%rcx), %ymm9;
903 	vmovdqu 2 * 32(%rcx), %ymm10;
904 	vmovdqu 3 * 32(%rcx), %ymm11;
905 	vmovdqu 4 * 32(%rcx), %ymm12;
906 	vmovdqu 5 * 32(%rcx), %ymm13;
907 	vmovdqu 6 * 32(%rcx), %ymm14;
908 	vmovdqu 7 * 32(%rcx), %ymm15;
909 
910 	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
911 		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
912 		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
913 
914 	FRAME_END
915 	RET;
916 
917 .align 8
918 .Ldec_max32:
919 	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
920 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
921 		     %ymm15, %rax, %rcx, 24);
922 
923 	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
924 	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
925 	      %ymm15,
926 	      ((key_table + (24) * 8) + 8)(CTX),
927 	      ((key_table + (24) * 8) + 12)(CTX),
928 	      ((key_table + (24) * 8) + 0)(CTX),
929 	      ((key_table + (24) * 8) + 4)(CTX));
930 
931 	jmp .Ldec_max24;
932 SYM_FUNC_END(__camellia_dec_blk32)
933 
934 SYM_FUNC_START(camellia_ecb_enc_32way)
935 	/* input:
936 	 *	%rdi: ctx, CTX
937 	 *	%rsi: dst (32 blocks)
938 	 *	%rdx: src (32 blocks)
939 	 */
940 	FRAME_BEGIN
941 
942 	vzeroupper;
943 
944 	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
945 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
946 		     %ymm15, %rdx, (key_table)(CTX));
947 
948 	/* now dst can be used as temporary buffer (even in src == dst case) */
949 	movq	%rsi, %rax;
950 
951 	call __camellia_enc_blk32;
952 
953 	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
954 		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
955 		     %ymm8, %rsi);
956 
957 	vzeroupper;
958 
959 	FRAME_END
960 	RET;
961 SYM_FUNC_END(camellia_ecb_enc_32way)
962 
963 SYM_FUNC_START(camellia_ecb_dec_32way)
964 	/* input:
965 	 *	%rdi: ctx, CTX
966 	 *	%rsi: dst (32 blocks)
967 	 *	%rdx: src (32 blocks)
968 	 */
969 	FRAME_BEGIN
970 
971 	vzeroupper;
972 
973 	cmpl $16, key_length(CTX);
974 	movl $32, %r8d;
975 	movl $24, %eax;
976 	cmovel %eax, %r8d; /* max */
977 
978 	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
979 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
980 		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
981 
982 	/* now dst can be used as temporary buffer (even in src == dst case) */
983 	movq	%rsi, %rax;
984 
985 	call __camellia_dec_blk32;
986 
987 	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
988 		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
989 		     %ymm8, %rsi);
990 
991 	vzeroupper;
992 
993 	FRAME_END
994 	RET;
995 SYM_FUNC_END(camellia_ecb_dec_32way)
996 
997 SYM_FUNC_START(camellia_cbc_dec_32way)
998 	/* input:
999 	 *	%rdi: ctx, CTX
1000 	 *	%rsi: dst (32 blocks)
1001 	 *	%rdx: src (32 blocks)
1002 	 */
1003 	FRAME_BEGIN
1004 
1005 	vzeroupper;
1006 
1007 	cmpl $16, key_length(CTX);
1008 	movl $32, %r8d;
1009 	movl $24, %eax;
1010 	cmovel %eax, %r8d; /* max */
1011 
1012 	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1013 		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1014 		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1015 
1016 	movq %rsp, %r10;
1017 	cmpq %rsi, %rdx;
1018 	je .Lcbc_dec_use_stack;
1019 
1020 	/* dst can be used as temporary storage, src is not overwritten. */
1021 	movq %rsi, %rax;
1022 	jmp .Lcbc_dec_continue;
1023 
1024 .Lcbc_dec_use_stack:
1025 	/*
1026 	 * dst still in-use (because dst == src), so use stack for temporary
1027 	 * storage.
1028 	 */
1029 	subq $(16 * 32), %rsp;
1030 	movq %rsp, %rax;
1031 
1032 .Lcbc_dec_continue:
1033 	call __camellia_dec_blk32;
1034 
1035 	vmovdqu %ymm7, (%rax);
1036 	vpxor %ymm7, %ymm7, %ymm7;
1037 	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1038 	vpxor (%rax), %ymm7, %ymm7;
1039 	movq %r10, %rsp;
1040 	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1041 	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1042 	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1043 	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1044 	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1045 	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1046 	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1047 	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1048 	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1049 	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1050 	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1051 	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1052 	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1053 	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1054 	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1055 	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1056 		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1057 		     %ymm8, %rsi);
1058 
1059 	vzeroupper;
1060 
1061 	FRAME_END
1062 	RET;
1063 SYM_FUNC_END(camellia_cbc_dec_32way)
1064 
1065 #define inc_le128(x, minus_one, tmp) \
1066 	vpcmpeqq minus_one, x, tmp; \
1067 	vpsubq minus_one, x, x; \
1068 	vpslldq $8, tmp, tmp; \
1069 	vpsubq tmp, x, x;
1070 
1071 #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1072 	vpcmpeqq minus_one, x, tmp1; \
1073 	vpcmpeqq minus_two, x, tmp2; \
1074 	vpsubq minus_two, x, x; \
1075 	vpor tmp2, tmp1, tmp1; \
1076 	vpslldq $8, tmp1, tmp1; \
1077 	vpsubq tmp1, x, x;
1078 
1079 SYM_FUNC_START(camellia_ctr_32way)
1080 	/* input:
1081 	 *	%rdi: ctx, CTX
1082 	 *	%rsi: dst (32 blocks)
1083 	 *	%rdx: src (32 blocks)
1084 	 *	%rcx: iv (little endian, 128bit)
1085 	 */
1086 	FRAME_BEGIN
1087 
1088 	vzeroupper;
1089 
1090 	movq %rsp, %r10;
1091 	cmpq %rsi, %rdx;
1092 	je .Lctr_use_stack;
1093 
1094 	/* dst can be used as temporary storage, src is not overwritten. */
1095 	movq %rsi, %rax;
1096 	jmp .Lctr_continue;
1097 
1098 .Lctr_use_stack:
1099 	subq $(16 * 32), %rsp;
1100 	movq %rsp, %rax;
1101 
1102 .Lctr_continue:
1103 	vpcmpeqd %ymm15, %ymm15, %ymm15;
1104 	vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1105 	vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1106 
1107 	/* load IV and byteswap */
1108 	vmovdqu (%rcx), %xmm0;
1109 	vmovdqa %xmm0, %xmm1;
1110 	inc_le128(%xmm0, %xmm15, %xmm14);
1111 	vbroadcasti128 .Lbswap128_mask, %ymm14;
1112 	vinserti128 $1, %xmm0, %ymm1, %ymm0;
1113 	vpshufb %ymm14, %ymm0, %ymm13;
1114 	vmovdqu %ymm13, 15 * 32(%rax);
1115 
1116 	/* construct IVs */
1117 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1118 	vpshufb %ymm14, %ymm0, %ymm13;
1119 	vmovdqu %ymm13, 14 * 32(%rax);
1120 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1121 	vpshufb %ymm14, %ymm0, %ymm13;
1122 	vmovdqu %ymm13, 13 * 32(%rax);
1123 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1124 	vpshufb %ymm14, %ymm0, %ymm13;
1125 	vmovdqu %ymm13, 12 * 32(%rax);
1126 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1127 	vpshufb %ymm14, %ymm0, %ymm13;
1128 	vmovdqu %ymm13, 11 * 32(%rax);
1129 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1130 	vpshufb %ymm14, %ymm0, %ymm10;
1131 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1132 	vpshufb %ymm14, %ymm0, %ymm9;
1133 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134 	vpshufb %ymm14, %ymm0, %ymm8;
1135 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136 	vpshufb %ymm14, %ymm0, %ymm7;
1137 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1138 	vpshufb %ymm14, %ymm0, %ymm6;
1139 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1140 	vpshufb %ymm14, %ymm0, %ymm5;
1141 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1142 	vpshufb %ymm14, %ymm0, %ymm4;
1143 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1144 	vpshufb %ymm14, %ymm0, %ymm3;
1145 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1146 	vpshufb %ymm14, %ymm0, %ymm2;
1147 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1148 	vpshufb %ymm14, %ymm0, %ymm1;
1149 	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1150 	vextracti128 $1, %ymm0, %xmm13;
1151 	vpshufb %ymm14, %ymm0, %ymm0;
1152 	inc_le128(%xmm13, %xmm15, %xmm14);
1153 	vmovdqu %xmm13, (%rcx);
1154 
1155 	/* inpack32_pre: */
1156 	vpbroadcastq (key_table)(CTX), %ymm15;
1157 	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1158 	vpxor %ymm0, %ymm15, %ymm0;
1159 	vpxor %ymm1, %ymm15, %ymm1;
1160 	vpxor %ymm2, %ymm15, %ymm2;
1161 	vpxor %ymm3, %ymm15, %ymm3;
1162 	vpxor %ymm4, %ymm15, %ymm4;
1163 	vpxor %ymm5, %ymm15, %ymm5;
1164 	vpxor %ymm6, %ymm15, %ymm6;
1165 	vpxor %ymm7, %ymm15, %ymm7;
1166 	vpxor %ymm8, %ymm15, %ymm8;
1167 	vpxor %ymm9, %ymm15, %ymm9;
1168 	vpxor %ymm10, %ymm15, %ymm10;
1169 	vpxor 11 * 32(%rax), %ymm15, %ymm11;
1170 	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1171 	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1172 	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1173 	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1174 
1175 	call __camellia_enc_blk32;
1176 
1177 	movq %r10, %rsp;
1178 
1179 	vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1180 	vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1181 	vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1182 	vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1183 	vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1184 	vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1185 	vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1186 	vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1187 	vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1188 	vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1189 	vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1190 	vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1191 	vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1192 	vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1193 	vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1194 	vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1195 	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1196 		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1197 		     %ymm8, %rsi);
1198 
1199 	vzeroupper;
1200 
1201 	FRAME_END
1202 	RET;
1203 SYM_FUNC_END(camellia_ctr_32way)
1204 
1205 #define gf128mul_x_ble(iv, mask, tmp) \
1206 	vpsrad $31, iv, tmp; \
1207 	vpaddq iv, iv, iv; \
1208 	vpshufd $0x13, tmp, tmp; \
1209 	vpand mask, tmp, tmp; \
1210 	vpxor tmp, iv, iv;
1211 
1212 #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1213 	vpsrad $31, iv, tmp0; \
1214 	vpaddq iv, iv, tmp1; \
1215 	vpsllq $2, iv, iv; \
1216 	vpshufd $0x13, tmp0, tmp0; \
1217 	vpsrad $31, tmp1, tmp1; \
1218 	vpand mask2, tmp0, tmp0; \
1219 	vpshufd $0x13, tmp1, tmp1; \
1220 	vpxor tmp0, iv, iv; \
1221 	vpand mask1, tmp1, tmp1; \
1222 	vpxor tmp1, iv, iv;
1223 
1224 .align 8
1225 SYM_FUNC_START_LOCAL(camellia_xts_crypt_32way)
1226 	/* input:
1227 	 *	%rdi: ctx, CTX
1228 	 *	%rsi: dst (32 blocks)
1229 	 *	%rdx: src (32 blocks)
1230 	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1231 	 *	%r8: index for input whitening key
1232 	 *	%r9: pointer to  __camellia_enc_blk32 or __camellia_dec_blk32
1233 	 */
1234 	FRAME_BEGIN
1235 
1236 	vzeroupper;
1237 
1238 	subq $(16 * 32), %rsp;
1239 	movq %rsp, %rax;
1240 
1241 	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1242 
1243 	/* load IV and construct second IV */
1244 	vmovdqu (%rcx), %xmm0;
1245 	vmovdqa %xmm0, %xmm15;
1246 	gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1247 	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1248 	vinserti128 $1, %xmm0, %ymm15, %ymm0;
1249 	vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1250 	vmovdqu %ymm15, 15 * 32(%rax);
1251 	vmovdqu %ymm0, 0 * 32(%rsi);
1252 
1253 	/* construct IVs */
1254 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1255 	vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1256 	vmovdqu %ymm15, 14 * 32(%rax);
1257 	vmovdqu %ymm0, 1 * 32(%rsi);
1258 
1259 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1260 	vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1261 	vmovdqu %ymm15, 13 * 32(%rax);
1262 	vmovdqu %ymm0, 2 * 32(%rsi);
1263 
1264 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1265 	vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1266 	vmovdqu %ymm15, 12 * 32(%rax);
1267 	vmovdqu %ymm0, 3 * 32(%rsi);
1268 
1269 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1270 	vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1271 	vmovdqu %ymm0, 4 * 32(%rsi);
1272 
1273 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274 	vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1275 	vmovdqu %ymm0, 5 * 32(%rsi);
1276 
1277 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278 	vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1279 	vmovdqu %ymm0, 6 * 32(%rsi);
1280 
1281 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282 	vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1283 	vmovdqu %ymm0, 7 * 32(%rsi);
1284 
1285 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286 	vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1287 	vmovdqu %ymm0, 8 * 32(%rsi);
1288 
1289 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290 	vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1291 	vmovdqu %ymm0, 9 * 32(%rsi);
1292 
1293 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294 	vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1295 	vmovdqu %ymm0, 10 * 32(%rsi);
1296 
1297 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298 	vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1299 	vmovdqu %ymm0, 11 * 32(%rsi);
1300 
1301 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1302 	vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1303 	vmovdqu %ymm0, 12 * 32(%rsi);
1304 
1305 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1306 	vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1307 	vmovdqu %ymm0, 13 * 32(%rsi);
1308 
1309 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1310 	vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1311 	vmovdqu %ymm0, 14 * 32(%rsi);
1312 
1313 	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1314 	vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1315 	vmovdqu %ymm15, 0 * 32(%rax);
1316 	vmovdqu %ymm0, 15 * 32(%rsi);
1317 
1318 	vextracti128 $1, %ymm0, %xmm0;
1319 	gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1320 	vmovdqu %xmm0, (%rcx);
1321 
1322 	/* inpack32_pre: */
1323 	vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1324 	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1325 	vpxor 0 * 32(%rax), %ymm15, %ymm0;
1326 	vpxor %ymm1, %ymm15, %ymm1;
1327 	vpxor %ymm2, %ymm15, %ymm2;
1328 	vpxor %ymm3, %ymm15, %ymm3;
1329 	vpxor %ymm4, %ymm15, %ymm4;
1330 	vpxor %ymm5, %ymm15, %ymm5;
1331 	vpxor %ymm6, %ymm15, %ymm6;
1332 	vpxor %ymm7, %ymm15, %ymm7;
1333 	vpxor %ymm8, %ymm15, %ymm8;
1334 	vpxor %ymm9, %ymm15, %ymm9;
1335 	vpxor %ymm10, %ymm15, %ymm10;
1336 	vpxor %ymm11, %ymm15, %ymm11;
1337 	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1338 	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1339 	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1340 	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1341 
1342 	CALL_NOSPEC r9;
1343 
1344 	addq $(16 * 32), %rsp;
1345 
1346 	vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1347 	vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1348 	vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1349 	vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1350 	vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1351 	vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1352 	vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1353 	vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1354 	vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1355 	vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1356 	vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1357 	vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1358 	vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1359 	vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1360 	vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1361 	vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1362 	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1363 		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1364 		     %ymm8, %rsi);
1365 
1366 	vzeroupper;
1367 
1368 	FRAME_END
1369 	RET;
1370 SYM_FUNC_END(camellia_xts_crypt_32way)
1371 
1372 SYM_FUNC_START(camellia_xts_enc_32way)
1373 	/* input:
1374 	 *	%rdi: ctx, CTX
1375 	 *	%rsi: dst (32 blocks)
1376 	 *	%rdx: src (32 blocks)
1377 	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1378 	 */
1379 
1380 	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1381 
1382 	leaq __camellia_enc_blk32, %r9;
1383 
1384 	jmp camellia_xts_crypt_32way;
1385 SYM_FUNC_END(camellia_xts_enc_32way)
1386 
1387 SYM_FUNC_START(camellia_xts_dec_32way)
1388 	/* input:
1389 	 *	%rdi: ctx, CTX
1390 	 *	%rsi: dst (32 blocks)
1391 	 *	%rdx: src (32 blocks)
1392 	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1393 	 */
1394 
1395 	cmpl $16, key_length(CTX);
1396 	movl $32, %r8d;
1397 	movl $24, %eax;
1398 	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1399 
1400 	leaq __camellia_dec_blk32, %r9;
1401 
1402 	jmp camellia_xts_crypt_32way;
1403 SYM_FUNC_END(camellia_xts_dec_32way)
1404