1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Rockchip Generic dmc support.
4  *
5  * Copyright (c) 2021 Rockchip Electronics Co. Ltd.
6  * Author: Finley Xiao <finley.xiao@rock-chips.com>
7  */
8 
9 #include <dt-bindings/clock/rockchip-ddr.h>
10 #include <dt-bindings/soc/rockchip-system-status.h>
11 #include <drm/drm_modeset_lock.h>
12 #include <linux/arm-smccc.h>
13 #include <linux/clk.h>
14 #include <linux/cpu.h>
15 #include <linux/cpufreq.h>
16 #include <linux/delay.h>
17 #include <linux/devfreq.h>
18 #include <linux/devfreq_cooling.h>
19 #include <linux/devfreq-event.h>
20 #include <linux/input.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/pm_qos.h>
30 #include <linux/regmap.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/rockchip/rockchip_sip.h>
33 #include <linux/rwsem.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/suspend.h>
37 #include <linux/thermal.h>
38 
39 #include <soc/rockchip/pm_domains.h>
40 #include <soc/rockchip/rkfb_dmc.h>
41 #include <soc/rockchip/rockchip_dmc.h>
42 #include <soc/rockchip/rockchip_sip.h>
43 #include <soc/rockchip/rockchip_system_monitor.h>
44 #include <soc/rockchip/rockchip-system-status.h>
45 #include <soc/rockchip/rockchip_opp_select.h>
46 #include <soc/rockchip/scpi.h>
47 #include <uapi/drm/drm_mode.h>
48 
49 #include "governor.h"
50 #include "rockchip_dmc_timing.h"
51 #include "../soc/rockchip/clk.h"
52 #include "rockchip_drm_drv.h"
53 
54 #define system_status_to_dmcfreq(nb) container_of(nb, struct rockchip_dmcfreq, \
55 						  status_nb)
56 #define reboot_to_dmcfreq(nb) container_of(nb, struct rockchip_dmcfreq, \
57 					   reboot_nb)
58 #define boost_to_dmcfreq(work) container_of(work, struct rockchip_dmcfreq, \
59 					    boost_work)
60 #define input_hd_to_dmcfreq(hd) container_of(hd, struct rockchip_dmcfreq, \
61 					     input_handler)
62 
63 #define VIDEO_1080P_SIZE	(1920 * 1080)
64 #define FIQ_INIT_HANDLER	(0x1)
65 #define FIQ_CPU_TGT_BOOT	(0x0) /* to booting cpu */
66 #define FIQ_NUM_FOR_DCF		(143) /* NA irq map to fiq for dcf */
67 #define DTS_PAR_OFFSET		(4096)
68 
69 #define FALLBACK_STATIC_TEMPERATURE 55000
70 
71 struct dmc_freq_table {
72 	unsigned long freq;
73 	unsigned long volt;
74 };
75 
76 struct share_params {
77 	u32 hz;
78 	u32 lcdc_type;
79 	u32 vop;
80 	u32 vop_dclk_mode;
81 	u32 sr_idle_en;
82 	u32 addr_mcu_el3;
83 	/*
84 	 * 1: need to wait flag1
85 	 * 0: never wait flag1
86 	 */
87 	u32 wait_flag1;
88 	/*
89 	 * 1: need to wait flag1
90 	 * 0: never wait flag1
91 	 */
92 	u32 wait_flag0;
93 	u32 complt_hwirq;
94 	u32 update_drv_odt_cfg;
95 	u32 update_deskew_cfg;
96 
97 	u32 freq_count;
98 	u32 freq_info_mhz[6];
99 	 /* if need, add parameter after */
100 };
101 
102 static struct share_params *ddr_psci_param;
103 
104 struct rockchip_dmcfreq_ondemand_data {
105 	unsigned int upthreshold;
106 	unsigned int downdifferential;
107 };
108 
109 struct rockchip_dmcfreq {
110 	struct device *dev;
111 	struct dmcfreq_common_info info;
112 	struct rockchip_dmcfreq_ondemand_data ondemand_data;
113 	struct clk *dmc_clk;
114 	struct devfreq_event_dev **edev;
115 	struct mutex lock; /* serializes access to video_info_list */
116 	struct dram_timing *timing;
117 	struct regulator *vdd_center;
118 	struct notifier_block status_nb;
119 	struct list_head video_info_list;
120 	struct freq_map_table *cpu_bw_tbl;
121 	struct work_struct boost_work;
122 	struct input_handler input_handler;
123 	struct monitor_dev_info *mdev_info;
124 	struct share_params *set_rate_params;
125 
126 	unsigned long *nocp_bw;
127 	unsigned long rate, target_rate;
128 	unsigned long volt, target_volt;
129 	unsigned long auto_min_rate;
130 	unsigned long status_rate;
131 	unsigned long normal_rate;
132 	unsigned long video_1080p_rate;
133 	unsigned long video_4k_rate;
134 	unsigned long video_4k_10b_rate;
135 	unsigned long performance_rate;
136 	unsigned long hdmi_rate;
137 	unsigned long idle_rate;
138 	unsigned long suspend_rate;
139 	unsigned long reboot_rate;
140 	unsigned long boost_rate;
141 	unsigned long fixed_rate;
142 	unsigned long low_power_rate;
143 
144 	unsigned long freq_count;
145 	unsigned long freq_info_rate[6];
146 	unsigned long rate_low;
147 	unsigned long rate_mid_low;
148 	unsigned long rate_mid_high;
149 	unsigned long rate_high;
150 
151 	unsigned int min_cpu_freq;
152 	unsigned int system_status_en;
153 	unsigned int refresh;
154 	int edev_count;
155 	int dfi_id;
156 	int nocp_cpu_id;
157 
158 	bool is_fixed;
159 	bool is_set_rate_direct;
160 
161 	struct thermal_cooling_device *devfreq_cooling;
162 	u32 static_coefficient;
163 	s32 ts[4];
164 	struct thermal_zone_device *ddr_tz;
165 
166 	unsigned int touchboostpulse_duration_val;
167 	u64 touchboostpulse_endtime;
168 
169 	int (*set_auto_self_refresh)(u32 en);
170 };
171 
172 static struct pm_qos_request pm_qos;
173 
is_dualview(unsigned long status)174 static inline unsigned long is_dualview(unsigned long status)
175 {
176 	return (status & SYS_STATUS_LCDC0) && (status & SYS_STATUS_LCDC1);
177 }
178 
is_isp(unsigned long status)179 static inline unsigned long is_isp(unsigned long status)
180 {
181 	return (status & SYS_STATUS_ISP) ||
182 	       (status & SYS_STATUS_CIF0) ||
183 	       (status & SYS_STATUS_CIF1);
184 }
185 
186 /*
187  * function: packaging de-skew setting to px30_ddr_dts_config_timing,
188  *           px30_ddr_dts_config_timing will pass to trust firmware, and
189  *           used direct to set register.
190  * input: de_skew
191  * output: tim
192  */
px30_de_skew_set_2_reg(struct rk3328_ddr_de_skew_setting *de_skew, struct px30_ddr_dts_config_timing *tim)193 static void px30_de_skew_set_2_reg(struct rk3328_ddr_de_skew_setting *de_skew,
194 				   struct px30_ddr_dts_config_timing *tim)
195 {
196 	u32 n;
197 	u32 offset;
198 	u32 shift;
199 
200 	memset_io(tim->ca_skew, 0, sizeof(tim->ca_skew));
201 	memset_io(tim->cs0_skew, 0, sizeof(tim->cs0_skew));
202 	memset_io(tim->cs1_skew, 0, sizeof(tim->cs1_skew));
203 
204 	/* CA de-skew */
205 	for (n = 0; n < ARRAY_SIZE(de_skew->ca_de_skew); n++) {
206 		offset = n / 2;
207 		shift = n % 2;
208 		/* 0 => 4; 1 => 0 */
209 		shift = (shift == 0) ? 4 : 0;
210 		tim->ca_skew[offset] &= ~(0xf << shift);
211 		tim->ca_skew[offset] |= (de_skew->ca_de_skew[n] << shift);
212 	}
213 
214 	/* CS0 data de-skew */
215 	for (n = 0; n < ARRAY_SIZE(de_skew->cs0_de_skew); n++) {
216 		offset = ((n / 21) * 11) + ((n % 21) / 2);
217 		shift = ((n % 21) % 2);
218 		if ((n % 21) == 20)
219 			shift = 0;
220 		else
221 			/* 0 => 4; 1 => 0 */
222 			shift = (shift == 0) ? 4 : 0;
223 		tim->cs0_skew[offset] &= ~(0xf << shift);
224 		tim->cs0_skew[offset] |= (de_skew->cs0_de_skew[n] << shift);
225 	}
226 
227 	/* CS1 data de-skew */
228 	for (n = 0; n < ARRAY_SIZE(de_skew->cs1_de_skew); n++) {
229 		offset = ((n / 21) * 11) + ((n % 21) / 2);
230 		shift = ((n % 21) % 2);
231 		if ((n % 21) == 20)
232 			shift = 0;
233 		else
234 			/* 0 => 4; 1 => 0 */
235 			shift = (shift == 0) ? 4 : 0;
236 		tim->cs1_skew[offset] &= ~(0xf << shift);
237 		tim->cs1_skew[offset] |= (de_skew->cs1_de_skew[n] << shift);
238 	}
239 }
240 
241 /*
242  * function: packaging de-skew setting to rk3328_ddr_dts_config_timing,
243  *           rk3328_ddr_dts_config_timing will pass to trust firmware, and
244  *           used direct to set register.
245  * input: de_skew
246  * output: tim
247  */
248 static void
rk3328_de_skew_setting_2_register(struct rk3328_ddr_de_skew_setting *de_skew, struct rk3328_ddr_dts_config_timing *tim)249 rk3328_de_skew_setting_2_register(struct rk3328_ddr_de_skew_setting *de_skew,
250 				  struct rk3328_ddr_dts_config_timing *tim)
251 {
252 	u32 n;
253 	u32 offset;
254 	u32 shift;
255 
256 	memset_io(tim->ca_skew, 0, sizeof(tim->ca_skew));
257 	memset_io(tim->cs0_skew, 0, sizeof(tim->cs0_skew));
258 	memset_io(tim->cs1_skew, 0, sizeof(tim->cs1_skew));
259 
260 	/* CA de-skew */
261 	for (n = 0; n < ARRAY_SIZE(de_skew->ca_de_skew); n++) {
262 		offset = n / 2;
263 		shift = n % 2;
264 		/* 0 => 4; 1 => 0 */
265 		shift = (shift == 0) ? 4 : 0;
266 		tim->ca_skew[offset] &= ~(0xf << shift);
267 		tim->ca_skew[offset] |= (de_skew->ca_de_skew[n] << shift);
268 	}
269 
270 	/* CS0 data de-skew */
271 	for (n = 0; n < ARRAY_SIZE(de_skew->cs0_de_skew); n++) {
272 		offset = ((n / 21) * 11) + ((n % 21) / 2);
273 		shift = ((n % 21) % 2);
274 		if ((n % 21) == 20)
275 			shift = 0;
276 		else
277 			/* 0 => 4; 1 => 0 */
278 			shift = (shift == 0) ? 4 : 0;
279 		tim->cs0_skew[offset] &= ~(0xf << shift);
280 		tim->cs0_skew[offset] |= (de_skew->cs0_de_skew[n] << shift);
281 	}
282 
283 	/* CS1 data de-skew */
284 	for (n = 0; n < ARRAY_SIZE(de_skew->cs1_de_skew); n++) {
285 		offset = ((n / 21) * 11) + ((n % 21) / 2);
286 		shift = ((n % 21) % 2);
287 		if ((n % 21) == 20)
288 			shift = 0;
289 		else
290 			/* 0 => 4; 1 => 0 */
291 			shift = (shift == 0) ? 4 : 0;
292 		tim->cs1_skew[offset] &= ~(0xf << shift);
293 		tim->cs1_skew[offset] |= (de_skew->cs1_de_skew[n] << shift);
294 	}
295 }
296 
rk_drm_get_lcdc_type(void)297 static int rk_drm_get_lcdc_type(void)
298 {
299 	u32 lcdc_type = rockchip_drm_get_sub_dev_type();
300 
301 	switch (lcdc_type) {
302 	case DRM_MODE_CONNECTOR_DPI:
303 	case DRM_MODE_CONNECTOR_LVDS:
304 		lcdc_type = SCREEN_LVDS;
305 		break;
306 	case DRM_MODE_CONNECTOR_DisplayPort:
307 		lcdc_type = SCREEN_DP;
308 		break;
309 	case DRM_MODE_CONNECTOR_HDMIA:
310 	case DRM_MODE_CONNECTOR_HDMIB:
311 		lcdc_type = SCREEN_HDMI;
312 		break;
313 	case DRM_MODE_CONNECTOR_TV:
314 		lcdc_type = SCREEN_TVOUT;
315 		break;
316 	case DRM_MODE_CONNECTOR_eDP:
317 		lcdc_type = SCREEN_EDP;
318 		break;
319 	case DRM_MODE_CONNECTOR_DSI:
320 		lcdc_type = SCREEN_MIPI;
321 		break;
322 	default:
323 		lcdc_type = SCREEN_NULL;
324 		break;
325 	}
326 
327 	return lcdc_type;
328 }
329 
rockchip_ddr_set_rate(unsigned long target_rate)330 static int rockchip_ddr_set_rate(unsigned long target_rate)
331 {
332 	struct arm_smccc_res res;
333 
334 	ddr_psci_param->hz = target_rate;
335 	ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
336 	ddr_psci_param->wait_flag1 = 1;
337 	ddr_psci_param->wait_flag0 = 1;
338 
339 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
340 			   ROCKCHIP_SIP_CONFIG_DRAM_SET_RATE);
341 
342 	if ((int)res.a1 == SIP_RET_SET_RATE_TIMEOUT)
343 		rockchip_dmcfreq_wait_complete();
344 
345 	return res.a0;
346 }
347 
rockchip_dmcfreq_target(struct device *dev, unsigned long *freq, u32 flags)348 static int rockchip_dmcfreq_target(struct device *dev, unsigned long *freq,
349 				   u32 flags)
350 {
351 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
352 	struct dev_pm_opp *opp;
353 	struct cpufreq_policy *policy;
354 	unsigned long old_clk_rate = dmcfreq->rate;
355 	unsigned long target_volt, target_rate;
356 	unsigned int cpu_cur, cpufreq_cur;
357 	bool is_cpufreq_changed = false;
358 	int err = 0;
359 
360 	opp = devfreq_recommended_opp(dev, freq, flags);
361 	if (IS_ERR(opp)) {
362 		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
363 		return PTR_ERR(opp);
364 	}
365 	target_volt = dev_pm_opp_get_voltage(opp);
366 	dev_pm_opp_put(opp);
367 
368 	if (dmcfreq->is_set_rate_direct) {
369 		target_rate = *freq;
370 	} else {
371 		target_rate = clk_round_rate(dmcfreq->dmc_clk, *freq);
372 		if ((long)target_rate <= 0)
373 			target_rate = *freq;
374 	}
375 
376 	if (dmcfreq->rate == target_rate) {
377 		if (dmcfreq->volt == target_volt)
378 			return 0;
379 		err = regulator_set_voltage(dmcfreq->vdd_center, target_volt,
380 					    INT_MAX);
381 		if (err) {
382 			dev_err(dev, "Cannot set voltage %lu uV\n",
383 				target_volt);
384 			return err;
385 		}
386 		dmcfreq->volt = target_volt;
387 		return 0;
388 	} else if (!dmcfreq->volt) {
389 		dmcfreq->volt = regulator_get_voltage(dmcfreq->vdd_center);
390 	}
391 
392 	/*
393 	 * We need to prevent cpu hotplug from happening while a dmc freq rate
394 	 * change is happening.
395 	 *
396 	 * Do this before taking the policy rwsem to avoid deadlocks between the
397 	 * mutex that is locked/unlocked in cpu_hotplug_disable/enable. And it
398 	 * can also avoid deadlocks between the mutex that is locked/unlocked
399 	 * in get/put_online_cpus (such as store_scaling_max_freq()).
400 	 */
401 	get_online_cpus();
402 
403 	/*
404 	 * Go to specified cpufreq and block other cpufreq changes since
405 	 * set_rate needs to complete during vblank.
406 	 */
407 	cpu_cur = raw_smp_processor_id();
408 	policy = cpufreq_cpu_get(cpu_cur);
409 	if (!policy) {
410 		dev_err(dev, "cpu%d policy NULL\n", cpu_cur);
411 		goto cpufreq;
412 	}
413 	down_write(&policy->rwsem);
414 	cpufreq_cur = cpufreq_quick_get(cpu_cur);
415 
416 	/* If we're thermally throttled; don't change; */
417 	if (dmcfreq->min_cpu_freq && cpufreq_cur < dmcfreq->min_cpu_freq) {
418 		if (policy->max >= dmcfreq->min_cpu_freq) {
419 			__cpufreq_driver_target(policy, dmcfreq->min_cpu_freq,
420 						CPUFREQ_RELATION_L);
421 			is_cpufreq_changed = true;
422 		} else {
423 			dev_dbg(dev, "CPU may too slow for DMC (%d MHz)\n",
424 				policy->max);
425 		}
426 	}
427 
428 	/*
429 	 * If frequency scaling from low to high, adjust voltage first.
430 	 * If frequency scaling from high to low, adjust frequency first.
431 	 */
432 	if (old_clk_rate < target_rate) {
433 		err = regulator_set_voltage(dmcfreq->vdd_center, target_volt,
434 					    INT_MAX);
435 		if (err) {
436 			dev_err(dev, "Cannot set voltage %lu uV\n",
437 				target_volt);
438 			goto out;
439 		}
440 	}
441 
442 	/*
443 	 * Writer in rwsem may block readers even during its waiting in queue,
444 	 * and this may lead to a deadlock when the code path takes read sem
445 	 * twice (e.g. one in vop_lock() and another in rockchip_pmu_lock()).
446 	 * As a (suboptimal) workaround, let writer to spin until it gets the
447 	 * lock.
448 	 */
449 	while (!rockchip_dmcfreq_write_trylock())
450 		cond_resched();
451 	dev_dbg(dev, "%lu-->%lu\n", old_clk_rate, target_rate);
452 
453 	if (dmcfreq->set_rate_params) {
454 		dmcfreq->set_rate_params->lcdc_type = rk_drm_get_lcdc_type();
455 		dmcfreq->set_rate_params->wait_flag1 = 1;
456 		dmcfreq->set_rate_params->wait_flag0 = 1;
457 	}
458 
459 	if (dmcfreq->is_set_rate_direct)
460 		err = rockchip_ddr_set_rate(target_rate);
461 	else
462 		err = clk_set_rate(dmcfreq->dmc_clk, target_rate);
463 
464 	rockchip_dmcfreq_write_unlock();
465 	if (err) {
466 		dev_err(dev, "Cannot set frequency %lu (%d)\n",
467 			target_rate, err);
468 		regulator_set_voltage(dmcfreq->vdd_center, dmcfreq->volt,
469 				      INT_MAX);
470 		goto out;
471 	}
472 
473 	/*
474 	 * Check the dpll rate,
475 	 * There only two result we will get,
476 	 * 1. Ddr frequency scaling fail, we still get the old rate.
477 	 * 2. Ddr frequency scaling sucessful, we get the rate we set.
478 	 */
479 	dmcfreq->rate = clk_get_rate(dmcfreq->dmc_clk);
480 
481 	/* If get the incorrect rate, set voltage to old value. */
482 	if (dmcfreq->rate != target_rate) {
483 		dev_err(dev, "Get wrong frequency, Request %lu, Current %lu\n",
484 			target_rate, dmcfreq->rate);
485 		regulator_set_voltage(dmcfreq->vdd_center, dmcfreq->volt,
486 				      INT_MAX);
487 		goto out;
488 	} else if (old_clk_rate > target_rate) {
489 		err = regulator_set_voltage(dmcfreq->vdd_center, target_volt,
490 					    INT_MAX);
491 		if (err) {
492 			dev_err(dev, "Cannot set vol %lu uV\n", target_volt);
493 			goto out;
494 		}
495 	}
496 
497 	if (dmcfreq->info.devfreq) {
498 		struct devfreq *devfreq = dmcfreq->info.devfreq;
499 
500 		devfreq->last_status.current_frequency = *freq;
501 	}
502 
503 	dmcfreq->volt = target_volt;
504 out:
505 	if (is_cpufreq_changed)
506 		__cpufreq_driver_target(policy, cpufreq_cur,
507 					CPUFREQ_RELATION_L);
508 	up_write(&policy->rwsem);
509 	cpufreq_cpu_put(policy);
510 cpufreq:
511 	put_online_cpus();
512 	return err;
513 }
514 
rockchip_dmcfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat)515 static int rockchip_dmcfreq_get_dev_status(struct device *dev,
516 					   struct devfreq_dev_status *stat)
517 {
518 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
519 	struct devfreq_event_data edata;
520 	int i, ret = 0;
521 
522 	if (!dmcfreq->info.auto_freq_en)
523 		return -EINVAL;
524 
525 	for (i = 0; i < dmcfreq->edev_count; i++) {
526 		ret = devfreq_event_get_event(dmcfreq->edev[i], &edata);
527 		if (ret < 0) {
528 			dev_err(dev, "failed to get event %s\n",
529 				dmcfreq->edev[i]->desc->name);
530 			return ret;
531 		}
532 		if (i == dmcfreq->dfi_id) {
533 			stat->busy_time = edata.load_count;
534 			stat->total_time = edata.total_count;
535 		} else {
536 			dmcfreq->nocp_bw[i] = edata.load_count;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
rockchip_dmcfreq_get_cur_freq(struct device *dev, unsigned long *freq)543 static int rockchip_dmcfreq_get_cur_freq(struct device *dev,
544 					 unsigned long *freq)
545 {
546 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
547 
548 	*freq = dmcfreq->rate;
549 
550 	return 0;
551 }
552 
553 static struct devfreq_dev_profile rockchip_devfreq_dmc_profile = {
554 	.polling_ms	= 50,
555 	.target		= rockchip_dmcfreq_target,
556 	.get_dev_status	= rockchip_dmcfreq_get_dev_status,
557 	.get_cur_freq	= rockchip_dmcfreq_get_cur_freq,
558 };
559 
560 
reset_last_status(struct devfreq *devfreq)561 static inline void reset_last_status(struct devfreq *devfreq)
562 {
563 	devfreq->last_status.total_time = 1;
564 	devfreq->last_status.busy_time = 1;
565 }
566 
of_get_px30_timings(struct device *dev, struct device_node *np, uint32_t *timing)567 static void of_get_px30_timings(struct device *dev,
568 				struct device_node *np, uint32_t *timing)
569 {
570 	struct device_node *np_tim;
571 	u32 *p;
572 	struct px30_ddr_dts_config_timing *dts_timing;
573 	struct rk3328_ddr_de_skew_setting *de_skew;
574 	int ret = 0;
575 	u32 i;
576 
577 	dts_timing =
578 		(struct px30_ddr_dts_config_timing *)(timing +
579 							DTS_PAR_OFFSET / 4);
580 
581 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
582 	if (!np_tim) {
583 		ret = -EINVAL;
584 		goto end;
585 	}
586 	de_skew = kmalloc(sizeof(*de_skew), GFP_KERNEL);
587 	if (!de_skew) {
588 		ret = -ENOMEM;
589 		goto end;
590 	}
591 	p = (u32 *)dts_timing;
592 	for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
593 		ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
594 					p + i);
595 	}
596 	p = (u32 *)de_skew->ca_de_skew;
597 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_ca_timing); i++) {
598 		ret |= of_property_read_u32(np_tim, rk3328_dts_ca_timing[i],
599 					p + i);
600 	}
601 	p = (u32 *)de_skew->cs0_de_skew;
602 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs0_timing); i++) {
603 		ret |= of_property_read_u32(np_tim, rk3328_dts_cs0_timing[i],
604 					p + i);
605 	}
606 	p = (u32 *)de_skew->cs1_de_skew;
607 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs1_timing); i++) {
608 		ret |= of_property_read_u32(np_tim, rk3328_dts_cs1_timing[i],
609 					p + i);
610 	}
611 	if (!ret)
612 		px30_de_skew_set_2_reg(de_skew, dts_timing);
613 	kfree(de_skew);
614 end:
615 	if (!ret) {
616 		dts_timing->available = 1;
617 	} else {
618 		dts_timing->available = 0;
619 		dev_err(dev, "of_get_ddr_timings: fail\n");
620 	}
621 
622 	of_node_put(np_tim);
623 }
624 
of_get_rk1808_timings(struct device *dev, struct device_node *np, uint32_t *timing)625 static void of_get_rk1808_timings(struct device *dev,
626 				  struct device_node *np, uint32_t *timing)
627 {
628 	struct device_node *np_tim;
629 	u32 *p;
630 	struct rk1808_ddr_dts_config_timing *dts_timing;
631 	int ret = 0;
632 	u32 i;
633 
634 	dts_timing =
635 		(struct rk1808_ddr_dts_config_timing *)(timing +
636 							DTS_PAR_OFFSET / 4);
637 
638 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
639 	if (!np_tim) {
640 		ret = -EINVAL;
641 		goto end;
642 	}
643 
644 	p = (u32 *)dts_timing;
645 	for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
646 		ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
647 					p + i);
648 	}
649 	p = (u32 *)dts_timing->ca_de_skew;
650 	for (i = 0; i < ARRAY_SIZE(rk1808_dts_ca_timing); i++) {
651 		ret |= of_property_read_u32(np_tim, rk1808_dts_ca_timing[i],
652 					p + i);
653 	}
654 	p = (u32 *)dts_timing->cs0_a_de_skew;
655 	for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs0_a_timing); i++) {
656 		ret |= of_property_read_u32(np_tim, rk1808_dts_cs0_a_timing[i],
657 					p + i);
658 	}
659 	p = (u32 *)dts_timing->cs0_b_de_skew;
660 	for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs0_b_timing); i++) {
661 		ret |= of_property_read_u32(np_tim, rk1808_dts_cs0_b_timing[i],
662 					p + i);
663 	}
664 	p = (u32 *)dts_timing->cs1_a_de_skew;
665 	for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs1_a_timing); i++) {
666 		ret |= of_property_read_u32(np_tim, rk1808_dts_cs1_a_timing[i],
667 					p + i);
668 	}
669 	p = (u32 *)dts_timing->cs1_b_de_skew;
670 	for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs1_b_timing); i++) {
671 		ret |= of_property_read_u32(np_tim, rk1808_dts_cs1_b_timing[i],
672 					p + i);
673 	}
674 
675 end:
676 	if (!ret) {
677 		dts_timing->available = 1;
678 	} else {
679 		dts_timing->available = 0;
680 		dev_err(dev, "of_get_ddr_timings: fail\n");
681 	}
682 
683 	of_node_put(np_tim);
684 }
685 
of_get_rk3128_timings(struct device *dev, struct device_node *np, uint32_t *timing)686 static void of_get_rk3128_timings(struct device *dev,
687 				  struct device_node *np, uint32_t *timing)
688 {
689 	struct device_node *np_tim;
690 	u32 *p;
691 	struct rk3128_ddr_dts_config_timing *dts_timing;
692 	struct share_params *init_timing;
693 	int ret = 0;
694 	u32 i;
695 
696 	init_timing = (struct share_params *)timing;
697 
698 	if (of_property_read_u32(np, "vop-dclk-mode",
699 				 &init_timing->vop_dclk_mode))
700 		init_timing->vop_dclk_mode = 0;
701 
702 	p = timing + DTS_PAR_OFFSET / 4;
703 	np_tim = of_parse_phandle(np, "rockchip,ddr_timing", 0);
704 	if (!np_tim) {
705 		ret = -EINVAL;
706 		goto end;
707 	}
708 	for (i = 0; i < ARRAY_SIZE(rk3128_dts_timing); i++) {
709 		ret |= of_property_read_u32(np_tim, rk3128_dts_timing[i],
710 					p + i);
711 	}
712 end:
713 	dts_timing =
714 		(struct rk3128_ddr_dts_config_timing *)(timing +
715 							DTS_PAR_OFFSET / 4);
716 	if (!ret) {
717 		dts_timing->available = 1;
718 	} else {
719 		dts_timing->available = 0;
720 		dev_err(dev, "of_get_ddr_timings: fail\n");
721 	}
722 
723 	of_node_put(np_tim);
724 }
725 
of_get_rk3228_timings(struct device *dev, struct device_node *np, uint32_t *timing)726 static uint32_t of_get_rk3228_timings(struct device *dev,
727 				      struct device_node *np, uint32_t *timing)
728 {
729 	struct device_node *np_tim;
730 	u32 *p;
731 	int ret = 0;
732 	u32 i;
733 
734 	p = timing + DTS_PAR_OFFSET / 4;
735 	np_tim = of_parse_phandle(np, "rockchip,dram_timing", 0);
736 	if (!np_tim) {
737 		ret = -EINVAL;
738 		goto end;
739 	}
740 	for (i = 0; i < ARRAY_SIZE(rk3228_dts_timing); i++) {
741 		ret |= of_property_read_u32(np_tim, rk3228_dts_timing[i],
742 					p + i);
743 	}
744 end:
745 	if (ret)
746 		dev_err(dev, "of_get_ddr_timings: fail\n");
747 
748 	of_node_put(np_tim);
749 	return ret;
750 }
751 
of_get_rk3288_timings(struct device *dev, struct device_node *np, uint32_t *timing)752 static void of_get_rk3288_timings(struct device *dev,
753 				  struct device_node *np, uint32_t *timing)
754 {
755 	struct device_node *np_tim;
756 	u32 *p;
757 	struct rk3288_ddr_dts_config_timing *dts_timing;
758 	struct share_params *init_timing;
759 	int ret = 0;
760 	u32 i;
761 
762 	init_timing = (struct share_params *)timing;
763 
764 	if (of_property_read_u32(np, "vop-dclk-mode",
765 				 &init_timing->vop_dclk_mode))
766 		init_timing->vop_dclk_mode = 0;
767 
768 	p = timing + DTS_PAR_OFFSET / 4;
769 	np_tim = of_parse_phandle(np, "rockchip,ddr_timing", 0);
770 	if (!np_tim) {
771 		ret = -EINVAL;
772 		goto end;
773 	}
774 	for (i = 0; i < ARRAY_SIZE(rk3288_dts_timing); i++) {
775 		ret |= of_property_read_u32(np_tim, rk3288_dts_timing[i],
776 					p + i);
777 	}
778 end:
779 	dts_timing =
780 		(struct rk3288_ddr_dts_config_timing *)(timing +
781 							DTS_PAR_OFFSET / 4);
782 	if (!ret) {
783 		dts_timing->available = 1;
784 	} else {
785 		dts_timing->available = 0;
786 		dev_err(dev, "of_get_ddr_timings: fail\n");
787 	}
788 
789 	of_node_put(np_tim);
790 }
791 
of_get_rk3328_timings(struct device *dev, struct device_node *np, uint32_t *timing)792 static void of_get_rk3328_timings(struct device *dev,
793 				  struct device_node *np, uint32_t *timing)
794 {
795 	struct device_node *np_tim;
796 	u32 *p;
797 	struct rk3328_ddr_dts_config_timing *dts_timing;
798 	struct rk3328_ddr_de_skew_setting *de_skew;
799 	int ret = 0;
800 	u32 i;
801 
802 	dts_timing =
803 		(struct rk3328_ddr_dts_config_timing *)(timing +
804 							DTS_PAR_OFFSET / 4);
805 
806 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
807 	if (!np_tim) {
808 		ret = -EINVAL;
809 		goto end;
810 	}
811 	de_skew = kmalloc(sizeof(*de_skew), GFP_KERNEL);
812 	if (!de_skew) {
813 		ret = -ENOMEM;
814 		goto end;
815 	}
816 	p = (u32 *)dts_timing;
817 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_timing); i++) {
818 		ret |= of_property_read_u32(np_tim, rk3328_dts_timing[i],
819 					p + i);
820 	}
821 	p = (u32 *)de_skew->ca_de_skew;
822 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_ca_timing); i++) {
823 		ret |= of_property_read_u32(np_tim, rk3328_dts_ca_timing[i],
824 					p + i);
825 	}
826 	p = (u32 *)de_skew->cs0_de_skew;
827 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs0_timing); i++) {
828 		ret |= of_property_read_u32(np_tim, rk3328_dts_cs0_timing[i],
829 					p + i);
830 	}
831 	p = (u32 *)de_skew->cs1_de_skew;
832 	for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs1_timing); i++) {
833 		ret |= of_property_read_u32(np_tim, rk3328_dts_cs1_timing[i],
834 					p + i);
835 	}
836 	if (!ret)
837 		rk3328_de_skew_setting_2_register(de_skew, dts_timing);
838 	kfree(de_skew);
839 end:
840 	if (!ret) {
841 		dts_timing->available = 1;
842 	} else {
843 		dts_timing->available = 0;
844 		dev_err(dev, "of_get_ddr_timings: fail\n");
845 	}
846 
847 	of_node_put(np_tim);
848 }
849 
of_get_rv1126_timings(struct device *dev, struct device_node *np, uint32_t *timing)850 static void of_get_rv1126_timings(struct device *dev,
851 				  struct device_node *np, uint32_t *timing)
852 {
853 	struct device_node *np_tim;
854 	u32 *p;
855 	struct rk1808_ddr_dts_config_timing *dts_timing;
856 	int ret = 0;
857 	u32 i;
858 
859 	dts_timing =
860 		(struct rk1808_ddr_dts_config_timing *)(timing +
861 							DTS_PAR_OFFSET / 4);
862 
863 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
864 	if (!np_tim) {
865 		ret = -EINVAL;
866 		goto end;
867 	}
868 
869 	p = (u32 *)dts_timing;
870 	for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
871 		ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
872 					p + i);
873 	}
874 	p = (u32 *)dts_timing->ca_de_skew;
875 	for (i = 0; i < ARRAY_SIZE(rv1126_dts_ca_timing); i++) {
876 		ret |= of_property_read_u32(np_tim, rv1126_dts_ca_timing[i],
877 					p + i);
878 	}
879 	p = (u32 *)dts_timing->cs0_a_de_skew;
880 	for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs0_a_timing); i++) {
881 		ret |= of_property_read_u32(np_tim, rv1126_dts_cs0_a_timing[i],
882 					p + i);
883 	}
884 	p = (u32 *)dts_timing->cs0_b_de_skew;
885 	for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs0_b_timing); i++) {
886 		ret |= of_property_read_u32(np_tim, rv1126_dts_cs0_b_timing[i],
887 					p + i);
888 	}
889 	p = (u32 *)dts_timing->cs1_a_de_skew;
890 	for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs1_a_timing); i++) {
891 		ret |= of_property_read_u32(np_tim, rv1126_dts_cs1_a_timing[i],
892 					p + i);
893 	}
894 	p = (u32 *)dts_timing->cs1_b_de_skew;
895 	for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs1_b_timing); i++) {
896 		ret |= of_property_read_u32(np_tim, rv1126_dts_cs1_b_timing[i],
897 					p + i);
898 	}
899 
900 end:
901 	if (!ret) {
902 		dts_timing->available = 1;
903 	} else {
904 		dts_timing->available = 0;
905 		dev_err(dev, "of_get_ddr_timings: fail\n");
906 	}
907 
908 	of_node_put(np_tim);
909 }
910 
of_get_rk3368_timings(struct device *dev, struct device_node *np)911 static struct rk3368_dram_timing *of_get_rk3368_timings(struct device *dev,
912 							struct device_node *np)
913 {
914 	struct rk3368_dram_timing *timing = NULL;
915 	struct device_node *np_tim;
916 	int ret = 0;
917 
918 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
919 	if (np_tim) {
920 		timing = devm_kzalloc(dev, sizeof(*timing), GFP_KERNEL);
921 		if (!timing)
922 			goto err;
923 
924 		ret |= of_property_read_u32(np_tim, "dram_spd_bin",
925 					    &timing->dram_spd_bin);
926 		ret |= of_property_read_u32(np_tim, "sr_idle",
927 					    &timing->sr_idle);
928 		ret |= of_property_read_u32(np_tim, "pd_idle",
929 					    &timing->pd_idle);
930 		ret |= of_property_read_u32(np_tim, "dram_dll_disb_freq",
931 					    &timing->dram_dll_dis_freq);
932 		ret |= of_property_read_u32(np_tim, "phy_dll_disb_freq",
933 					    &timing->phy_dll_dis_freq);
934 		ret |= of_property_read_u32(np_tim, "dram_odt_disb_freq",
935 					    &timing->dram_odt_dis_freq);
936 		ret |= of_property_read_u32(np_tim, "phy_odt_disb_freq",
937 					    &timing->phy_odt_dis_freq);
938 		ret |= of_property_read_u32(np_tim, "ddr3_drv",
939 					    &timing->ddr3_drv);
940 		ret |= of_property_read_u32(np_tim, "ddr3_odt",
941 					    &timing->ddr3_odt);
942 		ret |= of_property_read_u32(np_tim, "lpddr3_drv",
943 					    &timing->lpddr3_drv);
944 		ret |= of_property_read_u32(np_tim, "lpddr3_odt",
945 					    &timing->lpddr3_odt);
946 		ret |= of_property_read_u32(np_tim, "lpddr2_drv",
947 					    &timing->lpddr2_drv);
948 		ret |= of_property_read_u32(np_tim, "phy_clk_drv",
949 					    &timing->phy_clk_drv);
950 		ret |= of_property_read_u32(np_tim, "phy_cmd_drv",
951 					    &timing->phy_cmd_drv);
952 		ret |= of_property_read_u32(np_tim, "phy_dqs_drv",
953 					    &timing->phy_dqs_drv);
954 		ret |= of_property_read_u32(np_tim, "phy_odt",
955 					    &timing->phy_odt);
956 		ret |= of_property_read_u32(np_tim, "ddr_2t",
957 					    &timing->ddr_2t);
958 		if (ret) {
959 			devm_kfree(dev, timing);
960 			goto err;
961 		}
962 		of_node_put(np_tim);
963 		return timing;
964 	}
965 
966 err:
967 	if (timing) {
968 		devm_kfree(dev, timing);
969 		timing = NULL;
970 	}
971 	of_node_put(np_tim);
972 	return timing;
973 }
974 
of_get_rk3399_timings(struct device *dev, struct device_node *np)975 static struct rk3399_dram_timing *of_get_rk3399_timings(struct device *dev,
976 							struct device_node *np)
977 {
978 	struct rk3399_dram_timing *timing = NULL;
979 	struct device_node *np_tim;
980 	int ret;
981 
982 	np_tim = of_parse_phandle(np, "ddr_timing", 0);
983 	if (np_tim) {
984 		timing = devm_kzalloc(dev, sizeof(*timing), GFP_KERNEL);
985 		if (!timing)
986 			goto err;
987 
988 		ret = of_property_read_u32(np_tim, "ddr3_speed_bin",
989 					   &timing->ddr3_speed_bin);
990 		ret |= of_property_read_u32(np_tim, "pd_idle",
991 					    &timing->pd_idle);
992 		ret |= of_property_read_u32(np_tim, "sr_idle",
993 					    &timing->sr_idle);
994 		ret |= of_property_read_u32(np_tim, "sr_mc_gate_idle",
995 					    &timing->sr_mc_gate_idle);
996 		ret |= of_property_read_u32(np_tim, "srpd_lite_idle",
997 					    &timing->srpd_lite_idle);
998 		ret |= of_property_read_u32(np_tim, "standby_idle",
999 					    &timing->standby_idle);
1000 		ret |= of_property_read_u32(np_tim, "auto_lp_dis_freq",
1001 					    &timing->auto_lp_dis_freq);
1002 		ret |= of_property_read_u32(np_tim, "ddr3_dll_dis_freq",
1003 					    &timing->ddr3_dll_dis_freq);
1004 		ret |= of_property_read_u32(np_tim, "phy_dll_dis_freq",
1005 					    &timing->phy_dll_dis_freq);
1006 		ret |= of_property_read_u32(np_tim, "ddr3_odt_dis_freq",
1007 					    &timing->ddr3_odt_dis_freq);
1008 		ret |= of_property_read_u32(np_tim, "ddr3_drv",
1009 					    &timing->ddr3_drv);
1010 		ret |= of_property_read_u32(np_tim, "ddr3_odt",
1011 					    &timing->ddr3_odt);
1012 		ret |= of_property_read_u32(np_tim, "phy_ddr3_ca_drv",
1013 					    &timing->phy_ddr3_ca_drv);
1014 		ret |= of_property_read_u32(np_tim, "phy_ddr3_dq_drv",
1015 					    &timing->phy_ddr3_dq_drv);
1016 		ret |= of_property_read_u32(np_tim, "phy_ddr3_odt",
1017 					    &timing->phy_ddr3_odt);
1018 		ret |= of_property_read_u32(np_tim, "lpddr3_odt_dis_freq",
1019 					    &timing->lpddr3_odt_dis_freq);
1020 		ret |= of_property_read_u32(np_tim, "lpddr3_drv",
1021 					    &timing->lpddr3_drv);
1022 		ret |= of_property_read_u32(np_tim, "lpddr3_odt",
1023 					    &timing->lpddr3_odt);
1024 		ret |= of_property_read_u32(np_tim, "phy_lpddr3_ca_drv",
1025 					    &timing->phy_lpddr3_ca_drv);
1026 		ret |= of_property_read_u32(np_tim, "phy_lpddr3_dq_drv",
1027 					    &timing->phy_lpddr3_dq_drv);
1028 		ret |= of_property_read_u32(np_tim, "phy_lpddr3_odt",
1029 					    &timing->phy_lpddr3_odt);
1030 		ret |= of_property_read_u32(np_tim, "lpddr4_odt_dis_freq",
1031 					    &timing->lpddr4_odt_dis_freq);
1032 		ret |= of_property_read_u32(np_tim, "lpddr4_drv",
1033 					    &timing->lpddr4_drv);
1034 		ret |= of_property_read_u32(np_tim, "lpddr4_dq_odt",
1035 					    &timing->lpddr4_dq_odt);
1036 		ret |= of_property_read_u32(np_tim, "lpddr4_ca_odt",
1037 					    &timing->lpddr4_ca_odt);
1038 		ret |= of_property_read_u32(np_tim, "phy_lpddr4_ca_drv",
1039 					    &timing->phy_lpddr4_ca_drv);
1040 		ret |= of_property_read_u32(np_tim, "phy_lpddr4_ck_cs_drv",
1041 					    &timing->phy_lpddr4_ck_cs_drv);
1042 		ret |= of_property_read_u32(np_tim, "phy_lpddr4_dq_drv",
1043 					    &timing->phy_lpddr4_dq_drv);
1044 		ret |= of_property_read_u32(np_tim, "phy_lpddr4_odt",
1045 					    &timing->phy_lpddr4_odt);
1046 		if (ret) {
1047 			devm_kfree(dev, timing);
1048 			goto err;
1049 		}
1050 		of_node_put(np_tim);
1051 		return timing;
1052 	}
1053 
1054 err:
1055 	if (timing) {
1056 		devm_kfree(dev, timing);
1057 		timing = NULL;
1058 	}
1059 	of_node_put(np_tim);
1060 	return timing;
1061 }
1062 
rockchip_ddr_set_auto_self_refresh(uint32_t en)1063 static int rockchip_ddr_set_auto_self_refresh(uint32_t en)
1064 {
1065 	struct arm_smccc_res res;
1066 
1067 	ddr_psci_param->sr_idle_en = en;
1068 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1069 			   ROCKCHIP_SIP_CONFIG_DRAM_SET_AT_SR);
1070 
1071 	return res.a0;
1072 }
1073 
1074 struct dmcfreq_wait_ctrl_t {
1075 	wait_queue_head_t wait_wq;
1076 	int complt_irq;
1077 	int wait_flag;
1078 	int wait_en;
1079 	int wait_time_out_ms;
1080 	int dcf_en;
1081 	struct regmap *regmap_dcf;
1082 };
1083 
1084 static struct dmcfreq_wait_ctrl_t wait_ctrl;
1085 
wait_complete_irq(int irqno, void *dev_id)1086 static irqreturn_t wait_complete_irq(int irqno, void *dev_id)
1087 {
1088 	struct dmcfreq_wait_ctrl_t *ctrl = dev_id;
1089 
1090 	ctrl->wait_flag = 0;
1091 	wake_up(&ctrl->wait_wq);
1092 	return IRQ_HANDLED;
1093 }
1094 
wait_dcf_complete_irq(int irqno, void *dev_id)1095 static irqreturn_t wait_dcf_complete_irq(int irqno, void *dev_id)
1096 {
1097 	struct arm_smccc_res res;
1098 	struct dmcfreq_wait_ctrl_t *ctrl = dev_id;
1099 
1100 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1101 			   ROCKCHIP_SIP_CONFIG_DRAM_POST_SET_RATE);
1102 	if (res.a0)
1103 		pr_err("%s: dram post set rate error:%lx\n", __func__, res.a0);
1104 
1105 	ctrl->wait_flag = 0;
1106 	wake_up(&ctrl->wait_wq);
1107 	return IRQ_HANDLED;
1108 }
1109 
rockchip_dmcfreq_wait_complete(void)1110 int rockchip_dmcfreq_wait_complete(void)
1111 {
1112 	struct arm_smccc_res res;
1113 
1114 	if (!wait_ctrl.wait_en) {
1115 		pr_err("%s: Do not support time out!\n", __func__);
1116 		return 0;
1117 	}
1118 	wait_ctrl.wait_flag = -1;
1119 
1120 	enable_irq(wait_ctrl.complt_irq);
1121 	/*
1122 	 * CPUs only enter WFI when idle to make sure that
1123 	 * FIQn can quick response.
1124 	 */
1125 	cpu_latency_qos_update_request(&pm_qos, 0);
1126 
1127 	if (wait_ctrl.dcf_en == 1) {
1128 		/* start dcf */
1129 		regmap_update_bits(wait_ctrl.regmap_dcf, 0x0, 0x1, 0x1);
1130 	} else if (wait_ctrl.dcf_en == 2) {
1131 		res = sip_smc_dram(0, 0, ROCKCHIP_SIP_CONFIG_MCU_START);
1132 		if (res.a0) {
1133 			pr_err("rockchip_sip_config_mcu_start error:%lx\n", res.a0);
1134 			return -ENOMEM;
1135 		}
1136 	}
1137 
1138 	wait_event_timeout(wait_ctrl.wait_wq, (wait_ctrl.wait_flag == 0),
1139 			   msecs_to_jiffies(wait_ctrl.wait_time_out_ms));
1140 
1141 	cpu_latency_qos_update_request(&pm_qos, PM_QOS_DEFAULT_VALUE);
1142 	disable_irq(wait_ctrl.complt_irq);
1143 
1144 	return 0;
1145 }
1146 
rockchip_get_freq_info(struct rockchip_dmcfreq *dmcfreq)1147 static __maybe_unused int rockchip_get_freq_info(struct rockchip_dmcfreq *dmcfreq)
1148 {
1149 	struct arm_smccc_res res;
1150 	struct dev_pm_opp *opp;
1151 	struct dmc_freq_table *freq_table;
1152 	unsigned long rate;
1153 	int i, j, count, ret = 0;
1154 
1155 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1156 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_FREQ_INFO);
1157 	if (res.a0) {
1158 		dev_err(dmcfreq->dev, "rockchip_sip_config_dram_get_freq_info error:%lx\n",
1159 			res.a0);
1160 		return -ENOMEM;
1161 	}
1162 
1163 	if (ddr_psci_param->freq_count == 0 || ddr_psci_param->freq_count > 6) {
1164 		dev_err(dmcfreq->dev, "it is no available frequencies!\n");
1165 		return -EPERM;
1166 	}
1167 
1168 	for (i = 0; i < ddr_psci_param->freq_count; i++)
1169 		dmcfreq->freq_info_rate[i] = ddr_psci_param->freq_info_mhz[i] * 1000000;
1170 	dmcfreq->freq_count = ddr_psci_param->freq_count;
1171 
1172 	/* update dmc_opp_table */
1173 	count = dev_pm_opp_get_opp_count(dmcfreq->dev);
1174 	if (count <= 0) {
1175 		ret = count ? count : -ENODATA;
1176 		return ret;
1177 	}
1178 
1179 	freq_table = kmalloc(sizeof(struct dmc_freq_table) * count, GFP_KERNEL);
1180 	for (i = 0, rate = 0; i < count; i++, rate++) {
1181 		/* find next rate */
1182 		opp = dev_pm_opp_find_freq_ceil(dmcfreq->dev, &rate);
1183 		if (IS_ERR(opp)) {
1184 			ret = PTR_ERR(opp);
1185 			dev_err(dmcfreq->dev, "failed to find OPP for freq %lu.\n", rate);
1186 			goto out;
1187 		}
1188 		freq_table[i].freq = rate;
1189 		freq_table[i].volt = dev_pm_opp_get_voltage(opp);
1190 		dev_pm_opp_put(opp);
1191 
1192 		for (j = 0; j < dmcfreq->freq_count; j++) {
1193 			if (rate == dmcfreq->freq_info_rate[j])
1194 				break;
1195 		}
1196 		if (j == dmcfreq->freq_count)
1197 			dev_pm_opp_remove(dmcfreq->dev, rate);
1198 	}
1199 
1200 	for (i = 0; i < dmcfreq->freq_count; i++) {
1201 		for (j = 0; j < count; j++) {
1202 			if (dmcfreq->freq_info_rate[i] == freq_table[j].freq) {
1203 				break;
1204 			} else if (dmcfreq->freq_info_rate[i] < freq_table[j].freq) {
1205 				dev_pm_opp_add(dmcfreq->dev, dmcfreq->freq_info_rate[i],
1206 					       freq_table[j].volt);
1207 				break;
1208 			}
1209 		}
1210 		if (j == count) {
1211 			dev_err(dmcfreq->dev, "failed to match dmc_opp_table for %ld\n",
1212 				dmcfreq->freq_info_rate[i]);
1213 			if (i == 0)
1214 				ret = -EPERM;
1215 			else
1216 				dmcfreq->freq_count = i;
1217 			goto out;
1218 		}
1219 	}
1220 
1221 out:
1222 	kfree(freq_table);
1223 	return ret;
1224 }
1225 
px30_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1226 static __maybe_unused int px30_dmc_init(struct platform_device *pdev,
1227 					struct rockchip_dmcfreq *dmcfreq)
1228 {
1229 	struct arm_smccc_res res;
1230 	u32 size;
1231 	int ret;
1232 	int complt_irq;
1233 	u32 complt_hwirq;
1234 	struct irq_data *complt_irq_data;
1235 
1236 	res = sip_smc_dram(0, 0,
1237 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1238 	dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
1239 	if (res.a0 || res.a1 < 0x103) {
1240 		dev_err(&pdev->dev,
1241 			"trusted firmware need to update or is invalid!\n");
1242 		return -ENXIO;
1243 	}
1244 
1245 	dev_notice(&pdev->dev, "read tf version 0x%lx!\n", res.a1);
1246 
1247 	/*
1248 	 * first 4KB is used for interface parameters
1249 	 * after 4KB * N is dts parameters
1250 	 */
1251 	size = sizeof(struct px30_ddr_dts_config_timing);
1252 	res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
1253 					SHARE_PAGE_TYPE_DDR);
1254 	if (res.a0 != 0) {
1255 		dev_err(&pdev->dev, "no ATF memory for init\n");
1256 		return -ENOMEM;
1257 	}
1258 	ddr_psci_param = (struct share_params *)res.a1;
1259 	of_get_px30_timings(&pdev->dev, pdev->dev.of_node,
1260 			    (uint32_t *)ddr_psci_param);
1261 
1262 	init_waitqueue_head(&wait_ctrl.wait_wq);
1263 	wait_ctrl.wait_en = 1;
1264 	wait_ctrl.wait_time_out_ms = 17 * 5;
1265 
1266 	complt_irq = platform_get_irq_byname(pdev, "complete_irq");
1267 	if (complt_irq < 0) {
1268 		dev_err(&pdev->dev, "no IRQ for complete_irq: %d\n",
1269 			complt_irq);
1270 		return complt_irq;
1271 	}
1272 	wait_ctrl.complt_irq = complt_irq;
1273 
1274 	ret = devm_request_irq(&pdev->dev, complt_irq, wait_complete_irq,
1275 			       0, dev_name(&pdev->dev), &wait_ctrl);
1276 	if (ret < 0) {
1277 		dev_err(&pdev->dev, "cannot request complete_irq\n");
1278 		return ret;
1279 	}
1280 	disable_irq(complt_irq);
1281 
1282 	complt_irq_data = irq_get_irq_data(complt_irq);
1283 	complt_hwirq = irqd_to_hwirq(complt_irq_data);
1284 	ddr_psci_param->complt_hwirq = complt_hwirq;
1285 
1286 	dmcfreq->set_rate_params = ddr_psci_param;
1287 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1288 	rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
1289 
1290 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1291 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1292 	if (res.a0) {
1293 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1294 			res.a0);
1295 		return -ENOMEM;
1296 	}
1297 
1298 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1299 
1300 	return 0;
1301 }
1302 
rk1808_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1303 static __maybe_unused int rk1808_dmc_init(struct platform_device *pdev,
1304 					  struct rockchip_dmcfreq *dmcfreq)
1305 {
1306 	struct arm_smccc_res res;
1307 	u32 size;
1308 	int ret;
1309 	int complt_irq;
1310 	struct device_node *node;
1311 
1312 	res = sip_smc_dram(0, 0,
1313 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1314 	dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
1315 	if (res.a0 || res.a1 < 0x101) {
1316 		dev_err(&pdev->dev,
1317 			"trusted firmware need to update or is invalid!\n");
1318 		return -ENXIO;
1319 	}
1320 
1321 	/*
1322 	 * first 4KB is used for interface parameters
1323 	 * after 4KB * N is dts parameters
1324 	 */
1325 	size = sizeof(struct rk1808_ddr_dts_config_timing);
1326 	res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
1327 					SHARE_PAGE_TYPE_DDR);
1328 	if (res.a0 != 0) {
1329 		dev_err(&pdev->dev, "no ATF memory for init\n");
1330 		return -ENOMEM;
1331 	}
1332 	ddr_psci_param = (struct share_params *)res.a1;
1333 	of_get_rk1808_timings(&pdev->dev, pdev->dev.of_node,
1334 			      (uint32_t *)ddr_psci_param);
1335 
1336 	/* enable start dcf in kernel after dcf ready */
1337 	node = of_parse_phandle(pdev->dev.of_node, "dcf_reg", 0);
1338 	wait_ctrl.regmap_dcf = syscon_node_to_regmap(node);
1339 	if (IS_ERR(wait_ctrl.regmap_dcf))
1340 		return PTR_ERR(wait_ctrl.regmap_dcf);
1341 	wait_ctrl.dcf_en = 1;
1342 
1343 	init_waitqueue_head(&wait_ctrl.wait_wq);
1344 	wait_ctrl.wait_en = 1;
1345 	wait_ctrl.wait_time_out_ms = 17 * 5;
1346 
1347 	complt_irq = platform_get_irq_byname(pdev, "complete_irq");
1348 	if (complt_irq < 0) {
1349 		dev_err(&pdev->dev, "no IRQ for complete_irq: %d\n",
1350 			complt_irq);
1351 		return complt_irq;
1352 	}
1353 	wait_ctrl.complt_irq = complt_irq;
1354 
1355 	ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
1356 			       0, dev_name(&pdev->dev), &wait_ctrl);
1357 	if (ret < 0) {
1358 		dev_err(&pdev->dev, "cannot request complete_irq\n");
1359 		return ret;
1360 	}
1361 	disable_irq(complt_irq);
1362 
1363 	dmcfreq->set_rate_params = ddr_psci_param;
1364 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1365 	rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
1366 
1367 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1368 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1369 	if (res.a0) {
1370 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1371 			res.a0);
1372 		return -ENOMEM;
1373 	}
1374 
1375 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1376 
1377 	return 0;
1378 }
1379 
rk3128_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1380 static __maybe_unused int rk3128_dmc_init(struct platform_device *pdev,
1381 					  struct rockchip_dmcfreq *dmcfreq)
1382 {
1383 	struct arm_smccc_res res;
1384 
1385 	res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
1386 					struct rk3128_ddr_dts_config_timing),
1387 					4096) + 1, SHARE_PAGE_TYPE_DDR);
1388 	if (res.a0) {
1389 		dev_err(&pdev->dev, "no ATF memory for init\n");
1390 		return -ENOMEM;
1391 	}
1392 	ddr_psci_param = (struct share_params *)res.a1;
1393 	of_get_rk3128_timings(&pdev->dev, pdev->dev.of_node,
1394 			      (uint32_t *)ddr_psci_param);
1395 
1396 	ddr_psci_param->hz = 0;
1397 	ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
1398 
1399 	dmcfreq->set_rate_params = ddr_psci_param;
1400 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1401 
1402 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1403 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1404 
1405 	if (res.a0) {
1406 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1407 			res.a0);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1412 
1413 	return 0;
1414 }
1415 
rk3228_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1416 static __maybe_unused int rk3228_dmc_init(struct platform_device *pdev,
1417 					  struct rockchip_dmcfreq *dmcfreq)
1418 {
1419 	struct arm_smccc_res res;
1420 
1421 	res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
1422 					struct rk3228_ddr_dts_config_timing),
1423 					4096) + 1, SHARE_PAGE_TYPE_DDR);
1424 	if (res.a0) {
1425 		dev_err(&pdev->dev, "no ATF memory for init\n");
1426 		return -ENOMEM;
1427 	}
1428 
1429 	ddr_psci_param = (struct share_params *)res.a1;
1430 	if (of_get_rk3228_timings(&pdev->dev, pdev->dev.of_node,
1431 				  (uint32_t *)ddr_psci_param))
1432 		return -ENOMEM;
1433 
1434 	ddr_psci_param->hz = 0;
1435 
1436 	dmcfreq->set_rate_params = ddr_psci_param;
1437 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1438 
1439 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1440 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1441 
1442 	if (res.a0) {
1443 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1444 			res.a0);
1445 		return -ENOMEM;
1446 	}
1447 
1448 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1449 
1450 	return 0;
1451 }
1452 
rk3288_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1453 static __maybe_unused int rk3288_dmc_init(struct platform_device *pdev,
1454 					  struct rockchip_dmcfreq *dmcfreq)
1455 {
1456 	struct device *dev = &pdev->dev;
1457 	struct clk *pclk_phy, *pclk_upctl, *dmc_clk;
1458 	struct arm_smccc_res res;
1459 	int ret;
1460 
1461 	dmc_clk = devm_clk_get(dev, "dmc_clk");
1462 	if (IS_ERR(dmc_clk)) {
1463 		dev_err(dev, "Cannot get the clk dmc_clk\n");
1464 		return PTR_ERR(dmc_clk);
1465 	}
1466 	ret = clk_prepare_enable(dmc_clk);
1467 	if (ret < 0) {
1468 		dev_err(dev, "failed to prepare/enable dmc_clk\n");
1469 		return ret;
1470 	}
1471 
1472 	pclk_phy = devm_clk_get(dev, "pclk_phy0");
1473 	if (IS_ERR(pclk_phy)) {
1474 		dev_err(dev, "Cannot get the clk pclk_phy0\n");
1475 		return PTR_ERR(pclk_phy);
1476 	}
1477 	ret = clk_prepare_enable(pclk_phy);
1478 	if (ret < 0) {
1479 		dev_err(dev, "failed to prepare/enable pclk_phy0\n");
1480 		return ret;
1481 	}
1482 	pclk_upctl = devm_clk_get(dev, "pclk_upctl0");
1483 	if (IS_ERR(pclk_upctl)) {
1484 		dev_err(dev, "Cannot get the clk pclk_upctl0\n");
1485 		return PTR_ERR(pclk_upctl);
1486 	}
1487 	ret = clk_prepare_enable(pclk_upctl);
1488 	if (ret < 0) {
1489 		dev_err(dev, "failed to prepare/enable pclk_upctl1\n");
1490 		return ret;
1491 	}
1492 
1493 	pclk_phy = devm_clk_get(dev, "pclk_phy1");
1494 	if (IS_ERR(pclk_phy)) {
1495 		dev_err(dev, "Cannot get the clk pclk_phy1\n");
1496 		return PTR_ERR(pclk_phy);
1497 	}
1498 	ret = clk_prepare_enable(pclk_phy);
1499 	if (ret < 0) {
1500 		dev_err(dev, "failed to prepare/enable pclk_phy1\n");
1501 		return ret;
1502 	}
1503 	pclk_upctl = devm_clk_get(dev, "pclk_upctl1");
1504 	if (IS_ERR(pclk_upctl)) {
1505 		dev_err(dev, "Cannot get the clk pclk_upctl1\n");
1506 		return PTR_ERR(pclk_upctl);
1507 	}
1508 	ret = clk_prepare_enable(pclk_upctl);
1509 	if (ret < 0) {
1510 		dev_err(dev, "failed to prepare/enable pclk_upctl1\n");
1511 		return ret;
1512 	}
1513 
1514 	res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
1515 					struct rk3288_ddr_dts_config_timing),
1516 					4096) + 1, SHARE_PAGE_TYPE_DDR);
1517 	if (res.a0) {
1518 		dev_err(&pdev->dev, "no ATF memory for init\n");
1519 		return -ENOMEM;
1520 	}
1521 
1522 	ddr_psci_param = (struct share_params *)res.a1;
1523 	of_get_rk3288_timings(&pdev->dev, pdev->dev.of_node,
1524 			      (uint32_t *)ddr_psci_param);
1525 
1526 	ddr_psci_param->hz = 0;
1527 	ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
1528 
1529 	dmcfreq->set_rate_params = ddr_psci_param;
1530 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1531 
1532 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1533 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1534 
1535 	if (res.a0) {
1536 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1537 			res.a0);
1538 		return -ENOMEM;
1539 	}
1540 
1541 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1542 
1543 	return 0;
1544 }
1545 
rk3328_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1546 static __maybe_unused int rk3328_dmc_init(struct platform_device *pdev,
1547 					  struct rockchip_dmcfreq *dmcfreq)
1548 {
1549 	struct arm_smccc_res res;
1550 	u32 size;
1551 
1552 	res = sip_smc_dram(0, 0,
1553 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1554 	dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
1555 	if (res.a0 || (res.a1 < 0x101)) {
1556 		dev_err(&pdev->dev,
1557 			"trusted firmware need to update or is invalid!\n");
1558 		return -ENXIO;
1559 	}
1560 
1561 	dev_notice(&pdev->dev, "read tf version 0x%lx!\n", res.a1);
1562 
1563 	/*
1564 	 * first 4KB is used for interface parameters
1565 	 * after 4KB * N is dts parameters
1566 	 */
1567 	size = sizeof(struct rk3328_ddr_dts_config_timing);
1568 	res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
1569 					SHARE_PAGE_TYPE_DDR);
1570 	if (res.a0 != 0) {
1571 		dev_err(&pdev->dev, "no ATF memory for init\n");
1572 		return -ENOMEM;
1573 	}
1574 	ddr_psci_param = (struct share_params *)res.a1;
1575 	of_get_rk3328_timings(&pdev->dev, pdev->dev.of_node,
1576 			      (uint32_t *)ddr_psci_param);
1577 
1578 	dmcfreq->set_rate_params = ddr_psci_param;
1579 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1580 
1581 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1582 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1583 	if (res.a0) {
1584 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1585 			res.a0);
1586 		return -ENOMEM;
1587 	}
1588 
1589 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1590 
1591 	return 0;
1592 }
1593 
rk3368_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1594 static __maybe_unused int rk3368_dmc_init(struct platform_device *pdev,
1595 					  struct rockchip_dmcfreq *dmcfreq)
1596 {
1597 	struct device *dev = &pdev->dev;
1598 	struct device_node *np = pdev->dev.of_node;
1599 	struct arm_smccc_res res;
1600 	struct rk3368_dram_timing *dram_timing;
1601 	struct clk *pclk_phy, *pclk_upctl;
1602 	int ret;
1603 	u32 dram_spd_bin;
1604 	u32 addr_mcu_el3;
1605 	u32 dclk_mode;
1606 	u32 lcdc_type;
1607 
1608 	pclk_phy = devm_clk_get(dev, "pclk_phy");
1609 	if (IS_ERR(pclk_phy)) {
1610 		dev_err(dev, "Cannot get the clk pclk_phy\n");
1611 		return PTR_ERR(pclk_phy);
1612 	}
1613 	ret = clk_prepare_enable(pclk_phy);
1614 	if (ret < 0) {
1615 		dev_err(dev, "failed to prepare/enable pclk_phy\n");
1616 		return ret;
1617 	}
1618 	pclk_upctl = devm_clk_get(dev, "pclk_upctl");
1619 	if (IS_ERR(pclk_upctl)) {
1620 		dev_err(dev, "Cannot get the clk pclk_upctl\n");
1621 		return PTR_ERR(pclk_upctl);
1622 	}
1623 	ret = clk_prepare_enable(pclk_upctl);
1624 	if (ret < 0) {
1625 		dev_err(dev, "failed to prepare/enable pclk_upctl\n");
1626 		return ret;
1627 	}
1628 
1629 	/*
1630 	 * Get dram timing and pass it to arm trust firmware,
1631 	 * the dram drvier in arm trust firmware will get these
1632 	 * timing and to do dram initial.
1633 	 */
1634 	dram_timing = of_get_rk3368_timings(dev, np);
1635 	if (dram_timing) {
1636 		dram_spd_bin = dram_timing->dram_spd_bin;
1637 		if (scpi_ddr_send_timing((u32 *)dram_timing,
1638 					 sizeof(struct rk3368_dram_timing)))
1639 			dev_err(dev, "send ddr timing timeout\n");
1640 	} else {
1641 		dev_err(dev, "get ddr timing from dts error\n");
1642 		dram_spd_bin = DDR3_DEFAULT;
1643 	}
1644 
1645 	res = sip_smc_mcu_el3fiq(FIQ_INIT_HANDLER,
1646 				 FIQ_NUM_FOR_DCF,
1647 				 FIQ_CPU_TGT_BOOT);
1648 	if ((res.a0) || (res.a1 == 0) || (res.a1 > 0x80000))
1649 		dev_err(dev, "Trust version error, pls check trust version\n");
1650 	addr_mcu_el3 = res.a1;
1651 
1652 	if (of_property_read_u32(np, "vop-dclk-mode", &dclk_mode) == 0)
1653 		scpi_ddr_dclk_mode(dclk_mode);
1654 
1655 	dmcfreq->set_rate_params =
1656 		devm_kzalloc(dev, sizeof(struct share_params), GFP_KERNEL);
1657 	if (!dmcfreq->set_rate_params)
1658 		return -ENOMEM;
1659 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1660 
1661 	lcdc_type = rk_drm_get_lcdc_type();
1662 
1663 	if (scpi_ddr_init(dram_spd_bin, 0, lcdc_type,
1664 			  addr_mcu_el3))
1665 		dev_err(dev, "ddr init error\n");
1666 	else
1667 		dev_dbg(dev, ("%s out\n"), __func__);
1668 
1669 	dmcfreq->set_auto_self_refresh = scpi_ddr_set_auto_self_refresh;
1670 
1671 	return 0;
1672 }
1673 
rk3399_set_msch_readlatency(unsigned int readlatency)1674 static int rk3399_set_msch_readlatency(unsigned int readlatency)
1675 {
1676 	struct arm_smccc_res res;
1677 
1678 	arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, readlatency, 0,
1679 		      ROCKCHIP_SIP_CONFIG_DRAM_SET_MSCH_RL,
1680 		      0, 0, 0, 0, &res);
1681 
1682 	return res.a0;
1683 }
1684 
rk3399_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1685 static __maybe_unused int rk3399_dmc_init(struct platform_device *pdev,
1686 					  struct rockchip_dmcfreq *dmcfreq)
1687 {
1688 	struct device *dev = &pdev->dev;
1689 	struct device_node *np = pdev->dev.of_node;
1690 	struct arm_smccc_res res;
1691 	struct rk3399_dram_timing *dram_timing;
1692 	int index, size;
1693 	u32 *timing;
1694 
1695 	/*
1696 	 * Get dram timing and pass it to arm trust firmware,
1697 	 * the dram drvier in arm trust firmware will get these
1698 	 * timing and to do dram initial.
1699 	 */
1700 	dram_timing = of_get_rk3399_timings(dev, np);
1701 	if (dram_timing) {
1702 		timing = (u32 *)dram_timing;
1703 		size = sizeof(struct rk3399_dram_timing) / 4;
1704 		for (index = 0; index < size; index++) {
1705 			arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, *timing++, index,
1706 				      ROCKCHIP_SIP_CONFIG_DRAM_SET_PARAM,
1707 				      0, 0, 0, 0, &res);
1708 			if (res.a0) {
1709 				dev_err(dev, "Failed to set dram param: %ld\n",
1710 					res.a0);
1711 				return -EINVAL;
1712 			}
1713 		}
1714 	}
1715 
1716 	dmcfreq->set_rate_params =
1717 		devm_kzalloc(dev, sizeof(struct share_params), GFP_KERNEL);
1718 	if (!dmcfreq->set_rate_params)
1719 		return -ENOMEM;
1720 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1721 
1722 	arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, 0, 0,
1723 		      ROCKCHIP_SIP_CONFIG_DRAM_INIT,
1724 		      0, 0, 0, 0, &res);
1725 
1726 	dmcfreq->info.set_msch_readlatency = rk3399_set_msch_readlatency;
1727 
1728 	return 0;
1729 }
1730 
rk3568_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1731 static __maybe_unused int rk3568_dmc_init(struct platform_device *pdev,
1732 					  struct rockchip_dmcfreq *dmcfreq)
1733 {
1734 	struct arm_smccc_res res;
1735 	int ret;
1736 	int complt_irq;
1737 
1738 	res = sip_smc_dram(0, 0,
1739 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1740 	dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
1741 	if (res.a0 || res.a1 < 0x101) {
1742 		dev_err(&pdev->dev, "trusted firmware need update to V1.01 and above.\n");
1743 		return -ENXIO;
1744 	}
1745 
1746 	/*
1747 	 * first 4KB is used for interface parameters
1748 	 * after 4KB is dts parameters
1749 	 * request share memory size 4KB * 2
1750 	 */
1751 	res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_DDR);
1752 	if (res.a0 != 0) {
1753 		dev_err(&pdev->dev, "no ATF memory for init\n");
1754 		return -ENOMEM;
1755 	}
1756 	ddr_psci_param = (struct share_params *)res.a1;
1757 	/* Clear ddr_psci_param, size is 4KB * 2 */
1758 	memset_io(ddr_psci_param, 0x0, 4096 * 2);
1759 
1760 	/* start mcu with sip_smc_dram */
1761 	wait_ctrl.dcf_en = 2;
1762 
1763 	init_waitqueue_head(&wait_ctrl.wait_wq);
1764 	wait_ctrl.wait_en = 1;
1765 	wait_ctrl.wait_time_out_ms = 17 * 5;
1766 
1767 	complt_irq = platform_get_irq_byname(pdev, "complete");
1768 	if (complt_irq < 0) {
1769 		dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n",
1770 			complt_irq);
1771 		return complt_irq;
1772 	}
1773 	wait_ctrl.complt_irq = complt_irq;
1774 
1775 	ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
1776 			       0, dev_name(&pdev->dev), &wait_ctrl);
1777 	if (ret < 0) {
1778 		dev_err(&pdev->dev, "cannot request complt_irq\n");
1779 		return ret;
1780 	}
1781 	disable_irq(complt_irq);
1782 
1783 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1784 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1785 	if (res.a0) {
1786 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1787 			res.a0);
1788 		return -ENOMEM;
1789 	}
1790 
1791 	ret = rockchip_get_freq_info(dmcfreq);
1792 	if (ret < 0) {
1793 		dev_err(&pdev->dev, "cannot get frequency info\n");
1794 		return ret;
1795 	}
1796 	dmcfreq->is_set_rate_direct = true;
1797 
1798 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1799 
1800 	return 0;
1801 }
1802 
rk3588_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1803 static __maybe_unused int rk3588_dmc_init(struct platform_device *pdev,
1804 					  struct rockchip_dmcfreq *dmcfreq)
1805 {
1806 	struct arm_smccc_res res;
1807 	int ret;
1808 	int complt_irq;
1809 
1810 	res = sip_smc_dram(0, 0, ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1811 	dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
1812 	if (res.a0) {
1813 		dev_err(&pdev->dev, "trusted firmware unsupported, please update.\n");
1814 		return -ENXIO;
1815 	}
1816 
1817 	/*
1818 	 * first 4KB is used for interface parameters
1819 	 * after 4KB is dts parameters
1820 	 * request share memory size 4KB * 2
1821 	 */
1822 	res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_DDR);
1823 	if (res.a0 != 0) {
1824 		dev_err(&pdev->dev, "no ATF memory for init\n");
1825 		return -ENOMEM;
1826 	}
1827 	ddr_psci_param = (struct share_params *)res.a1;
1828 	/* Clear ddr_psci_param, size is 4KB * 2 */
1829 	memset_io(ddr_psci_param, 0x0, 4096 * 2);
1830 
1831 	/* start mcu with sip_smc_dram */
1832 	wait_ctrl.dcf_en = 2;
1833 
1834 	init_waitqueue_head(&wait_ctrl.wait_wq);
1835 	wait_ctrl.wait_en = 1;
1836 	wait_ctrl.wait_time_out_ms = 17 * 5;
1837 
1838 	complt_irq = platform_get_irq_byname(pdev, "complete");
1839 	if (complt_irq < 0) {
1840 		dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n", complt_irq);
1841 		return complt_irq;
1842 	}
1843 	wait_ctrl.complt_irq = complt_irq;
1844 
1845 	ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
1846 			       0, dev_name(&pdev->dev), &wait_ctrl);
1847 	if (ret < 0) {
1848 		dev_err(&pdev->dev, "cannot request complt_irq\n");
1849 		return ret;
1850 	}
1851 	disable_irq(complt_irq);
1852 
1853 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0, ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1854 	if (res.a0) {
1855 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n", res.a0);
1856 		return -ENOMEM;
1857 	}
1858 
1859 	ret = rockchip_get_freq_info(dmcfreq);
1860 	if (ret < 0) {
1861 		dev_err(&pdev->dev, "cannot get frequency info\n");
1862 		return ret;
1863 	}
1864 	dmcfreq->is_set_rate_direct = true;
1865 
1866 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1867 
1868 	return 0;
1869 }
1870 
rv1126_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)1871 static __maybe_unused int rv1126_dmc_init(struct platform_device *pdev,
1872 					  struct rockchip_dmcfreq *dmcfreq)
1873 {
1874 	struct arm_smccc_res res;
1875 	u32 size;
1876 	int ret;
1877 	int complt_irq;
1878 	struct device_node *node;
1879 
1880 	res = sip_smc_dram(0, 0,
1881 			   ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
1882 	dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
1883 	if (res.a0 || res.a1 < 0x100) {
1884 		dev_err(&pdev->dev,
1885 			"trusted firmware need to update or is invalid!\n");
1886 		return -ENXIO;
1887 	}
1888 
1889 	/*
1890 	 * first 4KB is used for interface parameters
1891 	 * after 4KB * N is dts parameters
1892 	 */
1893 	size = sizeof(struct rk1808_ddr_dts_config_timing);
1894 	res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
1895 					SHARE_PAGE_TYPE_DDR);
1896 	if (res.a0 != 0) {
1897 		dev_err(&pdev->dev, "no ATF memory for init\n");
1898 		return -ENOMEM;
1899 	}
1900 	ddr_psci_param = (struct share_params *)res.a1;
1901 	of_get_rv1126_timings(&pdev->dev, pdev->dev.of_node,
1902 			      (uint32_t *)ddr_psci_param);
1903 
1904 	/* enable start dcf in kernel after dcf ready */
1905 	node = of_parse_phandle(pdev->dev.of_node, "dcf", 0);
1906 	wait_ctrl.regmap_dcf = syscon_node_to_regmap(node);
1907 	if (IS_ERR(wait_ctrl.regmap_dcf))
1908 		return PTR_ERR(wait_ctrl.regmap_dcf);
1909 	wait_ctrl.dcf_en = 1;
1910 
1911 	init_waitqueue_head(&wait_ctrl.wait_wq);
1912 	wait_ctrl.wait_en = 1;
1913 	wait_ctrl.wait_time_out_ms = 17 * 5;
1914 
1915 	complt_irq = platform_get_irq_byname(pdev, "complete");
1916 	if (complt_irq < 0) {
1917 		dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n",
1918 			complt_irq);
1919 		return complt_irq;
1920 	}
1921 	wait_ctrl.complt_irq = complt_irq;
1922 
1923 	ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
1924 			       0, dev_name(&pdev->dev), &wait_ctrl);
1925 	if (ret < 0) {
1926 		dev_err(&pdev->dev, "cannot request complt_irq\n");
1927 		return ret;
1928 	}
1929 	disable_irq(complt_irq);
1930 
1931 	if (of_property_read_u32(pdev->dev.of_node, "update_drv_odt_cfg",
1932 				 &ddr_psci_param->update_drv_odt_cfg))
1933 		ddr_psci_param->update_drv_odt_cfg = 0;
1934 
1935 	if (of_property_read_u32(pdev->dev.of_node, "update_deskew_cfg",
1936 				 &ddr_psci_param->update_deskew_cfg))
1937 		ddr_psci_param->update_deskew_cfg = 0;
1938 
1939 	dmcfreq->set_rate_params = ddr_psci_param;
1940 	rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
1941 	rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
1942 
1943 	res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
1944 			   ROCKCHIP_SIP_CONFIG_DRAM_INIT);
1945 	if (res.a0) {
1946 		dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
1947 			res.a0);
1948 		return -ENOMEM;
1949 	}
1950 
1951 	dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
1952 
1953 	return 0;
1954 }
1955 
1956 static const struct of_device_id rockchip_dmcfreq_of_match[] = {
1957 #if IS_ENABLED(CONFIG_CPU_PX30)
1958 	{ .compatible = "rockchip,px30-dmc", .data = px30_dmc_init },
1959 #endif
1960 #if IS_ENABLED(CONFIG_CPU_RK1808)
1961 	{ .compatible = "rockchip,rk1808-dmc", .data = rk1808_dmc_init },
1962 #endif
1963 #if IS_ENABLED(CONFIG_CPU_RK312X)
1964 	{ .compatible = "rockchip,rk3128-dmc", .data = rk3128_dmc_init },
1965 #endif
1966 #if IS_ENABLED(CONFIG_CPU_RK322X)
1967 	{ .compatible = "rockchip,rk3228-dmc", .data = rk3228_dmc_init },
1968 #endif
1969 #if IS_ENABLED(CONFIG_CPU_RK3288)
1970 	{ .compatible = "rockchip,rk3288-dmc", .data = rk3288_dmc_init },
1971 #endif
1972 #if IS_ENABLED(CONFIG_CPU_RK3308)
1973 	{ .compatible = "rockchip,rk3308-dmc", .data = NULL },
1974 #endif
1975 #if IS_ENABLED(CONFIG_CPU_RK3328)
1976 	{ .compatible = "rockchip,rk3328-dmc", .data = rk3328_dmc_init },
1977 #endif
1978 #if IS_ENABLED(CONFIG_CPU_RK3368)
1979 	{ .compatible = "rockchip,rk3368-dmc", .data = rk3368_dmc_init },
1980 #endif
1981 #if IS_ENABLED(CONFIG_CPU_RK3399)
1982 	{ .compatible = "rockchip,rk3399-dmc", .data = rk3399_dmc_init },
1983 #endif
1984 #if IS_ENABLED(CONFIG_CPU_RK3568)
1985 	{ .compatible = "rockchip,rk3568-dmc", .data = rk3568_dmc_init },
1986 #endif
1987 #if IS_ENABLED(CONFIG_CPU_RK3588)
1988 	{ .compatible = "rockchip,rk3588-dmc", .data = rk3588_dmc_init },
1989 #endif
1990 #if IS_ENABLED(CONFIG_CPU_RV1126)
1991 	{ .compatible = "rockchip,rv1126-dmc", .data = rv1126_dmc_init },
1992 #endif
1993 	{ },
1994 };
1995 MODULE_DEVICE_TABLE(of, rockchip_dmcfreq_of_match);
1996 
rockchip_get_freq_map_talbe(struct device_node *np, char *porp_name, struct freq_map_table **table)1997 static int rockchip_get_freq_map_talbe(struct device_node *np, char *porp_name,
1998 				       struct freq_map_table **table)
1999 {
2000 	struct freq_map_table *tbl;
2001 	const struct property *prop;
2002 	unsigned int temp_freq = 0;
2003 	int count, i;
2004 
2005 	prop = of_find_property(np, porp_name, NULL);
2006 	if (!prop)
2007 		return -EINVAL;
2008 
2009 	if (!prop->value)
2010 		return -ENODATA;
2011 
2012 	count = of_property_count_u32_elems(np, porp_name);
2013 	if (count < 0)
2014 		return -EINVAL;
2015 
2016 	if (count % 3)
2017 		return -EINVAL;
2018 
2019 	tbl = kzalloc(sizeof(*tbl) * (count / 3 + 1), GFP_KERNEL);
2020 	if (!tbl)
2021 		return -ENOMEM;
2022 
2023 	for (i = 0; i < count / 3; i++) {
2024 		of_property_read_u32_index(np, porp_name, 3 * i, &tbl[i].min);
2025 		of_property_read_u32_index(np, porp_name, 3 * i + 1,
2026 					   &tbl[i].max);
2027 		of_property_read_u32_index(np, porp_name, 3 * i + 2,
2028 					   &temp_freq);
2029 		tbl[i].freq = temp_freq * 1000;
2030 	}
2031 
2032 	tbl[i].min = 0;
2033 	tbl[i].max = 0;
2034 	tbl[i].freq = DMCFREQ_TABLE_END;
2035 
2036 	*table = tbl;
2037 
2038 	return 0;
2039 }
2040 
rockchip_get_rl_map_talbe(struct device_node *np, char *porp_name, struct rl_map_table **table)2041 static int rockchip_get_rl_map_talbe(struct device_node *np, char *porp_name,
2042 				     struct rl_map_table **table)
2043 {
2044 	struct rl_map_table *tbl;
2045 	const struct property *prop;
2046 	int count, i;
2047 
2048 	prop = of_find_property(np, porp_name, NULL);
2049 	if (!prop)
2050 		return -EINVAL;
2051 
2052 	if (!prop->value)
2053 		return -ENODATA;
2054 
2055 	count = of_property_count_u32_elems(np, porp_name);
2056 	if (count < 0)
2057 		return -EINVAL;
2058 
2059 	if (count % 2)
2060 		return -EINVAL;
2061 
2062 	tbl = kzalloc(sizeof(*tbl) * (count / 2 + 1), GFP_KERNEL);
2063 	if (!tbl)
2064 		return -ENOMEM;
2065 
2066 	for (i = 0; i < count / 2; i++) {
2067 		of_property_read_u32_index(np, porp_name, 2 * i, &tbl[i].pn);
2068 		of_property_read_u32_index(np, porp_name, 2 * i + 1,
2069 					   &tbl[i].rl);
2070 	}
2071 
2072 	tbl[i].pn = 0;
2073 	tbl[i].rl = DMCFREQ_TABLE_END;
2074 
2075 	*table = tbl;
2076 
2077 	return 0;
2078 }
2079 
rockchip_get_system_status_rate(struct device_node *np, char *porp_name, struct rockchip_dmcfreq *dmcfreq)2080 static int rockchip_get_system_status_rate(struct device_node *np,
2081 					   char *porp_name,
2082 					   struct rockchip_dmcfreq *dmcfreq)
2083 {
2084 	const struct property *prop;
2085 	unsigned int status = 0, freq = 0;
2086 	unsigned long temp_rate = 0;
2087 	int count, i;
2088 
2089 	prop = of_find_property(np, porp_name, NULL);
2090 	if (!prop)
2091 		return -ENODEV;
2092 
2093 	if (!prop->value)
2094 		return -ENODATA;
2095 
2096 	count = of_property_count_u32_elems(np, porp_name);
2097 	if (count < 0)
2098 		return -EINVAL;
2099 
2100 	if (count % 2)
2101 		return -EINVAL;
2102 
2103 	for (i = 0; i < count / 2; i++) {
2104 		of_property_read_u32_index(np, porp_name, 2 * i,
2105 					   &status);
2106 		of_property_read_u32_index(np, porp_name, 2 * i + 1,
2107 					   &freq);
2108 		switch (status) {
2109 		case SYS_STATUS_NORMAL:
2110 			dmcfreq->normal_rate = freq * 1000;
2111 			break;
2112 		case SYS_STATUS_SUSPEND:
2113 			dmcfreq->suspend_rate = freq * 1000;
2114 			break;
2115 		case SYS_STATUS_VIDEO_1080P:
2116 			dmcfreq->video_1080p_rate = freq * 1000;
2117 			break;
2118 		case SYS_STATUS_VIDEO_4K:
2119 			dmcfreq->video_4k_rate = freq * 1000;
2120 			break;
2121 		case SYS_STATUS_VIDEO_4K_10B:
2122 			dmcfreq->video_4k_10b_rate = freq * 1000;
2123 			break;
2124 		case SYS_STATUS_PERFORMANCE:
2125 			dmcfreq->performance_rate = freq * 1000;
2126 			break;
2127 		case SYS_STATUS_HDMI:
2128 			dmcfreq->hdmi_rate = freq * 1000;
2129 			break;
2130 		case SYS_STATUS_IDLE:
2131 			dmcfreq->idle_rate = freq * 1000;
2132 			break;
2133 		case SYS_STATUS_REBOOT:
2134 			dmcfreq->reboot_rate = freq * 1000;
2135 			break;
2136 		case SYS_STATUS_BOOST:
2137 			dmcfreq->boost_rate = freq * 1000;
2138 			break;
2139 		case SYS_STATUS_ISP:
2140 		case SYS_STATUS_CIF0:
2141 		case SYS_STATUS_CIF1:
2142 		case SYS_STATUS_DUALVIEW:
2143 			temp_rate = freq * 1000;
2144 			if (dmcfreq->fixed_rate < temp_rate)
2145 				dmcfreq->fixed_rate = temp_rate;
2146 			break;
2147 		case SYS_STATUS_LOW_POWER:
2148 			dmcfreq->low_power_rate = freq * 1000;
2149 			break;
2150 		default:
2151 			break;
2152 		}
2153 	}
2154 
2155 	return 0;
2156 }
2157 
rockchip_freq_level_2_rate(struct rockchip_dmcfreq *dmcfreq, unsigned int level)2158 static unsigned long rockchip_freq_level_2_rate(struct rockchip_dmcfreq *dmcfreq,
2159 						unsigned int level)
2160 {
2161 	unsigned long rate = 0;
2162 
2163 	switch (level) {
2164 	case DMC_FREQ_LEVEL_LOW:
2165 		rate = dmcfreq->rate_low;
2166 		break;
2167 	case DMC_FREQ_LEVEL_MID_LOW:
2168 		rate = dmcfreq->rate_mid_low;
2169 		break;
2170 	case DMC_FREQ_LEVEL_MID_HIGH:
2171 		rate = dmcfreq->rate_mid_high;
2172 		break;
2173 	case DMC_FREQ_LEVEL_HIGH:
2174 		rate = dmcfreq->rate_high;
2175 		break;
2176 	default:
2177 		break;
2178 	}
2179 
2180 	return rate;
2181 }
2182 
rockchip_get_system_status_level(struct device_node *np, char *porp_name, struct rockchip_dmcfreq *dmcfreq)2183 static int rockchip_get_system_status_level(struct device_node *np,
2184 					    char *porp_name,
2185 					    struct rockchip_dmcfreq *dmcfreq)
2186 {
2187 	const struct property *prop;
2188 	unsigned int status = 0, level = 0;
2189 	unsigned long temp_rate = 0;
2190 	int count, i;
2191 
2192 	prop = of_find_property(np, porp_name, NULL);
2193 	if (!prop)
2194 		return -ENODEV;
2195 
2196 	if (!prop->value)
2197 		return -ENODATA;
2198 
2199 	count = of_property_count_u32_elems(np, porp_name);
2200 	if (count < 0)
2201 		return -EINVAL;
2202 
2203 	if (count % 2)
2204 		return -EINVAL;
2205 
2206 	if (dmcfreq->freq_count == 1) {
2207 		dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
2208 		dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[0];
2209 		dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[0];
2210 		dmcfreq->rate_high = dmcfreq->freq_info_rate[0];
2211 	} else if (dmcfreq->freq_count == 2) {
2212 		dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
2213 		dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[0];
2214 		dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[1];
2215 		dmcfreq->rate_high = dmcfreq->freq_info_rate[1];
2216 	} else if (dmcfreq->freq_count == 3) {
2217 		dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
2218 		dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
2219 		dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[1];
2220 		dmcfreq->rate_high = dmcfreq->freq_info_rate[2];
2221 	} else if (dmcfreq->freq_count == 4) {
2222 		dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
2223 		dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
2224 		dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[2];
2225 		dmcfreq->rate_high = dmcfreq->freq_info_rate[3];
2226 	} else if (dmcfreq->freq_count == 5 || dmcfreq->freq_count == 6) {
2227 		dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
2228 		dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
2229 		dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[dmcfreq->freq_count - 2];
2230 		dmcfreq->rate_high = dmcfreq->freq_info_rate[dmcfreq->freq_count - 1];
2231 	} else {
2232 		return -EINVAL;
2233 	}
2234 
2235 	dmcfreq->auto_min_rate = dmcfreq->rate_low;
2236 
2237 	for (i = 0; i < count / 2; i++) {
2238 		of_property_read_u32_index(np, porp_name, 2 * i,
2239 					   &status);
2240 		of_property_read_u32_index(np, porp_name, 2 * i + 1,
2241 					   &level);
2242 		switch (status) {
2243 		case SYS_STATUS_NORMAL:
2244 			dmcfreq->normal_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2245 			dev_info(dmcfreq->dev, "normal_rate = %ld\n", dmcfreq->normal_rate);
2246 			break;
2247 		case SYS_STATUS_SUSPEND:
2248 			dmcfreq->suspend_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2249 			dev_info(dmcfreq->dev, "suspend_rate = %ld\n", dmcfreq->suspend_rate);
2250 			break;
2251 		case SYS_STATUS_VIDEO_1080P:
2252 			dmcfreq->video_1080p_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2253 			dev_info(dmcfreq->dev, "video_1080p_rate = %ld\n",
2254 				 dmcfreq->video_1080p_rate);
2255 			break;
2256 		case SYS_STATUS_VIDEO_4K:
2257 			dmcfreq->video_4k_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2258 			dev_info(dmcfreq->dev, "video_4k_rate = %ld\n", dmcfreq->video_4k_rate);
2259 			break;
2260 		case SYS_STATUS_VIDEO_4K_10B:
2261 			dmcfreq->video_4k_10b_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2262 			dev_info(dmcfreq->dev, "video_4k_10b_rate = %ld\n",
2263 				 dmcfreq->video_4k_10b_rate);
2264 			break;
2265 		case SYS_STATUS_PERFORMANCE:
2266 			dmcfreq->performance_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2267 			dev_info(dmcfreq->dev, "performance_rate = %ld\n",
2268 				 dmcfreq->performance_rate);
2269 			break;
2270 		case SYS_STATUS_HDMI:
2271 			dmcfreq->hdmi_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2272 			dev_info(dmcfreq->dev, "hdmi_rate = %ld\n", dmcfreq->hdmi_rate);
2273 			break;
2274 		case SYS_STATUS_IDLE:
2275 			dmcfreq->idle_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2276 			dev_info(dmcfreq->dev, "idle_rate = %ld\n", dmcfreq->idle_rate);
2277 			break;
2278 		case SYS_STATUS_REBOOT:
2279 			dmcfreq->reboot_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2280 			dev_info(dmcfreq->dev, "reboot_rate = %ld\n", dmcfreq->reboot_rate);
2281 			break;
2282 		case SYS_STATUS_BOOST:
2283 			dmcfreq->boost_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2284 			dev_info(dmcfreq->dev, "boost_rate = %ld\n", dmcfreq->boost_rate);
2285 			break;
2286 		case SYS_STATUS_ISP:
2287 		case SYS_STATUS_CIF0:
2288 		case SYS_STATUS_CIF1:
2289 		case SYS_STATUS_DUALVIEW:
2290 			temp_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2291 			if (dmcfreq->fixed_rate < temp_rate) {
2292 				dmcfreq->fixed_rate = temp_rate;
2293 				dev_info(dmcfreq->dev,
2294 					 "fixed_rate(isp|cif0|cif1|dualview) = %ld\n",
2295 					 dmcfreq->fixed_rate);
2296 			}
2297 			break;
2298 		case SYS_STATUS_LOW_POWER:
2299 			dmcfreq->low_power_rate = rockchip_freq_level_2_rate(dmcfreq, level);
2300 			dev_info(dmcfreq->dev, "low_power_rate = %ld\n", dmcfreq->low_power_rate);
2301 			break;
2302 		default:
2303 			break;
2304 		}
2305 	}
2306 
2307 	return 0;
2308 }
2309 
rockchip_dmcfreq_update_target(struct rockchip_dmcfreq *dmcfreq)2310 static void rockchip_dmcfreq_update_target(struct rockchip_dmcfreq *dmcfreq)
2311 {
2312 	struct devfreq *devfreq = dmcfreq->info.devfreq;
2313 
2314 	mutex_lock(&devfreq->lock);
2315 	update_devfreq(devfreq);
2316 	mutex_unlock(&devfreq->lock);
2317 }
2318 
rockchip_dmcfreq_system_status_notifier(struct notifier_block *nb, unsigned long status, void *ptr)2319 static int rockchip_dmcfreq_system_status_notifier(struct notifier_block *nb,
2320 						   unsigned long status,
2321 						   void *ptr)
2322 {
2323 	struct rockchip_dmcfreq *dmcfreq = system_status_to_dmcfreq(nb);
2324 	unsigned long target_rate = 0;
2325 	unsigned int refresh = false;
2326 	bool is_fixed = false;
2327 
2328 	if (dmcfreq->fixed_rate && (is_dualview(status) || is_isp(status))) {
2329 		if (dmcfreq->is_fixed)
2330 			return NOTIFY_OK;
2331 		is_fixed = true;
2332 		target_rate = dmcfreq->fixed_rate;
2333 		goto next;
2334 	}
2335 
2336 	if (dmcfreq->reboot_rate && (status & SYS_STATUS_REBOOT)) {
2337 		if (dmcfreq->info.auto_freq_en)
2338 			devfreq_monitor_stop(dmcfreq->info.devfreq);
2339 		target_rate = dmcfreq->reboot_rate;
2340 		goto next;
2341 	}
2342 
2343 	if (dmcfreq->suspend_rate && (status & SYS_STATUS_SUSPEND)) {
2344 		target_rate = dmcfreq->suspend_rate;
2345 		refresh = true;
2346 		goto next;
2347 	}
2348 
2349 	if (dmcfreq->low_power_rate && (status & SYS_STATUS_LOW_POWER)) {
2350 		target_rate = dmcfreq->low_power_rate;
2351 		goto next;
2352 	}
2353 
2354 	if (dmcfreq->performance_rate && (status & SYS_STATUS_PERFORMANCE)) {
2355 		if (dmcfreq->performance_rate > target_rate)
2356 			target_rate = dmcfreq->performance_rate;
2357 	}
2358 
2359 	if (dmcfreq->hdmi_rate && (status & SYS_STATUS_HDMI)) {
2360 		if (dmcfreq->hdmi_rate > target_rate)
2361 			target_rate = dmcfreq->hdmi_rate;
2362 	}
2363 
2364 	if (dmcfreq->video_4k_rate && (status & SYS_STATUS_VIDEO_4K)) {
2365 		if (dmcfreq->video_4k_rate > target_rate)
2366 			target_rate = dmcfreq->video_4k_rate;
2367 	}
2368 
2369 	if (dmcfreq->video_4k_10b_rate && (status & SYS_STATUS_VIDEO_4K_10B)) {
2370 		if (dmcfreq->video_4k_10b_rate > target_rate)
2371 			target_rate = dmcfreq->video_4k_10b_rate;
2372 	}
2373 
2374 	if (dmcfreq->video_1080p_rate && (status & SYS_STATUS_VIDEO_1080P)) {
2375 		if (dmcfreq->video_1080p_rate > target_rate)
2376 			target_rate = dmcfreq->video_1080p_rate;
2377 	}
2378 
2379 next:
2380 
2381 	dev_dbg(dmcfreq->dev, "status=0x%x\n", (unsigned int)status);
2382 	dmcfreq->is_fixed = is_fixed;
2383 	dmcfreq->status_rate = target_rate;
2384 	if (dmcfreq->refresh != refresh) {
2385 		if (dmcfreq->set_auto_self_refresh)
2386 			dmcfreq->set_auto_self_refresh(refresh);
2387 		dmcfreq->refresh = refresh;
2388 	}
2389 	rockchip_dmcfreq_update_target(dmcfreq);
2390 
2391 	return NOTIFY_OK;
2392 }
2393 
rockchip_dmcfreq_status_show(struct device *dev, struct device_attribute *attr, char *buf)2394 static ssize_t rockchip_dmcfreq_status_show(struct device *dev,
2395 					    struct device_attribute *attr,
2396 					    char *buf)
2397 {
2398 	unsigned int status = rockchip_get_system_status();
2399 
2400 	return sprintf(buf, "0x%x\n", status);
2401 }
2402 
rockchip_dmcfreq_status_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2403 static ssize_t rockchip_dmcfreq_status_store(struct device *dev,
2404 					     struct device_attribute *attr,
2405 					     const char *buf,
2406 					     size_t count)
2407 {
2408 	if (!count)
2409 		return -EINVAL;
2410 
2411 	rockchip_update_system_status(buf);
2412 
2413 	return count;
2414 }
2415 
2416 static DEVICE_ATTR(system_status, 0644, rockchip_dmcfreq_status_show,
2417 		   rockchip_dmcfreq_status_store);
2418 
upthreshold_show(struct device *dev, struct device_attribute *attr, char *buf)2419 static ssize_t upthreshold_show(struct device *dev,
2420 				struct device_attribute *attr,
2421 				char *buf)
2422 {
2423 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
2424 	struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
2425 
2426 	return sprintf(buf, "%d\n", data->upthreshold);
2427 }
2428 
upthreshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2429 static ssize_t upthreshold_store(struct device *dev,
2430 				 struct device_attribute *attr,
2431 				 const char *buf,
2432 				 size_t count)
2433 {
2434 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
2435 	struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
2436 	unsigned int value;
2437 
2438 	if (kstrtouint(buf, 10, &value))
2439 		return -EINVAL;
2440 
2441 	data->upthreshold = value;
2442 
2443 	return count;
2444 }
2445 
2446 static DEVICE_ATTR_RW(upthreshold);
2447 
downdifferential_show(struct device *dev, struct device_attribute *attr, char *buf)2448 static ssize_t downdifferential_show(struct device *dev,
2449 				     struct device_attribute *attr,
2450 				     char *buf)
2451 {
2452 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
2453 	struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
2454 
2455 	return sprintf(buf, "%d\n", data->downdifferential);
2456 }
2457 
downdifferential_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)2458 static ssize_t downdifferential_store(struct device *dev,
2459 				      struct device_attribute *attr,
2460 				      const char *buf,
2461 				      size_t count)
2462 {
2463 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
2464 	struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
2465 	unsigned int value;
2466 
2467 	if (kstrtouint(buf, 10, &value))
2468 		return -EINVAL;
2469 
2470 	data->downdifferential = value;
2471 
2472 	return count;
2473 }
2474 
2475 static DEVICE_ATTR_RW(downdifferential);
2476 
get_nocp_req_rate(struct rockchip_dmcfreq *dmcfreq)2477 static unsigned long get_nocp_req_rate(struct rockchip_dmcfreq *dmcfreq)
2478 {
2479 	unsigned long target = 0, cpu_bw = 0;
2480 	int i;
2481 
2482 	if (!dmcfreq->cpu_bw_tbl || dmcfreq->nocp_cpu_id < 0)
2483 		goto out;
2484 
2485 	cpu_bw = dmcfreq->nocp_bw[dmcfreq->nocp_cpu_id];
2486 
2487 	for (i = 0; dmcfreq->cpu_bw_tbl[i].freq != CPUFREQ_TABLE_END; i++) {
2488 		if (cpu_bw >= dmcfreq->cpu_bw_tbl[i].min)
2489 			target = dmcfreq->cpu_bw_tbl[i].freq;
2490 	}
2491 
2492 out:
2493 	return target;
2494 }
2495 
devfreq_dmc_ondemand_func(struct devfreq *df, unsigned long *freq)2496 static int devfreq_dmc_ondemand_func(struct devfreq *df,
2497 				     unsigned long *freq)
2498 {
2499 	int err;
2500 	struct devfreq_dev_status *stat;
2501 	unsigned long long a, b;
2502 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(df->dev.parent);
2503 	struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
2504 	unsigned int upthreshold = data->upthreshold;
2505 	unsigned int downdifferential = data->downdifferential;
2506 	unsigned long target_freq = 0, nocp_req_rate = 0;
2507 	u64 now;
2508 
2509 	if (dmcfreq->info.auto_freq_en && !dmcfreq->is_fixed) {
2510 		if (dmcfreq->status_rate)
2511 			target_freq = dmcfreq->status_rate;
2512 		else if (dmcfreq->auto_min_rate)
2513 			target_freq = dmcfreq->auto_min_rate;
2514 		nocp_req_rate = get_nocp_req_rate(dmcfreq);
2515 		target_freq = max3(target_freq, nocp_req_rate,
2516 				   dmcfreq->info.vop_req_rate);
2517 		now = ktime_to_us(ktime_get());
2518 		if (now < dmcfreq->touchboostpulse_endtime)
2519 			target_freq = max(target_freq, dmcfreq->boost_rate);
2520 	} else {
2521 		if (dmcfreq->status_rate)
2522 			target_freq = dmcfreq->status_rate;
2523 		else if (dmcfreq->normal_rate)
2524 			target_freq = dmcfreq->normal_rate;
2525 		if (target_freq)
2526 			*freq = target_freq;
2527 		if (dmcfreq->info.auto_freq_en && !devfreq_update_stats(df))
2528 			return 0;
2529 		goto reset_last_status;
2530 	}
2531 
2532 	if (!upthreshold || !downdifferential)
2533 		goto reset_last_status;
2534 
2535 	if (upthreshold > 100 ||
2536 	    upthreshold < downdifferential)
2537 		goto reset_last_status;
2538 
2539 	err = devfreq_update_stats(df);
2540 	if (err)
2541 		goto reset_last_status;
2542 
2543 	stat = &df->last_status;
2544 
2545 	/* Assume MAX if it is going to be divided by zero */
2546 	if (stat->total_time == 0) {
2547 		*freq = DEVFREQ_MAX_FREQ;
2548 		return 0;
2549 	}
2550 
2551 	/* Prevent overflow */
2552 	if (stat->busy_time >= (1 << 24) || stat->total_time >= (1 << 24)) {
2553 		stat->busy_time >>= 7;
2554 		stat->total_time >>= 7;
2555 	}
2556 
2557 	/* Set MAX if it's busy enough */
2558 	if (stat->busy_time * 100 >
2559 	    stat->total_time * upthreshold) {
2560 		*freq = DEVFREQ_MAX_FREQ;
2561 		return 0;
2562 	}
2563 
2564 	/* Set MAX if we do not know the initial frequency */
2565 	if (stat->current_frequency == 0) {
2566 		*freq = DEVFREQ_MAX_FREQ;
2567 		return 0;
2568 	}
2569 
2570 	/* Keep the current frequency */
2571 	if (stat->busy_time * 100 >
2572 	    stat->total_time * (upthreshold - downdifferential)) {
2573 		*freq = max(target_freq, stat->current_frequency);
2574 		return 0;
2575 	}
2576 
2577 	/* Set the desired frequency based on the load */
2578 	a = stat->busy_time;
2579 	a *= stat->current_frequency;
2580 	b = div_u64(a, stat->total_time);
2581 	b *= 100;
2582 	b = div_u64(b, (upthreshold - downdifferential / 2));
2583 	*freq = max_t(unsigned long, target_freq, b);
2584 
2585 	return 0;
2586 
2587 reset_last_status:
2588 	reset_last_status(df);
2589 
2590 	return 0;
2591 }
2592 
devfreq_dmc_ondemand_handler(struct devfreq *devfreq, unsigned int event, void *data)2593 static int devfreq_dmc_ondemand_handler(struct devfreq *devfreq,
2594 					unsigned int event, void *data)
2595 {
2596 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(devfreq->dev.parent);
2597 
2598 	if (!dmcfreq->info.auto_freq_en)
2599 		return 0;
2600 
2601 	switch (event) {
2602 	case DEVFREQ_GOV_START:
2603 		devfreq_monitor_start(devfreq);
2604 		break;
2605 
2606 	case DEVFREQ_GOV_STOP:
2607 		devfreq_monitor_stop(devfreq);
2608 		break;
2609 
2610 	case DEVFREQ_GOV_UPDATE_INTERVAL:
2611 		devfreq_update_interval(devfreq, (unsigned int *)data);
2612 		break;
2613 
2614 	case DEVFREQ_GOV_SUSPEND:
2615 		devfreq_monitor_suspend(devfreq);
2616 		break;
2617 
2618 	case DEVFREQ_GOV_RESUME:
2619 		devfreq_monitor_resume(devfreq);
2620 		break;
2621 
2622 	default:
2623 		break;
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static struct devfreq_governor devfreq_dmc_ondemand = {
2630 	.name = "dmc_ondemand",
2631 	.get_target_freq = devfreq_dmc_ondemand_func,
2632 	.event_handler = devfreq_dmc_ondemand_handler,
2633 };
2634 
rockchip_dmcfreq_enable_event(struct rockchip_dmcfreq *dmcfreq)2635 static int rockchip_dmcfreq_enable_event(struct rockchip_dmcfreq *dmcfreq)
2636 {
2637 	int i, ret;
2638 
2639 	if (!dmcfreq->info.auto_freq_en)
2640 		return 0;
2641 
2642 	for (i = 0; i < dmcfreq->edev_count; i++) {
2643 		ret = devfreq_event_enable_edev(dmcfreq->edev[i]);
2644 		if (ret < 0) {
2645 			dev_err(dmcfreq->dev,
2646 				"failed to enable devfreq-event\n");
2647 			return ret;
2648 		}
2649 	}
2650 
2651 	return 0;
2652 }
2653 
rockchip_dmcfreq_disable_event(struct rockchip_dmcfreq *dmcfreq)2654 static int rockchip_dmcfreq_disable_event(struct rockchip_dmcfreq *dmcfreq)
2655 {
2656 	int i, ret;
2657 
2658 	if (!dmcfreq->info.auto_freq_en)
2659 		return 0;
2660 
2661 	for (i = 0; i < dmcfreq->edev_count; i++) {
2662 		ret = devfreq_event_disable_edev(dmcfreq->edev[i]);
2663 		if (ret < 0) {
2664 			dev_err(dmcfreq->dev,
2665 				"failed to disable devfreq-event\n");
2666 			return ret;
2667 		}
2668 	}
2669 
2670 	return 0;
2671 }
2672 
rockchip_get_edev_id(struct rockchip_dmcfreq *dmcfreq, const char *name)2673 static int rockchip_get_edev_id(struct rockchip_dmcfreq *dmcfreq,
2674 				const char *name)
2675 {
2676 	struct devfreq_event_dev *edev;
2677 	int i;
2678 
2679 	for (i = 0; i < dmcfreq->edev_count; i++) {
2680 		edev = dmcfreq->edev[i];
2681 		if (!strcmp(edev->desc->name, name))
2682 			return i;
2683 	}
2684 
2685 	return -EINVAL;
2686 }
2687 
rockchip_dmcfreq_get_event(struct rockchip_dmcfreq *dmcfreq)2688 static int rockchip_dmcfreq_get_event(struct rockchip_dmcfreq *dmcfreq)
2689 {
2690 	struct device *dev = dmcfreq->dev;
2691 	struct device_node *events_np, *np = dev->of_node;
2692 	int i, j, count, available_count = 0;
2693 
2694 	count = devfreq_event_get_edev_count(dev, "devfreq-events");
2695 	if (count < 0) {
2696 		dev_dbg(dev, "failed to get count of devfreq-event dev\n");
2697 		return 0;
2698 	}
2699 	for (i = 0; i < count; i++) {
2700 		events_np = of_parse_phandle(np, "devfreq-events", i);
2701 		if (!events_np)
2702 			continue;
2703 		if (of_device_is_available(events_np))
2704 			available_count++;
2705 		of_node_put(events_np);
2706 	}
2707 	if (!available_count) {
2708 		dev_dbg(dev, "failed to get available devfreq-event\n");
2709 		return 0;
2710 	}
2711 	dmcfreq->edev_count = available_count;
2712 	dmcfreq->edev = devm_kzalloc(dev,
2713 				     sizeof(*dmcfreq->edev) * available_count,
2714 				     GFP_KERNEL);
2715 	if (!dmcfreq->edev)
2716 		return -ENOMEM;
2717 
2718 	for (i = 0, j = 0; i < count; i++) {
2719 		events_np = of_parse_phandle(np, "devfreq-events", i);
2720 		if (!events_np)
2721 			continue;
2722 		if (of_device_is_available(events_np)) {
2723 			of_node_put(events_np);
2724 			if (j >= available_count) {
2725 				dev_err(dev, "invalid event conut\n");
2726 				return -EINVAL;
2727 			}
2728 			dmcfreq->edev[j] =
2729 				devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
2730 			if (IS_ERR(dmcfreq->edev[j]))
2731 				return -EPROBE_DEFER;
2732 			j++;
2733 		} else {
2734 			of_node_put(events_np);
2735 		}
2736 	}
2737 	dmcfreq->info.auto_freq_en = true;
2738 	dmcfreq->dfi_id = rockchip_get_edev_id(dmcfreq, "dfi");
2739 	dmcfreq->nocp_cpu_id = rockchip_get_edev_id(dmcfreq, "nocp-cpu");
2740 	dmcfreq->nocp_bw =
2741 		devm_kzalloc(dev, sizeof(*dmcfreq->nocp_bw) * available_count,
2742 			     GFP_KERNEL);
2743 	if (!dmcfreq->nocp_bw)
2744 		return -ENOMEM;
2745 
2746 	return 0;
2747 }
2748 
rockchip_dmcfreq_power_control(struct rockchip_dmcfreq *dmcfreq)2749 static int rockchip_dmcfreq_power_control(struct rockchip_dmcfreq *dmcfreq)
2750 {
2751 	struct device *dev = dmcfreq->dev;
2752 
2753 	dmcfreq->vdd_center = devm_regulator_get_optional(dev, "center");
2754 	if (IS_ERR(dmcfreq->vdd_center)) {
2755 		dev_err(dev, "Cannot get the regulator \"center\"\n");
2756 		return PTR_ERR(dmcfreq->vdd_center);
2757 	}
2758 
2759 	dmcfreq->dmc_clk = devm_clk_get(dev, "dmc_clk");
2760 	if (IS_ERR(dmcfreq->dmc_clk)) {
2761 		dev_err(dev, "Cannot get the clk dmc_clk. If using SCMI, trusted firmware need update to V1.01 and above.\n");
2762 		return PTR_ERR(dmcfreq->dmc_clk);
2763 	}
2764 	dmcfreq->rate = clk_get_rate(dmcfreq->dmc_clk);
2765 
2766 	return 0;
2767 }
2768 
rockchip_dmcfreq_dmc_init(struct platform_device *pdev, struct rockchip_dmcfreq *dmcfreq)2769 static int rockchip_dmcfreq_dmc_init(struct platform_device *pdev,
2770 				     struct rockchip_dmcfreq *dmcfreq)
2771 {
2772 	const struct of_device_id *match;
2773 	int (*init)(struct platform_device *pdev,
2774 		    struct rockchip_dmcfreq *data);
2775 	int ret;
2776 
2777 	match = of_match_node(rockchip_dmcfreq_of_match, pdev->dev.of_node);
2778 	if (match) {
2779 		init = match->data;
2780 		if (init) {
2781 			ret = init(pdev, dmcfreq);
2782 			if (ret)
2783 				return ret;
2784 		}
2785 	}
2786 
2787 	return 0;
2788 }
2789 
rockchip_dmcfreq_parse_dt(struct rockchip_dmcfreq *dmcfreq)2790 static void rockchip_dmcfreq_parse_dt(struct rockchip_dmcfreq *dmcfreq)
2791 {
2792 	struct device *dev = dmcfreq->dev;
2793 	struct device_node *np = dev->of_node;
2794 
2795 	if (!rockchip_get_system_status_rate(np, "system-status-freq", dmcfreq))
2796 		dmcfreq->system_status_en = true;
2797 	else if (!rockchip_get_system_status_level(np, "system-status-level", dmcfreq))
2798 		dmcfreq->system_status_en = true;
2799 
2800 	of_property_read_u32(np, "min-cpu-freq", &dmcfreq->min_cpu_freq);
2801 
2802 	of_property_read_u32(np, "upthreshold",
2803 			     &dmcfreq->ondemand_data.upthreshold);
2804 	of_property_read_u32(np, "downdifferential",
2805 			     &dmcfreq->ondemand_data.downdifferential);
2806 	if (dmcfreq->info.auto_freq_en)
2807 		of_property_read_u32(np, "auto-freq-en",
2808 				     &dmcfreq->info.auto_freq_en);
2809 	if (!dmcfreq->auto_min_rate) {
2810 		of_property_read_u32(np, "auto-min-freq",
2811 				     (u32 *)&dmcfreq->auto_min_rate);
2812 		dmcfreq->auto_min_rate *= 1000;
2813 	}
2814 
2815 	if (rockchip_get_freq_map_talbe(np, "cpu-bw-dmc-freq",
2816 					&dmcfreq->cpu_bw_tbl))
2817 		dev_dbg(dev, "failed to get cpu bandwidth to dmc rate\n");
2818 	if (rockchip_get_freq_map_talbe(np, "vop-frame-bw-dmc-freq",
2819 					&dmcfreq->info.vop_frame_bw_tbl))
2820 		dev_dbg(dev, "failed to get vop frame bandwidth to dmc rate\n");
2821 	if (rockchip_get_freq_map_talbe(np, "vop-bw-dmc-freq",
2822 					&dmcfreq->info.vop_bw_tbl))
2823 		dev_err(dev, "failed to get vop bandwidth to dmc rate\n");
2824 	if (rockchip_get_rl_map_talbe(np, "vop-pn-msch-readlatency",
2825 				      &dmcfreq->info.vop_pn_rl_tbl))
2826 		dev_err(dev, "failed to get vop pn to msch rl\n");
2827 
2828 	of_property_read_u32(np, "touchboost_duration",
2829 			     (u32 *)&dmcfreq->touchboostpulse_duration_val);
2830 	if (dmcfreq->touchboostpulse_duration_val)
2831 		dmcfreq->touchboostpulse_duration_val *= USEC_PER_MSEC;
2832 	else
2833 		dmcfreq->touchboostpulse_duration_val = 500 * USEC_PER_MSEC;
2834 }
2835 
rockchip_dmcfreq_set_volt_only(struct rockchip_dmcfreq *dmcfreq)2836 static int rockchip_dmcfreq_set_volt_only(struct rockchip_dmcfreq *dmcfreq)
2837 {
2838 	struct device *dev = dmcfreq->dev;
2839 	struct dev_pm_opp *opp;
2840 	unsigned long opp_volt, opp_rate = dmcfreq->rate;
2841 	int ret;
2842 
2843 	opp = devfreq_recommended_opp(dev, &opp_rate, 0);
2844 	if (IS_ERR(opp)) {
2845 		dev_err(dev, "Failed to find opp for %lu Hz\n", opp_rate);
2846 		return PTR_ERR(opp);
2847 	}
2848 	opp_volt = dev_pm_opp_get_voltage(opp);
2849 	dev_pm_opp_put(opp);
2850 
2851 	ret = regulator_set_voltage(dmcfreq->vdd_center, opp_volt, INT_MAX);
2852 	if (ret) {
2853 		dev_err(dev, "Cannot set voltage %lu uV\n", opp_volt);
2854 		return ret;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
rockchip_dmcfreq_add_devfreq(struct rockchip_dmcfreq *dmcfreq)2860 static int rockchip_dmcfreq_add_devfreq(struct rockchip_dmcfreq *dmcfreq)
2861 {
2862 	struct devfreq_dev_profile *devp = &rockchip_devfreq_dmc_profile;
2863 	struct device *dev = dmcfreq->dev;
2864 	struct dev_pm_opp *opp;
2865 	struct devfreq *devfreq;
2866 	unsigned long opp_rate = dmcfreq->rate;
2867 
2868 	opp = devfreq_recommended_opp(dev, &opp_rate, 0);
2869 	if (IS_ERR(opp)) {
2870 		dev_err(dev, "Failed to find opp for %lu Hz\n", opp_rate);
2871 		return PTR_ERR(opp);
2872 	}
2873 	dev_pm_opp_put(opp);
2874 
2875 	devp->initial_freq = dmcfreq->rate;
2876 	devfreq = devm_devfreq_add_device(dev, devp, "dmc_ondemand",
2877 					  &dmcfreq->ondemand_data);
2878 	if (IS_ERR(devfreq)) {
2879 		dev_err(dev, "failed to add devfreq\n");
2880 		return PTR_ERR(devfreq);
2881 	}
2882 
2883 	devm_devfreq_register_opp_notifier(dev, devfreq);
2884 
2885 	devfreq->last_status.current_frequency = opp_rate;
2886 
2887 	reset_last_status(devfreq);
2888 
2889 	dmcfreq->info.devfreq = devfreq;
2890 
2891 	return 0;
2892 }
2893 
2894 static struct monitor_dev_profile dmc_mdevp = {
2895 	.type = MONITOR_TPYE_DEV,
2896 	.low_temp_adjust = rockchip_monitor_dev_low_temp_adjust,
2897 	.high_temp_adjust = rockchip_monitor_dev_high_temp_adjust,
2898 };
2899 
rockchip_dmcfreq_register_notifier(struct rockchip_dmcfreq *dmcfreq)2900 static void rockchip_dmcfreq_register_notifier(struct rockchip_dmcfreq *dmcfreq)
2901 {
2902 	int ret;
2903 
2904 	if (vop_register_dmc())
2905 		dev_err(dmcfreq->dev, "fail to register notify to vop.\n");
2906 
2907 	dmcfreq->status_nb.notifier_call =
2908 		rockchip_dmcfreq_system_status_notifier;
2909 	ret = rockchip_register_system_status_notifier(&dmcfreq->status_nb);
2910 	if (ret)
2911 		dev_err(dmcfreq->dev, "failed to register system_status nb\n");
2912 
2913 	dmc_mdevp.data = dmcfreq->info.devfreq;
2914 	dmcfreq->mdev_info = rockchip_system_monitor_register(dmcfreq->dev,
2915 							      &dmc_mdevp);
2916 	if (IS_ERR(dmcfreq->mdev_info)) {
2917 		dev_dbg(dmcfreq->dev, "without without system monitor\n");
2918 		dmcfreq->mdev_info = NULL;
2919 	}
2920 }
2921 
rockchip_dmcfreq_add_interface(struct rockchip_dmcfreq *dmcfreq)2922 static void rockchip_dmcfreq_add_interface(struct rockchip_dmcfreq *dmcfreq)
2923 {
2924 	struct devfreq *devfreq = dmcfreq->info.devfreq;
2925 
2926 	if (sysfs_create_file(&devfreq->dev.kobj, &dev_attr_upthreshold.attr))
2927 		dev_err(dmcfreq->dev,
2928 			"failed to register upthreshold sysfs file\n");
2929 	if (sysfs_create_file(&devfreq->dev.kobj,
2930 			      &dev_attr_downdifferential.attr))
2931 		dev_err(dmcfreq->dev,
2932 			"failed to register downdifferential sysfs file\n");
2933 
2934 	if (!rockchip_add_system_status_interface(&devfreq->dev))
2935 		return;
2936 	if (sysfs_create_file(&devfreq->dev.kobj,
2937 			      &dev_attr_system_status.attr))
2938 		dev_err(dmcfreq->dev,
2939 			"failed to register system_status sysfs file\n");
2940 }
2941 
rockchip_dmcfreq_boost_work(struct work_struct *work)2942 static void rockchip_dmcfreq_boost_work(struct work_struct *work)
2943 {
2944 	struct rockchip_dmcfreq *dmcfreq = boost_to_dmcfreq(work);
2945 
2946 	rockchip_dmcfreq_update_target(dmcfreq);
2947 }
2948 
rockchip_dmcfreq_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)2949 static void rockchip_dmcfreq_input_event(struct input_handle *handle,
2950 					 unsigned int type,
2951 					 unsigned int code,
2952 					 int value)
2953 {
2954 	struct rockchip_dmcfreq *dmcfreq = handle->private;
2955 	u64 now, endtime;
2956 
2957 	if (type != EV_ABS && type != EV_KEY)
2958 		return;
2959 
2960 	now = ktime_to_us(ktime_get());
2961 	endtime = now + dmcfreq->touchboostpulse_duration_val;
2962 	if (endtime < (dmcfreq->touchboostpulse_endtime + 10 * USEC_PER_MSEC))
2963 		return;
2964 	dmcfreq->touchboostpulse_endtime = endtime;
2965 
2966 	schedule_work(&dmcfreq->boost_work);
2967 }
2968 
rockchip_dmcfreq_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id)2969 static int rockchip_dmcfreq_input_connect(struct input_handler *handler,
2970 					  struct input_dev *dev,
2971 					  const struct input_device_id *id)
2972 {
2973 	int error;
2974 	struct input_handle *handle;
2975 	struct rockchip_dmcfreq *dmcfreq = input_hd_to_dmcfreq(handler);
2976 
2977 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2978 	if (!handle)
2979 		return -ENOMEM;
2980 
2981 	handle->dev = dev;
2982 	handle->handler = handler;
2983 	handle->name = "dmcfreq";
2984 	handle->private = dmcfreq;
2985 
2986 	error = input_register_handle(handle);
2987 	if (error)
2988 		goto err2;
2989 
2990 	error = input_open_device(handle);
2991 	if (error)
2992 		goto err1;
2993 
2994 	return 0;
2995 err1:
2996 	input_unregister_handle(handle);
2997 err2:
2998 	kfree(handle);
2999 	return error;
3000 }
3001 
rockchip_dmcfreq_input_disconnect(struct input_handle *handle)3002 static void rockchip_dmcfreq_input_disconnect(struct input_handle *handle)
3003 {
3004 	input_close_device(handle);
3005 	input_unregister_handle(handle);
3006 	kfree(handle);
3007 }
3008 
3009 static const struct input_device_id rockchip_dmcfreq_input_ids[] = {
3010 	{
3011 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
3012 			INPUT_DEVICE_ID_MATCH_ABSBIT,
3013 		.evbit = { BIT_MASK(EV_ABS) },
3014 		.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
3015 			BIT_MASK(ABS_MT_POSITION_X) |
3016 			BIT_MASK(ABS_MT_POSITION_Y) },
3017 	},
3018 	{
3019 		.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
3020 			INPUT_DEVICE_ID_MATCH_ABSBIT,
3021 		.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
3022 		.absbit = { [BIT_WORD(ABS_X)] =
3023 			BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
3024 	},
3025 	{
3026 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
3027 		.evbit = { BIT_MASK(EV_KEY) },
3028 	},
3029 	{ },
3030 };
3031 
rockchip_dmcfreq_boost_init(struct rockchip_dmcfreq *dmcfreq)3032 static void rockchip_dmcfreq_boost_init(struct rockchip_dmcfreq *dmcfreq)
3033 {
3034 	if (!dmcfreq->boost_rate)
3035 		return;
3036 	INIT_WORK(&dmcfreq->boost_work, rockchip_dmcfreq_boost_work);
3037 	dmcfreq->input_handler.event = rockchip_dmcfreq_input_event;
3038 	dmcfreq->input_handler.connect = rockchip_dmcfreq_input_connect;
3039 	dmcfreq->input_handler.disconnect = rockchip_dmcfreq_input_disconnect;
3040 	dmcfreq->input_handler.name = "dmcfreq";
3041 	dmcfreq->input_handler.id_table = rockchip_dmcfreq_input_ids;
3042 	if (input_register_handler(&dmcfreq->input_handler))
3043 		dev_err(dmcfreq->dev, "failed to register input handler\n");
3044 }
3045 
model_static_power(struct devfreq *devfreq, unsigned long voltage)3046 static unsigned long model_static_power(struct devfreq *devfreq,
3047 					unsigned long voltage)
3048 {
3049 	struct device *dev = devfreq->dev.parent;
3050 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
3051 
3052 	int temperature;
3053 	unsigned long temp;
3054 	unsigned long temp_squared, temp_cubed, temp_scaling_factor;
3055 	const unsigned long voltage_cubed = (voltage * voltage * voltage) >> 10;
3056 
3057 	if (!IS_ERR_OR_NULL(dmcfreq->ddr_tz) && dmcfreq->ddr_tz->ops->get_temp) {
3058 		int ret;
3059 
3060 		ret =
3061 		    dmcfreq->ddr_tz->ops->get_temp(dmcfreq->ddr_tz,
3062 						   &temperature);
3063 		if (ret) {
3064 			dev_warn_ratelimited(dev,
3065 					     "failed to read temp for ddr thermal zone: %d\n",
3066 					     ret);
3067 			temperature = FALLBACK_STATIC_TEMPERATURE;
3068 		}
3069 	} else {
3070 		temperature = FALLBACK_STATIC_TEMPERATURE;
3071 	}
3072 
3073 	/*
3074 	 * Calculate the temperature scaling factor. To be applied to the
3075 	 * voltage scaled power.
3076 	 */
3077 	temp = temperature / 1000;
3078 	temp_squared = temp * temp;
3079 	temp_cubed = temp_squared * temp;
3080 	temp_scaling_factor = (dmcfreq->ts[3] * temp_cubed)
3081 	    + (dmcfreq->ts[2] * temp_squared)
3082 	    + (dmcfreq->ts[1] * temp)
3083 	    + dmcfreq->ts[0];
3084 
3085 	return (((dmcfreq->static_coefficient * voltage_cubed) >> 20)
3086 		* temp_scaling_factor) / 1000000;
3087 }
3088 
3089 static struct devfreq_cooling_power ddr_cooling_power_data = {
3090 	.get_static_power = model_static_power,
3091 	.dyn_power_coeff = 120,
3092 };
3093 
ddr_power_model_simple_init(struct rockchip_dmcfreq *dmcfreq)3094 static int ddr_power_model_simple_init(struct rockchip_dmcfreq *dmcfreq)
3095 {
3096 	struct device_node *power_model_node;
3097 	const char *tz_name;
3098 	u32 temp;
3099 
3100 	power_model_node = of_get_child_by_name(dmcfreq->dev->of_node,
3101 						"ddr_power_model");
3102 	if (!power_model_node) {
3103 		dev_err(dmcfreq->dev, "could not find power_model node\n");
3104 		return -ENODEV;
3105 	}
3106 
3107 	if (of_property_read_string(power_model_node, "thermal-zone", &tz_name)) {
3108 		dev_err(dmcfreq->dev, "ts in power_model not available\n");
3109 		return -EINVAL;
3110 	}
3111 
3112 	dmcfreq->ddr_tz = thermal_zone_get_zone_by_name(tz_name);
3113 	if (IS_ERR(dmcfreq->ddr_tz)) {
3114 		pr_warn_ratelimited
3115 		    ("Error getting ddr thermal zone (%ld), not yet ready?\n",
3116 		     PTR_ERR(dmcfreq->ddr_tz));
3117 		dmcfreq->ddr_tz = NULL;
3118 
3119 		return -EPROBE_DEFER;
3120 	}
3121 
3122 	if (of_property_read_u32(power_model_node, "static-power-coefficient",
3123 				 &dmcfreq->static_coefficient)) {
3124 		dev_err(dmcfreq->dev,
3125 			"static-power-coefficient not available\n");
3126 		return -EINVAL;
3127 	}
3128 	if (of_property_read_u32(power_model_node, "dynamic-power-coefficient",
3129 				 &temp)) {
3130 		dev_err(dmcfreq->dev,
3131 			"dynamic-power-coefficient not available\n");
3132 		return -EINVAL;
3133 	}
3134 	ddr_cooling_power_data.dyn_power_coeff = (unsigned long)temp;
3135 
3136 	if (of_property_read_u32_array
3137 	    (power_model_node, "ts", (u32 *)dmcfreq->ts, 4)) {
3138 		dev_err(dmcfreq->dev, "ts in power_model not available\n");
3139 		return -EINVAL;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static void
rockchip_dmcfreq_register_cooling_device(struct rockchip_dmcfreq *dmcfreq)3146 rockchip_dmcfreq_register_cooling_device(struct rockchip_dmcfreq *dmcfreq)
3147 {
3148 	int ret;
3149 
3150 	ret = ddr_power_model_simple_init(dmcfreq);
3151 	if (ret)
3152 		return;
3153 	dmcfreq->devfreq_cooling =
3154 		of_devfreq_cooling_register_power(dmcfreq->dev->of_node,
3155 						  dmcfreq->info.devfreq,
3156 						  &ddr_cooling_power_data);
3157 	if (IS_ERR(dmcfreq->devfreq_cooling)) {
3158 		ret = PTR_ERR(dmcfreq->devfreq_cooling);
3159 		dev_err(dmcfreq->dev,
3160 			"Failed to register cooling device (%d)\n",
3161 			ret);
3162 	}
3163 }
3164 
rockchip_dmcfreq_probe(struct platform_device *pdev)3165 static int rockchip_dmcfreq_probe(struct platform_device *pdev)
3166 {
3167 	struct device *dev = &pdev->dev;
3168 	struct rockchip_dmcfreq *data;
3169 	int ret;
3170 
3171 	data = devm_kzalloc(dev, sizeof(struct rockchip_dmcfreq), GFP_KERNEL);
3172 	if (!data)
3173 		return -ENOMEM;
3174 
3175 	data->dev = dev;
3176 	data->info.dev = dev;
3177 	mutex_init(&data->lock);
3178 	INIT_LIST_HEAD(&data->video_info_list);
3179 
3180 	ret = rockchip_dmcfreq_get_event(data);
3181 	if (ret)
3182 		return ret;
3183 
3184 	ret = rockchip_dmcfreq_power_control(data);
3185 	if (ret)
3186 		return ret;
3187 
3188 	ret = rockchip_init_opp_table(dev, NULL, "ddr_leakage", "center");
3189 	if (ret)
3190 		return ret;
3191 
3192 	ret = rockchip_dmcfreq_dmc_init(pdev, data);
3193 	if (ret)
3194 		return ret;
3195 
3196 	rockchip_dmcfreq_parse_dt(data);
3197 	if (!data->system_status_en && !data->info.auto_freq_en) {
3198 		dev_info(dev, "don't add devfreq feature\n");
3199 		return rockchip_dmcfreq_set_volt_only(data);
3200 	}
3201 
3202 	cpu_latency_qos_add_request(&pm_qos, PM_QOS_DEFAULT_VALUE);
3203 	platform_set_drvdata(pdev, data);
3204 
3205 	ret = devfreq_add_governor(&devfreq_dmc_ondemand);
3206 	if (ret)
3207 		return ret;
3208 	ret = rockchip_dmcfreq_enable_event(data);
3209 	if (ret)
3210 		return ret;
3211 	ret = rockchip_dmcfreq_add_devfreq(data);
3212 	if (ret) {
3213 		rockchip_dmcfreq_disable_event(data);
3214 		return ret;
3215 	}
3216 
3217 	rockchip_dmcfreq_register_notifier(data);
3218 	rockchip_dmcfreq_add_interface(data);
3219 	rockchip_dmcfreq_boost_init(data);
3220 	rockchip_dmcfreq_vop_bandwidth_init(&data->info);
3221 	rockchip_dmcfreq_register_cooling_device(data);
3222 
3223 	rockchip_set_system_status(SYS_STATUS_NORMAL);
3224 
3225 	return 0;
3226 }
3227 
rockchip_dmcfreq_suspend(struct device *dev)3228 static __maybe_unused int rockchip_dmcfreq_suspend(struct device *dev)
3229 {
3230 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
3231 	int ret = 0;
3232 
3233 	if (!dmcfreq)
3234 		return 0;
3235 
3236 	ret = rockchip_dmcfreq_disable_event(dmcfreq);
3237 	if (ret)
3238 		return ret;
3239 
3240 	ret = devfreq_suspend_device(dmcfreq->info.devfreq);
3241 	if (ret < 0) {
3242 		dev_err(dev, "failed to suspend the devfreq devices\n");
3243 		return ret;
3244 	}
3245 
3246 	return 0;
3247 }
3248 
rockchip_dmcfreq_resume(struct device *dev)3249 static __maybe_unused int rockchip_dmcfreq_resume(struct device *dev)
3250 {
3251 	struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
3252 	int ret = 0;
3253 
3254 	if (!dmcfreq)
3255 		return 0;
3256 
3257 	ret = rockchip_dmcfreq_enable_event(dmcfreq);
3258 	if (ret)
3259 		return ret;
3260 
3261 	ret = devfreq_resume_device(dmcfreq->info.devfreq);
3262 	if (ret < 0) {
3263 		dev_err(dev, "failed to resume the devfreq devices\n");
3264 		return ret;
3265 	}
3266 	return ret;
3267 }
3268 
3269 static SIMPLE_DEV_PM_OPS(rockchip_dmcfreq_pm, rockchip_dmcfreq_suspend,
3270 			 rockchip_dmcfreq_resume);
3271 static struct platform_driver rockchip_dmcfreq_driver = {
3272 	.probe	= rockchip_dmcfreq_probe,
3273 	.driver = {
3274 		.name	= "rockchip-dmc",
3275 		.pm	= &rockchip_dmcfreq_pm,
3276 		.of_match_table = rockchip_dmcfreq_of_match,
3277 	},
3278 };
3279 module_platform_driver(rockchip_dmcfreq_driver);
3280 
3281 MODULE_AUTHOR("Finley Xiao <finley.xiao@rock-chips.com>");
3282 MODULE_DESCRIPTION("rockchip dmcfreq driver with devfreq framework");
3283 MODULE_LICENSE("GPL v2");
3284