1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/stxncpy.S
4  * Contributed by Richard Henderson (rth@tamu.edu)
5  *
6  * Copy no more than COUNT bytes of the null-terminated string from
7  * SRC to DST.
8  *
9  * This is an internal routine used by strncpy, stpncpy, and strncat.
10  * As such, it uses special linkage conventions to make implementation
11  * of these public functions more efficient.
12  *
13  * On input:
14  *	t9 = return address
15  *	a0 = DST
16  *	a1 = SRC
17  *	a2 = COUNT
18  *
19  * Furthermore, COUNT may not be zero.
20  *
21  * On output:
22  *	t0  = last word written
23  *	t10 = bitmask (with one bit set) indicating the byte position of
24  *	      the end of the range specified by COUNT
25  *	t12 = bitmask (with one bit set) indicating the last byte written
26  *	a0  = unaligned address of the last *word* written
27  *	a2  = the number of full words left in COUNT
28  *
29  * Furthermore, v0, a3-a5, t11, and $at are untouched.
30  */
31 
32 #include <asm/regdef.h>
33 
34 	.set noat
35 	.set noreorder
36 
37 	.text
38 
39 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
40    doesn't like putting the entry point for a procedure somewhere in the
41    middle of the procedure descriptor.  Work around this by putting the
42    aligned copy in its own procedure descriptor */
43 
44 	.ent stxncpy_aligned
45 	.align 3
46 stxncpy_aligned:
47 	.frame sp, 0, t9, 0
48 	.prologue 0
49 
50 	/* On entry to this basic block:
51 	   t0 == the first destination word for masking back in
52 	   t1 == the first source word.  */
53 
54 	/* Create the 1st output word and detect 0's in the 1st input word.  */
55 	lda	t2, -1		# e1    : build a mask against false zero
56 	mskqh	t2, a1, t2	# e0    :   detection in the src word
57 	mskqh	t1, a1, t3	# e0    :
58 	ornot	t1, t2, t2	# .. e1 :
59 	mskql	t0, a1, t0	# e0    : assemble the first output word
60 	cmpbge	zero, t2, t8	# .. e1 : bits set iff null found
61 	or	t0, t3, t0	# e0    :
62 	beq	a2, $a_eoc	# .. e1 :
63 	bne	t8, $a_eos	# .. e1 :
64 
65 	/* On entry to this basic block:
66 	   t0 == a source word not containing a null.  */
67 
68 $a_loop:
69 	stq_u	t0, 0(a0)	# e0    :
70 	addq	a0, 8, a0	# .. e1 :
71 	ldq_u	t0, 0(a1)	# e0    :
72 	addq	a1, 8, a1	# .. e1 :
73 	subq	a2, 1, a2	# e0    :
74 	cmpbge	zero, t0, t8	# .. e1 (stall)
75 	beq	a2, $a_eoc      # e1    :
76 	beq	t8, $a_loop	# e1    :
77 
78 	/* Take care of the final (partial) word store.  At this point
79 	   the end-of-count bit is set in t8 iff it applies.
80 
81 	   On entry to this basic block we have:
82 	   t0 == the source word containing the null
83 	   t8 == the cmpbge mask that found it.  */
84 
85 $a_eos:
86 	negq	t8, t12		# e0    : find low bit set
87 	and	t8, t12, t12	# e1 (stall)
88 
89 	/* For the sake of the cache, don't read a destination word
90 	   if we're not going to need it.  */
91 	and	t12, 0x80, t6	# e0    :
92 	bne	t6, 1f		# .. e1 (zdb)
93 
94 	/* We're doing a partial word store and so need to combine
95 	   our source and original destination words.  */
96 	ldq_u	t1, 0(a0)	# e0    :
97 	subq	t12, 1, t6	# .. e1 :
98 	or	t12, t6, t8	# e0    :
99 	unop			#
100 	zapnot	t0, t8, t0	# e0    : clear src bytes > null
101 	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
102 	or	t0, t1, t0	# e1    :
103 
104 1:	stq_u	t0, 0(a0)	# e0    :
105 	ret	(t9)		# e1    :
106 
107 	/* Add the end-of-count bit to the eos detection bitmask.  */
108 $a_eoc:
109 	or	t10, t8, t8
110 	br	$a_eos
111 
112 	.end stxncpy_aligned
113 
114 	.align 3
115 	.ent __stxncpy
116 	.globl __stxncpy
117 __stxncpy:
118 	.frame sp, 0, t9, 0
119 	.prologue 0
120 
121 	/* Are source and destination co-aligned?  */
122 	xor	a0, a1, t1	# e0    :
123 	and	a0, 7, t0	# .. e1 : find dest misalignment
124 	and	t1, 7, t1	# e0    :
125 	addq	a2, t0, a2	# .. e1 : bias count by dest misalignment
126 	subq	a2, 1, a2	# e0    :
127 	and	a2, 7, t2	# e1    :
128 	srl	a2, 3, a2	# e0    : a2 = loop counter = (count - 1)/8
129 	addq	zero, 1, t10	# .. e1 :
130 	sll	t10, t2, t10	# e0    : t10 = bitmask of last count byte
131 	bne	t1, $unaligned	# .. e1 :
132 
133 	/* We are co-aligned; take care of a partial first word.  */
134 
135 	ldq_u	t1, 0(a1)	# e0    : load first src word
136 	addq	a1, 8, a1	# .. e1 :
137 
138 	beq	t0, stxncpy_aligned     # avoid loading dest word if not needed
139 	ldq_u	t0, 0(a0)	# e0    :
140 	br	stxncpy_aligned	# .. e1 :
141 
142 
143 /* The source and destination are not co-aligned.  Align the destination
144    and cope.  We have to be very careful about not reading too much and
145    causing a SEGV.  */
146 
147 	.align 3
148 $u_head:
149 	/* We know just enough now to be able to assemble the first
150 	   full source word.  We can still find a zero at the end of it
151 	   that prevents us from outputting the whole thing.
152 
153 	   On entry to this basic block:
154 	   t0 == the first dest word, unmasked
155 	   t1 == the shifted low bits of the first source word
156 	   t6 == bytemask that is -1 in dest word bytes */
157 
158 	ldq_u	t2, 8(a1)	# e0    : load second src word
159 	addq	a1, 8, a1	# .. e1 :
160 	mskql	t0, a0, t0	# e0    : mask trailing garbage in dst
161 	extqh	t2, a1, t4	# e0    :
162 	or	t1, t4, t1	# e1    : first aligned src word complete
163 	mskqh	t1, a0, t1	# e0    : mask leading garbage in src
164 	or	t0, t1, t0	# e0    : first output word complete
165 	or	t0, t6, t6	# e1    : mask original data for zero test
166 	cmpbge	zero, t6, t8	# e0    :
167 	beq	a2, $u_eocfin	# .. e1 :
168 	lda	t6, -1		# e0    :
169 	bne	t8, $u_final	# .. e1 :
170 
171 	mskql	t6, a1, t6	# e0    : mask out bits already seen
172 	nop			# .. e1 :
173 	stq_u	t0, 0(a0)	# e0    : store first output word
174 	or      t6, t2, t2	# .. e1 :
175 	cmpbge	zero, t2, t8	# e0    : find nulls in second partial
176 	addq	a0, 8, a0	# .. e1 :
177 	subq	a2, 1, a2	# e0    :
178 	bne	t8, $u_late_head_exit	# .. e1 :
179 
180 	/* Finally, we've got all the stupid leading edge cases taken care
181 	   of and we can set up to enter the main loop.  */
182 
183 	extql	t2, a1, t1	# e0    : position hi-bits of lo word
184 	beq	a2, $u_eoc	# .. e1 :
185 	ldq_u	t2, 8(a1)	# e0    : read next high-order source word
186 	addq	a1, 8, a1	# .. e1 :
187 	extqh	t2, a1, t0	# e0    : position lo-bits of hi word (stall)
188 	cmpbge	zero, t2, t8	# .. e1 :
189 	nop			# e0    :
190 	bne	t8, $u_eos	# .. e1 :
191 
192 	/* Unaligned copy main loop.  In order to avoid reading too much,
193 	   the loop is structured to detect zeros in aligned source words.
194 	   This has, unfortunately, effectively pulled half of a loop
195 	   iteration out into the head and half into the tail, but it does
196 	   prevent nastiness from accumulating in the very thing we want
197 	   to run as fast as possible.
198 
199 	   On entry to this basic block:
200 	   t0 == the shifted low-order bits from the current source word
201 	   t1 == the shifted high-order bits from the previous source word
202 	   t2 == the unshifted current source word
203 
204 	   We further know that t2 does not contain a null terminator.  */
205 
206 	.align 3
207 $u_loop:
208 	or	t0, t1, t0	# e0    : current dst word now complete
209 	subq	a2, 1, a2	# .. e1 : decrement word count
210 	stq_u	t0, 0(a0)	# e0    : save the current word
211 	addq	a0, 8, a0	# .. e1 :
212 	extql	t2, a1, t1	# e0    : extract high bits for next time
213 	beq	a2, $u_eoc	# .. e1 :
214 	ldq_u	t2, 8(a1)	# e0    : load high word for next time
215 	addq	a1, 8, a1	# .. e1 :
216 	nop			# e0    :
217 	cmpbge	zero, t2, t8	# e1    : test new word for eos (stall)
218 	extqh	t2, a1, t0	# e0    : extract low bits for current word
219 	beq	t8, $u_loop	# .. e1 :
220 
221 	/* We've found a zero somewhere in the source word we just read.
222 	   If it resides in the lower half, we have one (probably partial)
223 	   word to write out, and if it resides in the upper half, we
224 	   have one full and one partial word left to write out.
225 
226 	   On entry to this basic block:
227 	   t0 == the shifted low-order bits from the current source word
228 	   t1 == the shifted high-order bits from the previous source word
229 	   t2 == the unshifted current source word.  */
230 $u_eos:
231 	or	t0, t1, t0	# e0    : first (partial) source word complete
232 	nop			# .. e1 :
233 	cmpbge	zero, t0, t8	# e0    : is the null in this first bit?
234 	bne	t8, $u_final	# .. e1 (zdb)
235 
236 	stq_u	t0, 0(a0)	# e0    : the null was in the high-order bits
237 	addq	a0, 8, a0	# .. e1 :
238 	subq	a2, 1, a2	# e1    :
239 
240 $u_late_head_exit:
241 	extql	t2, a1, t0	# .. e0 :
242 	cmpbge	zero, t0, t8	# e0    :
243 	or	t8, t10, t6	# e1    :
244 	cmoveq	a2, t6, t8	# e0    :
245 	nop			# .. e1 :
246 
247 	/* Take care of a final (probably partial) result word.
248 	   On entry to this basic block:
249 	   t0 == assembled source word
250 	   t8 == cmpbge mask that found the null.  */
251 $u_final:
252 	negq	t8, t6		# e0    : isolate low bit set
253 	and	t6, t8, t12	# e1    :
254 
255 	and	t12, 0x80, t6	# e0    : avoid dest word load if we can
256 	bne	t6, 1f		# .. e1 (zdb)
257 
258 	ldq_u	t1, 0(a0)	# e0    :
259 	subq	t12, 1, t6	# .. e1 :
260 	or	t6, t12, t8	# e0    :
261 	zapnot	t0, t8, t0	# .. e1 : kill source bytes > null
262 	zap	t1, t8, t1	# e0    : kill dest bytes <= null
263 	or	t0, t1, t0	# e1    :
264 
265 1:	stq_u	t0, 0(a0)	# e0    :
266 	ret	(t9)		# .. e1 :
267 
268 	/* Got to end-of-count before end of string.
269 	   On entry to this basic block:
270 	   t1 == the shifted high-order bits from the previous source word  */
271 $u_eoc:
272 	and	a1, 7, t6	# e1    :
273 	sll	t10, t6, t6	# e0    :
274 	and	t6, 0xff, t6	# e0    :
275 	bne	t6, 1f		# .. e1 :
276 
277 	ldq_u	t2, 8(a1)	# e0    : load final src word
278 	nop			# .. e1 :
279 	extqh	t2, a1, t0	# e0    : extract low bits for last word
280 	or	t1, t0, t1	# e1    :
281 
282 1:	cmpbge	zero, t1, t8
283 	mov	t1, t0
284 
285 $u_eocfin:			# end-of-count, final word
286 	or	t10, t8, t8
287 	br	$u_final
288 
289 	/* Unaligned copy entry point.  */
290 	.align 3
291 $unaligned:
292 
293 	ldq_u	t1, 0(a1)	# e0    : load first source word
294 
295 	and	a0, 7, t4	# .. e1 : find dest misalignment
296 	and	a1, 7, t5	# e0    : find src misalignment
297 
298 	/* Conditionally load the first destination word and a bytemask
299 	   with 0xff indicating that the destination byte is sacrosanct.  */
300 
301 	mov	zero, t0	# .. e1 :
302 	mov	zero, t6	# e0    :
303 	beq	t4, 1f		# .. e1 :
304 	ldq_u	t0, 0(a0)	# e0    :
305 	lda	t6, -1		# .. e1 :
306 	mskql	t6, a0, t6	# e0    :
307 	subq	a1, t4, a1	# .. e1 : sub dest misalignment from src addr
308 
309 	/* If source misalignment is larger than dest misalignment, we need
310 	   extra startup checks to avoid SEGV.  */
311 
312 1:	cmplt	t4, t5, t12	# e1    :
313 	extql	t1, a1, t1	# .. e0 : shift src into place
314 	lda	t2, -1		# e0    : for creating masks later
315 	beq	t12, $u_head	# .. e1 :
316 
317 	extql	t2, a1, t2	# e0    :
318 	cmpbge	zero, t1, t8	# .. e1 : is there a zero?
319 	andnot	t2, t6, t2	# e0    : dest mask for a single word copy
320 	or	t8, t10, t5	# .. e1 : test for end-of-count too
321 	cmpbge	zero, t2, t3	# e0    :
322 	cmoveq	a2, t5, t8	# .. e1 :
323 	andnot	t8, t3, t8	# e0    :
324 	beq	t8, $u_head	# .. e1 (zdb)
325 
326 	/* At this point we've found a zero in the first partial word of
327 	   the source.  We need to isolate the valid source data and mask
328 	   it into the original destination data.  (Incidentally, we know
329 	   that we'll need at least one byte of that original dest word.) */
330 
331 	ldq_u	t0, 0(a0)	# e0    :
332 	negq	t8, t6		# .. e1 : build bitmask of bytes <= zero
333 	mskqh	t1, t4, t1	# e0    :
334 	and	t6, t8, t12	# .. e1 :
335 	subq	t12, 1, t6	# e0    :
336 	or	t6, t12, t8	# e1    :
337 
338 	zapnot	t2, t8, t2	# e0    : prepare source word; mirror changes
339 	zapnot	t1, t8, t1	# .. e1 : to source validity mask
340 
341 	andnot	t0, t2, t0	# e0    : zero place for source to reside
342 	or	t0, t1, t0	# e1    : and put it there
343 	stq_u	t0, 0(a0)	# e0    :
344 	ret	(t9)		# .. e1 :
345 
346 	.end __stxncpy
347