1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Optimized version of the standard memset() function.
3 
4    Copyright (c) 2002 Hewlett-Packard Co/CERN
5 	Sverre Jarp <Sverre.Jarp@cern.ch>
6 
7    Return: dest
8 
9    Inputs:
10         in0:    dest
11         in1:    value
12         in2:    count
13 
14    The algorithm is fairly straightforward: set byte by byte until we
15    we get to a 16B-aligned address, then loop on 128 B chunks using an
16    early store as prefetching, then loop on 32B chucks, then clear remaining
17    words, finally clear remaining bytes.
18    Since a stf.spill f0 can store 16B in one go, we use this instruction
19    to get peak speed when value = 0.  */
20 
21 #include <asm/asmmacro.h>
22 #include <asm/export.h>
23 #undef ret
24 
25 #define dest		in0
26 #define value		in1
27 #define	cnt		in2
28 
29 #define tmp		r31
30 #define save_lc		r30
31 #define ptr0		r29
32 #define ptr1		r28
33 #define ptr2		r27
34 #define ptr3		r26
35 #define ptr9 		r24
36 #define	loopcnt		r23
37 #define linecnt		r22
38 #define bytecnt		r21
39 
40 #define fvalue		f6
41 
42 // This routine uses only scratch predicate registers (p6 - p15)
43 #define p_scr		p6			// default register for same-cycle branches
44 #define p_nz		p7
45 #define p_zr		p8
46 #define p_unalgn	p9
47 #define p_y		p11
48 #define p_n		p12
49 #define p_yy		p13
50 #define p_nn		p14
51 
52 #define MIN1		15
53 #define MIN1P1HALF	8
54 #define LINE_SIZE	128
55 #define LSIZE_SH        7			// shift amount
56 #define PREF_AHEAD	8
57 
58 GLOBAL_ENTRY(memset)
59 { .mmi
60 	.prologue
61 	alloc	tmp = ar.pfs, 3, 0, 0, 0
62 	lfetch.nt1 [dest]			//
63 	.save   ar.lc, save_lc
64 	mov.i	save_lc = ar.lc
65 	.body
66 } { .mmi
67 	mov	ret0 = dest			// return value
68 	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
69 	cmp.eq	p_scr, p0 = cnt, r0
70 ;; }
71 { .mmi
72 	and	ptr2 = -(MIN1+1), dest		// aligned address
73 	and	tmp = MIN1, dest		// prepare to check for correct alignment
74 	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
75 } { .mib
76 	mov	ptr1 = dest
77 	mux1	value = value, @brcst		// create 8 identical bytes in word
78 (p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
79 ;; }
80 { .mib
81 	cmp.ne	p_unalgn, p0 = tmp, r0		//
82 } { .mib
83 	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
84 	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
85 (p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
86 ;; }
87 { .mmi
88 (p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
89 (p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
90 (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
91 ;; }
92 { .mib
93 (p_y)	add	cnt = -8, cnt			//
94 (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
95 } { .mib
96 (p_y)	st8	[ptr2] = value,-4		//
97 (p_n)	add	ptr2 = 4, ptr2			//
98 ;; }
99 { .mib
100 (p_yy)	add	cnt = -4, cnt			//
101 (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
102 } { .mib
103 (p_yy)	st4	[ptr2] = value,-2		//
104 (p_nn)	add	ptr2 = 2, ptr2			//
105 ;; }
106 { .mmi
107 	mov	tmp = LINE_SIZE+1		// for compare
108 (p_y)	add	cnt = -2, cnt			//
109 (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
110 } { .mmi
111 	setf.sig fvalue=value			// transfer value to FLP side
112 (p_y)	st2	[ptr2] = value,-1		//
113 (p_n)	add	ptr2 = 1, ptr2			//
114 ;; }
115 
116 { .mmi
117 (p_yy)	st1	[ptr2] = value 			//
118   	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
119 } { .mbb
120 (p_yy)	add	cnt = -1, cnt			//
121 (p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
122 ;; }
123 
124 { .mib
125 	nop.m 0
126 	shr.u	linecnt = cnt, LSIZE_SH
127 (p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
128 ;; }
129 
130 	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
131 { .mmi
132 	and	tmp = -(LINE_SIZE), cnt		// compute end of range
133 	mov	ptr9 = ptr1			// used for prefetching
134 	and	cnt = (LINE_SIZE-1), cnt	// remainder
135 } { .mmi
136 	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
137 	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
138 ;; }
139 { .mmi
140 (p_scr)	add	loopcnt = -1, linecnt		//
141 	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
142 	add	ptr1 = tmp, ptr1		// first address beyond total range
143 ;; }
144 { .mmi
145 	add	tmp = -1, linecnt		// next loop count
146 	mov.i	ar.lc = loopcnt			//
147 ;; }
148 .pref_l1a:
149 { .mib
150 	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
151 	nop.i	0
152 	br.cloop.dptk.few .pref_l1a
153 ;; }
154 { .mmi
155 	add	ptr0 = 16, ptr2			// Two stores in parallel
156 	mov.i	ar.lc = tmp			//
157 ;; }
158 .l1ax:
159  { .mmi
160 	stf8 [ptr2] = fvalue, 8
161 	stf8 [ptr0] = fvalue, 8
162  ;; }
163  { .mmi
164 	stf8 [ptr2] = fvalue, 24
165 	stf8 [ptr0] = fvalue, 24
166  ;; }
167  { .mmi
168 	stf8 [ptr2] = fvalue, 8
169 	stf8 [ptr0] = fvalue, 8
170  ;; }
171  { .mmi
172 	stf8 [ptr2] = fvalue, 24
173 	stf8 [ptr0] = fvalue, 24
174  ;; }
175  { .mmi
176 	stf8 [ptr2] = fvalue, 8
177 	stf8 [ptr0] = fvalue, 8
178  ;; }
179  { .mmi
180 	stf8 [ptr2] = fvalue, 24
181 	stf8 [ptr0] = fvalue, 24
182  ;; }
183  { .mmi
184 	stf8 [ptr2] = fvalue, 8
185 	stf8 [ptr0] = fvalue, 32
186  	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
187  ;; }
188 { .mmb
189 	stf8 [ptr2] = fvalue, 24
190 (p_scr)	stf8 [ptr9] = fvalue, 128
191 	br.cloop.dptk.few .l1ax
192 ;; }
193 { .mbb
194 	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
195 (p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
196 	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
197 ;; }
198 
199 	TEXT_ALIGN(32)
200 .l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
201 { .mmi
202 	and	tmp = -(LINE_SIZE), cnt		// compute end of range
203 	mov	ptr9 = ptr1			// used for prefetching
204 	and	cnt = (LINE_SIZE-1), cnt	// remainder
205 } { .mmi
206 	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
207 	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
208 ;; }
209 { .mmi
210 (p_scr)	add	loopcnt = -1, linecnt
211 	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
212 	add	ptr1 = tmp, ptr1		// first address beyond total range
213 ;; }
214 { .mmi
215 	add	tmp = -1, linecnt		// next loop count
216 	mov.i	ar.lc = loopcnt
217 ;; }
218 .pref_l1b:
219 { .mib
220 	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
221 	nop.i   0
222 	br.cloop.dptk.few .pref_l1b
223 ;; }
224 { .mmi
225 	add	ptr0 = 16, ptr2			// Two stores in parallel
226 	mov.i	ar.lc = tmp
227 ;; }
228 .l1bx:
229  { .mmi
230 	stf.spill [ptr2] = f0, 32
231 	stf.spill [ptr0] = f0, 32
232  ;; }
233  { .mmi
234 	stf.spill [ptr2] = f0, 32
235 	stf.spill [ptr0] = f0, 32
236  ;; }
237  { .mmi
238 	stf.spill [ptr2] = f0, 32
239 	stf.spill [ptr0] = f0, 64
240  	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
241  ;; }
242 { .mmb
243 	stf.spill [ptr2] = f0, 32
244 (p_scr)	stf.spill [ptr9] = f0, 128
245 	br.cloop.dptk.few .l1bx
246 ;; }
247 { .mib
248 	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
249 (p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
250 ;; }
251 
252 .fraction_of_line:
253 { .mib
254 	add	ptr2 = 16, ptr1
255 	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
256 ;; }
257 { .mib
258 	cmp.eq	p_scr, p0 = loopcnt, r0
259 	add	loopcnt = -1, loopcnt
260 (p_scr)	br.cond.dpnt.many .store_words
261 ;; }
262 { .mib
263 	and	cnt = 0x1f, cnt			// compute the remaining cnt
264 	mov.i   ar.lc = loopcnt
265 ;; }
266 	TEXT_ALIGN(32)
267 .l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
268 { .mmb
269 	stf8	[ptr1] = fvalue, 8
270 	stf8	[ptr2] = fvalue, 8
271 ;; } { .mmb
272 	stf8	[ptr1] = fvalue, 24
273 	stf8	[ptr2] = fvalue, 24
274 	br.cloop.dptk.many .l2
275 ;; }
276 .store_words:
277 { .mib
278 	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
279 (p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
280 ;; }
281 
282 { .mmi
283 	stf8	[ptr1] = fvalue, 8		// store
284 	cmp.le	p_y, p_n = 16, cnt
285 	add	cnt = -8, cnt			// subtract
286 ;; }
287 { .mmi
288 (p_y)	stf8	[ptr1] = fvalue, 8		// store
289 (p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
290 (p_y)	add	cnt = -8, cnt			// subtract
291 ;; }
292 { .mmi						// store
293 (p_yy)	stf8	[ptr1] = fvalue, 8
294 (p_yy)	add	cnt = -8, cnt			// subtract
295 ;; }
296 
297 .move_bytes_from_alignment:
298 { .mib
299 	cmp.eq	p_scr, p0 = cnt, r0
300 	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
301 (p_scr)	br.cond.dpnt.few .restore_and_exit
302 ;; }
303 { .mib
304 (p_y)	st4	[ptr1] = value,4
305 	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
306 ;; }
307 { .mib
308 (p_yy)	st2	[ptr1] = value,2
309 	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
310 ;; }
311 
312 { .mib
313 (p_y)	st1	[ptr1] = value
314 ;; }
315 .restore_and_exit:
316 { .mib
317 	nop.m	0
318 	mov.i	ar.lc = save_lc
319 	br.ret.sptk.many rp
320 ;; }
321 
322 .move_bytes_unaligned:
323 { .mmi
324        .pred.rel "mutex",p_y, p_n
325        .pred.rel "mutex",p_yy, p_nn
326 (p_n)	cmp.le  p_yy, p_nn = 4, cnt
327 (p_y)	cmp.le  p_yy, p_nn = 5, cnt
328 (p_n)	add	ptr2 = 2, ptr1
329 } { .mmi
330 (p_y)	add	ptr2 = 3, ptr1
331 (p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
332 (p_y)	add	cnt = -1, cnt
333 ;; }
334 { .mmi
335 (p_yy)	cmp.le.unc p_y, p0 = 8, cnt
336 	add	ptr3 = ptr1, cnt		// prepare last store
337 	mov.i	ar.lc = save_lc
338 } { .mmi
339 (p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
340 (p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
341 (p_yy)	add	cnt = -4, cnt
342 ;; }
343 { .mmi
344 (p_y)	cmp.le.unc p_yy, p0 = 8, cnt
345 	add	ptr3 = -1, ptr3			// last store
346 	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
347 } { .mmi
348 (p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
349 (p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
350 (p_y)	add	cnt = -4, cnt
351 ;; }
352 { .mmi
353 (p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
354 (p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
355 	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
356 } { .mmi
357 (p_yy)	add	cnt = -4, cnt
358 ;; }
359 { .mmb
360 (p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
361 (p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
362 	br.ret.sptk.many rp
363 }
364 END(memset)
365 EXPORT_SYMBOL(memset)
366