1 |
2 |	round.sa 3.4 7/29/91
3 |
4 |	handle rounding and normalization tasks
5 |
6 |
7 |
8 |		Copyright (C) Motorola, Inc. 1990
9 |			All Rights Reserved
10 |
11 |       For details on the license for this file, please see the
12 |       file, README, in this same directory.
13 
14 |ROUND	idnt    2,1 | Motorola 040 Floating Point Software Package
15 
16 	|section	8
17 
18 #include "fpsp.h"
19 
20 |
21 |	round --- round result according to precision/mode
22 |
23 |	a0 points to the input operand in the internal extended format
24 |	d1(high word) contains rounding precision:
25 |		ext = $0000xxxx
26 |		sgl = $0001xxxx
27 |		dbl = $0002xxxx
28 |	d1(low word) contains rounding mode:
29 |		RN  = $xxxx0000
30 |		RZ  = $xxxx0001
31 |		RM  = $xxxx0010
32 |		RP  = $xxxx0011
33 |	d0{31:29} contains the g,r,s bits (extended)
34 |
35 |	On return the value pointed to by a0 is correctly rounded,
36 |	a0 is preserved and the g-r-s bits in d0 are cleared.
37 |	The result is not typed - the tag field is invalid.  The
38 |	result is still in the internal extended format.
39 |
40 |	The INEX bit of USER_FPSR will be set if the rounded result was
41 |	inexact (i.e. if any of the g-r-s bits were set).
42 |
43 
44 	.global	round
45 round:
46 | If g=r=s=0 then result is exact and round is done, else set
47 | the inex flag in status reg and continue.
48 |
49 	bsrs	ext_grs			|this subroutine looks at the
50 |					:rounding precision and sets
51 |					;the appropriate g-r-s bits.
52 	tstl	%d0			|if grs are zero, go force
53 	bne	rnd_cont		|lower bits to zero for size
54 
55 	swap	%d1			|set up d1.w for round prec.
56 	bra	truncate
57 
58 rnd_cont:
59 |
60 | Use rounding mode as an index into a jump table for these modes.
61 |
62 	orl	#inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
63 	lea	mode_tab,%a1
64 	movel	(%a1,%d1.w*4),%a1
65 	jmp	(%a1)
66 |
67 | Jump table indexed by rounding mode in d1.w.  All following assumes
68 | grs != 0.
69 |
70 mode_tab:
71 	.long	rnd_near
72 	.long	rnd_zero
73 	.long	rnd_mnus
74 	.long	rnd_plus
75 |
76 |	ROUND PLUS INFINITY
77 |
78 |	If sign of fp number = 0 (positive), then add 1 to l.
79 |
80 rnd_plus:
81 	swap	%d1			|set up d1 for round prec.
82 	tstb	LOCAL_SGN(%a0)		|check for sign
83 	bmi	truncate		|if positive then truncate
84 	movel	#0xffffffff,%d0		|force g,r,s to be all f's
85 	lea	add_to_l,%a1
86 	movel	(%a1,%d1.w*4),%a1
87 	jmp	(%a1)
88 |
89 |	ROUND MINUS INFINITY
90 |
91 |	If sign of fp number = 1 (negative), then add 1 to l.
92 |
93 rnd_mnus:
94 	swap	%d1			|set up d1 for round prec.
95 	tstb	LOCAL_SGN(%a0)		|check for sign
96 	bpl	truncate		|if negative then truncate
97 	movel	#0xffffffff,%d0		|force g,r,s to be all f's
98 	lea	add_to_l,%a1
99 	movel	(%a1,%d1.w*4),%a1
100 	jmp	(%a1)
101 |
102 |	ROUND ZERO
103 |
104 |	Always truncate.
105 rnd_zero:
106 	swap	%d1			|set up d1 for round prec.
107 	bra	truncate
108 |
109 |
110 |	ROUND NEAREST
111 |
112 |	If (g=1), then add 1 to l and if (r=s=0), then clear l
113 |	Note that this will round to even in case of a tie.
114 |
115 rnd_near:
116 	swap	%d1			|set up d1 for round prec.
117 	asll	#1,%d0			|shift g-bit to c-bit
118 	bcc	truncate		|if (g=1) then
119 	lea	add_to_l,%a1
120 	movel	(%a1,%d1.w*4),%a1
121 	jmp	(%a1)
122 
123 |
124 |	ext_grs --- extract guard, round and sticky bits
125 |
126 | Input:	d1 =		PREC:ROUND
127 | Output:	d0{31:29}=	guard, round, sticky
128 |
129 | The ext_grs extract the guard/round/sticky bits according to the
130 | selected rounding precision. It is called by the round subroutine
131 | only.  All registers except d0 are kept intact. d0 becomes an
132 | updated guard,round,sticky in d0{31:29}
133 |
134 | Notes: the ext_grs uses the round PREC, and therefore has to swap d1
135 |	 prior to usage, and needs to restore d1 to original.
136 |
137 ext_grs:
138 	swap	%d1			|have d1.w point to round precision
139 	cmpiw	#0,%d1
140 	bnes	sgl_or_dbl
141 	bras	end_ext_grs
142 
143 sgl_or_dbl:
144 	moveml	%d2/%d3,-(%a7)		|make some temp registers
145 	cmpiw	#1,%d1
146 	bnes	grs_dbl
147 grs_sgl:
148 	bfextu	LOCAL_HI(%a0){#24:#2},%d3	|sgl prec. g-r are 2 bits right
149 	movel	#30,%d2			|of the sgl prec. limits
150 	lsll	%d2,%d3			|shift g-r bits to MSB of d3
151 	movel	LOCAL_HI(%a0),%d2		|get word 2 for s-bit test
152 	andil	#0x0000003f,%d2		|s bit is the or of all other
153 	bnes	st_stky			|bits to the right of g-r
154 	tstl	LOCAL_LO(%a0)		|test lower mantissa
155 	bnes	st_stky			|if any are set, set sticky
156 	tstl	%d0			|test original g,r,s
157 	bnes	st_stky			|if any are set, set sticky
158 	bras	end_sd			|if words 3 and 4 are clr, exit
159 grs_dbl:
160 	bfextu	LOCAL_LO(%a0){#21:#2},%d3	|dbl-prec. g-r are 2 bits right
161 	movel	#30,%d2			|of the dbl prec. limits
162 	lsll	%d2,%d3			|shift g-r bits to the MSB of d3
163 	movel	LOCAL_LO(%a0),%d2		|get lower mantissa  for s-bit test
164 	andil	#0x000001ff,%d2		|s bit is the or-ing of all
165 	bnes	st_stky			|other bits to the right of g-r
166 	tstl	%d0			|test word original g,r,s
167 	bnes	st_stky			|if any are set, set sticky
168 	bras	end_sd			|if clear, exit
169 st_stky:
170 	bset	#rnd_stky_bit,%d3
171 end_sd:
172 	movel	%d3,%d0			|return grs to d0
173 	moveml	(%a7)+,%d2/%d3		|restore scratch registers
174 end_ext_grs:
175 	swap	%d1			|restore d1 to original
176 	rts
177 
178 |*******************  Local Equates
179 	.set	ad_1_sgl,0x00000100	|  constant to add 1 to l-bit in sgl prec
180 	.set	ad_1_dbl,0x00000800	|  constant to add 1 to l-bit in dbl prec
181 
182 
183 |Jump table for adding 1 to the l-bit indexed by rnd prec
184 
185 add_to_l:
186 	.long	add_ext
187 	.long	add_sgl
188 	.long	add_dbl
189 	.long	add_dbl
190 |
191 |	ADD SINGLE
192 |
193 add_sgl:
194 	addl	#ad_1_sgl,LOCAL_HI(%a0)
195 	bccs	scc_clr			|no mantissa overflow
196 	roxrw  LOCAL_HI(%a0)		|shift v-bit back in
197 	roxrw  LOCAL_HI+2(%a0)		|shift v-bit back in
198 	addw	#0x1,LOCAL_EX(%a0)	|and incr exponent
199 scc_clr:
200 	tstl	%d0			|test for rs = 0
201 	bnes	sgl_done
202 	andiw  #0xfe00,LOCAL_HI+2(%a0)	|clear the l-bit
203 sgl_done:
204 	andil	#0xffffff00,LOCAL_HI(%a0) |truncate bits beyond sgl limit
205 	clrl	LOCAL_LO(%a0)		|clear d2
206 	rts
207 
208 |
209 |	ADD EXTENDED
210 |
211 add_ext:
212 	addql  #1,LOCAL_LO(%a0)		|add 1 to l-bit
213 	bccs	xcc_clr			|test for carry out
214 	addql  #1,LOCAL_HI(%a0)		|propagate carry
215 	bccs	xcc_clr
216 	roxrw  LOCAL_HI(%a0)		|mant is 0 so restore v-bit
217 	roxrw  LOCAL_HI+2(%a0)		|mant is 0 so restore v-bit
218 	roxrw	LOCAL_LO(%a0)
219 	roxrw	LOCAL_LO+2(%a0)
220 	addw	#0x1,LOCAL_EX(%a0)	|and inc exp
221 xcc_clr:
222 	tstl	%d0			|test rs = 0
223 	bnes	add_ext_done
224 	andib	#0xfe,LOCAL_LO+3(%a0)	|clear the l bit
225 add_ext_done:
226 	rts
227 |
228 |	ADD DOUBLE
229 |
230 add_dbl:
231 	addl	#ad_1_dbl,LOCAL_LO(%a0)
232 	bccs	dcc_clr
233 	addql	#1,LOCAL_HI(%a0)		|propagate carry
234 	bccs	dcc_clr
235 	roxrw	LOCAL_HI(%a0)		|mant is 0 so restore v-bit
236 	roxrw	LOCAL_HI+2(%a0)		|mant is 0 so restore v-bit
237 	roxrw	LOCAL_LO(%a0)
238 	roxrw	LOCAL_LO+2(%a0)
239 	addw	#0x1,LOCAL_EX(%a0)	|incr exponent
240 dcc_clr:
241 	tstl	%d0			|test for rs = 0
242 	bnes	dbl_done
243 	andiw	#0xf000,LOCAL_LO+2(%a0)	|clear the l-bit
244 
245 dbl_done:
246 	andil	#0xfffff800,LOCAL_LO(%a0) |truncate bits beyond dbl limit
247 	rts
248 
249 error:
250 	rts
251 |
252 | Truncate all other bits
253 |
254 trunct:
255 	.long	end_rnd
256 	.long	sgl_done
257 	.long	dbl_done
258 	.long	dbl_done
259 
260 truncate:
261 	lea	trunct,%a1
262 	movel	(%a1,%d1.w*4),%a1
263 	jmp	(%a1)
264 
265 end_rnd:
266 	rts
267 
268 |
269 |	NORMALIZE
270 |
271 | These routines (nrm_zero & nrm_set) normalize the unnorm.  This
272 | is done by shifting the mantissa left while decrementing the
273 | exponent.
274 |
275 | NRM_SET shifts and decrements until there is a 1 set in the integer
276 | bit of the mantissa (msb in d1).
277 |
278 | NRM_ZERO shifts and decrements until there is a 1 set in the integer
279 | bit of the mantissa (msb in d1) unless this would mean the exponent
280 | would go less than 0.  In that case the number becomes a denorm - the
281 | exponent (d0) is set to 0 and the mantissa (d1 & d2) is not
282 | normalized.
283 |
284 | Note that both routines have been optimized (for the worst case) and
285 | therefore do not have the easy to follow decrement/shift loop.
286 |
287 |	NRM_ZERO
288 |
289 |	Distance to first 1 bit in mantissa = X
290 |	Distance to 0 from exponent = Y
291 |	If X < Y
292 |	Then
293 |	  nrm_set
294 |	Else
295 |	  shift mantissa by Y
296 |	  set exponent = 0
297 |
298 |input:
299 |	FP_SCR1 = exponent, ms mantissa part, ls mantissa part
300 |output:
301 |	L_SCR1{4} = fpte15 or ete15 bit
302 |
303 	.global	nrm_zero
304 nrm_zero:
305 	movew	LOCAL_EX(%a0),%d0
306 	cmpw   #64,%d0          |see if exp > 64
307 	bmis	d0_less
308 	bsr	nrm_set		|exp > 64 so exp won't exceed 0
309 	rts
310 d0_less:
311 	moveml	%d2/%d3/%d5/%d6,-(%a7)
312 	movel	LOCAL_HI(%a0),%d1
313 	movel	LOCAL_LO(%a0),%d2
314 
315 	bfffo	%d1{#0:#32},%d3	|get the distance to the first 1
316 |				;in ms mant
317 	beqs	ms_clr		|branch if no bits were set
318 	cmpw	%d3,%d0		|of X>Y
319 	bmis	greater		|then exp will go past 0 (neg) if
320 |				;it is just shifted
321 	bsr	nrm_set		|else exp won't go past 0
322 	moveml	(%a7)+,%d2/%d3/%d5/%d6
323 	rts
324 greater:
325 	movel	%d2,%d6		|save ls mant in d6
326 	lsll	%d0,%d2		|shift ls mant by count
327 	lsll	%d0,%d1		|shift ms mant by count
328 	movel	#32,%d5
329 	subl	%d0,%d5		|make op a denorm by shifting bits
330 	lsrl	%d5,%d6		|by the number in the exp, then
331 |				;set exp = 0.
332 	orl	%d6,%d1		|shift the ls mant bits into the ms mant
333 	movel	#0,%d0		|same as if decremented exp to 0
334 |				;while shifting
335 	movew	%d0,LOCAL_EX(%a0)
336 	movel	%d1,LOCAL_HI(%a0)
337 	movel	%d2,LOCAL_LO(%a0)
338 	moveml	(%a7)+,%d2/%d3/%d5/%d6
339 	rts
340 ms_clr:
341 	bfffo	%d2{#0:#32},%d3	|check if any bits set in ls mant
342 	beqs	all_clr		|branch if none set
343 	addw	#32,%d3
344 	cmpw	%d3,%d0		|if X>Y
345 	bmis	greater		|then branch
346 	bsr	nrm_set		|else exp won't go past 0
347 	moveml	(%a7)+,%d2/%d3/%d5/%d6
348 	rts
349 all_clr:
350 	movew	#0,LOCAL_EX(%a0)	|no mantissa bits set. Set exp = 0.
351 	moveml	(%a7)+,%d2/%d3/%d5/%d6
352 	rts
353 |
354 |	NRM_SET
355 |
356 	.global	nrm_set
357 nrm_set:
358 	movel	%d7,-(%a7)
359 	bfffo	LOCAL_HI(%a0){#0:#32},%d7 |find first 1 in ms mant to d7)
360 	beqs	lower		|branch if ms mant is all 0's
361 
362 	movel	%d6,-(%a7)
363 
364 	subw	%d7,LOCAL_EX(%a0)	|sub exponent by count
365 	movel	LOCAL_HI(%a0),%d0	|d0 has ms mant
366 	movel	LOCAL_LO(%a0),%d1 |d1 has ls mant
367 
368 	lsll	%d7,%d0		|shift first 1 to j bit position
369 	movel	%d1,%d6		|copy ls mant into d6
370 	lsll	%d7,%d6		|shift ls mant by count
371 	movel	%d6,LOCAL_LO(%a0)	|store ls mant into memory
372 	moveql	#32,%d6
373 	subl	%d7,%d6		|continue shift
374 	lsrl	%d6,%d1		|shift off all bits but those that will
375 |				;be shifted into ms mant
376 	orl	%d1,%d0		|shift the ls mant bits into the ms mant
377 	movel	%d0,LOCAL_HI(%a0)	|store ms mant into memory
378 	moveml	(%a7)+,%d7/%d6	|restore registers
379 	rts
380 
381 |
382 | We get here if ms mant was = 0, and we assume ls mant has bits
383 | set (otherwise this would have been tagged a zero not a denorm).
384 |
385 lower:
386 	movew	LOCAL_EX(%a0),%d0	|d0 has exponent
387 	movel	LOCAL_LO(%a0),%d1	|d1 has ls mant
388 	subw	#32,%d0		|account for ms mant being all zeros
389 	bfffo	%d1{#0:#32},%d7	|find first 1 in ls mant to d7)
390 	subw	%d7,%d0		|subtract shift count from exp
391 	lsll	%d7,%d1		|shift first 1 to integer bit in ms mant
392 	movew	%d0,LOCAL_EX(%a0)	|store ms mant
393 	movel	%d1,LOCAL_HI(%a0)	|store exp
394 	clrl	LOCAL_LO(%a0)	|clear ls mant
395 	movel	(%a7)+,%d7
396 	rts
397 |
398 |	denorm --- denormalize an intermediate result
399 |
400 |	Used by underflow.
401 |
402 | Input:
403 |	a0	 points to the operand to be denormalized
404 |		 (in the internal extended format)
405 |
406 |	d0:	 rounding precision
407 | Output:
408 |	a0	 points to the denormalized result
409 |		 (in the internal extended format)
410 |
411 |	d0	is guard,round,sticky
412 |
413 | d0 comes into this routine with the rounding precision. It
414 | is then loaded with the denormalized exponent threshold for the
415 | rounding precision.
416 |
417 
418 	.global	denorm
419 denorm:
420 	btstb	#6,LOCAL_EX(%a0)	|check for exponents between $7fff-$4000
421 	beqs	no_sgn_ext
422 	bsetb	#7,LOCAL_EX(%a0)	|sign extend if it is so
423 no_sgn_ext:
424 
425 	cmpib	#0,%d0		|if 0 then extended precision
426 	bnes	not_ext		|else branch
427 
428 	clrl	%d1		|load d1 with ext threshold
429 	clrl	%d0		|clear the sticky flag
430 	bsr	dnrm_lp		|denormalize the number
431 	tstb	%d1		|check for inex
432 	beq	no_inex		|if clr, no inex
433 	bras	dnrm_inex	|if set, set inex
434 
435 not_ext:
436 	cmpil	#1,%d0		|if 1 then single precision
437 	beqs	load_sgl	|else must be 2, double prec
438 
439 load_dbl:
440 	movew	#dbl_thresh,%d1	|put copy of threshold in d1
441 	movel	%d1,%d0		|copy d1 into d0
442 	subw	LOCAL_EX(%a0),%d0	|diff = threshold - exp
443 	cmpw	#67,%d0		|if diff > 67 (mant + grs bits)
444 	bpls	chk_stky	|then branch (all bits would be
445 |				; shifted off in denorm routine)
446 	clrl	%d0		|else clear the sticky flag
447 	bsr	dnrm_lp		|denormalize the number
448 	tstb	%d1		|check flag
449 	beqs	no_inex		|if clr, no inex
450 	bras	dnrm_inex	|if set, set inex
451 
452 load_sgl:
453 	movew	#sgl_thresh,%d1	|put copy of threshold in d1
454 	movel	%d1,%d0		|copy d1 into d0
455 	subw	LOCAL_EX(%a0),%d0	|diff = threshold - exp
456 	cmpw	#67,%d0		|if diff > 67 (mant + grs bits)
457 	bpls	chk_stky	|then branch (all bits would be
458 |				; shifted off in denorm routine)
459 	clrl	%d0		|else clear the sticky flag
460 	bsr	dnrm_lp		|denormalize the number
461 	tstb	%d1		|check flag
462 	beqs	no_inex		|if clr, no inex
463 	bras	dnrm_inex	|if set, set inex
464 
465 chk_stky:
466 	tstl	LOCAL_HI(%a0)	|check for any bits set
467 	bnes	set_stky
468 	tstl	LOCAL_LO(%a0)	|check for any bits set
469 	bnes	set_stky
470 	bras	clr_mant
471 set_stky:
472 	orl	#inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
473 	movel	#0x20000000,%d0	|set sticky bit in return value
474 clr_mant:
475 	movew	%d1,LOCAL_EX(%a0)		|load exp with threshold
476 	movel	#0,LOCAL_HI(%a0)	|set d1 = 0 (ms mantissa)
477 	movel	#0,LOCAL_LO(%a0)		|set d2 = 0 (ms mantissa)
478 	rts
479 dnrm_inex:
480 	orl	#inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
481 no_inex:
482 	rts
483 
484 |
485 |	dnrm_lp --- normalize exponent/mantissa to specified threshold
486 |
487 | Input:
488 |	a0		points to the operand to be denormalized
489 |	d0{31:29}	initial guard,round,sticky
490 |	d1{15:0}	denormalization threshold
491 | Output:
492 |	a0		points to the denormalized operand
493 |	d0{31:29}	final guard,round,sticky
494 |	d1.b		inexact flag:  all ones means inexact result
495 |
496 | The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2
497 | so that bfext can be used to extract the new low part of the mantissa.
498 | Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there
499 | is no LOCAL_GRS scratch word following it on the fsave frame.
500 |
501 	.global	dnrm_lp
502 dnrm_lp:
503 	movel	%d2,-(%sp)		|save d2 for temp use
504 	btstb	#E3,E_BYTE(%a6)		|test for type E3 exception
505 	beqs	not_E3			|not type E3 exception
506 	bfextu	WBTEMP_GRS(%a6){#6:#3},%d2	|extract guard,round, sticky  bit
507 	movel	#29,%d0
508 	lsll	%d0,%d2			|shift g,r,s to their positions
509 	movel	%d2,%d0
510 not_E3:
511 	movel	(%sp)+,%d2		|restore d2
512 	movel	LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6)
513 	movel	%d0,FP_SCR2+LOCAL_GRS(%a6)
514 	movel	%d1,%d0			|copy the denorm threshold
515 	subw	LOCAL_EX(%a0),%d1		|d1 = threshold - uns exponent
516 	bles	no_lp			|d1 <= 0
517 	cmpw	#32,%d1
518 	blts	case_1			|0 = d1 < 32
519 	cmpw	#64,%d1
520 	blts	case_2			|32 <= d1 < 64
521 	bra	case_3			|d1 >= 64
522 |
523 | No normalization necessary
524 |
525 no_lp:
526 	clrb	%d1			|set no inex2 reported
527 	movel	FP_SCR2+LOCAL_GRS(%a6),%d0	|restore original g,r,s
528 	rts
529 |
530 | case (0<d1<32)
531 |
532 case_1:
533 	movel	%d2,-(%sp)
534 	movew	%d0,LOCAL_EX(%a0)		|exponent = denorm threshold
535 	movel	#32,%d0
536 	subw	%d1,%d0			|d0 = 32 - d1
537 	bfextu	LOCAL_EX(%a0){%d0:#32},%d2
538 	bfextu	%d2{%d1:%d0},%d2		|d2 = new LOCAL_HI
539 	bfextu	LOCAL_HI(%a0){%d0:#32},%d1	|d1 = new LOCAL_LO
540 	bfextu	FP_SCR2+LOCAL_LO(%a6){%d0:#32},%d0	|d0 = new G,R,S
541 	movel	%d2,LOCAL_HI(%a0)		|store new LOCAL_HI
542 	movel	%d1,LOCAL_LO(%a0)		|store new LOCAL_LO
543 	clrb	%d1
544 	bftst	%d0{#2:#30}
545 	beqs	c1nstky
546 	bsetl	#rnd_stky_bit,%d0
547 	st	%d1
548 c1nstky:
549 	movel	FP_SCR2+LOCAL_GRS(%a6),%d2	|restore original g,r,s
550 	andil	#0xe0000000,%d2		|clear all but G,R,S
551 	tstl	%d2			|test if original G,R,S are clear
552 	beqs	grs_clear
553 	orl	#0x20000000,%d0		|set sticky bit in d0
554 grs_clear:
555 	andil	#0xe0000000,%d0		|clear all but G,R,S
556 	movel	(%sp)+,%d2
557 	rts
558 |
559 | case (32<=d1<64)
560 |
561 case_2:
562 	movel	%d2,-(%sp)
563 	movew	%d0,LOCAL_EX(%a0)		|unsigned exponent = threshold
564 	subw	#32,%d1			|d1 now between 0 and 32
565 	movel	#32,%d0
566 	subw	%d1,%d0			|d0 = 32 - d1
567 	bfextu	LOCAL_EX(%a0){%d0:#32},%d2
568 	bfextu	%d2{%d1:%d0},%d2		|d2 = new LOCAL_LO
569 	bfextu	LOCAL_HI(%a0){%d0:#32},%d1	|d1 = new G,R,S
570 	bftst	%d1{#2:#30}
571 	bnes	c2_sstky		|bra if sticky bit to be set
572 	bftst	FP_SCR2+LOCAL_LO(%a6){%d0:#32}
573 	bnes	c2_sstky		|bra if sticky bit to be set
574 	movel	%d1,%d0
575 	clrb	%d1
576 	bras	end_c2
577 c2_sstky:
578 	movel	%d1,%d0
579 	bsetl	#rnd_stky_bit,%d0
580 	st	%d1
581 end_c2:
582 	clrl	LOCAL_HI(%a0)		|store LOCAL_HI = 0
583 	movel	%d2,LOCAL_LO(%a0)		|store LOCAL_LO
584 	movel	FP_SCR2+LOCAL_GRS(%a6),%d2	|restore original g,r,s
585 	andil	#0xe0000000,%d2		|clear all but G,R,S
586 	tstl	%d2			|test if original G,R,S are clear
587 	beqs	clear_grs
588 	orl	#0x20000000,%d0		|set sticky bit in d0
589 clear_grs:
590 	andil	#0xe0000000,%d0		|get rid of all but G,R,S
591 	movel	(%sp)+,%d2
592 	rts
593 |
594 | d1 >= 64 Force the exponent to be the denorm threshold with the
595 | correct sign.
596 |
597 case_3:
598 	movew	%d0,LOCAL_EX(%a0)
599 	tstw	LOCAL_SGN(%a0)
600 	bges	c3con
601 c3neg:
602 	orl	#0x80000000,LOCAL_EX(%a0)
603 c3con:
604 	cmpw	#64,%d1
605 	beqs	sixty_four
606 	cmpw	#65,%d1
607 	beqs	sixty_five
608 |
609 | Shift value is out of range.  Set d1 for inex2 flag and
610 | return a zero with the given threshold.
611 |
612 	clrl	LOCAL_HI(%a0)
613 	clrl	LOCAL_LO(%a0)
614 	movel	#0x20000000,%d0
615 	st	%d1
616 	rts
617 
618 sixty_four:
619 	movel	LOCAL_HI(%a0),%d0
620 	bfextu	%d0{#2:#30},%d1
621 	andil	#0xc0000000,%d0
622 	bras	c3com
623 
624 sixty_five:
625 	movel	LOCAL_HI(%a0),%d0
626 	bfextu	%d0{#1:#31},%d1
627 	andil	#0x80000000,%d0
628 	lsrl	#1,%d0			|shift high bit into R bit
629 
630 c3com:
631 	tstl	%d1
632 	bnes	c3ssticky
633 	tstl	LOCAL_LO(%a0)
634 	bnes	c3ssticky
635 	tstb	FP_SCR2+LOCAL_GRS(%a6)
636 	bnes	c3ssticky
637 	clrb	%d1
638 	bras	c3end
639 
640 c3ssticky:
641 	bsetl	#rnd_stky_bit,%d0
642 	st	%d1
643 c3end:
644 	clrl	LOCAL_HI(%a0)
645 	clrl	LOCAL_LO(%a0)
646 	rts
647 
648 	|end
649