1 |
2 |	sacos.sa 3.3 12/19/90
3 |
4 |	Description: The entry point sAcos computes the inverse cosine of
5 |		an input argument; sAcosd does the same except for denormalized
6 |		input.
7 |
8 |	Input: Double-extended number X in location pointed to
9 |		by address register a0.
10 |
11 |	Output: The value arccos(X) returned in floating-point register Fp0.
12 |
13 |	Accuracy and Monotonicity: The returned result is within 3 ulps in
14 |		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15 |		result is subsequently rounded to double precision. The
16 |		result is provably monotonic in double precision.
17 |
18 |	Speed: The program sCOS takes approximately 310 cycles.
19 |
20 |	Algorithm:
21 |
22 |	ACOS
23 |	1. If |X| >= 1, go to 3.
24 |
25 |	2. (|X| < 1) Calculate acos(X) by
26 |		z := (1-X) / (1+X)
27 |		acos(X) = 2 * atan( sqrt(z) ).
28 |		Exit.
29 |
30 |	3. If |X| > 1, go to 5.
31 |
32 |	4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.
33 |
34 |	5. (|X| > 1) Generate an invalid operation by 0 * infinity.
35 |		Exit.
36 |
37 
38 |		Copyright (C) Motorola, Inc. 1990
39 |			All Rights Reserved
40 |
41 |       For details on the license for this file, please see the
42 |       file, README, in this same directory.
43 
44 |SACOS	idnt	2,1 | Motorola 040 Floating Point Software Package
45 
46 	|section	8
47 
48 PI:	.long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
49 PIBY2:	.long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
50 
51 	|xref	t_operr
52 	|xref	t_frcinx
53 	|xref	satan
54 
55 	.global	sacosd
56 sacosd:
57 |--ACOS(X) = PI/2 FOR DENORMALIZED X
58 	fmovel		%d1,%fpcr		| ...load user's rounding mode/precision
59 	fmovex		PIBY2,%fp0
60 	bra		t_frcinx
61 
62 	.global	sacos
63 sacos:
64 	fmovex		(%a0),%fp0	| ...LOAD INPUT
65 
66 	movel		(%a0),%d0		| ...pack exponent with upper 16 fraction
67 	movew		4(%a0),%d0
68 	andil		#0x7FFFFFFF,%d0
69 	cmpil		#0x3FFF8000,%d0
70 	bges		ACOSBIG
71 
72 |--THIS IS THE USUAL CASE, |X| < 1
73 |--ACOS(X) = 2 * ATAN(	SQRT( (1-X)/(1+X) )	)
74 
75 	fmoves		#0x3F800000,%fp1
76 	faddx		%fp0,%fp1		| ...1+X
77 	fnegx		%fp0		| ... -X
78 	fadds		#0x3F800000,%fp0	| ...1-X
79 	fdivx		%fp1,%fp0		| ...(1-X)/(1+X)
80 	fsqrtx		%fp0		| ...SQRT((1-X)/(1+X))
81 	fmovemx	%fp0-%fp0,(%a0)	| ...overwrite input
82 	movel		%d1,-(%sp)	|save original users fpcr
83 	clrl		%d1
84 	bsr		satan		| ...ATAN(SQRT([1-X]/[1+X]))
85 	fmovel		(%sp)+,%fpcr	|restore users exceptions
86 	faddx		%fp0,%fp0		| ...2 * ATAN( STUFF )
87 	bra		t_frcinx
88 
89 ACOSBIG:
90 	fabsx		%fp0
91 	fcmps		#0x3F800000,%fp0
92 	fbgt		t_operr		|cause an operr exception
93 
94 |--|X| = 1, ACOS(X) = 0 OR PI
95 	movel		(%a0),%d0		| ...pack exponent with upper 16 fraction
96 	movew		4(%a0),%d0
97 	cmpl		#0,%d0		|D0 has original exponent+fraction
98 	bgts		ACOSP1
99 
100 |--X = -1
101 |Returns PI and inexact exception
102 	fmovex		PI,%fp0
103 	fmovel		%d1,%FPCR
104 	fadds		#0x00800000,%fp0	|cause an inexact exception to be put
105 |					;into the 040 - will not trap until next
106 |					;fp inst.
107 	bra		t_frcinx
108 
109 ACOSP1:
110 	fmovel		%d1,%FPCR
111 	fmoves		#0x00000000,%fp0
112 	rts				|Facos ; of +1 is exact
113 
114 	|end
115