1 |
2 |	decbin.sa 3.3 12/19/90
3 |
4 |	Description: Converts normalized packed bcd value pointed to by
5 |	register A6 to extended-precision value in FP0.
6 |
7 |	Input: Normalized packed bcd value in ETEMP(a6).
8 |
9 |	Output:	Exact floating-point representation of the packed bcd value.
10 |
11 |	Saves and Modifies: D2-D5
12 |
13 |	Speed: The program decbin takes ??? cycles to execute.
14 |
15 |	Object Size:
16 |
17 |	External Reference(s): None.
18 |
19 |	Algorithm:
20 |	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21 |	and NaN operands are dispatched without entering this routine)
22 |	value in 68881/882 format at location ETEMP(A6).
23 |
24 |	A1.	Convert the bcd exponent to binary by successive adds and muls.
25 |	Set the sign according to SE. Subtract 16 to compensate
26 |	for the mantissa which is to be interpreted as 17 integer
27 |	digits, rather than 1 integer and 16 fraction digits.
28 |	Note: this operation can never overflow.
29 |
30 |	A2. Convert the bcd mantissa to binary by successive
31 |	adds and muls in FP0. Set the sign according to SM.
32 |	The mantissa digits will be converted with the decimal point
33 |	assumed following the least-significant digit.
34 |	Note: this operation can never overflow.
35 |
36 |	A3. Count the number of leading/trailing zeros in the
37 |	bcd string.  If SE is positive, count the leading zeros;
38 |	if negative, count the trailing zeros.  Set the adjusted
39 |	exponent equal to the exponent from A1 and the zero count
40 |	added if SM = 1 and subtracted if SM = 0.  Scale the
41 |	mantissa the equivalent of forcing in the bcd value:
42 |
43 |	SM = 0	a non-zero digit in the integer position
44 |	SM = 1	a non-zero digit in Mant0, lsd of the fraction
45 |
46 |	this will insure that any value, regardless of its
47 |	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48 |	consistently.
49 |
50 |	A4. Calculate the factor 10^exp in FP1 using a table of
51 |	10^(2^n) values.  To reduce the error in forming factors
52 |	greater than 10^27, a directed rounding scheme is used with
53 |	tables rounded to RN, RM, and RP, according to the table
54 |	in the comments of the pwrten section.
55 |
56 |	A5. Form the final binary number by scaling the mantissa by
57 |	the exponent factor.  This is done by multiplying the
58 |	mantissa in FP0 by the factor in FP1 if the adjusted
59 |	exponent sign is positive, and dividing FP0 by FP1 if
60 |	it is negative.
61 |
62 |	Clean up and return.  Check if the final mul or div resulted
63 |	in an inex2 exception.  If so, set inex1 in the fpsr and
64 |	check if the inex1 exception is enabled.  If so, set d7 upper
65 |	word to $0100.  This will signal unimp.sa that an enabled inex1
66 |	exception occurred.  Unimp will fix the stack.
67 |
68 
69 |		Copyright (C) Motorola, Inc. 1990
70 |			All Rights Reserved
71 |
72 |       For details on the license for this file, please see the
73 |       file, README, in this same directory.
74 
75 |DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
76 
77 	|section	8
78 
79 #include "fpsp.h"
80 
81 |
82 |	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
83 |	to nearest, minus, and plus, respectively.  The tables include
84 |	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
85 |	is required until the power is greater than 27, however, all
86 |	tables include the first 5 for ease of indexing.
87 |
88 	|xref	PTENRN
89 	|xref	PTENRM
90 	|xref	PTENRP
91 
92 RTABLE:	.byte	0,0,0,0
93 	.byte	2,3,2,3
94 	.byte	2,3,3,2
95 	.byte	3,2,2,3
96 
97 	.global	decbin
98 	.global	calc_e
99 	.global	pwrten
100 	.global	calc_m
101 	.global	norm
102 	.global	ap_st_z
103 	.global	ap_st_n
104 |
105 	.set	FNIBS,7
106 	.set	FSTRT,0
107 |
108 	.set	ESTRT,4
109 	.set	EDIGITS,2	|
110 |
111 | Constants in single precision
112 FZERO:	.long	0x00000000
113 FONE:	.long	0x3F800000
114 FTEN:	.long	0x41200000
115 
116 	.set	TEN,10
117 
118 |
119 decbin:
120 	| fmovel	#0,FPCR		;clr real fpcr
121 	moveml	%d2-%d5,-(%a7)
122 |
123 | Calculate exponent:
124 |  1. Copy bcd value in memory for use as a working copy.
125 |  2. Calculate absolute value of exponent in d1 by mul and add.
126 |  3. Correct for exponent sign.
127 |  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
128 |     (i.e., all digits assumed left of the decimal point.)
129 |
130 | Register usage:
131 |
132 |  calc_e:
133 |	(*)  d0: temp digit storage
134 |	(*)  d1: accumulator for binary exponent
135 |	(*)  d2: digit count
136 |	(*)  d3: offset pointer
137 |	( )  d4: first word of bcd
138 |	( )  a0: pointer to working bcd value
139 |	( )  a6: pointer to original bcd value
140 |	(*)  FP_SCR1: working copy of original bcd value
141 |	(*)  L_SCR1: copy of original exponent word
142 |
143 calc_e:
144 	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part
145 	moveql	#ESTRT,%d3	|counter to pick up digits
146 	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address
147 	movel	ETEMP(%a6),(%a0)	|save input bcd value
148 	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3
149 	movel	ETEMP_LO(%a6),8(%a0) |and work with these
150 	movel	(%a0),%d4	|get first word of bcd
151 	clrl	%d1		|zero d1 for accumulator
152 e_gd:
153 	mulul	#TEN,%d1	|mul partial product by one digit place
154 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0
155 	addl	%d0,%d1		|d1 = d1 + d0
156 	addqb	#4,%d3		|advance d3 to the next digit
157 	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop
158 	btst	#30,%d4		|get SE
159 	beqs	e_pos		|don't negate if pos
160 	negl	%d1		|negate before subtracting
161 e_pos:
162 	subl	#16,%d1		|sub to compensate for shift of mant
163 	bges	e_save		|if still pos, do not neg
164 	negl	%d1		|now negative, make pos and set SE
165 	orl	#0x40000000,%d4	|set SE in d4,
166 	orl	#0x40000000,(%a0)	|and in working bcd
167 e_save:
168 	movel	%d1,L_SCR1(%a6)	|save exp in memory
169 |
170 |
171 | Calculate mantissa:
172 |  1. Calculate absolute value of mantissa in fp0 by mul and add.
173 |  2. Correct for mantissa sign.
174 |     (i.e., all digits assumed left of the decimal point.)
175 |
176 | Register usage:
177 |
178 |  calc_m:
179 |	(*)  d0: temp digit storage
180 |	(*)  d1: lword counter
181 |	(*)  d2: digit count
182 |	(*)  d3: offset pointer
183 |	( )  d4: words 2 and 3 of bcd
184 |	( )  a0: pointer to working bcd value
185 |	( )  a6: pointer to original bcd value
186 |	(*) fp0: mantissa accumulator
187 |	( )  FP_SCR1: working copy of original bcd value
188 |	( )  L_SCR1: copy of original exponent word
189 |
190 calc_m:
191 	moveql	#1,%d1		|word counter, init to 1
192 	fmoves	FZERO,%fp0	|accumulator
193 |
194 |
195 |  Since the packed number has a long word between the first & second parts,
196 |  get the integer digit then skip down & get the rest of the
197 |  mantissa.  We will unroll the loop once.
198 |
199 	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word
200 	faddb	%d0,%fp0		|add digit to sum in fp0
201 |
202 |
203 |  Get the rest of the mantissa.
204 |
205 loadlw:
206 	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4
207 	moveql	#FSTRT,%d3	|counter to pick up digits
208 	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr
209 md2b:
210 	fmuls	FTEN,%fp0	|fp0 = fp0 * 10
211 	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend
212 	faddb	%d0,%fp0	|fp0 = fp0 + digit
213 |
214 |
215 |  If all the digits (8) in that long word have been converted (d2=0),
216 |  then inc d1 (=2) to point to the next long word and reset d3 to 0
217 |  to initialize the digit offset, and set d2 to 7 for the digit count;
218 |  else continue with this long word.
219 |
220 	addqb	#4,%d3		|advance d3 to the next digit
221 	dbf	%d2,md2b		|check for last digit in this lw
222 nextlw:
223 	addql	#1,%d1		|inc lw pointer in mantissa
224 	cmpl	#2,%d1		|test for last lw
225 	ble	loadlw		|if not, get last one
226 
227 |
228 |  Check the sign of the mant and make the value in fp0 the same sign.
229 |
230 m_sign:
231 	btst	#31,(%a0)	|test sign of the mantissa
232 	beq	ap_st_z		|if clear, go to append/strip zeros
233 	fnegx	%fp0		|if set, negate fp0
234 
235 |
236 | Append/strip zeros:
237 |
238 |  For adjusted exponents which have an absolute value greater than 27*,
239 |  this routine calculates the amount needed to normalize the mantissa
240 |  for the adjusted exponent.  That number is subtracted from the exp
241 |  if the exp was positive, and added if it was negative.  The purpose
242 |  of this is to reduce the value of the exponent and the possibility
243 |  of error in calculation of pwrten.
244 |
245 |  1. Branch on the sign of the adjusted exponent.
246 |  2p.(positive exp)
247 |   2. Check M16 and the digits in lwords 2 and 3 in descending order.
248 |   3. Add one for each zero encountered until a non-zero digit.
249 |   4. Subtract the count from the exp.
250 |   5. Check if the exp has crossed zero in #3 above; make the exp abs
251 |	   and set SE.
252 |	6. Multiply the mantissa by 10**count.
253 |  2n.(negative exp)
254 |   2. Check the digits in lwords 3 and 2 in descending order.
255 |   3. Add one for each zero encountered until a non-zero digit.
256 |   4. Add the count to the exp.
257 |   5. Check if the exp has crossed zero in #3 above; clear SE.
258 |   6. Divide the mantissa by 10**count.
259 |
260 |  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
261 |   any adjustment due to append/strip zeros will drive the resultant
262 |   exponent towards zero.  Since all pwrten constants with a power
263 |   of 27 or less are exact, there is no need to use this routine to
264 |   attempt to lessen the resultant exponent.
265 |
266 | Register usage:
267 |
268 |  ap_st_z:
269 |	(*)  d0: temp digit storage
270 |	(*)  d1: zero count
271 |	(*)  d2: digit count
272 |	(*)  d3: offset pointer
273 |	( )  d4: first word of bcd
274 |	(*)  d5: lword counter
275 |	( )  a0: pointer to working bcd value
276 |	( )  FP_SCR1: working copy of original bcd value
277 |	( )  L_SCR1: copy of original exponent word
278 |
279 |
280 | First check the absolute value of the exponent to see if this
281 | routine is necessary.  If so, then check the sign of the exponent
282 | and do append (+) or strip (-) zeros accordingly.
283 | This section handles a positive adjusted exponent.
284 |
285 ap_st_z:
286 	movel	L_SCR1(%a6),%d1	|load expA for range test
287 	cmpl	#27,%d1		|test is with 27
288 	ble	pwrten		|if abs(expA) <28, skip ap/st zeros
289 	btst	#30,(%a0)	|check sign of exp
290 	bne	ap_st_n		|if neg, go to neg side
291 	clrl	%d1		|zero count reg
292 	movel	(%a0),%d4		|load lword 1 to d4
293 	bfextu	%d4{#28:#4},%d0	|get M16 in d0
294 	bnes	ap_p_fx		|if M16 is non-zero, go fix exp
295 	addql	#1,%d1		|inc zero count
296 	moveql	#1,%d5		|init lword counter
297 	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4
298 	bnes	ap_p_cl		|if lw 2 is zero, skip it
299 	addql	#8,%d1		|and inc count by 8
300 	addql	#1,%d5		|inc lword counter
301 	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4
302 ap_p_cl:
303 	clrl	%d3		|init offset reg
304 	moveql	#7,%d2		|init digit counter
305 ap_p_gd:
306 	bfextu	%d4{%d3:#4},%d0	|get digit
307 	bnes	ap_p_fx		|if non-zero, go to fix exp
308 	addql	#4,%d3		|point to next digit
309 	addql	#1,%d1		|inc digit counter
310 	dbf	%d2,ap_p_gd	|get next digit
311 ap_p_fx:
312 	movel	%d1,%d0		|copy counter to d2
313 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
314 	subl	%d0,%d1		|subtract count from exp
315 	bges	ap_p_fm		|if still pos, go to pwrten
316 	negl	%d1		|now its neg; get abs
317 	movel	(%a0),%d4		|load lword 1 to d4
318 	orl	#0x40000000,%d4	| and set SE in d4
319 	orl	#0x40000000,(%a0)	| and in memory
320 |
321 | Calculate the mantissa multiplier to compensate for the striping of
322 | zeros from the mantissa.
323 |
324 ap_p_fm:
325 	movel	#PTENRN,%a1	|get address of power-of-ten table
326 	clrl	%d3		|init table index
327 	fmoves	FONE,%fp1	|init fp1 to 1
328 	moveql	#3,%d2		|init d2 to count bits in counter
329 ap_p_el:
330 	asrl	#1,%d0		|shift lsb into carry
331 	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor
332 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
333 ap_p_en:
334 	addl	#12,%d3		|inc d3 to next rtable entry
335 	tstl	%d0		|check if d0 is zero
336 	bnes	ap_p_el		|if not, get next bit
337 	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted)
338 	bra	pwrten		|go calc pwrten
339 |
340 | This section handles a negative adjusted exponent.
341 |
342 ap_st_n:
343 	clrl	%d1		|clr counter
344 	moveql	#2,%d5		|set up d5 to point to lword 3
345 	movel	(%a0,%d5.L*4),%d4	|get lword 3
346 	bnes	ap_n_cl		|if not zero, check digits
347 	subl	#1,%d5		|dec d5 to point to lword 2
348 	addql	#8,%d1		|inc counter by 8
349 	movel	(%a0,%d5.L*4),%d4	|get lword 2
350 ap_n_cl:
351 	movel	#28,%d3		|point to last digit
352 	moveql	#7,%d2		|init digit counter
353 ap_n_gd:
354 	bfextu	%d4{%d3:#4},%d0	|get digit
355 	bnes	ap_n_fx		|if non-zero, go to exp fix
356 	subql	#4,%d3		|point to previous digit
357 	addql	#1,%d1		|inc digit counter
358 	dbf	%d2,ap_n_gd	|get next digit
359 ap_n_fx:
360 	movel	%d1,%d0		|copy counter to d0
361 	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
362 	subl	%d0,%d1		|subtract count from exp
363 	bgts	ap_n_fm		|if still pos, go fix mantissa
364 	negl	%d1		|take abs of exp and clr SE
365 	movel	(%a0),%d4		|load lword 1 to d4
366 	andl	#0xbfffffff,%d4	| and clr SE in d4
367 	andl	#0xbfffffff,(%a0)	| and in memory
368 |
369 | Calculate the mantissa multiplier to compensate for the appending of
370 | zeros to the mantissa.
371 |
372 ap_n_fm:
373 	movel	#PTENRN,%a1	|get address of power-of-ten table
374 	clrl	%d3		|init table index
375 	fmoves	FONE,%fp1	|init fp1 to 1
376 	moveql	#3,%d2		|init d2 to count bits in counter
377 ap_n_el:
378 	asrl	#1,%d0		|shift lsb into carry
379 	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor
380 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
381 ap_n_en:
382 	addl	#12,%d3		|inc d3 to next rtable entry
383 	tstl	%d0		|check if d0 is zero
384 	bnes	ap_n_el		|if not, get next bit
385 	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted)
386 |
387 |
388 | Calculate power-of-ten factor from adjusted and shifted exponent.
389 |
390 | Register usage:
391 |
392 |  pwrten:
393 |	(*)  d0: temp
394 |	( )  d1: exponent
395 |	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
396 |	(*)  d3: FPCR work copy
397 |	( )  d4: first word of bcd
398 |	(*)  a1: RTABLE pointer
399 |  calc_p:
400 |	(*)  d0: temp
401 |	( )  d1: exponent
402 |	(*)  d3: PWRTxx table index
403 |	( )  a0: pointer to working copy of bcd
404 |	(*)  a1: PWRTxx pointer
405 |	(*) fp1: power-of-ten accumulator
406 |
407 | Pwrten calculates the exponent factor in the selected rounding mode
408 | according to the following table:
409 |
410 |	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
411 |
412 |	ANY	  ANY	RN	RN
413 |
414 |	 +	   +	RP	RP
415 |	 -	   +	RP	RM
416 |	 +	   -	RP	RM
417 |	 -	   -	RP	RP
418 |
419 |	 +	   +	RM	RM
420 |	 -	   +	RM	RP
421 |	 +	   -	RM	RP
422 |	 -	   -	RM	RM
423 |
424 |	 +	   +	RZ	RM
425 |	 -	   +	RZ	RM
426 |	 +	   -	RZ	RP
427 |	 -	   -	RZ	RP
428 |
429 |
430 pwrten:
431 	movel	USER_FPCR(%a6),%d3 |get user's FPCR
432 	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits
433 	movel	(%a0),%d4		|reload 1st bcd word to d4
434 	asll	#2,%d2		|format d2 to be
435 	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE}
436 	addl	%d0,%d2		|in d2 as index into RTABLE
437 	leal	RTABLE,%a1	|load rtable base
438 	moveb	(%a1,%d2),%d0	|load new rounding bits from table
439 	clrl	%d3			|clear d3 to force no exc and extended
440 	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR
441 	fmovel	%d3,%FPCR		|write new FPCR
442 	asrl	#1,%d0		|write correct PTENxx table
443 	bccs	not_rp		|to a1
444 	leal	PTENRP,%a1	|it is RP
445 	bras	calc_p		|go to init section
446 not_rp:
447 	asrl	#1,%d0		|keep checking
448 	bccs	not_rm
449 	leal	PTENRM,%a1	|it is RM
450 	bras	calc_p		|go to init section
451 not_rm:
452 	leal	PTENRN,%a1	|it is RN
453 calc_p:
454 	movel	%d1,%d0		|copy exp to d0;use d0
455 	bpls	no_neg		|if exp is negative,
456 	negl	%d0		|invert it
457 	orl	#0x40000000,(%a0)	|and set SE bit
458 no_neg:
459 	clrl	%d3		|table index
460 	fmoves	FONE,%fp1	|init fp1 to 1
461 e_loop:
462 	asrl	#1,%d0		|shift next bit into carry
463 	bccs	e_next		|if zero, skip the mul
464 	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
465 e_next:
466 	addl	#12,%d3		|inc d3 to next rtable entry
467 	tstl	%d0		|check if d0 is zero
468 	bnes	e_loop		|not zero, continue shifting
469 |
470 |
471 |  Check the sign of the adjusted exp and make the value in fp0 the
472 |  same sign. If the exp was pos then multiply fp1*fp0;
473 |  else divide fp0/fp1.
474 |
475 | Register Usage:
476 |  norm:
477 |	( )  a0: pointer to working bcd value
478 |	(*) fp0: mantissa accumulator
479 |	( ) fp1: scaling factor - 10**(abs(exp))
480 |
481 norm:
482 	btst	#30,(%a0)	|test the sign of the exponent
483 	beqs	mul		|if clear, go to multiply
484 div:
485 	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp
486 	bras	end_dec
487 mul:
488 	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp
489 |
490 |
491 | Clean up and return with result in fp0.
492 |
493 | If the final mul/div in decbin incurred an inex exception,
494 | it will be inex2, but will be reported as inex1 by get_op.
495 |
496 end_dec:
497 	fmovel	%FPSR,%d0		|get status register
498 	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it
499 	fmovel	%d0,%FPSR		|return status reg w/o inex2
500 	beqs	no_exc		|skip this if no exc
501 	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
502 no_exc:
503 	moveml	(%a7)+,%d2-%d5
504 	rts
505 	|end
506