1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm *kvm, u32 intid, struct kvm_vcpu *vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its *its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its *its, u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its *its, u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its *its, u32 device_id, u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its *its, int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, struct kvm_vcpu *filter_vcpu, bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
update_affinity_ite(struct kvm *kvm, struct its_ite *ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
update_affinity_collection(struct kvm *kvm, struct vgic_its *its, struct its_collection *coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (!ite->collection || coll != ite->collection)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 irq->pending_latch = pendmask & (1U << bit_nr);
467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 vgic_put_irq(vcpu->kvm, irq);
469 }
470
471 kfree(intids);
472
473 return ret;
474 }
475
vgic_mmio_read_its_typer(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 struct vgic_its *its,
478 gpa_t addr, unsigned int len)
479 {
480 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 u64 reg = GITS_TYPER_PLPIS;
482
483 /*
484 * We use linear CPU numbers for redistributor addressing,
485 * so GITS_TYPER.PTA is 0.
486 * Also we force all PROPBASER registers to be the same, so
487 * CommonLPIAff is 0 as well.
488 * To avoid memory waste in the guest, we keep the number of IDBits and
489 * DevBits low - as least for the time being.
490 */
491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494
495 return extract_bytes(reg, addr & 7, len);
496 }
497
vgic_mmio_read_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 struct vgic_its *its,
500 gpa_t addr, unsigned int len)
501 {
502 u32 val;
503
504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 return val;
507 }
508
vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 struct vgic_its *its,
511 gpa_t addr, unsigned int len,
512 unsigned long val)
513 {
514 u32 rev = GITS_IIDR_REV(val);
515
516 if (rev >= NR_ITS_ABIS)
517 return -EINVAL;
518 return vgic_its_set_abi(its, rev);
519 }
520
vgic_mmio_read_its_idregs(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 struct vgic_its *its,
523 gpa_t addr, unsigned int len)
524 {
525 switch (addr & 0xffff) {
526 case GITS_PIDR0:
527 return 0x92; /* part number, bits[7:0] */
528 case GITS_PIDR1:
529 return 0xb4; /* part number, bits[11:8] */
530 case GITS_PIDR2:
531 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 case GITS_PIDR4:
533 return 0x40; /* This is a 64K software visible page */
534 /* The following are the ID registers for (any) GIC. */
535 case GITS_CIDR0:
536 return 0x0d;
537 case GITS_CIDR1:
538 return 0xf0;
539 case GITS_CIDR2:
540 return 0x05;
541 case GITS_CIDR3:
542 return 0xb1;
543 }
544
545 return 0;
546 }
547
__vgic_its_check_cache(struct vgic_dist *dist, phys_addr_t db, u32 devid, u32 eventid)548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 phys_addr_t db,
550 u32 devid, u32 eventid)
551 {
552 struct vgic_translation_cache_entry *cte;
553
554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 /*
556 * If we hit a NULL entry, there is nothing after this
557 * point.
558 */
559 if (!cte->irq)
560 break;
561
562 if (cte->db != db || cte->devid != devid ||
563 cte->eventid != eventid)
564 continue;
565
566 /*
567 * Move this entry to the head, as it is the most
568 * recently used.
569 */
570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 list_move(&cte->entry, &dist->lpi_translation_cache);
572
573 return cte->irq;
574 }
575
576 return NULL;
577 }
578
vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, u32 devid, u32 eventid)579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 u32 devid, u32 eventid)
581 {
582 struct vgic_dist *dist = &kvm->arch.vgic;
583 struct vgic_irq *irq;
584 unsigned long flags;
585
586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587
588 irq = __vgic_its_check_cache(dist, db, devid, eventid);
589 if (irq)
590 vgic_get_irq_kref(irq);
591
592 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
593
594 return irq;
595 }
596
vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid, struct vgic_irq *irq)597 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
598 u32 devid, u32 eventid,
599 struct vgic_irq *irq)
600 {
601 struct vgic_dist *dist = &kvm->arch.vgic;
602 struct vgic_translation_cache_entry *cte;
603 unsigned long flags;
604 phys_addr_t db;
605
606 /* Do not cache a directly injected interrupt */
607 if (irq->hw)
608 return;
609
610 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
611
612 if (unlikely(list_empty(&dist->lpi_translation_cache)))
613 goto out;
614
615 /*
616 * We could have raced with another CPU caching the same
617 * translation behind our back, so let's check it is not in
618 * already
619 */
620 db = its->vgic_its_base + GITS_TRANSLATER;
621 if (__vgic_its_check_cache(dist, db, devid, eventid))
622 goto out;
623
624 /* Always reuse the last entry (LRU policy) */
625 cte = list_last_entry(&dist->lpi_translation_cache,
626 typeof(*cte), entry);
627
628 /*
629 * Caching the translation implies having an extra reference
630 * to the interrupt, so drop the potential reference on what
631 * was in the cache, and increment it on the new interrupt.
632 */
633 if (cte->irq)
634 __vgic_put_lpi_locked(kvm, cte->irq);
635
636 vgic_get_irq_kref(irq);
637
638 cte->db = db;
639 cte->devid = devid;
640 cte->eventid = eventid;
641 cte->irq = irq;
642
643 /* Move the new translation to the head of the list */
644 list_move(&cte->entry, &dist->lpi_translation_cache);
645
646 out:
647 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
648 }
649
vgic_its_invalidate_cache(struct kvm *kvm)650 void vgic_its_invalidate_cache(struct kvm *kvm)
651 {
652 struct vgic_dist *dist = &kvm->arch.vgic;
653 struct vgic_translation_cache_entry *cte;
654 unsigned long flags;
655
656 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
657
658 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
659 /*
660 * If we hit a NULL entry, there is nothing after this
661 * point.
662 */
663 if (!cte->irq)
664 break;
665
666 __vgic_put_lpi_locked(kvm, cte->irq);
667 cte->irq = NULL;
668 }
669
670 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
671 }
672
vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid, struct vgic_irq **irq)673 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
674 u32 devid, u32 eventid, struct vgic_irq **irq)
675 {
676 struct kvm_vcpu *vcpu;
677 struct its_ite *ite;
678
679 if (!its->enabled)
680 return -EBUSY;
681
682 ite = find_ite(its, devid, eventid);
683 if (!ite || !its_is_collection_mapped(ite->collection))
684 return E_ITS_INT_UNMAPPED_INTERRUPT;
685
686 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
687 if (!vcpu)
688 return E_ITS_INT_UNMAPPED_INTERRUPT;
689
690 if (!vcpu->arch.vgic_cpu.lpis_enabled)
691 return -EBUSY;
692
693 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
694
695 *irq = ite->irq;
696 return 0;
697 }
698
vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)699 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
700 {
701 u64 address;
702 struct kvm_io_device *kvm_io_dev;
703 struct vgic_io_device *iodev;
704
705 if (!vgic_has_its(kvm))
706 return ERR_PTR(-ENODEV);
707
708 if (!(msi->flags & KVM_MSI_VALID_DEVID))
709 return ERR_PTR(-EINVAL);
710
711 address = (u64)msi->address_hi << 32 | msi->address_lo;
712
713 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
714 if (!kvm_io_dev)
715 return ERR_PTR(-EINVAL);
716
717 if (kvm_io_dev->ops != &kvm_io_gic_ops)
718 return ERR_PTR(-EINVAL);
719
720 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
721 if (iodev->iodev_type != IODEV_ITS)
722 return ERR_PTR(-EINVAL);
723
724 return iodev->its;
725 }
726
727 /*
728 * Find the target VCPU and the LPI number for a given devid/eventid pair
729 * and make this IRQ pending, possibly injecting it.
730 * Must be called with the its_lock mutex held.
731 * Returns 0 on success, a positive error value for any ITS mapping
732 * related errors and negative error values for generic errors.
733 */
vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid)734 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
735 u32 devid, u32 eventid)
736 {
737 struct vgic_irq *irq = NULL;
738 unsigned long flags;
739 int err;
740
741 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
742 if (err)
743 return err;
744
745 if (irq->hw)
746 return irq_set_irqchip_state(irq->host_irq,
747 IRQCHIP_STATE_PENDING, true);
748
749 raw_spin_lock_irqsave(&irq->irq_lock, flags);
750 irq->pending_latch = true;
751 vgic_queue_irq_unlock(kvm, irq, flags);
752
753 return 0;
754 }
755
vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)756 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
757 {
758 struct vgic_irq *irq;
759 unsigned long flags;
760 phys_addr_t db;
761
762 db = (u64)msi->address_hi << 32 | msi->address_lo;
763 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
764 if (!irq)
765 return -EWOULDBLOCK;
766
767 raw_spin_lock_irqsave(&irq->irq_lock, flags);
768 irq->pending_latch = true;
769 vgic_queue_irq_unlock(kvm, irq, flags);
770 vgic_put_irq(kvm, irq);
771
772 return 0;
773 }
774
775 /*
776 * Queries the KVM IO bus framework to get the ITS pointer from the given
777 * doorbell address.
778 * We then call vgic_its_trigger_msi() with the decoded data.
779 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
780 */
vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)781 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
782 {
783 struct vgic_its *its;
784 int ret;
785
786 if (!vgic_its_inject_cached_translation(kvm, msi))
787 return 1;
788
789 its = vgic_msi_to_its(kvm, msi);
790 if (IS_ERR(its))
791 return PTR_ERR(its);
792
793 mutex_lock(&its->its_lock);
794 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
795 mutex_unlock(&its->its_lock);
796
797 if (ret < 0)
798 return ret;
799
800 /*
801 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
802 * if the guest has blocked the MSI. So we map any LPI mapping
803 * related error to that.
804 */
805 if (ret)
806 return 0;
807 else
808 return 1;
809 }
810
811 /* Requires the its_lock to be held. */
its_free_ite(struct kvm *kvm, struct its_ite *ite)812 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
813 {
814 list_del(&ite->ite_list);
815
816 /* This put matches the get in vgic_add_lpi. */
817 if (ite->irq) {
818 if (ite->irq->hw)
819 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
820
821 vgic_put_irq(kvm, ite->irq);
822 }
823
824 kfree(ite);
825 }
826
its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)827 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
828 {
829 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
830 }
831
832 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
833 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
834 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
835 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
836 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
837 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
838 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
839 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
840 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
841
842 /*
843 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
844 * Must be called with the its_lock mutex held.
845 */
vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)846 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
847 u64 *its_cmd)
848 {
849 u32 device_id = its_cmd_get_deviceid(its_cmd);
850 u32 event_id = its_cmd_get_id(its_cmd);
851 struct its_ite *ite;
852
853 ite = find_ite(its, device_id, event_id);
854 if (ite && its_is_collection_mapped(ite->collection)) {
855 /*
856 * Though the spec talks about removing the pending state, we
857 * don't bother here since we clear the ITTE anyway and the
858 * pending state is a property of the ITTE struct.
859 */
860 vgic_its_invalidate_cache(kvm);
861
862 its_free_ite(kvm, ite);
863 return 0;
864 }
865
866 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
867 }
868
869 /*
870 * The MOVI command moves an ITTE to a different collection.
871 * Must be called with the its_lock mutex held.
872 */
vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)873 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
874 u64 *its_cmd)
875 {
876 u32 device_id = its_cmd_get_deviceid(its_cmd);
877 u32 event_id = its_cmd_get_id(its_cmd);
878 u32 coll_id = its_cmd_get_collection(its_cmd);
879 struct kvm_vcpu *vcpu;
880 struct its_ite *ite;
881 struct its_collection *collection;
882
883 ite = find_ite(its, device_id, event_id);
884 if (!ite)
885 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
886
887 if (!its_is_collection_mapped(ite->collection))
888 return E_ITS_MOVI_UNMAPPED_COLLECTION;
889
890 collection = find_collection(its, coll_id);
891 if (!its_is_collection_mapped(collection))
892 return E_ITS_MOVI_UNMAPPED_COLLECTION;
893
894 ite->collection = collection;
895 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
896
897 vgic_its_invalidate_cache(kvm);
898
899 return update_affinity(ite->irq, vcpu);
900 }
901
902 /*
903 * Check whether an ID can be stored into the corresponding guest table.
904 * For a direct table this is pretty easy, but gets a bit nasty for
905 * indirect tables. We check whether the resulting guest physical address
906 * is actually valid (covered by a memslot and guest accessible).
907 * For this we have to read the respective first level entry.
908 */
vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, gpa_t *eaddr)909 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
910 gpa_t *eaddr)
911 {
912 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
913 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
914 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
915 int esz = GITS_BASER_ENTRY_SIZE(baser);
916 int index, idx;
917 gfn_t gfn;
918 bool ret;
919
920 switch (type) {
921 case GITS_BASER_TYPE_DEVICE:
922 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
923 return false;
924 break;
925 case GITS_BASER_TYPE_COLLECTION:
926 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
927 if (id >= BIT_ULL(16))
928 return false;
929 break;
930 default:
931 return false;
932 }
933
934 if (!(baser & GITS_BASER_INDIRECT)) {
935 phys_addr_t addr;
936
937 if (id >= (l1_tbl_size / esz))
938 return false;
939
940 addr = base + id * esz;
941 gfn = addr >> PAGE_SHIFT;
942
943 if (eaddr)
944 *eaddr = addr;
945
946 goto out;
947 }
948
949 /* calculate and check the index into the 1st level */
950 index = id / (SZ_64K / esz);
951 if (index >= (l1_tbl_size / sizeof(u64)))
952 return false;
953
954 /* Each 1st level entry is represented by a 64-bit value. */
955 if (kvm_read_guest_lock(its->dev->kvm,
956 base + index * sizeof(indirect_ptr),
957 &indirect_ptr, sizeof(indirect_ptr)))
958 return false;
959
960 indirect_ptr = le64_to_cpu(indirect_ptr);
961
962 /* check the valid bit of the first level entry */
963 if (!(indirect_ptr & BIT_ULL(63)))
964 return false;
965
966 /* Mask the guest physical address and calculate the frame number. */
967 indirect_ptr &= GENMASK_ULL(51, 16);
968
969 /* Find the address of the actual entry */
970 index = id % (SZ_64K / esz);
971 indirect_ptr += index * esz;
972 gfn = indirect_ptr >> PAGE_SHIFT;
973
974 if (eaddr)
975 *eaddr = indirect_ptr;
976
977 out:
978 idx = srcu_read_lock(&its->dev->kvm->srcu);
979 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
980 srcu_read_unlock(&its->dev->kvm->srcu, idx);
981 return ret;
982 }
983
vgic_its_alloc_collection(struct vgic_its *its, struct its_collection **colp, u32 coll_id)984 static int vgic_its_alloc_collection(struct vgic_its *its,
985 struct its_collection **colp,
986 u32 coll_id)
987 {
988 struct its_collection *collection;
989
990 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
991 return E_ITS_MAPC_COLLECTION_OOR;
992
993 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
994 if (!collection)
995 return -ENOMEM;
996
997 collection->collection_id = coll_id;
998 collection->target_addr = COLLECTION_NOT_MAPPED;
999
1000 list_add_tail(&collection->coll_list, &its->collection_list);
1001 *colp = collection;
1002
1003 return 0;
1004 }
1005
vgic_its_free_collection(struct vgic_its *its, u32 coll_id)1006 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1007 {
1008 struct its_collection *collection;
1009 struct its_device *device;
1010 struct its_ite *ite;
1011
1012 /*
1013 * Clearing the mapping for that collection ID removes the
1014 * entry from the list. If there wasn't any before, we can
1015 * go home early.
1016 */
1017 collection = find_collection(its, coll_id);
1018 if (!collection)
1019 return;
1020
1021 for_each_lpi_its(device, ite, its)
1022 if (ite->collection &&
1023 ite->collection->collection_id == coll_id)
1024 ite->collection = NULL;
1025
1026 list_del(&collection->coll_list);
1027 kfree(collection);
1028 }
1029
1030 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device *device, struct its_collection *collection, u32 event_id)1031 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1032 struct its_collection *collection,
1033 u32 event_id)
1034 {
1035 struct its_ite *ite;
1036
1037 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1038 if (!ite)
1039 return ERR_PTR(-ENOMEM);
1040
1041 ite->event_id = event_id;
1042 ite->collection = collection;
1043
1044 list_add_tail(&ite->ite_list, &device->itt_head);
1045 return ite;
1046 }
1047
1048 /*
1049 * The MAPTI and MAPI commands map LPIs to ITTEs.
1050 * Must be called with its_lock mutex held.
1051 */
vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1052 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1053 u64 *its_cmd)
1054 {
1055 u32 device_id = its_cmd_get_deviceid(its_cmd);
1056 u32 event_id = its_cmd_get_id(its_cmd);
1057 u32 coll_id = its_cmd_get_collection(its_cmd);
1058 struct its_ite *ite;
1059 struct kvm_vcpu *vcpu = NULL;
1060 struct its_device *device;
1061 struct its_collection *collection, *new_coll = NULL;
1062 struct vgic_irq *irq;
1063 int lpi_nr;
1064
1065 device = find_its_device(its, device_id);
1066 if (!device)
1067 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1068
1069 if (event_id >= BIT_ULL(device->num_eventid_bits))
1070 return E_ITS_MAPTI_ID_OOR;
1071
1072 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1073 lpi_nr = its_cmd_get_physical_id(its_cmd);
1074 else
1075 lpi_nr = event_id;
1076 if (lpi_nr < GIC_LPI_OFFSET ||
1077 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1078 return E_ITS_MAPTI_PHYSICALID_OOR;
1079
1080 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1081 if (find_ite(its, device_id, event_id))
1082 return 0;
1083
1084 collection = find_collection(its, coll_id);
1085 if (!collection) {
1086 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1087 if (ret)
1088 return ret;
1089 new_coll = collection;
1090 }
1091
1092 ite = vgic_its_alloc_ite(device, collection, event_id);
1093 if (IS_ERR(ite)) {
1094 if (new_coll)
1095 vgic_its_free_collection(its, coll_id);
1096 return PTR_ERR(ite);
1097 }
1098
1099 if (its_is_collection_mapped(collection))
1100 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1101
1102 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1103 if (IS_ERR(irq)) {
1104 if (new_coll)
1105 vgic_its_free_collection(its, coll_id);
1106 its_free_ite(kvm, ite);
1107 return PTR_ERR(irq);
1108 }
1109 ite->irq = irq;
1110
1111 return 0;
1112 }
1113
1114 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm *kvm, struct its_device *device)1115 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1116 {
1117 struct its_ite *ite, *temp;
1118
1119 /*
1120 * The spec says that unmapping a device with still valid
1121 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1122 * since we cannot leave the memory unreferenced.
1123 */
1124 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1125 its_free_ite(kvm, ite);
1126
1127 vgic_its_invalidate_cache(kvm);
1128
1129 list_del(&device->dev_list);
1130 kfree(device);
1131 }
1132
1133 /* its lock must be held */
vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)1134 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1135 {
1136 struct its_device *cur, *temp;
1137
1138 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1139 vgic_its_free_device(kvm, cur);
1140 }
1141
1142 /* its lock must be held */
vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)1143 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1144 {
1145 struct its_collection *cur, *temp;
1146
1147 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1148 vgic_its_free_collection(its, cur->collection_id);
1149 }
1150
1151 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its *its, u32 device_id, gpa_t itt_addr, u8 num_eventid_bits)1152 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1153 u32 device_id, gpa_t itt_addr,
1154 u8 num_eventid_bits)
1155 {
1156 struct its_device *device;
1157
1158 device = kzalloc(sizeof(*device), GFP_KERNEL);
1159 if (!device)
1160 return ERR_PTR(-ENOMEM);
1161
1162 device->device_id = device_id;
1163 device->itt_addr = itt_addr;
1164 device->num_eventid_bits = num_eventid_bits;
1165 INIT_LIST_HEAD(&device->itt_head);
1166
1167 list_add_tail(&device->dev_list, &its->device_list);
1168 return device;
1169 }
1170
1171 /*
1172 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1173 * Must be called with the its_lock mutex held.
1174 */
vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1175 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1176 u64 *its_cmd)
1177 {
1178 u32 device_id = its_cmd_get_deviceid(its_cmd);
1179 bool valid = its_cmd_get_validbit(its_cmd);
1180 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1181 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1182 struct its_device *device;
1183
1184 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1185 return E_ITS_MAPD_DEVICE_OOR;
1186
1187 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1188 return E_ITS_MAPD_ITTSIZE_OOR;
1189
1190 device = find_its_device(its, device_id);
1191
1192 /*
1193 * The spec says that calling MAPD on an already mapped device
1194 * invalidates all cached data for this device. We implement this
1195 * by removing the mapping and re-establishing it.
1196 */
1197 if (device)
1198 vgic_its_free_device(kvm, device);
1199
1200 /*
1201 * The spec does not say whether unmapping a not-mapped device
1202 * is an error, so we are done in any case.
1203 */
1204 if (!valid)
1205 return 0;
1206
1207 device = vgic_its_alloc_device(its, device_id, itt_addr,
1208 num_eventid_bits);
1209
1210 return PTR_ERR_OR_ZERO(device);
1211 }
1212
1213 /*
1214 * The MAPC command maps collection IDs to redistributors.
1215 * Must be called with the its_lock mutex held.
1216 */
vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1217 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1218 u64 *its_cmd)
1219 {
1220 u16 coll_id;
1221 u32 target_addr;
1222 struct its_collection *collection;
1223 bool valid;
1224
1225 valid = its_cmd_get_validbit(its_cmd);
1226 coll_id = its_cmd_get_collection(its_cmd);
1227 target_addr = its_cmd_get_target_addr(its_cmd);
1228
1229 if (target_addr >= atomic_read(&kvm->online_vcpus))
1230 return E_ITS_MAPC_PROCNUM_OOR;
1231
1232 if (!valid) {
1233 vgic_its_free_collection(its, coll_id);
1234 vgic_its_invalidate_cache(kvm);
1235 } else {
1236 collection = find_collection(its, coll_id);
1237
1238 if (!collection) {
1239 int ret;
1240
1241 ret = vgic_its_alloc_collection(its, &collection,
1242 coll_id);
1243 if (ret)
1244 return ret;
1245 collection->target_addr = target_addr;
1246 } else {
1247 collection->target_addr = target_addr;
1248 update_affinity_collection(kvm, its, collection);
1249 }
1250 }
1251
1252 return 0;
1253 }
1254
1255 /*
1256 * The CLEAR command removes the pending state for a particular LPI.
1257 * Must be called with the its_lock mutex held.
1258 */
vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1259 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1260 u64 *its_cmd)
1261 {
1262 u32 device_id = its_cmd_get_deviceid(its_cmd);
1263 u32 event_id = its_cmd_get_id(its_cmd);
1264 struct its_ite *ite;
1265
1266
1267 ite = find_ite(its, device_id, event_id);
1268 if (!ite)
1269 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1270
1271 ite->irq->pending_latch = false;
1272
1273 if (ite->irq->hw)
1274 return irq_set_irqchip_state(ite->irq->host_irq,
1275 IRQCHIP_STATE_PENDING, false);
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * The INV command syncs the configuration bits from the memory table.
1282 * Must be called with the its_lock mutex held.
1283 */
vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1284 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1285 u64 *its_cmd)
1286 {
1287 u32 device_id = its_cmd_get_deviceid(its_cmd);
1288 u32 event_id = its_cmd_get_id(its_cmd);
1289 struct its_ite *ite;
1290
1291
1292 ite = find_ite(its, device_id, event_id);
1293 if (!ite)
1294 return E_ITS_INV_UNMAPPED_INTERRUPT;
1295
1296 return update_lpi_config(kvm, ite->irq, NULL, true);
1297 }
1298
1299 /*
1300 * The INVALL command requests flushing of all IRQ data in this collection.
1301 * Find the VCPU mapped to that collection, then iterate over the VM's list
1302 * of mapped LPIs and update the configuration for each IRQ which targets
1303 * the specified vcpu. The configuration will be read from the in-memory
1304 * configuration table.
1305 * Must be called with the its_lock mutex held.
1306 */
vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1307 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1308 u64 *its_cmd)
1309 {
1310 u32 coll_id = its_cmd_get_collection(its_cmd);
1311 struct its_collection *collection;
1312 struct kvm_vcpu *vcpu;
1313 struct vgic_irq *irq;
1314 u32 *intids;
1315 int irq_count, i;
1316
1317 collection = find_collection(its, coll_id);
1318 if (!its_is_collection_mapped(collection))
1319 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1320
1321 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1322
1323 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1324 if (irq_count < 0)
1325 return irq_count;
1326
1327 for (i = 0; i < irq_count; i++) {
1328 irq = vgic_get_irq(kvm, NULL, intids[i]);
1329 if (!irq)
1330 continue;
1331 update_lpi_config(kvm, irq, vcpu, false);
1332 vgic_put_irq(kvm, irq);
1333 }
1334
1335 kfree(intids);
1336
1337 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1338 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * The MOVALL command moves the pending state of all IRQs targeting one
1345 * redistributor to another. We don't hold the pending state in the VCPUs,
1346 * but in the IRQs instead, so there is really not much to do for us here.
1347 * However the spec says that no IRQ must target the old redistributor
1348 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1349 * This command affects all LPIs in the system that target that redistributor.
1350 */
vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1351 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1352 u64 *its_cmd)
1353 {
1354 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1355 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1356 struct kvm_vcpu *vcpu1, *vcpu2;
1357 struct vgic_irq *irq;
1358 u32 *intids;
1359 int irq_count, i;
1360
1361 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1362 target2_addr >= atomic_read(&kvm->online_vcpus))
1363 return E_ITS_MOVALL_PROCNUM_OOR;
1364
1365 if (target1_addr == target2_addr)
1366 return 0;
1367
1368 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1369 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1370
1371 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1372 if (irq_count < 0)
1373 return irq_count;
1374
1375 for (i = 0; i < irq_count; i++) {
1376 irq = vgic_get_irq(kvm, NULL, intids[i]);
1377
1378 update_affinity(irq, vcpu2);
1379
1380 vgic_put_irq(kvm, irq);
1381 }
1382
1383 vgic_its_invalidate_cache(kvm);
1384
1385 kfree(intids);
1386 return 0;
1387 }
1388
1389 /*
1390 * The INT command injects the LPI associated with that DevID/EvID pair.
1391 * Must be called with the its_lock mutex held.
1392 */
vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1393 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1394 u64 *its_cmd)
1395 {
1396 u32 msi_data = its_cmd_get_id(its_cmd);
1397 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1398
1399 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1400 }
1401
1402 /*
1403 * This function is called with the its_cmd lock held, but the ITS data
1404 * structure lock dropped.
1405 */
vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd)1406 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1407 u64 *its_cmd)
1408 {
1409 int ret = -ENODEV;
1410
1411 mutex_lock(&its->its_lock);
1412 switch (its_cmd_get_command(its_cmd)) {
1413 case GITS_CMD_MAPD:
1414 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1415 break;
1416 case GITS_CMD_MAPC:
1417 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1418 break;
1419 case GITS_CMD_MAPI:
1420 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1421 break;
1422 case GITS_CMD_MAPTI:
1423 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1424 break;
1425 case GITS_CMD_MOVI:
1426 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1427 break;
1428 case GITS_CMD_DISCARD:
1429 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1430 break;
1431 case GITS_CMD_CLEAR:
1432 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1433 break;
1434 case GITS_CMD_MOVALL:
1435 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1436 break;
1437 case GITS_CMD_INT:
1438 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1439 break;
1440 case GITS_CMD_INV:
1441 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1442 break;
1443 case GITS_CMD_INVALL:
1444 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1445 break;
1446 case GITS_CMD_SYNC:
1447 /* we ignore this command: we are in sync all of the time */
1448 ret = 0;
1449 break;
1450 }
1451 mutex_unlock(&its->its_lock);
1452
1453 return ret;
1454 }
1455
vgic_sanitise_its_baser(u64 reg)1456 static u64 vgic_sanitise_its_baser(u64 reg)
1457 {
1458 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1459 GITS_BASER_SHAREABILITY_SHIFT,
1460 vgic_sanitise_shareability);
1461 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1462 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1463 vgic_sanitise_inner_cacheability);
1464 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1465 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1466 vgic_sanitise_outer_cacheability);
1467
1468 /* We support only one (ITS) page size: 64K */
1469 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1470
1471 return reg;
1472 }
1473
vgic_sanitise_its_cbaser(u64 reg)1474 static u64 vgic_sanitise_its_cbaser(u64 reg)
1475 {
1476 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1477 GITS_CBASER_SHAREABILITY_SHIFT,
1478 vgic_sanitise_shareability);
1479 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1480 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1481 vgic_sanitise_inner_cacheability);
1482 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1483 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1484 vgic_sanitise_outer_cacheability);
1485
1486 /* Sanitise the physical address to be 64k aligned. */
1487 reg &= ~GENMASK_ULL(15, 12);
1488
1489 return reg;
1490 }
1491
vgic_mmio_read_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1492 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1493 struct vgic_its *its,
1494 gpa_t addr, unsigned int len)
1495 {
1496 return extract_bytes(its->cbaser, addr & 7, len);
1497 }
1498
vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1499 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1500 gpa_t addr, unsigned int len,
1501 unsigned long val)
1502 {
1503 /* When GITS_CTLR.Enable is 1, this register is RO. */
1504 if (its->enabled)
1505 return;
1506
1507 mutex_lock(&its->cmd_lock);
1508 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1509 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1510 its->creadr = 0;
1511 /*
1512 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1513 * it to CREADR to make sure we start with an empty command buffer.
1514 */
1515 its->cwriter = its->creadr;
1516 mutex_unlock(&its->cmd_lock);
1517 }
1518
1519 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1520 #define ITS_CMD_SIZE 32
1521 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1522
1523 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)1524 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1525 {
1526 gpa_t cbaser;
1527 u64 cmd_buf[4];
1528
1529 /* Commands are only processed when the ITS is enabled. */
1530 if (!its->enabled)
1531 return;
1532
1533 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1534
1535 while (its->cwriter != its->creadr) {
1536 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1537 cmd_buf, ITS_CMD_SIZE);
1538 /*
1539 * If kvm_read_guest() fails, this could be due to the guest
1540 * programming a bogus value in CBASER or something else going
1541 * wrong from which we cannot easily recover.
1542 * According to section 6.3.2 in the GICv3 spec we can just
1543 * ignore that command then.
1544 */
1545 if (!ret)
1546 vgic_its_handle_command(kvm, its, cmd_buf);
1547
1548 its->creadr += ITS_CMD_SIZE;
1549 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1550 its->creadr = 0;
1551 }
1552 }
1553
1554 /*
1555 * By writing to CWRITER the guest announces new commands to be processed.
1556 * To avoid any races in the first place, we take the its_cmd lock, which
1557 * protects our ring buffer variables, so that there is only one user
1558 * per ITS handling commands at a given time.
1559 */
vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1560 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1561 gpa_t addr, unsigned int len,
1562 unsigned long val)
1563 {
1564 u64 reg;
1565
1566 if (!its)
1567 return;
1568
1569 mutex_lock(&its->cmd_lock);
1570
1571 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1572 reg = ITS_CMD_OFFSET(reg);
1573 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1574 mutex_unlock(&its->cmd_lock);
1575 return;
1576 }
1577 its->cwriter = reg;
1578
1579 vgic_its_process_commands(kvm, its);
1580
1581 mutex_unlock(&its->cmd_lock);
1582 }
1583
vgic_mmio_read_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1584 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1585 struct vgic_its *its,
1586 gpa_t addr, unsigned int len)
1587 {
1588 return extract_bytes(its->cwriter, addr & 0x7, len);
1589 }
1590
vgic_mmio_read_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1591 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1592 struct vgic_its *its,
1593 gpa_t addr, unsigned int len)
1594 {
1595 return extract_bytes(its->creadr, addr & 0x7, len);
1596 }
1597
vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1598 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1599 struct vgic_its *its,
1600 gpa_t addr, unsigned int len,
1601 unsigned long val)
1602 {
1603 u32 cmd_offset;
1604 int ret = 0;
1605
1606 mutex_lock(&its->cmd_lock);
1607
1608 if (its->enabled) {
1609 ret = -EBUSY;
1610 goto out;
1611 }
1612
1613 cmd_offset = ITS_CMD_OFFSET(val);
1614 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1615 ret = -EINVAL;
1616 goto out;
1617 }
1618
1619 its->creadr = cmd_offset;
1620 out:
1621 mutex_unlock(&its->cmd_lock);
1622 return ret;
1623 }
1624
1625 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len)1626 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1627 struct vgic_its *its,
1628 gpa_t addr, unsigned int len)
1629 {
1630 u64 reg;
1631
1632 switch (BASER_INDEX(addr)) {
1633 case 0:
1634 reg = its->baser_device_table;
1635 break;
1636 case 1:
1637 reg = its->baser_coll_table;
1638 break;
1639 default:
1640 reg = 0;
1641 break;
1642 }
1643
1644 return extract_bytes(reg, addr & 7, len);
1645 }
1646
1647 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1648 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1649 struct vgic_its *its,
1650 gpa_t addr, unsigned int len,
1651 unsigned long val)
1652 {
1653 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1654 u64 entry_size, table_type;
1655 u64 reg, *regptr, clearbits = 0;
1656
1657 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1658 if (its->enabled)
1659 return;
1660
1661 switch (BASER_INDEX(addr)) {
1662 case 0:
1663 regptr = &its->baser_device_table;
1664 entry_size = abi->dte_esz;
1665 table_type = GITS_BASER_TYPE_DEVICE;
1666 break;
1667 case 1:
1668 regptr = &its->baser_coll_table;
1669 entry_size = abi->cte_esz;
1670 table_type = GITS_BASER_TYPE_COLLECTION;
1671 clearbits = GITS_BASER_INDIRECT;
1672 break;
1673 default:
1674 return;
1675 }
1676
1677 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1678 reg &= ~GITS_BASER_RO_MASK;
1679 reg &= ~clearbits;
1680
1681 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1682 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1683 reg = vgic_sanitise_its_baser(reg);
1684
1685 *regptr = reg;
1686
1687 if (!(reg & GITS_BASER_VALID)) {
1688 /* Take the its_lock to prevent a race with a save/restore */
1689 mutex_lock(&its->its_lock);
1690 switch (table_type) {
1691 case GITS_BASER_TYPE_DEVICE:
1692 vgic_its_free_device_list(kvm, its);
1693 break;
1694 case GITS_BASER_TYPE_COLLECTION:
1695 vgic_its_free_collection_list(kvm, its);
1696 break;
1697 }
1698 mutex_unlock(&its->its_lock);
1699 }
1700 }
1701
vgic_mmio_read_its_ctlr(struct kvm *vcpu, struct vgic_its *its, gpa_t addr, unsigned int len)1702 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1703 struct vgic_its *its,
1704 gpa_t addr, unsigned int len)
1705 {
1706 u32 reg = 0;
1707
1708 mutex_lock(&its->cmd_lock);
1709 if (its->creadr == its->cwriter)
1710 reg |= GITS_CTLR_QUIESCENT;
1711 if (its->enabled)
1712 reg |= GITS_CTLR_ENABLE;
1713 mutex_unlock(&its->cmd_lock);
1714
1715 return reg;
1716 }
1717
vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1718 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1719 gpa_t addr, unsigned int len,
1720 unsigned long val)
1721 {
1722 mutex_lock(&its->cmd_lock);
1723
1724 /*
1725 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1726 * device/collection BASER are invalid
1727 */
1728 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1729 (!(its->baser_device_table & GITS_BASER_VALID) ||
1730 !(its->baser_coll_table & GITS_BASER_VALID) ||
1731 !(its->cbaser & GITS_CBASER_VALID)))
1732 goto out;
1733
1734 its->enabled = !!(val & GITS_CTLR_ENABLE);
1735 if (!its->enabled)
1736 vgic_its_invalidate_cache(kvm);
1737
1738 /*
1739 * Try to process any pending commands. This function bails out early
1740 * if the ITS is disabled or no commands have been queued.
1741 */
1742 vgic_its_process_commands(kvm, its);
1743
1744 out:
1745 mutex_unlock(&its->cmd_lock);
1746 }
1747
1748 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1749 { \
1750 .reg_offset = off, \
1751 .len = length, \
1752 .access_flags = acc, \
1753 .its_read = rd, \
1754 .its_write = wr, \
1755 }
1756
1757 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1758 { \
1759 .reg_offset = off, \
1760 .len = length, \
1761 .access_flags = acc, \
1762 .its_read = rd, \
1763 .its_write = wr, \
1764 .uaccess_its_write = uwr, \
1765 }
1766
its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val)1767 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1768 gpa_t addr, unsigned int len, unsigned long val)
1769 {
1770 /* Ignore */
1771 }
1772
1773 static struct vgic_register_region its_registers[] = {
1774 REGISTER_ITS_DESC(GITS_CTLR,
1775 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1776 VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1778 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1779 vgic_mmio_uaccess_write_its_iidr, 4,
1780 VGIC_ACCESS_32bit),
1781 REGISTER_ITS_DESC(GITS_TYPER,
1782 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1783 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784 REGISTER_ITS_DESC(GITS_CBASER,
1785 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1786 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1787 REGISTER_ITS_DESC(GITS_CWRITER,
1788 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1791 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1792 vgic_mmio_uaccess_write_its_creadr, 8,
1793 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1794 REGISTER_ITS_DESC(GITS_BASER,
1795 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1796 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1797 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1798 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1799 VGIC_ACCESS_32bit),
1800 };
1801
1802 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu *vcpu)1803 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1804 {
1805 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1806 its_sync_lpi_pending_table(vcpu);
1807 }
1808
vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, u64 addr)1809 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1810 u64 addr)
1811 {
1812 struct vgic_io_device *iodev = &its->iodev;
1813 int ret;
1814
1815 mutex_lock(&kvm->slots_lock);
1816 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1817 ret = -EBUSY;
1818 goto out;
1819 }
1820
1821 its->vgic_its_base = addr;
1822 iodev->regions = its_registers;
1823 iodev->nr_regions = ARRAY_SIZE(its_registers);
1824 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1825
1826 iodev->base_addr = its->vgic_its_base;
1827 iodev->iodev_type = IODEV_ITS;
1828 iodev->its = its;
1829 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1830 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1831 out:
1832 mutex_unlock(&kvm->slots_lock);
1833
1834 return ret;
1835 }
1836
1837 /* Default is 16 cached LPIs per vcpu */
1838 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1839
vgic_lpi_translation_cache_init(struct kvm *kvm)1840 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1841 {
1842 struct vgic_dist *dist = &kvm->arch.vgic;
1843 unsigned int sz;
1844 int i;
1845
1846 if (!list_empty(&dist->lpi_translation_cache))
1847 return;
1848
1849 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1850
1851 for (i = 0; i < sz; i++) {
1852 struct vgic_translation_cache_entry *cte;
1853
1854 /* An allocation failure is not fatal */
1855 cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1856 if (WARN_ON(!cte))
1857 break;
1858
1859 INIT_LIST_HEAD(&cte->entry);
1860 list_add(&cte->entry, &dist->lpi_translation_cache);
1861 }
1862 }
1863
vgic_lpi_translation_cache_destroy(struct kvm *kvm)1864 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1865 {
1866 struct vgic_dist *dist = &kvm->arch.vgic;
1867 struct vgic_translation_cache_entry *cte, *tmp;
1868
1869 vgic_its_invalidate_cache(kvm);
1870
1871 list_for_each_entry_safe(cte, tmp,
1872 &dist->lpi_translation_cache, entry) {
1873 list_del(&cte->entry);
1874 kfree(cte);
1875 }
1876 }
1877
1878 #define INITIAL_BASER_VALUE \
1879 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1880 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1881 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1882 GITS_BASER_PAGE_SIZE_64K)
1883
1884 #define INITIAL_PROPBASER_VALUE \
1885 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1886 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1887 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1888
vgic_its_create(struct kvm_device *dev, u32 type)1889 static int vgic_its_create(struct kvm_device *dev, u32 type)
1890 {
1891 struct vgic_its *its;
1892
1893 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1894 return -ENODEV;
1895
1896 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1897 if (!its)
1898 return -ENOMEM;
1899
1900 if (vgic_initialized(dev->kvm)) {
1901 int ret = vgic_v4_init(dev->kvm);
1902 if (ret < 0) {
1903 kfree(its);
1904 return ret;
1905 }
1906
1907 vgic_lpi_translation_cache_init(dev->kvm);
1908 }
1909
1910 mutex_init(&its->its_lock);
1911 mutex_init(&its->cmd_lock);
1912
1913 its->vgic_its_base = VGIC_ADDR_UNDEF;
1914
1915 INIT_LIST_HEAD(&its->device_list);
1916 INIT_LIST_HEAD(&its->collection_list);
1917
1918 dev->kvm->arch.vgic.msis_require_devid = true;
1919 dev->kvm->arch.vgic.has_its = true;
1920 its->enabled = false;
1921 its->dev = dev;
1922
1923 its->baser_device_table = INITIAL_BASER_VALUE |
1924 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1925 its->baser_coll_table = INITIAL_BASER_VALUE |
1926 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1927 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1928
1929 dev->private = its;
1930
1931 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1932 }
1933
vgic_its_destroy(struct kvm_device *kvm_dev)1934 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1935 {
1936 struct kvm *kvm = kvm_dev->kvm;
1937 struct vgic_its *its = kvm_dev->private;
1938
1939 mutex_lock(&its->its_lock);
1940
1941 vgic_its_free_device_list(kvm, its);
1942 vgic_its_free_collection_list(kvm, its);
1943
1944 mutex_unlock(&its->its_lock);
1945 kfree(its);
1946 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1947 }
1948
vgic_its_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)1949 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1950 struct kvm_device_attr *attr)
1951 {
1952 const struct vgic_register_region *region;
1953 gpa_t offset = attr->attr;
1954 int align;
1955
1956 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1957
1958 if (offset & align)
1959 return -EINVAL;
1960
1961 region = vgic_find_mmio_region(its_registers,
1962 ARRAY_SIZE(its_registers),
1963 offset);
1964 if (!region)
1965 return -ENXIO;
1966
1967 return 0;
1968 }
1969
vgic_its_attr_regs_access(struct kvm_device *dev, struct kvm_device_attr *attr, u64 *reg, bool is_write)1970 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1971 struct kvm_device_attr *attr,
1972 u64 *reg, bool is_write)
1973 {
1974 const struct vgic_register_region *region;
1975 struct vgic_its *its;
1976 gpa_t addr, offset;
1977 unsigned int len;
1978 int align, ret = 0;
1979
1980 its = dev->private;
1981 offset = attr->attr;
1982
1983 /*
1984 * Although the spec supports upper/lower 32-bit accesses to
1985 * 64-bit ITS registers, the userspace ABI requires 64-bit
1986 * accesses to all 64-bit wide registers. We therefore only
1987 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1988 * registers
1989 */
1990 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1991 align = 0x3;
1992 else
1993 align = 0x7;
1994
1995 if (offset & align)
1996 return -EINVAL;
1997
1998 mutex_lock(&dev->kvm->lock);
1999
2000 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2001 ret = -ENXIO;
2002 goto out;
2003 }
2004
2005 region = vgic_find_mmio_region(its_registers,
2006 ARRAY_SIZE(its_registers),
2007 offset);
2008 if (!region) {
2009 ret = -ENXIO;
2010 goto out;
2011 }
2012
2013 if (!lock_all_vcpus(dev->kvm)) {
2014 ret = -EBUSY;
2015 goto out;
2016 }
2017
2018 addr = its->vgic_its_base + offset;
2019
2020 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2021
2022 if (is_write) {
2023 if (region->uaccess_its_write)
2024 ret = region->uaccess_its_write(dev->kvm, its, addr,
2025 len, *reg);
2026 else
2027 region->its_write(dev->kvm, its, addr, len, *reg);
2028 } else {
2029 *reg = region->its_read(dev->kvm, its, addr, len);
2030 }
2031 unlock_all_vcpus(dev->kvm);
2032 out:
2033 mutex_unlock(&dev->kvm->lock);
2034 return ret;
2035 }
2036
compute_next_devid_offset(struct list_head *h, struct its_device *dev)2037 static u32 compute_next_devid_offset(struct list_head *h,
2038 struct its_device *dev)
2039 {
2040 struct its_device *next;
2041 u32 next_offset;
2042
2043 if (list_is_last(&dev->dev_list, h))
2044 return 0;
2045 next = list_next_entry(dev, dev_list);
2046 next_offset = next->device_id - dev->device_id;
2047
2048 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2049 }
2050
compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)2051 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2052 {
2053 struct its_ite *next;
2054 u32 next_offset;
2055
2056 if (list_is_last(&ite->ite_list, h))
2057 return 0;
2058 next = list_next_entry(ite, ite_list);
2059 next_offset = next->event_id - ite->event_id;
2060
2061 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2062 }
2063
2064 /**
2065 * entry_fn_t - Callback called on a table entry restore path
2066 * @its: its handle
2067 * @id: id of the entry
2068 * @entry: pointer to the entry
2069 * @opaque: pointer to an opaque data
2070 *
2071 * Return: < 0 on error, 0 if last element was identified, id offset to next
2072 * element otherwise
2073 */
2074 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2075 void *opaque);
2076
2077 /**
2078 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2079 * to each entry
2080 *
2081 * @its: its handle
2082 * @base: base gpa of the table
2083 * @size: size of the table in bytes
2084 * @esz: entry size in bytes
2085 * @start_id: the ID of the first entry in the table
2086 * (non zero for 2d level tables)
2087 * @fn: function to apply on each entry
2088 *
2089 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2090 * (the last element may not be found on second level tables)
2091 */
scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, int start_id, entry_fn_t fn, void *opaque)2092 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2093 int start_id, entry_fn_t fn, void *opaque)
2094 {
2095 struct kvm *kvm = its->dev->kvm;
2096 unsigned long len = size;
2097 int id = start_id;
2098 gpa_t gpa = base;
2099 char entry[ESZ_MAX];
2100 int ret;
2101
2102 memset(entry, 0, esz);
2103
2104 while (true) {
2105 int next_offset;
2106 size_t byte_offset;
2107
2108 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2109 if (ret)
2110 return ret;
2111
2112 next_offset = fn(its, id, entry, opaque);
2113 if (next_offset <= 0)
2114 return next_offset;
2115
2116 byte_offset = next_offset * esz;
2117 if (byte_offset >= len)
2118 break;
2119
2120 id += next_offset;
2121 gpa += byte_offset;
2122 len -= byte_offset;
2123 }
2124 return 1;
2125 }
2126
2127 /**
2128 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2129 */
vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, struct its_ite *ite, gpa_t gpa, int ite_esz)2130 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2131 struct its_ite *ite, gpa_t gpa, int ite_esz)
2132 {
2133 struct kvm *kvm = its->dev->kvm;
2134 u32 next_offset;
2135 u64 val;
2136
2137 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2138 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2139 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2140 ite->collection->collection_id;
2141 val = cpu_to_le64(val);
2142 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2143 }
2144
2145 /**
2146 * vgic_its_restore_ite - restore an interrupt translation entry
2147 * @event_id: id used for indexing
2148 * @ptr: pointer to the ITE entry
2149 * @opaque: pointer to the its_device
2150 */
vgic_its_restore_ite(struct vgic_its *its, u32 event_id, void *ptr, void *opaque)2151 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2152 void *ptr, void *opaque)
2153 {
2154 struct its_device *dev = (struct its_device *)opaque;
2155 struct its_collection *collection;
2156 struct kvm *kvm = its->dev->kvm;
2157 struct kvm_vcpu *vcpu = NULL;
2158 u64 val;
2159 u64 *p = (u64 *)ptr;
2160 struct vgic_irq *irq;
2161 u32 coll_id, lpi_id;
2162 struct its_ite *ite;
2163 u32 offset;
2164
2165 val = *p;
2166
2167 val = le64_to_cpu(val);
2168
2169 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2170 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2171
2172 if (!lpi_id)
2173 return 1; /* invalid entry, no choice but to scan next entry */
2174
2175 if (lpi_id < VGIC_MIN_LPI)
2176 return -EINVAL;
2177
2178 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2179 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2180 return -EINVAL;
2181
2182 collection = find_collection(its, coll_id);
2183 if (!collection)
2184 return -EINVAL;
2185
2186 ite = vgic_its_alloc_ite(dev, collection, event_id);
2187 if (IS_ERR(ite))
2188 return PTR_ERR(ite);
2189
2190 if (its_is_collection_mapped(collection))
2191 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2192
2193 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2194 if (IS_ERR(irq))
2195 return PTR_ERR(irq);
2196 ite->irq = irq;
2197
2198 return offset;
2199 }
2200
vgic_its_ite_cmp(void *priv, const struct list_head *a, const struct list_head *b)2201 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2202 const struct list_head *b)
2203 {
2204 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2205 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2206
2207 if (itea->event_id < iteb->event_id)
2208 return -1;
2209 else
2210 return 1;
2211 }
2212
vgic_its_save_itt(struct vgic_its *its, struct its_device *device)2213 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2214 {
2215 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2216 gpa_t base = device->itt_addr;
2217 struct its_ite *ite;
2218 int ret;
2219 int ite_esz = abi->ite_esz;
2220
2221 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2222
2223 list_for_each_entry(ite, &device->itt_head, ite_list) {
2224 gpa_t gpa = base + ite->event_id * ite_esz;
2225
2226 /*
2227 * If an LPI carries the HW bit, this means that this
2228 * interrupt is controlled by GICv4, and we do not
2229 * have direct access to that state. Let's simply fail
2230 * the save operation...
2231 */
2232 if (ite->irq->hw)
2233 return -EACCES;
2234
2235 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2236 if (ret)
2237 return ret;
2238 }
2239 return 0;
2240 }
2241
2242 /**
2243 * vgic_its_restore_itt - restore the ITT of a device
2244 *
2245 * @its: its handle
2246 * @dev: device handle
2247 *
2248 * Return 0 on success, < 0 on error
2249 */
vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)2250 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2251 {
2252 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2253 gpa_t base = dev->itt_addr;
2254 int ret;
2255 int ite_esz = abi->ite_esz;
2256 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2257
2258 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2259 vgic_its_restore_ite, dev);
2260
2261 /* scan_its_table returns +1 if all ITEs are invalid */
2262 if (ret > 0)
2263 ret = 0;
2264
2265 return ret;
2266 }
2267
2268 /**
2269 * vgic_its_save_dte - Save a device table entry at a given GPA
2270 *
2271 * @its: ITS handle
2272 * @dev: ITS device
2273 * @ptr: GPA
2274 */
vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, gpa_t ptr, int dte_esz)2275 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2276 gpa_t ptr, int dte_esz)
2277 {
2278 struct kvm *kvm = its->dev->kvm;
2279 u64 val, itt_addr_field;
2280 u32 next_offset;
2281
2282 itt_addr_field = dev->itt_addr >> 8;
2283 next_offset = compute_next_devid_offset(&its->device_list, dev);
2284 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2285 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2286 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2287 (dev->num_eventid_bits - 1));
2288 val = cpu_to_le64(val);
2289 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2290 }
2291
2292 /**
2293 * vgic_its_restore_dte - restore a device table entry
2294 *
2295 * @its: its handle
2296 * @id: device id the DTE corresponds to
2297 * @ptr: kernel VA where the 8 byte DTE is located
2298 * @opaque: unused
2299 *
2300 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2301 * next dte otherwise
2302 */
vgic_its_restore_dte(struct vgic_its *its, u32 id, void *ptr, void *opaque)2303 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2304 void *ptr, void *opaque)
2305 {
2306 struct its_device *dev;
2307 gpa_t itt_addr;
2308 u8 num_eventid_bits;
2309 u64 entry = *(u64 *)ptr;
2310 bool valid;
2311 u32 offset;
2312 int ret;
2313
2314 entry = le64_to_cpu(entry);
2315
2316 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2317 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2318 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2319 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2320
2321 if (!valid)
2322 return 1;
2323
2324 /* dte entry is valid */
2325 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2326
2327 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2328 if (IS_ERR(dev))
2329 return PTR_ERR(dev);
2330
2331 ret = vgic_its_restore_itt(its, dev);
2332 if (ret) {
2333 vgic_its_free_device(its->dev->kvm, dev);
2334 return ret;
2335 }
2336
2337 return offset;
2338 }
2339
vgic_its_device_cmp(void *priv, const struct list_head *a, const struct list_head *b)2340 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2341 const struct list_head *b)
2342 {
2343 struct its_device *deva = container_of(a, struct its_device, dev_list);
2344 struct its_device *devb = container_of(b, struct its_device, dev_list);
2345
2346 if (deva->device_id < devb->device_id)
2347 return -1;
2348 else
2349 return 1;
2350 }
2351
2352 /**
2353 * vgic_its_save_device_tables - Save the device table and all ITT
2354 * into guest RAM
2355 *
2356 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2357 * returns the GPA of the device entry
2358 */
vgic_its_save_device_tables(struct vgic_its *its)2359 static int vgic_its_save_device_tables(struct vgic_its *its)
2360 {
2361 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2362 u64 baser = its->baser_device_table;
2363 struct its_device *dev;
2364 int dte_esz = abi->dte_esz;
2365
2366 if (!(baser & GITS_BASER_VALID))
2367 return 0;
2368
2369 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2370
2371 list_for_each_entry(dev, &its->device_list, dev_list) {
2372 int ret;
2373 gpa_t eaddr;
2374
2375 if (!vgic_its_check_id(its, baser,
2376 dev->device_id, &eaddr))
2377 return -EINVAL;
2378
2379 ret = vgic_its_save_itt(its, dev);
2380 if (ret)
2381 return ret;
2382
2383 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2384 if (ret)
2385 return ret;
2386 }
2387 return 0;
2388 }
2389
2390 /**
2391 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2392 *
2393 * @its: its handle
2394 * @id: index of the entry in the L1 table
2395 * @addr: kernel VA
2396 * @opaque: unused
2397 *
2398 * L1 table entries are scanned by steps of 1 entry
2399 * Return < 0 if error, 0 if last dte was found when scanning the L2
2400 * table, +1 otherwise (meaning next L1 entry must be scanned)
2401 */
handle_l1_dte(struct vgic_its *its, u32 id, void *addr, void *opaque)2402 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2403 void *opaque)
2404 {
2405 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2406 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2407 u64 entry = *(u64 *)addr;
2408 int dte_esz = abi->dte_esz;
2409 gpa_t gpa;
2410 int ret;
2411
2412 entry = le64_to_cpu(entry);
2413
2414 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2415 return 1;
2416
2417 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2418
2419 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2420 l2_start_id, vgic_its_restore_dte, NULL);
2421
2422 return ret;
2423 }
2424
2425 /**
2426 * vgic_its_restore_device_tables - Restore the device table and all ITT
2427 * from guest RAM to internal data structs
2428 */
vgic_its_restore_device_tables(struct vgic_its *its)2429 static int vgic_its_restore_device_tables(struct vgic_its *its)
2430 {
2431 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2432 u64 baser = its->baser_device_table;
2433 int l1_esz, ret;
2434 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2435 gpa_t l1_gpa;
2436
2437 if (!(baser & GITS_BASER_VALID))
2438 return 0;
2439
2440 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2441
2442 if (baser & GITS_BASER_INDIRECT) {
2443 l1_esz = GITS_LVL1_ENTRY_SIZE;
2444 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2445 handle_l1_dte, NULL);
2446 } else {
2447 l1_esz = abi->dte_esz;
2448 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2449 vgic_its_restore_dte, NULL);
2450 }
2451
2452 /* scan_its_table returns +1 if all entries are invalid */
2453 if (ret > 0)
2454 ret = 0;
2455
2456 return ret;
2457 }
2458
vgic_its_save_cte(struct vgic_its *its, struct its_collection *collection, gpa_t gpa, int esz)2459 static int vgic_its_save_cte(struct vgic_its *its,
2460 struct its_collection *collection,
2461 gpa_t gpa, int esz)
2462 {
2463 u64 val;
2464
2465 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2466 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2467 collection->collection_id);
2468 val = cpu_to_le64(val);
2469 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2470 }
2471
vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)2472 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2473 {
2474 struct its_collection *collection;
2475 struct kvm *kvm = its->dev->kvm;
2476 u32 target_addr, coll_id;
2477 u64 val;
2478 int ret;
2479
2480 BUG_ON(esz > sizeof(val));
2481 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2482 if (ret)
2483 return ret;
2484 val = le64_to_cpu(val);
2485 if (!(val & KVM_ITS_CTE_VALID_MASK))
2486 return 0;
2487
2488 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2489 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2490
2491 if (target_addr != COLLECTION_NOT_MAPPED &&
2492 target_addr >= atomic_read(&kvm->online_vcpus))
2493 return -EINVAL;
2494
2495 collection = find_collection(its, coll_id);
2496 if (collection)
2497 return -EEXIST;
2498 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2499 if (ret)
2500 return ret;
2501 collection->target_addr = target_addr;
2502 return 1;
2503 }
2504
2505 /**
2506 * vgic_its_save_collection_table - Save the collection table into
2507 * guest RAM
2508 */
vgic_its_save_collection_table(struct vgic_its *its)2509 static int vgic_its_save_collection_table(struct vgic_its *its)
2510 {
2511 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2512 u64 baser = its->baser_coll_table;
2513 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2514 struct its_collection *collection;
2515 u64 val;
2516 size_t max_size, filled = 0;
2517 int ret, cte_esz = abi->cte_esz;
2518
2519 if (!(baser & GITS_BASER_VALID))
2520 return 0;
2521
2522 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2523
2524 list_for_each_entry(collection, &its->collection_list, coll_list) {
2525 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2526 if (ret)
2527 return ret;
2528 gpa += cte_esz;
2529 filled += cte_esz;
2530 }
2531
2532 if (filled == max_size)
2533 return 0;
2534
2535 /*
2536 * table is not fully filled, add a last dummy element
2537 * with valid bit unset
2538 */
2539 val = 0;
2540 BUG_ON(cte_esz > sizeof(val));
2541 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2542 return ret;
2543 }
2544
2545 /**
2546 * vgic_its_restore_collection_table - reads the collection table
2547 * in guest memory and restores the ITS internal state. Requires the
2548 * BASER registers to be restored before.
2549 */
vgic_its_restore_collection_table(struct vgic_its *its)2550 static int vgic_its_restore_collection_table(struct vgic_its *its)
2551 {
2552 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2553 u64 baser = its->baser_coll_table;
2554 int cte_esz = abi->cte_esz;
2555 size_t max_size, read = 0;
2556 gpa_t gpa;
2557 int ret;
2558
2559 if (!(baser & GITS_BASER_VALID))
2560 return 0;
2561
2562 gpa = GITS_BASER_ADDR_48_to_52(baser);
2563
2564 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2565
2566 while (read < max_size) {
2567 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2568 if (ret <= 0)
2569 break;
2570 gpa += cte_esz;
2571 read += cte_esz;
2572 }
2573
2574 if (ret > 0)
2575 return 0;
2576
2577 return ret;
2578 }
2579
2580 /**
2581 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2582 * according to v0 ABI
2583 */
vgic_its_save_tables_v0(struct vgic_its *its)2584 static int vgic_its_save_tables_v0(struct vgic_its *its)
2585 {
2586 int ret;
2587
2588 ret = vgic_its_save_device_tables(its);
2589 if (ret)
2590 return ret;
2591
2592 return vgic_its_save_collection_table(its);
2593 }
2594
2595 /**
2596 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2597 * to internal data structs according to V0 ABI
2598 *
2599 */
vgic_its_restore_tables_v0(struct vgic_its *its)2600 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2601 {
2602 int ret;
2603
2604 ret = vgic_its_restore_collection_table(its);
2605 if (ret)
2606 return ret;
2607
2608 return vgic_its_restore_device_tables(its);
2609 }
2610
vgic_its_commit_v0(struct vgic_its *its)2611 static int vgic_its_commit_v0(struct vgic_its *its)
2612 {
2613 const struct vgic_its_abi *abi;
2614
2615 abi = vgic_its_get_abi(its);
2616 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2617 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2618
2619 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2620 << GITS_BASER_ENTRY_SIZE_SHIFT);
2621
2622 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2623 << GITS_BASER_ENTRY_SIZE_SHIFT);
2624 return 0;
2625 }
2626
vgic_its_reset(struct kvm *kvm, struct vgic_its *its)2627 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2628 {
2629 /* We need to keep the ABI specific field values */
2630 its->baser_coll_table &= ~GITS_BASER_VALID;
2631 its->baser_device_table &= ~GITS_BASER_VALID;
2632 its->cbaser = 0;
2633 its->creadr = 0;
2634 its->cwriter = 0;
2635 its->enabled = 0;
2636 vgic_its_free_device_list(kvm, its);
2637 vgic_its_free_collection_list(kvm, its);
2638 }
2639
vgic_its_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2640 static int vgic_its_has_attr(struct kvm_device *dev,
2641 struct kvm_device_attr *attr)
2642 {
2643 switch (attr->group) {
2644 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2645 switch (attr->attr) {
2646 case KVM_VGIC_ITS_ADDR_TYPE:
2647 return 0;
2648 }
2649 break;
2650 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2651 switch (attr->attr) {
2652 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2653 return 0;
2654 case KVM_DEV_ARM_ITS_CTRL_RESET:
2655 return 0;
2656 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2657 return 0;
2658 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2659 return 0;
2660 }
2661 break;
2662 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2663 return vgic_its_has_attr_regs(dev, attr);
2664 }
2665 return -ENXIO;
2666 }
2667
vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)2668 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2669 {
2670 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2671 int ret = 0;
2672
2673 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2674 return 0;
2675
2676 mutex_lock(&kvm->lock);
2677 mutex_lock(&its->its_lock);
2678
2679 if (!lock_all_vcpus(kvm)) {
2680 mutex_unlock(&its->its_lock);
2681 mutex_unlock(&kvm->lock);
2682 return -EBUSY;
2683 }
2684
2685 switch (attr) {
2686 case KVM_DEV_ARM_ITS_CTRL_RESET:
2687 vgic_its_reset(kvm, its);
2688 break;
2689 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2690 ret = abi->save_tables(its);
2691 break;
2692 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2693 ret = abi->restore_tables(its);
2694 break;
2695 }
2696
2697 unlock_all_vcpus(kvm);
2698 mutex_unlock(&its->its_lock);
2699 mutex_unlock(&kvm->lock);
2700 return ret;
2701 }
2702
vgic_its_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2703 static int vgic_its_set_attr(struct kvm_device *dev,
2704 struct kvm_device_attr *attr)
2705 {
2706 struct vgic_its *its = dev->private;
2707 int ret;
2708
2709 switch (attr->group) {
2710 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2711 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2712 unsigned long type = (unsigned long)attr->attr;
2713 u64 addr;
2714
2715 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2716 return -ENODEV;
2717
2718 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2719 return -EFAULT;
2720
2721 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2722 addr, SZ_64K);
2723 if (ret)
2724 return ret;
2725
2726 return vgic_register_its_iodev(dev->kvm, its, addr);
2727 }
2728 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2729 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2730 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2731 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2732 u64 reg;
2733
2734 if (get_user(reg, uaddr))
2735 return -EFAULT;
2736
2737 return vgic_its_attr_regs_access(dev, attr, ®, true);
2738 }
2739 }
2740 return -ENXIO;
2741 }
2742
vgic_its_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)2743 static int vgic_its_get_attr(struct kvm_device *dev,
2744 struct kvm_device_attr *attr)
2745 {
2746 switch (attr->group) {
2747 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2748 struct vgic_its *its = dev->private;
2749 u64 addr = its->vgic_its_base;
2750 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2751 unsigned long type = (unsigned long)attr->attr;
2752
2753 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2754 return -ENODEV;
2755
2756 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2757 return -EFAULT;
2758 break;
2759 }
2760 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2761 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2762 u64 reg;
2763 int ret;
2764
2765 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2766 if (ret)
2767 return ret;
2768 return put_user(reg, uaddr);
2769 }
2770 default:
2771 return -ENXIO;
2772 }
2773
2774 return 0;
2775 }
2776
2777 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2778 .name = "kvm-arm-vgic-its",
2779 .create = vgic_its_create,
2780 .destroy = vgic_its_destroy,
2781 .set_attr = vgic_its_set_attr,
2782 .get_attr = vgic_its_get_attr,
2783 .has_attr = vgic_its_has_attr,
2784 };
2785
kvm_vgic_register_its_device(void)2786 int kvm_vgic_register_its_device(void)
2787 {
2788 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2789 KVM_DEV_TYPE_ARM_VGIC_ITS);
2790 }
2791