1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cryptographic API.
4 *
5 * s390 implementation of the AES Cipher Algorithm.
6 *
7 * s390 Version:
8 * Copyright IBM Corp. 2005, 2017
9 * Author(s): Jan Glauber (jang@de.ibm.com)
10 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11 * Patrick Steuer <patrick.steuer@de.ibm.com>
12 * Harald Freudenberger <freude@de.ibm.com>
13 *
14 * Derived from "crypto/aes_generic.c"
15 */
16
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 kma_functions;
41
42 struct s390_aes_ctx {
43 u8 key[AES_MAX_KEY_SIZE];
44 int key_len;
45 unsigned long fc;
46 union {
47 struct crypto_skcipher *skcipher;
48 struct crypto_cipher *cip;
49 } fallback;
50 };
51
52 struct s390_xts_ctx {
53 u8 key[32];
54 u8 pcc_key[32];
55 int key_len;
56 unsigned long fc;
57 struct crypto_skcipher *fallback;
58 };
59
60 struct gcm_sg_walk {
61 struct scatter_walk walk;
62 unsigned int walk_bytes;
63 u8 *walk_ptr;
64 unsigned int walk_bytes_remain;
65 u8 buf[AES_BLOCK_SIZE];
66 unsigned int buf_bytes;
67 u8 *ptr;
68 unsigned int nbytes;
69 };
70
setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len)71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 unsigned int key_len)
73 {
74 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75
76 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
77 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
78 CRYPTO_TFM_REQ_MASK);
79
80 return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
81 }
82
aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len)83 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
84 unsigned int key_len)
85 {
86 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
87 unsigned long fc;
88
89 /* Pick the correct function code based on the key length */
90 fc = (key_len == 16) ? CPACF_KM_AES_128 :
91 (key_len == 24) ? CPACF_KM_AES_192 :
92 (key_len == 32) ? CPACF_KM_AES_256 : 0;
93
94 /* Check if the function code is available */
95 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
96 if (!sctx->fc)
97 return setkey_fallback_cip(tfm, in_key, key_len);
98
99 sctx->key_len = key_len;
100 memcpy(sctx->key, in_key, key_len);
101 return 0;
102 }
103
crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)104 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
105 {
106 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
107
108 if (unlikely(!sctx->fc)) {
109 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
110 return;
111 }
112 cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
113 }
114
crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)115 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
116 {
117 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
118
119 if (unlikely(!sctx->fc)) {
120 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
121 return;
122 }
123 cpacf_km(sctx->fc | CPACF_DECRYPT,
124 &sctx->key, out, in, AES_BLOCK_SIZE);
125 }
126
fallback_init_cip(struct crypto_tfm *tfm)127 static int fallback_init_cip(struct crypto_tfm *tfm)
128 {
129 const char *name = tfm->__crt_alg->cra_name;
130 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
131
132 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
133 CRYPTO_ALG_NEED_FALLBACK);
134
135 if (IS_ERR(sctx->fallback.cip)) {
136 pr_err("Allocating AES fallback algorithm %s failed\n",
137 name);
138 return PTR_ERR(sctx->fallback.cip);
139 }
140
141 return 0;
142 }
143
fallback_exit_cip(struct crypto_tfm *tfm)144 static void fallback_exit_cip(struct crypto_tfm *tfm)
145 {
146 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
147
148 crypto_free_cipher(sctx->fallback.cip);
149 sctx->fallback.cip = NULL;
150 }
151
152 static struct crypto_alg aes_alg = {
153 .cra_name = "aes",
154 .cra_driver_name = "aes-s390",
155 .cra_priority = 300,
156 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
157 CRYPTO_ALG_NEED_FALLBACK,
158 .cra_blocksize = AES_BLOCK_SIZE,
159 .cra_ctxsize = sizeof(struct s390_aes_ctx),
160 .cra_module = THIS_MODULE,
161 .cra_init = fallback_init_cip,
162 .cra_exit = fallback_exit_cip,
163 .cra_u = {
164 .cipher = {
165 .cia_min_keysize = AES_MIN_KEY_SIZE,
166 .cia_max_keysize = AES_MAX_KEY_SIZE,
167 .cia_setkey = aes_set_key,
168 .cia_encrypt = crypto_aes_encrypt,
169 .cia_decrypt = crypto_aes_decrypt,
170 }
171 }
172 };
173
setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key, unsigned int len)174 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
175 unsigned int len)
176 {
177 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
178
179 crypto_skcipher_clear_flags(sctx->fallback.skcipher,
180 CRYPTO_TFM_REQ_MASK);
181 crypto_skcipher_set_flags(sctx->fallback.skcipher,
182 crypto_skcipher_get_flags(tfm) &
183 CRYPTO_TFM_REQ_MASK);
184 return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
185 }
186
fallback_skcipher_crypt(struct s390_aes_ctx *sctx, struct skcipher_request *req, unsigned long modifier)187 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
188 struct skcipher_request *req,
189 unsigned long modifier)
190 {
191 struct skcipher_request *subreq = skcipher_request_ctx(req);
192
193 *subreq = *req;
194 skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
195 return (modifier & CPACF_DECRYPT) ?
196 crypto_skcipher_decrypt(subreq) :
197 crypto_skcipher_encrypt(subreq);
198 }
199
ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len)200 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
201 unsigned int key_len)
202 {
203 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
204 unsigned long fc;
205
206 /* Pick the correct function code based on the key length */
207 fc = (key_len == 16) ? CPACF_KM_AES_128 :
208 (key_len == 24) ? CPACF_KM_AES_192 :
209 (key_len == 32) ? CPACF_KM_AES_256 : 0;
210
211 /* Check if the function code is available */
212 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
213 if (!sctx->fc)
214 return setkey_fallback_skcipher(tfm, in_key, key_len);
215
216 sctx->key_len = key_len;
217 memcpy(sctx->key, in_key, key_len);
218 return 0;
219 }
220
ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)221 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
222 {
223 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
225 struct skcipher_walk walk;
226 unsigned int nbytes, n;
227 int ret;
228
229 if (unlikely(!sctx->fc))
230 return fallback_skcipher_crypt(sctx, req, modifier);
231
232 ret = skcipher_walk_virt(&walk, req, false);
233 while ((nbytes = walk.nbytes) != 0) {
234 /* only use complete blocks */
235 n = nbytes & ~(AES_BLOCK_SIZE - 1);
236 cpacf_km(sctx->fc | modifier, sctx->key,
237 walk.dst.virt.addr, walk.src.virt.addr, n);
238 ret = skcipher_walk_done(&walk, nbytes - n);
239 }
240 return ret;
241 }
242
ecb_aes_encrypt(struct skcipher_request *req)243 static int ecb_aes_encrypt(struct skcipher_request *req)
244 {
245 return ecb_aes_crypt(req, 0);
246 }
247
ecb_aes_decrypt(struct skcipher_request *req)248 static int ecb_aes_decrypt(struct skcipher_request *req)
249 {
250 return ecb_aes_crypt(req, CPACF_DECRYPT);
251 }
252
fallback_init_skcipher(struct crypto_skcipher *tfm)253 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
254 {
255 const char *name = crypto_tfm_alg_name(&tfm->base);
256 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
257
258 sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
259 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
260
261 if (IS_ERR(sctx->fallback.skcipher)) {
262 pr_err("Allocating AES fallback algorithm %s failed\n",
263 name);
264 return PTR_ERR(sctx->fallback.skcipher);
265 }
266
267 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
268 crypto_skcipher_reqsize(sctx->fallback.skcipher));
269 return 0;
270 }
271
fallback_exit_skcipher(struct crypto_skcipher *tfm)272 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
273 {
274 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
275
276 crypto_free_skcipher(sctx->fallback.skcipher);
277 }
278
279 static struct skcipher_alg ecb_aes_alg = {
280 .base.cra_name = "ecb(aes)",
281 .base.cra_driver_name = "ecb-aes-s390",
282 .base.cra_priority = 401, /* combo: aes + ecb + 1 */
283 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
284 .base.cra_blocksize = AES_BLOCK_SIZE,
285 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
286 .base.cra_module = THIS_MODULE,
287 .init = fallback_init_skcipher,
288 .exit = fallback_exit_skcipher,
289 .min_keysize = AES_MIN_KEY_SIZE,
290 .max_keysize = AES_MAX_KEY_SIZE,
291 .setkey = ecb_aes_set_key,
292 .encrypt = ecb_aes_encrypt,
293 .decrypt = ecb_aes_decrypt,
294 };
295
cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len)296 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
297 unsigned int key_len)
298 {
299 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
300 unsigned long fc;
301
302 /* Pick the correct function code based on the key length */
303 fc = (key_len == 16) ? CPACF_KMC_AES_128 :
304 (key_len == 24) ? CPACF_KMC_AES_192 :
305 (key_len == 32) ? CPACF_KMC_AES_256 : 0;
306
307 /* Check if the function code is available */
308 sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
309 if (!sctx->fc)
310 return setkey_fallback_skcipher(tfm, in_key, key_len);
311
312 sctx->key_len = key_len;
313 memcpy(sctx->key, in_key, key_len);
314 return 0;
315 }
316
cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)317 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
318 {
319 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
320 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
321 struct skcipher_walk walk;
322 unsigned int nbytes, n;
323 int ret;
324 struct {
325 u8 iv[AES_BLOCK_SIZE];
326 u8 key[AES_MAX_KEY_SIZE];
327 } param;
328
329 if (unlikely(!sctx->fc))
330 return fallback_skcipher_crypt(sctx, req, modifier);
331
332 ret = skcipher_walk_virt(&walk, req, false);
333 if (ret)
334 return ret;
335 memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
336 memcpy(param.key, sctx->key, sctx->key_len);
337 while ((nbytes = walk.nbytes) != 0) {
338 /* only use complete blocks */
339 n = nbytes & ~(AES_BLOCK_SIZE - 1);
340 cpacf_kmc(sctx->fc | modifier, ¶m,
341 walk.dst.virt.addr, walk.src.virt.addr, n);
342 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
343 ret = skcipher_walk_done(&walk, nbytes - n);
344 }
345 memzero_explicit(¶m, sizeof(param));
346 return ret;
347 }
348
cbc_aes_encrypt(struct skcipher_request *req)349 static int cbc_aes_encrypt(struct skcipher_request *req)
350 {
351 return cbc_aes_crypt(req, 0);
352 }
353
cbc_aes_decrypt(struct skcipher_request *req)354 static int cbc_aes_decrypt(struct skcipher_request *req)
355 {
356 return cbc_aes_crypt(req, CPACF_DECRYPT);
357 }
358
359 static struct skcipher_alg cbc_aes_alg = {
360 .base.cra_name = "cbc(aes)",
361 .base.cra_driver_name = "cbc-aes-s390",
362 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
363 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
364 .base.cra_blocksize = AES_BLOCK_SIZE,
365 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
366 .base.cra_module = THIS_MODULE,
367 .init = fallback_init_skcipher,
368 .exit = fallback_exit_skcipher,
369 .min_keysize = AES_MIN_KEY_SIZE,
370 .max_keysize = AES_MAX_KEY_SIZE,
371 .ivsize = AES_BLOCK_SIZE,
372 .setkey = cbc_aes_set_key,
373 .encrypt = cbc_aes_encrypt,
374 .decrypt = cbc_aes_decrypt,
375 };
376
xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int len)377 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
378 unsigned int len)
379 {
380 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
381
382 crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
383 crypto_skcipher_set_flags(xts_ctx->fallback,
384 crypto_skcipher_get_flags(tfm) &
385 CRYPTO_TFM_REQ_MASK);
386 return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
387 }
388
xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len)389 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
390 unsigned int key_len)
391 {
392 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
393 unsigned long fc;
394 int err;
395
396 err = xts_fallback_setkey(tfm, in_key, key_len);
397 if (err)
398 return err;
399
400 /* In fips mode only 128 bit or 256 bit keys are valid */
401 if (fips_enabled && key_len != 32 && key_len != 64)
402 return -EINVAL;
403
404 /* Pick the correct function code based on the key length */
405 fc = (key_len == 32) ? CPACF_KM_XTS_128 :
406 (key_len == 64) ? CPACF_KM_XTS_256 : 0;
407
408 /* Check if the function code is available */
409 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
410 if (!xts_ctx->fc)
411 return 0;
412
413 /* Split the XTS key into the two subkeys */
414 key_len = key_len / 2;
415 xts_ctx->key_len = key_len;
416 memcpy(xts_ctx->key, in_key, key_len);
417 memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
418 return 0;
419 }
420
xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)421 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
422 {
423 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
424 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
425 struct skcipher_walk walk;
426 unsigned int offset, nbytes, n;
427 int ret;
428 struct {
429 u8 key[32];
430 u8 tweak[16];
431 u8 block[16];
432 u8 bit[16];
433 u8 xts[16];
434 } pcc_param;
435 struct {
436 u8 key[32];
437 u8 init[16];
438 } xts_param;
439
440 if (req->cryptlen < AES_BLOCK_SIZE)
441 return -EINVAL;
442
443 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
444 struct skcipher_request *subreq = skcipher_request_ctx(req);
445
446 *subreq = *req;
447 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
448 return (modifier & CPACF_DECRYPT) ?
449 crypto_skcipher_decrypt(subreq) :
450 crypto_skcipher_encrypt(subreq);
451 }
452
453 ret = skcipher_walk_virt(&walk, req, false);
454 if (ret)
455 return ret;
456 offset = xts_ctx->key_len & 0x10;
457 memset(pcc_param.block, 0, sizeof(pcc_param.block));
458 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
459 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
460 memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
461 memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
462 cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
463
464 memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
465 memcpy(xts_param.init, pcc_param.xts, 16);
466
467 while ((nbytes = walk.nbytes) != 0) {
468 /* only use complete blocks */
469 n = nbytes & ~(AES_BLOCK_SIZE - 1);
470 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
471 walk.dst.virt.addr, walk.src.virt.addr, n);
472 ret = skcipher_walk_done(&walk, nbytes - n);
473 }
474 memzero_explicit(&pcc_param, sizeof(pcc_param));
475 memzero_explicit(&xts_param, sizeof(xts_param));
476 return ret;
477 }
478
xts_aes_encrypt(struct skcipher_request *req)479 static int xts_aes_encrypt(struct skcipher_request *req)
480 {
481 return xts_aes_crypt(req, 0);
482 }
483
xts_aes_decrypt(struct skcipher_request *req)484 static int xts_aes_decrypt(struct skcipher_request *req)
485 {
486 return xts_aes_crypt(req, CPACF_DECRYPT);
487 }
488
xts_fallback_init(struct crypto_skcipher *tfm)489 static int xts_fallback_init(struct crypto_skcipher *tfm)
490 {
491 const char *name = crypto_tfm_alg_name(&tfm->base);
492 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
493
494 xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
495 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
496
497 if (IS_ERR(xts_ctx->fallback)) {
498 pr_err("Allocating XTS fallback algorithm %s failed\n",
499 name);
500 return PTR_ERR(xts_ctx->fallback);
501 }
502 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
503 crypto_skcipher_reqsize(xts_ctx->fallback));
504 return 0;
505 }
506
xts_fallback_exit(struct crypto_skcipher *tfm)507 static void xts_fallback_exit(struct crypto_skcipher *tfm)
508 {
509 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
510
511 crypto_free_skcipher(xts_ctx->fallback);
512 }
513
514 static struct skcipher_alg xts_aes_alg = {
515 .base.cra_name = "xts(aes)",
516 .base.cra_driver_name = "xts-aes-s390",
517 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
518 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
519 .base.cra_blocksize = AES_BLOCK_SIZE,
520 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
521 .base.cra_module = THIS_MODULE,
522 .init = xts_fallback_init,
523 .exit = xts_fallback_exit,
524 .min_keysize = 2 * AES_MIN_KEY_SIZE,
525 .max_keysize = 2 * AES_MAX_KEY_SIZE,
526 .ivsize = AES_BLOCK_SIZE,
527 .setkey = xts_aes_set_key,
528 .encrypt = xts_aes_encrypt,
529 .decrypt = xts_aes_decrypt,
530 };
531
ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len)532 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
533 unsigned int key_len)
534 {
535 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
536 unsigned long fc;
537
538 /* Pick the correct function code based on the key length */
539 fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
540 (key_len == 24) ? CPACF_KMCTR_AES_192 :
541 (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
542
543 /* Check if the function code is available */
544 sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
545 if (!sctx->fc)
546 return setkey_fallback_skcipher(tfm, in_key, key_len);
547
548 sctx->key_len = key_len;
549 memcpy(sctx->key, in_key, key_len);
550 return 0;
551 }
552
__ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)553 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
554 {
555 unsigned int i, n;
556
557 /* only use complete blocks, max. PAGE_SIZE */
558 memcpy(ctrptr, iv, AES_BLOCK_SIZE);
559 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
560 for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
561 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
562 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
563 ctrptr += AES_BLOCK_SIZE;
564 }
565 return n;
566 }
567
ctr_aes_crypt(struct skcipher_request *req)568 static int ctr_aes_crypt(struct skcipher_request *req)
569 {
570 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
571 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
572 u8 buf[AES_BLOCK_SIZE], *ctrptr;
573 struct skcipher_walk walk;
574 unsigned int n, nbytes;
575 int ret, locked;
576
577 if (unlikely(!sctx->fc))
578 return fallback_skcipher_crypt(sctx, req, 0);
579
580 locked = mutex_trylock(&ctrblk_lock);
581
582 ret = skcipher_walk_virt(&walk, req, false);
583 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
584 n = AES_BLOCK_SIZE;
585
586 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
587 n = __ctrblk_init(ctrblk, walk.iv, nbytes);
588 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
589 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
590 walk.src.virt.addr, n, ctrptr);
591 if (ctrptr == ctrblk)
592 memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
593 AES_BLOCK_SIZE);
594 crypto_inc(walk.iv, AES_BLOCK_SIZE);
595 ret = skcipher_walk_done(&walk, nbytes - n);
596 }
597 if (locked)
598 mutex_unlock(&ctrblk_lock);
599 /*
600 * final block may be < AES_BLOCK_SIZE, copy only nbytes
601 */
602 if (nbytes) {
603 memset(buf, 0, AES_BLOCK_SIZE);
604 memcpy(buf, walk.src.virt.addr, nbytes);
605 cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
606 AES_BLOCK_SIZE, walk.iv);
607 memcpy(walk.dst.virt.addr, buf, nbytes);
608 crypto_inc(walk.iv, AES_BLOCK_SIZE);
609 ret = skcipher_walk_done(&walk, 0);
610 }
611
612 return ret;
613 }
614
615 static struct skcipher_alg ctr_aes_alg = {
616 .base.cra_name = "ctr(aes)",
617 .base.cra_driver_name = "ctr-aes-s390",
618 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
619 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
620 .base.cra_blocksize = 1,
621 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
622 .base.cra_module = THIS_MODULE,
623 .init = fallback_init_skcipher,
624 .exit = fallback_exit_skcipher,
625 .min_keysize = AES_MIN_KEY_SIZE,
626 .max_keysize = AES_MAX_KEY_SIZE,
627 .ivsize = AES_BLOCK_SIZE,
628 .setkey = ctr_aes_set_key,
629 .encrypt = ctr_aes_crypt,
630 .decrypt = ctr_aes_crypt,
631 .chunksize = AES_BLOCK_SIZE,
632 };
633
gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)634 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
635 unsigned int keylen)
636 {
637 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
638
639 switch (keylen) {
640 case AES_KEYSIZE_128:
641 ctx->fc = CPACF_KMA_GCM_AES_128;
642 break;
643 case AES_KEYSIZE_192:
644 ctx->fc = CPACF_KMA_GCM_AES_192;
645 break;
646 case AES_KEYSIZE_256:
647 ctx->fc = CPACF_KMA_GCM_AES_256;
648 break;
649 default:
650 return -EINVAL;
651 }
652
653 memcpy(ctx->key, key, keylen);
654 ctx->key_len = keylen;
655 return 0;
656 }
657
gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)658 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
659 {
660 switch (authsize) {
661 case 4:
662 case 8:
663 case 12:
664 case 13:
665 case 14:
666 case 15:
667 case 16:
668 break;
669 default:
670 return -EINVAL;
671 }
672
673 return 0;
674 }
675
gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg, unsigned int len)676 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
677 unsigned int len)
678 {
679 memset(gw, 0, sizeof(*gw));
680 gw->walk_bytes_remain = len;
681 scatterwalk_start(&gw->walk, sg);
682 }
683
_gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)684 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
685 {
686 struct scatterlist *nextsg;
687
688 gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
689 while (!gw->walk_bytes) {
690 nextsg = sg_next(gw->walk.sg);
691 if (!nextsg)
692 return 0;
693 scatterwalk_start(&gw->walk, nextsg);
694 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
695 gw->walk_bytes_remain);
696 }
697 gw->walk_ptr = scatterwalk_map(&gw->walk);
698 return gw->walk_bytes;
699 }
700
_gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw, unsigned int nbytes)701 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
702 unsigned int nbytes)
703 {
704 gw->walk_bytes_remain -= nbytes;
705 scatterwalk_unmap(gw->walk_ptr);
706 scatterwalk_advance(&gw->walk, nbytes);
707 scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
708 gw->walk_ptr = NULL;
709 }
710
gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)711 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
712 {
713 int n;
714
715 if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
716 gw->ptr = gw->buf;
717 gw->nbytes = gw->buf_bytes;
718 goto out;
719 }
720
721 if (gw->walk_bytes_remain == 0) {
722 gw->ptr = NULL;
723 gw->nbytes = 0;
724 goto out;
725 }
726
727 if (!_gcm_sg_clamp_and_map(gw)) {
728 gw->ptr = NULL;
729 gw->nbytes = 0;
730 goto out;
731 }
732
733 if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
734 gw->ptr = gw->walk_ptr;
735 gw->nbytes = gw->walk_bytes;
736 goto out;
737 }
738
739 while (1) {
740 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
741 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
742 gw->buf_bytes += n;
743 _gcm_sg_unmap_and_advance(gw, n);
744 if (gw->buf_bytes >= minbytesneeded) {
745 gw->ptr = gw->buf;
746 gw->nbytes = gw->buf_bytes;
747 goto out;
748 }
749 if (!_gcm_sg_clamp_and_map(gw)) {
750 gw->ptr = NULL;
751 gw->nbytes = 0;
752 goto out;
753 }
754 }
755
756 out:
757 return gw->nbytes;
758 }
759
gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)760 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
761 {
762 if (gw->walk_bytes_remain == 0) {
763 gw->ptr = NULL;
764 gw->nbytes = 0;
765 goto out;
766 }
767
768 if (!_gcm_sg_clamp_and_map(gw)) {
769 gw->ptr = NULL;
770 gw->nbytes = 0;
771 goto out;
772 }
773
774 if (gw->walk_bytes >= minbytesneeded) {
775 gw->ptr = gw->walk_ptr;
776 gw->nbytes = gw->walk_bytes;
777 goto out;
778 }
779
780 scatterwalk_unmap(gw->walk_ptr);
781 gw->walk_ptr = NULL;
782
783 gw->ptr = gw->buf;
784 gw->nbytes = sizeof(gw->buf);
785
786 out:
787 return gw->nbytes;
788 }
789
gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)790 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
791 {
792 if (gw->ptr == NULL)
793 return 0;
794
795 if (gw->ptr == gw->buf) {
796 int n = gw->buf_bytes - bytesdone;
797 if (n > 0) {
798 memmove(gw->buf, gw->buf + bytesdone, n);
799 gw->buf_bytes = n;
800 } else
801 gw->buf_bytes = 0;
802 } else
803 _gcm_sg_unmap_and_advance(gw, bytesdone);
804
805 return bytesdone;
806 }
807
gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)808 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
809 {
810 int i, n;
811
812 if (gw->ptr == NULL)
813 return 0;
814
815 if (gw->ptr == gw->buf) {
816 for (i = 0; i < bytesdone; i += n) {
817 if (!_gcm_sg_clamp_and_map(gw))
818 return i;
819 n = min(gw->walk_bytes, bytesdone - i);
820 memcpy(gw->walk_ptr, gw->buf + i, n);
821 _gcm_sg_unmap_and_advance(gw, n);
822 }
823 } else
824 _gcm_sg_unmap_and_advance(gw, bytesdone);
825
826 return bytesdone;
827 }
828
gcm_aes_crypt(struct aead_request *req, unsigned int flags)829 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
830 {
831 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
832 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
833 unsigned int ivsize = crypto_aead_ivsize(tfm);
834 unsigned int taglen = crypto_aead_authsize(tfm);
835 unsigned int aadlen = req->assoclen;
836 unsigned int pclen = req->cryptlen;
837 int ret = 0;
838
839 unsigned int n, len, in_bytes, out_bytes,
840 min_bytes, bytes, aad_bytes, pc_bytes;
841 struct gcm_sg_walk gw_in, gw_out;
842 u8 tag[GHASH_DIGEST_SIZE];
843
844 struct {
845 u32 _[3]; /* reserved */
846 u32 cv; /* Counter Value */
847 u8 t[GHASH_DIGEST_SIZE];/* Tag */
848 u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
849 u64 taadl; /* Total AAD Length */
850 u64 tpcl; /* Total Plain-/Cipher-text Length */
851 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
852 u8 k[AES_MAX_KEY_SIZE]; /* Key */
853 } param;
854
855 /*
856 * encrypt
857 * req->src: aad||plaintext
858 * req->dst: aad||ciphertext||tag
859 * decrypt
860 * req->src: aad||ciphertext||tag
861 * req->dst: aad||plaintext, return 0 or -EBADMSG
862 * aad, plaintext and ciphertext may be empty.
863 */
864 if (flags & CPACF_DECRYPT)
865 pclen -= taglen;
866 len = aadlen + pclen;
867
868 memset(¶m, 0, sizeof(param));
869 param.cv = 1;
870 param.taadl = aadlen * 8;
871 param.tpcl = pclen * 8;
872 memcpy(param.j0, req->iv, ivsize);
873 *(u32 *)(param.j0 + ivsize) = 1;
874 memcpy(param.k, ctx->key, ctx->key_len);
875
876 gcm_walk_start(&gw_in, req->src, len);
877 gcm_walk_start(&gw_out, req->dst, len);
878
879 do {
880 min_bytes = min_t(unsigned int,
881 aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
882 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
883 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
884 bytes = min(in_bytes, out_bytes);
885
886 if (aadlen + pclen <= bytes) {
887 aad_bytes = aadlen;
888 pc_bytes = pclen;
889 flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
890 } else {
891 if (aadlen <= bytes) {
892 aad_bytes = aadlen;
893 pc_bytes = (bytes - aadlen) &
894 ~(AES_BLOCK_SIZE - 1);
895 flags |= CPACF_KMA_LAAD;
896 } else {
897 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
898 pc_bytes = 0;
899 }
900 }
901
902 if (aad_bytes > 0)
903 memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
904
905 cpacf_kma(ctx->fc | flags, ¶m,
906 gw_out.ptr + aad_bytes,
907 gw_in.ptr + aad_bytes, pc_bytes,
908 gw_in.ptr, aad_bytes);
909
910 n = aad_bytes + pc_bytes;
911 if (gcm_in_walk_done(&gw_in, n) != n)
912 return -ENOMEM;
913 if (gcm_out_walk_done(&gw_out, n) != n)
914 return -ENOMEM;
915 aadlen -= aad_bytes;
916 pclen -= pc_bytes;
917 } while (aadlen + pclen > 0);
918
919 if (flags & CPACF_DECRYPT) {
920 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
921 if (crypto_memneq(tag, param.t, taglen))
922 ret = -EBADMSG;
923 } else
924 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
925
926 memzero_explicit(¶m, sizeof(param));
927 return ret;
928 }
929
gcm_aes_encrypt(struct aead_request *req)930 static int gcm_aes_encrypt(struct aead_request *req)
931 {
932 return gcm_aes_crypt(req, CPACF_ENCRYPT);
933 }
934
gcm_aes_decrypt(struct aead_request *req)935 static int gcm_aes_decrypt(struct aead_request *req)
936 {
937 return gcm_aes_crypt(req, CPACF_DECRYPT);
938 }
939
940 static struct aead_alg gcm_aes_aead = {
941 .setkey = gcm_aes_setkey,
942 .setauthsize = gcm_aes_setauthsize,
943 .encrypt = gcm_aes_encrypt,
944 .decrypt = gcm_aes_decrypt,
945
946 .ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
947 .maxauthsize = GHASH_DIGEST_SIZE,
948 .chunksize = AES_BLOCK_SIZE,
949
950 .base = {
951 .cra_blocksize = 1,
952 .cra_ctxsize = sizeof(struct s390_aes_ctx),
953 .cra_priority = 900,
954 .cra_name = "gcm(aes)",
955 .cra_driver_name = "gcm-aes-s390",
956 .cra_module = THIS_MODULE,
957 },
958 };
959
960 static struct crypto_alg *aes_s390_alg;
961 static struct skcipher_alg *aes_s390_skcipher_algs[4];
962 static int aes_s390_skciphers_num;
963 static struct aead_alg *aes_s390_aead_alg;
964
aes_s390_register_skcipher(struct skcipher_alg *alg)965 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
966 {
967 int ret;
968
969 ret = crypto_register_skcipher(alg);
970 if (!ret)
971 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
972 return ret;
973 }
974
aes_s390_fini(void)975 static void aes_s390_fini(void)
976 {
977 if (aes_s390_alg)
978 crypto_unregister_alg(aes_s390_alg);
979 while (aes_s390_skciphers_num--)
980 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
981 if (ctrblk)
982 free_page((unsigned long) ctrblk);
983
984 if (aes_s390_aead_alg)
985 crypto_unregister_aead(aes_s390_aead_alg);
986 }
987
aes_s390_init(void)988 static int __init aes_s390_init(void)
989 {
990 int ret;
991
992 /* Query available functions for KM, KMC, KMCTR and KMA */
993 cpacf_query(CPACF_KM, &km_functions);
994 cpacf_query(CPACF_KMC, &kmc_functions);
995 cpacf_query(CPACF_KMCTR, &kmctr_functions);
996 cpacf_query(CPACF_KMA, &kma_functions);
997
998 if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
999 cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1000 cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1001 ret = crypto_register_alg(&aes_alg);
1002 if (ret)
1003 goto out_err;
1004 aes_s390_alg = &aes_alg;
1005 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1006 if (ret)
1007 goto out_err;
1008 }
1009
1010 if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1011 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1012 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1013 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1014 if (ret)
1015 goto out_err;
1016 }
1017
1018 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1019 cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1020 ret = aes_s390_register_skcipher(&xts_aes_alg);
1021 if (ret)
1022 goto out_err;
1023 }
1024
1025 if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1026 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1027 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1028 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1029 if (!ctrblk) {
1030 ret = -ENOMEM;
1031 goto out_err;
1032 }
1033 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1034 if (ret)
1035 goto out_err;
1036 }
1037
1038 if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1039 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1040 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1041 ret = crypto_register_aead(&gcm_aes_aead);
1042 if (ret)
1043 goto out_err;
1044 aes_s390_aead_alg = &gcm_aes_aead;
1045 }
1046
1047 return 0;
1048 out_err:
1049 aes_s390_fini();
1050 return ret;
1051 }
1052
1053 module_cpu_feature_match(MSA, aes_s390_init);
1054 module_exit(aes_s390_fini);
1055
1056 MODULE_ALIAS_CRYPTO("aes-all");
1057
1058 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1059 MODULE_LICENSE("GPL");
1060