18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0-or-later */ 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Copyright (C) 2003-2013 Altera Corporation 48c2ecf20Sopenharmony_ci * All rights reserved. 58c2ecf20Sopenharmony_ci */ 68c2ecf20Sopenharmony_ci 78c2ecf20Sopenharmony_ci 88c2ecf20Sopenharmony_ci#include <linux/linkage.h> 98c2ecf20Sopenharmony_ci#include <asm/entry.h> 108c2ecf20Sopenharmony_ci 118c2ecf20Sopenharmony_ci.set noat 128c2ecf20Sopenharmony_ci.set nobreak 138c2ecf20Sopenharmony_ci 148c2ecf20Sopenharmony_ci/* 158c2ecf20Sopenharmony_ci* Explicitly allow the use of r1 (the assembler temporary register) 168c2ecf20Sopenharmony_ci* within this code. This register is normally reserved for the use of 178c2ecf20Sopenharmony_ci* the compiler. 188c2ecf20Sopenharmony_ci*/ 198c2ecf20Sopenharmony_ci 208c2ecf20Sopenharmony_ciENTRY(instruction_trap) 218c2ecf20Sopenharmony_ci ldw r1, PT_R1(sp) // Restore registers 228c2ecf20Sopenharmony_ci ldw r2, PT_R2(sp) 238c2ecf20Sopenharmony_ci ldw r3, PT_R3(sp) 248c2ecf20Sopenharmony_ci ldw r4, PT_R4(sp) 258c2ecf20Sopenharmony_ci ldw r5, PT_R5(sp) 268c2ecf20Sopenharmony_ci ldw r6, PT_R6(sp) 278c2ecf20Sopenharmony_ci ldw r7, PT_R7(sp) 288c2ecf20Sopenharmony_ci ldw r8, PT_R8(sp) 298c2ecf20Sopenharmony_ci ldw r9, PT_R9(sp) 308c2ecf20Sopenharmony_ci ldw r10, PT_R10(sp) 318c2ecf20Sopenharmony_ci ldw r11, PT_R11(sp) 328c2ecf20Sopenharmony_ci ldw r12, PT_R12(sp) 338c2ecf20Sopenharmony_ci ldw r13, PT_R13(sp) 348c2ecf20Sopenharmony_ci ldw r14, PT_R14(sp) 358c2ecf20Sopenharmony_ci ldw r15, PT_R15(sp) 368c2ecf20Sopenharmony_ci ldw ra, PT_RA(sp) 378c2ecf20Sopenharmony_ci ldw fp, PT_FP(sp) 388c2ecf20Sopenharmony_ci ldw gp, PT_GP(sp) 398c2ecf20Sopenharmony_ci ldw et, PT_ESTATUS(sp) 408c2ecf20Sopenharmony_ci wrctl estatus, et 418c2ecf20Sopenharmony_ci ldw ea, PT_EA(sp) 428c2ecf20Sopenharmony_ci ldw et, PT_SP(sp) /* backup sp in et */ 438c2ecf20Sopenharmony_ci 448c2ecf20Sopenharmony_ci addi sp, sp, PT_REGS_SIZE 458c2ecf20Sopenharmony_ci 468c2ecf20Sopenharmony_ci /* INSTRUCTION EMULATION 478c2ecf20Sopenharmony_ci * --------------------- 488c2ecf20Sopenharmony_ci * 498c2ecf20Sopenharmony_ci * Nios II processors generate exceptions for unimplemented instructions. 508c2ecf20Sopenharmony_ci * The routines below emulate these instructions. Depending on the 518c2ecf20Sopenharmony_ci * processor core, the only instructions that might need to be emulated 528c2ecf20Sopenharmony_ci * are div, divu, mul, muli, mulxss, mulxsu, and mulxuu. 538c2ecf20Sopenharmony_ci * 548c2ecf20Sopenharmony_ci * The emulations match the instructions, except for the following 558c2ecf20Sopenharmony_ci * limitations: 568c2ecf20Sopenharmony_ci * 578c2ecf20Sopenharmony_ci * 1) The emulation routines do not emulate the use of the exception 588c2ecf20Sopenharmony_ci * temporary register (et) as a source operand because the exception 598c2ecf20Sopenharmony_ci * handler already has modified it. 608c2ecf20Sopenharmony_ci * 618c2ecf20Sopenharmony_ci * 2) The routines do not emulate the use of the stack pointer (sp) or 628c2ecf20Sopenharmony_ci * the exception return address register (ea) as a destination because 638c2ecf20Sopenharmony_ci * modifying these registers crashes the exception handler or the 648c2ecf20Sopenharmony_ci * interrupted routine. 658c2ecf20Sopenharmony_ci * 668c2ecf20Sopenharmony_ci * Detailed Design 678c2ecf20Sopenharmony_ci * --------------- 688c2ecf20Sopenharmony_ci * 698c2ecf20Sopenharmony_ci * The emulation routines expect the contents of integer registers r0-r31 708c2ecf20Sopenharmony_ci * to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp). The 718c2ecf20Sopenharmony_ci * routines retrieve source operands from the stack and modify the 728c2ecf20Sopenharmony_ci * destination register's value on the stack prior to the end of the 738c2ecf20Sopenharmony_ci * exception handler. Then all registers except the destination register 748c2ecf20Sopenharmony_ci * are restored to their previous values. 758c2ecf20Sopenharmony_ci * 768c2ecf20Sopenharmony_ci * The instruction that causes the exception is found at address -4(ea). 778c2ecf20Sopenharmony_ci * The instruction's OP and OPX fields identify the operation to be 788c2ecf20Sopenharmony_ci * performed. 798c2ecf20Sopenharmony_ci * 808c2ecf20Sopenharmony_ci * One instruction, muli, is an I-type instruction that is identified by 818c2ecf20Sopenharmony_ci * an OP field of 0x24. 828c2ecf20Sopenharmony_ci * 838c2ecf20Sopenharmony_ci * muli AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24- 848c2ecf20Sopenharmony_ci * 27 22 6 0 <-- LSB of field 858c2ecf20Sopenharmony_ci * 868c2ecf20Sopenharmony_ci * The remaining emulated instructions are R-type and have an OP field 878c2ecf20Sopenharmony_ci * of 0x3a. Their OPX fields identify them. 888c2ecf20Sopenharmony_ci * 898c2ecf20Sopenharmony_ci * R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a- 908c2ecf20Sopenharmony_ci * 27 22 17 11 6 0 <-- LSB of field 918c2ecf20Sopenharmony_ci * 928c2ecf20Sopenharmony_ci * 938c2ecf20Sopenharmony_ci * Opcode Encoding. muli is identified by its OP value. Then OPX & 0x02 948c2ecf20Sopenharmony_ci * is used to differentiate between the division opcodes and the 958c2ecf20Sopenharmony_ci * remaining multiplication opcodes. 968c2ecf20Sopenharmony_ci * 978c2ecf20Sopenharmony_ci * Instruction OP OPX OPX & 0x02 988c2ecf20Sopenharmony_ci * ----------- ---- ---- ---------- 998c2ecf20Sopenharmony_ci * muli 0x24 1008c2ecf20Sopenharmony_ci * divu 0x3a 0x24 0 1018c2ecf20Sopenharmony_ci * div 0x3a 0x25 0 1028c2ecf20Sopenharmony_ci * mul 0x3a 0x27 != 0 1038c2ecf20Sopenharmony_ci * mulxuu 0x3a 0x07 != 0 1048c2ecf20Sopenharmony_ci * mulxsu 0x3a 0x17 != 0 1058c2ecf20Sopenharmony_ci * mulxss 0x3a 0x1f != 0 1068c2ecf20Sopenharmony_ci */ 1078c2ecf20Sopenharmony_ci 1088c2ecf20Sopenharmony_ci 1098c2ecf20Sopenharmony_ci /* 1108c2ecf20Sopenharmony_ci * Save everything on the stack to make it easy for the emulation 1118c2ecf20Sopenharmony_ci * routines to retrieve the source register operands. 1128c2ecf20Sopenharmony_ci */ 1138c2ecf20Sopenharmony_ci 1148c2ecf20Sopenharmony_ci addi sp, sp, -128 1158c2ecf20Sopenharmony_ci stw zero, 0(sp) /* Save zero on stack to avoid special case for r0. */ 1168c2ecf20Sopenharmony_ci stw r1, 4(sp) 1178c2ecf20Sopenharmony_ci stw r2, 8(sp) 1188c2ecf20Sopenharmony_ci stw r3, 12(sp) 1198c2ecf20Sopenharmony_ci stw r4, 16(sp) 1208c2ecf20Sopenharmony_ci stw r5, 20(sp) 1218c2ecf20Sopenharmony_ci stw r6, 24(sp) 1228c2ecf20Sopenharmony_ci stw r7, 28(sp) 1238c2ecf20Sopenharmony_ci stw r8, 32(sp) 1248c2ecf20Sopenharmony_ci stw r9, 36(sp) 1258c2ecf20Sopenharmony_ci stw r10, 40(sp) 1268c2ecf20Sopenharmony_ci stw r11, 44(sp) 1278c2ecf20Sopenharmony_ci stw r12, 48(sp) 1288c2ecf20Sopenharmony_ci stw r13, 52(sp) 1298c2ecf20Sopenharmony_ci stw r14, 56(sp) 1308c2ecf20Sopenharmony_ci stw r15, 60(sp) 1318c2ecf20Sopenharmony_ci stw r16, 64(sp) 1328c2ecf20Sopenharmony_ci stw r17, 68(sp) 1338c2ecf20Sopenharmony_ci stw r18, 72(sp) 1348c2ecf20Sopenharmony_ci stw r19, 76(sp) 1358c2ecf20Sopenharmony_ci stw r20, 80(sp) 1368c2ecf20Sopenharmony_ci stw r21, 84(sp) 1378c2ecf20Sopenharmony_ci stw r22, 88(sp) 1388c2ecf20Sopenharmony_ci stw r23, 92(sp) 1398c2ecf20Sopenharmony_ci /* Don't bother to save et. It's already been changed. */ 1408c2ecf20Sopenharmony_ci rdctl r5, estatus 1418c2ecf20Sopenharmony_ci stw r5, 100(sp) 1428c2ecf20Sopenharmony_ci 1438c2ecf20Sopenharmony_ci stw gp, 104(sp) 1448c2ecf20Sopenharmony_ci stw et, 108(sp) /* et contains previous sp value. */ 1458c2ecf20Sopenharmony_ci stw fp, 112(sp) 1468c2ecf20Sopenharmony_ci stw ea, 116(sp) 1478c2ecf20Sopenharmony_ci stw ra, 120(sp) 1488c2ecf20Sopenharmony_ci 1498c2ecf20Sopenharmony_ci 1508c2ecf20Sopenharmony_ci /* 1518c2ecf20Sopenharmony_ci * Split the instruction into its fields. We need 4*A, 4*B, and 4*C as 1528c2ecf20Sopenharmony_ci * offsets to the stack pointer for access to the stored register values. 1538c2ecf20Sopenharmony_ci */ 1548c2ecf20Sopenharmony_ci ldw r2,-4(ea) /* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */ 1558c2ecf20Sopenharmony_ci roli r3, r2, 7 /* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */ 1568c2ecf20Sopenharmony_ci roli r4, r3, 3 /* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */ 1578c2ecf20Sopenharmony_ci roli r5, r4, 2 /* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */ 1588c2ecf20Sopenharmony_ci srai r4, r4, 16 /* r4 = (sign-extended) IMM16 */ 1598c2ecf20Sopenharmony_ci roli r6, r5, 5 /* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */ 1608c2ecf20Sopenharmony_ci andi r2, r2, 0x3f /* r2 = 00000000000000000000000000,PPPPPP */ 1618c2ecf20Sopenharmony_ci andi r3, r3, 0x7c /* r3 = 0000000000000000000000000,AAAAA,00 */ 1628c2ecf20Sopenharmony_ci andi r5, r5, 0x7c /* r5 = 0000000000000000000000000,BBBBB,00 */ 1638c2ecf20Sopenharmony_ci andi r6, r6, 0x7c /* r6 = 0000000000000000000000000,CCCCC,00 */ 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci /* Now 1668c2ecf20Sopenharmony_ci * r2 = OP 1678c2ecf20Sopenharmony_ci * r3 = 4*A 1688c2ecf20Sopenharmony_ci * r4 = IMM16 (sign extended) 1698c2ecf20Sopenharmony_ci * r5 = 4*B 1708c2ecf20Sopenharmony_ci * r6 = 4*C 1718c2ecf20Sopenharmony_ci */ 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci /* 1748c2ecf20Sopenharmony_ci * Get the operands. 1758c2ecf20Sopenharmony_ci * 1768c2ecf20Sopenharmony_ci * It is necessary to check for muli because it uses an I-type 1778c2ecf20Sopenharmony_ci * instruction format, while the other instructions are have an R-type 1788c2ecf20Sopenharmony_ci * format. 1798c2ecf20Sopenharmony_ci * 1808c2ecf20Sopenharmony_ci * Prepare for either multiplication or division loop. 1818c2ecf20Sopenharmony_ci * They both loop 32 times. 1828c2ecf20Sopenharmony_ci */ 1838c2ecf20Sopenharmony_ci movi r14, 32 1848c2ecf20Sopenharmony_ci 1858c2ecf20Sopenharmony_ci add r3, r3, sp /* r3 = address of A-operand. */ 1868c2ecf20Sopenharmony_ci ldw r3, 0(r3) /* r3 = A-operand. */ 1878c2ecf20Sopenharmony_ci movi r7, 0x24 /* muli opcode (I-type instruction format) */ 1888c2ecf20Sopenharmony_ci beq r2, r7, mul_immed /* muli doesn't use the B register as a source */ 1898c2ecf20Sopenharmony_ci 1908c2ecf20Sopenharmony_ci add r5, r5, sp /* r5 = address of B-operand. */ 1918c2ecf20Sopenharmony_ci ldw r5, 0(r5) /* r5 = B-operand. */ 1928c2ecf20Sopenharmony_ci /* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */ 1938c2ecf20Sopenharmony_ci /* IMM16 not needed, align OPX portion */ 1948c2ecf20Sopenharmony_ci /* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */ 1958c2ecf20Sopenharmony_ci srli r4, r4, 5 /* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */ 1968c2ecf20Sopenharmony_ci andi r4, r4, 0x3f /* r4 = 00000000000000000000000000,-OPX-- */ 1978c2ecf20Sopenharmony_ci 1988c2ecf20Sopenharmony_ci /* Now 1998c2ecf20Sopenharmony_ci * r2 = OP 2008c2ecf20Sopenharmony_ci * r3 = src1 2018c2ecf20Sopenharmony_ci * r5 = src2 2028c2ecf20Sopenharmony_ci * r4 = OPX (no longer can be muli) 2038c2ecf20Sopenharmony_ci * r6 = 4*C 2048c2ecf20Sopenharmony_ci */ 2058c2ecf20Sopenharmony_ci 2068c2ecf20Sopenharmony_ci 2078c2ecf20Sopenharmony_ci /* 2088c2ecf20Sopenharmony_ci * Multiply or Divide? 2098c2ecf20Sopenharmony_ci */ 2108c2ecf20Sopenharmony_ci andi r7, r4, 0x02 /* For R-type multiply instructions, 2118c2ecf20Sopenharmony_ci OPX & 0x02 != 0 */ 2128c2ecf20Sopenharmony_ci bne r7, zero, multiply 2138c2ecf20Sopenharmony_ci 2148c2ecf20Sopenharmony_ci 2158c2ecf20Sopenharmony_ci /* DIVISION 2168c2ecf20Sopenharmony_ci * 2178c2ecf20Sopenharmony_ci * Divide an unsigned dividend by an unsigned divisor using 2188c2ecf20Sopenharmony_ci * a shift-and-subtract algorithm. The example below shows 2198c2ecf20Sopenharmony_ci * 43 div 7 = 6 for 8-bit integers. This classic algorithm uses a 2208c2ecf20Sopenharmony_ci * single register to store both the dividend and the quotient, 2218c2ecf20Sopenharmony_ci * allowing both values to be shifted with a single instruction. 2228c2ecf20Sopenharmony_ci * 2238c2ecf20Sopenharmony_ci * remainder dividend:quotient 2248c2ecf20Sopenharmony_ci * --------- ----------------- 2258c2ecf20Sopenharmony_ci * initialize 00000000 00101011: 2268c2ecf20Sopenharmony_ci * shift 00000000 0101011:_ 2278c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000000 0101011:0 2288c2ecf20Sopenharmony_ci * shift 00000000 101011:0_ 2298c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000000 101011:00 2308c2ecf20Sopenharmony_ci * shift 00000001 01011:00_ 2318c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000001 01011:000 2328c2ecf20Sopenharmony_ci * shift 00000010 1011:000_ 2338c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000010 1011:0000 2348c2ecf20Sopenharmony_ci * shift 00000101 011:0000_ 2358c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000101 011:00000 2368c2ecf20Sopenharmony_ci * shift 00001010 11:00000_ 2378c2ecf20Sopenharmony_ci * remainder >= divisor? yes 00001010 11:000001 2388c2ecf20Sopenharmony_ci * remainder -= divisor - 00000111 2398c2ecf20Sopenharmony_ci * ---------- 2408c2ecf20Sopenharmony_ci * 00000011 11:000001 2418c2ecf20Sopenharmony_ci * shift 00000111 1:000001_ 2428c2ecf20Sopenharmony_ci * remainder >= divisor? yes 00000111 1:0000011 2438c2ecf20Sopenharmony_ci * remainder -= divisor - 00000111 2448c2ecf20Sopenharmony_ci * ---------- 2458c2ecf20Sopenharmony_ci * 00000000 1:0000011 2468c2ecf20Sopenharmony_ci * shift 00000001 :0000011_ 2478c2ecf20Sopenharmony_ci * remainder >= divisor? no 00000001 :00000110 2488c2ecf20Sopenharmony_ci * 2498c2ecf20Sopenharmony_ci * The quotient is 00000110. 2508c2ecf20Sopenharmony_ci */ 2518c2ecf20Sopenharmony_ci 2528c2ecf20Sopenharmony_cidivide: 2538c2ecf20Sopenharmony_ci /* 2548c2ecf20Sopenharmony_ci * Prepare for division by assuming the result 2558c2ecf20Sopenharmony_ci * is unsigned, and storing its "sign" as 0. 2568c2ecf20Sopenharmony_ci */ 2578c2ecf20Sopenharmony_ci movi r17, 0 2588c2ecf20Sopenharmony_ci 2598c2ecf20Sopenharmony_ci 2608c2ecf20Sopenharmony_ci /* Which division opcode? */ 2618c2ecf20Sopenharmony_ci xori r7, r4, 0x25 /* OPX of div */ 2628c2ecf20Sopenharmony_ci bne r7, zero, unsigned_division 2638c2ecf20Sopenharmony_ci 2648c2ecf20Sopenharmony_ci 2658c2ecf20Sopenharmony_ci /* 2668c2ecf20Sopenharmony_ci * OPX is div. Determine and store the sign of the quotient. 2678c2ecf20Sopenharmony_ci * Then take the absolute value of both operands. 2688c2ecf20Sopenharmony_ci */ 2698c2ecf20Sopenharmony_ci xor r17, r3, r5 /* MSB contains sign of quotient */ 2708c2ecf20Sopenharmony_ci bge r3,zero,dividend_is_nonnegative 2718c2ecf20Sopenharmony_ci sub r3, zero, r3 /* -r3 */ 2728c2ecf20Sopenharmony_cidividend_is_nonnegative: 2738c2ecf20Sopenharmony_ci bge r5, zero, divisor_is_nonnegative 2748c2ecf20Sopenharmony_ci sub r5, zero, r5 /* -r5 */ 2758c2ecf20Sopenharmony_cidivisor_is_nonnegative: 2768c2ecf20Sopenharmony_ci 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_ciunsigned_division: 2798c2ecf20Sopenharmony_ci /* Initialize the unsigned-division loop. */ 2808c2ecf20Sopenharmony_ci movi r13, 0 /* remainder = 0 */ 2818c2ecf20Sopenharmony_ci 2828c2ecf20Sopenharmony_ci /* Now 2838c2ecf20Sopenharmony_ci * r3 = dividend : quotient 2848c2ecf20Sopenharmony_ci * r4 = 0x25 for div, 0x24 for divu 2858c2ecf20Sopenharmony_ci * r5 = divisor 2868c2ecf20Sopenharmony_ci * r13 = remainder 2878c2ecf20Sopenharmony_ci * r14 = loop counter (already initialized to 32) 2888c2ecf20Sopenharmony_ci * r17 = MSB contains sign of quotient 2898c2ecf20Sopenharmony_ci */ 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci 2928c2ecf20Sopenharmony_ci /* 2938c2ecf20Sopenharmony_ci * for (count = 32; count > 0; --count) 2948c2ecf20Sopenharmony_ci * { 2958c2ecf20Sopenharmony_ci */ 2968c2ecf20Sopenharmony_cidivide_loop: 2978c2ecf20Sopenharmony_ci 2988c2ecf20Sopenharmony_ci /* 2998c2ecf20Sopenharmony_ci * Division: 3008c2ecf20Sopenharmony_ci * 3018c2ecf20Sopenharmony_ci * (remainder:dividend:quotient) <<= 1; 3028c2ecf20Sopenharmony_ci */ 3038c2ecf20Sopenharmony_ci slli r13, r13, 1 3048c2ecf20Sopenharmony_ci cmplt r7, r3, zero /* r7 = MSB of r3 */ 3058c2ecf20Sopenharmony_ci or r13, r13, r7 3068c2ecf20Sopenharmony_ci slli r3, r3, 1 3078c2ecf20Sopenharmony_ci 3088c2ecf20Sopenharmony_ci 3098c2ecf20Sopenharmony_ci /* 3108c2ecf20Sopenharmony_ci * if (remainder >= divisor) 3118c2ecf20Sopenharmony_ci * { 3128c2ecf20Sopenharmony_ci * set LSB of quotient 3138c2ecf20Sopenharmony_ci * remainder -= divisor; 3148c2ecf20Sopenharmony_ci * } 3158c2ecf20Sopenharmony_ci */ 3168c2ecf20Sopenharmony_ci bltu r13, r5, div_skip 3178c2ecf20Sopenharmony_ci ori r3, r3, 1 3188c2ecf20Sopenharmony_ci sub r13, r13, r5 3198c2ecf20Sopenharmony_cidiv_skip: 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci /* 3228c2ecf20Sopenharmony_ci * } 3238c2ecf20Sopenharmony_ci */ 3248c2ecf20Sopenharmony_ci subi r14, r14, 1 3258c2ecf20Sopenharmony_ci bne r14, zero, divide_loop 3268c2ecf20Sopenharmony_ci 3278c2ecf20Sopenharmony_ci 3288c2ecf20Sopenharmony_ci /* Now 3298c2ecf20Sopenharmony_ci * r3 = quotient 3308c2ecf20Sopenharmony_ci * r4 = 0x25 for div, 0x24 for divu 3318c2ecf20Sopenharmony_ci * r6 = 4*C 3328c2ecf20Sopenharmony_ci * r17 = MSB contains sign of quotient 3338c2ecf20Sopenharmony_ci */ 3348c2ecf20Sopenharmony_ci 3358c2ecf20Sopenharmony_ci 3368c2ecf20Sopenharmony_ci /* 3378c2ecf20Sopenharmony_ci * Conditionally negate signed quotient. If quotient is unsigned, 3388c2ecf20Sopenharmony_ci * the sign already is initialized to 0. 3398c2ecf20Sopenharmony_ci */ 3408c2ecf20Sopenharmony_ci bge r17, zero, quotient_is_nonnegative 3418c2ecf20Sopenharmony_ci sub r3, zero, r3 /* -r3 */ 3428c2ecf20Sopenharmony_ci quotient_is_nonnegative: 3438c2ecf20Sopenharmony_ci 3448c2ecf20Sopenharmony_ci 3458c2ecf20Sopenharmony_ci /* 3468c2ecf20Sopenharmony_ci * Final quotient is in r3. 3478c2ecf20Sopenharmony_ci */ 3488c2ecf20Sopenharmony_ci add r6, r6, sp 3498c2ecf20Sopenharmony_ci stw r3, 0(r6) /* write quotient to stack */ 3508c2ecf20Sopenharmony_ci br restore_registers 3518c2ecf20Sopenharmony_ci 3528c2ecf20Sopenharmony_ci 3538c2ecf20Sopenharmony_ci 3548c2ecf20Sopenharmony_ci 3558c2ecf20Sopenharmony_ci /* MULTIPLICATION 3568c2ecf20Sopenharmony_ci * 3578c2ecf20Sopenharmony_ci * A "product" is the number that one gets by summing a "multiplicand" 3588c2ecf20Sopenharmony_ci * several times. The "multiplier" specifies the number of copies of the 3598c2ecf20Sopenharmony_ci * multiplicand that are summed. 3608c2ecf20Sopenharmony_ci * 3618c2ecf20Sopenharmony_ci * Actual multiplication algorithms don't use repeated addition, however. 3628c2ecf20Sopenharmony_ci * Shift-and-add algorithms get the same answer as repeated addition, and 3638c2ecf20Sopenharmony_ci * they are faster. To compute the lower half of a product (pppp below) 3648c2ecf20Sopenharmony_ci * one shifts the product left before adding in each of the partial 3658c2ecf20Sopenharmony_ci * products (a * mmmm) through (d * mmmm). 3668c2ecf20Sopenharmony_ci * 3678c2ecf20Sopenharmony_ci * To compute the upper half of a product (PPPP below), one adds in the 3688c2ecf20Sopenharmony_ci * partial products (d * mmmm) through (a * mmmm), each time following 3698c2ecf20Sopenharmony_ci * the add by a right shift of the product. 3708c2ecf20Sopenharmony_ci * 3718c2ecf20Sopenharmony_ci * mmmm 3728c2ecf20Sopenharmony_ci * * abcd 3738c2ecf20Sopenharmony_ci * ------ 3748c2ecf20Sopenharmony_ci * #### = d * mmmm 3758c2ecf20Sopenharmony_ci * #### = c * mmmm 3768c2ecf20Sopenharmony_ci * #### = b * mmmm 3778c2ecf20Sopenharmony_ci * #### = a * mmmm 3788c2ecf20Sopenharmony_ci * -------- 3798c2ecf20Sopenharmony_ci * PPPPpppp 3808c2ecf20Sopenharmony_ci * 3818c2ecf20Sopenharmony_ci * The example above shows 4 partial products. Computing actual Nios II 3828c2ecf20Sopenharmony_ci * products requires 32 partials. 3838c2ecf20Sopenharmony_ci * 3848c2ecf20Sopenharmony_ci * It is possible to compute the result of mulxsu from the result of 3858c2ecf20Sopenharmony_ci * mulxuu because the only difference between the results of these two 3868c2ecf20Sopenharmony_ci * opcodes is the value of the partial product associated with the sign 3878c2ecf20Sopenharmony_ci * bit of rA. 3888c2ecf20Sopenharmony_ci * 3898c2ecf20Sopenharmony_ci * mulxsu = mulxuu - (rA < 0) ? rB : 0; 3908c2ecf20Sopenharmony_ci * 3918c2ecf20Sopenharmony_ci * It is possible to compute the result of mulxss from the result of 3928c2ecf20Sopenharmony_ci * mulxsu because the only difference between the results of these two 3938c2ecf20Sopenharmony_ci * opcodes is the value of the partial product associated with the sign 3948c2ecf20Sopenharmony_ci * bit of rB. 3958c2ecf20Sopenharmony_ci * 3968c2ecf20Sopenharmony_ci * mulxss = mulxsu - (rB < 0) ? rA : 0; 3978c2ecf20Sopenharmony_ci * 3988c2ecf20Sopenharmony_ci */ 3998c2ecf20Sopenharmony_ci 4008c2ecf20Sopenharmony_cimul_immed: 4018c2ecf20Sopenharmony_ci /* Opcode is muli. Change it into mul for remainder of algorithm. */ 4028c2ecf20Sopenharmony_ci mov r6, r5 /* Field B is dest register, not field C. */ 4038c2ecf20Sopenharmony_ci mov r5, r4 /* Field IMM16 is src2, not field B. */ 4048c2ecf20Sopenharmony_ci movi r4, 0x27 /* OPX of mul is 0x27 */ 4058c2ecf20Sopenharmony_ci 4068c2ecf20Sopenharmony_cimultiply: 4078c2ecf20Sopenharmony_ci /* Initialize the multiplication loop. */ 4088c2ecf20Sopenharmony_ci movi r9, 0 /* mul_product = 0 */ 4098c2ecf20Sopenharmony_ci movi r10, 0 /* mulxuu_product = 0 */ 4108c2ecf20Sopenharmony_ci mov r11, r5 /* save original multiplier for mulxsu and mulxss */ 4118c2ecf20Sopenharmony_ci mov r12, r5 /* mulxuu_multiplier (will be shifted) */ 4128c2ecf20Sopenharmony_ci movi r16, 1 /* used to create "rori B,A,1" from "ror B,A,r16" */ 4138c2ecf20Sopenharmony_ci 4148c2ecf20Sopenharmony_ci /* Now 4158c2ecf20Sopenharmony_ci * r3 = multiplicand 4168c2ecf20Sopenharmony_ci * r5 = mul_multiplier 4178c2ecf20Sopenharmony_ci * r6 = 4 * dest_register (used later as offset to sp) 4188c2ecf20Sopenharmony_ci * r7 = temp 4198c2ecf20Sopenharmony_ci * r9 = mul_product 4208c2ecf20Sopenharmony_ci * r10 = mulxuu_product 4218c2ecf20Sopenharmony_ci * r11 = original multiplier 4228c2ecf20Sopenharmony_ci * r12 = mulxuu_multiplier 4238c2ecf20Sopenharmony_ci * r14 = loop counter (already initialized) 4248c2ecf20Sopenharmony_ci * r16 = 1 4258c2ecf20Sopenharmony_ci */ 4268c2ecf20Sopenharmony_ci 4278c2ecf20Sopenharmony_ci 4288c2ecf20Sopenharmony_ci /* 4298c2ecf20Sopenharmony_ci * for (count = 32; count > 0; --count) 4308c2ecf20Sopenharmony_ci * { 4318c2ecf20Sopenharmony_ci */ 4328c2ecf20Sopenharmony_cimultiply_loop: 4338c2ecf20Sopenharmony_ci 4348c2ecf20Sopenharmony_ci /* 4358c2ecf20Sopenharmony_ci * mul_product <<= 1; 4368c2ecf20Sopenharmony_ci * lsb = multiplier & 1; 4378c2ecf20Sopenharmony_ci */ 4388c2ecf20Sopenharmony_ci slli r9, r9, 1 4398c2ecf20Sopenharmony_ci andi r7, r12, 1 4408c2ecf20Sopenharmony_ci 4418c2ecf20Sopenharmony_ci /* 4428c2ecf20Sopenharmony_ci * if (lsb == 1) 4438c2ecf20Sopenharmony_ci * { 4448c2ecf20Sopenharmony_ci * mulxuu_product += multiplicand; 4458c2ecf20Sopenharmony_ci * } 4468c2ecf20Sopenharmony_ci */ 4478c2ecf20Sopenharmony_ci beq r7, zero, mulx_skip 4488c2ecf20Sopenharmony_ci add r10, r10, r3 4498c2ecf20Sopenharmony_ci cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */ 4508c2ecf20Sopenharmony_ci ror r7, r7, r16 /* r7 = 0x80000000 on carry, or else 0x00000000 */ 4518c2ecf20Sopenharmony_cimulx_skip: 4528c2ecf20Sopenharmony_ci 4538c2ecf20Sopenharmony_ci /* 4548c2ecf20Sopenharmony_ci * if (MSB of mul_multiplier == 1) 4558c2ecf20Sopenharmony_ci * { 4568c2ecf20Sopenharmony_ci * mul_product += multiplicand; 4578c2ecf20Sopenharmony_ci * } 4588c2ecf20Sopenharmony_ci */ 4598c2ecf20Sopenharmony_ci bge r5, zero, mul_skip 4608c2ecf20Sopenharmony_ci add r9, r9, r3 4618c2ecf20Sopenharmony_cimul_skip: 4628c2ecf20Sopenharmony_ci 4638c2ecf20Sopenharmony_ci /* 4648c2ecf20Sopenharmony_ci * mulxuu_product >>= 1; logical shift 4658c2ecf20Sopenharmony_ci * mul_multiplier <<= 1; done with MSB 4668c2ecf20Sopenharmony_ci * mulx_multiplier >>= 1; done with LSB 4678c2ecf20Sopenharmony_ci */ 4688c2ecf20Sopenharmony_ci srli r10, r10, 1 4698c2ecf20Sopenharmony_ci or r10, r10, r7 /* OR in the saved carry bit. */ 4708c2ecf20Sopenharmony_ci slli r5, r5, 1 4718c2ecf20Sopenharmony_ci srli r12, r12, 1 4728c2ecf20Sopenharmony_ci 4738c2ecf20Sopenharmony_ci 4748c2ecf20Sopenharmony_ci /* 4758c2ecf20Sopenharmony_ci * } 4768c2ecf20Sopenharmony_ci */ 4778c2ecf20Sopenharmony_ci subi r14, r14, 1 4788c2ecf20Sopenharmony_ci bne r14, zero, multiply_loop 4798c2ecf20Sopenharmony_ci 4808c2ecf20Sopenharmony_ci 4818c2ecf20Sopenharmony_ci /* 4828c2ecf20Sopenharmony_ci * Multiply emulation loop done. 4838c2ecf20Sopenharmony_ci */ 4848c2ecf20Sopenharmony_ci 4858c2ecf20Sopenharmony_ci /* Now 4868c2ecf20Sopenharmony_ci * r3 = multiplicand 4878c2ecf20Sopenharmony_ci * r4 = OPX 4888c2ecf20Sopenharmony_ci * r6 = 4 * dest_register (used later as offset to sp) 4898c2ecf20Sopenharmony_ci * r7 = temp 4908c2ecf20Sopenharmony_ci * r9 = mul_product 4918c2ecf20Sopenharmony_ci * r10 = mulxuu_product 4928c2ecf20Sopenharmony_ci * r11 = original multiplier 4938c2ecf20Sopenharmony_ci */ 4948c2ecf20Sopenharmony_ci 4958c2ecf20Sopenharmony_ci 4968c2ecf20Sopenharmony_ci /* Calculate address for result from 4 * dest_register */ 4978c2ecf20Sopenharmony_ci add r6, r6, sp 4988c2ecf20Sopenharmony_ci 4998c2ecf20Sopenharmony_ci 5008c2ecf20Sopenharmony_ci /* 5018c2ecf20Sopenharmony_ci * Select/compute the result based on OPX. 5028c2ecf20Sopenharmony_ci */ 5038c2ecf20Sopenharmony_ci 5048c2ecf20Sopenharmony_ci 5058c2ecf20Sopenharmony_ci /* OPX == mul? Then store. */ 5068c2ecf20Sopenharmony_ci xori r7, r4, 0x27 5078c2ecf20Sopenharmony_ci beq r7, zero, store_product 5088c2ecf20Sopenharmony_ci 5098c2ecf20Sopenharmony_ci /* It's one of the mulx.. opcodes. Move over the result. */ 5108c2ecf20Sopenharmony_ci mov r9, r10 5118c2ecf20Sopenharmony_ci 5128c2ecf20Sopenharmony_ci /* OPX == mulxuu? Then store. */ 5138c2ecf20Sopenharmony_ci xori r7, r4, 0x07 5148c2ecf20Sopenharmony_ci beq r7, zero, store_product 5158c2ecf20Sopenharmony_ci 5168c2ecf20Sopenharmony_ci /* Compute mulxsu 5178c2ecf20Sopenharmony_ci * 5188c2ecf20Sopenharmony_ci * mulxsu = mulxuu - (rA < 0) ? rB : 0; 5198c2ecf20Sopenharmony_ci */ 5208c2ecf20Sopenharmony_ci bge r3, zero, mulxsu_skip 5218c2ecf20Sopenharmony_ci sub r9, r9, r11 5228c2ecf20Sopenharmony_cimulxsu_skip: 5238c2ecf20Sopenharmony_ci 5248c2ecf20Sopenharmony_ci /* OPX == mulxsu? Then store. */ 5258c2ecf20Sopenharmony_ci xori r7, r4, 0x17 5268c2ecf20Sopenharmony_ci beq r7, zero, store_product 5278c2ecf20Sopenharmony_ci 5288c2ecf20Sopenharmony_ci /* Compute mulxss 5298c2ecf20Sopenharmony_ci * 5308c2ecf20Sopenharmony_ci * mulxss = mulxsu - (rB < 0) ? rA : 0; 5318c2ecf20Sopenharmony_ci */ 5328c2ecf20Sopenharmony_ci bge r11,zero,mulxss_skip 5338c2ecf20Sopenharmony_ci sub r9, r9, r3 5348c2ecf20Sopenharmony_cimulxss_skip: 5358c2ecf20Sopenharmony_ci /* At this point, assume that OPX is mulxss, so store*/ 5368c2ecf20Sopenharmony_ci 5378c2ecf20Sopenharmony_ci 5388c2ecf20Sopenharmony_cistore_product: 5398c2ecf20Sopenharmony_ci stw r9, 0(r6) 5408c2ecf20Sopenharmony_ci 5418c2ecf20Sopenharmony_ci 5428c2ecf20Sopenharmony_cirestore_registers: 5438c2ecf20Sopenharmony_ci /* No need to restore r0. */ 5448c2ecf20Sopenharmony_ci ldw r5, 100(sp) 5458c2ecf20Sopenharmony_ci wrctl estatus, r5 5468c2ecf20Sopenharmony_ci 5478c2ecf20Sopenharmony_ci ldw r1, 4(sp) 5488c2ecf20Sopenharmony_ci ldw r2, 8(sp) 5498c2ecf20Sopenharmony_ci ldw r3, 12(sp) 5508c2ecf20Sopenharmony_ci ldw r4, 16(sp) 5518c2ecf20Sopenharmony_ci ldw r5, 20(sp) 5528c2ecf20Sopenharmony_ci ldw r6, 24(sp) 5538c2ecf20Sopenharmony_ci ldw r7, 28(sp) 5548c2ecf20Sopenharmony_ci ldw r8, 32(sp) 5558c2ecf20Sopenharmony_ci ldw r9, 36(sp) 5568c2ecf20Sopenharmony_ci ldw r10, 40(sp) 5578c2ecf20Sopenharmony_ci ldw r11, 44(sp) 5588c2ecf20Sopenharmony_ci ldw r12, 48(sp) 5598c2ecf20Sopenharmony_ci ldw r13, 52(sp) 5608c2ecf20Sopenharmony_ci ldw r14, 56(sp) 5618c2ecf20Sopenharmony_ci ldw r15, 60(sp) 5628c2ecf20Sopenharmony_ci ldw r16, 64(sp) 5638c2ecf20Sopenharmony_ci ldw r17, 68(sp) 5648c2ecf20Sopenharmony_ci ldw r18, 72(sp) 5658c2ecf20Sopenharmony_ci ldw r19, 76(sp) 5668c2ecf20Sopenharmony_ci ldw r20, 80(sp) 5678c2ecf20Sopenharmony_ci ldw r21, 84(sp) 5688c2ecf20Sopenharmony_ci ldw r22, 88(sp) 5698c2ecf20Sopenharmony_ci ldw r23, 92(sp) 5708c2ecf20Sopenharmony_ci /* Does not need to restore et */ 5718c2ecf20Sopenharmony_ci ldw gp, 104(sp) 5728c2ecf20Sopenharmony_ci 5738c2ecf20Sopenharmony_ci ldw fp, 112(sp) 5748c2ecf20Sopenharmony_ci ldw ea, 116(sp) 5758c2ecf20Sopenharmony_ci ldw ra, 120(sp) 5768c2ecf20Sopenharmony_ci ldw sp, 108(sp) /* last restore sp */ 5778c2ecf20Sopenharmony_ci eret 5788c2ecf20Sopenharmony_ci 5798c2ecf20Sopenharmony_ci.set at 5808c2ecf20Sopenharmony_ci.set break 581