18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Hardware-accelerated CRC-32 variants for Linux on z Systems
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Use the z/Architecture Vector Extension Facility to accelerate the
68c2ecf20Sopenharmony_ci * computing of CRC-32 checksums.
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * This CRC-32 implementation algorithm processes the most-significant
98c2ecf20Sopenharmony_ci * bit first (BE).
108c2ecf20Sopenharmony_ci *
118c2ecf20Sopenharmony_ci * Copyright IBM Corp. 2015
128c2ecf20Sopenharmony_ci * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
138c2ecf20Sopenharmony_ci */
148c2ecf20Sopenharmony_ci
158c2ecf20Sopenharmony_ci#include <linux/linkage.h>
168c2ecf20Sopenharmony_ci#include <asm/nospec-insn.h>
178c2ecf20Sopenharmony_ci#include <asm/vx-insn.h>
188c2ecf20Sopenharmony_ci
198c2ecf20Sopenharmony_ci/* Vector register range containing CRC-32 constants */
208c2ecf20Sopenharmony_ci#define CONST_R1R2		%v9
218c2ecf20Sopenharmony_ci#define CONST_R3R4		%v10
228c2ecf20Sopenharmony_ci#define CONST_R5		%v11
238c2ecf20Sopenharmony_ci#define CONST_R6		%v12
248c2ecf20Sopenharmony_ci#define CONST_RU_POLY		%v13
258c2ecf20Sopenharmony_ci#define CONST_CRC_POLY		%v14
268c2ecf20Sopenharmony_ci
278c2ecf20Sopenharmony_ci.data
288c2ecf20Sopenharmony_ci.align 8
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci/*
318c2ecf20Sopenharmony_ci * The CRC-32 constant block contains reduction constants to fold and
328c2ecf20Sopenharmony_ci * process particular chunks of the input data stream in parallel.
338c2ecf20Sopenharmony_ci *
348c2ecf20Sopenharmony_ci * For the CRC-32 variants, the constants are precomputed according to
358c2ecf20Sopenharmony_ci * these defintions:
368c2ecf20Sopenharmony_ci *
378c2ecf20Sopenharmony_ci *	R1 = x4*128+64 mod P(x)
388c2ecf20Sopenharmony_ci *	R2 = x4*128    mod P(x)
398c2ecf20Sopenharmony_ci *	R3 = x128+64   mod P(x)
408c2ecf20Sopenharmony_ci *	R4 = x128      mod P(x)
418c2ecf20Sopenharmony_ci *	R5 = x96       mod P(x)
428c2ecf20Sopenharmony_ci *	R6 = x64       mod P(x)
438c2ecf20Sopenharmony_ci *
448c2ecf20Sopenharmony_ci *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
458c2ecf20Sopenharmony_ci *
468c2ecf20Sopenharmony_ci *	where P(x) is the polynomial in the normal domain and the P'(x) is the
478c2ecf20Sopenharmony_ci *	polynomial in the reversed (bitreflected) domain.
488c2ecf20Sopenharmony_ci *
498c2ecf20Sopenharmony_ci * Note that the constant definitions below are extended in order to compute
508c2ecf20Sopenharmony_ci * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
518c2ecf20Sopenharmony_ci * The righmost doubleword can be 0 to prevent contribution to the result or
528c2ecf20Sopenharmony_ci * can be multiplied by 1 to perform an XOR without the need for a separate
538c2ecf20Sopenharmony_ci * VECTOR EXCLUSIVE OR instruction.
548c2ecf20Sopenharmony_ci *
558c2ecf20Sopenharmony_ci * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
568c2ecf20Sopenharmony_ci *
578c2ecf20Sopenharmony_ci *	P(x)  = 0x04C11DB7
588c2ecf20Sopenharmony_ci *	P'(x) = 0xEDB88320
598c2ecf20Sopenharmony_ci */
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci.Lconstants_CRC_32_BE:
628c2ecf20Sopenharmony_ci	.quad		0x08833794c, 0x0e6228b11	# R1, R2
638c2ecf20Sopenharmony_ci	.quad		0x0c5b9cd4c, 0x0e8a45605	# R3, R4
648c2ecf20Sopenharmony_ci	.quad		0x0f200aa66, 1 << 32		# R5, x32
658c2ecf20Sopenharmony_ci	.quad		0x0490d678d, 1			# R6, 1
668c2ecf20Sopenharmony_ci	.quad		0x104d101df, 0			# u
678c2ecf20Sopenharmony_ci	.quad		0x104C11DB7, 0			# P(x)
688c2ecf20Sopenharmony_ci
698c2ecf20Sopenharmony_ci.previous
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_ci	GEN_BR_THUNK %r14
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci.text
748c2ecf20Sopenharmony_ci/*
758c2ecf20Sopenharmony_ci * The CRC-32 function(s) use these calling conventions:
768c2ecf20Sopenharmony_ci *
778c2ecf20Sopenharmony_ci * Parameters:
788c2ecf20Sopenharmony_ci *
798c2ecf20Sopenharmony_ci *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
808c2ecf20Sopenharmony_ci *	%r3:	Input buffer pointer, performance might be improved if the
818c2ecf20Sopenharmony_ci *		buffer is on a doubleword boundary.
828c2ecf20Sopenharmony_ci *	%r4:	Length of the buffer, must be 64 bytes or greater.
838c2ecf20Sopenharmony_ci *
848c2ecf20Sopenharmony_ci * Register usage:
858c2ecf20Sopenharmony_ci *
868c2ecf20Sopenharmony_ci *	%r5:	CRC-32 constant pool base pointer.
878c2ecf20Sopenharmony_ci *	V0:	Initial CRC value and intermediate constants and results.
888c2ecf20Sopenharmony_ci *	V1..V4:	Data for CRC computation.
898c2ecf20Sopenharmony_ci *	V5..V8:	Next data chunks that are fetched from the input buffer.
908c2ecf20Sopenharmony_ci *
918c2ecf20Sopenharmony_ci *	V9..V14: CRC-32 constants.
928c2ecf20Sopenharmony_ci */
938c2ecf20Sopenharmony_ciENTRY(crc32_be_vgfm_16)
948c2ecf20Sopenharmony_ci	/* Load CRC-32 constants */
958c2ecf20Sopenharmony_ci	larl	%r5,.Lconstants_CRC_32_BE
968c2ecf20Sopenharmony_ci	VLM	CONST_R1R2,CONST_CRC_POLY,0,%r5
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci	/* Load the initial CRC value into the leftmost word of V0. */
998c2ecf20Sopenharmony_ci	VZERO	%v0
1008c2ecf20Sopenharmony_ci	VLVGF	%v0,%r2,0
1018c2ecf20Sopenharmony_ci
1028c2ecf20Sopenharmony_ci	/* Load a 64-byte data chunk and XOR with CRC */
1038c2ecf20Sopenharmony_ci	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
1048c2ecf20Sopenharmony_ci	VX	%v1,%v0,%v1		/* V1 ^= CRC */
1058c2ecf20Sopenharmony_ci	aghi	%r3,64			/* BUF = BUF + 64 */
1068c2ecf20Sopenharmony_ci	aghi	%r4,-64			/* LEN = LEN - 64 */
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci	/* Check remaining buffer size and jump to proper folding method */
1098c2ecf20Sopenharmony_ci	cghi	%r4,64
1108c2ecf20Sopenharmony_ci	jl	.Lless_than_64bytes
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci.Lfold_64bytes_loop:
1138c2ecf20Sopenharmony_ci	/* Load the next 64-byte data chunk into V5 to V8 */
1148c2ecf20Sopenharmony_ci	VLM	%v5,%v8,0,%r3
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci	/*
1178c2ecf20Sopenharmony_ci	 * Perform a GF(2) multiplication of the doublewords in V1 with
1188c2ecf20Sopenharmony_ci	 * the reduction constants in V0.  The intermediate result is
1198c2ecf20Sopenharmony_ci	 * then folded (accumulated) with the next data chunk in V5 and
1208c2ecf20Sopenharmony_ci	 * stored in V1.  Repeat this step for the register contents
1218c2ecf20Sopenharmony_ci	 * in V2, V3, and V4 respectively.
1228c2ecf20Sopenharmony_ci	 */
1238c2ecf20Sopenharmony_ci	VGFMAG	%v1,CONST_R1R2,%v1,%v5
1248c2ecf20Sopenharmony_ci	VGFMAG	%v2,CONST_R1R2,%v2,%v6
1258c2ecf20Sopenharmony_ci	VGFMAG	%v3,CONST_R1R2,%v3,%v7
1268c2ecf20Sopenharmony_ci	VGFMAG	%v4,CONST_R1R2,%v4,%v8
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci	/* Adjust buffer pointer and length for next loop */
1298c2ecf20Sopenharmony_ci	aghi	%r3,64			/* BUF = BUF + 64 */
1308c2ecf20Sopenharmony_ci	aghi	%r4,-64			/* LEN = LEN - 64 */
1318c2ecf20Sopenharmony_ci
1328c2ecf20Sopenharmony_ci	cghi	%r4,64
1338c2ecf20Sopenharmony_ci	jnl	.Lfold_64bytes_loop
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci.Lless_than_64bytes:
1368c2ecf20Sopenharmony_ci	/* Fold V1 to V4 into a single 128-bit value in V1 */
1378c2ecf20Sopenharmony_ci	VGFMAG	%v1,CONST_R3R4,%v1,%v2
1388c2ecf20Sopenharmony_ci	VGFMAG	%v1,CONST_R3R4,%v1,%v3
1398c2ecf20Sopenharmony_ci	VGFMAG	%v1,CONST_R3R4,%v1,%v4
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	/* Check whether to continue with 64-bit folding */
1428c2ecf20Sopenharmony_ci	cghi	%r4,16
1438c2ecf20Sopenharmony_ci	jl	.Lfinal_fold
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci.Lfold_16bytes_loop:
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci	VL	%v2,0,,%r3		/* Load next data chunk */
1488c2ecf20Sopenharmony_ci	VGFMAG	%v1,CONST_R3R4,%v1,%v2	/* Fold next data chunk */
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci	/* Adjust buffer pointer and size for folding next data chunk */
1518c2ecf20Sopenharmony_ci	aghi	%r3,16
1528c2ecf20Sopenharmony_ci	aghi	%r4,-16
1538c2ecf20Sopenharmony_ci
1548c2ecf20Sopenharmony_ci	/* Process remaining data chunks */
1558c2ecf20Sopenharmony_ci	cghi	%r4,16
1568c2ecf20Sopenharmony_ci	jnl	.Lfold_16bytes_loop
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ci.Lfinal_fold:
1598c2ecf20Sopenharmony_ci	/*
1608c2ecf20Sopenharmony_ci	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
1618c2ecf20Sopenharmony_ci	 * that is XORed with the next 96-bit input data chunk.  To use a single
1628c2ecf20Sopenharmony_ci	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
1638c2ecf20Sopenharmony_ci	 * form an intermediate 96-bit value (with appended zeros) which is then
1648c2ecf20Sopenharmony_ci	 * XORed with the intermediate reduction result.
1658c2ecf20Sopenharmony_ci	 */
1668c2ecf20Sopenharmony_ci	VGFMG	%v1,CONST_R5,%v1
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	/*
1698c2ecf20Sopenharmony_ci	 * Further reduce the remaining 96-bit value to a 64-bit value using a
1708c2ecf20Sopenharmony_ci	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
1718c2ecf20Sopenharmony_ci	 * intermediate result is then XORed with the product of the leftmost
1728c2ecf20Sopenharmony_ci	 * doubleword with R6.	The result is a 64-bit value and is subject to
1738c2ecf20Sopenharmony_ci	 * the Barret reduction.
1748c2ecf20Sopenharmony_ci	 */
1758c2ecf20Sopenharmony_ci	VGFMG	%v1,CONST_R6,%v1
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci	/*
1788c2ecf20Sopenharmony_ci	 * The input values to the Barret reduction are the degree-63 polynomial
1798c2ecf20Sopenharmony_ci	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
1808c2ecf20Sopenharmony_ci	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
1818c2ecf20Sopenharmony_ci	 * P(x).
1828c2ecf20Sopenharmony_ci	 *
1838c2ecf20Sopenharmony_ci	 * The Barret reduction algorithm is defined as:
1848c2ecf20Sopenharmony_ci	 *
1858c2ecf20Sopenharmony_ci	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
1868c2ecf20Sopenharmony_ci	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
1878c2ecf20Sopenharmony_ci	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
1888c2ecf20Sopenharmony_ci	 *
1898c2ecf20Sopenharmony_ci	 * Note: To compensate the division by x^32, use the vector unpack
1908c2ecf20Sopenharmony_ci	 * instruction to move the leftmost word into the leftmost doubleword
1918c2ecf20Sopenharmony_ci	 * of the vector register.  The rightmost doubleword is multiplied
1928c2ecf20Sopenharmony_ci	 * with zero to not contribute to the intermedate results.
1938c2ecf20Sopenharmony_ci	 */
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
1968c2ecf20Sopenharmony_ci	VUPLLF	%v2,%v1
1978c2ecf20Sopenharmony_ci	VGFMG	%v2,CONST_RU_POLY,%v2
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	/*
2008c2ecf20Sopenharmony_ci	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
2018c2ecf20Sopenharmony_ci	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
2028c2ecf20Sopenharmony_ci	 * The final result is in the rightmost word of V2.
2038c2ecf20Sopenharmony_ci	 */
2048c2ecf20Sopenharmony_ci	VUPLLF	%v2,%v2
2058c2ecf20Sopenharmony_ci	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci.Ldone:
2088c2ecf20Sopenharmony_ci	VLGVF	%r2,%v2,3
2098c2ecf20Sopenharmony_ci	BR_EX	%r14
2108c2ecf20Sopenharmony_ciENDPROC(crc32_be_vgfm_16)
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci.previous
213