1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Hardware-accelerated CRC-32 variants for Linux on z Systems
4  *
5  * Use the z/Architecture Vector Extension Facility to accelerate the
6  * computing of CRC-32 checksums.
7  *
8  * This CRC-32 implementation algorithm processes the most-significant
9  * bit first (BE).
10  *
11  * Copyright IBM Corp. 2015
12  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13  */
14 
15 #include <linux/linkage.h>
16 #include <asm/nospec-insn.h>
17 #include <asm/vx-insn.h>
18 
19 /* Vector register range containing CRC-32 constants */
20 #define CONST_R1R2		%v9
21 #define CONST_R3R4		%v10
22 #define CONST_R5		%v11
23 #define CONST_R6		%v12
24 #define CONST_RU_POLY		%v13
25 #define CONST_CRC_POLY		%v14
26 
27 .data
28 .align 8
29 
30 /*
31  * The CRC-32 constant block contains reduction constants to fold and
32  * process particular chunks of the input data stream in parallel.
33  *
34  * For the CRC-32 variants, the constants are precomputed according to
35  * these defintions:
36  *
37  *	R1 = x4*128+64 mod P(x)
38  *	R2 = x4*128    mod P(x)
39  *	R3 = x128+64   mod P(x)
40  *	R4 = x128      mod P(x)
41  *	R5 = x96       mod P(x)
42  *	R6 = x64       mod P(x)
43  *
44  *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
45  *
46  *	where P(x) is the polynomial in the normal domain and the P'(x) is the
47  *	polynomial in the reversed (bitreflected) domain.
48  *
49  * Note that the constant definitions below are extended in order to compute
50  * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
51  * The righmost doubleword can be 0 to prevent contribution to the result or
52  * can be multiplied by 1 to perform an XOR without the need for a separate
53  * VECTOR EXCLUSIVE OR instruction.
54  *
55  * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
56  *
57  *	P(x)  = 0x04C11DB7
58  *	P'(x) = 0xEDB88320
59  */
60 
61 .Lconstants_CRC_32_BE:
62 	.quad		0x08833794c, 0x0e6228b11	# R1, R2
63 	.quad		0x0c5b9cd4c, 0x0e8a45605	# R3, R4
64 	.quad		0x0f200aa66, 1 << 32		# R5, x32
65 	.quad		0x0490d678d, 1			# R6, 1
66 	.quad		0x104d101df, 0			# u
67 	.quad		0x104C11DB7, 0			# P(x)
68 
69 .previous
70 
71 	GEN_BR_THUNK %r14
72 
73 .text
74 /*
75  * The CRC-32 function(s) use these calling conventions:
76  *
77  * Parameters:
78  *
79  *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
80  *	%r3:	Input buffer pointer, performance might be improved if the
81  *		buffer is on a doubleword boundary.
82  *	%r4:	Length of the buffer, must be 64 bytes or greater.
83  *
84  * Register usage:
85  *
86  *	%r5:	CRC-32 constant pool base pointer.
87  *	V0:	Initial CRC value and intermediate constants and results.
88  *	V1..V4:	Data for CRC computation.
89  *	V5..V8:	Next data chunks that are fetched from the input buffer.
90  *
91  *	V9..V14: CRC-32 constants.
92  */
93 ENTRY(crc32_be_vgfm_16)
94 	/* Load CRC-32 constants */
95 	larl	%r5,.Lconstants_CRC_32_BE
96 	VLM	CONST_R1R2,CONST_CRC_POLY,0,%r5
97 
98 	/* Load the initial CRC value into the leftmost word of V0. */
99 	VZERO	%v0
100 	VLVGF	%v0,%r2,0
101 
102 	/* Load a 64-byte data chunk and XOR with CRC */
103 	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
104 	VX	%v1,%v0,%v1		/* V1 ^= CRC */
105 	aghi	%r3,64			/* BUF = BUF + 64 */
106 	aghi	%r4,-64			/* LEN = LEN - 64 */
107 
108 	/* Check remaining buffer size and jump to proper folding method */
109 	cghi	%r4,64
110 	jl	.Lless_than_64bytes
111 
112 .Lfold_64bytes_loop:
113 	/* Load the next 64-byte data chunk into V5 to V8 */
114 	VLM	%v5,%v8,0,%r3
115 
116 	/*
117 	 * Perform a GF(2) multiplication of the doublewords in V1 with
118 	 * the reduction constants in V0.  The intermediate result is
119 	 * then folded (accumulated) with the next data chunk in V5 and
120 	 * stored in V1.  Repeat this step for the register contents
121 	 * in V2, V3, and V4 respectively.
122 	 */
123 	VGFMAG	%v1,CONST_R1R2,%v1,%v5
124 	VGFMAG	%v2,CONST_R1R2,%v2,%v6
125 	VGFMAG	%v3,CONST_R1R2,%v3,%v7
126 	VGFMAG	%v4,CONST_R1R2,%v4,%v8
127 
128 	/* Adjust buffer pointer and length for next loop */
129 	aghi	%r3,64			/* BUF = BUF + 64 */
130 	aghi	%r4,-64			/* LEN = LEN - 64 */
131 
132 	cghi	%r4,64
133 	jnl	.Lfold_64bytes_loop
134 
135 .Lless_than_64bytes:
136 	/* Fold V1 to V4 into a single 128-bit value in V1 */
137 	VGFMAG	%v1,CONST_R3R4,%v1,%v2
138 	VGFMAG	%v1,CONST_R3R4,%v1,%v3
139 	VGFMAG	%v1,CONST_R3R4,%v1,%v4
140 
141 	/* Check whether to continue with 64-bit folding */
142 	cghi	%r4,16
143 	jl	.Lfinal_fold
144 
145 .Lfold_16bytes_loop:
146 
147 	VL	%v2,0,,%r3		/* Load next data chunk */
148 	VGFMAG	%v1,CONST_R3R4,%v1,%v2	/* Fold next data chunk */
149 
150 	/* Adjust buffer pointer and size for folding next data chunk */
151 	aghi	%r3,16
152 	aghi	%r4,-16
153 
154 	/* Process remaining data chunks */
155 	cghi	%r4,16
156 	jnl	.Lfold_16bytes_loop
157 
158 .Lfinal_fold:
159 	/*
160 	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
161 	 * that is XORed with the next 96-bit input data chunk.  To use a single
162 	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
163 	 * form an intermediate 96-bit value (with appended zeros) which is then
164 	 * XORed with the intermediate reduction result.
165 	 */
166 	VGFMG	%v1,CONST_R5,%v1
167 
168 	/*
169 	 * Further reduce the remaining 96-bit value to a 64-bit value using a
170 	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
171 	 * intermediate result is then XORed with the product of the leftmost
172 	 * doubleword with R6.	The result is a 64-bit value and is subject to
173 	 * the Barret reduction.
174 	 */
175 	VGFMG	%v1,CONST_R6,%v1
176 
177 	/*
178 	 * The input values to the Barret reduction are the degree-63 polynomial
179 	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
180 	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
181 	 * P(x).
182 	 *
183 	 * The Barret reduction algorithm is defined as:
184 	 *
185 	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
186 	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
187 	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
188 	 *
189 	 * Note: To compensate the division by x^32, use the vector unpack
190 	 * instruction to move the leftmost word into the leftmost doubleword
191 	 * of the vector register.  The rightmost doubleword is multiplied
192 	 * with zero to not contribute to the intermedate results.
193 	 */
194 
195 	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
196 	VUPLLF	%v2,%v1
197 	VGFMG	%v2,CONST_RU_POLY,%v2
198 
199 	/*
200 	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
201 	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
202 	 * The final result is in the rightmost word of V2.
203 	 */
204 	VUPLLF	%v2,%v2
205 	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
206 
207 .Ldone:
208 	VLGVF	%r2,%v2,3
209 	BR_EX	%r14
210 ENDPROC(crc32_be_vgfm_16)
211 
212 .previous
213