1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-clear_user.S
4  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
5  *
6  * Zero user space, handling exceptions as we go.
7  *
8  * We have to make sure that $0 is always up-to-date and contains the
9  * right "bytes left to zero" value (and that it is updated only _after_
10  * a successful copy).  There is also some rather minor exception setup
11  * stuff.
12  *
13  * Much of the information about 21264 scheduling/coding comes from:
14  *	Compiler Writer's Guide for the Alpha 21264
15  *	abbreviated as 'CWG' in other comments here
16  *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
17  * Scheduling notation:
18  *	E	- either cluster
19  *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
20  *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
21  * Try not to change the actual algorithm if possible for consistency.
22  * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
23  * From perusing the source code context where this routine is called, it is
24  * a fair assumption that significant fractions of entire pages are zeroed, so
25  * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
26  * ASSUMPTION:
27  *	The believed purpose of only updating $0 after a store is that a signal
28  *	may come along during the execution of this chunk of code, and we don't
29  *	want to leave a hole (and we also want to avoid repeating lots of work)
30  */
31 
32 #include <asm/export.h>
33 /* Allow an exception for an insn; exit if we get one.  */
34 #define EX(x,y...)			\
35 	99: x,##y;			\
36 	.section __ex_table,"a";	\
37 	.long 99b - .;			\
38 	lda $31, $exception-99b($31); 	\
39 	.previous
40 
41 	.set noat
42 	.set noreorder
43 	.align 4
44 
45 	.globl __clear_user
46 	.ent __clear_user
47 	.frame	$30, 0, $26
48 	.prologue 0
49 
50 				# Pipeline info : Slotting & Comments
51 __clear_user:
52 	and	$17, $17, $0
53 	and	$16, 7, $4	# .. E  .. ..	: find dest head misalignment
54 	beq	$0, $zerolength # U  .. .. ..	:  U L U L
55 
56 	addq	$0, $4, $1	# .. .. .. E	: bias counter
57 	and	$1, 7, $2	# .. .. E  ..	: number of misaligned bytes in tail
58 # Note - we never actually use $2, so this is a moot computation
59 # and we can rewrite this later...
60 	srl	$1, 3, $1	# .. E  .. ..	: number of quadwords to clear
61 	beq	$4, $headalign	# U  .. .. ..	: U L U L
62 
63 /*
64  * Head is not aligned.  Write (8 - $4) bytes to head of destination
65  * This means $16 is known to be misaligned
66  */
67 	EX( ldq_u $5, 0($16) )	# .. .. .. L	: load dst word to mask back in
68 	beq	$1, $onebyte	# .. .. U  ..	: sub-word store?
69 	mskql	$5, $16, $5	# .. U  .. ..	: take care of misaligned head
70 	addq	$16, 8, $16	# E  .. .. .. 	: L U U L
71 
72 	EX( stq_u $5, -8($16) )	# .. .. .. L	:
73 	subq	$1, 1, $1	# .. .. E  ..	:
74 	addq	$0, $4, $0	# .. E  .. ..	: bytes left -= 8 - misalignment
75 	subq	$0, 8, $0	# E  .. .. ..	: U L U L
76 
77 	.align	4
78 /*
79  * (The .align directive ought to be a moot point)
80  * values upon initial entry to the loop
81  * $1 is number of quadwords to clear (zero is a valid value)
82  * $2 is number of trailing bytes (0..7) ($2 never used...)
83  * $16 is known to be aligned 0mod8
84  */
85 $headalign:
86 	subq	$1, 16, $4	# .. .. .. E	: If < 16, we can not use the huge loop
87 	and	$16, 0x3f, $2	# .. .. E  ..	: Forward work for huge loop
88 	subq	$2, 0x40, $3	# .. E  .. ..	: bias counter (huge loop)
89 	blt	$4, $trailquad	# U  .. .. ..	: U L U L
90 
91 /*
92  * We know that we're going to do at least 16 quads, which means we are
93  * going to be able to use the large block clear loop at least once.
94  * Figure out how many quads we need to clear before we are 0mod64 aligned
95  * so we can use the wh64 instruction.
96  */
97 
98 	nop			# .. .. .. E
99 	nop			# .. .. E  ..
100 	nop			# .. E  .. ..
101 	beq	$3, $bigalign	# U  .. .. ..	: U L U L : Aligned 0mod64
102 
103 $alignmod64:
104 	EX( stq_u $31, 0($16) )	# .. .. .. L
105 	addq	$3, 8, $3	# .. .. E  ..
106 	subq	$0, 8, $0	# .. E  .. ..
107 	nop			# E  .. .. ..	: U L U L
108 
109 	nop			# .. .. .. E
110 	subq	$1, 1, $1	# .. .. E  ..
111 	addq	$16, 8, $16	# .. E  .. ..
112 	blt	$3, $alignmod64	# U  .. .. ..	: U L U L
113 
114 $bigalign:
115 /*
116  * $0 is the number of bytes left
117  * $1 is the number of quads left
118  * $16 is aligned 0mod64
119  * we know that we'll be taking a minimum of one trip through
120  * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
121  * We are _not_ going to update $0 after every single store.  That
122  * would be silly, because there will be cross-cluster dependencies
123  * no matter how the code is scheduled.  By doing it in slightly
124  * staggered fashion, we can still do this loop in 5 fetches
125  * The worse case will be doing two extra quads in some future execution,
126  * in the event of an interrupted clear.
127  * Assumes the wh64 needs to be for 2 trips through the loop in the future
128  * The wh64 is issued on for the starting destination address for trip +2
129  * through the loop, and if there are less than two trips left, the target
130  * address will be for the current trip.
131  */
132 	nop			# E :
133 	nop			# E :
134 	nop			# E :
135 	bis	$16,$16,$3	# E : U L U L : Initial wh64 address is dest
136 	/* This might actually help for the current trip... */
137 
138 $do_wh64:
139 	wh64	($3)		# .. .. .. L1	: memory subsystem hint
140 	subq	$1, 16, $4	# .. .. E  ..	: Forward calculation - repeat the loop?
141 	EX( stq_u $31, 0($16) )	# .. L  .. ..
142 	subq	$0, 8, $0	# E  .. .. ..	: U L U L
143 
144 	addq	$16, 128, $3	# E : Target address of wh64
145 	EX( stq_u $31, 8($16) )	# L :
146 	EX( stq_u $31, 16($16) )	# L :
147 	subq	$0, 16, $0	# E : U L L U
148 
149 	nop			# E :
150 	EX( stq_u $31, 24($16) )	# L :
151 	EX( stq_u $31, 32($16) )	# L :
152 	subq	$0, 168, $5	# E : U L L U : two trips through the loop left?
153 	/* 168 = 192 - 24, since we've already completed some stores */
154 
155 	subq	$0, 16, $0	# E :
156 	EX( stq_u $31, 40($16) )	# L :
157 	EX( stq_u $31, 48($16) )	# L :
158 	cmovlt	$5, $16, $3	# E : U L L U : Latency 2, extra mapping cycle
159 
160 	subq	$1, 8, $1	# E :
161 	subq	$0, 16, $0	# E :
162 	EX( stq_u $31, 56($16) )	# L :
163 	nop			# E : U L U L
164 
165 	nop			# E :
166 	subq	$0, 8, $0	# E :
167 	addq	$16, 64, $16	# E :
168 	bge	$4, $do_wh64	# U : U L U L
169 
170 $trailquad:
171 	# zero to 16 quadwords left to store, plus any trailing bytes
172 	# $1 is the number of quadwords left to go.
173 	#
174 	nop			# .. .. .. E
175 	nop			# .. .. E  ..
176 	nop			# .. E  .. ..
177 	beq	$1, $trailbytes	# U  .. .. ..	: U L U L : Only 0..7 bytes to go
178 
179 $onequad:
180 	EX( stq_u $31, 0($16) )	# .. .. .. L
181 	subq	$1, 1, $1	# .. .. E  ..
182 	subq	$0, 8, $0	# .. E  .. ..
183 	nop			# E  .. .. ..	: U L U L
184 
185 	nop			# .. .. .. E
186 	nop			# .. .. E  ..
187 	addq	$16, 8, $16	# .. E  .. ..
188 	bgt	$1, $onequad	# U  .. .. ..	: U L U L
189 
190 	# We have an unknown number of bytes left to go.
191 $trailbytes:
192 	nop			# .. .. .. E
193 	nop			# .. .. E  ..
194 	nop			# .. E  .. ..
195 	beq	$0, $zerolength	# U  .. .. ..	: U L U L
196 
197 	# $0 contains the number of bytes left to copy (0..31)
198 	# so we will use $0 as the loop counter
199 	# We know for a fact that $0 > 0 zero due to previous context
200 $onebyte:
201 	EX( stb $31, 0($16) )	# .. .. .. L
202 	subq	$0, 1, $0	# .. .. E  ..	:
203 	addq	$16, 1, $16	# .. E  .. ..	:
204 	bgt	$0, $onebyte	# U  .. .. ..	: U L U L
205 
206 $zerolength:
207 $exception:			# Destination for exception recovery(?)
208 	nop			# .. .. .. E	:
209 	nop			# .. .. E  ..	:
210 	nop			# .. E  .. ..	:
211 	ret	$31, ($26), 1	# L0 .. .. ..	: L U L U
212 	.end __clear_user
213 	EXPORT_SYMBOL(__clear_user)
214