1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 #include "vgic/vgic.h"
34 
35 #include "trace.h"
36 
37 /*
38  * All of this file is extremely similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
read_from_write_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 				 struct sys_reg_params *params,
50 				 const struct sys_reg_desc *r)
51 {
52 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 	print_sys_reg_instr(params);
54 	kvm_inject_undefined(vcpu);
55 	return false;
56 }
57 
write_to_read_only(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 			       struct sys_reg_params *params,
60 			       const struct sys_reg_desc *r)
61 {
62 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 	print_sys_reg_instr(params);
64 	kvm_inject_undefined(vcpu);
65 	return false;
66 }
67 
__vcpu_read_sys_reg_from_cpu(int reg, u64 *val)68 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
69 {
70 	/*
71 	 * System registers listed in the switch are not saved on every
72 	 * exit from the guest but are only saved on vcpu_put.
73 	 *
74 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
75 	 * should never be listed below, because the guest cannot modify its
76 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
77 	 * thread when emulating cross-VCPU communication.
78 	 */
79 	switch (reg) {
80 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
81 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
82 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
83 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
84 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
85 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
86 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
87 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
88 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
89 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
90 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
91 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
92 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
93 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
94 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
95 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
96 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
97 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
98 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
99 	case PAR_EL1:		*val = read_sysreg_par();		break;
100 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
101 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
102 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
103 	default:		return false;
104 	}
105 
106 	return true;
107 }
108 
__vcpu_write_sys_reg_to_cpu(u64 val, int reg)109 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
110 {
111 	/*
112 	 * System registers listed in the switch are not restored on every
113 	 * entry to the guest but are only restored on vcpu_load.
114 	 *
115 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
116 	 * should never be listed below, because the MPIDR should only be set
117 	 * once, before running the VCPU, and never changed later.
118 	 */
119 	switch (reg) {
120 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
121 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
122 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
123 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
124 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
125 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
126 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
127 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
128 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
129 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
130 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
131 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
132 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
133 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
134 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
135 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
136 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
137 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
138 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
139 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
140 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
141 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
142 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
143 	default:		return false;
144 	}
145 
146 	return true;
147 }
148 
vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)149 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
150 {
151 	u64 val = 0x8badf00d8badf00d;
152 
153 	if (vcpu->arch.sysregs_loaded_on_cpu &&
154 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
155 		return val;
156 
157 	return __vcpu_sys_reg(vcpu, reg);
158 }
159 
vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)160 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
161 {
162 	if (vcpu->arch.sysregs_loaded_on_cpu &&
163 	    __vcpu_write_sys_reg_to_cpu(val, reg))
164 		return;
165 
166 	 __vcpu_sys_reg(vcpu, reg) = val;
167 }
168 
169 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
170 static u32 cache_levels;
171 
172 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
173 #define CSSELR_MAX 12
174 
175 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)176 static u32 get_ccsidr(u32 csselr)
177 {
178 	u32 ccsidr;
179 
180 	/* Make sure noone else changes CSSELR during this! */
181 	local_irq_disable();
182 	write_sysreg(csselr, csselr_el1);
183 	isb();
184 	ccsidr = read_sysreg(ccsidr_el1);
185 	local_irq_enable();
186 
187 	return ccsidr;
188 }
189 
190 /*
191  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
192  */
access_dcsw(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)193 static bool access_dcsw(struct kvm_vcpu *vcpu,
194 			struct sys_reg_params *p,
195 			const struct sys_reg_desc *r)
196 {
197 	if (!p->is_write)
198 		return read_from_write_only(vcpu, p, r);
199 
200 	/*
201 	 * Only track S/W ops if we don't have FWB. It still indicates
202 	 * that the guest is a bit broken (S/W operations should only
203 	 * be done by firmware, knowing that there is only a single
204 	 * CPU left in the system, and certainly not from non-secure
205 	 * software).
206 	 */
207 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
208 		kvm_set_way_flush(vcpu);
209 
210 	return true;
211 }
212 
213 /*
214  * Generic accessor for VM registers. Only called as long as HCR_TVM
215  * is set. If the guest enables the MMU, we stop trapping the VM
216  * sys_regs and leave it in complete control of the caches.
217  */
access_vm_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)218 static bool access_vm_reg(struct kvm_vcpu *vcpu,
219 			  struct sys_reg_params *p,
220 			  const struct sys_reg_desc *r)
221 {
222 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
223 	u64 val;
224 	int reg = r->reg;
225 
226 	BUG_ON(!p->is_write);
227 
228 	/* See the 32bit mapping in kvm_host.h */
229 	if (p->is_aarch32)
230 		reg = r->reg / 2;
231 
232 	if (!p->is_aarch32 || !p->is_32bit) {
233 		val = p->regval;
234 	} else {
235 		val = vcpu_read_sys_reg(vcpu, reg);
236 		if (r->reg % 2)
237 			val = (p->regval << 32) | (u64)lower_32_bits(val);
238 		else
239 			val = ((u64)upper_32_bits(val) << 32) |
240 				lower_32_bits(p->regval);
241 	}
242 	vcpu_write_sys_reg(vcpu, val, reg);
243 
244 	kvm_toggle_cache(vcpu, was_enabled);
245 	return true;
246 }
247 
access_actlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)248 static bool access_actlr(struct kvm_vcpu *vcpu,
249 			 struct sys_reg_params *p,
250 			 const struct sys_reg_desc *r)
251 {
252 	if (p->is_write)
253 		return ignore_write(vcpu, p);
254 
255 	p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
256 
257 	if (p->is_aarch32) {
258 		if (r->Op2 & 2)
259 			p->regval = upper_32_bits(p->regval);
260 		else
261 			p->regval = lower_32_bits(p->regval);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Trap handler for the GICv3 SGI generation system register.
269  * Forward the request to the VGIC emulation.
270  * The cp15_64 code makes sure this automatically works
271  * for both AArch64 and AArch32 accesses.
272  */
access_gic_sgi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)273 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
274 			   struct sys_reg_params *p,
275 			   const struct sys_reg_desc *r)
276 {
277 	bool g1;
278 
279 	if (!kvm_has_gicv3(vcpu->kvm)) {
280 		kvm_inject_undefined(vcpu);
281 		return false;
282 	}
283 
284 	if (!p->is_write)
285 		return read_from_write_only(vcpu, p, r);
286 
287 	/*
288 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
289 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
290 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
291 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
292 	 * group.
293 	 */
294 	if (p->is_aarch32) {
295 		switch (p->Op1) {
296 		default:		/* Keep GCC quiet */
297 		case 0:			/* ICC_SGI1R */
298 			g1 = true;
299 			break;
300 		case 1:			/* ICC_ASGI1R */
301 		case 2:			/* ICC_SGI0R */
302 			g1 = false;
303 			break;
304 		}
305 	} else {
306 		switch (p->Op2) {
307 		default:		/* Keep GCC quiet */
308 		case 5:			/* ICC_SGI1R_EL1 */
309 			g1 = true;
310 			break;
311 		case 6:			/* ICC_ASGI1R_EL1 */
312 		case 7:			/* ICC_SGI0R_EL1 */
313 			g1 = false;
314 			break;
315 		}
316 	}
317 
318 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
319 
320 	return true;
321 }
322 
access_gic_sre(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)323 static bool access_gic_sre(struct kvm_vcpu *vcpu,
324 			   struct sys_reg_params *p,
325 			   const struct sys_reg_desc *r)
326 {
327 	if (p->is_write)
328 		return ignore_write(vcpu, p);
329 
330 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
331 	return true;
332 }
333 
trap_raz_wi(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)334 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
335 			struct sys_reg_params *p,
336 			const struct sys_reg_desc *r)
337 {
338 	if (p->is_write)
339 		return ignore_write(vcpu, p);
340 	else
341 		return read_zero(vcpu, p);
342 }
343 
344 /*
345  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
346  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
347  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
348  * treat it separately.
349  */
trap_loregion(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)350 static bool trap_loregion(struct kvm_vcpu *vcpu,
351 			  struct sys_reg_params *p,
352 			  const struct sys_reg_desc *r)
353 {
354 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
355 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
356 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
357 
358 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
359 		kvm_inject_undefined(vcpu);
360 		return false;
361 	}
362 
363 	if (p->is_write && sr == SYS_LORID_EL1)
364 		return write_to_read_only(vcpu, p, r);
365 
366 	return trap_raz_wi(vcpu, p, r);
367 }
368 
trap_oslsr_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)369 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
370 			   struct sys_reg_params *p,
371 			   const struct sys_reg_desc *r)
372 {
373 	if (p->is_write) {
374 		return ignore_write(vcpu, p);
375 	} else {
376 		p->regval = (1 << 3);
377 		return true;
378 	}
379 }
380 
trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)381 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
382 				   struct sys_reg_params *p,
383 				   const struct sys_reg_desc *r)
384 {
385 	if (p->is_write) {
386 		return ignore_write(vcpu, p);
387 	} else {
388 		p->regval = read_sysreg(dbgauthstatus_el1);
389 		return true;
390 	}
391 }
392 
393 /*
394  * We want to avoid world-switching all the DBG registers all the
395  * time:
396  *
397  * - If we've touched any debug register, it is likely that we're
398  *   going to touch more of them. It then makes sense to disable the
399  *   traps and start doing the save/restore dance
400  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
401  *   then mandatory to save/restore the registers, as the guest
402  *   depends on them.
403  *
404  * For this, we use a DIRTY bit, indicating the guest has modified the
405  * debug registers, used as follow:
406  *
407  * On guest entry:
408  * - If the dirty bit is set (because we're coming back from trapping),
409  *   disable the traps, save host registers, restore guest registers.
410  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
411  *   set the dirty bit, disable the traps, save host registers,
412  *   restore guest registers.
413  * - Otherwise, enable the traps
414  *
415  * On guest exit:
416  * - If the dirty bit is set, save guest registers, restore host
417  *   registers and clear the dirty bit. This ensure that the host can
418  *   now use the debug registers.
419  */
trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)420 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
421 			    struct sys_reg_params *p,
422 			    const struct sys_reg_desc *r)
423 {
424 	if (p->is_write) {
425 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
426 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
427 	} else {
428 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
429 	}
430 
431 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
432 
433 	return true;
434 }
435 
436 /*
437  * reg_to_dbg/dbg_to_reg
438  *
439  * A 32 bit write to a debug register leave top bits alone
440  * A 32 bit read from a debug register only returns the bottom bits
441  *
442  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
443  * hyp.S code switches between host and guest values in future.
444  */
reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, u64 *dbg_reg)445 static void reg_to_dbg(struct kvm_vcpu *vcpu,
446 		       struct sys_reg_params *p,
447 		       u64 *dbg_reg)
448 {
449 	u64 val = p->regval;
450 
451 	if (p->is_32bit) {
452 		val &= 0xffffffffUL;
453 		val |= ((*dbg_reg >> 32) << 32);
454 	}
455 
456 	*dbg_reg = val;
457 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
458 }
459 
dbg_to_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, u64 *dbg_reg)460 static void dbg_to_reg(struct kvm_vcpu *vcpu,
461 		       struct sys_reg_params *p,
462 		       u64 *dbg_reg)
463 {
464 	p->regval = *dbg_reg;
465 	if (p->is_32bit)
466 		p->regval &= 0xffffffffUL;
467 }
468 
trap_bvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)469 static bool trap_bvr(struct kvm_vcpu *vcpu,
470 		     struct sys_reg_params *p,
471 		     const struct sys_reg_desc *rd)
472 {
473 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
474 
475 	if (p->is_write)
476 		reg_to_dbg(vcpu, p, dbg_reg);
477 	else
478 		dbg_to_reg(vcpu, p, dbg_reg);
479 
480 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
481 
482 	return true;
483 }
484 
set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)485 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
486 		const struct kvm_one_reg *reg, void __user *uaddr)
487 {
488 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
489 
490 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
491 		return -EFAULT;
492 	return 0;
493 }
494 
get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)495 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 	const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
499 
500 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
501 		return -EFAULT;
502 	return 0;
503 }
504 
reset_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)505 static void reset_bvr(struct kvm_vcpu *vcpu,
506 		      const struct sys_reg_desc *rd)
507 {
508 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
509 }
510 
trap_bcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)511 static bool trap_bcr(struct kvm_vcpu *vcpu,
512 		     struct sys_reg_params *p,
513 		     const struct sys_reg_desc *rd)
514 {
515 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
516 
517 	if (p->is_write)
518 		reg_to_dbg(vcpu, p, dbg_reg);
519 	else
520 		dbg_to_reg(vcpu, p, dbg_reg);
521 
522 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
523 
524 	return true;
525 }
526 
set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)527 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
528 		const struct kvm_one_reg *reg, void __user *uaddr)
529 {
530 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
531 
532 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
533 		return -EFAULT;
534 
535 	return 0;
536 }
537 
get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)538 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 	const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
542 
543 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
544 		return -EFAULT;
545 	return 0;
546 }
547 
reset_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)548 static void reset_bcr(struct kvm_vcpu *vcpu,
549 		      const struct sys_reg_desc *rd)
550 {
551 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
552 }
553 
trap_wvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)554 static bool trap_wvr(struct kvm_vcpu *vcpu,
555 		     struct sys_reg_params *p,
556 		     const struct sys_reg_desc *rd)
557 {
558 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
559 
560 	if (p->is_write)
561 		reg_to_dbg(vcpu, p, dbg_reg);
562 	else
563 		dbg_to_reg(vcpu, p, dbg_reg);
564 
565 	trace_trap_reg(__func__, rd->CRm, p->is_write,
566 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
567 
568 	return true;
569 }
570 
set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)571 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
572 		const struct kvm_one_reg *reg, void __user *uaddr)
573 {
574 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
575 
576 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
577 		return -EFAULT;
578 	return 0;
579 }
580 
get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)581 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 	const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
585 
586 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
587 		return -EFAULT;
588 	return 0;
589 }
590 
reset_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)591 static void reset_wvr(struct kvm_vcpu *vcpu,
592 		      const struct sys_reg_desc *rd)
593 {
594 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
595 }
596 
trap_wcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)597 static bool trap_wcr(struct kvm_vcpu *vcpu,
598 		     struct sys_reg_params *p,
599 		     const struct sys_reg_desc *rd)
600 {
601 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
602 
603 	if (p->is_write)
604 		reg_to_dbg(vcpu, p, dbg_reg);
605 	else
606 		dbg_to_reg(vcpu, p, dbg_reg);
607 
608 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
609 
610 	return true;
611 }
612 
set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)613 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
614 		const struct kvm_one_reg *reg, void __user *uaddr)
615 {
616 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
617 
618 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
619 		return -EFAULT;
620 	return 0;
621 }
622 
get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)623 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
624 	const struct kvm_one_reg *reg, void __user *uaddr)
625 {
626 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
627 
628 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
629 		return -EFAULT;
630 	return 0;
631 }
632 
reset_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)633 static void reset_wcr(struct kvm_vcpu *vcpu,
634 		      const struct sys_reg_desc *rd)
635 {
636 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
637 }
638 
reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)639 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641 	u64 amair = read_sysreg(amair_el1);
642 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
643 }
644 
reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)645 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 actlr = read_sysreg(actlr_el1);
648 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
649 }
650 
reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)651 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
652 {
653 	u64 mpidr;
654 
655 	/*
656 	 * Map the vcpu_id into the first three affinity level fields of
657 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
658 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
659 	 * of the GICv3 to be able to address each CPU directly when
660 	 * sending IPIs.
661 	 */
662 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
663 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
664 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
665 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
666 }
667 
reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)668 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670 	u64 pmcr, val;
671 
672 	/* No PMU available, PMCR_EL0 may UNDEF... */
673 	if (!kvm_arm_support_pmu_v3())
674 		return;
675 
676 	pmcr = read_sysreg(pmcr_el0);
677 	/*
678 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
679 	 * except PMCR.E resetting to zero.
680 	 */
681 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
682 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
683 	if (!system_supports_32bit_el0())
684 		val |= ARMV8_PMU_PMCR_LC;
685 	__vcpu_sys_reg(vcpu, r->reg) = val;
686 }
687 
check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)688 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
689 {
690 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
691 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
692 
693 	if (!enabled)
694 		kvm_inject_undefined(vcpu);
695 
696 	return !enabled;
697 }
698 
pmu_access_el0_disabled(struct kvm_vcpu *vcpu)699 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
702 }
703 
pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)704 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
707 }
708 
pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)709 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
710 {
711 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
712 }
713 
pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)714 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
715 {
716 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
717 }
718 
access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)719 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
720 			const struct sys_reg_desc *r)
721 {
722 	u64 val;
723 
724 	if (!kvm_arm_pmu_v3_ready(vcpu))
725 		return trap_raz_wi(vcpu, p, r);
726 
727 	if (pmu_access_el0_disabled(vcpu))
728 		return false;
729 
730 	if (p->is_write) {
731 		/* Only update writeable bits of PMCR */
732 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
733 		val &= ~ARMV8_PMU_PMCR_MASK;
734 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
735 		if (!system_supports_32bit_el0())
736 			val |= ARMV8_PMU_PMCR_LC;
737 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
738 		kvm_pmu_handle_pmcr(vcpu, val);
739 		kvm_vcpu_pmu_restore_guest(vcpu);
740 	} else {
741 		/* PMCR.P & PMCR.C are RAZ */
742 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
743 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
744 		p->regval = val;
745 	}
746 
747 	return true;
748 }
749 
access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)750 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
751 			  const struct sys_reg_desc *r)
752 {
753 	if (!kvm_arm_pmu_v3_ready(vcpu))
754 		return trap_raz_wi(vcpu, p, r);
755 
756 	if (pmu_access_event_counter_el0_disabled(vcpu))
757 		return false;
758 
759 	if (p->is_write)
760 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
761 	else
762 		/* return PMSELR.SEL field */
763 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
764 			    & ARMV8_PMU_COUNTER_MASK;
765 
766 	return true;
767 }
768 
access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)769 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
770 			  const struct sys_reg_desc *r)
771 {
772 	u64 pmceid;
773 
774 	if (!kvm_arm_pmu_v3_ready(vcpu))
775 		return trap_raz_wi(vcpu, p, r);
776 
777 	BUG_ON(p->is_write);
778 
779 	if (pmu_access_el0_disabled(vcpu))
780 		return false;
781 
782 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
783 
784 	p->regval = pmceid;
785 
786 	return true;
787 }
788 
pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)789 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
790 {
791 	u64 pmcr, val;
792 
793 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
794 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
795 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
796 		kvm_inject_undefined(vcpu);
797 		return false;
798 	}
799 
800 	return true;
801 }
802 
access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)803 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
804 			      struct sys_reg_params *p,
805 			      const struct sys_reg_desc *r)
806 {
807 	u64 idx;
808 
809 	if (!kvm_arm_pmu_v3_ready(vcpu))
810 		return trap_raz_wi(vcpu, p, r);
811 
812 	if (r->CRn == 9 && r->CRm == 13) {
813 		if (r->Op2 == 2) {
814 			/* PMXEVCNTR_EL0 */
815 			if (pmu_access_event_counter_el0_disabled(vcpu))
816 				return false;
817 
818 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
819 			      & ARMV8_PMU_COUNTER_MASK;
820 		} else if (r->Op2 == 0) {
821 			/* PMCCNTR_EL0 */
822 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
823 				return false;
824 
825 			idx = ARMV8_PMU_CYCLE_IDX;
826 		} else {
827 			return false;
828 		}
829 	} else if (r->CRn == 0 && r->CRm == 9) {
830 		/* PMCCNTR */
831 		if (pmu_access_event_counter_el0_disabled(vcpu))
832 			return false;
833 
834 		idx = ARMV8_PMU_CYCLE_IDX;
835 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
836 		/* PMEVCNTRn_EL0 */
837 		if (pmu_access_event_counter_el0_disabled(vcpu))
838 			return false;
839 
840 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
841 	} else {
842 		return false;
843 	}
844 
845 	if (!pmu_counter_idx_valid(vcpu, idx))
846 		return false;
847 
848 	if (p->is_write) {
849 		if (pmu_access_el0_disabled(vcpu))
850 			return false;
851 
852 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
853 	} else {
854 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
855 	}
856 
857 	return true;
858 }
859 
access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)860 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
861 			       const struct sys_reg_desc *r)
862 {
863 	u64 idx, reg;
864 
865 	if (!kvm_arm_pmu_v3_ready(vcpu))
866 		return trap_raz_wi(vcpu, p, r);
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 		/* PMXEVTYPER_EL0 */
873 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874 		reg = PMEVTYPER0_EL0 + idx;
875 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 		if (idx == ARMV8_PMU_CYCLE_IDX)
878 			reg = PMCCFILTR_EL0;
879 		else
880 			/* PMEVTYPERn_EL0 */
881 			reg = PMEVTYPER0_EL0 + idx;
882 	} else {
883 		BUG();
884 	}
885 
886 	if (!pmu_counter_idx_valid(vcpu, idx))
887 		return false;
888 
889 	if (p->is_write) {
890 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892 		kvm_vcpu_pmu_restore_guest(vcpu);
893 	} else {
894 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895 	}
896 
897 	return true;
898 }
899 
access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 			   const struct sys_reg_desc *r)
902 {
903 	u64 val, mask;
904 
905 	if (!kvm_arm_pmu_v3_ready(vcpu))
906 		return trap_raz_wi(vcpu, p, r);
907 
908 	if (pmu_access_el0_disabled(vcpu))
909 		return false;
910 
911 	mask = kvm_pmu_valid_counter_mask(vcpu);
912 	if (p->is_write) {
913 		val = p->regval & mask;
914 		if (r->Op2 & 0x1) {
915 			/* accessing PMCNTENSET_EL0 */
916 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
917 			kvm_pmu_enable_counter_mask(vcpu, val);
918 			kvm_vcpu_pmu_restore_guest(vcpu);
919 		} else {
920 			/* accessing PMCNTENCLR_EL0 */
921 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
922 			kvm_pmu_disable_counter_mask(vcpu, val);
923 		}
924 	} else {
925 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
926 	}
927 
928 	return true;
929 }
930 
access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)931 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
932 			   const struct sys_reg_desc *r)
933 {
934 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
935 
936 	if (!kvm_arm_pmu_v3_ready(vcpu))
937 		return trap_raz_wi(vcpu, p, r);
938 
939 	if (!vcpu_mode_priv(vcpu)) {
940 		kvm_inject_undefined(vcpu);
941 		return false;
942 	}
943 
944 	if (p->is_write) {
945 		u64 val = p->regval & mask;
946 
947 		if (r->Op2 & 0x1)
948 			/* accessing PMINTENSET_EL1 */
949 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
950 		else
951 			/* accessing PMINTENCLR_EL1 */
952 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
953 	} else {
954 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
955 	}
956 
957 	return true;
958 }
959 
access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)960 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
961 			 const struct sys_reg_desc *r)
962 {
963 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
964 
965 	if (!kvm_arm_pmu_v3_ready(vcpu))
966 		return trap_raz_wi(vcpu, p, r);
967 
968 	if (pmu_access_el0_disabled(vcpu))
969 		return false;
970 
971 	if (p->is_write) {
972 		if (r->CRm & 0x2)
973 			/* accessing PMOVSSET_EL0 */
974 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
975 		else
976 			/* accessing PMOVSCLR_EL0 */
977 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
978 	} else {
979 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
980 	}
981 
982 	return true;
983 }
984 
access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)985 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
986 			   const struct sys_reg_desc *r)
987 {
988 	u64 mask;
989 
990 	if (!kvm_arm_pmu_v3_ready(vcpu))
991 		return trap_raz_wi(vcpu, p, r);
992 
993 	if (!p->is_write)
994 		return read_from_write_only(vcpu, p, r);
995 
996 	if (pmu_write_swinc_el0_disabled(vcpu))
997 		return false;
998 
999 	mask = kvm_pmu_valid_counter_mask(vcpu);
1000 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1001 	return true;
1002 }
1003 
access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1004 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1005 			     const struct sys_reg_desc *r)
1006 {
1007 	if (!kvm_arm_pmu_v3_ready(vcpu))
1008 		return trap_raz_wi(vcpu, p, r);
1009 
1010 	if (p->is_write) {
1011 		if (!vcpu_mode_priv(vcpu)) {
1012 			kvm_inject_undefined(vcpu);
1013 			return false;
1014 		}
1015 
1016 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1017 			       p->regval & ARMV8_PMU_USERENR_MASK;
1018 	} else {
1019 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1020 			    & ARMV8_PMU_USERENR_MASK;
1021 	}
1022 
1023 	return true;
1024 }
1025 
1026 #define reg_to_encoding(x)						\
1027 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
1028 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1029 
1030 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1031 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1032 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1033 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1034 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1035 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1036 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1037 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1038 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1039 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1040 
1041 /* Macro to expand the PMEVCNTRn_EL0 register */
1042 #define PMU_PMEVCNTR_EL0(n)						\
1043 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
1044 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1045 
1046 /* Macro to expand the PMEVTYPERn_EL0 register */
1047 #define PMU_PMEVTYPER_EL0(n)						\
1048 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1049 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1050 
undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1051 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1052 			 const struct sys_reg_desc *r)
1053 {
1054 	kvm_inject_undefined(vcpu);
1055 
1056 	return false;
1057 }
1058 
1059 /* Macro to expand the AMU counter and type registers*/
1060 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1061 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1062 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1063 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1064 
ptrauth_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)1065 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1066 			const struct sys_reg_desc *rd)
1067 {
1068 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1069 }
1070 
1071 /*
1072  * If we land here on a PtrAuth access, that is because we didn't
1073  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1074  * way this happens is when the guest does not have PtrAuth support
1075  * enabled.
1076  */
1077 #define __PTRAUTH_KEY(k)						\
1078 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1079 	.visibility = ptrauth_visibility}
1080 
1081 #define PTRAUTH_KEY(k)							\
1082 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1083 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1084 
access_arch_timer(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1085 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1086 			      struct sys_reg_params *p,
1087 			      const struct sys_reg_desc *r)
1088 {
1089 	enum kvm_arch_timers tmr;
1090 	enum kvm_arch_timer_regs treg;
1091 	u64 reg = reg_to_encoding(r);
1092 
1093 	switch (reg) {
1094 	case SYS_CNTP_TVAL_EL0:
1095 	case SYS_AARCH32_CNTP_TVAL:
1096 		tmr = TIMER_PTIMER;
1097 		treg = TIMER_REG_TVAL;
1098 		break;
1099 	case SYS_CNTP_CTL_EL0:
1100 	case SYS_AARCH32_CNTP_CTL:
1101 		tmr = TIMER_PTIMER;
1102 		treg = TIMER_REG_CTL;
1103 		break;
1104 	case SYS_CNTP_CVAL_EL0:
1105 	case SYS_AARCH32_CNTP_CVAL:
1106 		tmr = TIMER_PTIMER;
1107 		treg = TIMER_REG_CVAL;
1108 		break;
1109 	default:
1110 		BUG();
1111 	}
1112 
1113 	if (p->is_write)
1114 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1115 	else
1116 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1117 
1118 	return true;
1119 }
1120 
1121 /* Read a sanitised cpufeature ID register by sys_reg_desc */
read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r, bool raz)1122 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1123 		struct sys_reg_desc const *r, bool raz)
1124 {
1125 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1126 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1127 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1128 
1129 	if (id == SYS_ID_AA64PFR0_EL1) {
1130 		if (!vcpu_has_sve(vcpu))
1131 			val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1132 		val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1133 		val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1134 		val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1135 	} else if (id == SYS_ID_AA64PFR1_EL1) {
1136 		val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1137 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1138 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1139 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1140 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1141 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1142 	} else if (id == SYS_ID_AA64DFR0_EL1) {
1143 		/* Limit guests to PMUv3 for ARMv8.1 */
1144 		val = cpuid_feature_cap_perfmon_field(val,
1145 						ID_AA64DFR0_PMUVER_SHIFT,
1146 						ID_AA64DFR0_PMUVER_8_1);
1147 	} else if (id == SYS_ID_DFR0_EL1) {
1148 		/* Limit guests to PMUv3 for ARMv8.1 */
1149 		val = cpuid_feature_cap_perfmon_field(val,
1150 						ID_DFR0_PERFMON_SHIFT,
1151 						ID_DFR0_PERFMON_8_1);
1152 	}
1153 
1154 	return val;
1155 }
1156 
id_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)1157 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1158 				  const struct sys_reg_desc *r)
1159 {
1160 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1161 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1162 
1163 	switch (id) {
1164 	case SYS_ID_AA64ZFR0_EL1:
1165 		if (!vcpu_has_sve(vcpu))
1166 			return REG_RAZ;
1167 		break;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 /* cpufeature ID register access trap handlers */
1174 
__access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r, bool raz)1175 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1176 			    struct sys_reg_params *p,
1177 			    const struct sys_reg_desc *r,
1178 			    bool raz)
1179 {
1180 	if (p->is_write)
1181 		return write_to_read_only(vcpu, p, r);
1182 
1183 	p->regval = read_id_reg(vcpu, r, raz);
1184 	return true;
1185 }
1186 
access_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1187 static bool access_id_reg(struct kvm_vcpu *vcpu,
1188 			  struct sys_reg_params *p,
1189 			  const struct sys_reg_desc *r)
1190 {
1191 	bool raz = sysreg_visible_as_raz(vcpu, r);
1192 
1193 	return __access_id_reg(vcpu, p, r, raz);
1194 }
1195 
access_raz_id_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1196 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1197 			      struct sys_reg_params *p,
1198 			      const struct sys_reg_desc *r)
1199 {
1200 	return __access_id_reg(vcpu, p, r, true);
1201 }
1202 
1203 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1204 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1205 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1206 
1207 /* Visibility overrides for SVE-specific control registers */
sve_visibility(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)1208 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1209 				   const struct sys_reg_desc *rd)
1210 {
1211 	if (vcpu_has_sve(vcpu))
1212 		return 0;
1213 
1214 	return REG_HIDDEN;
1215 }
1216 
set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)1217 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1218 			       const struct sys_reg_desc *rd,
1219 			       const struct kvm_one_reg *reg, void __user *uaddr)
1220 {
1221 	const u64 id = sys_reg_to_index(rd);
1222 	int err;
1223 	u64 val;
1224 	u8 csv2;
1225 
1226 	err = reg_from_user(&val, uaddr, id);
1227 	if (err)
1228 		return err;
1229 
1230 	/*
1231 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1232 	 * it doesn't promise more than what is actually provided (the
1233 	 * guest could otherwise be covered in ectoplasmic residue).
1234 	 */
1235 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1236 	if (csv2 > 1 ||
1237 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1238 		return -EINVAL;
1239 
1240 	/* We can only differ with CSV2, and anything else is an error */
1241 	val ^= read_id_reg(vcpu, rd, false);
1242 	val &= ~(0xFUL << ID_AA64PFR0_CSV2_SHIFT);
1243 	if (val)
1244 		return -EINVAL;
1245 
1246 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * cpufeature ID register user accessors
1253  *
1254  * For now, these registers are immutable for userspace, so no values
1255  * are stored, and for set_id_reg() we don't allow the effective value
1256  * to be changed.
1257  */
__get_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, void __user *uaddr, bool raz)1258 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1259 			const struct sys_reg_desc *rd, void __user *uaddr,
1260 			bool raz)
1261 {
1262 	const u64 id = sys_reg_to_index(rd);
1263 	const u64 val = read_id_reg(vcpu, rd, raz);
1264 
1265 	return reg_to_user(uaddr, &val, id);
1266 }
1267 
__set_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, void __user *uaddr, bool raz)1268 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1269 			const struct sys_reg_desc *rd, void __user *uaddr,
1270 			bool raz)
1271 {
1272 	const u64 id = sys_reg_to_index(rd);
1273 	int err;
1274 	u64 val;
1275 
1276 	err = reg_from_user(&val, uaddr, id);
1277 	if (err)
1278 		return err;
1279 
1280 	/* This is what we mean by invariant: you can't change it. */
1281 	if (val != read_id_reg(vcpu, rd, raz))
1282 		return -EINVAL;
1283 
1284 	return 0;
1285 }
1286 
get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)1287 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1288 		      const struct kvm_one_reg *reg, void __user *uaddr)
1289 {
1290 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1291 
1292 	return __get_id_reg(vcpu, rd, uaddr, raz);
1293 }
1294 
set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)1295 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1296 		      const struct kvm_one_reg *reg, void __user *uaddr)
1297 {
1298 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1299 
1300 	return __set_id_reg(vcpu, rd, uaddr, raz);
1301 }
1302 
get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)1303 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1304 			  const struct kvm_one_reg *reg, void __user *uaddr)
1305 {
1306 	return __get_id_reg(vcpu, rd, uaddr, true);
1307 }
1308 
set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, const struct kvm_one_reg *reg, void __user *uaddr)1309 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1310 			  const struct kvm_one_reg *reg, void __user *uaddr)
1311 {
1312 	return __set_id_reg(vcpu, rd, uaddr, true);
1313 }
1314 
access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1315 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1316 		       const struct sys_reg_desc *r)
1317 {
1318 	if (p->is_write)
1319 		return write_to_read_only(vcpu, p, r);
1320 
1321 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1322 	return true;
1323 }
1324 
access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1325 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1326 			 const struct sys_reg_desc *r)
1327 {
1328 	if (p->is_write)
1329 		return write_to_read_only(vcpu, p, r);
1330 
1331 	p->regval = read_sysreg(clidr_el1);
1332 	return true;
1333 }
1334 
access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1335 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1336 			  const struct sys_reg_desc *r)
1337 {
1338 	int reg = r->reg;
1339 
1340 	/* See the 32bit mapping in kvm_host.h */
1341 	if (p->is_aarch32)
1342 		reg = r->reg / 2;
1343 
1344 	if (p->is_write)
1345 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1346 	else
1347 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1348 	return true;
1349 }
1350 
access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1351 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1352 			  const struct sys_reg_desc *r)
1353 {
1354 	u32 csselr;
1355 
1356 	if (p->is_write)
1357 		return write_to_read_only(vcpu, p, r);
1358 
1359 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1360 	p->regval = get_ccsidr(csselr);
1361 
1362 	/*
1363 	 * Guests should not be doing cache operations by set/way at all, and
1364 	 * for this reason, we trap them and attempt to infer the intent, so
1365 	 * that we can flush the entire guest's address space at the appropriate
1366 	 * time.
1367 	 * To prevent this trapping from causing performance problems, let's
1368 	 * expose the geometry of all data and unified caches (which are
1369 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1370 	 * [If guests should attempt to infer aliasing properties from the
1371 	 * geometry (which is not permitted by the architecture), they would
1372 	 * only do so for virtually indexed caches.]
1373 	 */
1374 	if (!(csselr & 1)) // data or unified cache
1375 		p->regval &= ~GENMASK(27, 3);
1376 	return true;
1377 }
1378 
1379 /* sys_reg_desc initialiser for known cpufeature ID registers */
1380 #define ID_SANITISED(name) {			\
1381 	SYS_DESC(SYS_##name),			\
1382 	.access	= access_id_reg,		\
1383 	.get_user = get_id_reg,			\
1384 	.set_user = set_id_reg,			\
1385 	.visibility = id_visibility,		\
1386 }
1387 
1388 /*
1389  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1390  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1391  * (1 <= crm < 8, 0 <= Op2 < 8).
1392  */
1393 #define ID_UNALLOCATED(crm, op2) {			\
1394 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1395 	.access = access_raz_id_reg,			\
1396 	.get_user = get_raz_id_reg,			\
1397 	.set_user = set_raz_id_reg,			\
1398 }
1399 
1400 /*
1401  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1402  * For now, these are exposed just like unallocated ID regs: they appear
1403  * RAZ for the guest.
1404  */
1405 #define ID_HIDDEN(name) {			\
1406 	SYS_DESC(SYS_##name),			\
1407 	.access = access_raz_id_reg,		\
1408 	.get_user = get_raz_id_reg,		\
1409 	.set_user = set_raz_id_reg,		\
1410 }
1411 
1412 /*
1413  * Architected system registers.
1414  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1415  *
1416  * Debug handling: We do trap most, if not all debug related system
1417  * registers. The implementation is good enough to ensure that a guest
1418  * can use these with minimal performance degradation. The drawback is
1419  * that we don't implement any of the external debug, none of the
1420  * OSlock protocol. This should be revisited if we ever encounter a
1421  * more demanding guest...
1422  */
1423 static const struct sys_reg_desc sys_reg_descs[] = {
1424 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1425 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1426 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1427 
1428 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1429 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1430 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1431 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1432 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1433 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1434 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1435 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1436 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1437 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1438 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1439 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1440 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1441 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1442 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1443 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1444 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1445 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1446 
1447 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1448 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1449 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1450 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1451 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1452 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1453 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1454 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1455 
1456 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1457 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1458 	// DBGDTR[TR]X_EL0 share the same encoding
1459 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1460 
1461 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1462 
1463 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1464 
1465 	/*
1466 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1467 	 * entries in arm64_ftr_regs[].
1468 	 */
1469 
1470 	/* AArch64 mappings of the AArch32 ID registers */
1471 	/* CRm=1 */
1472 	ID_SANITISED(ID_PFR0_EL1),
1473 	ID_SANITISED(ID_PFR1_EL1),
1474 	ID_SANITISED(ID_DFR0_EL1),
1475 	ID_HIDDEN(ID_AFR0_EL1),
1476 	ID_SANITISED(ID_MMFR0_EL1),
1477 	ID_SANITISED(ID_MMFR1_EL1),
1478 	ID_SANITISED(ID_MMFR2_EL1),
1479 	ID_SANITISED(ID_MMFR3_EL1),
1480 
1481 	/* CRm=2 */
1482 	ID_SANITISED(ID_ISAR0_EL1),
1483 	ID_SANITISED(ID_ISAR1_EL1),
1484 	ID_SANITISED(ID_ISAR2_EL1),
1485 	ID_SANITISED(ID_ISAR3_EL1),
1486 	ID_SANITISED(ID_ISAR4_EL1),
1487 	ID_SANITISED(ID_ISAR5_EL1),
1488 	ID_SANITISED(ID_MMFR4_EL1),
1489 	ID_SANITISED(ID_ISAR6_EL1),
1490 
1491 	/* CRm=3 */
1492 	ID_SANITISED(MVFR0_EL1),
1493 	ID_SANITISED(MVFR1_EL1),
1494 	ID_SANITISED(MVFR2_EL1),
1495 	ID_UNALLOCATED(3,3),
1496 	ID_SANITISED(ID_PFR2_EL1),
1497 	ID_HIDDEN(ID_DFR1_EL1),
1498 	ID_SANITISED(ID_MMFR5_EL1),
1499 	ID_UNALLOCATED(3,7),
1500 
1501 	/* AArch64 ID registers */
1502 	/* CRm=4 */
1503 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1504 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1505 	ID_SANITISED(ID_AA64PFR1_EL1),
1506 	ID_UNALLOCATED(4,2),
1507 	ID_UNALLOCATED(4,3),
1508 	ID_SANITISED(ID_AA64ZFR0_EL1),
1509 	ID_UNALLOCATED(4,5),
1510 	ID_UNALLOCATED(4,6),
1511 	ID_UNALLOCATED(4,7),
1512 
1513 	/* CRm=5 */
1514 	ID_SANITISED(ID_AA64DFR0_EL1),
1515 	ID_SANITISED(ID_AA64DFR1_EL1),
1516 	ID_UNALLOCATED(5,2),
1517 	ID_UNALLOCATED(5,3),
1518 	ID_HIDDEN(ID_AA64AFR0_EL1),
1519 	ID_HIDDEN(ID_AA64AFR1_EL1),
1520 	ID_UNALLOCATED(5,6),
1521 	ID_UNALLOCATED(5,7),
1522 
1523 	/* CRm=6 */
1524 	ID_SANITISED(ID_AA64ISAR0_EL1),
1525 	ID_SANITISED(ID_AA64ISAR1_EL1),
1526 	ID_SANITISED(ID_AA64ISAR2_EL1),
1527 	ID_UNALLOCATED(6,3),
1528 	ID_UNALLOCATED(6,4),
1529 	ID_UNALLOCATED(6,5),
1530 	ID_UNALLOCATED(6,6),
1531 	ID_UNALLOCATED(6,7),
1532 
1533 	/* CRm=7 */
1534 	ID_SANITISED(ID_AA64MMFR0_EL1),
1535 	ID_SANITISED(ID_AA64MMFR1_EL1),
1536 	ID_SANITISED(ID_AA64MMFR2_EL1),
1537 	ID_UNALLOCATED(7,3),
1538 	ID_UNALLOCATED(7,4),
1539 	ID_UNALLOCATED(7,5),
1540 	ID_UNALLOCATED(7,6),
1541 	ID_UNALLOCATED(7,7),
1542 
1543 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1544 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1545 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1546 
1547 	{ SYS_DESC(SYS_RGSR_EL1), undef_access },
1548 	{ SYS_DESC(SYS_GCR_EL1), undef_access },
1549 
1550 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1551 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1552 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1553 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1554 
1555 	PTRAUTH_KEY(APIA),
1556 	PTRAUTH_KEY(APIB),
1557 	PTRAUTH_KEY(APDA),
1558 	PTRAUTH_KEY(APDB),
1559 	PTRAUTH_KEY(APGA),
1560 
1561 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1562 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1563 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1564 
1565 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1566 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1567 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1568 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1569 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1570 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1571 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1572 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1573 
1574 	{ SYS_DESC(SYS_TFSR_EL1), undef_access },
1575 	{ SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1576 
1577 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1578 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1579 
1580 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1581 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1582 
1583 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1584 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1585 
1586 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1587 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1588 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1589 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1590 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1591 
1592 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1593 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1594 
1595 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1596 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1597 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1598 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1599 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1600 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1601 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1602 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1603 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1604 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1605 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1606 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1607 
1608 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1609 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1610 
1611 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1612 
1613 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1614 
1615 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1616 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1617 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1618 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1619 
1620 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1621 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1622 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1623 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1624 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1625 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1626 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1627 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1628 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1629 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1630 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1631 	/*
1632 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1633 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1634 	 */
1635 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1636 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1637 
1638 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1639 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1640 
1641 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1642 
1643 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1644 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1645 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1646 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1647 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1648 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1649 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1650 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1651 	AMU_AMEVCNTR0_EL0(0),
1652 	AMU_AMEVCNTR0_EL0(1),
1653 	AMU_AMEVCNTR0_EL0(2),
1654 	AMU_AMEVCNTR0_EL0(3),
1655 	AMU_AMEVCNTR0_EL0(4),
1656 	AMU_AMEVCNTR0_EL0(5),
1657 	AMU_AMEVCNTR0_EL0(6),
1658 	AMU_AMEVCNTR0_EL0(7),
1659 	AMU_AMEVCNTR0_EL0(8),
1660 	AMU_AMEVCNTR0_EL0(9),
1661 	AMU_AMEVCNTR0_EL0(10),
1662 	AMU_AMEVCNTR0_EL0(11),
1663 	AMU_AMEVCNTR0_EL0(12),
1664 	AMU_AMEVCNTR0_EL0(13),
1665 	AMU_AMEVCNTR0_EL0(14),
1666 	AMU_AMEVCNTR0_EL0(15),
1667 	AMU_AMEVTYPER0_EL0(0),
1668 	AMU_AMEVTYPER0_EL0(1),
1669 	AMU_AMEVTYPER0_EL0(2),
1670 	AMU_AMEVTYPER0_EL0(3),
1671 	AMU_AMEVTYPER0_EL0(4),
1672 	AMU_AMEVTYPER0_EL0(5),
1673 	AMU_AMEVTYPER0_EL0(6),
1674 	AMU_AMEVTYPER0_EL0(7),
1675 	AMU_AMEVTYPER0_EL0(8),
1676 	AMU_AMEVTYPER0_EL0(9),
1677 	AMU_AMEVTYPER0_EL0(10),
1678 	AMU_AMEVTYPER0_EL0(11),
1679 	AMU_AMEVTYPER0_EL0(12),
1680 	AMU_AMEVTYPER0_EL0(13),
1681 	AMU_AMEVTYPER0_EL0(14),
1682 	AMU_AMEVTYPER0_EL0(15),
1683 	AMU_AMEVCNTR1_EL0(0),
1684 	AMU_AMEVCNTR1_EL0(1),
1685 	AMU_AMEVCNTR1_EL0(2),
1686 	AMU_AMEVCNTR1_EL0(3),
1687 	AMU_AMEVCNTR1_EL0(4),
1688 	AMU_AMEVCNTR1_EL0(5),
1689 	AMU_AMEVCNTR1_EL0(6),
1690 	AMU_AMEVCNTR1_EL0(7),
1691 	AMU_AMEVCNTR1_EL0(8),
1692 	AMU_AMEVCNTR1_EL0(9),
1693 	AMU_AMEVCNTR1_EL0(10),
1694 	AMU_AMEVCNTR1_EL0(11),
1695 	AMU_AMEVCNTR1_EL0(12),
1696 	AMU_AMEVCNTR1_EL0(13),
1697 	AMU_AMEVCNTR1_EL0(14),
1698 	AMU_AMEVCNTR1_EL0(15),
1699 	AMU_AMEVTYPER1_EL0(0),
1700 	AMU_AMEVTYPER1_EL0(1),
1701 	AMU_AMEVTYPER1_EL0(2),
1702 	AMU_AMEVTYPER1_EL0(3),
1703 	AMU_AMEVTYPER1_EL0(4),
1704 	AMU_AMEVTYPER1_EL0(5),
1705 	AMU_AMEVTYPER1_EL0(6),
1706 	AMU_AMEVTYPER1_EL0(7),
1707 	AMU_AMEVTYPER1_EL0(8),
1708 	AMU_AMEVTYPER1_EL0(9),
1709 	AMU_AMEVTYPER1_EL0(10),
1710 	AMU_AMEVTYPER1_EL0(11),
1711 	AMU_AMEVTYPER1_EL0(12),
1712 	AMU_AMEVTYPER1_EL0(13),
1713 	AMU_AMEVTYPER1_EL0(14),
1714 	AMU_AMEVTYPER1_EL0(15),
1715 
1716 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1717 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1718 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1719 
1720 	/* PMEVCNTRn_EL0 */
1721 	PMU_PMEVCNTR_EL0(0),
1722 	PMU_PMEVCNTR_EL0(1),
1723 	PMU_PMEVCNTR_EL0(2),
1724 	PMU_PMEVCNTR_EL0(3),
1725 	PMU_PMEVCNTR_EL0(4),
1726 	PMU_PMEVCNTR_EL0(5),
1727 	PMU_PMEVCNTR_EL0(6),
1728 	PMU_PMEVCNTR_EL0(7),
1729 	PMU_PMEVCNTR_EL0(8),
1730 	PMU_PMEVCNTR_EL0(9),
1731 	PMU_PMEVCNTR_EL0(10),
1732 	PMU_PMEVCNTR_EL0(11),
1733 	PMU_PMEVCNTR_EL0(12),
1734 	PMU_PMEVCNTR_EL0(13),
1735 	PMU_PMEVCNTR_EL0(14),
1736 	PMU_PMEVCNTR_EL0(15),
1737 	PMU_PMEVCNTR_EL0(16),
1738 	PMU_PMEVCNTR_EL0(17),
1739 	PMU_PMEVCNTR_EL0(18),
1740 	PMU_PMEVCNTR_EL0(19),
1741 	PMU_PMEVCNTR_EL0(20),
1742 	PMU_PMEVCNTR_EL0(21),
1743 	PMU_PMEVCNTR_EL0(22),
1744 	PMU_PMEVCNTR_EL0(23),
1745 	PMU_PMEVCNTR_EL0(24),
1746 	PMU_PMEVCNTR_EL0(25),
1747 	PMU_PMEVCNTR_EL0(26),
1748 	PMU_PMEVCNTR_EL0(27),
1749 	PMU_PMEVCNTR_EL0(28),
1750 	PMU_PMEVCNTR_EL0(29),
1751 	PMU_PMEVCNTR_EL0(30),
1752 	/* PMEVTYPERn_EL0 */
1753 	PMU_PMEVTYPER_EL0(0),
1754 	PMU_PMEVTYPER_EL0(1),
1755 	PMU_PMEVTYPER_EL0(2),
1756 	PMU_PMEVTYPER_EL0(3),
1757 	PMU_PMEVTYPER_EL0(4),
1758 	PMU_PMEVTYPER_EL0(5),
1759 	PMU_PMEVTYPER_EL0(6),
1760 	PMU_PMEVTYPER_EL0(7),
1761 	PMU_PMEVTYPER_EL0(8),
1762 	PMU_PMEVTYPER_EL0(9),
1763 	PMU_PMEVTYPER_EL0(10),
1764 	PMU_PMEVTYPER_EL0(11),
1765 	PMU_PMEVTYPER_EL0(12),
1766 	PMU_PMEVTYPER_EL0(13),
1767 	PMU_PMEVTYPER_EL0(14),
1768 	PMU_PMEVTYPER_EL0(15),
1769 	PMU_PMEVTYPER_EL0(16),
1770 	PMU_PMEVTYPER_EL0(17),
1771 	PMU_PMEVTYPER_EL0(18),
1772 	PMU_PMEVTYPER_EL0(19),
1773 	PMU_PMEVTYPER_EL0(20),
1774 	PMU_PMEVTYPER_EL0(21),
1775 	PMU_PMEVTYPER_EL0(22),
1776 	PMU_PMEVTYPER_EL0(23),
1777 	PMU_PMEVTYPER_EL0(24),
1778 	PMU_PMEVTYPER_EL0(25),
1779 	PMU_PMEVTYPER_EL0(26),
1780 	PMU_PMEVTYPER_EL0(27),
1781 	PMU_PMEVTYPER_EL0(28),
1782 	PMU_PMEVTYPER_EL0(29),
1783 	PMU_PMEVTYPER_EL0(30),
1784 	/*
1785 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1786 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1787 	 */
1788 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1789 
1790 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1791 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1792 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1793 };
1794 
trap_dbgidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1795 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1796 			struct sys_reg_params *p,
1797 			const struct sys_reg_desc *r)
1798 {
1799 	if (p->is_write) {
1800 		return ignore_write(vcpu, p);
1801 	} else {
1802 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1803 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1804 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1805 
1806 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1807 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1808 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1809 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1810 		return true;
1811 	}
1812 }
1813 
trap_debug32(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r)1814 static bool trap_debug32(struct kvm_vcpu *vcpu,
1815 			 struct sys_reg_params *p,
1816 			 const struct sys_reg_desc *r)
1817 {
1818 	if (p->is_write) {
1819 		vcpu_cp14(vcpu, r->reg) = p->regval;
1820 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1821 	} else {
1822 		p->regval = vcpu_cp14(vcpu, r->reg);
1823 	}
1824 
1825 	return true;
1826 }
1827 
1828 /* AArch32 debug register mappings
1829  *
1830  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1831  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1832  *
1833  * All control registers and watchpoint value registers are mapped to
1834  * the lower 32 bits of their AArch64 equivalents. We share the trap
1835  * handlers with the above AArch64 code which checks what mode the
1836  * system is in.
1837  */
1838 
trap_xvr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *rd)1839 static bool trap_xvr(struct kvm_vcpu *vcpu,
1840 		     struct sys_reg_params *p,
1841 		     const struct sys_reg_desc *rd)
1842 {
1843 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1844 
1845 	if (p->is_write) {
1846 		u64 val = *dbg_reg;
1847 
1848 		val &= 0xffffffffUL;
1849 		val |= p->regval << 32;
1850 		*dbg_reg = val;
1851 
1852 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1853 	} else {
1854 		p->regval = *dbg_reg >> 32;
1855 	}
1856 
1857 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1858 
1859 	return true;
1860 }
1861 
1862 #define DBG_BCR_BVR_WCR_WVR(n)						\
1863 	/* DBGBVRn */							\
1864 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1865 	/* DBGBCRn */							\
1866 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1867 	/* DBGWVRn */							\
1868 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1869 	/* DBGWCRn */							\
1870 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1871 
1872 #define DBGBXVR(n)							\
1873 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1874 
1875 /*
1876  * Trapped cp14 registers. We generally ignore most of the external
1877  * debug, on the principle that they don't really make sense to a
1878  * guest. Revisit this one day, would this principle change.
1879  */
1880 static const struct sys_reg_desc cp14_regs[] = {
1881 	/* DBGIDR */
1882 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1883 	/* DBGDTRRXext */
1884 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1885 
1886 	DBG_BCR_BVR_WCR_WVR(0),
1887 	/* DBGDSCRint */
1888 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1889 	DBG_BCR_BVR_WCR_WVR(1),
1890 	/* DBGDCCINT */
1891 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1892 	/* DBGDSCRext */
1893 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1894 	DBG_BCR_BVR_WCR_WVR(2),
1895 	/* DBGDTR[RT]Xint */
1896 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1897 	/* DBGDTR[RT]Xext */
1898 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1899 	DBG_BCR_BVR_WCR_WVR(3),
1900 	DBG_BCR_BVR_WCR_WVR(4),
1901 	DBG_BCR_BVR_WCR_WVR(5),
1902 	/* DBGWFAR */
1903 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1904 	/* DBGOSECCR */
1905 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1906 	DBG_BCR_BVR_WCR_WVR(6),
1907 	/* DBGVCR */
1908 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1909 	DBG_BCR_BVR_WCR_WVR(7),
1910 	DBG_BCR_BVR_WCR_WVR(8),
1911 	DBG_BCR_BVR_WCR_WVR(9),
1912 	DBG_BCR_BVR_WCR_WVR(10),
1913 	DBG_BCR_BVR_WCR_WVR(11),
1914 	DBG_BCR_BVR_WCR_WVR(12),
1915 	DBG_BCR_BVR_WCR_WVR(13),
1916 	DBG_BCR_BVR_WCR_WVR(14),
1917 	DBG_BCR_BVR_WCR_WVR(15),
1918 
1919 	/* DBGDRAR (32bit) */
1920 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1921 
1922 	DBGBXVR(0),
1923 	/* DBGOSLAR */
1924 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1925 	DBGBXVR(1),
1926 	/* DBGOSLSR */
1927 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1928 	DBGBXVR(2),
1929 	DBGBXVR(3),
1930 	/* DBGOSDLR */
1931 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1932 	DBGBXVR(4),
1933 	/* DBGPRCR */
1934 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1935 	DBGBXVR(5),
1936 	DBGBXVR(6),
1937 	DBGBXVR(7),
1938 	DBGBXVR(8),
1939 	DBGBXVR(9),
1940 	DBGBXVR(10),
1941 	DBGBXVR(11),
1942 	DBGBXVR(12),
1943 	DBGBXVR(13),
1944 	DBGBXVR(14),
1945 	DBGBXVR(15),
1946 
1947 	/* DBGDSAR (32bit) */
1948 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1949 
1950 	/* DBGDEVID2 */
1951 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1952 	/* DBGDEVID1 */
1953 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1954 	/* DBGDEVID */
1955 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1956 	/* DBGCLAIMSET */
1957 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1958 	/* DBGCLAIMCLR */
1959 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1960 	/* DBGAUTHSTATUS */
1961 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1962 };
1963 
1964 /* Trapped cp14 64bit registers */
1965 static const struct sys_reg_desc cp14_64_regs[] = {
1966 	/* DBGDRAR (64bit) */
1967 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1968 
1969 	/* DBGDSAR (64bit) */
1970 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1971 };
1972 
1973 /* Macro to expand the PMEVCNTRn register */
1974 #define PMU_PMEVCNTR(n)							\
1975 	/* PMEVCNTRn */							\
1976 	{ Op1(0), CRn(0b1110),						\
1977 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1978 	  access_pmu_evcntr }
1979 
1980 /* Macro to expand the PMEVTYPERn register */
1981 #define PMU_PMEVTYPER(n)						\
1982 	/* PMEVTYPERn */						\
1983 	{ Op1(0), CRn(0b1110),						\
1984 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1985 	  access_pmu_evtyper }
1986 
1987 /*
1988  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1989  * depending on the way they are accessed (as a 32bit or a 64bit
1990  * register).
1991  */
1992 static const struct sys_reg_desc cp15_regs[] = {
1993 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1994 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1995 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1996 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1997 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1998 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1999 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
2000 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
2001 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
2002 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
2003 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
2004 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
2005 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
2006 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
2007 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2008 
2009 	/*
2010 	 * DC{C,I,CI}SW operations:
2011 	 */
2012 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2013 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2014 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2015 
2016 	/* PMU */
2017 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2018 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2019 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2020 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2021 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2022 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2023 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2024 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2025 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2026 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2027 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2028 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2029 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2030 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2031 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2032 
2033 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2034 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2035 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2036 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2037 
2038 	/* ICC_SRE */
2039 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2040 
2041 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2042 
2043 	/* Arch Tmers */
2044 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2045 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2046 
2047 	/* PMEVCNTRn */
2048 	PMU_PMEVCNTR(0),
2049 	PMU_PMEVCNTR(1),
2050 	PMU_PMEVCNTR(2),
2051 	PMU_PMEVCNTR(3),
2052 	PMU_PMEVCNTR(4),
2053 	PMU_PMEVCNTR(5),
2054 	PMU_PMEVCNTR(6),
2055 	PMU_PMEVCNTR(7),
2056 	PMU_PMEVCNTR(8),
2057 	PMU_PMEVCNTR(9),
2058 	PMU_PMEVCNTR(10),
2059 	PMU_PMEVCNTR(11),
2060 	PMU_PMEVCNTR(12),
2061 	PMU_PMEVCNTR(13),
2062 	PMU_PMEVCNTR(14),
2063 	PMU_PMEVCNTR(15),
2064 	PMU_PMEVCNTR(16),
2065 	PMU_PMEVCNTR(17),
2066 	PMU_PMEVCNTR(18),
2067 	PMU_PMEVCNTR(19),
2068 	PMU_PMEVCNTR(20),
2069 	PMU_PMEVCNTR(21),
2070 	PMU_PMEVCNTR(22),
2071 	PMU_PMEVCNTR(23),
2072 	PMU_PMEVCNTR(24),
2073 	PMU_PMEVCNTR(25),
2074 	PMU_PMEVCNTR(26),
2075 	PMU_PMEVCNTR(27),
2076 	PMU_PMEVCNTR(28),
2077 	PMU_PMEVCNTR(29),
2078 	PMU_PMEVCNTR(30),
2079 	/* PMEVTYPERn */
2080 	PMU_PMEVTYPER(0),
2081 	PMU_PMEVTYPER(1),
2082 	PMU_PMEVTYPER(2),
2083 	PMU_PMEVTYPER(3),
2084 	PMU_PMEVTYPER(4),
2085 	PMU_PMEVTYPER(5),
2086 	PMU_PMEVTYPER(6),
2087 	PMU_PMEVTYPER(7),
2088 	PMU_PMEVTYPER(8),
2089 	PMU_PMEVTYPER(9),
2090 	PMU_PMEVTYPER(10),
2091 	PMU_PMEVTYPER(11),
2092 	PMU_PMEVTYPER(12),
2093 	PMU_PMEVTYPER(13),
2094 	PMU_PMEVTYPER(14),
2095 	PMU_PMEVTYPER(15),
2096 	PMU_PMEVTYPER(16),
2097 	PMU_PMEVTYPER(17),
2098 	PMU_PMEVTYPER(18),
2099 	PMU_PMEVTYPER(19),
2100 	PMU_PMEVTYPER(20),
2101 	PMU_PMEVTYPER(21),
2102 	PMU_PMEVTYPER(22),
2103 	PMU_PMEVTYPER(23),
2104 	PMU_PMEVTYPER(24),
2105 	PMU_PMEVTYPER(25),
2106 	PMU_PMEVTYPER(26),
2107 	PMU_PMEVTYPER(27),
2108 	PMU_PMEVTYPER(28),
2109 	PMU_PMEVTYPER(29),
2110 	PMU_PMEVTYPER(30),
2111 	/* PMCCFILTR */
2112 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2113 
2114 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2115 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2116 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2117 };
2118 
2119 static const struct sys_reg_desc cp15_64_regs[] = {
2120 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2121 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2122 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2123 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2124 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2125 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2126 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2127 };
2128 
check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, bool is_32)2129 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2130 			      bool is_32)
2131 {
2132 	unsigned int i;
2133 
2134 	for (i = 0; i < n; i++) {
2135 		if (!is_32 && table[i].reg && !table[i].reset) {
2136 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2137 				table, i);
2138 			return 1;
2139 		}
2140 
2141 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2142 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2143 			return 1;
2144 		}
2145 	}
2146 
2147 	return 0;
2148 }
2149 
match_sys_reg(const void *key, const void *elt)2150 static int match_sys_reg(const void *key, const void *elt)
2151 {
2152 	const unsigned long pval = (unsigned long)key;
2153 	const struct sys_reg_desc *r = elt;
2154 
2155 	return pval - reg_to_encoding(r);
2156 }
2157 
find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num)2158 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2159 					 const struct sys_reg_desc table[],
2160 					 unsigned int num)
2161 {
2162 	unsigned long pval = reg_to_encoding(params);
2163 
2164 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2165 }
2166 
kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)2167 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2168 {
2169 	kvm_inject_undefined(vcpu);
2170 	return 1;
2171 }
2172 
perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r)2173 static void perform_access(struct kvm_vcpu *vcpu,
2174 			   struct sys_reg_params *params,
2175 			   const struct sys_reg_desc *r)
2176 {
2177 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2178 
2179 	/* Check for regs disabled by runtime config */
2180 	if (sysreg_hidden(vcpu, r)) {
2181 		kvm_inject_undefined(vcpu);
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * Not having an accessor means that we have configured a trap
2187 	 * that we don't know how to handle. This certainly qualifies
2188 	 * as a gross bug that should be fixed right away.
2189 	 */
2190 	BUG_ON(!r->access);
2191 
2192 	/* Skip instruction if instructed so */
2193 	if (likely(r->access(vcpu, params, r)))
2194 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2195 }
2196 
2197 /*
2198  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2199  *                call the corresponding trap handler.
2200  *
2201  * @params: pointer to the descriptor of the access
2202  * @table: array of trap descriptors
2203  * @num: size of the trap descriptor array
2204  *
2205  * Return 0 if the access has been handled, and -1 if not.
2206  */
emulate_cp(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *table, size_t num)2207 static int emulate_cp(struct kvm_vcpu *vcpu,
2208 		      struct sys_reg_params *params,
2209 		      const struct sys_reg_desc *table,
2210 		      size_t num)
2211 {
2212 	const struct sys_reg_desc *r;
2213 
2214 	if (!table)
2215 		return -1;	/* Not handled */
2216 
2217 	r = find_reg(params, table, num);
2218 
2219 	if (r) {
2220 		perform_access(vcpu, params, r);
2221 		return 0;
2222 	}
2223 
2224 	/* Not handled */
2225 	return -1;
2226 }
2227 
unhandled_cp_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params)2228 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2229 				struct sys_reg_params *params)
2230 {
2231 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2232 	int cp = -1;
2233 
2234 	switch (esr_ec) {
2235 	case ESR_ELx_EC_CP15_32:
2236 	case ESR_ELx_EC_CP15_64:
2237 		cp = 15;
2238 		break;
2239 	case ESR_ELx_EC_CP14_MR:
2240 	case ESR_ELx_EC_CP14_64:
2241 		cp = 14;
2242 		break;
2243 	default:
2244 		WARN_ON(1);
2245 	}
2246 
2247 	print_sys_reg_msg(params,
2248 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2249 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2250 	kvm_inject_undefined(vcpu);
2251 }
2252 
2253 /**
2254  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2255  * @vcpu: The VCPU pointer
2256  * @run:  The kvm_run struct
2257  */
kvm_handle_cp_64(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global)2258 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2259 			    const struct sys_reg_desc *global,
2260 			    size_t nr_global)
2261 {
2262 	struct sys_reg_params params;
2263 	u32 esr = kvm_vcpu_get_esr(vcpu);
2264 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2265 	int Rt2 = (esr >> 10) & 0x1f;
2266 
2267 	params.is_aarch32 = true;
2268 	params.is_32bit = false;
2269 	params.CRm = (esr >> 1) & 0xf;
2270 	params.is_write = ((esr & 1) == 0);
2271 
2272 	params.Op0 = 0;
2273 	params.Op1 = (esr >> 16) & 0xf;
2274 	params.Op2 = 0;
2275 	params.CRn = 0;
2276 
2277 	/*
2278 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2279 	 * backends between AArch32 and AArch64, we get away with it.
2280 	 */
2281 	if (params.is_write) {
2282 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2283 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2284 	}
2285 
2286 	/*
2287 	 * If the table contains a handler, handle the
2288 	 * potential register operation in the case of a read and return
2289 	 * with success.
2290 	 */
2291 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2292 		/* Split up the value between registers for the read side */
2293 		if (!params.is_write) {
2294 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2295 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2296 		}
2297 
2298 		return 1;
2299 	}
2300 
2301 	unhandled_cp_access(vcpu, &params);
2302 	return 1;
2303 }
2304 
2305 /**
2306  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2307  * @vcpu: The VCPU pointer
2308  * @run:  The kvm_run struct
2309  */
kvm_handle_cp_32(struct kvm_vcpu *vcpu, const struct sys_reg_desc *global, size_t nr_global)2310 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2311 			    const struct sys_reg_desc *global,
2312 			    size_t nr_global)
2313 {
2314 	struct sys_reg_params params;
2315 	u32 esr = kvm_vcpu_get_esr(vcpu);
2316 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2317 
2318 	params.is_aarch32 = true;
2319 	params.is_32bit = true;
2320 	params.CRm = (esr >> 1) & 0xf;
2321 	params.regval = vcpu_get_reg(vcpu, Rt);
2322 	params.is_write = ((esr & 1) == 0);
2323 	params.CRn = (esr >> 10) & 0xf;
2324 	params.Op0 = 0;
2325 	params.Op1 = (esr >> 14) & 0x7;
2326 	params.Op2 = (esr >> 17) & 0x7;
2327 
2328 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2329 		if (!params.is_write)
2330 			vcpu_set_reg(vcpu, Rt, params.regval);
2331 		return 1;
2332 	}
2333 
2334 	unhandled_cp_access(vcpu, &params);
2335 	return 1;
2336 }
2337 
kvm_handle_cp15_64(struct kvm_vcpu *vcpu)2338 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2339 {
2340 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2341 }
2342 
kvm_handle_cp15_32(struct kvm_vcpu *vcpu)2343 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2344 {
2345 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2346 }
2347 
kvm_handle_cp14_64(struct kvm_vcpu *vcpu)2348 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2349 {
2350 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2351 }
2352 
kvm_handle_cp14_32(struct kvm_vcpu *vcpu)2353 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2354 {
2355 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2356 }
2357 
is_imp_def_sys_reg(struct sys_reg_params *params)2358 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2359 {
2360 	// See ARM DDI 0487E.a, section D12.3.2
2361 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2362 }
2363 
emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params)2364 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2365 			   struct sys_reg_params *params)
2366 {
2367 	const struct sys_reg_desc *r;
2368 
2369 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2370 
2371 	if (likely(r)) {
2372 		perform_access(vcpu, params, r);
2373 	} else if (is_imp_def_sys_reg(params)) {
2374 		kvm_inject_undefined(vcpu);
2375 	} else {
2376 		print_sys_reg_msg(params,
2377 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2378 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2379 		kvm_inject_undefined(vcpu);
2380 	}
2381 	return 1;
2382 }
2383 
2384 /**
2385  * kvm_reset_sys_regs - sets system registers to reset value
2386  * @vcpu: The VCPU pointer
2387  *
2388  * This function finds the right table above and sets the registers on the
2389  * virtual CPU struct to their architecturally defined reset values.
2390  */
kvm_reset_sys_regs(struct kvm_vcpu *vcpu)2391 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2392 {
2393 	unsigned long i;
2394 
2395 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2396 		if (sys_reg_descs[i].reset)
2397 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2398 }
2399 
2400 /**
2401  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2402  * @vcpu: The VCPU pointer
2403  */
kvm_handle_sys_reg(struct kvm_vcpu *vcpu)2404 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2405 {
2406 	struct sys_reg_params params;
2407 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2408 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2409 	int ret;
2410 
2411 	trace_kvm_handle_sys_reg(esr);
2412 
2413 	params.is_aarch32 = false;
2414 	params.is_32bit = false;
2415 	params.Op0 = (esr >> 20) & 3;
2416 	params.Op1 = (esr >> 14) & 0x7;
2417 	params.CRn = (esr >> 10) & 0xf;
2418 	params.CRm = (esr >> 1) & 0xf;
2419 	params.Op2 = (esr >> 17) & 0x7;
2420 	params.regval = vcpu_get_reg(vcpu, Rt);
2421 	params.is_write = !(esr & 1);
2422 
2423 	ret = emulate_sys_reg(vcpu, &params);
2424 
2425 	if (!params.is_write)
2426 		vcpu_set_reg(vcpu, Rt, params.regval);
2427 	return ret;
2428 }
2429 
2430 /******************************************************************************
2431  * Userspace API
2432  *****************************************************************************/
2433 
index_to_params(u64 id, struct sys_reg_params *params)2434 static bool index_to_params(u64 id, struct sys_reg_params *params)
2435 {
2436 	switch (id & KVM_REG_SIZE_MASK) {
2437 	case KVM_REG_SIZE_U64:
2438 		/* Any unused index bits means it's not valid. */
2439 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2440 			      | KVM_REG_ARM_COPROC_MASK
2441 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2442 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2443 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2444 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2445 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2446 			return false;
2447 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2448 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2449 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2450 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2451 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2452 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2453 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2454 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2455 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2456 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2457 		return true;
2458 	default:
2459 		return false;
2460 	}
2461 }
2462 
find_reg_by_id(u64 id, struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num)2463 const struct sys_reg_desc *find_reg_by_id(u64 id,
2464 					  struct sys_reg_params *params,
2465 					  const struct sys_reg_desc table[],
2466 					  unsigned int num)
2467 {
2468 	if (!index_to_params(id, params))
2469 		return NULL;
2470 
2471 	return find_reg(params, table, num);
2472 }
2473 
2474 /* Decode an index value, and find the sys_reg_desc entry. */
index_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id)2475 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2476 						    u64 id)
2477 {
2478 	const struct sys_reg_desc *r;
2479 	struct sys_reg_params params;
2480 
2481 	/* We only do sys_reg for now. */
2482 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2483 		return NULL;
2484 
2485 	if (!index_to_params(id, &params))
2486 		return NULL;
2487 
2488 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2489 
2490 	/* Not saved in the sys_reg array and not otherwise accessible? */
2491 	if (r && !(r->reg || r->get_user))
2492 		r = NULL;
2493 
2494 	return r;
2495 }
2496 
2497 /*
2498  * These are the invariant sys_reg registers: we let the guest see the
2499  * host versions of these, so they're part of the guest state.
2500  *
2501  * A future CPU may provide a mechanism to present different values to
2502  * the guest, or a future kvm may trap them.
2503  */
2504 
2505 #define FUNCTION_INVARIANT(reg)						\
2506 	static void get_##reg(struct kvm_vcpu *v,			\
2507 			      const struct sys_reg_desc *r)		\
2508 	{								\
2509 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2510 	}
2511 
2512 FUNCTION_INVARIANT(midr_el1)
2513 FUNCTION_INVARIANT(revidr_el1)
2514 FUNCTION_INVARIANT(clidr_el1)
2515 FUNCTION_INVARIANT(aidr_el1)
2516 
get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)2517 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2518 {
2519 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2520 }
2521 
2522 /* ->val is filled in by kvm_sys_reg_table_init() */
2523 static struct sys_reg_desc invariant_sys_regs[] = {
2524 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2525 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2526 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2527 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2528 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2529 };
2530 
reg_from_user(u64 *val, const void __user *uaddr, u64 id)2531 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2532 {
2533 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2534 		return -EFAULT;
2535 	return 0;
2536 }
2537 
reg_to_user(void __user *uaddr, const u64 *val, u64 id)2538 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2539 {
2540 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2541 		return -EFAULT;
2542 	return 0;
2543 }
2544 
get_invariant_sys_reg(u64 id, void __user *uaddr)2545 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2546 {
2547 	struct sys_reg_params params;
2548 	const struct sys_reg_desc *r;
2549 
2550 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2551 			   ARRAY_SIZE(invariant_sys_regs));
2552 	if (!r)
2553 		return -ENOENT;
2554 
2555 	return reg_to_user(uaddr, &r->val, id);
2556 }
2557 
set_invariant_sys_reg(u64 id, void __user *uaddr)2558 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2559 {
2560 	struct sys_reg_params params;
2561 	const struct sys_reg_desc *r;
2562 	int err;
2563 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2564 
2565 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2566 			   ARRAY_SIZE(invariant_sys_regs));
2567 	if (!r)
2568 		return -ENOENT;
2569 
2570 	err = reg_from_user(&val, uaddr, id);
2571 	if (err)
2572 		return err;
2573 
2574 	/* This is what we mean by invariant: you can't change it. */
2575 	if (r->val != val)
2576 		return -EINVAL;
2577 
2578 	return 0;
2579 }
2580 
is_valid_cache(u32 val)2581 static bool is_valid_cache(u32 val)
2582 {
2583 	u32 level, ctype;
2584 
2585 	if (val >= CSSELR_MAX)
2586 		return false;
2587 
2588 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2589 	level = (val >> 1);
2590 	ctype = (cache_levels >> (level * 3)) & 7;
2591 
2592 	switch (ctype) {
2593 	case 0: /* No cache */
2594 		return false;
2595 	case 1: /* Instruction cache only */
2596 		return (val & 1);
2597 	case 2: /* Data cache only */
2598 	case 4: /* Unified cache */
2599 		return !(val & 1);
2600 	case 3: /* Separate instruction and data caches */
2601 		return true;
2602 	default: /* Reserved: we can't know instruction or data. */
2603 		return false;
2604 	}
2605 }
2606 
demux_c15_get(u64 id, void __user *uaddr)2607 static int demux_c15_get(u64 id, void __user *uaddr)
2608 {
2609 	u32 val;
2610 	u32 __user *uval = uaddr;
2611 
2612 	/* Fail if we have unknown bits set. */
2613 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2614 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2615 		return -ENOENT;
2616 
2617 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2618 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2619 		if (KVM_REG_SIZE(id) != 4)
2620 			return -ENOENT;
2621 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2622 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2623 		if (!is_valid_cache(val))
2624 			return -ENOENT;
2625 
2626 		return put_user(get_ccsidr(val), uval);
2627 	default:
2628 		return -ENOENT;
2629 	}
2630 }
2631 
demux_c15_set(u64 id, void __user *uaddr)2632 static int demux_c15_set(u64 id, void __user *uaddr)
2633 {
2634 	u32 val, newval;
2635 	u32 __user *uval = uaddr;
2636 
2637 	/* Fail if we have unknown bits set. */
2638 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2639 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2640 		return -ENOENT;
2641 
2642 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2643 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2644 		if (KVM_REG_SIZE(id) != 4)
2645 			return -ENOENT;
2646 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2647 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2648 		if (!is_valid_cache(val))
2649 			return -ENOENT;
2650 
2651 		if (get_user(newval, uval))
2652 			return -EFAULT;
2653 
2654 		/* This is also invariant: you can't change it. */
2655 		if (newval != get_ccsidr(val))
2656 			return -EINVAL;
2657 		return 0;
2658 	default:
2659 		return -ENOENT;
2660 	}
2661 }
2662 
kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)2663 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2664 {
2665 	const struct sys_reg_desc *r;
2666 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2667 
2668 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2669 		return demux_c15_get(reg->id, uaddr);
2670 
2671 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2672 		return -ENOENT;
2673 
2674 	r = index_to_sys_reg_desc(vcpu, reg->id);
2675 	if (!r)
2676 		return get_invariant_sys_reg(reg->id, uaddr);
2677 
2678 	/* Check for regs disabled by runtime config */
2679 	if (sysreg_hidden(vcpu, r))
2680 		return -ENOENT;
2681 
2682 	if (r->get_user)
2683 		return (r->get_user)(vcpu, r, reg, uaddr);
2684 
2685 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2686 }
2687 
kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)2688 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2689 {
2690 	const struct sys_reg_desc *r;
2691 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2692 
2693 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2694 		return demux_c15_set(reg->id, uaddr);
2695 
2696 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2697 		return -ENOENT;
2698 
2699 	r = index_to_sys_reg_desc(vcpu, reg->id);
2700 	if (!r)
2701 		return set_invariant_sys_reg(reg->id, uaddr);
2702 
2703 	/* Check for regs disabled by runtime config */
2704 	if (sysreg_hidden(vcpu, r))
2705 		return -ENOENT;
2706 
2707 	if (r->set_user)
2708 		return (r->set_user)(vcpu, r, reg, uaddr);
2709 
2710 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2711 }
2712 
num_demux_regs(void)2713 static unsigned int num_demux_regs(void)
2714 {
2715 	unsigned int i, count = 0;
2716 
2717 	for (i = 0; i < CSSELR_MAX; i++)
2718 		if (is_valid_cache(i))
2719 			count++;
2720 
2721 	return count;
2722 }
2723 
write_demux_regids(u64 __user *uindices)2724 static int write_demux_regids(u64 __user *uindices)
2725 {
2726 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2727 	unsigned int i;
2728 
2729 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2730 	for (i = 0; i < CSSELR_MAX; i++) {
2731 		if (!is_valid_cache(i))
2732 			continue;
2733 		if (put_user(val | i, uindices))
2734 			return -EFAULT;
2735 		uindices++;
2736 	}
2737 	return 0;
2738 }
2739 
sys_reg_to_index(const struct sys_reg_desc *reg)2740 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2741 {
2742 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2743 		KVM_REG_ARM64_SYSREG |
2744 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2745 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2746 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2747 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2748 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2749 }
2750 
copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)2751 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2752 {
2753 	if (!*uind)
2754 		return true;
2755 
2756 	if (put_user(sys_reg_to_index(reg), *uind))
2757 		return false;
2758 
2759 	(*uind)++;
2760 	return true;
2761 }
2762 
walk_one_sys_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, u64 __user **uind, unsigned int *total)2763 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2764 			    const struct sys_reg_desc *rd,
2765 			    u64 __user **uind,
2766 			    unsigned int *total)
2767 {
2768 	/*
2769 	 * Ignore registers we trap but don't save,
2770 	 * and for which no custom user accessor is provided.
2771 	 */
2772 	if (!(rd->reg || rd->get_user))
2773 		return 0;
2774 
2775 	if (sysreg_hidden(vcpu, rd))
2776 		return 0;
2777 
2778 	if (!copy_reg_to_user(rd, uind))
2779 		return -EFAULT;
2780 
2781 	(*total)++;
2782 	return 0;
2783 }
2784 
2785 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)2786 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2787 {
2788 	const struct sys_reg_desc *i2, *end2;
2789 	unsigned int total = 0;
2790 	int err;
2791 
2792 	i2 = sys_reg_descs;
2793 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2794 
2795 	while (i2 != end2) {
2796 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2797 		if (err)
2798 			return err;
2799 	}
2800 	return total;
2801 }
2802 
kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)2803 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2804 {
2805 	return ARRAY_SIZE(invariant_sys_regs)
2806 		+ num_demux_regs()
2807 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2808 }
2809 
kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)2810 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2811 {
2812 	unsigned int i;
2813 	int err;
2814 
2815 	/* Then give them all the invariant registers' indices. */
2816 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2817 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2818 			return -EFAULT;
2819 		uindices++;
2820 	}
2821 
2822 	err = walk_sys_regs(vcpu, uindices);
2823 	if (err < 0)
2824 		return err;
2825 	uindices += err;
2826 
2827 	return write_demux_regids(uindices);
2828 }
2829 
kvm_sys_reg_table_init(void)2830 void kvm_sys_reg_table_init(void)
2831 {
2832 	unsigned int i;
2833 	struct sys_reg_desc clidr;
2834 
2835 	/* Make sure tables are unique and in order. */
2836 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2837 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2838 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2839 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2840 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2841 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2842 
2843 	/* We abuse the reset function to overwrite the table itself. */
2844 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2845 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2846 
2847 	/*
2848 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2849 	 *
2850 	 *   If software reads the Cache Type fields from Ctype1
2851 	 *   upwards, once it has seen a value of 0b000, no caches
2852 	 *   exist at further-out levels of the hierarchy. So, for
2853 	 *   example, if Ctype3 is the first Cache Type field with a
2854 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2855 	 *   ignored.
2856 	 */
2857 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2858 	cache_levels = clidr.val;
2859 	for (i = 0; i < 7; i++)
2860 		if (((cache_levels >> (i*3)) & 7) == 0)
2861 			break;
2862 	/* Clear all higher bits. */
2863 	cache_levels &= (1 << (i*3))-1;
2864 }
2865