1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *  Copyright (C) 2003-2013 Altera Corporation
4  *  All rights reserved.
5  */
6 
7 
8 #include <linux/linkage.h>
9 #include <asm/entry.h>
10 
11 .set noat
12 .set nobreak
13 
14 /*
15 * Explicitly allow the use of r1 (the assembler temporary register)
16 * within this code. This register is normally reserved for the use of
17 * the compiler.
18 */
19 
20 ENTRY(instruction_trap)
21 	ldw	r1, PT_R1(sp)		// Restore registers
22 	ldw	r2, PT_R2(sp)
23 	ldw	r3, PT_R3(sp)
24 	ldw	r4, PT_R4(sp)
25 	ldw	r5, PT_R5(sp)
26 	ldw	r6, PT_R6(sp)
27 	ldw	r7, PT_R7(sp)
28 	ldw	r8, PT_R8(sp)
29 	ldw	r9, PT_R9(sp)
30 	ldw	r10, PT_R10(sp)
31 	ldw	r11, PT_R11(sp)
32 	ldw	r12, PT_R12(sp)
33 	ldw	r13, PT_R13(sp)
34 	ldw	r14, PT_R14(sp)
35 	ldw	r15, PT_R15(sp)
36 	ldw	ra, PT_RA(sp)
37 	ldw	fp, PT_FP(sp)
38 	ldw	gp, PT_GP(sp)
39 	ldw	et, PT_ESTATUS(sp)
40 	wrctl	estatus, et
41 	ldw	ea, PT_EA(sp)
42 	ldw	et, PT_SP(sp)		/* backup sp in et */
43 
44 	addi	sp, sp, PT_REGS_SIZE
45 
46 	/* INSTRUCTION EMULATION
47 	*  ---------------------
48 	*
49 	* Nios II processors generate exceptions for unimplemented instructions.
50 	* The routines below emulate these instructions.  Depending on the
51 	* processor core, the only instructions that might need to be emulated
52 	* are div, divu, mul, muli, mulxss, mulxsu, and mulxuu.
53 	*
54 	* The emulations match the instructions, except for the following
55 	* limitations:
56 	*
57 	* 1) The emulation routines do not emulate the use of the exception
58 	*    temporary register (et) as a source operand because the exception
59 	*    handler already has modified it.
60 	*
61 	* 2) The routines do not emulate the use of the stack pointer (sp) or
62 	*    the exception return address register (ea) as a destination because
63 	*    modifying these registers crashes the exception handler or the
64 	*    interrupted routine.
65 	*
66 	* Detailed Design
67 	* ---------------
68 	*
69 	* The emulation routines expect the contents of integer registers r0-r31
70 	* to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp).  The
71 	* routines retrieve source operands from the stack and modify the
72 	* destination register's value on the stack prior to the end of the
73 	* exception handler.  Then all registers except the destination register
74 	* are restored to their previous values.
75 	*
76 	* The instruction that causes the exception is found at address -4(ea).
77 	* The instruction's OP and OPX fields identify the operation to be
78 	* performed.
79 	*
80 	* One instruction, muli, is an I-type instruction that is identified by
81 	* an OP field of 0x24.
82 	*
83 	* muli   AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24-
84 	*           27    22                6      0    <-- LSB of field
85 	*
86 	* The remaining emulated instructions are R-type and have an OP field
87 	* of 0x3a.  Their OPX fields identify them.
88 	*
89 	* R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a-
90 	*           27    22    17     11     6      0  <-- LSB of field
91 	*
92 	*
93 	* Opcode Encoding.  muli is identified by its OP value.  Then OPX & 0x02
94 	* is used to differentiate between the division opcodes and the
95 	* remaining multiplication opcodes.
96 	*
97 	* Instruction   OP      OPX    OPX & 0x02
98 	* -----------   ----    ----   ----------
99 	* muli          0x24
100 	* divu          0x3a    0x24         0
101 	* div           0x3a    0x25         0
102 	* mul           0x3a    0x27      != 0
103 	* mulxuu        0x3a    0x07      != 0
104 	* mulxsu        0x3a    0x17      != 0
105 	* mulxss        0x3a    0x1f      != 0
106 	*/
107 
108 
109 	/*
110 	* Save everything on the stack to make it easy for the emulation
111 	* routines to retrieve the source register operands.
112 	*/
113 
114 	addi sp, sp, -128
115 	stw zero, 0(sp)	/* Save zero on stack to avoid special case for r0. */
116 	stw r1, 4(sp)
117 	stw r2,  8(sp)
118 	stw r3, 12(sp)
119 	stw r4, 16(sp)
120 	stw r5, 20(sp)
121 	stw r6, 24(sp)
122 	stw r7, 28(sp)
123 	stw r8, 32(sp)
124 	stw r9, 36(sp)
125 	stw r10, 40(sp)
126 	stw r11, 44(sp)
127 	stw r12, 48(sp)
128 	stw r13, 52(sp)
129 	stw r14, 56(sp)
130 	stw r15, 60(sp)
131 	stw r16, 64(sp)
132 	stw r17, 68(sp)
133 	stw r18, 72(sp)
134 	stw r19, 76(sp)
135 	stw r20, 80(sp)
136 	stw r21, 84(sp)
137 	stw r22, 88(sp)
138 	stw r23, 92(sp)
139 		/* Don't bother to save et.  It's already been changed. */
140 	rdctl r5, estatus
141 	stw r5,  100(sp)
142 
143 	stw gp, 104(sp)
144 	stw et, 108(sp)	/* et contains previous sp value. */
145 	stw fp, 112(sp)
146 	stw ea, 116(sp)
147 	stw ra, 120(sp)
148 
149 
150 	/*
151 	* Split the instruction into its fields.  We need 4*A, 4*B, and 4*C as
152 	* offsets to the stack pointer for access to the stored register values.
153 	*/
154 	ldw r2,-4(ea)	/* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */
155 	roli r3, r2, 7	/* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */
156 	roli r4, r3, 3	/* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */
157 	roli r5, r4, 2	/* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */
158 	srai r4, r4, 16	/* r4 = (sign-extended) IMM16 */
159 	roli r6, r5, 5	/* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */
160 	andi r2, r2, 0x3f	/* r2 = 00000000000000000000000000,PPPPPP */
161 	andi r3, r3, 0x7c	/* r3 = 0000000000000000000000000,AAAAA,00 */
162 	andi r5, r5, 0x7c	/* r5 = 0000000000000000000000000,BBBBB,00 */
163 	andi r6, r6, 0x7c	/* r6 = 0000000000000000000000000,CCCCC,00 */
164 
165 	/* Now
166 	* r2 = OP
167 	* r3 = 4*A
168 	* r4 = IMM16 (sign extended)
169 	* r5 = 4*B
170 	* r6 = 4*C
171 	*/
172 
173 	/*
174 	* Get the operands.
175 	*
176 	* It is necessary to check for muli because it uses an I-type
177 	* instruction format, while the other instructions are have an R-type
178 	* format.
179 	*
180 	*  Prepare for either multiplication or division loop.
181 	*  They both loop 32 times.
182 	*/
183 	movi r14, 32
184 
185 	add  r3, r3, sp		/* r3 = address of A-operand. */
186 	ldw  r3, 0(r3)		/* r3 = A-operand. */
187 	movi r7, 0x24		/* muli opcode (I-type instruction format) */
188 	beq r2, r7, mul_immed /* muli doesn't use the B register as a source */
189 
190 	add  r5, r5, sp		/* r5 = address of B-operand. */
191 	ldw  r5, 0(r5)		/* r5 = B-operand. */
192 				/* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */
193 				/* IMM16 not needed, align OPX portion */
194 				/* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */
195 	srli r4, r4, 5		/* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */
196 	andi r4, r4, 0x3f	/* r4 = 00000000000000000000000000,-OPX-- */
197 
198 	/* Now
199 	* r2 = OP
200 	* r3 = src1
201 	* r5 = src2
202 	* r4 = OPX (no longer can be muli)
203 	* r6 = 4*C
204 	*/
205 
206 
207 	/*
208 	*  Multiply or Divide?
209 	*/
210 	andi r7, r4, 0x02	/* For R-type multiply instructions,
211 				   OPX & 0x02 != 0 */
212 	bne r7, zero, multiply
213 
214 
215 	/* DIVISION
216 	*
217 	* Divide an unsigned dividend by an unsigned divisor using
218 	* a shift-and-subtract algorithm.  The example below shows
219 	* 43 div 7 = 6 for 8-bit integers.  This classic algorithm uses a
220 	* single register to store both the dividend and the quotient,
221 	* allowing both values to be shifted with a single instruction.
222 	*
223 	*                               remainder dividend:quotient
224 	*                               --------- -----------------
225 	*   initialize                   00000000     00101011:
226 	*   shift                        00000000     0101011:_
227 	*   remainder >= divisor? no     00000000     0101011:0
228 	*   shift                        00000000     101011:0_
229 	*   remainder >= divisor? no     00000000     101011:00
230 	*   shift                        00000001     01011:00_
231 	*   remainder >= divisor? no     00000001     01011:000
232 	*   shift                        00000010     1011:000_
233 	*   remainder >= divisor? no     00000010     1011:0000
234 	*   shift                        00000101     011:0000_
235 	*   remainder >= divisor? no     00000101     011:00000
236 	*   shift                        00001010     11:00000_
237 	*   remainder >= divisor? yes    00001010     11:000001
238 	*       remainder -= divisor   - 00000111
239 	*                              ----------
240 	*                                00000011     11:000001
241 	*   shift                        00000111     1:000001_
242 	*   remainder >= divisor? yes    00000111     1:0000011
243 	*       remainder -= divisor   - 00000111
244 	*                              ----------
245 	*                                00000000     1:0000011
246 	*   shift                        00000001     :0000011_
247 	*   remainder >= divisor? no     00000001     :00000110
248 	*
249 	* The quotient is 00000110.
250 	*/
251 
252 divide:
253 	/*
254 	*  Prepare for division by assuming the result
255 	*  is unsigned, and storing its "sign" as 0.
256 	*/
257 	movi r17, 0
258 
259 
260 	/* Which division opcode? */
261 	xori r7, r4, 0x25		/* OPX of div */
262 	bne r7, zero, unsigned_division
263 
264 
265 	/*
266 	*  OPX is div.  Determine and store the sign of the quotient.
267 	*  Then take the absolute value of both operands.
268 	*/
269 	xor r17, r3, r5		/* MSB contains sign of quotient */
270 	bge r3,zero,dividend_is_nonnegative
271 	sub r3, zero, r3	/* -r3 */
272 dividend_is_nonnegative:
273 	bge r5, zero, divisor_is_nonnegative
274 	sub r5, zero, r5	/* -r5 */
275 divisor_is_nonnegative:
276 
277 
278 unsigned_division:
279 	/* Initialize the unsigned-division loop. */
280 	movi r13, 0	/* remainder = 0 */
281 
282 	/* Now
283 	* r3 = dividend : quotient
284 	* r4 = 0x25 for div, 0x24 for divu
285 	* r5 = divisor
286 	* r13 = remainder
287 	* r14 = loop counter (already initialized to 32)
288 	* r17 = MSB contains sign of quotient
289 	*/
290 
291 
292 	/*
293 	*   for (count = 32; count > 0; --count)
294 	*   {
295 	*/
296 divide_loop:
297 
298 	/*
299 	*       Division:
300 	*
301 	*       (remainder:dividend:quotient) <<= 1;
302 	*/
303 	slli r13, r13, 1
304 	cmplt r7, r3, zero	/* r7 = MSB of r3 */
305 	or r13, r13, r7
306 	slli r3, r3, 1
307 
308 
309 	/*
310 	*       if (remainder >= divisor)
311 	*       {
312 	*           set LSB of quotient
313 	*           remainder -= divisor;
314 	*       }
315 	*/
316 	bltu r13, r5, div_skip
317 	ori r3, r3, 1
318 	sub r13, r13, r5
319 div_skip:
320 
321 	/*
322 	*   }
323 	*/
324 	subi r14, r14, 1
325 	bne r14, zero, divide_loop
326 
327 
328 	/* Now
329 	* r3 = quotient
330 	* r4 = 0x25 for div, 0x24 for divu
331 	* r6 = 4*C
332 	* r17 = MSB contains sign of quotient
333 	*/
334 
335 
336 	/*
337 	*  Conditionally negate signed quotient.  If quotient is unsigned,
338 	*  the sign already is initialized to 0.
339 	*/
340 	bge r17, zero, quotient_is_nonnegative
341 	sub r3, zero, r3		/* -r3 */
342 	quotient_is_nonnegative:
343 
344 
345 	/*
346 	*  Final quotient is in r3.
347 	*/
348 	add r6, r6, sp
349 	stw r3, 0(r6)	/* write quotient to stack */
350 	br restore_registers
351 
352 
353 
354 
355 	/* MULTIPLICATION
356 	*
357 	* A "product" is the number that one gets by summing a "multiplicand"
358 	* several times.  The "multiplier" specifies the number of copies of the
359 	* multiplicand that are summed.
360 	*
361 	* Actual multiplication algorithms don't use repeated addition, however.
362 	* Shift-and-add algorithms get the same answer as repeated addition, and
363 	* they are faster.  To compute the lower half of a product (pppp below)
364 	* one shifts the product left before adding in each of the partial
365 	* products (a * mmmm) through (d * mmmm).
366 	*
367 	* To compute the upper half of a product (PPPP below), one adds in the
368 	* partial products (d * mmmm) through (a * mmmm), each time following
369 	* the add by a right shift of the product.
370 	*
371 	*     mmmm
372 	*   * abcd
373 	*   ------
374 	*     ####  = d * mmmm
375 	*    ####   = c * mmmm
376 	*   ####    = b * mmmm
377 	*  ####     = a * mmmm
378 	* --------
379 	* PPPPpppp
380 	*
381 	* The example above shows 4 partial products.  Computing actual Nios II
382 	* products requires 32 partials.
383 	*
384 	* It is possible to compute the result of mulxsu from the result of
385 	* mulxuu because the only difference between the results of these two
386 	* opcodes is the value of the partial product associated with the sign
387 	* bit of rA.
388 	*
389 	*   mulxsu = mulxuu - (rA < 0) ? rB : 0;
390 	*
391 	* It is possible to compute the result of mulxss from the result of
392 	* mulxsu because the only difference between the results of these two
393 	* opcodes is the value of the partial product associated with the sign
394 	* bit of rB.
395 	*
396 	*   mulxss = mulxsu - (rB < 0) ? rA : 0;
397 	*
398 	*/
399 
400 mul_immed:
401 	/* Opcode is muli.  Change it into mul for remainder of algorithm. */
402 	mov r6, r5		/* Field B is dest register, not field C. */
403 	mov r5, r4		/* Field IMM16 is src2, not field B. */
404 	movi r4, 0x27		/* OPX of mul is 0x27 */
405 
406 multiply:
407 	/* Initialize the multiplication loop. */
408 	movi r9, 0	/* mul_product    = 0 */
409 	movi r10, 0	/* mulxuu_product = 0 */
410 	mov r11, r5	/* save original multiplier for mulxsu and mulxss */
411 	mov r12, r5	/* mulxuu_multiplier (will be shifted) */
412 	movi r16, 1	/* used to create "rori B,A,1" from "ror B,A,r16" */
413 
414 	/* Now
415 	* r3 = multiplicand
416 	* r5 = mul_multiplier
417 	* r6 = 4 * dest_register (used later as offset to sp)
418 	* r7 = temp
419 	* r9 = mul_product
420 	* r10 = mulxuu_product
421 	* r11 = original multiplier
422 	* r12 = mulxuu_multiplier
423 	* r14 = loop counter (already initialized)
424 	* r16 = 1
425 	*/
426 
427 
428 	/*
429 	*   for (count = 32; count > 0; --count)
430 	*   {
431 	*/
432 multiply_loop:
433 
434 	/*
435 	*       mul_product <<= 1;
436 	*       lsb = multiplier & 1;
437 	*/
438 	slli r9, r9, 1
439 	andi r7, r12, 1
440 
441 	/*
442 	*       if (lsb == 1)
443 	*       {
444 	*           mulxuu_product += multiplicand;
445 	*       }
446 	*/
447 	beq r7, zero, mulx_skip
448 	add r10, r10, r3
449 	cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */
450 	ror r7, r7, r16	/* r7 = 0x80000000 on carry, or else 0x00000000 */
451 mulx_skip:
452 
453 	/*
454 	*       if (MSB of mul_multiplier == 1)
455 	*       {
456 	*           mul_product += multiplicand;
457 	*       }
458 	*/
459 	bge r5, zero, mul_skip
460 	add r9, r9, r3
461 mul_skip:
462 
463 	/*
464 	*       mulxuu_product >>= 1;           logical shift
465 	*       mul_multiplier <<= 1;           done with MSB
466 	*       mulx_multiplier >>= 1;          done with LSB
467 	*/
468 	srli r10, r10, 1
469 	or r10, r10, r7		/* OR in the saved carry bit. */
470 	slli r5, r5, 1
471 	srli r12, r12, 1
472 
473 
474 	/*
475 	*   }
476 	*/
477 	subi r14, r14, 1
478 	bne r14, zero, multiply_loop
479 
480 
481 	/*
482 	*  Multiply emulation loop done.
483 	*/
484 
485 	/* Now
486 	* r3 = multiplicand
487 	* r4 = OPX
488 	* r6 = 4 * dest_register (used later as offset to sp)
489 	* r7 = temp
490 	* r9 = mul_product
491 	* r10 = mulxuu_product
492 	* r11 = original multiplier
493 	*/
494 
495 
496 	/* Calculate address for result from 4 * dest_register */
497 	add r6, r6, sp
498 
499 
500 	/*
501 	* Select/compute the result based on OPX.
502 	*/
503 
504 
505 	/* OPX == mul?  Then store. */
506 	xori r7, r4, 0x27
507 	beq r7, zero, store_product
508 
509 	/* It's one of the mulx.. opcodes.  Move over the result. */
510 	mov r9, r10
511 
512 	/* OPX == mulxuu?  Then store. */
513 	xori r7, r4, 0x07
514 	beq r7, zero, store_product
515 
516 	/* Compute mulxsu
517 	 *
518 	 * mulxsu = mulxuu - (rA < 0) ? rB : 0;
519 	 */
520 	bge r3, zero, mulxsu_skip
521 	sub r9, r9, r11
522 mulxsu_skip:
523 
524 	/* OPX == mulxsu?  Then store. */
525 	xori r7, r4, 0x17
526 	beq r7, zero, store_product
527 
528 	/* Compute mulxss
529 	 *
530 	 * mulxss = mulxsu - (rB < 0) ? rA : 0;
531 	 */
532 	bge r11,zero,mulxss_skip
533 	sub r9, r9, r3
534 mulxss_skip:
535 	/* At this point, assume that OPX is mulxss, so store*/
536 
537 
538 store_product:
539 	stw r9, 0(r6)
540 
541 
542 restore_registers:
543 			/* No need to restore r0. */
544 	ldw r5, 100(sp)
545 	wrctl estatus, r5
546 
547 	ldw r1, 4(sp)
548 	ldw r2, 8(sp)
549 	ldw r3, 12(sp)
550 	ldw r4, 16(sp)
551 	ldw r5, 20(sp)
552 	ldw r6, 24(sp)
553 	ldw r7, 28(sp)
554 	ldw r8, 32(sp)
555 	ldw r9, 36(sp)
556 	ldw r10, 40(sp)
557 	ldw r11, 44(sp)
558 	ldw r12, 48(sp)
559 	ldw r13, 52(sp)
560 	ldw r14, 56(sp)
561 	ldw r15, 60(sp)
562 	ldw r16, 64(sp)
563 	ldw r17, 68(sp)
564 	ldw r18, 72(sp)
565 	ldw r19, 76(sp)
566 	ldw r20, 80(sp)
567 	ldw r21, 84(sp)
568 	ldw r22, 88(sp)
569 	ldw r23, 92(sp)
570 			/* Does not need to restore et */
571 	ldw gp, 104(sp)
572 
573 	ldw fp, 112(sp)
574 	ldw ea, 116(sp)
575 	ldw ra, 120(sp)
576 	ldw sp, 108(sp)	/* last restore sp */
577 	eret
578 
579 .set at
580 .set break
581