1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
vgic_add_lpi(struct kvm *kvm, u32 intid, struct kvm_vcpu *vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
vgic_its_get_abi(struct vgic_its *its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
vgic_its_set_abi(struct vgic_its *its, u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
find_its_device(struct vgic_its *its, u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
find_ite(struct vgic_its *its, u32 device_id, u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
find_collection(struct vgic_its *its, int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, struct kvm_vcpu *filter_vcpu, bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
update_affinity_ite(struct kvm *kvm, struct its_ite *ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
update_affinity_collection(struct kvm *kvm, struct vgic_its *its, struct its_collection *coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (!ite->collection || coll != ite->collection)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 		irq->pending_latch = pendmask & (1U << bit_nr);
467 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 		vgic_put_irq(vcpu->kvm, irq);
469 	}
470 
471 	kfree(intids);
472 
473 	return ret;
474 }
475 
vgic_mmio_read_its_typer(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 					      struct vgic_its *its,
478 					      gpa_t addr, unsigned int len)
479 {
480 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 	u64 reg = GITS_TYPER_PLPIS;
482 
483 	/*
484 	 * We use linear CPU numbers for redistributor addressing,
485 	 * so GITS_TYPER.PTA is 0.
486 	 * Also we force all PROPBASER registers to be the same, so
487 	 * CommonLPIAff is 0 as well.
488 	 * To avoid memory waste in the guest, we keep the number of IDBits and
489 	 * DevBits low - as least for the time being.
490 	 */
491 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494 
495 	return extract_bytes(reg, addr & 7, len);
496 }
497 
vgic_mmio_read_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 					     struct vgic_its *its,
500 					     gpa_t addr, unsigned int len)
501 {
502 	u32 val;
503 
504 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 	return val;
507 }
508 
vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 					    struct vgic_its *its,
511 					    gpa_t addr, unsigned int len,
512 					    unsigned long val)
513 {
514 	u32 rev = GITS_IIDR_REV(val);
515 
516 	if (rev >= NR_ITS_ABIS)
517 		return -EINVAL;
518 	return vgic_its_set_abi(its, rev);
519 }
520 
vgic_mmio_read_its_idregs(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 					       struct vgic_its *its,
523 					       gpa_t addr, unsigned int len)
524 {
525 	switch (addr & 0xffff) {
526 	case GITS_PIDR0:
527 		return 0x92;	/* part number, bits[7:0] */
528 	case GITS_PIDR1:
529 		return 0xb4;	/* part number, bits[11:8] */
530 	case GITS_PIDR2:
531 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 	case GITS_PIDR4:
533 		return 0x40;	/* This is a 64K software visible page */
534 	/* The following are the ID registers for (any) GIC. */
535 	case GITS_CIDR0:
536 		return 0x0d;
537 	case GITS_CIDR1:
538 		return 0xf0;
539 	case GITS_CIDR2:
540 		return 0x05;
541 	case GITS_CIDR3:
542 		return 0xb1;
543 	}
544 
545 	return 0;
546 }
547 
__vgic_its_check_cache(struct vgic_dist *dist, phys_addr_t db, u32 devid, u32 eventid)548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 					       phys_addr_t db,
550 					       u32 devid, u32 eventid)
551 {
552 	struct vgic_translation_cache_entry *cte;
553 
554 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 		/*
556 		 * If we hit a NULL entry, there is nothing after this
557 		 * point.
558 		 */
559 		if (!cte->irq)
560 			break;
561 
562 		if (cte->db != db || cte->devid != devid ||
563 		    cte->eventid != eventid)
564 			continue;
565 
566 		/*
567 		 * Move this entry to the head, as it is the most
568 		 * recently used.
569 		 */
570 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 			list_move(&cte->entry, &dist->lpi_translation_cache);
572 
573 		return cte->irq;
574 	}
575 
576 	return NULL;
577 }
578 
vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, u32 devid, u32 eventid)579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 					     u32 devid, u32 eventid)
581 {
582 	struct vgic_dist *dist = &kvm->arch.vgic;
583 	struct vgic_irq *irq;
584 	unsigned long flags;
585 
586 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 
588 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
589 	if (irq)
590 		vgic_get_irq_kref(irq);
591 
592 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
593 
594 	return irq;
595 }
596 
vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid, struct vgic_irq *irq)597 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
598 				       u32 devid, u32 eventid,
599 				       struct vgic_irq *irq)
600 {
601 	struct vgic_dist *dist = &kvm->arch.vgic;
602 	struct vgic_translation_cache_entry *cte;
603 	unsigned long flags;
604 	phys_addr_t db;
605 
606 	/* Do not cache a directly injected interrupt */
607 	if (irq->hw)
608 		return;
609 
610 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
611 
612 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
613 		goto out;
614 
615 	/*
616 	 * We could have raced with another CPU caching the same
617 	 * translation behind our back, so let's check it is not in
618 	 * already
619 	 */
620 	db = its->vgic_its_base + GITS_TRANSLATER;
621 	if (__vgic_its_check_cache(dist, db, devid, eventid))
622 		goto out;
623 
624 	/* Always reuse the last entry (LRU policy) */
625 	cte = list_last_entry(&dist->lpi_translation_cache,
626 			      typeof(*cte), entry);
627 
628 	/*
629 	 * Caching the translation implies having an extra reference
630 	 * to the interrupt, so drop the potential reference on what
631 	 * was in the cache, and increment it on the new interrupt.
632 	 */
633 	if (cte->irq)
634 		__vgic_put_lpi_locked(kvm, cte->irq);
635 
636 	vgic_get_irq_kref(irq);
637 
638 	cte->db		= db;
639 	cte->devid	= devid;
640 	cte->eventid	= eventid;
641 	cte->irq	= irq;
642 
643 	/* Move the new translation to the head of the list */
644 	list_move(&cte->entry, &dist->lpi_translation_cache);
645 
646 out:
647 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
648 }
649 
vgic_its_invalidate_cache(struct kvm *kvm)650 void vgic_its_invalidate_cache(struct kvm *kvm)
651 {
652 	struct vgic_dist *dist = &kvm->arch.vgic;
653 	struct vgic_translation_cache_entry *cte;
654 	unsigned long flags;
655 
656 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
657 
658 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
659 		/*
660 		 * If we hit a NULL entry, there is nothing after this
661 		 * point.
662 		 */
663 		if (!cte->irq)
664 			break;
665 
666 		__vgic_put_lpi_locked(kvm, cte->irq);
667 		cte->irq = NULL;
668 	}
669 
670 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
671 }
672 
vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid, struct vgic_irq **irq)673 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
674 			 u32 devid, u32 eventid, struct vgic_irq **irq)
675 {
676 	struct kvm_vcpu *vcpu;
677 	struct its_ite *ite;
678 
679 	if (!its->enabled)
680 		return -EBUSY;
681 
682 	ite = find_ite(its, devid, eventid);
683 	if (!ite || !its_is_collection_mapped(ite->collection))
684 		return E_ITS_INT_UNMAPPED_INTERRUPT;
685 
686 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
687 	if (!vcpu)
688 		return E_ITS_INT_UNMAPPED_INTERRUPT;
689 
690 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
691 		return -EBUSY;
692 
693 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
694 
695 	*irq = ite->irq;
696 	return 0;
697 }
698 
vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)699 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
700 {
701 	u64 address;
702 	struct kvm_io_device *kvm_io_dev;
703 	struct vgic_io_device *iodev;
704 
705 	if (!vgic_has_its(kvm))
706 		return ERR_PTR(-ENODEV);
707 
708 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
709 		return ERR_PTR(-EINVAL);
710 
711 	address = (u64)msi->address_hi << 32 | msi->address_lo;
712 
713 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
714 	if (!kvm_io_dev)
715 		return ERR_PTR(-EINVAL);
716 
717 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
718 		return ERR_PTR(-EINVAL);
719 
720 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
721 	if (iodev->iodev_type != IODEV_ITS)
722 		return ERR_PTR(-EINVAL);
723 
724 	return iodev->its;
725 }
726 
727 /*
728  * Find the target VCPU and the LPI number for a given devid/eventid pair
729  * and make this IRQ pending, possibly injecting it.
730  * Must be called with the its_lock mutex held.
731  * Returns 0 on success, a positive error value for any ITS mapping
732  * related errors and negative error values for generic errors.
733  */
vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid)734 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
735 				u32 devid, u32 eventid)
736 {
737 	struct vgic_irq *irq = NULL;
738 	unsigned long flags;
739 	int err;
740 
741 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
742 	if (err)
743 		return err;
744 
745 	if (irq->hw)
746 		return irq_set_irqchip_state(irq->host_irq,
747 					     IRQCHIP_STATE_PENDING, true);
748 
749 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
750 	irq->pending_latch = true;
751 	vgic_queue_irq_unlock(kvm, irq, flags);
752 
753 	return 0;
754 }
755 
vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)756 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
757 {
758 	struct vgic_irq *irq;
759 	unsigned long flags;
760 	phys_addr_t db;
761 
762 	db = (u64)msi->address_hi << 32 | msi->address_lo;
763 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
764 	if (!irq)
765 		return -EWOULDBLOCK;
766 
767 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
768 	irq->pending_latch = true;
769 	vgic_queue_irq_unlock(kvm, irq, flags);
770 	vgic_put_irq(kvm, irq);
771 
772 	return 0;
773 }
774 
775 /*
776  * Queries the KVM IO bus framework to get the ITS pointer from the given
777  * doorbell address.
778  * We then call vgic_its_trigger_msi() with the decoded data.
779  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
780  */
vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)781 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
782 {
783 	struct vgic_its *its;
784 	int ret;
785 
786 	if (!vgic_its_inject_cached_translation(kvm, msi))
787 		return 1;
788 
789 	its = vgic_msi_to_its(kvm, msi);
790 	if (IS_ERR(its))
791 		return PTR_ERR(its);
792 
793 	mutex_lock(&its->its_lock);
794 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
795 	mutex_unlock(&its->its_lock);
796 
797 	if (ret < 0)
798 		return ret;
799 
800 	/*
801 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
802 	 * if the guest has blocked the MSI. So we map any LPI mapping
803 	 * related error to that.
804 	 */
805 	if (ret)
806 		return 0;
807 	else
808 		return 1;
809 }
810 
811 /* Requires the its_lock to be held. */
its_free_ite(struct kvm *kvm, struct its_ite *ite)812 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
813 {
814 	list_del(&ite->ite_list);
815 
816 	/* This put matches the get in vgic_add_lpi. */
817 	if (ite->irq) {
818 		if (ite->irq->hw)
819 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
820 
821 		vgic_put_irq(kvm, ite->irq);
822 	}
823 
824 	kfree(ite);
825 }
826 
its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)827 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
828 {
829 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
830 }
831 
832 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
833 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
834 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
835 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
836 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
837 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
838 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
839 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
840 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
841 
842 /*
843  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
844  * Must be called with the its_lock mutex held.
845  */
vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)846 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
847 				       u64 *its_cmd)
848 {
849 	u32 device_id = its_cmd_get_deviceid(its_cmd);
850 	u32 event_id = its_cmd_get_id(its_cmd);
851 	struct its_ite *ite;
852 
853 	ite = find_ite(its, device_id, event_id);
854 	if (ite && its_is_collection_mapped(ite->collection)) {
855 		/*
856 		 * Though the spec talks about removing the pending state, we
857 		 * don't bother here since we clear the ITTE anyway and the
858 		 * pending state is a property of the ITTE struct.
859 		 */
860 		vgic_its_invalidate_cache(kvm);
861 
862 		its_free_ite(kvm, ite);
863 		return 0;
864 	}
865 
866 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
867 }
868 
869 /*
870  * The MOVI command moves an ITTE to a different collection.
871  * Must be called with the its_lock mutex held.
872  */
vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)873 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
874 				    u64 *its_cmd)
875 {
876 	u32 device_id = its_cmd_get_deviceid(its_cmd);
877 	u32 event_id = its_cmd_get_id(its_cmd);
878 	u32 coll_id = its_cmd_get_collection(its_cmd);
879 	struct kvm_vcpu *vcpu;
880 	struct its_ite *ite;
881 	struct its_collection *collection;
882 
883 	ite = find_ite(its, device_id, event_id);
884 	if (!ite)
885 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
886 
887 	if (!its_is_collection_mapped(ite->collection))
888 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
889 
890 	collection = find_collection(its, coll_id);
891 	if (!its_is_collection_mapped(collection))
892 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
893 
894 	ite->collection = collection;
895 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
896 
897 	vgic_its_invalidate_cache(kvm);
898 
899 	return update_affinity(ite->irq, vcpu);
900 }
901 
902 /*
903  * Check whether an ID can be stored into the corresponding guest table.
904  * For a direct table this is pretty easy, but gets a bit nasty for
905  * indirect tables. We check whether the resulting guest physical address
906  * is actually valid (covered by a memslot and guest accessible).
907  * For this we have to read the respective first level entry.
908  */
vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, gpa_t *eaddr)909 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
910 			      gpa_t *eaddr)
911 {
912 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
913 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
914 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
915 	int esz = GITS_BASER_ENTRY_SIZE(baser);
916 	int index, idx;
917 	gfn_t gfn;
918 	bool ret;
919 
920 	switch (type) {
921 	case GITS_BASER_TYPE_DEVICE:
922 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
923 			return false;
924 		break;
925 	case GITS_BASER_TYPE_COLLECTION:
926 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
927 		if (id >= BIT_ULL(16))
928 			return false;
929 		break;
930 	default:
931 		return false;
932 	}
933 
934 	if (!(baser & GITS_BASER_INDIRECT)) {
935 		phys_addr_t addr;
936 
937 		if (id >= (l1_tbl_size / esz))
938 			return false;
939 
940 		addr = base + id * esz;
941 		gfn = addr >> PAGE_SHIFT;
942 
943 		if (eaddr)
944 			*eaddr = addr;
945 
946 		goto out;
947 	}
948 
949 	/* calculate and check the index into the 1st level */
950 	index = id / (SZ_64K / esz);
951 	if (index >= (l1_tbl_size / sizeof(u64)))
952 		return false;
953 
954 	/* Each 1st level entry is represented by a 64-bit value. */
955 	if (kvm_read_guest_lock(its->dev->kvm,
956 			   base + index * sizeof(indirect_ptr),
957 			   &indirect_ptr, sizeof(indirect_ptr)))
958 		return false;
959 
960 	indirect_ptr = le64_to_cpu(indirect_ptr);
961 
962 	/* check the valid bit of the first level entry */
963 	if (!(indirect_ptr & BIT_ULL(63)))
964 		return false;
965 
966 	/* Mask the guest physical address and calculate the frame number. */
967 	indirect_ptr &= GENMASK_ULL(51, 16);
968 
969 	/* Find the address of the actual entry */
970 	index = id % (SZ_64K / esz);
971 	indirect_ptr += index * esz;
972 	gfn = indirect_ptr >> PAGE_SHIFT;
973 
974 	if (eaddr)
975 		*eaddr = indirect_ptr;
976 
977 out:
978 	idx = srcu_read_lock(&its->dev->kvm->srcu);
979 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
980 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
981 	return ret;
982 }
983 
vgic_its_alloc_collection(struct vgic_its *its, struct its_collection **colp, u32 coll_id)984 static int vgic_its_alloc_collection(struct vgic_its *its,
985 				     struct its_collection **colp,
986 				     u32 coll_id)
987 {
988 	struct its_collection *collection;
989 
990 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
991 		return E_ITS_MAPC_COLLECTION_OOR;
992 
993 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
994 	if (!collection)
995 		return -ENOMEM;
996 
997 	collection->collection_id = coll_id;
998 	collection->target_addr = COLLECTION_NOT_MAPPED;
999 
1000 	list_add_tail(&collection->coll_list, &its->collection_list);
1001 	*colp = collection;
1002 
1003 	return 0;
1004 }
1005 
vgic_its_free_collection(struct vgic_its *its, u32 coll_id)1006 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1007 {
1008 	struct its_collection *collection;
1009 	struct its_device *device;
1010 	struct its_ite *ite;
1011 
1012 	/*
1013 	 * Clearing the mapping for that collection ID removes the
1014 	 * entry from the list. If there wasn't any before, we can
1015 	 * go home early.
1016 	 */
1017 	collection = find_collection(its, coll_id);
1018 	if (!collection)
1019 		return;
1020 
1021 	for_each_lpi_its(device, ite, its)
1022 		if (ite->collection &&
1023 		    ite->collection->collection_id == coll_id)
1024 			ite->collection = NULL;
1025 
1026 	list_del(&collection->coll_list);
1027 	kfree(collection);
1028 }
1029 
1030 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device *device, struct its_collection *collection, u32 event_id)1031 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1032 					  struct its_collection *collection,
1033 					  u32 event_id)
1034 {
1035 	struct its_ite *ite;
1036 
1037 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1038 	if (!ite)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	ite->event_id	= event_id;
1042 	ite->collection = collection;
1043 
1044 	list_add_tail(&ite->ite_list, &device->itt_head);
1045 	return ite;
1046 }
1047 
1048 /*
1049  * The MAPTI and MAPI commands map LPIs to ITTEs.
1050  * Must be called with its_lock mutex held.
1051  */
vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1052 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1053 				    u64 *its_cmd)
1054 {
1055 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1056 	u32 event_id = its_cmd_get_id(its_cmd);
1057 	u32 coll_id = its_cmd_get_collection(its_cmd);
1058 	struct its_ite *ite;
1059 	struct kvm_vcpu *vcpu = NULL;
1060 	struct its_device *device;
1061 	struct its_collection *collection, *new_coll = NULL;
1062 	struct vgic_irq *irq;
1063 	int lpi_nr;
1064 
1065 	device = find_its_device(its, device_id);
1066 	if (!device)
1067 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1068 
1069 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1070 		return E_ITS_MAPTI_ID_OOR;
1071 
1072 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1073 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1074 	else
1075 		lpi_nr = event_id;
1076 	if (lpi_nr < GIC_LPI_OFFSET ||
1077 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1078 		return E_ITS_MAPTI_PHYSICALID_OOR;
1079 
1080 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1081 	if (find_ite(its, device_id, event_id))
1082 		return 0;
1083 
1084 	collection = find_collection(its, coll_id);
1085 	if (!collection) {
1086 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1087 		if (ret)
1088 			return ret;
1089 		new_coll = collection;
1090 	}
1091 
1092 	ite = vgic_its_alloc_ite(device, collection, event_id);
1093 	if (IS_ERR(ite)) {
1094 		if (new_coll)
1095 			vgic_its_free_collection(its, coll_id);
1096 		return PTR_ERR(ite);
1097 	}
1098 
1099 	if (its_is_collection_mapped(collection))
1100 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1101 
1102 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1103 	if (IS_ERR(irq)) {
1104 		if (new_coll)
1105 			vgic_its_free_collection(its, coll_id);
1106 		its_free_ite(kvm, ite);
1107 		return PTR_ERR(irq);
1108 	}
1109 	ite->irq = irq;
1110 
1111 	return 0;
1112 }
1113 
1114 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm *kvm, struct its_device *device)1115 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1116 {
1117 	struct its_ite *ite, *temp;
1118 
1119 	/*
1120 	 * The spec says that unmapping a device with still valid
1121 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1122 	 * since we cannot leave the memory unreferenced.
1123 	 */
1124 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1125 		its_free_ite(kvm, ite);
1126 
1127 	vgic_its_invalidate_cache(kvm);
1128 
1129 	list_del(&device->dev_list);
1130 	kfree(device);
1131 }
1132 
1133 /* its lock must be held */
vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)1134 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1135 {
1136 	struct its_device *cur, *temp;
1137 
1138 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1139 		vgic_its_free_device(kvm, cur);
1140 }
1141 
1142 /* its lock must be held */
vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)1143 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1144 {
1145 	struct its_collection *cur, *temp;
1146 
1147 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1148 		vgic_its_free_collection(its, cur->collection_id);
1149 }
1150 
1151 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its *its, u32 device_id, gpa_t itt_addr, u8 num_eventid_bits)1152 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1153 						u32 device_id, gpa_t itt_addr,
1154 						u8 num_eventid_bits)
1155 {
1156 	struct its_device *device;
1157 
1158 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1159 	if (!device)
1160 		return ERR_PTR(-ENOMEM);
1161 
1162 	device->device_id = device_id;
1163 	device->itt_addr = itt_addr;
1164 	device->num_eventid_bits = num_eventid_bits;
1165 	INIT_LIST_HEAD(&device->itt_head);
1166 
1167 	list_add_tail(&device->dev_list, &its->device_list);
1168 	return device;
1169 }
1170 
1171 /*
1172  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1173  * Must be called with the its_lock mutex held.
1174  */
vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1175 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1176 				    u64 *its_cmd)
1177 {
1178 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1179 	bool valid = its_cmd_get_validbit(its_cmd);
1180 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1181 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1182 	struct its_device *device;
1183 
1184 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1185 		return E_ITS_MAPD_DEVICE_OOR;
1186 
1187 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1188 		return E_ITS_MAPD_ITTSIZE_OOR;
1189 
1190 	device = find_its_device(its, device_id);
1191 
1192 	/*
1193 	 * The spec says that calling MAPD on an already mapped device
1194 	 * invalidates all cached data for this device. We implement this
1195 	 * by removing the mapping and re-establishing it.
1196 	 */
1197 	if (device)
1198 		vgic_its_free_device(kvm, device);
1199 
1200 	/*
1201 	 * The spec does not say whether unmapping a not-mapped device
1202 	 * is an error, so we are done in any case.
1203 	 */
1204 	if (!valid)
1205 		return 0;
1206 
1207 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1208 				       num_eventid_bits);
1209 
1210 	return PTR_ERR_OR_ZERO(device);
1211 }
1212 
1213 /*
1214  * The MAPC command maps collection IDs to redistributors.
1215  * Must be called with the its_lock mutex held.
1216  */
vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1217 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1218 				    u64 *its_cmd)
1219 {
1220 	u16 coll_id;
1221 	u32 target_addr;
1222 	struct its_collection *collection;
1223 	bool valid;
1224 
1225 	valid = its_cmd_get_validbit(its_cmd);
1226 	coll_id = its_cmd_get_collection(its_cmd);
1227 	target_addr = its_cmd_get_target_addr(its_cmd);
1228 
1229 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1230 		return E_ITS_MAPC_PROCNUM_OOR;
1231 
1232 	if (!valid) {
1233 		vgic_its_free_collection(its, coll_id);
1234 		vgic_its_invalidate_cache(kvm);
1235 	} else {
1236 		collection = find_collection(its, coll_id);
1237 
1238 		if (!collection) {
1239 			int ret;
1240 
1241 			ret = vgic_its_alloc_collection(its, &collection,
1242 							coll_id);
1243 			if (ret)
1244 				return ret;
1245 			collection->target_addr = target_addr;
1246 		} else {
1247 			collection->target_addr = target_addr;
1248 			update_affinity_collection(kvm, its, collection);
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * The CLEAR command removes the pending state for a particular LPI.
1257  * Must be called with the its_lock mutex held.
1258  */
vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1259 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1260 				     u64 *its_cmd)
1261 {
1262 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1263 	u32 event_id = its_cmd_get_id(its_cmd);
1264 	struct its_ite *ite;
1265 
1266 
1267 	ite = find_ite(its, device_id, event_id);
1268 	if (!ite)
1269 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1270 
1271 	ite->irq->pending_latch = false;
1272 
1273 	if (ite->irq->hw)
1274 		return irq_set_irqchip_state(ite->irq->host_irq,
1275 					     IRQCHIP_STATE_PENDING, false);
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * The INV command syncs the configuration bits from the memory table.
1282  * Must be called with the its_lock mutex held.
1283  */
vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1284 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1285 				   u64 *its_cmd)
1286 {
1287 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1288 	u32 event_id = its_cmd_get_id(its_cmd);
1289 	struct its_ite *ite;
1290 
1291 
1292 	ite = find_ite(its, device_id, event_id);
1293 	if (!ite)
1294 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1295 
1296 	return update_lpi_config(kvm, ite->irq, NULL, true);
1297 }
1298 
1299 /*
1300  * The INVALL command requests flushing of all IRQ data in this collection.
1301  * Find the VCPU mapped to that collection, then iterate over the VM's list
1302  * of mapped LPIs and update the configuration for each IRQ which targets
1303  * the specified vcpu. The configuration will be read from the in-memory
1304  * configuration table.
1305  * Must be called with the its_lock mutex held.
1306  */
vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1307 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1308 				      u64 *its_cmd)
1309 {
1310 	u32 coll_id = its_cmd_get_collection(its_cmd);
1311 	struct its_collection *collection;
1312 	struct kvm_vcpu *vcpu;
1313 	struct vgic_irq *irq;
1314 	u32 *intids;
1315 	int irq_count, i;
1316 
1317 	collection = find_collection(its, coll_id);
1318 	if (!its_is_collection_mapped(collection))
1319 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1320 
1321 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1322 
1323 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1324 	if (irq_count < 0)
1325 		return irq_count;
1326 
1327 	for (i = 0; i < irq_count; i++) {
1328 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1329 		if (!irq)
1330 			continue;
1331 		update_lpi_config(kvm, irq, vcpu, false);
1332 		vgic_put_irq(kvm, irq);
1333 	}
1334 
1335 	kfree(intids);
1336 
1337 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1338 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1339 
1340 	return 0;
1341 }
1342 
1343 /*
1344  * The MOVALL command moves the pending state of all IRQs targeting one
1345  * redistributor to another. We don't hold the pending state in the VCPUs,
1346  * but in the IRQs instead, so there is really not much to do for us here.
1347  * However the spec says that no IRQ must target the old redistributor
1348  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1349  * This command affects all LPIs in the system that target that redistributor.
1350  */
vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1351 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1352 				      u64 *its_cmd)
1353 {
1354 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1355 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1356 	struct kvm_vcpu *vcpu1, *vcpu2;
1357 	struct vgic_irq *irq;
1358 	u32 *intids;
1359 	int irq_count, i;
1360 
1361 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1362 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1363 		return E_ITS_MOVALL_PROCNUM_OOR;
1364 
1365 	if (target1_addr == target2_addr)
1366 		return 0;
1367 
1368 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1369 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1370 
1371 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1372 	if (irq_count < 0)
1373 		return irq_count;
1374 
1375 	for (i = 0; i < irq_count; i++) {
1376 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1377 
1378 		update_affinity(irq, vcpu2);
1379 
1380 		vgic_put_irq(kvm, irq);
1381 	}
1382 
1383 	vgic_its_invalidate_cache(kvm);
1384 
1385 	kfree(intids);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * The INT command injects the LPI associated with that DevID/EvID pair.
1391  * Must be called with the its_lock mutex held.
1392  */
vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1393 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1394 				   u64 *its_cmd)
1395 {
1396 	u32 msi_data = its_cmd_get_id(its_cmd);
1397 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1398 
1399 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1400 }
1401 
1402 /*
1403  * This function is called with the its_cmd lock held, but the ITS data
1404  * structure lock dropped.
1405  */
vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1406 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1407 				   u64 *its_cmd)
1408 {
1409 	int ret = -ENODEV;
1410 
1411 	mutex_lock(&its->its_lock);
1412 	switch (its_cmd_get_command(its_cmd)) {
1413 	case GITS_CMD_MAPD:
1414 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1415 		break;
1416 	case GITS_CMD_MAPC:
1417 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1418 		break;
1419 	case GITS_CMD_MAPI:
1420 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1421 		break;
1422 	case GITS_CMD_MAPTI:
1423 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1424 		break;
1425 	case GITS_CMD_MOVI:
1426 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1427 		break;
1428 	case GITS_CMD_DISCARD:
1429 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1430 		break;
1431 	case GITS_CMD_CLEAR:
1432 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1433 		break;
1434 	case GITS_CMD_MOVALL:
1435 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1436 		break;
1437 	case GITS_CMD_INT:
1438 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1439 		break;
1440 	case GITS_CMD_INV:
1441 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1442 		break;
1443 	case GITS_CMD_INVALL:
1444 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1445 		break;
1446 	case GITS_CMD_SYNC:
1447 		/* we ignore this command: we are in sync all of the time */
1448 		ret = 0;
1449 		break;
1450 	}
1451 	mutex_unlock(&its->its_lock);
1452 
1453 	return ret;
1454 }
1455 
vgic_sanitise_its_baser(u64 reg)1456 static u64 vgic_sanitise_its_baser(u64 reg)
1457 {
1458 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1459 				  GITS_BASER_SHAREABILITY_SHIFT,
1460 				  vgic_sanitise_shareability);
1461 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1462 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1463 				  vgic_sanitise_inner_cacheability);
1464 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1465 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1466 				  vgic_sanitise_outer_cacheability);
1467 
1468 	/* We support only one (ITS) page size: 64K */
1469 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1470 
1471 	return reg;
1472 }
1473 
vgic_sanitise_its_cbaser(u64 reg)1474 static u64 vgic_sanitise_its_cbaser(u64 reg)
1475 {
1476 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1477 				  GITS_CBASER_SHAREABILITY_SHIFT,
1478 				  vgic_sanitise_shareability);
1479 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1480 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1481 				  vgic_sanitise_inner_cacheability);
1482 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1483 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1484 				  vgic_sanitise_outer_cacheability);
1485 
1486 	/* Sanitise the physical address to be 64k aligned. */
1487 	reg &= ~GENMASK_ULL(15, 12);
1488 
1489 	return reg;
1490 }
1491 
vgic_mmio_read_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1492 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1493 					       struct vgic_its *its,
1494 					       gpa_t addr, unsigned int len)
1495 {
1496 	return extract_bytes(its->cbaser, addr & 7, len);
1497 }
1498 
vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1499 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1500 				       gpa_t addr, unsigned int len,
1501 				       unsigned long val)
1502 {
1503 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1504 	if (its->enabled)
1505 		return;
1506 
1507 	mutex_lock(&its->cmd_lock);
1508 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1509 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1510 	its->creadr = 0;
1511 	/*
1512 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1513 	 * it to CREADR to make sure we start with an empty command buffer.
1514 	 */
1515 	its->cwriter = its->creadr;
1516 	mutex_unlock(&its->cmd_lock);
1517 }
1518 
1519 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1520 #define ITS_CMD_SIZE			32
1521 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1522 
1523 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)1524 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1525 {
1526 	gpa_t cbaser;
1527 	u64 cmd_buf[4];
1528 
1529 	/* Commands are only processed when the ITS is enabled. */
1530 	if (!its->enabled)
1531 		return;
1532 
1533 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1534 
1535 	while (its->cwriter != its->creadr) {
1536 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1537 					      cmd_buf, ITS_CMD_SIZE);
1538 		/*
1539 		 * If kvm_read_guest() fails, this could be due to the guest
1540 		 * programming a bogus value in CBASER or something else going
1541 		 * wrong from which we cannot easily recover.
1542 		 * According to section 6.3.2 in the GICv3 spec we can just
1543 		 * ignore that command then.
1544 		 */
1545 		if (!ret)
1546 			vgic_its_handle_command(kvm, its, cmd_buf);
1547 
1548 		its->creadr += ITS_CMD_SIZE;
1549 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1550 			its->creadr = 0;
1551 	}
1552 }
1553 
1554 /*
1555  * By writing to CWRITER the guest announces new commands to be processed.
1556  * To avoid any races in the first place, we take the its_cmd lock, which
1557  * protects our ring buffer variables, so that there is only one user
1558  * per ITS handling commands at a given time.
1559  */
vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1560 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1561 					gpa_t addr, unsigned int len,
1562 					unsigned long val)
1563 {
1564 	u64 reg;
1565 
1566 	if (!its)
1567 		return;
1568 
1569 	mutex_lock(&its->cmd_lock);
1570 
1571 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1572 	reg = ITS_CMD_OFFSET(reg);
1573 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1574 		mutex_unlock(&its->cmd_lock);
1575 		return;
1576 	}
1577 	its->cwriter = reg;
1578 
1579 	vgic_its_process_commands(kvm, its);
1580 
1581 	mutex_unlock(&its->cmd_lock);
1582 }
1583 
vgic_mmio_read_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1584 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1585 						struct vgic_its *its,
1586 						gpa_t addr, unsigned int len)
1587 {
1588 	return extract_bytes(its->cwriter, addr & 0x7, len);
1589 }
1590 
vgic_mmio_read_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1591 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1592 					       struct vgic_its *its,
1593 					       gpa_t addr, unsigned int len)
1594 {
1595 	return extract_bytes(its->creadr, addr & 0x7, len);
1596 }
1597 
vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1598 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1599 					      struct vgic_its *its,
1600 					      gpa_t addr, unsigned int len,
1601 					      unsigned long val)
1602 {
1603 	u32 cmd_offset;
1604 	int ret = 0;
1605 
1606 	mutex_lock(&its->cmd_lock);
1607 
1608 	if (its->enabled) {
1609 		ret = -EBUSY;
1610 		goto out;
1611 	}
1612 
1613 	cmd_offset = ITS_CMD_OFFSET(val);
1614 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1615 		ret = -EINVAL;
1616 		goto out;
1617 	}
1618 
1619 	its->creadr = cmd_offset;
1620 out:
1621 	mutex_unlock(&its->cmd_lock);
1622 	return ret;
1623 }
1624 
1625 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1626 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1627 					      struct vgic_its *its,
1628 					      gpa_t addr, unsigned int len)
1629 {
1630 	u64 reg;
1631 
1632 	switch (BASER_INDEX(addr)) {
1633 	case 0:
1634 		reg = its->baser_device_table;
1635 		break;
1636 	case 1:
1637 		reg = its->baser_coll_table;
1638 		break;
1639 	default:
1640 		reg = 0;
1641 		break;
1642 	}
1643 
1644 	return extract_bytes(reg, addr & 7, len);
1645 }
1646 
1647 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1648 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1649 				      struct vgic_its *its,
1650 				      gpa_t addr, unsigned int len,
1651 				      unsigned long val)
1652 {
1653 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1654 	u64 entry_size, table_type;
1655 	u64 reg, *regptr, clearbits = 0;
1656 
1657 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1658 	if (its->enabled)
1659 		return;
1660 
1661 	switch (BASER_INDEX(addr)) {
1662 	case 0:
1663 		regptr = &its->baser_device_table;
1664 		entry_size = abi->dte_esz;
1665 		table_type = GITS_BASER_TYPE_DEVICE;
1666 		break;
1667 	case 1:
1668 		regptr = &its->baser_coll_table;
1669 		entry_size = abi->cte_esz;
1670 		table_type = GITS_BASER_TYPE_COLLECTION;
1671 		clearbits = GITS_BASER_INDIRECT;
1672 		break;
1673 	default:
1674 		return;
1675 	}
1676 
1677 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1678 	reg &= ~GITS_BASER_RO_MASK;
1679 	reg &= ~clearbits;
1680 
1681 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1682 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1683 	reg = vgic_sanitise_its_baser(reg);
1684 
1685 	*regptr = reg;
1686 
1687 	if (!(reg & GITS_BASER_VALID)) {
1688 		/* Take the its_lock to prevent a race with a save/restore */
1689 		mutex_lock(&its->its_lock);
1690 		switch (table_type) {
1691 		case GITS_BASER_TYPE_DEVICE:
1692 			vgic_its_free_device_list(kvm, its);
1693 			break;
1694 		case GITS_BASER_TYPE_COLLECTION:
1695 			vgic_its_free_collection_list(kvm, its);
1696 			break;
1697 		}
1698 		mutex_unlock(&its->its_lock);
1699 	}
1700 }
1701 
vgic_mmio_read_its_ctlr(struct kvm *vcpu, struct vgic_its *its, gpa_t addr, unsigned int len)1702 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1703 					     struct vgic_its *its,
1704 					     gpa_t addr, unsigned int len)
1705 {
1706 	u32 reg = 0;
1707 
1708 	mutex_lock(&its->cmd_lock);
1709 	if (its->creadr == its->cwriter)
1710 		reg |= GITS_CTLR_QUIESCENT;
1711 	if (its->enabled)
1712 		reg |= GITS_CTLR_ENABLE;
1713 	mutex_unlock(&its->cmd_lock);
1714 
1715 	return reg;
1716 }
1717 
vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1718 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1719 				     gpa_t addr, unsigned int len,
1720 				     unsigned long val)
1721 {
1722 	mutex_lock(&its->cmd_lock);
1723 
1724 	/*
1725 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1726 	 * device/collection BASER are invalid
1727 	 */
1728 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1729 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1730 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1731 		 !(its->cbaser & GITS_CBASER_VALID)))
1732 		goto out;
1733 
1734 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1735 	if (!its->enabled)
1736 		vgic_its_invalidate_cache(kvm);
1737 
1738 	/*
1739 	 * Try to process any pending commands. This function bails out early
1740 	 * if the ITS is disabled or no commands have been queued.
1741 	 */
1742 	vgic_its_process_commands(kvm, its);
1743 
1744 out:
1745 	mutex_unlock(&its->cmd_lock);
1746 }
1747 
1748 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1749 {								\
1750 	.reg_offset = off,					\
1751 	.len = length,						\
1752 	.access_flags = acc,					\
1753 	.its_read = rd,						\
1754 	.its_write = wr,					\
1755 }
1756 
1757 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1758 {								\
1759 	.reg_offset = off,					\
1760 	.len = length,						\
1761 	.access_flags = acc,					\
1762 	.its_read = rd,						\
1763 	.its_write = wr,					\
1764 	.uaccess_its_write = uwr,				\
1765 }
1766 
its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1767 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1768 			      gpa_t addr, unsigned int len, unsigned long val)
1769 {
1770 	/* Ignore */
1771 }
1772 
1773 static struct vgic_register_region its_registers[] = {
1774 	REGISTER_ITS_DESC(GITS_CTLR,
1775 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1776 		VGIC_ACCESS_32bit),
1777 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1778 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1779 		vgic_mmio_uaccess_write_its_iidr, 4,
1780 		VGIC_ACCESS_32bit),
1781 	REGISTER_ITS_DESC(GITS_TYPER,
1782 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1783 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784 	REGISTER_ITS_DESC(GITS_CBASER,
1785 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1786 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1787 	REGISTER_ITS_DESC(GITS_CWRITER,
1788 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1789 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1791 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1792 		vgic_mmio_uaccess_write_its_creadr, 8,
1793 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1794 	REGISTER_ITS_DESC(GITS_BASER,
1795 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1796 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1797 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1798 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1799 		VGIC_ACCESS_32bit),
1800 };
1801 
1802 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu *vcpu)1803 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1804 {
1805 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1806 		its_sync_lpi_pending_table(vcpu);
1807 }
1808 
vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, u64 addr)1809 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1810 				   u64 addr)
1811 {
1812 	struct vgic_io_device *iodev = &its->iodev;
1813 	int ret;
1814 
1815 	mutex_lock(&kvm->slots_lock);
1816 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1817 		ret = -EBUSY;
1818 		goto out;
1819 	}
1820 
1821 	its->vgic_its_base = addr;
1822 	iodev->regions = its_registers;
1823 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1824 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1825 
1826 	iodev->base_addr = its->vgic_its_base;
1827 	iodev->iodev_type = IODEV_ITS;
1828 	iodev->its = its;
1829 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1830 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1831 out:
1832 	mutex_unlock(&kvm->slots_lock);
1833 
1834 	return ret;
1835 }
1836 
1837 /* Default is 16 cached LPIs per vcpu */
1838 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1839 
vgic_lpi_translation_cache_init(struct kvm *kvm)1840 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1841 {
1842 	struct vgic_dist *dist = &kvm->arch.vgic;
1843 	unsigned int sz;
1844 	int i;
1845 
1846 	if (!list_empty(&dist->lpi_translation_cache))
1847 		return;
1848 
1849 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1850 
1851 	for (i = 0; i < sz; i++) {
1852 		struct vgic_translation_cache_entry *cte;
1853 
1854 		/* An allocation failure is not fatal */
1855 		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1856 		if (WARN_ON(!cte))
1857 			break;
1858 
1859 		INIT_LIST_HEAD(&cte->entry);
1860 		list_add(&cte->entry, &dist->lpi_translation_cache);
1861 	}
1862 }
1863 
vgic_lpi_translation_cache_destroy(struct kvm *kvm)1864 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1865 {
1866 	struct vgic_dist *dist = &kvm->arch.vgic;
1867 	struct vgic_translation_cache_entry *cte, *tmp;
1868 
1869 	vgic_its_invalidate_cache(kvm);
1870 
1871 	list_for_each_entry_safe(cte, tmp,
1872 				 &dist->lpi_translation_cache, entry) {
1873 		list_del(&cte->entry);
1874 		kfree(cte);
1875 	}
1876 }
1877 
1878 #define INITIAL_BASER_VALUE						  \
1879 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1880 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1881 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1882 	 GITS_BASER_PAGE_SIZE_64K)
1883 
1884 #define INITIAL_PROPBASER_VALUE						  \
1885 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1886 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1887 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1888 
vgic_its_create(struct kvm_device *dev, u32 type)1889 static int vgic_its_create(struct kvm_device *dev, u32 type)
1890 {
1891 	struct vgic_its *its;
1892 
1893 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1894 		return -ENODEV;
1895 
1896 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1897 	if (!its)
1898 		return -ENOMEM;
1899 
1900 	if (vgic_initialized(dev->kvm)) {
1901 		int ret = vgic_v4_init(dev->kvm);
1902 		if (ret < 0) {
1903 			kfree(its);
1904 			return ret;
1905 		}
1906 
1907 		vgic_lpi_translation_cache_init(dev->kvm);
1908 	}
1909 
1910 	mutex_init(&its->its_lock);
1911 	mutex_init(&its->cmd_lock);
1912 
1913 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1914 
1915 	INIT_LIST_HEAD(&its->device_list);
1916 	INIT_LIST_HEAD(&its->collection_list);
1917 
1918 	dev->kvm->arch.vgic.msis_require_devid = true;
1919 	dev->kvm->arch.vgic.has_its = true;
1920 	its->enabled = false;
1921 	its->dev = dev;
1922 
1923 	its->baser_device_table = INITIAL_BASER_VALUE			|
1924 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1925 	its->baser_coll_table = INITIAL_BASER_VALUE |
1926 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1927 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1928 
1929 	dev->private = its;
1930 
1931 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1932 }
1933 
vgic_its_destroy(struct kvm_device *kvm_dev)1934 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1935 {
1936 	struct kvm *kvm = kvm_dev->kvm;
1937 	struct vgic_its *its = kvm_dev->private;
1938 
1939 	mutex_lock(&its->its_lock);
1940 
1941 	vgic_its_free_device_list(kvm, its);
1942 	vgic_its_free_collection_list(kvm, its);
1943 
1944 	mutex_unlock(&its->its_lock);
1945 	kfree(its);
1946 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1947 }
1948 
vgic_its_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)1949 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1950 				  struct kvm_device_attr *attr)
1951 {
1952 	const struct vgic_register_region *region;
1953 	gpa_t offset = attr->attr;
1954 	int align;
1955 
1956 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1957 
1958 	if (offset & align)
1959 		return -EINVAL;
1960 
1961 	region = vgic_find_mmio_region(its_registers,
1962 				       ARRAY_SIZE(its_registers),
1963 				       offset);
1964 	if (!region)
1965 		return -ENXIO;
1966 
1967 	return 0;
1968 }
1969 
vgic_its_attr_regs_access(struct kvm_device *dev, struct kvm_device_attr *attr, u64 *reg, bool is_write)1970 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1971 				     struct kvm_device_attr *attr,
1972 				     u64 *reg, bool is_write)
1973 {
1974 	const struct vgic_register_region *region;
1975 	struct vgic_its *its;
1976 	gpa_t addr, offset;
1977 	unsigned int len;
1978 	int align, ret = 0;
1979 
1980 	its = dev->private;
1981 	offset = attr->attr;
1982 
1983 	/*
1984 	 * Although the spec supports upper/lower 32-bit accesses to
1985 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1986 	 * accesses to all 64-bit wide registers. We therefore only
1987 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1988 	 * registers
1989 	 */
1990 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1991 		align = 0x3;
1992 	else
1993 		align = 0x7;
1994 
1995 	if (offset & align)
1996 		return -EINVAL;
1997 
1998 	mutex_lock(&dev->kvm->lock);
1999 
2000 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2001 		ret = -ENXIO;
2002 		goto out;
2003 	}
2004 
2005 	region = vgic_find_mmio_region(its_registers,
2006 				       ARRAY_SIZE(its_registers),
2007 				       offset);
2008 	if (!region) {
2009 		ret = -ENXIO;
2010 		goto out;
2011 	}
2012 
2013 	if (!lock_all_vcpus(dev->kvm)) {
2014 		ret = -EBUSY;
2015 		goto out;
2016 	}
2017 
2018 	addr = its->vgic_its_base + offset;
2019 
2020 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2021 
2022 	if (is_write) {
2023 		if (region->uaccess_its_write)
2024 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2025 							len, *reg);
2026 		else
2027 			region->its_write(dev->kvm, its, addr, len, *reg);
2028 	} else {
2029 		*reg = region->its_read(dev->kvm, its, addr, len);
2030 	}
2031 	unlock_all_vcpus(dev->kvm);
2032 out:
2033 	mutex_unlock(&dev->kvm->lock);
2034 	return ret;
2035 }
2036 
compute_next_devid_offset(struct list_head *h, struct its_device *dev)2037 static u32 compute_next_devid_offset(struct list_head *h,
2038 				     struct its_device *dev)
2039 {
2040 	struct its_device *next;
2041 	u32 next_offset;
2042 
2043 	if (list_is_last(&dev->dev_list, h))
2044 		return 0;
2045 	next = list_next_entry(dev, dev_list);
2046 	next_offset = next->device_id - dev->device_id;
2047 
2048 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2049 }
2050 
compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)2051 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2052 {
2053 	struct its_ite *next;
2054 	u32 next_offset;
2055 
2056 	if (list_is_last(&ite->ite_list, h))
2057 		return 0;
2058 	next = list_next_entry(ite, ite_list);
2059 	next_offset = next->event_id - ite->event_id;
2060 
2061 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2062 }
2063 
2064 /**
2065  * entry_fn_t - Callback called on a table entry restore path
2066  * @its: its handle
2067  * @id: id of the entry
2068  * @entry: pointer to the entry
2069  * @opaque: pointer to an opaque data
2070  *
2071  * Return: < 0 on error, 0 if last element was identified, id offset to next
2072  * element otherwise
2073  */
2074 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2075 			  void *opaque);
2076 
2077 /**
2078  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2079  * to each entry
2080  *
2081  * @its: its handle
2082  * @base: base gpa of the table
2083  * @size: size of the table in bytes
2084  * @esz: entry size in bytes
2085  * @start_id: the ID of the first entry in the table
2086  * (non zero for 2d level tables)
2087  * @fn: function to apply on each entry
2088  *
2089  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2090  * (the last element may not be found on second level tables)
2091  */
scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, int start_id, entry_fn_t fn, void *opaque)2092 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2093 			  int start_id, entry_fn_t fn, void *opaque)
2094 {
2095 	struct kvm *kvm = its->dev->kvm;
2096 	unsigned long len = size;
2097 	int id = start_id;
2098 	gpa_t gpa = base;
2099 	char entry[ESZ_MAX];
2100 	int ret;
2101 
2102 	memset(entry, 0, esz);
2103 
2104 	while (true) {
2105 		int next_offset;
2106 		size_t byte_offset;
2107 
2108 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2109 		if (ret)
2110 			return ret;
2111 
2112 		next_offset = fn(its, id, entry, opaque);
2113 		if (next_offset <= 0)
2114 			return next_offset;
2115 
2116 		byte_offset = next_offset * esz;
2117 		if (byte_offset >= len)
2118 			break;
2119 
2120 		id += next_offset;
2121 		gpa += byte_offset;
2122 		len -= byte_offset;
2123 	}
2124 	return 1;
2125 }
2126 
2127 /**
2128  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2129  */
vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, struct its_ite *ite, gpa_t gpa, int ite_esz)2130 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2131 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2132 {
2133 	struct kvm *kvm = its->dev->kvm;
2134 	u32 next_offset;
2135 	u64 val;
2136 
2137 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2138 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2139 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2140 		ite->collection->collection_id;
2141 	val = cpu_to_le64(val);
2142 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2143 }
2144 
2145 /**
2146  * vgic_its_restore_ite - restore an interrupt translation entry
2147  * @event_id: id used for indexing
2148  * @ptr: pointer to the ITE entry
2149  * @opaque: pointer to the its_device
2150  */
vgic_its_restore_ite(struct vgic_its *its, u32 event_id, void *ptr, void *opaque)2151 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2152 				void *ptr, void *opaque)
2153 {
2154 	struct its_device *dev = (struct its_device *)opaque;
2155 	struct its_collection *collection;
2156 	struct kvm *kvm = its->dev->kvm;
2157 	struct kvm_vcpu *vcpu = NULL;
2158 	u64 val;
2159 	u64 *p = (u64 *)ptr;
2160 	struct vgic_irq *irq;
2161 	u32 coll_id, lpi_id;
2162 	struct its_ite *ite;
2163 	u32 offset;
2164 
2165 	val = *p;
2166 
2167 	val = le64_to_cpu(val);
2168 
2169 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2170 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2171 
2172 	if (!lpi_id)
2173 		return 1; /* invalid entry, no choice but to scan next entry */
2174 
2175 	if (lpi_id < VGIC_MIN_LPI)
2176 		return -EINVAL;
2177 
2178 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2179 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2180 		return -EINVAL;
2181 
2182 	collection = find_collection(its, coll_id);
2183 	if (!collection)
2184 		return -EINVAL;
2185 
2186 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2187 	if (IS_ERR(ite))
2188 		return PTR_ERR(ite);
2189 
2190 	if (its_is_collection_mapped(collection))
2191 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2192 
2193 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2194 	if (IS_ERR(irq))
2195 		return PTR_ERR(irq);
2196 	ite->irq = irq;
2197 
2198 	return offset;
2199 }
2200 
vgic_its_ite_cmp(void *priv, const struct list_head *a, const struct list_head *b)2201 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2202 			    const struct list_head *b)
2203 {
2204 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2205 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2206 
2207 	if (itea->event_id < iteb->event_id)
2208 		return -1;
2209 	else
2210 		return 1;
2211 }
2212 
vgic_its_save_itt(struct vgic_its *its, struct its_device *device)2213 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2214 {
2215 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2216 	gpa_t base = device->itt_addr;
2217 	struct its_ite *ite;
2218 	int ret;
2219 	int ite_esz = abi->ite_esz;
2220 
2221 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2222 
2223 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2224 		gpa_t gpa = base + ite->event_id * ite_esz;
2225 
2226 		/*
2227 		 * If an LPI carries the HW bit, this means that this
2228 		 * interrupt is controlled by GICv4, and we do not
2229 		 * have direct access to that state. Let's simply fail
2230 		 * the save operation...
2231 		 */
2232 		if (ite->irq->hw)
2233 			return -EACCES;
2234 
2235 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2236 		if (ret)
2237 			return ret;
2238 	}
2239 	return 0;
2240 }
2241 
2242 /**
2243  * vgic_its_restore_itt - restore the ITT of a device
2244  *
2245  * @its: its handle
2246  * @dev: device handle
2247  *
2248  * Return 0 on success, < 0 on error
2249  */
vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)2250 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2251 {
2252 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2253 	gpa_t base = dev->itt_addr;
2254 	int ret;
2255 	int ite_esz = abi->ite_esz;
2256 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2257 
2258 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2259 			     vgic_its_restore_ite, dev);
2260 
2261 	/* scan_its_table returns +1 if all ITEs are invalid */
2262 	if (ret > 0)
2263 		ret = 0;
2264 
2265 	return ret;
2266 }
2267 
2268 /**
2269  * vgic_its_save_dte - Save a device table entry at a given GPA
2270  *
2271  * @its: ITS handle
2272  * @dev: ITS device
2273  * @ptr: GPA
2274  */
vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, gpa_t ptr, int dte_esz)2275 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2276 			     gpa_t ptr, int dte_esz)
2277 {
2278 	struct kvm *kvm = its->dev->kvm;
2279 	u64 val, itt_addr_field;
2280 	u32 next_offset;
2281 
2282 	itt_addr_field = dev->itt_addr >> 8;
2283 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2284 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2285 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2286 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2287 		(dev->num_eventid_bits - 1));
2288 	val = cpu_to_le64(val);
2289 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2290 }
2291 
2292 /**
2293  * vgic_its_restore_dte - restore a device table entry
2294  *
2295  * @its: its handle
2296  * @id: device id the DTE corresponds to
2297  * @ptr: kernel VA where the 8 byte DTE is located
2298  * @opaque: unused
2299  *
2300  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2301  * next dte otherwise
2302  */
vgic_its_restore_dte(struct vgic_its *its, u32 id, void *ptr, void *opaque)2303 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2304 				void *ptr, void *opaque)
2305 {
2306 	struct its_device *dev;
2307 	gpa_t itt_addr;
2308 	u8 num_eventid_bits;
2309 	u64 entry = *(u64 *)ptr;
2310 	bool valid;
2311 	u32 offset;
2312 	int ret;
2313 
2314 	entry = le64_to_cpu(entry);
2315 
2316 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2317 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2318 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2319 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2320 
2321 	if (!valid)
2322 		return 1;
2323 
2324 	/* dte entry is valid */
2325 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2326 
2327 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2328 	if (IS_ERR(dev))
2329 		return PTR_ERR(dev);
2330 
2331 	ret = vgic_its_restore_itt(its, dev);
2332 	if (ret) {
2333 		vgic_its_free_device(its->dev->kvm, dev);
2334 		return ret;
2335 	}
2336 
2337 	return offset;
2338 }
2339 
vgic_its_device_cmp(void *priv, const struct list_head *a, const struct list_head *b)2340 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2341 			       const struct list_head *b)
2342 {
2343 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2344 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2345 
2346 	if (deva->device_id < devb->device_id)
2347 		return -1;
2348 	else
2349 		return 1;
2350 }
2351 
2352 /**
2353  * vgic_its_save_device_tables - Save the device table and all ITT
2354  * into guest RAM
2355  *
2356  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2357  * returns the GPA of the device entry
2358  */
vgic_its_save_device_tables(struct vgic_its *its)2359 static int vgic_its_save_device_tables(struct vgic_its *its)
2360 {
2361 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2362 	u64 baser = its->baser_device_table;
2363 	struct its_device *dev;
2364 	int dte_esz = abi->dte_esz;
2365 
2366 	if (!(baser & GITS_BASER_VALID))
2367 		return 0;
2368 
2369 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2370 
2371 	list_for_each_entry(dev, &its->device_list, dev_list) {
2372 		int ret;
2373 		gpa_t eaddr;
2374 
2375 		if (!vgic_its_check_id(its, baser,
2376 				       dev->device_id, &eaddr))
2377 			return -EINVAL;
2378 
2379 		ret = vgic_its_save_itt(its, dev);
2380 		if (ret)
2381 			return ret;
2382 
2383 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2384 		if (ret)
2385 			return ret;
2386 	}
2387 	return 0;
2388 }
2389 
2390 /**
2391  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2392  *
2393  * @its: its handle
2394  * @id: index of the entry in the L1 table
2395  * @addr: kernel VA
2396  * @opaque: unused
2397  *
2398  * L1 table entries are scanned by steps of 1 entry
2399  * Return < 0 if error, 0 if last dte was found when scanning the L2
2400  * table, +1 otherwise (meaning next L1 entry must be scanned)
2401  */
handle_l1_dte(struct vgic_its *its, u32 id, void *addr, void *opaque)2402 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2403 			 void *opaque)
2404 {
2405 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2406 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2407 	u64 entry = *(u64 *)addr;
2408 	int dte_esz = abi->dte_esz;
2409 	gpa_t gpa;
2410 	int ret;
2411 
2412 	entry = le64_to_cpu(entry);
2413 
2414 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2415 		return 1;
2416 
2417 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2418 
2419 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2420 			     l2_start_id, vgic_its_restore_dte, NULL);
2421 
2422 	return ret;
2423 }
2424 
2425 /**
2426  * vgic_its_restore_device_tables - Restore the device table and all ITT
2427  * from guest RAM to internal data structs
2428  */
vgic_its_restore_device_tables(struct vgic_its *its)2429 static int vgic_its_restore_device_tables(struct vgic_its *its)
2430 {
2431 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2432 	u64 baser = its->baser_device_table;
2433 	int l1_esz, ret;
2434 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2435 	gpa_t l1_gpa;
2436 
2437 	if (!(baser & GITS_BASER_VALID))
2438 		return 0;
2439 
2440 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2441 
2442 	if (baser & GITS_BASER_INDIRECT) {
2443 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2444 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2445 				     handle_l1_dte, NULL);
2446 	} else {
2447 		l1_esz = abi->dte_esz;
2448 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2449 				     vgic_its_restore_dte, NULL);
2450 	}
2451 
2452 	/* scan_its_table returns +1 if all entries are invalid */
2453 	if (ret > 0)
2454 		ret = 0;
2455 
2456 	return ret;
2457 }
2458 
vgic_its_save_cte(struct vgic_its *its, struct its_collection *collection, gpa_t gpa, int esz)2459 static int vgic_its_save_cte(struct vgic_its *its,
2460 			     struct its_collection *collection,
2461 			     gpa_t gpa, int esz)
2462 {
2463 	u64 val;
2464 
2465 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2466 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2467 	       collection->collection_id);
2468 	val = cpu_to_le64(val);
2469 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2470 }
2471 
vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)2472 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2473 {
2474 	struct its_collection *collection;
2475 	struct kvm *kvm = its->dev->kvm;
2476 	u32 target_addr, coll_id;
2477 	u64 val;
2478 	int ret;
2479 
2480 	BUG_ON(esz > sizeof(val));
2481 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2482 	if (ret)
2483 		return ret;
2484 	val = le64_to_cpu(val);
2485 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2486 		return 0;
2487 
2488 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2489 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2490 
2491 	if (target_addr != COLLECTION_NOT_MAPPED &&
2492 	    target_addr >= atomic_read(&kvm->online_vcpus))
2493 		return -EINVAL;
2494 
2495 	collection = find_collection(its, coll_id);
2496 	if (collection)
2497 		return -EEXIST;
2498 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2499 	if (ret)
2500 		return ret;
2501 	collection->target_addr = target_addr;
2502 	return 1;
2503 }
2504 
2505 /**
2506  * vgic_its_save_collection_table - Save the collection table into
2507  * guest RAM
2508  */
vgic_its_save_collection_table(struct vgic_its *its)2509 static int vgic_its_save_collection_table(struct vgic_its *its)
2510 {
2511 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2512 	u64 baser = its->baser_coll_table;
2513 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2514 	struct its_collection *collection;
2515 	u64 val;
2516 	size_t max_size, filled = 0;
2517 	int ret, cte_esz = abi->cte_esz;
2518 
2519 	if (!(baser & GITS_BASER_VALID))
2520 		return 0;
2521 
2522 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2523 
2524 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2525 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2526 		if (ret)
2527 			return ret;
2528 		gpa += cte_esz;
2529 		filled += cte_esz;
2530 	}
2531 
2532 	if (filled == max_size)
2533 		return 0;
2534 
2535 	/*
2536 	 * table is not fully filled, add a last dummy element
2537 	 * with valid bit unset
2538 	 */
2539 	val = 0;
2540 	BUG_ON(cte_esz > sizeof(val));
2541 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2542 	return ret;
2543 }
2544 
2545 /**
2546  * vgic_its_restore_collection_table - reads the collection table
2547  * in guest memory and restores the ITS internal state. Requires the
2548  * BASER registers to be restored before.
2549  */
vgic_its_restore_collection_table(struct vgic_its *its)2550 static int vgic_its_restore_collection_table(struct vgic_its *its)
2551 {
2552 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2553 	u64 baser = its->baser_coll_table;
2554 	int cte_esz = abi->cte_esz;
2555 	size_t max_size, read = 0;
2556 	gpa_t gpa;
2557 	int ret;
2558 
2559 	if (!(baser & GITS_BASER_VALID))
2560 		return 0;
2561 
2562 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2563 
2564 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2565 
2566 	while (read < max_size) {
2567 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2568 		if (ret <= 0)
2569 			break;
2570 		gpa += cte_esz;
2571 		read += cte_esz;
2572 	}
2573 
2574 	if (ret > 0)
2575 		return 0;
2576 
2577 	return ret;
2578 }
2579 
2580 /**
2581  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2582  * according to v0 ABI
2583  */
vgic_its_save_tables_v0(struct vgic_its *its)2584 static int vgic_its_save_tables_v0(struct vgic_its *its)
2585 {
2586 	int ret;
2587 
2588 	ret = vgic_its_save_device_tables(its);
2589 	if (ret)
2590 		return ret;
2591 
2592 	return vgic_its_save_collection_table(its);
2593 }
2594 
2595 /**
2596  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2597  * to internal data structs according to V0 ABI
2598  *
2599  */
vgic_its_restore_tables_v0(struct vgic_its *its)2600 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2601 {
2602 	int ret;
2603 
2604 	ret = vgic_its_restore_collection_table(its);
2605 	if (ret)
2606 		return ret;
2607 
2608 	return vgic_its_restore_device_tables(its);
2609 }
2610 
vgic_its_commit_v0(struct vgic_its *its)2611 static int vgic_its_commit_v0(struct vgic_its *its)
2612 {
2613 	const struct vgic_its_abi *abi;
2614 
2615 	abi = vgic_its_get_abi(its);
2616 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2617 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2618 
2619 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2620 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2621 
2622 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2623 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2624 	return 0;
2625 }
2626 
vgic_its_reset(struct kvm *kvm, struct vgic_its *its)2627 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2628 {
2629 	/* We need to keep the ABI specific field values */
2630 	its->baser_coll_table &= ~GITS_BASER_VALID;
2631 	its->baser_device_table &= ~GITS_BASER_VALID;
2632 	its->cbaser = 0;
2633 	its->creadr = 0;
2634 	its->cwriter = 0;
2635 	its->enabled = 0;
2636 	vgic_its_free_device_list(kvm, its);
2637 	vgic_its_free_collection_list(kvm, its);
2638 }
2639 
vgic_its_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2640 static int vgic_its_has_attr(struct kvm_device *dev,
2641 			     struct kvm_device_attr *attr)
2642 {
2643 	switch (attr->group) {
2644 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2645 		switch (attr->attr) {
2646 		case KVM_VGIC_ITS_ADDR_TYPE:
2647 			return 0;
2648 		}
2649 		break;
2650 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2651 		switch (attr->attr) {
2652 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2653 			return 0;
2654 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2655 			return 0;
2656 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2657 			return 0;
2658 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2659 			return 0;
2660 		}
2661 		break;
2662 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2663 		return vgic_its_has_attr_regs(dev, attr);
2664 	}
2665 	return -ENXIO;
2666 }
2667 
vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)2668 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2669 {
2670 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2671 	int ret = 0;
2672 
2673 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2674 		return 0;
2675 
2676 	mutex_lock(&kvm->lock);
2677 	mutex_lock(&its->its_lock);
2678 
2679 	if (!lock_all_vcpus(kvm)) {
2680 		mutex_unlock(&its->its_lock);
2681 		mutex_unlock(&kvm->lock);
2682 		return -EBUSY;
2683 	}
2684 
2685 	switch (attr) {
2686 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2687 		vgic_its_reset(kvm, its);
2688 		break;
2689 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2690 		ret = abi->save_tables(its);
2691 		break;
2692 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2693 		ret = abi->restore_tables(its);
2694 		break;
2695 	}
2696 
2697 	unlock_all_vcpus(kvm);
2698 	mutex_unlock(&its->its_lock);
2699 	mutex_unlock(&kvm->lock);
2700 	return ret;
2701 }
2702 
vgic_its_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2703 static int vgic_its_set_attr(struct kvm_device *dev,
2704 			     struct kvm_device_attr *attr)
2705 {
2706 	struct vgic_its *its = dev->private;
2707 	int ret;
2708 
2709 	switch (attr->group) {
2710 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2711 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2712 		unsigned long type = (unsigned long)attr->attr;
2713 		u64 addr;
2714 
2715 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2716 			return -ENODEV;
2717 
2718 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2719 			return -EFAULT;
2720 
2721 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2722 					addr, SZ_64K);
2723 		if (ret)
2724 			return ret;
2725 
2726 		return vgic_register_its_iodev(dev->kvm, its, addr);
2727 	}
2728 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2729 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2730 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2731 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2732 		u64 reg;
2733 
2734 		if (get_user(reg, uaddr))
2735 			return -EFAULT;
2736 
2737 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2738 	}
2739 	}
2740 	return -ENXIO;
2741 }
2742 
vgic_its_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2743 static int vgic_its_get_attr(struct kvm_device *dev,
2744 			     struct kvm_device_attr *attr)
2745 {
2746 	switch (attr->group) {
2747 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2748 		struct vgic_its *its = dev->private;
2749 		u64 addr = its->vgic_its_base;
2750 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2751 		unsigned long type = (unsigned long)attr->attr;
2752 
2753 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2754 			return -ENODEV;
2755 
2756 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2757 			return -EFAULT;
2758 		break;
2759 	}
2760 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2761 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2762 		u64 reg;
2763 		int ret;
2764 
2765 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2766 		if (ret)
2767 			return ret;
2768 		return put_user(reg, uaddr);
2769 	}
2770 	default:
2771 		return -ENXIO;
2772 	}
2773 
2774 	return 0;
2775 }
2776 
2777 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2778 	.name = "kvm-arm-vgic-its",
2779 	.create = vgic_its_create,
2780 	.destroy = vgic_its_destroy,
2781 	.set_attr = vgic_its_set_attr,
2782 	.get_attr = vgic_its_get_attr,
2783 	.has_attr = vgic_its_has_attr,
2784 };
2785 
kvm_vgic_register_its_device(void)2786 int kvm_vgic_register_its_device(void)
2787 {
2788 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2789 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2790 }
2791