1 |
2 |	slog2.sa 3.1 12/10/90
3 |
4 |       The entry point slog10 computes the base-10
5 |	logarithm of an input argument X.
6 |	slog10d does the same except the input value is a
7 |	denormalized number.
8 |	sLog2 and sLog2d are the base-2 analogues.
9 |
10 |       INPUT:	Double-extended value in memory location pointed to
11 |		by address register a0.
12 |
13 |       OUTPUT: log_10(X) or log_2(X) returned in floating-point
14 |		register fp0.
15 |
16 |       ACCURACY and MONOTONICITY: The returned result is within 1.7
17 |		ulps in 64 significant bit, i.e. within 0.5003 ulp
18 |		to 53 bits if the result is subsequently rounded
19 |		to double precision. The result is provably monotonic
20 |		in double precision.
21 |
22 |       SPEED:	Two timings are measured, both in the copy-back mode.
23 |		The first one is measured when the function is invoked
24 |		the first time (so the instructions and data are not
25 |		in cache), and the second one is measured when the
26 |		function is reinvoked at the same input argument.
27 |
28 |       ALGORITHM and IMPLEMENTATION NOTES:
29 |
30 |       slog10d:
31 |
32 |       Step 0.   If X < 0, create a NaN and raise the invalid operation
33 |                 flag. Otherwise, save FPCR in D1; set FpCR to default.
34 |       Notes:    Default means round-to-nearest mode, no floating-point
35 |                 traps, and precision control = double extended.
36 |
37 |       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
38 |       Notes:    Even if X is denormalized, log(X) is always normalized.
39 |
40 |       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
41 |            2.1  Restore the user FPCR
42 |            2.2  Return ans := Y * INV_L10.
43 |
44 |
45 |       slog10:
46 |
47 |       Step 0.   If X < 0, create a NaN and raise the invalid operation
48 |                 flag. Otherwise, save FPCR in D1; set FpCR to default.
49 |       Notes:    Default means round-to-nearest mode, no floating-point
50 |                 traps, and precision control = double extended.
51 |
52 |       Step 1.   Call sLogN to obtain Y = log(X), the natural log of X.
53 |
54 |       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
55 |            2.1  Restore the user FPCR
56 |            2.2  Return ans := Y * INV_L10.
57 |
58 |
59 |       sLog2d:
60 |
61 |       Step 0.   If X < 0, create a NaN and raise the invalid operation
62 |                 flag. Otherwise, save FPCR in D1; set FpCR to default.
63 |       Notes:    Default means round-to-nearest mode, no floating-point
64 |                 traps, and precision control = double extended.
65 |
66 |       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
67 |       Notes:    Even if X is denormalized, log(X) is always normalized.
68 |
69 |       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).
70 |            2.1  Restore the user FPCR
71 |            2.2  Return ans := Y * INV_L2.
72 |
73 |
74 |       sLog2:
75 |
76 |       Step 0.   If X < 0, create a NaN and raise the invalid operation
77 |                 flag. Otherwise, save FPCR in D1; set FpCR to default.
78 |       Notes:    Default means round-to-nearest mode, no floating-point
79 |                 traps, and precision control = double extended.
80 |
81 |       Step 1.   If X is not an integer power of two, i.e., X != 2^k,
82 |                 go to Step 3.
83 |
84 |       Step 2.   Return k.
85 |            2.1  Get integer k, X = 2^k.
86 |            2.2  Restore the user FPCR.
87 |            2.3  Return ans := convert-to-double-extended(k).
88 |
89 |       Step 3.   Call sLogN to obtain Y = log(X), the natural log of X.
90 |
91 |       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).
92 |            4.1  Restore the user FPCR
93 |            4.2  Return ans := Y * INV_L2.
94 |
95 
96 |		Copyright (C) Motorola, Inc. 1990
97 |			All Rights Reserved
98 |
99 |       For details on the license for this file, please see the
100 |       file, README, in this same directory.
101 
102 |SLOG2    idnt    2,1 | Motorola 040 Floating Point Software Package
103 
104 	|section	8
105 
106 	|xref	t_frcinx
107 	|xref	t_operr
108 	|xref	slogn
109 	|xref	slognd
110 
111 INV_L10:  .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
112 
113 INV_L2:   .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
114 
115 	.global	slog10d
116 slog10d:
117 |--entry point for Log10(X), X is denormalized
118 	movel		(%a0),%d0
119 	blt		invalid
120 	movel		%d1,-(%sp)
121 	clrl		%d1
122 	bsr		slognd			| ...log(X), X denorm.
123 	fmovel		(%sp)+,%fpcr
124 	fmulx		INV_L10,%fp0
125 	bra		t_frcinx
126 
127 	.global	slog10
128 slog10:
129 |--entry point for Log10(X), X is normalized
130 
131 	movel		(%a0),%d0
132 	blt		invalid
133 	movel		%d1,-(%sp)
134 	clrl		%d1
135 	bsr		slogn			| ...log(X), X normal.
136 	fmovel		(%sp)+,%fpcr
137 	fmulx		INV_L10,%fp0
138 	bra		t_frcinx
139 
140 
141 	.global	slog2d
142 slog2d:
143 |--entry point for Log2(X), X is denormalized
144 
145 	movel		(%a0),%d0
146 	blt		invalid
147 	movel		%d1,-(%sp)
148 	clrl		%d1
149 	bsr		slognd			| ...log(X), X denorm.
150 	fmovel		(%sp)+,%fpcr
151 	fmulx		INV_L2,%fp0
152 	bra		t_frcinx
153 
154 	.global	slog2
155 slog2:
156 |--entry point for Log2(X), X is normalized
157 	movel		(%a0),%d0
158 	blt		invalid
159 
160 	movel		8(%a0),%d0
161 	bnes		continue		| ...X is not 2^k
162 
163 	movel		4(%a0),%d0
164 	andl		#0x7FFFFFFF,%d0
165 	tstl		%d0
166 	bnes		continue
167 
168 |--X = 2^k.
169 	movew		(%a0),%d0
170 	andl		#0x00007FFF,%d0
171 	subl		#0x3FFF,%d0
172 	fmovel		%d1,%fpcr
173 	fmovel		%d0,%fp0
174 	bra		t_frcinx
175 
176 continue:
177 	movel		%d1,-(%sp)
178 	clrl		%d1
179 	bsr		slogn			| ...log(X), X normal.
180 	fmovel		(%sp)+,%fpcr
181 	fmulx		INV_L2,%fp0
182 	bra		t_frcinx
183 
184 invalid:
185 	bra		t_operr
186 
187 	|end
188