1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Itanium 2-optimized version of memcpy and copy_user function
4  *
5  * Inputs:
6  * 	in0:	destination address
7  *	in1:	source address
8  *	in2:	number of bytes to copy
9  * Output:
10  *	for memcpy:    return dest
11  * 	for copy_user: return 0 if success,
12  *		       or number of byte NOT copied if error occurred.
13  *
14  * Copyright (C) 2002 Intel Corp.
15  * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com>
16  */
17 #include <asm/asmmacro.h>
18 #include <asm/page.h>
19 #include <asm/export.h>
20 
21 #define EK(y...) EX(y)
22 
23 /* McKinley specific optimization */
24 
25 #define retval		r8
26 #define saved_pfs	r31
27 #define saved_lc	r10
28 #define saved_pr	r11
29 #define saved_in0	r14
30 #define saved_in1	r15
31 #define saved_in2	r16
32 
33 #define src0		r2
34 #define src1		r3
35 #define dst0		r17
36 #define dst1		r18
37 #define cnt		r9
38 
39 /* r19-r30 are temp for each code section */
40 #define PREFETCH_DIST	8
41 #define src_pre_mem	r19
42 #define dst_pre_mem	r20
43 #define src_pre_l2	r21
44 #define dst_pre_l2	r22
45 #define t1		r23
46 #define t2		r24
47 #define t3		r25
48 #define t4		r26
49 #define t5		t1	// alias!
50 #define t6		t2	// alias!
51 #define t7		t3	// alias!
52 #define n8		r27
53 #define t9		t5	// alias!
54 #define t10		t4	// alias!
55 #define t11		t7	// alias!
56 #define t12		t6	// alias!
57 #define t14		t10	// alias!
58 #define t13		r28
59 #define t15		r29
60 #define tmp		r30
61 
62 /* defines for long_copy block */
63 #define	A	0
64 #define B	(PREFETCH_DIST)
65 #define C	(B + PREFETCH_DIST)
66 #define D	(C + 1)
67 #define N	(D + 1)
68 #define Nrot	((N + 7) & ~7)
69 
70 /* alias */
71 #define in0		r32
72 #define in1		r33
73 #define in2		r34
74 
75 GLOBAL_ENTRY(memcpy)
76 	and	r28=0x7,in0
77 	and	r29=0x7,in1
78 	mov	f6=f0
79 	mov	retval=in0
80 	br.cond.sptk .common_code
81 	;;
82 END(memcpy)
83 EXPORT_SYMBOL(memcpy)
84 GLOBAL_ENTRY(__copy_user)
85 	.prologue
86 // check dest alignment
87 	and	r28=0x7,in0
88 	and	r29=0x7,in1
89 	mov	f6=f1
90 	mov	saved_in0=in0	// save dest pointer
91 	mov	saved_in1=in1	// save src pointer
92 	mov	retval=r0	// initialize return value
93 	;;
94 .common_code:
95 	cmp.gt	p15,p0=8,in2	// check for small size
96 	cmp.ne	p13,p0=0,r28	// check dest alignment
97 	cmp.ne	p14,p0=0,r29	// check src alignment
98 	add	src0=0,in1
99 	sub	r30=8,r28	// for .align_dest
100 	mov	saved_in2=in2	// save len
101 	;;
102 	add	dst0=0,in0
103 	add	dst1=1,in0	// dest odd index
104 	cmp.le	p6,p0 = 1,r30	// for .align_dest
105 (p15)	br.cond.dpnt .memcpy_short
106 (p13)	br.cond.dpnt .align_dest
107 (p14)	br.cond.dpnt .unaligned_src
108 	;;
109 
110 // both dest and src are aligned on 8-byte boundary
111 .aligned_src:
112 	.save ar.pfs, saved_pfs
113 	alloc	saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
114 	.save pr, saved_pr
115 	mov	saved_pr=pr
116 
117 	shr.u	cnt=in2,7	// this much cache line
118 	;;
119 	cmp.lt	p6,p0=2*PREFETCH_DIST,cnt
120 	cmp.lt	p7,p8=1,cnt
121 	.save ar.lc, saved_lc
122 	mov	saved_lc=ar.lc
123 	.body
124 	add	cnt=-1,cnt
125 	add	src_pre_mem=0,in1	// prefetch src pointer
126 	add	dst_pre_mem=0,in0	// prefetch dest pointer
127 	;;
128 (p7)	mov	ar.lc=cnt	// prefetch count
129 (p8)	mov	ar.lc=r0
130 (p6)	br.cond.dpnt .long_copy
131 	;;
132 
133 .prefetch:
134 	lfetch.fault	  [src_pre_mem], 128
135 	lfetch.fault.excl [dst_pre_mem], 128
136 	br.cloop.dptk.few .prefetch
137 	;;
138 
139 .medium_copy:
140 	and	tmp=31,in2	// copy length after iteration
141 	shr.u	r29=in2,5	// number of 32-byte iteration
142 	add	dst1=8,dst0	// 2nd dest pointer
143 	;;
144 	add	cnt=-1,r29	// ctop iteration adjustment
145 	cmp.eq	p10,p0=r29,r0	// do we really need to loop?
146 	add	src1=8,src0	// 2nd src pointer
147 	cmp.le	p6,p0=8,tmp
148 	;;
149 	cmp.le	p7,p0=16,tmp
150 	mov	ar.lc=cnt	// loop setup
151 	cmp.eq	p16,p17 = r0,r0
152 	mov	ar.ec=2
153 (p10)	br.dpnt.few .aligned_src_tail
154 	;;
155 	TEXT_ALIGN(32)
156 1:
157 EX(.ex_handler, (p16)	ld8	r34=[src0],16)
158 EK(.ex_handler, (p16)	ld8	r38=[src1],16)
159 EX(.ex_handler, (p17)	st8	[dst0]=r33,16)
160 EK(.ex_handler, (p17)	st8	[dst1]=r37,16)
161 	;;
162 EX(.ex_handler, (p16)	ld8	r32=[src0],16)
163 EK(.ex_handler, (p16)	ld8	r36=[src1],16)
164 EX(.ex_handler, (p16)	st8	[dst0]=r34,16)
165 EK(.ex_handler, (p16)	st8	[dst1]=r38,16)
166 	br.ctop.dptk.few 1b
167 	;;
168 
169 .aligned_src_tail:
170 EX(.ex_handler, (p6)	ld8	t1=[src0])
171 	mov	ar.lc=saved_lc
172 	mov	ar.pfs=saved_pfs
173 EX(.ex_hndlr_s, (p7)	ld8	t2=[src1],8)
174 	cmp.le	p8,p0=24,tmp
175 	and	r21=-8,tmp
176 	;;
177 EX(.ex_hndlr_s, (p8)	ld8	t3=[src1])
178 EX(.ex_handler, (p6)	st8	[dst0]=t1)	// store byte 1
179 	and	in2=7,tmp	// remaining length
180 EX(.ex_hndlr_d, (p7)	st8	[dst1]=t2,8)	// store byte 2
181 	add	src0=src0,r21	// setting up src pointer
182 	add	dst0=dst0,r21	// setting up dest pointer
183 	;;
184 EX(.ex_handler, (p8)	st8	[dst1]=t3)	// store byte 3
185 	mov	pr=saved_pr,-1
186 	br.dptk.many .memcpy_short
187 	;;
188 
189 /* code taken from copy_page_mck */
190 .long_copy:
191 	.rotr v[2*PREFETCH_DIST]
192 	.rotp p[N]
193 
194 	mov src_pre_mem = src0
195 	mov pr.rot = 0x10000
196 	mov ar.ec = 1				// special unrolled loop
197 
198 	mov dst_pre_mem = dst0
199 
200 	add src_pre_l2 = 8*8, src0
201 	add dst_pre_l2 = 8*8, dst0
202 	;;
203 	add src0 = 8, src_pre_mem		// first t1 src
204 	mov ar.lc = 2*PREFETCH_DIST - 1
205 	shr.u cnt=in2,7				// number of lines
206 	add src1 = 3*8, src_pre_mem		// first t3 src
207 	add dst0 = 8, dst_pre_mem		// first t1 dst
208 	add dst1 = 3*8, dst_pre_mem		// first t3 dst
209 	;;
210 	and tmp=127,in2				// remaining bytes after this block
211 	add cnt = -(2*PREFETCH_DIST) - 1, cnt
212 	// same as .line_copy loop, but with all predicated-off instructions removed:
213 .prefetch_loop:
214 EX(.ex_hndlr_lcpy_1, (p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0
215 EK(.ex_hndlr_lcpy_1, (p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2
216 	br.ctop.sptk .prefetch_loop
217 	;;
218 	cmp.eq p16, p0 = r0, r0			// reset p16 to 1
219 	mov ar.lc = cnt
220 	mov ar.ec = N				// # of stages in pipeline
221 	;;
222 .line_copy:
223 EX(.ex_handler,	(p[D])	ld8 t2 = [src0], 3*8)			// M0
224 EK(.ex_handler,	(p[D])	ld8 t4 = [src1], 3*8)			// M1
225 EX(.ex_handler_lcpy,	(p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 prefetch dst from memory
226 EK(.ex_handler_lcpy,	(p[D])	st8 [dst_pre_l2] = n8, 128)		// M3 prefetch dst from L2
227 	;;
228 EX(.ex_handler_lcpy,	(p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 prefetch src from memory
229 EK(.ex_handler_lcpy,	(p[C])	ld8 n8 = [src_pre_l2], 128)		// M1 prefetch src from L2
230 EX(.ex_handler,	(p[D])	st8 [dst0] =  t1, 8)			// M2
231 EK(.ex_handler,	(p[D])	st8 [dst1] =  t3, 8)			// M3
232 	;;
233 EX(.ex_handler,	(p[D])	ld8  t5 = [src0], 8)
234 EK(.ex_handler,	(p[D])	ld8  t7 = [src1], 3*8)
235 EX(.ex_handler,	(p[D])	st8 [dst0] =  t2, 3*8)
236 EK(.ex_handler,	(p[D])	st8 [dst1] =  t4, 3*8)
237 	;;
238 EX(.ex_handler,	(p[D])	ld8  t6 = [src0], 3*8)
239 EK(.ex_handler,	(p[D])	ld8 t10 = [src1], 8)
240 EX(.ex_handler,	(p[D])	st8 [dst0] =  t5, 8)
241 EK(.ex_handler,	(p[D])	st8 [dst1] =  t7, 3*8)
242 	;;
243 EX(.ex_handler,	(p[D])	ld8  t9 = [src0], 3*8)
244 EK(.ex_handler,	(p[D])	ld8 t11 = [src1], 3*8)
245 EX(.ex_handler,	(p[D])	st8 [dst0] =  t6, 3*8)
246 EK(.ex_handler,	(p[D])	st8 [dst1] = t10, 8)
247 	;;
248 EX(.ex_handler,	(p[D])	ld8 t12 = [src0], 8)
249 EK(.ex_handler,	(p[D])	ld8 t14 = [src1], 8)
250 EX(.ex_handler,	(p[D])	st8 [dst0] =  t9, 3*8)
251 EK(.ex_handler,	(p[D])	st8 [dst1] = t11, 3*8)
252 	;;
253 EX(.ex_handler,	(p[D])	ld8 t13 = [src0], 4*8)
254 EK(.ex_handler,	(p[D])	ld8 t15 = [src1], 4*8)
255 EX(.ex_handler,	(p[D])	st8 [dst0] = t12, 8)
256 EK(.ex_handler,	(p[D])	st8 [dst1] = t14, 8)
257 	;;
258 EX(.ex_handler,	(p[C])	ld8  t1 = [src0], 8)
259 EK(.ex_handler,	(p[C])	ld8  t3 = [src1], 8)
260 EX(.ex_handler,	(p[D])	st8 [dst0] = t13, 4*8)
261 EK(.ex_handler,	(p[D])	st8 [dst1] = t15, 4*8)
262 	br.ctop.sptk .line_copy
263 	;;
264 
265 	add dst0=-8,dst0
266 	add src0=-8,src0
267 	mov in2=tmp
268 	.restore sp
269 	br.sptk.many .medium_copy
270 	;;
271 
272 #define BLOCK_SIZE	128*32
273 #define blocksize	r23
274 #define curlen		r24
275 
276 // dest is on 8-byte boundary, src is not. We need to do
277 // ld8-ld8, shrp, then st8.  Max 8 byte copy per cycle.
278 .unaligned_src:
279 	.prologue
280 	.save ar.pfs, saved_pfs
281 	alloc	saved_pfs=ar.pfs,3,5,0,8
282 	.save ar.lc, saved_lc
283 	mov	saved_lc=ar.lc
284 	.save pr, saved_pr
285 	mov	saved_pr=pr
286 	.body
287 .4k_block:
288 	mov	saved_in0=dst0	// need to save all input arguments
289 	mov	saved_in2=in2
290 	mov	blocksize=BLOCK_SIZE
291 	;;
292 	cmp.lt	p6,p7=blocksize,in2
293 	mov	saved_in1=src0
294 	;;
295 (p6)	mov	in2=blocksize
296 	;;
297 	shr.u	r21=in2,7	// this much cache line
298 	shr.u	r22=in2,4	// number of 16-byte iteration
299 	and	curlen=15,in2	// copy length after iteration
300 	and	r30=7,src0	// source alignment
301 	;;
302 	cmp.lt	p7,p8=1,r21
303 	add	cnt=-1,r21
304 	;;
305 
306 	add	src_pre_mem=0,src0	// prefetch src pointer
307 	add	dst_pre_mem=0,dst0	// prefetch dest pointer
308 	and	src0=-8,src0		// 1st src pointer
309 (p7)	mov	ar.lc = cnt
310 (p8)	mov	ar.lc = r0
311 	;;
312 	TEXT_ALIGN(32)
313 1:	lfetch.fault	  [src_pre_mem], 128
314 	lfetch.fault.excl [dst_pre_mem], 128
315 	br.cloop.dptk.few 1b
316 	;;
317 
318 	shladd	dst1=r22,3,dst0	// 2nd dest pointer
319 	shladd	src1=r22,3,src0	// 2nd src pointer
320 	cmp.eq	p8,p9=r22,r0	// do we really need to loop?
321 	cmp.le	p6,p7=8,curlen;	// have at least 8 byte remaining?
322 	add	cnt=-1,r22	// ctop iteration adjustment
323 	;;
324 EX(.ex_handler, (p9)	ld8	r33=[src0],8)	// loop primer
325 EK(.ex_handler, (p9)	ld8	r37=[src1],8)
326 (p8)	br.dpnt.few .noloop
327 	;;
328 
329 // The jump address is calculated based on src alignment. The COPYU
330 // macro below need to confine its size to power of two, so an entry
331 // can be caulated using shl instead of an expensive multiply. The
332 // size is then hard coded by the following #define to match the
333 // actual size.  This make it somewhat tedious when COPYU macro gets
334 // changed and this need to be adjusted to match.
335 #define LOOP_SIZE 6
336 1:
337 	mov	r29=ip		// jmp_table thread
338 	mov	ar.lc=cnt
339 	;;
340 	add	r29=.jump_table - 1b - (.jmp1-.jump_table), r29
341 	shl	r28=r30, LOOP_SIZE	// jmp_table thread
342 	mov	ar.ec=2		// loop setup
343 	;;
344 	add	r29=r29,r28		// jmp_table thread
345 	cmp.eq	p16,p17=r0,r0
346 	;;
347 	mov	b6=r29			// jmp_table thread
348 	;;
349 	br.cond.sptk.few b6
350 
351 // for 8-15 byte case
352 // We will skip the loop, but need to replicate the side effect
353 // that the loop produces.
354 .noloop:
355 EX(.ex_handler, (p6)	ld8	r37=[src1],8)
356 	add	src0=8,src0
357 (p6)	shl	r25=r30,3
358 	;;
359 EX(.ex_handler, (p6)	ld8	r27=[src1])
360 (p6)	shr.u	r28=r37,r25
361 (p6)	sub	r26=64,r25
362 	;;
363 (p6)	shl	r27=r27,r26
364 	;;
365 (p6)	or	r21=r28,r27
366 
367 .unaligned_src_tail:
368 /* check if we have more than blocksize to copy, if so go back */
369 	cmp.gt	p8,p0=saved_in2,blocksize
370 	;;
371 (p8)	add	dst0=saved_in0,blocksize
372 (p8)	add	src0=saved_in1,blocksize
373 (p8)	sub	in2=saved_in2,blocksize
374 (p8)	br.dpnt	.4k_block
375 	;;
376 
377 /* we have up to 15 byte to copy in the tail.
378  * part of work is already done in the jump table code
379  * we are at the following state.
380  * src side:
381  *
382  *   xxxxxx xx                   <----- r21 has xxxxxxxx already
383  * -------- -------- --------
384  * 0        8        16
385  *          ^
386  *          |
387  *          src1
388  *
389  * dst
390  * -------- -------- --------
391  * ^
392  * |
393  * dst1
394  */
395 EX(.ex_handler, (p6)	st8	[dst1]=r21,8)	// more than 8 byte to copy
396 (p6)	add	curlen=-8,curlen	// update length
397 	mov	ar.pfs=saved_pfs
398 	;;
399 	mov	ar.lc=saved_lc
400 	mov	pr=saved_pr,-1
401 	mov	in2=curlen	// remaining length
402 	mov	dst0=dst1	// dest pointer
403 	add	src0=src1,r30	// forward by src alignment
404 	;;
405 
406 // 7 byte or smaller.
407 .memcpy_short:
408 	cmp.le	p8,p9   = 1,in2
409 	cmp.le	p10,p11 = 2,in2
410 	cmp.le	p12,p13 = 3,in2
411 	cmp.le	p14,p15 = 4,in2
412 	add	src1=1,src0	// second src pointer
413 	add	dst1=1,dst0	// second dest pointer
414 	;;
415 
416 EX(.ex_handler_short, (p8)	ld1	t1=[src0],2)
417 EK(.ex_handler_short, (p10)	ld1	t2=[src1],2)
418 (p9)	br.ret.dpnt rp		// 0 byte copy
419 	;;
420 
421 EX(.ex_handler_short, (p8)	st1	[dst0]=t1,2)
422 EK(.ex_handler_short, (p10)	st1	[dst1]=t2,2)
423 (p11)	br.ret.dpnt rp		// 1 byte copy
424 
425 EX(.ex_handler_short, (p12)	ld1	t3=[src0],2)
426 EK(.ex_handler_short, (p14)	ld1	t4=[src1],2)
427 (p13)	br.ret.dpnt rp		// 2 byte copy
428 	;;
429 
430 	cmp.le	p6,p7   = 5,in2
431 	cmp.le	p8,p9   = 6,in2
432 	cmp.le	p10,p11 = 7,in2
433 
434 EX(.ex_handler_short, (p12)	st1	[dst0]=t3,2)
435 EK(.ex_handler_short, (p14)	st1	[dst1]=t4,2)
436 (p15)	br.ret.dpnt rp		// 3 byte copy
437 	;;
438 
439 EX(.ex_handler_short, (p6)	ld1	t5=[src0],2)
440 EK(.ex_handler_short, (p8)	ld1	t6=[src1],2)
441 (p7)	br.ret.dpnt rp		// 4 byte copy
442 	;;
443 
444 EX(.ex_handler_short, (p6)	st1	[dst0]=t5,2)
445 EK(.ex_handler_short, (p8)	st1	[dst1]=t6,2)
446 (p9)	br.ret.dptk rp		// 5 byte copy
447 
448 EX(.ex_handler_short, (p10)	ld1	t7=[src0],2)
449 (p11)	br.ret.dptk rp		// 6 byte copy
450 	;;
451 
452 EX(.ex_handler_short, (p10)	st1	[dst0]=t7,2)
453 	br.ret.dptk rp		// done all cases
454 
455 
456 /* Align dest to nearest 8-byte boundary. We know we have at
457  * least 7 bytes to copy, enough to crawl to 8-byte boundary.
458  * Actual number of byte to crawl depend on the dest alignment.
459  * 7 byte or less is taken care at .memcpy_short
460 
461  * src0 - source even index
462  * src1 - source  odd index
463  * dst0 - dest even index
464  * dst1 - dest  odd index
465  * r30  - distance to 8-byte boundary
466  */
467 
468 .align_dest:
469 	add	src1=1,in1	// source odd index
470 	cmp.le	p7,p0 = 2,r30	// for .align_dest
471 	cmp.le	p8,p0 = 3,r30	// for .align_dest
472 EX(.ex_handler_short, (p6)	ld1	t1=[src0],2)
473 	cmp.le	p9,p0 = 4,r30	// for .align_dest
474 	cmp.le	p10,p0 = 5,r30
475 	;;
476 EX(.ex_handler_short, (p7)	ld1	t2=[src1],2)
477 EK(.ex_handler_short, (p8)	ld1	t3=[src0],2)
478 	cmp.le	p11,p0 = 6,r30
479 EX(.ex_handler_short, (p6)	st1	[dst0] = t1,2)
480 	cmp.le	p12,p0 = 7,r30
481 	;;
482 EX(.ex_handler_short, (p9)	ld1	t4=[src1],2)
483 EK(.ex_handler_short, (p10)	ld1	t5=[src0],2)
484 EX(.ex_handler_short, (p7)	st1	[dst1] = t2,2)
485 EK(.ex_handler_short, (p8)	st1	[dst0] = t3,2)
486 	;;
487 EX(.ex_handler_short, (p11)	ld1	t6=[src1],2)
488 EK(.ex_handler_short, (p12)	ld1	t7=[src0],2)
489 	cmp.eq	p6,p7=r28,r29
490 EX(.ex_handler_short, (p9)	st1	[dst1] = t4,2)
491 EK(.ex_handler_short, (p10)	st1	[dst0] = t5,2)
492 	sub	in2=in2,r30
493 	;;
494 EX(.ex_handler_short, (p11)	st1	[dst1] = t6,2)
495 EK(.ex_handler_short, (p12)	st1	[dst0] = t7)
496 	add	dst0=in0,r30	// setup arguments
497 	add	src0=in1,r30
498 (p6)	br.cond.dptk .aligned_src
499 (p7)	br.cond.dpnt .unaligned_src
500 	;;
501 
502 /* main loop body in jump table format */
503 #define COPYU(shift)									\
504 1:											\
505 EX(.ex_handler,  (p16)	ld8	r32=[src0],8);		/* 1 */				\
506 EK(.ex_handler,  (p16)	ld8	r36=[src1],8);						\
507 		 (p17)	shrp	r35=r33,r34,shift;;	/* 1 */				\
508 EX(.ex_handler,  (p6)	ld8	r22=[src1]);	/* common, prime for tail section */	\
509 		 nop.m	0;								\
510 		 (p16)	shrp	r38=r36,r37,shift;					\
511 EX(.ex_handler,  (p17)	st8	[dst0]=r35,8);		/* 1 */				\
512 EK(.ex_handler,  (p17)	st8	[dst1]=r39,8);						\
513 		 br.ctop.dptk.few 1b;;							\
514 		 (p7)	add	src1=-8,src1;	/* back out for <8 byte case */		\
515 		 shrp	r21=r22,r38,shift;	/* speculative work */			\
516 		 br.sptk.few .unaligned_src_tail /* branch out of jump table */		\
517 		 ;;
518 	TEXT_ALIGN(32)
519 .jump_table:
520 	COPYU(8)	// unaligned cases
521 .jmp1:
522 	COPYU(16)
523 	COPYU(24)
524 	COPYU(32)
525 	COPYU(40)
526 	COPYU(48)
527 	COPYU(56)
528 
529 #undef A
530 #undef B
531 #undef C
532 #undef D
533 
534 /*
535  * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
536  * instruction failed in the bundle.  The exception algorithm is that we
537  * first figure out the faulting address, then detect if there is any
538  * progress made on the copy, if so, redo the copy from last known copied
539  * location up to the faulting address (exclusive). In the copy_from_user
540  * case, remaining byte in kernel buffer will be zeroed.
541  *
542  * Take copy_from_user as an example, in the code there are multiple loads
543  * in a bundle and those multiple loads could span over two pages, the
544  * faulting address is calculated as page_round_down(max(src0, src1)).
545  * This is based on knowledge that if we can access one byte in a page, we
546  * can access any byte in that page.
547  *
548  * predicate used in the exception handler:
549  * p6-p7: direction
550  * p10-p11: src faulting addr calculation
551  * p12-p13: dst faulting addr calculation
552  */
553 
554 #define A	r19
555 #define B	r20
556 #define C	r21
557 #define D	r22
558 #define F	r28
559 
560 #define saved_retval	loc0
561 #define saved_rtlink	loc1
562 #define saved_pfs_stack	loc2
563 
564 .ex_hndlr_s:
565 	add	src0=8,src0
566 	br.sptk .ex_handler
567 	;;
568 .ex_hndlr_d:
569 	add	dst0=8,dst0
570 	br.sptk .ex_handler
571 	;;
572 .ex_hndlr_lcpy_1:
573 	mov	src1=src_pre_mem
574 	mov	dst1=dst_pre_mem
575 	cmp.gtu	p10,p11=src_pre_mem,saved_in1
576 	cmp.gtu	p12,p13=dst_pre_mem,saved_in0
577 	;;
578 (p10)	add	src0=8,saved_in1
579 (p11)	mov	src0=saved_in1
580 (p12)	add	dst0=8,saved_in0
581 (p13)	mov	dst0=saved_in0
582 	br.sptk	.ex_handler
583 .ex_handler_lcpy:
584 	// in line_copy block, the preload addresses should always ahead
585 	// of the other two src/dst pointers.  Furthermore, src1/dst1 should
586 	// always ahead of src0/dst0.
587 	mov	src1=src_pre_mem
588 	mov	dst1=dst_pre_mem
589 .ex_handler:
590 	mov	pr=saved_pr,-1		// first restore pr, lc, and pfs
591 	mov	ar.lc=saved_lc
592 	mov	ar.pfs=saved_pfs
593 	;;
594 .ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
595 	cmp.ltu	p6,p7=saved_in0, saved_in1	// get the copy direction
596 	cmp.ltu	p10,p11=src0,src1
597 	cmp.ltu	p12,p13=dst0,dst1
598 	fcmp.eq	p8,p0=f6,f0		// is it memcpy?
599 	mov	tmp = dst0
600 	;;
601 (p11)	mov	src1 = src0		// pick the larger of the two
602 (p13)	mov	dst0 = dst1		// make dst0 the smaller one
603 (p13)	mov	dst1 = tmp		// and dst1 the larger one
604 	;;
605 (p6)	dep	F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
606 (p7)	dep	F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
607 	;;
608 (p6)	cmp.le	p14,p0=dst0,saved_in0	// no progress has been made on store
609 (p7)	cmp.le	p14,p0=src0,saved_in1	// no progress has been made on load
610 	mov	retval=saved_in2
611 (p8)	ld1	tmp=[src1]		// force an oops for memcpy call
612 (p8)	st1	[dst1]=r0		// force an oops for memcpy call
613 (p14)	br.ret.sptk.many rp
614 
615 /*
616  * The remaining byte to copy is calculated as:
617  *
618  * A =	(faulting_addr - orig_src)	-> len to faulting ld address
619  *	or
620  * 	(faulting_addr - orig_dst)	-> len to faulting st address
621  * B =	(cur_dst - orig_dst)		-> len copied so far
622  * C =	A - B				-> len need to be copied
623  * D =	orig_len - A			-> len need to be left along
624  */
625 (p6)	sub	A = F, saved_in0
626 (p7)	sub	A = F, saved_in1
627 	clrrrb
628 	;;
629 	alloc	saved_pfs_stack=ar.pfs,3,3,3,0
630 	cmp.lt	p8,p0=A,r0
631 	sub	B = dst0, saved_in0	// how many byte copied so far
632 	;;
633 (p8)	mov	A = 0;			// A shouldn't be negative, cap it
634 	;;
635 	sub	C = A, B
636 	sub	D = saved_in2, A
637 	;;
638 	cmp.gt	p8,p0=C,r0		// more than 1 byte?
639 	mov	r8=0
640 	mov	saved_retval = D
641 	mov	saved_rtlink = b0
642 
643 	add	out0=saved_in0, B
644 	add	out1=saved_in1, B
645 	mov	out2=C
646 (p8)	br.call.sptk.few b0=__copy_user	// recursive call
647 	;;
648 
649 	add	saved_retval=saved_retval,r8	// above might return non-zero value
650 	;;
651 
652 	mov	retval=saved_retval
653 	mov	ar.pfs=saved_pfs_stack
654 	mov	b0=saved_rtlink
655 	br.ret.sptk.many rp
656 
657 /* end of McKinley specific optimization */
658 END(__copy_user)
659 EXPORT_SYMBOL(__copy_user)
660