1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9#include <linux/cpu.h> 10#include <linux/kvm.h> 11#include <linux/kvm_host.h> 12#include <linux/interrupt.h> 13#include <linux/list.h> 14#include <linux/uaccess.h> 15#include <linux/list_sort.h> 16 17#include <linux/irqchip/arm-gic-v3.h> 18 19#include <asm/kvm_emulate.h> 20#include <asm/kvm_arm.h> 21#include <asm/kvm_mmu.h> 22 23#include "vgic.h" 24#include "vgic-mmio.h" 25 26static int vgic_its_save_tables_v0(struct vgic_its *its); 27static int vgic_its_restore_tables_v0(struct vgic_its *its); 28static int vgic_its_commit_v0(struct vgic_its *its); 29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32/* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41{ 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116} 117 118struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126}; 127 128#define COLLECTION_NOT_MAPPED ((u32)~0) 129 130struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135}; 136 137#define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146}; 147 148struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154}; 155 156/** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174}; 175 176#define ABI_0_ESZ 8 177#define ESZ_MAX ABI_0_ESZ 178 179static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188}; 189 190#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193{ 194 return &its_table_abi_versions[its->abi_rev]; 195} 196 197static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198{ 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204} 205 206/* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211{ 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219} 220 221/* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228{ 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241} 242 243/* To be used as an iterator this macro misses the enclosing parentheses */ 244#define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248#define GIC_LPI_OFFSET 8192 249 250#define VITS_TYPER_IDBITS 16 251#define VITS_TYPER_DEVBITS 16 252#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255/* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260{ 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269} 270 271#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272#define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274/* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282{ 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312} 313 314/* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320{ 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352} 353 354static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355{ 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379} 380 381/* 382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 383 * is targeting) to the VGIC's view, which deals with target VCPUs. 384 * Needs to be called whenever either the collection for a LPIs has 385 * changed or the collection itself got retargeted. 386 */ 387static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 388{ 389 struct kvm_vcpu *vcpu; 390 391 if (!its_is_collection_mapped(ite->collection)) 392 return; 393 394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 395 update_affinity(ite->irq, vcpu); 396} 397 398/* 399 * Updates the target VCPU for every LPI targeting this collection. 400 * Must be called with the its_lock mutex held. 401 */ 402static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 403 struct its_collection *coll) 404{ 405 struct its_device *device; 406 struct its_ite *ite; 407 408 for_each_lpi_its(device, ite, its) { 409 if (!ite->collection || coll != ite->collection) 410 continue; 411 412 update_affinity_ite(kvm, ite); 413 } 414} 415 416static u32 max_lpis_propbaser(u64 propbaser) 417{ 418 int nr_idbits = (propbaser & 0x1f) + 1; 419 420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 421} 422 423/* 424 * Sync the pending table pending bit of LPIs targeting @vcpu 425 * with our own data structures. This relies on the LPI being 426 * mapped before. 427 */ 428static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 429{ 430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 431 struct vgic_irq *irq; 432 int last_byte_offset = -1; 433 int ret = 0; 434 u32 *intids; 435 int nr_irqs, i; 436 unsigned long flags; 437 u8 pendmask; 438 439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 440 if (nr_irqs < 0) 441 return nr_irqs; 442 443 for (i = 0; i < nr_irqs; i++) { 444 int byte_offset, bit_nr; 445 446 byte_offset = intids[i] / BITS_PER_BYTE; 447 bit_nr = intids[i] % BITS_PER_BYTE; 448 449 /* 450 * For contiguously allocated LPIs chances are we just read 451 * this very same byte in the last iteration. Reuse that. 452 */ 453 if (byte_offset != last_byte_offset) { 454 ret = kvm_read_guest_lock(vcpu->kvm, 455 pendbase + byte_offset, 456 &pendmask, 1); 457 if (ret) { 458 kfree(intids); 459 return ret; 460 } 461 last_byte_offset = byte_offset; 462 } 463 464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 465 raw_spin_lock_irqsave(&irq->irq_lock, flags); 466 irq->pending_latch = pendmask & (1U << bit_nr); 467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 468 vgic_put_irq(vcpu->kvm, irq); 469 } 470 471 kfree(intids); 472 473 return ret; 474} 475 476static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 477 struct vgic_its *its, 478 gpa_t addr, unsigned int len) 479{ 480 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 481 u64 reg = GITS_TYPER_PLPIS; 482 483 /* 484 * We use linear CPU numbers for redistributor addressing, 485 * so GITS_TYPER.PTA is 0. 486 * Also we force all PROPBASER registers to be the same, so 487 * CommonLPIAff is 0 as well. 488 * To avoid memory waste in the guest, we keep the number of IDBits and 489 * DevBits low - as least for the time being. 490 */ 491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 494 495 return extract_bytes(reg, addr & 7, len); 496} 497 498static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 499 struct vgic_its *its, 500 gpa_t addr, unsigned int len) 501{ 502 u32 val; 503 504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 506 return val; 507} 508 509static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 510 struct vgic_its *its, 511 gpa_t addr, unsigned int len, 512 unsigned long val) 513{ 514 u32 rev = GITS_IIDR_REV(val); 515 516 if (rev >= NR_ITS_ABIS) 517 return -EINVAL; 518 return vgic_its_set_abi(its, rev); 519} 520 521static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 522 struct vgic_its *its, 523 gpa_t addr, unsigned int len) 524{ 525 switch (addr & 0xffff) { 526 case GITS_PIDR0: 527 return 0x92; /* part number, bits[7:0] */ 528 case GITS_PIDR1: 529 return 0xb4; /* part number, bits[11:8] */ 530 case GITS_PIDR2: 531 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 532 case GITS_PIDR4: 533 return 0x40; /* This is a 64K software visible page */ 534 /* The following are the ID registers for (any) GIC. */ 535 case GITS_CIDR0: 536 return 0x0d; 537 case GITS_CIDR1: 538 return 0xf0; 539 case GITS_CIDR2: 540 return 0x05; 541 case GITS_CIDR3: 542 return 0xb1; 543 } 544 545 return 0; 546} 547 548static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 549 phys_addr_t db, 550 u32 devid, u32 eventid) 551{ 552 struct vgic_translation_cache_entry *cte; 553 554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 555 /* 556 * If we hit a NULL entry, there is nothing after this 557 * point. 558 */ 559 if (!cte->irq) 560 break; 561 562 if (cte->db != db || cte->devid != devid || 563 cte->eventid != eventid) 564 continue; 565 566 /* 567 * Move this entry to the head, as it is the most 568 * recently used. 569 */ 570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 571 list_move(&cte->entry, &dist->lpi_translation_cache); 572 573 return cte->irq; 574 } 575 576 return NULL; 577} 578 579static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 580 u32 devid, u32 eventid) 581{ 582 struct vgic_dist *dist = &kvm->arch.vgic; 583 struct vgic_irq *irq; 584 unsigned long flags; 585 586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 587 588 irq = __vgic_its_check_cache(dist, db, devid, eventid); 589 if (irq) 590 vgic_get_irq_kref(irq); 591 592 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 593 594 return irq; 595} 596 597static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 598 u32 devid, u32 eventid, 599 struct vgic_irq *irq) 600{ 601 struct vgic_dist *dist = &kvm->arch.vgic; 602 struct vgic_translation_cache_entry *cte; 603 unsigned long flags; 604 phys_addr_t db; 605 606 /* Do not cache a directly injected interrupt */ 607 if (irq->hw) 608 return; 609 610 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 611 612 if (unlikely(list_empty(&dist->lpi_translation_cache))) 613 goto out; 614 615 /* 616 * We could have raced with another CPU caching the same 617 * translation behind our back, so let's check it is not in 618 * already 619 */ 620 db = its->vgic_its_base + GITS_TRANSLATER; 621 if (__vgic_its_check_cache(dist, db, devid, eventid)) 622 goto out; 623 624 /* Always reuse the last entry (LRU policy) */ 625 cte = list_last_entry(&dist->lpi_translation_cache, 626 typeof(*cte), entry); 627 628 /* 629 * Caching the translation implies having an extra reference 630 * to the interrupt, so drop the potential reference on what 631 * was in the cache, and increment it on the new interrupt. 632 */ 633 if (cte->irq) 634 __vgic_put_lpi_locked(kvm, cte->irq); 635 636 vgic_get_irq_kref(irq); 637 638 cte->db = db; 639 cte->devid = devid; 640 cte->eventid = eventid; 641 cte->irq = irq; 642 643 /* Move the new translation to the head of the list */ 644 list_move(&cte->entry, &dist->lpi_translation_cache); 645 646out: 647 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 648} 649 650void vgic_its_invalidate_cache(struct kvm *kvm) 651{ 652 struct vgic_dist *dist = &kvm->arch.vgic; 653 struct vgic_translation_cache_entry *cte; 654 unsigned long flags; 655 656 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 657 658 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 659 /* 660 * If we hit a NULL entry, there is nothing after this 661 * point. 662 */ 663 if (!cte->irq) 664 break; 665 666 __vgic_put_lpi_locked(kvm, cte->irq); 667 cte->irq = NULL; 668 } 669 670 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 671} 672 673int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 674 u32 devid, u32 eventid, struct vgic_irq **irq) 675{ 676 struct kvm_vcpu *vcpu; 677 struct its_ite *ite; 678 679 if (!its->enabled) 680 return -EBUSY; 681 682 ite = find_ite(its, devid, eventid); 683 if (!ite || !its_is_collection_mapped(ite->collection)) 684 return E_ITS_INT_UNMAPPED_INTERRUPT; 685 686 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); 687 if (!vcpu) 688 return E_ITS_INT_UNMAPPED_INTERRUPT; 689 690 if (!vcpu->arch.vgic_cpu.lpis_enabled) 691 return -EBUSY; 692 693 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 694 695 *irq = ite->irq; 696 return 0; 697} 698 699struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 700{ 701 u64 address; 702 struct kvm_io_device *kvm_io_dev; 703 struct vgic_io_device *iodev; 704 705 if (!vgic_has_its(kvm)) 706 return ERR_PTR(-ENODEV); 707 708 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 709 return ERR_PTR(-EINVAL); 710 711 address = (u64)msi->address_hi << 32 | msi->address_lo; 712 713 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 714 if (!kvm_io_dev) 715 return ERR_PTR(-EINVAL); 716 717 if (kvm_io_dev->ops != &kvm_io_gic_ops) 718 return ERR_PTR(-EINVAL); 719 720 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 721 if (iodev->iodev_type != IODEV_ITS) 722 return ERR_PTR(-EINVAL); 723 724 return iodev->its; 725} 726 727/* 728 * Find the target VCPU and the LPI number for a given devid/eventid pair 729 * and make this IRQ pending, possibly injecting it. 730 * Must be called with the its_lock mutex held. 731 * Returns 0 on success, a positive error value for any ITS mapping 732 * related errors and negative error values for generic errors. 733 */ 734static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 735 u32 devid, u32 eventid) 736{ 737 struct vgic_irq *irq = NULL; 738 unsigned long flags; 739 int err; 740 741 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 742 if (err) 743 return err; 744 745 if (irq->hw) 746 return irq_set_irqchip_state(irq->host_irq, 747 IRQCHIP_STATE_PENDING, true); 748 749 raw_spin_lock_irqsave(&irq->irq_lock, flags); 750 irq->pending_latch = true; 751 vgic_queue_irq_unlock(kvm, irq, flags); 752 753 return 0; 754} 755 756int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 757{ 758 struct vgic_irq *irq; 759 unsigned long flags; 760 phys_addr_t db; 761 762 db = (u64)msi->address_hi << 32 | msi->address_lo; 763 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 764 if (!irq) 765 return -EWOULDBLOCK; 766 767 raw_spin_lock_irqsave(&irq->irq_lock, flags); 768 irq->pending_latch = true; 769 vgic_queue_irq_unlock(kvm, irq, flags); 770 vgic_put_irq(kvm, irq); 771 772 return 0; 773} 774 775/* 776 * Queries the KVM IO bus framework to get the ITS pointer from the given 777 * doorbell address. 778 * We then call vgic_its_trigger_msi() with the decoded data. 779 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 780 */ 781int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 782{ 783 struct vgic_its *its; 784 int ret; 785 786 if (!vgic_its_inject_cached_translation(kvm, msi)) 787 return 1; 788 789 its = vgic_msi_to_its(kvm, msi); 790 if (IS_ERR(its)) 791 return PTR_ERR(its); 792 793 mutex_lock(&its->its_lock); 794 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 795 mutex_unlock(&its->its_lock); 796 797 if (ret < 0) 798 return ret; 799 800 /* 801 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 802 * if the guest has blocked the MSI. So we map any LPI mapping 803 * related error to that. 804 */ 805 if (ret) 806 return 0; 807 else 808 return 1; 809} 810 811/* Requires the its_lock to be held. */ 812static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 813{ 814 list_del(&ite->ite_list); 815 816 /* This put matches the get in vgic_add_lpi. */ 817 if (ite->irq) { 818 if (ite->irq->hw) 819 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 820 821 vgic_put_irq(kvm, ite->irq); 822 } 823 824 kfree(ite); 825} 826 827static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 828{ 829 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 830} 831 832#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 833#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 834#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 835#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 836#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 837#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 838#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 839#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 840#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 841 842/* 843 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 844 * Must be called with the its_lock mutex held. 845 */ 846static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 847 u64 *its_cmd) 848{ 849 u32 device_id = its_cmd_get_deviceid(its_cmd); 850 u32 event_id = its_cmd_get_id(its_cmd); 851 struct its_ite *ite; 852 853 ite = find_ite(its, device_id, event_id); 854 if (ite && its_is_collection_mapped(ite->collection)) { 855 /* 856 * Though the spec talks about removing the pending state, we 857 * don't bother here since we clear the ITTE anyway and the 858 * pending state is a property of the ITTE struct. 859 */ 860 vgic_its_invalidate_cache(kvm); 861 862 its_free_ite(kvm, ite); 863 return 0; 864 } 865 866 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 867} 868 869/* 870 * The MOVI command moves an ITTE to a different collection. 871 * Must be called with the its_lock mutex held. 872 */ 873static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 874 u64 *its_cmd) 875{ 876 u32 device_id = its_cmd_get_deviceid(its_cmd); 877 u32 event_id = its_cmd_get_id(its_cmd); 878 u32 coll_id = its_cmd_get_collection(its_cmd); 879 struct kvm_vcpu *vcpu; 880 struct its_ite *ite; 881 struct its_collection *collection; 882 883 ite = find_ite(its, device_id, event_id); 884 if (!ite) 885 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 886 887 if (!its_is_collection_mapped(ite->collection)) 888 return E_ITS_MOVI_UNMAPPED_COLLECTION; 889 890 collection = find_collection(its, coll_id); 891 if (!its_is_collection_mapped(collection)) 892 return E_ITS_MOVI_UNMAPPED_COLLECTION; 893 894 ite->collection = collection; 895 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 896 897 vgic_its_invalidate_cache(kvm); 898 899 return update_affinity(ite->irq, vcpu); 900} 901 902/* 903 * Check whether an ID can be stored into the corresponding guest table. 904 * For a direct table this is pretty easy, but gets a bit nasty for 905 * indirect tables. We check whether the resulting guest physical address 906 * is actually valid (covered by a memslot and guest accessible). 907 * For this we have to read the respective first level entry. 908 */ 909static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 910 gpa_t *eaddr) 911{ 912 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 913 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 914 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 915 int esz = GITS_BASER_ENTRY_SIZE(baser); 916 int index, idx; 917 gfn_t gfn; 918 bool ret; 919 920 switch (type) { 921 case GITS_BASER_TYPE_DEVICE: 922 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 923 return false; 924 break; 925 case GITS_BASER_TYPE_COLLECTION: 926 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 927 if (id >= BIT_ULL(16)) 928 return false; 929 break; 930 default: 931 return false; 932 } 933 934 if (!(baser & GITS_BASER_INDIRECT)) { 935 phys_addr_t addr; 936 937 if (id >= (l1_tbl_size / esz)) 938 return false; 939 940 addr = base + id * esz; 941 gfn = addr >> PAGE_SHIFT; 942 943 if (eaddr) 944 *eaddr = addr; 945 946 goto out; 947 } 948 949 /* calculate and check the index into the 1st level */ 950 index = id / (SZ_64K / esz); 951 if (index >= (l1_tbl_size / sizeof(u64))) 952 return false; 953 954 /* Each 1st level entry is represented by a 64-bit value. */ 955 if (kvm_read_guest_lock(its->dev->kvm, 956 base + index * sizeof(indirect_ptr), 957 &indirect_ptr, sizeof(indirect_ptr))) 958 return false; 959 960 indirect_ptr = le64_to_cpu(indirect_ptr); 961 962 /* check the valid bit of the first level entry */ 963 if (!(indirect_ptr & BIT_ULL(63))) 964 return false; 965 966 /* Mask the guest physical address and calculate the frame number. */ 967 indirect_ptr &= GENMASK_ULL(51, 16); 968 969 /* Find the address of the actual entry */ 970 index = id % (SZ_64K / esz); 971 indirect_ptr += index * esz; 972 gfn = indirect_ptr >> PAGE_SHIFT; 973 974 if (eaddr) 975 *eaddr = indirect_ptr; 976 977out: 978 idx = srcu_read_lock(&its->dev->kvm->srcu); 979 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 980 srcu_read_unlock(&its->dev->kvm->srcu, idx); 981 return ret; 982} 983 984static int vgic_its_alloc_collection(struct vgic_its *its, 985 struct its_collection **colp, 986 u32 coll_id) 987{ 988 struct its_collection *collection; 989 990 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 991 return E_ITS_MAPC_COLLECTION_OOR; 992 993 collection = kzalloc(sizeof(*collection), GFP_KERNEL); 994 if (!collection) 995 return -ENOMEM; 996 997 collection->collection_id = coll_id; 998 collection->target_addr = COLLECTION_NOT_MAPPED; 999 1000 list_add_tail(&collection->coll_list, &its->collection_list); 1001 *colp = collection; 1002 1003 return 0; 1004} 1005 1006static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1007{ 1008 struct its_collection *collection; 1009 struct its_device *device; 1010 struct its_ite *ite; 1011 1012 /* 1013 * Clearing the mapping for that collection ID removes the 1014 * entry from the list. If there wasn't any before, we can 1015 * go home early. 1016 */ 1017 collection = find_collection(its, coll_id); 1018 if (!collection) 1019 return; 1020 1021 for_each_lpi_its(device, ite, its) 1022 if (ite->collection && 1023 ite->collection->collection_id == coll_id) 1024 ite->collection = NULL; 1025 1026 list_del(&collection->coll_list); 1027 kfree(collection); 1028} 1029 1030/* Must be called with its_lock mutex held */ 1031static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1032 struct its_collection *collection, 1033 u32 event_id) 1034{ 1035 struct its_ite *ite; 1036 1037 ite = kzalloc(sizeof(*ite), GFP_KERNEL); 1038 if (!ite) 1039 return ERR_PTR(-ENOMEM); 1040 1041 ite->event_id = event_id; 1042 ite->collection = collection; 1043 1044 list_add_tail(&ite->ite_list, &device->itt_head); 1045 return ite; 1046} 1047 1048/* 1049 * The MAPTI and MAPI commands map LPIs to ITTEs. 1050 * Must be called with its_lock mutex held. 1051 */ 1052static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1053 u64 *its_cmd) 1054{ 1055 u32 device_id = its_cmd_get_deviceid(its_cmd); 1056 u32 event_id = its_cmd_get_id(its_cmd); 1057 u32 coll_id = its_cmd_get_collection(its_cmd); 1058 struct its_ite *ite; 1059 struct kvm_vcpu *vcpu = NULL; 1060 struct its_device *device; 1061 struct its_collection *collection, *new_coll = NULL; 1062 struct vgic_irq *irq; 1063 int lpi_nr; 1064 1065 device = find_its_device(its, device_id); 1066 if (!device) 1067 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1068 1069 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1070 return E_ITS_MAPTI_ID_OOR; 1071 1072 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1073 lpi_nr = its_cmd_get_physical_id(its_cmd); 1074 else 1075 lpi_nr = event_id; 1076 if (lpi_nr < GIC_LPI_OFFSET || 1077 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1078 return E_ITS_MAPTI_PHYSICALID_OOR; 1079 1080 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1081 if (find_ite(its, device_id, event_id)) 1082 return 0; 1083 1084 collection = find_collection(its, coll_id); 1085 if (!collection) { 1086 int ret = vgic_its_alloc_collection(its, &collection, coll_id); 1087 if (ret) 1088 return ret; 1089 new_coll = collection; 1090 } 1091 1092 ite = vgic_its_alloc_ite(device, collection, event_id); 1093 if (IS_ERR(ite)) { 1094 if (new_coll) 1095 vgic_its_free_collection(its, coll_id); 1096 return PTR_ERR(ite); 1097 } 1098 1099 if (its_is_collection_mapped(collection)) 1100 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1101 1102 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1103 if (IS_ERR(irq)) { 1104 if (new_coll) 1105 vgic_its_free_collection(its, coll_id); 1106 its_free_ite(kvm, ite); 1107 return PTR_ERR(irq); 1108 } 1109 ite->irq = irq; 1110 1111 return 0; 1112} 1113 1114/* Requires the its_lock to be held. */ 1115static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1116{ 1117 struct its_ite *ite, *temp; 1118 1119 /* 1120 * The spec says that unmapping a device with still valid 1121 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1122 * since we cannot leave the memory unreferenced. 1123 */ 1124 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1125 its_free_ite(kvm, ite); 1126 1127 vgic_its_invalidate_cache(kvm); 1128 1129 list_del(&device->dev_list); 1130 kfree(device); 1131} 1132 1133/* its lock must be held */ 1134static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1135{ 1136 struct its_device *cur, *temp; 1137 1138 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1139 vgic_its_free_device(kvm, cur); 1140} 1141 1142/* its lock must be held */ 1143static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1144{ 1145 struct its_collection *cur, *temp; 1146 1147 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1148 vgic_its_free_collection(its, cur->collection_id); 1149} 1150 1151/* Must be called with its_lock mutex held */ 1152static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1153 u32 device_id, gpa_t itt_addr, 1154 u8 num_eventid_bits) 1155{ 1156 struct its_device *device; 1157 1158 device = kzalloc(sizeof(*device), GFP_KERNEL); 1159 if (!device) 1160 return ERR_PTR(-ENOMEM); 1161 1162 device->device_id = device_id; 1163 device->itt_addr = itt_addr; 1164 device->num_eventid_bits = num_eventid_bits; 1165 INIT_LIST_HEAD(&device->itt_head); 1166 1167 list_add_tail(&device->dev_list, &its->device_list); 1168 return device; 1169} 1170 1171/* 1172 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1173 * Must be called with the its_lock mutex held. 1174 */ 1175static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1176 u64 *its_cmd) 1177{ 1178 u32 device_id = its_cmd_get_deviceid(its_cmd); 1179 bool valid = its_cmd_get_validbit(its_cmd); 1180 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1181 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1182 struct its_device *device; 1183 1184 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1185 return E_ITS_MAPD_DEVICE_OOR; 1186 1187 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1188 return E_ITS_MAPD_ITTSIZE_OOR; 1189 1190 device = find_its_device(its, device_id); 1191 1192 /* 1193 * The spec says that calling MAPD on an already mapped device 1194 * invalidates all cached data for this device. We implement this 1195 * by removing the mapping and re-establishing it. 1196 */ 1197 if (device) 1198 vgic_its_free_device(kvm, device); 1199 1200 /* 1201 * The spec does not say whether unmapping a not-mapped device 1202 * is an error, so we are done in any case. 1203 */ 1204 if (!valid) 1205 return 0; 1206 1207 device = vgic_its_alloc_device(its, device_id, itt_addr, 1208 num_eventid_bits); 1209 1210 return PTR_ERR_OR_ZERO(device); 1211} 1212 1213/* 1214 * The MAPC command maps collection IDs to redistributors. 1215 * Must be called with the its_lock mutex held. 1216 */ 1217static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1218 u64 *its_cmd) 1219{ 1220 u16 coll_id; 1221 u32 target_addr; 1222 struct its_collection *collection; 1223 bool valid; 1224 1225 valid = its_cmd_get_validbit(its_cmd); 1226 coll_id = its_cmd_get_collection(its_cmd); 1227 target_addr = its_cmd_get_target_addr(its_cmd); 1228 1229 if (target_addr >= atomic_read(&kvm->online_vcpus)) 1230 return E_ITS_MAPC_PROCNUM_OOR; 1231 1232 if (!valid) { 1233 vgic_its_free_collection(its, coll_id); 1234 vgic_its_invalidate_cache(kvm); 1235 } else { 1236 collection = find_collection(its, coll_id); 1237 1238 if (!collection) { 1239 int ret; 1240 1241 ret = vgic_its_alloc_collection(its, &collection, 1242 coll_id); 1243 if (ret) 1244 return ret; 1245 collection->target_addr = target_addr; 1246 } else { 1247 collection->target_addr = target_addr; 1248 update_affinity_collection(kvm, its, collection); 1249 } 1250 } 1251 1252 return 0; 1253} 1254 1255/* 1256 * The CLEAR command removes the pending state for a particular LPI. 1257 * Must be called with the its_lock mutex held. 1258 */ 1259static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1260 u64 *its_cmd) 1261{ 1262 u32 device_id = its_cmd_get_deviceid(its_cmd); 1263 u32 event_id = its_cmd_get_id(its_cmd); 1264 struct its_ite *ite; 1265 1266 1267 ite = find_ite(its, device_id, event_id); 1268 if (!ite) 1269 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1270 1271 ite->irq->pending_latch = false; 1272 1273 if (ite->irq->hw) 1274 return irq_set_irqchip_state(ite->irq->host_irq, 1275 IRQCHIP_STATE_PENDING, false); 1276 1277 return 0; 1278} 1279 1280/* 1281 * The INV command syncs the configuration bits from the memory table. 1282 * Must be called with the its_lock mutex held. 1283 */ 1284static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1285 u64 *its_cmd) 1286{ 1287 u32 device_id = its_cmd_get_deviceid(its_cmd); 1288 u32 event_id = its_cmd_get_id(its_cmd); 1289 struct its_ite *ite; 1290 1291 1292 ite = find_ite(its, device_id, event_id); 1293 if (!ite) 1294 return E_ITS_INV_UNMAPPED_INTERRUPT; 1295 1296 return update_lpi_config(kvm, ite->irq, NULL, true); 1297} 1298 1299/* 1300 * The INVALL command requests flushing of all IRQ data in this collection. 1301 * Find the VCPU mapped to that collection, then iterate over the VM's list 1302 * of mapped LPIs and update the configuration for each IRQ which targets 1303 * the specified vcpu. The configuration will be read from the in-memory 1304 * configuration table. 1305 * Must be called with the its_lock mutex held. 1306 */ 1307static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1308 u64 *its_cmd) 1309{ 1310 u32 coll_id = its_cmd_get_collection(its_cmd); 1311 struct its_collection *collection; 1312 struct kvm_vcpu *vcpu; 1313 struct vgic_irq *irq; 1314 u32 *intids; 1315 int irq_count, i; 1316 1317 collection = find_collection(its, coll_id); 1318 if (!its_is_collection_mapped(collection)) 1319 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1320 1321 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 1322 1323 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1324 if (irq_count < 0) 1325 return irq_count; 1326 1327 for (i = 0; i < irq_count; i++) { 1328 irq = vgic_get_irq(kvm, NULL, intids[i]); 1329 if (!irq) 1330 continue; 1331 update_lpi_config(kvm, irq, vcpu, false); 1332 vgic_put_irq(kvm, irq); 1333 } 1334 1335 kfree(intids); 1336 1337 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1338 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1339 1340 return 0; 1341} 1342 1343/* 1344 * The MOVALL command moves the pending state of all IRQs targeting one 1345 * redistributor to another. We don't hold the pending state in the VCPUs, 1346 * but in the IRQs instead, so there is really not much to do for us here. 1347 * However the spec says that no IRQ must target the old redistributor 1348 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1349 * This command affects all LPIs in the system that target that redistributor. 1350 */ 1351static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1352 u64 *its_cmd) 1353{ 1354 u32 target1_addr = its_cmd_get_target_addr(its_cmd); 1355 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); 1356 struct kvm_vcpu *vcpu1, *vcpu2; 1357 struct vgic_irq *irq; 1358 u32 *intids; 1359 int irq_count, i; 1360 1361 if (target1_addr >= atomic_read(&kvm->online_vcpus) || 1362 target2_addr >= atomic_read(&kvm->online_vcpus)) 1363 return E_ITS_MOVALL_PROCNUM_OOR; 1364 1365 if (target1_addr == target2_addr) 1366 return 0; 1367 1368 vcpu1 = kvm_get_vcpu(kvm, target1_addr); 1369 vcpu2 = kvm_get_vcpu(kvm, target2_addr); 1370 1371 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1372 if (irq_count < 0) 1373 return irq_count; 1374 1375 for (i = 0; i < irq_count; i++) { 1376 irq = vgic_get_irq(kvm, NULL, intids[i]); 1377 1378 update_affinity(irq, vcpu2); 1379 1380 vgic_put_irq(kvm, irq); 1381 } 1382 1383 vgic_its_invalidate_cache(kvm); 1384 1385 kfree(intids); 1386 return 0; 1387} 1388 1389/* 1390 * The INT command injects the LPI associated with that DevID/EvID pair. 1391 * Must be called with the its_lock mutex held. 1392 */ 1393static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1394 u64 *its_cmd) 1395{ 1396 u32 msi_data = its_cmd_get_id(its_cmd); 1397 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1398 1399 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1400} 1401 1402/* 1403 * This function is called with the its_cmd lock held, but the ITS data 1404 * structure lock dropped. 1405 */ 1406static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1407 u64 *its_cmd) 1408{ 1409 int ret = -ENODEV; 1410 1411 mutex_lock(&its->its_lock); 1412 switch (its_cmd_get_command(its_cmd)) { 1413 case GITS_CMD_MAPD: 1414 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1415 break; 1416 case GITS_CMD_MAPC: 1417 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1418 break; 1419 case GITS_CMD_MAPI: 1420 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1421 break; 1422 case GITS_CMD_MAPTI: 1423 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1424 break; 1425 case GITS_CMD_MOVI: 1426 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1427 break; 1428 case GITS_CMD_DISCARD: 1429 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1430 break; 1431 case GITS_CMD_CLEAR: 1432 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1433 break; 1434 case GITS_CMD_MOVALL: 1435 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1436 break; 1437 case GITS_CMD_INT: 1438 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1439 break; 1440 case GITS_CMD_INV: 1441 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1442 break; 1443 case GITS_CMD_INVALL: 1444 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1445 break; 1446 case GITS_CMD_SYNC: 1447 /* we ignore this command: we are in sync all of the time */ 1448 ret = 0; 1449 break; 1450 } 1451 mutex_unlock(&its->its_lock); 1452 1453 return ret; 1454} 1455 1456static u64 vgic_sanitise_its_baser(u64 reg) 1457{ 1458 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1459 GITS_BASER_SHAREABILITY_SHIFT, 1460 vgic_sanitise_shareability); 1461 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1462 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1463 vgic_sanitise_inner_cacheability); 1464 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1465 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1466 vgic_sanitise_outer_cacheability); 1467 1468 /* We support only one (ITS) page size: 64K */ 1469 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1470 1471 return reg; 1472} 1473 1474static u64 vgic_sanitise_its_cbaser(u64 reg) 1475{ 1476 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1477 GITS_CBASER_SHAREABILITY_SHIFT, 1478 vgic_sanitise_shareability); 1479 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1480 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1481 vgic_sanitise_inner_cacheability); 1482 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1483 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1484 vgic_sanitise_outer_cacheability); 1485 1486 /* Sanitise the physical address to be 64k aligned. */ 1487 reg &= ~GENMASK_ULL(15, 12); 1488 1489 return reg; 1490} 1491 1492static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1493 struct vgic_its *its, 1494 gpa_t addr, unsigned int len) 1495{ 1496 return extract_bytes(its->cbaser, addr & 7, len); 1497} 1498 1499static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1500 gpa_t addr, unsigned int len, 1501 unsigned long val) 1502{ 1503 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1504 if (its->enabled) 1505 return; 1506 1507 mutex_lock(&its->cmd_lock); 1508 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1509 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1510 its->creadr = 0; 1511 /* 1512 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1513 * it to CREADR to make sure we start with an empty command buffer. 1514 */ 1515 its->cwriter = its->creadr; 1516 mutex_unlock(&its->cmd_lock); 1517} 1518 1519#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1520#define ITS_CMD_SIZE 32 1521#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1522 1523/* Must be called with the cmd_lock held. */ 1524static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1525{ 1526 gpa_t cbaser; 1527 u64 cmd_buf[4]; 1528 1529 /* Commands are only processed when the ITS is enabled. */ 1530 if (!its->enabled) 1531 return; 1532 1533 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1534 1535 while (its->cwriter != its->creadr) { 1536 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1537 cmd_buf, ITS_CMD_SIZE); 1538 /* 1539 * If kvm_read_guest() fails, this could be due to the guest 1540 * programming a bogus value in CBASER or something else going 1541 * wrong from which we cannot easily recover. 1542 * According to section 6.3.2 in the GICv3 spec we can just 1543 * ignore that command then. 1544 */ 1545 if (!ret) 1546 vgic_its_handle_command(kvm, its, cmd_buf); 1547 1548 its->creadr += ITS_CMD_SIZE; 1549 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1550 its->creadr = 0; 1551 } 1552} 1553 1554/* 1555 * By writing to CWRITER the guest announces new commands to be processed. 1556 * To avoid any races in the first place, we take the its_cmd lock, which 1557 * protects our ring buffer variables, so that there is only one user 1558 * per ITS handling commands at a given time. 1559 */ 1560static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1561 gpa_t addr, unsigned int len, 1562 unsigned long val) 1563{ 1564 u64 reg; 1565 1566 if (!its) 1567 return; 1568 1569 mutex_lock(&its->cmd_lock); 1570 1571 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1572 reg = ITS_CMD_OFFSET(reg); 1573 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1574 mutex_unlock(&its->cmd_lock); 1575 return; 1576 } 1577 its->cwriter = reg; 1578 1579 vgic_its_process_commands(kvm, its); 1580 1581 mutex_unlock(&its->cmd_lock); 1582} 1583 1584static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1585 struct vgic_its *its, 1586 gpa_t addr, unsigned int len) 1587{ 1588 return extract_bytes(its->cwriter, addr & 0x7, len); 1589} 1590 1591static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1592 struct vgic_its *its, 1593 gpa_t addr, unsigned int len) 1594{ 1595 return extract_bytes(its->creadr, addr & 0x7, len); 1596} 1597 1598static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1599 struct vgic_its *its, 1600 gpa_t addr, unsigned int len, 1601 unsigned long val) 1602{ 1603 u32 cmd_offset; 1604 int ret = 0; 1605 1606 mutex_lock(&its->cmd_lock); 1607 1608 if (its->enabled) { 1609 ret = -EBUSY; 1610 goto out; 1611 } 1612 1613 cmd_offset = ITS_CMD_OFFSET(val); 1614 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1615 ret = -EINVAL; 1616 goto out; 1617 } 1618 1619 its->creadr = cmd_offset; 1620out: 1621 mutex_unlock(&its->cmd_lock); 1622 return ret; 1623} 1624 1625#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1626static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1627 struct vgic_its *its, 1628 gpa_t addr, unsigned int len) 1629{ 1630 u64 reg; 1631 1632 switch (BASER_INDEX(addr)) { 1633 case 0: 1634 reg = its->baser_device_table; 1635 break; 1636 case 1: 1637 reg = its->baser_coll_table; 1638 break; 1639 default: 1640 reg = 0; 1641 break; 1642 } 1643 1644 return extract_bytes(reg, addr & 7, len); 1645} 1646 1647#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1648static void vgic_mmio_write_its_baser(struct kvm *kvm, 1649 struct vgic_its *its, 1650 gpa_t addr, unsigned int len, 1651 unsigned long val) 1652{ 1653 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1654 u64 entry_size, table_type; 1655 u64 reg, *regptr, clearbits = 0; 1656 1657 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1658 if (its->enabled) 1659 return; 1660 1661 switch (BASER_INDEX(addr)) { 1662 case 0: 1663 regptr = &its->baser_device_table; 1664 entry_size = abi->dte_esz; 1665 table_type = GITS_BASER_TYPE_DEVICE; 1666 break; 1667 case 1: 1668 regptr = &its->baser_coll_table; 1669 entry_size = abi->cte_esz; 1670 table_type = GITS_BASER_TYPE_COLLECTION; 1671 clearbits = GITS_BASER_INDIRECT; 1672 break; 1673 default: 1674 return; 1675 } 1676 1677 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1678 reg &= ~GITS_BASER_RO_MASK; 1679 reg &= ~clearbits; 1680 1681 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1682 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1683 reg = vgic_sanitise_its_baser(reg); 1684 1685 *regptr = reg; 1686 1687 if (!(reg & GITS_BASER_VALID)) { 1688 /* Take the its_lock to prevent a race with a save/restore */ 1689 mutex_lock(&its->its_lock); 1690 switch (table_type) { 1691 case GITS_BASER_TYPE_DEVICE: 1692 vgic_its_free_device_list(kvm, its); 1693 break; 1694 case GITS_BASER_TYPE_COLLECTION: 1695 vgic_its_free_collection_list(kvm, its); 1696 break; 1697 } 1698 mutex_unlock(&its->its_lock); 1699 } 1700} 1701 1702static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1703 struct vgic_its *its, 1704 gpa_t addr, unsigned int len) 1705{ 1706 u32 reg = 0; 1707 1708 mutex_lock(&its->cmd_lock); 1709 if (its->creadr == its->cwriter) 1710 reg |= GITS_CTLR_QUIESCENT; 1711 if (its->enabled) 1712 reg |= GITS_CTLR_ENABLE; 1713 mutex_unlock(&its->cmd_lock); 1714 1715 return reg; 1716} 1717 1718static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1719 gpa_t addr, unsigned int len, 1720 unsigned long val) 1721{ 1722 mutex_lock(&its->cmd_lock); 1723 1724 /* 1725 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1726 * device/collection BASER are invalid 1727 */ 1728 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1729 (!(its->baser_device_table & GITS_BASER_VALID) || 1730 !(its->baser_coll_table & GITS_BASER_VALID) || 1731 !(its->cbaser & GITS_CBASER_VALID))) 1732 goto out; 1733 1734 its->enabled = !!(val & GITS_CTLR_ENABLE); 1735 if (!its->enabled) 1736 vgic_its_invalidate_cache(kvm); 1737 1738 /* 1739 * Try to process any pending commands. This function bails out early 1740 * if the ITS is disabled or no commands have been queued. 1741 */ 1742 vgic_its_process_commands(kvm, its); 1743 1744out: 1745 mutex_unlock(&its->cmd_lock); 1746} 1747 1748#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1749{ \ 1750 .reg_offset = off, \ 1751 .len = length, \ 1752 .access_flags = acc, \ 1753 .its_read = rd, \ 1754 .its_write = wr, \ 1755} 1756 1757#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1758{ \ 1759 .reg_offset = off, \ 1760 .len = length, \ 1761 .access_flags = acc, \ 1762 .its_read = rd, \ 1763 .its_write = wr, \ 1764 .uaccess_its_write = uwr, \ 1765} 1766 1767static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1768 gpa_t addr, unsigned int len, unsigned long val) 1769{ 1770 /* Ignore */ 1771} 1772 1773static struct vgic_register_region its_registers[] = { 1774 REGISTER_ITS_DESC(GITS_CTLR, 1775 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1776 VGIC_ACCESS_32bit), 1777 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1778 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1779 vgic_mmio_uaccess_write_its_iidr, 4, 1780 VGIC_ACCESS_32bit), 1781 REGISTER_ITS_DESC(GITS_TYPER, 1782 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1783 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1784 REGISTER_ITS_DESC(GITS_CBASER, 1785 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1786 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1787 REGISTER_ITS_DESC(GITS_CWRITER, 1788 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1790 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1791 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1792 vgic_mmio_uaccess_write_its_creadr, 8, 1793 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1794 REGISTER_ITS_DESC(GITS_BASER, 1795 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1796 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1797 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1798 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1799 VGIC_ACCESS_32bit), 1800}; 1801 1802/* This is called on setting the LPI enable bit in the redistributor. */ 1803void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1804{ 1805 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1806 its_sync_lpi_pending_table(vcpu); 1807} 1808 1809static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1810 u64 addr) 1811{ 1812 struct vgic_io_device *iodev = &its->iodev; 1813 int ret; 1814 1815 mutex_lock(&kvm->slots_lock); 1816 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1817 ret = -EBUSY; 1818 goto out; 1819 } 1820 1821 its->vgic_its_base = addr; 1822 iodev->regions = its_registers; 1823 iodev->nr_regions = ARRAY_SIZE(its_registers); 1824 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1825 1826 iodev->base_addr = its->vgic_its_base; 1827 iodev->iodev_type = IODEV_ITS; 1828 iodev->its = its; 1829 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1830 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1831out: 1832 mutex_unlock(&kvm->slots_lock); 1833 1834 return ret; 1835} 1836 1837/* Default is 16 cached LPIs per vcpu */ 1838#define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1839 1840void vgic_lpi_translation_cache_init(struct kvm *kvm) 1841{ 1842 struct vgic_dist *dist = &kvm->arch.vgic; 1843 unsigned int sz; 1844 int i; 1845 1846 if (!list_empty(&dist->lpi_translation_cache)) 1847 return; 1848 1849 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1850 1851 for (i = 0; i < sz; i++) { 1852 struct vgic_translation_cache_entry *cte; 1853 1854 /* An allocation failure is not fatal */ 1855 cte = kzalloc(sizeof(*cte), GFP_KERNEL); 1856 if (WARN_ON(!cte)) 1857 break; 1858 1859 INIT_LIST_HEAD(&cte->entry); 1860 list_add(&cte->entry, &dist->lpi_translation_cache); 1861 } 1862} 1863 1864void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1865{ 1866 struct vgic_dist *dist = &kvm->arch.vgic; 1867 struct vgic_translation_cache_entry *cte, *tmp; 1868 1869 vgic_its_invalidate_cache(kvm); 1870 1871 list_for_each_entry_safe(cte, tmp, 1872 &dist->lpi_translation_cache, entry) { 1873 list_del(&cte->entry); 1874 kfree(cte); 1875 } 1876} 1877 1878#define INITIAL_BASER_VALUE \ 1879 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1880 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1881 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1882 GITS_BASER_PAGE_SIZE_64K) 1883 1884#define INITIAL_PROPBASER_VALUE \ 1885 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1886 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1887 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1888 1889static int vgic_its_create(struct kvm_device *dev, u32 type) 1890{ 1891 struct vgic_its *its; 1892 1893 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1894 return -ENODEV; 1895 1896 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL); 1897 if (!its) 1898 return -ENOMEM; 1899 1900 if (vgic_initialized(dev->kvm)) { 1901 int ret = vgic_v4_init(dev->kvm); 1902 if (ret < 0) { 1903 kfree(its); 1904 return ret; 1905 } 1906 1907 vgic_lpi_translation_cache_init(dev->kvm); 1908 } 1909 1910 mutex_init(&its->its_lock); 1911 mutex_init(&its->cmd_lock); 1912 1913 its->vgic_its_base = VGIC_ADDR_UNDEF; 1914 1915 INIT_LIST_HEAD(&its->device_list); 1916 INIT_LIST_HEAD(&its->collection_list); 1917 1918 dev->kvm->arch.vgic.msis_require_devid = true; 1919 dev->kvm->arch.vgic.has_its = true; 1920 its->enabled = false; 1921 its->dev = dev; 1922 1923 its->baser_device_table = INITIAL_BASER_VALUE | 1924 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1925 its->baser_coll_table = INITIAL_BASER_VALUE | 1926 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1927 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1928 1929 dev->private = its; 1930 1931 return vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1932} 1933 1934static void vgic_its_destroy(struct kvm_device *kvm_dev) 1935{ 1936 struct kvm *kvm = kvm_dev->kvm; 1937 struct vgic_its *its = kvm_dev->private; 1938 1939 mutex_lock(&its->its_lock); 1940 1941 vgic_its_free_device_list(kvm, its); 1942 vgic_its_free_collection_list(kvm, its); 1943 1944 mutex_unlock(&its->its_lock); 1945 kfree(its); 1946 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1947} 1948 1949static int vgic_its_has_attr_regs(struct kvm_device *dev, 1950 struct kvm_device_attr *attr) 1951{ 1952 const struct vgic_register_region *region; 1953 gpa_t offset = attr->attr; 1954 int align; 1955 1956 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1957 1958 if (offset & align) 1959 return -EINVAL; 1960 1961 region = vgic_find_mmio_region(its_registers, 1962 ARRAY_SIZE(its_registers), 1963 offset); 1964 if (!region) 1965 return -ENXIO; 1966 1967 return 0; 1968} 1969 1970static int vgic_its_attr_regs_access(struct kvm_device *dev, 1971 struct kvm_device_attr *attr, 1972 u64 *reg, bool is_write) 1973{ 1974 const struct vgic_register_region *region; 1975 struct vgic_its *its; 1976 gpa_t addr, offset; 1977 unsigned int len; 1978 int align, ret = 0; 1979 1980 its = dev->private; 1981 offset = attr->attr; 1982 1983 /* 1984 * Although the spec supports upper/lower 32-bit accesses to 1985 * 64-bit ITS registers, the userspace ABI requires 64-bit 1986 * accesses to all 64-bit wide registers. We therefore only 1987 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1988 * registers 1989 */ 1990 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1991 align = 0x3; 1992 else 1993 align = 0x7; 1994 1995 if (offset & align) 1996 return -EINVAL; 1997 1998 mutex_lock(&dev->kvm->lock); 1999 2000 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2001 ret = -ENXIO; 2002 goto out; 2003 } 2004 2005 region = vgic_find_mmio_region(its_registers, 2006 ARRAY_SIZE(its_registers), 2007 offset); 2008 if (!region) { 2009 ret = -ENXIO; 2010 goto out; 2011 } 2012 2013 if (!lock_all_vcpus(dev->kvm)) { 2014 ret = -EBUSY; 2015 goto out; 2016 } 2017 2018 addr = its->vgic_its_base + offset; 2019 2020 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2021 2022 if (is_write) { 2023 if (region->uaccess_its_write) 2024 ret = region->uaccess_its_write(dev->kvm, its, addr, 2025 len, *reg); 2026 else 2027 region->its_write(dev->kvm, its, addr, len, *reg); 2028 } else { 2029 *reg = region->its_read(dev->kvm, its, addr, len); 2030 } 2031 unlock_all_vcpus(dev->kvm); 2032out: 2033 mutex_unlock(&dev->kvm->lock); 2034 return ret; 2035} 2036 2037static u32 compute_next_devid_offset(struct list_head *h, 2038 struct its_device *dev) 2039{ 2040 struct its_device *next; 2041 u32 next_offset; 2042 2043 if (list_is_last(&dev->dev_list, h)) 2044 return 0; 2045 next = list_next_entry(dev, dev_list); 2046 next_offset = next->device_id - dev->device_id; 2047 2048 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2049} 2050 2051static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2052{ 2053 struct its_ite *next; 2054 u32 next_offset; 2055 2056 if (list_is_last(&ite->ite_list, h)) 2057 return 0; 2058 next = list_next_entry(ite, ite_list); 2059 next_offset = next->event_id - ite->event_id; 2060 2061 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2062} 2063 2064/** 2065 * entry_fn_t - Callback called on a table entry restore path 2066 * @its: its handle 2067 * @id: id of the entry 2068 * @entry: pointer to the entry 2069 * @opaque: pointer to an opaque data 2070 * 2071 * Return: < 0 on error, 0 if last element was identified, id offset to next 2072 * element otherwise 2073 */ 2074typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2075 void *opaque); 2076 2077/** 2078 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2079 * to each entry 2080 * 2081 * @its: its handle 2082 * @base: base gpa of the table 2083 * @size: size of the table in bytes 2084 * @esz: entry size in bytes 2085 * @start_id: the ID of the first entry in the table 2086 * (non zero for 2d level tables) 2087 * @fn: function to apply on each entry 2088 * 2089 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2090 * (the last element may not be found on second level tables) 2091 */ 2092static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2093 int start_id, entry_fn_t fn, void *opaque) 2094{ 2095 struct kvm *kvm = its->dev->kvm; 2096 unsigned long len = size; 2097 int id = start_id; 2098 gpa_t gpa = base; 2099 char entry[ESZ_MAX]; 2100 int ret; 2101 2102 memset(entry, 0, esz); 2103 2104 while (true) { 2105 int next_offset; 2106 size_t byte_offset; 2107 2108 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2109 if (ret) 2110 return ret; 2111 2112 next_offset = fn(its, id, entry, opaque); 2113 if (next_offset <= 0) 2114 return next_offset; 2115 2116 byte_offset = next_offset * esz; 2117 if (byte_offset >= len) 2118 break; 2119 2120 id += next_offset; 2121 gpa += byte_offset; 2122 len -= byte_offset; 2123 } 2124 return 1; 2125} 2126 2127/** 2128 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2129 */ 2130static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2131 struct its_ite *ite, gpa_t gpa, int ite_esz) 2132{ 2133 struct kvm *kvm = its->dev->kvm; 2134 u32 next_offset; 2135 u64 val; 2136 2137 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2138 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2139 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2140 ite->collection->collection_id; 2141 val = cpu_to_le64(val); 2142 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz); 2143} 2144 2145/** 2146 * vgic_its_restore_ite - restore an interrupt translation entry 2147 * @event_id: id used for indexing 2148 * @ptr: pointer to the ITE entry 2149 * @opaque: pointer to the its_device 2150 */ 2151static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2152 void *ptr, void *opaque) 2153{ 2154 struct its_device *dev = (struct its_device *)opaque; 2155 struct its_collection *collection; 2156 struct kvm *kvm = its->dev->kvm; 2157 struct kvm_vcpu *vcpu = NULL; 2158 u64 val; 2159 u64 *p = (u64 *)ptr; 2160 struct vgic_irq *irq; 2161 u32 coll_id, lpi_id; 2162 struct its_ite *ite; 2163 u32 offset; 2164 2165 val = *p; 2166 2167 val = le64_to_cpu(val); 2168 2169 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2170 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2171 2172 if (!lpi_id) 2173 return 1; /* invalid entry, no choice but to scan next entry */ 2174 2175 if (lpi_id < VGIC_MIN_LPI) 2176 return -EINVAL; 2177 2178 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2179 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2180 return -EINVAL; 2181 2182 collection = find_collection(its, coll_id); 2183 if (!collection) 2184 return -EINVAL; 2185 2186 ite = vgic_its_alloc_ite(dev, collection, event_id); 2187 if (IS_ERR(ite)) 2188 return PTR_ERR(ite); 2189 2190 if (its_is_collection_mapped(collection)) 2191 vcpu = kvm_get_vcpu(kvm, collection->target_addr); 2192 2193 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2194 if (IS_ERR(irq)) 2195 return PTR_ERR(irq); 2196 ite->irq = irq; 2197 2198 return offset; 2199} 2200 2201static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2202 const struct list_head *b) 2203{ 2204 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2205 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2206 2207 if (itea->event_id < iteb->event_id) 2208 return -1; 2209 else 2210 return 1; 2211} 2212 2213static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2214{ 2215 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2216 gpa_t base = device->itt_addr; 2217 struct its_ite *ite; 2218 int ret; 2219 int ite_esz = abi->ite_esz; 2220 2221 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2222 2223 list_for_each_entry(ite, &device->itt_head, ite_list) { 2224 gpa_t gpa = base + ite->event_id * ite_esz; 2225 2226 /* 2227 * If an LPI carries the HW bit, this means that this 2228 * interrupt is controlled by GICv4, and we do not 2229 * have direct access to that state. Let's simply fail 2230 * the save operation... 2231 */ 2232 if (ite->irq->hw) 2233 return -EACCES; 2234 2235 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2236 if (ret) 2237 return ret; 2238 } 2239 return 0; 2240} 2241 2242/** 2243 * vgic_its_restore_itt - restore the ITT of a device 2244 * 2245 * @its: its handle 2246 * @dev: device handle 2247 * 2248 * Return 0 on success, < 0 on error 2249 */ 2250static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2251{ 2252 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2253 gpa_t base = dev->itt_addr; 2254 int ret; 2255 int ite_esz = abi->ite_esz; 2256 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2257 2258 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2259 vgic_its_restore_ite, dev); 2260 2261 /* scan_its_table returns +1 if all ITEs are invalid */ 2262 if (ret > 0) 2263 ret = 0; 2264 2265 return ret; 2266} 2267 2268/** 2269 * vgic_its_save_dte - Save a device table entry at a given GPA 2270 * 2271 * @its: ITS handle 2272 * @dev: ITS device 2273 * @ptr: GPA 2274 */ 2275static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2276 gpa_t ptr, int dte_esz) 2277{ 2278 struct kvm *kvm = its->dev->kvm; 2279 u64 val, itt_addr_field; 2280 u32 next_offset; 2281 2282 itt_addr_field = dev->itt_addr >> 8; 2283 next_offset = compute_next_devid_offset(&its->device_list, dev); 2284 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2285 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2286 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2287 (dev->num_eventid_bits - 1)); 2288 val = cpu_to_le64(val); 2289 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz); 2290} 2291 2292/** 2293 * vgic_its_restore_dte - restore a device table entry 2294 * 2295 * @its: its handle 2296 * @id: device id the DTE corresponds to 2297 * @ptr: kernel VA where the 8 byte DTE is located 2298 * @opaque: unused 2299 * 2300 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2301 * next dte otherwise 2302 */ 2303static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2304 void *ptr, void *opaque) 2305{ 2306 struct its_device *dev; 2307 gpa_t itt_addr; 2308 u8 num_eventid_bits; 2309 u64 entry = *(u64 *)ptr; 2310 bool valid; 2311 u32 offset; 2312 int ret; 2313 2314 entry = le64_to_cpu(entry); 2315 2316 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2317 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2318 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2319 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2320 2321 if (!valid) 2322 return 1; 2323 2324 /* dte entry is valid */ 2325 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2326 2327 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2328 if (IS_ERR(dev)) 2329 return PTR_ERR(dev); 2330 2331 ret = vgic_its_restore_itt(its, dev); 2332 if (ret) { 2333 vgic_its_free_device(its->dev->kvm, dev); 2334 return ret; 2335 } 2336 2337 return offset; 2338} 2339 2340static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2341 const struct list_head *b) 2342{ 2343 struct its_device *deva = container_of(a, struct its_device, dev_list); 2344 struct its_device *devb = container_of(b, struct its_device, dev_list); 2345 2346 if (deva->device_id < devb->device_id) 2347 return -1; 2348 else 2349 return 1; 2350} 2351 2352/** 2353 * vgic_its_save_device_tables - Save the device table and all ITT 2354 * into guest RAM 2355 * 2356 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2357 * returns the GPA of the device entry 2358 */ 2359static int vgic_its_save_device_tables(struct vgic_its *its) 2360{ 2361 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2362 u64 baser = its->baser_device_table; 2363 struct its_device *dev; 2364 int dte_esz = abi->dte_esz; 2365 2366 if (!(baser & GITS_BASER_VALID)) 2367 return 0; 2368 2369 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2370 2371 list_for_each_entry(dev, &its->device_list, dev_list) { 2372 int ret; 2373 gpa_t eaddr; 2374 2375 if (!vgic_its_check_id(its, baser, 2376 dev->device_id, &eaddr)) 2377 return -EINVAL; 2378 2379 ret = vgic_its_save_itt(its, dev); 2380 if (ret) 2381 return ret; 2382 2383 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2384 if (ret) 2385 return ret; 2386 } 2387 return 0; 2388} 2389 2390/** 2391 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2392 * 2393 * @its: its handle 2394 * @id: index of the entry in the L1 table 2395 * @addr: kernel VA 2396 * @opaque: unused 2397 * 2398 * L1 table entries are scanned by steps of 1 entry 2399 * Return < 0 if error, 0 if last dte was found when scanning the L2 2400 * table, +1 otherwise (meaning next L1 entry must be scanned) 2401 */ 2402static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2403 void *opaque) 2404{ 2405 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2406 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2407 u64 entry = *(u64 *)addr; 2408 int dte_esz = abi->dte_esz; 2409 gpa_t gpa; 2410 int ret; 2411 2412 entry = le64_to_cpu(entry); 2413 2414 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2415 return 1; 2416 2417 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2418 2419 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2420 l2_start_id, vgic_its_restore_dte, NULL); 2421 2422 return ret; 2423} 2424 2425/** 2426 * vgic_its_restore_device_tables - Restore the device table and all ITT 2427 * from guest RAM to internal data structs 2428 */ 2429static int vgic_its_restore_device_tables(struct vgic_its *its) 2430{ 2431 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2432 u64 baser = its->baser_device_table; 2433 int l1_esz, ret; 2434 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2435 gpa_t l1_gpa; 2436 2437 if (!(baser & GITS_BASER_VALID)) 2438 return 0; 2439 2440 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2441 2442 if (baser & GITS_BASER_INDIRECT) { 2443 l1_esz = GITS_LVL1_ENTRY_SIZE; 2444 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2445 handle_l1_dte, NULL); 2446 } else { 2447 l1_esz = abi->dte_esz; 2448 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2449 vgic_its_restore_dte, NULL); 2450 } 2451 2452 /* scan_its_table returns +1 if all entries are invalid */ 2453 if (ret > 0) 2454 ret = 0; 2455 2456 return ret; 2457} 2458 2459static int vgic_its_save_cte(struct vgic_its *its, 2460 struct its_collection *collection, 2461 gpa_t gpa, int esz) 2462{ 2463 u64 val; 2464 2465 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2466 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2467 collection->collection_id); 2468 val = cpu_to_le64(val); 2469 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2470} 2471 2472static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2473{ 2474 struct its_collection *collection; 2475 struct kvm *kvm = its->dev->kvm; 2476 u32 target_addr, coll_id; 2477 u64 val; 2478 int ret; 2479 2480 BUG_ON(esz > sizeof(val)); 2481 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2482 if (ret) 2483 return ret; 2484 val = le64_to_cpu(val); 2485 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2486 return 0; 2487 2488 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2489 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2490 2491 if (target_addr != COLLECTION_NOT_MAPPED && 2492 target_addr >= atomic_read(&kvm->online_vcpus)) 2493 return -EINVAL; 2494 2495 collection = find_collection(its, coll_id); 2496 if (collection) 2497 return -EEXIST; 2498 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2499 if (ret) 2500 return ret; 2501 collection->target_addr = target_addr; 2502 return 1; 2503} 2504 2505/** 2506 * vgic_its_save_collection_table - Save the collection table into 2507 * guest RAM 2508 */ 2509static int vgic_its_save_collection_table(struct vgic_its *its) 2510{ 2511 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2512 u64 baser = its->baser_coll_table; 2513 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2514 struct its_collection *collection; 2515 u64 val; 2516 size_t max_size, filled = 0; 2517 int ret, cte_esz = abi->cte_esz; 2518 2519 if (!(baser & GITS_BASER_VALID)) 2520 return 0; 2521 2522 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2523 2524 list_for_each_entry(collection, &its->collection_list, coll_list) { 2525 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2526 if (ret) 2527 return ret; 2528 gpa += cte_esz; 2529 filled += cte_esz; 2530 } 2531 2532 if (filled == max_size) 2533 return 0; 2534 2535 /* 2536 * table is not fully filled, add a last dummy element 2537 * with valid bit unset 2538 */ 2539 val = 0; 2540 BUG_ON(cte_esz > sizeof(val)); 2541 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2542 return ret; 2543} 2544 2545/** 2546 * vgic_its_restore_collection_table - reads the collection table 2547 * in guest memory and restores the ITS internal state. Requires the 2548 * BASER registers to be restored before. 2549 */ 2550static int vgic_its_restore_collection_table(struct vgic_its *its) 2551{ 2552 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2553 u64 baser = its->baser_coll_table; 2554 int cte_esz = abi->cte_esz; 2555 size_t max_size, read = 0; 2556 gpa_t gpa; 2557 int ret; 2558 2559 if (!(baser & GITS_BASER_VALID)) 2560 return 0; 2561 2562 gpa = GITS_BASER_ADDR_48_to_52(baser); 2563 2564 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2565 2566 while (read < max_size) { 2567 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2568 if (ret <= 0) 2569 break; 2570 gpa += cte_esz; 2571 read += cte_esz; 2572 } 2573 2574 if (ret > 0) 2575 return 0; 2576 2577 return ret; 2578} 2579 2580/** 2581 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2582 * according to v0 ABI 2583 */ 2584static int vgic_its_save_tables_v0(struct vgic_its *its) 2585{ 2586 int ret; 2587 2588 ret = vgic_its_save_device_tables(its); 2589 if (ret) 2590 return ret; 2591 2592 return vgic_its_save_collection_table(its); 2593} 2594 2595/** 2596 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2597 * to internal data structs according to V0 ABI 2598 * 2599 */ 2600static int vgic_its_restore_tables_v0(struct vgic_its *its) 2601{ 2602 int ret; 2603 2604 ret = vgic_its_restore_collection_table(its); 2605 if (ret) 2606 return ret; 2607 2608 return vgic_its_restore_device_tables(its); 2609} 2610 2611static int vgic_its_commit_v0(struct vgic_its *its) 2612{ 2613 const struct vgic_its_abi *abi; 2614 2615 abi = vgic_its_get_abi(its); 2616 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2617 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2618 2619 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2620 << GITS_BASER_ENTRY_SIZE_SHIFT); 2621 2622 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2623 << GITS_BASER_ENTRY_SIZE_SHIFT); 2624 return 0; 2625} 2626 2627static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2628{ 2629 /* We need to keep the ABI specific field values */ 2630 its->baser_coll_table &= ~GITS_BASER_VALID; 2631 its->baser_device_table &= ~GITS_BASER_VALID; 2632 its->cbaser = 0; 2633 its->creadr = 0; 2634 its->cwriter = 0; 2635 its->enabled = 0; 2636 vgic_its_free_device_list(kvm, its); 2637 vgic_its_free_collection_list(kvm, its); 2638} 2639 2640static int vgic_its_has_attr(struct kvm_device *dev, 2641 struct kvm_device_attr *attr) 2642{ 2643 switch (attr->group) { 2644 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2645 switch (attr->attr) { 2646 case KVM_VGIC_ITS_ADDR_TYPE: 2647 return 0; 2648 } 2649 break; 2650 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2651 switch (attr->attr) { 2652 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2653 return 0; 2654 case KVM_DEV_ARM_ITS_CTRL_RESET: 2655 return 0; 2656 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2657 return 0; 2658 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2659 return 0; 2660 } 2661 break; 2662 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2663 return vgic_its_has_attr_regs(dev, attr); 2664 } 2665 return -ENXIO; 2666} 2667 2668static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2669{ 2670 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2671 int ret = 0; 2672 2673 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2674 return 0; 2675 2676 mutex_lock(&kvm->lock); 2677 mutex_lock(&its->its_lock); 2678 2679 if (!lock_all_vcpus(kvm)) { 2680 mutex_unlock(&its->its_lock); 2681 mutex_unlock(&kvm->lock); 2682 return -EBUSY; 2683 } 2684 2685 switch (attr) { 2686 case KVM_DEV_ARM_ITS_CTRL_RESET: 2687 vgic_its_reset(kvm, its); 2688 break; 2689 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2690 ret = abi->save_tables(its); 2691 break; 2692 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2693 ret = abi->restore_tables(its); 2694 break; 2695 } 2696 2697 unlock_all_vcpus(kvm); 2698 mutex_unlock(&its->its_lock); 2699 mutex_unlock(&kvm->lock); 2700 return ret; 2701} 2702 2703static int vgic_its_set_attr(struct kvm_device *dev, 2704 struct kvm_device_attr *attr) 2705{ 2706 struct vgic_its *its = dev->private; 2707 int ret; 2708 2709 switch (attr->group) { 2710 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2711 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2712 unsigned long type = (unsigned long)attr->attr; 2713 u64 addr; 2714 2715 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2716 return -ENODEV; 2717 2718 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2719 return -EFAULT; 2720 2721 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base, 2722 addr, SZ_64K); 2723 if (ret) 2724 return ret; 2725 2726 return vgic_register_its_iodev(dev->kvm, its, addr); 2727 } 2728 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2729 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2730 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2731 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2732 u64 reg; 2733 2734 if (get_user(reg, uaddr)) 2735 return -EFAULT; 2736 2737 return vgic_its_attr_regs_access(dev, attr, ®, true); 2738 } 2739 } 2740 return -ENXIO; 2741} 2742 2743static int vgic_its_get_attr(struct kvm_device *dev, 2744 struct kvm_device_attr *attr) 2745{ 2746 switch (attr->group) { 2747 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2748 struct vgic_its *its = dev->private; 2749 u64 addr = its->vgic_its_base; 2750 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2751 unsigned long type = (unsigned long)attr->attr; 2752 2753 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2754 return -ENODEV; 2755 2756 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2757 return -EFAULT; 2758 break; 2759 } 2760 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2761 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2762 u64 reg; 2763 int ret; 2764 2765 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2766 if (ret) 2767 return ret; 2768 return put_user(reg, uaddr); 2769 } 2770 default: 2771 return -ENXIO; 2772 } 2773 2774 return 0; 2775} 2776 2777static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2778 .name = "kvm-arm-vgic-its", 2779 .create = vgic_its_create, 2780 .destroy = vgic_its_destroy, 2781 .set_attr = vgic_its_set_attr, 2782 .get_attr = vgic_its_get_attr, 2783 .has_attr = vgic_its_has_attr, 2784}; 2785 2786int kvm_vgic_register_its_device(void) 2787{ 2788 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2789 KVM_DEV_TYPE_ARM_VGIC_ITS); 2790} 2791