1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8 #ifdef CONFIG_LOCKDEP
9 EXPORT_SYMBOL_GPL(sched_domains_mutex);
10 #endif
11
12 /* Protected by sched_domains_mutex: */
13 static cpumask_var_t sched_domains_tmpmask;
14 static cpumask_var_t sched_domains_tmpmask2;
15
16 #define IMBALANCE_SD_SHARE_CPUCAPACITY 110
17 #define IMBALANCE_SD_SHARE_PKG 117
18 #define IMBALANCE_SD_NUMA 2
19 #define IMBALANCE_SD_NUMA_DIRECT 2
20
21 #ifdef CONFIG_SCHED_DEBUG
22
sched_debug_setup(char *str)23 static int __init sched_debug_setup(char *str)
24 {
25 sched_debug_enabled = true;
26
27 return 0;
28 }
29 early_param("sched_debug", sched_debug_setup);
30
sched_debug(void)31 static inline bool sched_debug(void)
32 {
33 return sched_debug_enabled;
34 }
35
36 #define SD_FLAG(_name, mflags) [__##_name] = {.meta_flags = mflags, .name = #_name},
37 const struct sd_flag_debug sd_flag_debug[] = {
38 #include <linux/sched/sd_flags.h>
39 };
40 #undef SD_FLAG
41
sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, struct cpumask *groupmask)42 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, struct cpumask *groupmask)
43 {
44 struct sched_group *group = sd->groups;
45 unsigned long flags = sd->flags;
46 unsigned int idx;
47
48 cpumask_clear(groupmask);
49
50 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
51 printk(KERN_CONT "span=%*pbl level=%s\n", cpumask_pr_args(sched_domain_span(sd)), sd->name);
52
53 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
54 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
55 }
56 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
57 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
58 }
59
60 for_each_set_bit(idx, &flags, __SD_FLAG_CNT)
61 {
62 unsigned int flag = BIT(idx);
63 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
64
65 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && !(sd->child->flags & flag)) {
66 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", sd_flag_debug[idx].name);
67 }
68
69 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && !(sd->parent->flags & flag)) {
70 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", sd_flag_debug[idx].name);
71 }
72 }
73
74 printk(KERN_DEBUG "%*s groups:", level + 1, "");
75 do {
76 if (!group) {
77 printk("\n");
78 printk(KERN_ERR "ERROR: group is NULL\n");
79 break;
80 }
81
82 if (!cpumask_weight(sched_group_span(group))) {
83 printk(KERN_CONT "\n");
84 printk(KERN_ERR "ERROR: empty group\n");
85 break;
86 }
87
88 if (!(sd->flags & SD_OVERLAP) && cpumask_intersects(groupmask, sched_group_span(group))) {
89 printk(KERN_CONT "\n");
90 printk(KERN_ERR "ERROR: repeated CPUs\n");
91 break;
92 }
93
94 cpumask_or(groupmask, groupmask, sched_group_span(group));
95
96 printk(KERN_CONT " %d:{ span=%*pbl", group->sgc->id, cpumask_pr_args(sched_group_span(group)));
97
98 if ((sd->flags & SD_OVERLAP) && !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 printk(KERN_CONT " mask=%*pbl", cpumask_pr_args(group_balance_mask(group)));
100 }
101
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104 }
105
106 if (group == sd->groups && sd->child && !cpumask_equal(sched_domain_span(sd->child), sched_group_span(group))) {
107 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
108 }
109
110 printk(KERN_CONT " }");
111
112 group = group->next;
113
114 if (group != sd->groups) {
115 printk(KERN_CONT ",");
116 }
117 } while (group != sd->groups);
118 printk(KERN_CONT "\n");
119
120 if (!cpumask_equal(sched_domain_span(sd), groupmask)) {
121 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
122 }
123
124 if (sd->parent && !cpumask_subset(groupmask, sched_domain_span(sd->parent))) {
125 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
126 }
127 return 0;
128 }
129
sched_domain_debug(struct sched_domain *sd, int cpu)130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 int level = 0;
133
134 if (!sched_debug_enabled) {
135 return;
136 }
137
138 if (!sd) {
139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 return;
141 }
142
143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144
145 for (;;) {
146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) {
147 break;
148 }
149 level++;
150 sd = sd->parent;
151 if (!sd) {
152 break;
153 }
154 }
155 }
156 #else /* !CONFIG_SCHED_DEBUG */
157
158 #define sched_debug_enabled 0
159 #define sched_domain_debug(sd, cpu) \
160 do { \
161 } while (0)
sched_debug(void)162 static inline bool sched_debug(void)
163 {
164 return false;
165 }
166 #endif /* CONFIG_SCHED_DEBUG */
167
168 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
169 #define SD_FLAG(name, mflags) ((name) * !!((mflags)&SDF_NEEDS_GROUPS)) |
170 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
171 #include <linux/sched/sd_flags.h>
172 0;
173 #undef SD_FLAG
174
sd_degenerate(struct sched_domain *sd)175 static int sd_degenerate(struct sched_domain *sd)
176 {
177 if (cpumask_weight(sched_domain_span(sd)) == 1) {
178 return 1;
179 }
180
181 /* Following flags need at least 2 groups */
182 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && (sd->groups != sd->groups->next)) {
183 return 0;
184 }
185
186 /* Following flags don't use groups */
187 if (sd->flags & (SD_WAKE_AFFINE)) {
188 return 0;
189 }
190
191 return 1;
192 }
193
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)194 static int sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
195 {
196 unsigned long cflags = sd->flags, pflags = parent->flags;
197
198 if (sd_degenerate(parent)) {
199 return 1;
200 }
201
202 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) {
203 return 0;
204 }
205
206 /* Flags needing groups don't count if only 1 group in parent */
207 if (parent->groups == parent->groups->next) {
208 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
209 }
210
211 if (~cflags & pflags) {
212 return 0;
213 }
214
215 return 1;
216 }
217
218 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
219 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
220 unsigned int sysctl_sched_energy_aware = 1;
221 DEFINE_MUTEX(sched_energy_mutex);
222 bool sched_energy_update;
223
224 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)225 int sched_energy_aware_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)
226 {
227 int ret, state;
228
229 if (write && !capable(CAP_SYS_ADMIN)) {
230 return -EPERM;
231 }
232
233 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
234 if (!ret && write) {
235 state = static_branch_unlikely(&sched_energy_present);
236 if (state != sysctl_sched_energy_aware) {
237 mutex_lock(&sched_energy_mutex);
238 sched_energy_update = 1;
239 rebuild_sched_domains();
240 sched_energy_update = 0;
241 mutex_unlock(&sched_energy_mutex);
242 }
243 }
244
245 return ret;
246 }
247 #endif
248
free_pd(struct perf_domain *pd)249 static void free_pd(struct perf_domain *pd)
250 {
251 struct perf_domain *tmp;
252
253 while (pd) {
254 tmp = pd->next;
255 kfree(pd);
256 pd = tmp;
257 }
258 }
259
find_pd(struct perf_domain *pd, int cpu)260 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
261 {
262 while (pd) {
263 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) {
264 return pd;
265 }
266 pd = pd->next;
267 }
268
269 return NULL;
270 }
271
pd_init(int cpu)272 static struct perf_domain *pd_init(int cpu)
273 {
274 struct em_perf_domain *obj = em_cpu_get(cpu);
275 struct perf_domain *pd;
276
277 if (!obj) {
278 if (sched_debug()) {
279 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
280 }
281 return NULL;
282 }
283
284 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
285 if (!pd) {
286 return NULL;
287 }
288 pd->em_pd = obj;
289
290 return pd;
291 }
292
perf_domain_debug(const struct cpumask *cpu_map, struct perf_domain *pd)293 static void perf_domain_debug(const struct cpumask *cpu_map, struct perf_domain *pd)
294 {
295 if (!sched_debug() || !pd) {
296 return;
297 }
298
299 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
300
301 while (pd) {
302 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", cpumask_first(perf_domain_span(pd)),
303 cpumask_pr_args(perf_domain_span(pd)), em_pd_nr_perf_states(pd->em_pd));
304 pd = pd->next;
305 }
306
307 printk(KERN_CONT "\n");
308 }
309
destroy_perf_domain_rcu(struct rcu_head *rp)310 static void destroy_perf_domain_rcu(struct rcu_head *rp)
311 {
312 struct perf_domain *pd;
313
314 pd = container_of(rp, struct perf_domain, rcu);
315 free_pd(pd);
316 }
317
sched_energy_set(bool has_eas)318 static void sched_energy_set(bool has_eas)
319 {
320 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
321 if (sched_debug()) {
322 pr_info("%s: stopping EAS\n", __func__);
323 }
324 static_branch_disable_cpuslocked(&sched_energy_present);
325 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
326 if (sched_debug()) {
327 pr_info("%s: starting EAS\n", __func__);
328 }
329 static_branch_enable_cpuslocked(&sched_energy_present);
330 }
331 }
332
333 /*
334 * EAS can be used on a root domain if it meets all the following conditions:
335 * 1. an Energy Model (EM) is available;
336 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
337 * 3. no SMT is detected.
338 * 4. the EM complexity is low enough to keep scheduling overheads low;
339 * 5. schedutil is driving the frequency of all CPUs of the rd;
340 *
341 * The complexity of the Energy Model is defined as:
342 *
343 * C = nr_pd * (nr_cpus + nr_ps)
344 *
345 * with parameters defined as:
346 * - nr_pd: the number of performance domains
347 * - nr_cpus: the number of CPUs
348 * - nr_ps: the sum of the number of performance states of all performance
349 * domains (for example, on a system with 2 performance domains,
350 * with 10 performance states each, nr_ps = 2 * 10 = 20).
351 *
352 * It is generally not a good idea to use such a model in the wake-up path on
353 * very complex platforms because of the associated scheduling overheads. The
354 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
355 * with per-CPU DVFS and less than 8 performance states each, for example.
356 */
357 #define EM_MAX_COMPLEXITY 2048
358
build_perf_domains(const struct cpumask *cpu_map)359 static bool build_perf_domains(const struct cpumask *cpu_map)
360 {
361 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
362 struct perf_domain *pd = NULL, *tmp;
363 int cpu = cpumask_first(cpu_map);
364 struct root_domain *rd = cpu_rq(cpu)->rd;
365 struct cpufreq_policy *policy;
366 struct cpufreq_governor *gov;
367
368 if (!sysctl_sched_energy_aware) {
369 goto free;
370 }
371
372 /* EAS is enabled for asymmetric CPU capacity topologies. */
373 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
374 if (sched_debug()) {
375 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", cpumask_pr_args(cpu_map));
376 }
377 goto free;
378 }
379
380 /* EAS definitely does *not* handle SMT */
381 if (sched_smt_active()) {
382 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", cpumask_pr_args(cpu_map));
383 goto free;
384 }
385
386 for_each_cpu(i, cpu_map)
387 {
388 /* Skip already covered CPUs. */
389 if (find_pd(pd, i)) {
390 continue;
391 }
392
393 /* Do not attempt EAS if schedutil is not being used. */
394 policy = cpufreq_cpu_get(i);
395 if (!policy) {
396 goto free;
397 }
398 gov = policy->governor;
399 cpufreq_cpu_put(policy);
400 if (gov != &schedutil_gov) {
401 if (rd->pd) {
402 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", cpumask_pr_args(cpu_map));
403 }
404 goto free;
405 }
406
407 /* Create the new pd and add it to the local list. */
408 tmp = pd_init(i);
409 if (!tmp) {
410 goto free;
411 }
412 tmp->next = pd;
413 pd = tmp;
414
415 /*
416 * Count performance domains and performance states for the
417 * complexity check.
418 */
419 nr_pd++;
420 nr_ps += em_pd_nr_perf_states(pd->em_pd);
421 }
422
423 /* Bail out if the Energy Model complexity is too high. */
424 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
425 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", cpumask_pr_args(cpu_map));
426 goto free;
427 }
428
429 perf_domain_debug(cpu_map, pd);
430
431 /* Attach the new list of performance domains to the root domain. */
432 tmp = rd->pd;
433 rcu_assign_pointer(rd->pd, pd);
434 if (tmp) {
435 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
436 }
437
438 return !!pd;
439
440 free:
441 free_pd(pd);
442 tmp = rd->pd;
443 rcu_assign_pointer(rd->pd, NULL);
444 if (tmp) {
445 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
446 }
447
448 return false;
449 }
450 #else
free_pd(struct perf_domain *pd)451 static void free_pd(struct perf_domain *pd)
452 {
453 }
454 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
455
free_rootdomain(struct rcu_head *rcu)456 static void free_rootdomain(struct rcu_head *rcu)
457 {
458 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
459
460 cpupri_cleanup(&rd->cpupri);
461 cpudl_cleanup(&rd->cpudl);
462 free_cpumask_var(rd->dlo_mask);
463 free_cpumask_var(rd->rto_mask);
464 free_cpumask_var(rd->online);
465 free_cpumask_var(rd->span);
466 free_pd(rd->pd);
467 kfree(rd);
468 }
469
rq_attach_root(struct rq *rq, struct root_domain *rd)470 void rq_attach_root(struct rq *rq, struct root_domain *rd)
471 {
472 struct root_domain *old_rd = NULL;
473 unsigned long flags;
474
475 raw_spin_lock_irqsave(&rq->lock, flags);
476
477 if (rq->rd) {
478 old_rd = rq->rd;
479
480 if (cpumask_test_cpu(rq->cpu, old_rd->online)) {
481 set_rq_offline(rq);
482 }
483
484 cpumask_clear_cpu(rq->cpu, old_rd->span);
485
486 /*
487 * If we dont want to free the old_rd yet then
488 * set old_rd to NULL to skip the freeing later
489 * in this function:
490 */
491 if (!atomic_dec_and_test(&old_rd->refcount)) {
492 old_rd = NULL;
493 }
494 }
495
496 atomic_inc(&rd->refcount);
497 rq->rd = rd;
498
499 cpumask_set_cpu(rq->cpu, rd->span);
500 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) {
501 set_rq_online(rq);
502 }
503
504 raw_spin_unlock_irqrestore(&rq->lock, flags);
505
506 if (old_rd) {
507 call_rcu(&old_rd->rcu, free_rootdomain);
508 }
509 }
510
sched_get_rd(struct root_domain *rd)511 void sched_get_rd(struct root_domain *rd)
512 {
513 atomic_inc(&rd->refcount);
514 }
515
sched_put_rd(struct root_domain *rd)516 void sched_put_rd(struct root_domain *rd)
517 {
518 if (!atomic_dec_and_test(&rd->refcount)) {
519 return;
520 }
521
522 call_rcu(&rd->rcu, free_rootdomain);
523 }
524
init_rootdomain(struct root_domain *rd)525 static int init_rootdomain(struct root_domain *rd)
526 {
527 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) {
528 goto out;
529 }
530 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) {
531 goto free_span;
532 }
533 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) {
534 goto free_online;
535 }
536 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) {
537 goto free_dlo_mask;
538 }
539
540 #ifdef HAVE_RT_PUSH_IPI
541 rd->rto_cpu = -1;
542 raw_spin_lock_init(&rd->rto_lock);
543 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
544 #endif
545
546 init_dl_bw(&rd->dl_bw);
547 if (cpudl_init(&rd->cpudl) != 0) {
548 goto free_rto_mask;
549 }
550
551 if (cpupri_init(&rd->cpupri) != 0) {
552 goto free_cpudl;
553 }
554
555 #ifdef CONFIG_SCHED_RT_CAS
556 rd->max_cap_orig_cpu = -1;
557 #endif
558 return 0;
559
560 free_cpudl:
561 cpudl_cleanup(&rd->cpudl);
562 free_rto_mask:
563 free_cpumask_var(rd->rto_mask);
564 free_dlo_mask:
565 free_cpumask_var(rd->dlo_mask);
566 free_online:
567 free_cpumask_var(rd->online);
568 free_span:
569 free_cpumask_var(rd->span);
570 out:
571 return -ENOMEM;
572 }
573
574 /*
575 * By default the system creates a single root-domain with all CPUs as
576 * members (mimicking the global state we have today).
577 */
578 struct root_domain def_root_domain;
579
init_defrootdomain(void)580 void init_defrootdomain(void)
581 {
582 init_rootdomain(&def_root_domain);
583
584 atomic_set(&def_root_domain.refcount, 1);
585 }
586
alloc_rootdomain(void)587 static struct root_domain *alloc_rootdomain(void)
588 {
589 struct root_domain *rd;
590
591 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
592 if (!rd) {
593 return NULL;
594 }
595
596 if (init_rootdomain(rd) != 0) {
597 kfree(rd);
598 return NULL;
599 }
600
601 return rd;
602 }
603
free_sched_groups(struct sched_group *sg, int free_sgc)604 static void free_sched_groups(struct sched_group *sg, int free_sgc)
605 {
606 struct sched_group *tmp, *first;
607
608 if (!sg) {
609 return;
610 }
611
612 first = sg;
613 do {
614 tmp = sg->next;
615
616 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) {
617 kfree(sg->sgc);
618 }
619
620 if (atomic_dec_and_test(&sg->ref)) {
621 kfree(sg);
622 }
623 sg = tmp;
624 } while (sg != first);
625 }
626
destroy_sched_domain(struct sched_domain *sd)627 static void destroy_sched_domain(struct sched_domain *sd)
628 {
629 /*
630 * A normal sched domain may have multiple group references, an
631 * overlapping domain, having private groups, only one. Iterate,
632 * dropping group/capacity references, freeing where none remain.
633 */
634 free_sched_groups(sd->groups, 1);
635
636 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) {
637 kfree(sd->shared);
638 }
639 kfree(sd);
640 }
641
destroy_sched_domains_rcu(struct rcu_head *rcu)642 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
643 {
644 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
645
646 while (sd) {
647 struct sched_domain *parent = sd->parent;
648 destroy_sched_domain(sd);
649 sd = parent;
650 }
651 }
652
destroy_sched_domains(struct sched_domain *sd)653 static void destroy_sched_domains(struct sched_domain *sd)
654 {
655 if (sd) {
656 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
657 }
658 }
659
660 /*
661 * Keep a special pointer to the highest sched_domain that has
662 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
663 * allows us to avoid some pointer chasing select_idle_sibling().
664 *
665 * Also keep a unique ID per domain (we use the first CPU number in
666 * the cpumask of the domain), this allows us to quickly tell if
667 * two CPUs are in the same cache domain, see cpus_share_cache().
668 */
669 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
670 DEFINE_PER_CPU(int, sd_llc_size);
671 DEFINE_PER_CPU(int, sd_llc_id);
672 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
676 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
677
update_top_cache_domain(int cpu)678 static void update_top_cache_domain(int cpu)
679 {
680 struct sched_domain_shared *sds = NULL;
681 struct sched_domain *sd;
682 int id = cpu;
683 int size = 1;
684
685 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
686 if (sd) {
687 id = cpumask_first(sched_domain_span(sd));
688 size = cpumask_weight(sched_domain_span(sd));
689 sds = sd->shared;
690 }
691
692 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
693 per_cpu(sd_llc_size, cpu) = size;
694 per_cpu(sd_llc_id, cpu) = id;
695 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
696
697 sd = lowest_flag_domain(cpu, SD_NUMA);
698 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
699
700 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
701 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
702
703 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
704 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
705 }
706
707 /*
708 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
709 * hold the hotplug lock.
710 */
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)711 static void cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
712 {
713 struct rq *rq = cpu_rq(cpu);
714 struct sched_domain *tmp;
715 int numa_distance = 0;
716
717 /* Remove the sched domains which do not contribute to scheduling. */
718 for (tmp = sd; tmp;) {
719 struct sched_domain *parent = tmp->parent;
720 if (!parent) {
721 break;
722 }
723
724 if (sd_parent_degenerate(tmp, parent)) {
725 tmp->parent = parent->parent;
726 if (parent->parent) {
727 parent->parent->child = tmp;
728 }
729 /*
730 * Transfer SD_PREFER_SIBLING down in case of a
731 * degenerate parent; the spans match for this
732 * so the property transfers.
733 */
734 if (parent->flags & SD_PREFER_SIBLING) {
735 tmp->flags |= SD_PREFER_SIBLING;
736 }
737 destroy_sched_domain(parent);
738 } else {
739 tmp = tmp->parent;
740 }
741 }
742
743 if (sd && sd_degenerate(sd)) {
744 tmp = sd;
745 sd = sd->parent;
746 destroy_sched_domain(tmp);
747 if (sd) {
748 sd->child = NULL;
749 }
750 }
751
752 for (tmp = sd; tmp; tmp = tmp->parent) {
753 numa_distance += !!(tmp->flags & SD_NUMA);
754 }
755
756 sched_domain_debug(sd, cpu);
757
758 rq_attach_root(rq, rd);
759 tmp = rq->sd;
760 rcu_assign_pointer(rq->sd, sd);
761 dirty_sched_domain_sysctl(cpu);
762 destroy_sched_domains(tmp);
763
764 update_top_cache_domain(cpu);
765 }
766
767 struct s_data {
768 struct sched_domain *__percpu *sd;
769 struct root_domain *rd;
770 };
771
772 enum s_alloc {
773 sa_rootdomain,
774 sa_sd,
775 sa_sd_storage,
776 sa_none,
777 };
778
779 /*
780 * Return the canonical balance CPU for this group, this is the first CPU
781 * of this group that's also in the balance mask.
782 *
783 * The balance mask are all those CPUs that could actually end up at this
784 * group. See build_balance_mask().
785 *
786 * Also see should_we_balance().
787 */
group_balance_cpu(struct sched_group *sg)788 int group_balance_cpu(struct sched_group *sg)
789 {
790 return cpumask_first(group_balance_mask(sg));
791 }
792
793 /*
794 * NUMA topology (first read the regular topology blurb below)
795 *
796 * Given a node-distance table, for example:
797 *
798 * node 0 1 2 3
799 * 0: 10 20 30 20
800 * 1: 20 10 20 30
801 * 2: 30 20 10 20
802 * 3: 20 30 20 10
803 *
804 * which represents a 4 node ring topology like:
805 *
806 * 0 ----- 1
807 * | |
808 * | |
809 * | |
810 * 3 ----- 2
811 *
812 * We want to construct domains and groups to represent this. The way we go
813 * about doing this is to build the domains on 'hops'. For each NUMA level we
814 * construct the mask of all nodes reachable in @level hops.
815 *
816 * For the above NUMA topology that gives 3 levels:
817 *
818 * NUMA-2 0-3 0-3 0-3 0-3
819 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
820 *
821 * NUMA-1 0-1,3 0-2 1-3 0,2-3
822 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
823 *
824 * NUMA-0 0 1 2 3
825 *
826 *
827 * As can be seen; things don't nicely line up as with the regular topology.
828 * When we iterate a domain in child domain chunks some nodes can be
829 * represented multiple times -- hence the "overlap" naming for this part of
830 * the topology.
831 *
832 * In order to minimize this overlap, we only build enough groups to cover the
833 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
834 *
835 * Because
836 *
837 * - the first group of each domain is its child domain; this
838 * gets us the first 0-1,3
839 * - the only uncovered node is 2, who's child domain is 1-3.
840 *
841 * However, because of the overlap, computing a unique CPU for each group is
842 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844 * end up at those groups (they would end up in group: 0-1,3).
845 *
846 * To correct this we have to introduce the group balance mask. This mask
847 * will contain those CPUs in the group that can reach this group given the
848 * (child) domain tree.
849 *
850 * With this we can once again compute balance_cpu and sched_group_capacity
851 * relations.
852 *
853 * XXX include words on how balance_cpu is unique and therefore can be
854 * used for sched_group_capacity links.
855 *
856 *
857 * Another 'interesting' topology is
858 *
859 * node 0 1 2 3
860 * 0: 10 20 20 30
861 * 1: 20 10 20 20
862 * 2: 20 20 10 20
863 * 3: 30 20 20 10
864 *
865 * Which looks a little like
866 *
867 * 0 ----- 1
868 * | / |
869 * | / |
870 * | / |
871 * 2 ----- 3
872 *
873 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
874 * are not.
875 *
876 * This leads to a few particularly weird cases where the sched_domain's are
877 * not of the same number for each CPU. Consider:
878 *
879 * NUMA-2 0-3 0-3
880 * groups: {0-2},{1-3} {1-3},{0-2}
881 *
882 * NUMA-1 0-2 0-3 0-3 1-3
883 *
884 * NUMA-0 0 1 2 3
885 *
886 */
887
888 /*
889 * Build the balance mask; it contains only those CPUs that can arrive at this
890 * group and should be considered to continue balancing.
891 *
892 * We do this during the group creation pass, therefore the group information
893 * isn't complete yet, however since each group represents a (child) domain we
894 * can fully construct this using the sched_domain bits (which are already
895 * complete).
896 */
build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)897 static void build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
898 {
899 const struct cpumask *sg_span = sched_group_span(sg);
900 struct sd_data *sdd = sd->private;
901 struct sched_domain *sibling;
902 int i;
903
904 cpumask_clear(mask);
905
906 for_each_cpu(i, sg_span)
907 {
908 sibling = *per_cpu_ptr(sdd->sd, i);
909 /*
910 * Can happen in the asymmetric case, where these siblings are
911 * unused. The mask will not be empty because those CPUs that
912 * do have the top domain _should_ span the domain.
913 */
914 if (!sibling->child) {
915 continue;
916 }
917
918 /* If we would not end up here, we can't continue from here */
919 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) {
920 continue;
921 }
922
923 cpumask_set_cpu(i, mask);
924 }
925
926 /* We must not have empty masks here */
927 WARN_ON_ONCE(cpumask_empty(mask));
928 }
929
930 /*
931 * XXX: This creates per-node group entries; since the load-balancer will
932 * immediately access remote memory to construct this group's load-balance
933 * statistics having the groups node local is of dubious benefit.
934 */
build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)935 static struct sched_group *build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
936 {
937 struct sched_group *sg;
938 struct cpumask *sg_span;
939
940 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, cpu_to_node(cpu));
941 if (!sg) {
942 return NULL;
943 }
944
945 sg_span = sched_group_span(sg);
946 if (sd->child) {
947 cpumask_copy(sg_span, sched_domain_span(sd->child));
948 } else {
949 cpumask_copy(sg_span, sched_domain_span(sd));
950 }
951
952 atomic_inc(&sg->ref);
953 return sg;
954 }
955
init_overlap_sched_group(struct sched_domain *sd, struct sched_group *sg)956 static void init_overlap_sched_group(struct sched_domain *sd, struct sched_group *sg)
957 {
958 struct cpumask *mask = sched_domains_tmpmask2;
959 struct sd_data *sdd = sd->private;
960 struct cpumask *sg_span;
961 int cpu;
962
963 build_balance_mask(sd, sg, mask);
964 cpu = cpumask_first_and(sched_group_span(sg), mask);
965
966 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
967 if (atomic_inc_return(&sg->sgc->ref) == 1) {
968 cpumask_copy(group_balance_mask(sg), mask);
969 } else {
970 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
971 }
972
973 /*
974 * Initialize sgc->capacity such that even if we mess up the
975 * domains and no possible iteration will get us here, we won't
976 * die on a /0 trap.
977 */
978 sg_span = sched_group_span(sg);
979 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
980 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
981 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
982 }
983
find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)984 static struct sched_domain *find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
985 {
986 /*
987 * The proper descendant would be the one whose child won't span out
988 * of sd
989 */
990 while (sibling->child && !cpumask_subset(sched_domain_span(sibling->child), sched_domain_span(sd))) {
991 sibling = sibling->child;
992 }
993
994 /*
995 * As we are referencing sgc across different topology level, we need
996 * to go down to skip those sched_domains which don't contribute to
997 * scheduling because they will be degenerated in cpu_attach_domain
998 */
999 while (sibling->child && cpumask_equal(sched_domain_span(sibling->child), sched_domain_span(sibling))) {
1000 sibling = sibling->child;
1001 }
1002
1003 return sibling;
1004 }
1005
build_overlap_sched_groups(struct sched_domain *sd, int cpu)1006 static int build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1007 {
1008 struct sched_group *first = NULL, *last = NULL, *sg;
1009 const struct cpumask *span = sched_domain_span(sd);
1010 struct cpumask *covered = sched_domains_tmpmask;
1011 struct sd_data *sdd = sd->private;
1012 struct sched_domain *sibling;
1013 int i;
1014
1015 cpumask_clear(covered);
1016
1017 for_each_cpu_wrap(i, span, cpu)
1018 {
1019 struct cpumask *sg_span;
1020
1021 if (cpumask_test_cpu(i, covered)) {
1022 continue;
1023 }
1024
1025 sibling = *per_cpu_ptr(sdd->sd, i);
1026 /*
1027 * Asymmetric node setups can result in situations where the
1028 * domain tree is of unequal depth, make sure to skip domains
1029 * that already cover the entire range.
1030 *
1031 * In that case build_sched_domains() will have terminated the
1032 * iteration early and our sibling sd spans will be empty.
1033 * Domains should always include the CPU they're built on, so
1034 * check that.
1035 */
1036 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) {
1037 continue;
1038 }
1039
1040 /*
1041 * Usually we build sched_group by sibling's child sched_domain
1042 * But for machines whose NUMA diameter are 3 or above, we move
1043 * to build sched_group by sibling's proper descendant's child
1044 * domain because sibling's child sched_domain will span out of
1045 * the sched_domain being built as below.
1046 *
1047 * Smallest diameter=3 topology is:
1048 *
1049 * node 0 1 2 3
1050 * 0: 10 20 30 40
1051 * 1: 20 10 20 30
1052 * 2: 30 20 10 20
1053 * 3: 40 30 20 10
1054 *
1055 * 0 --- 1 --- 2 --- 3
1056 *
1057 * NUMA-3 0-3 N/A N/A 0-3
1058 * groups: {0-2},{1-3} {1-3},{0-2}
1059 *
1060 * NUMA-2 0-2 0-3 0-3 1-3
1061 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1062 *
1063 * NUMA-1 0-1 0-2 1-3 2-3
1064 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1065 *
1066 * NUMA-0 0 1 2 3
1067 *
1068 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1069 * group span isn't a subset of the domain span.
1070 */
1071 if (sibling->child && !cpumask_subset(sched_domain_span(sibling->child), span)) {
1072 sibling = find_descended_sibling(sd, sibling);
1073 }
1074
1075 sg = build_group_from_child_sched_domain(sibling, cpu);
1076 if (!sg) {
1077 goto fail;
1078 }
1079
1080 sg_span = sched_group_span(sg);
1081 cpumask_or(covered, covered, sg_span);
1082
1083 init_overlap_sched_group(sibling, sg);
1084
1085 if (!first) {
1086 first = sg;
1087 }
1088 if (last) {
1089 last->next = sg;
1090 }
1091 last = sg;
1092 last->next = first;
1093 }
1094 sd->groups = first;
1095
1096 return 0;
1097
1098 fail:
1099 free_sched_groups(first, 0);
1100
1101 return -ENOMEM;
1102 }
1103
1104 /*
1105 * Package topology (also see the load-balance blurb in fair.c)
1106 *
1107 * The scheduler builds a tree structure to represent a number of important
1108 * topology features. By default (default_topology[]) these include:
1109 *
1110 * - Simultaneous multithreading (SMT)
1111 * - Multi-Core Cache (MC)
1112 * - Package (DIE)
1113 *
1114 * Where the last one more or less denotes everything up to a NUMA node.
1115 *
1116 * The tree consists of 3 primary data structures:
1117 *
1118 * sched_domain -> sched_group -> sched_group_capacity
1119 * ^ ^ ^ ^
1120 * `-' `-'
1121 *
1122 * The sched_domains are per-CPU and have a two way link (parent & child) and
1123 * denote the ever growing mask of CPUs belonging to that level of topology.
1124 *
1125 * Each sched_domain has a circular (double) linked list of sched_group's, each
1126 * denoting the domains of the level below (or individual CPUs in case of the
1127 * first domain level). The sched_group linked by a sched_domain includes the
1128 * CPU of that sched_domain [*].
1129 *
1130 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1131 *
1132 * CPU 0 1 2 3 4 5 6 7
1133 *
1134 * DIE [ ]
1135 * MC [ ] [ ]
1136 * SMT [ ] [ ] [ ] [ ]
1137 *
1138 * - or -
1139 *
1140 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1141 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1142 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1143 *
1144 * CPU 0 1 2 3 4 5 6 7
1145 *
1146 * One way to think about it is: sched_domain moves you up and down among these
1147 * topology levels, while sched_group moves you sideways through it, at child
1148 * domain granularity.
1149 *
1150 * sched_group_capacity ensures each unique sched_group has shared storage.
1151 *
1152 * There are two related construction problems, both require a CPU that
1153 * uniquely identify each group (for a given domain):
1154 *
1155 * - The first is the balance_cpu (see should_we_balance() and the
1156 * load-balance blub in fair.c); for each group we only want 1 CPU to
1157 * continue balancing at a higher domain.
1158 *
1159 * - The second is the sched_group_capacity; we want all identical groups
1160 * to share a single sched_group_capacity.
1161 *
1162 * Since these topologies are exclusive by construction. That is, its
1163 * impossible for an SMT thread to belong to multiple cores, and cores to
1164 * be part of multiple caches. There is a very clear and unique location
1165 * for each CPU in the hierarchy.
1166 *
1167 * Therefore computing a unique CPU for each group is trivial (the iteration
1168 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1169 * group), we can simply pick the first CPU in each group.
1170 *
1171 *
1172 * [*] in other words, the first group of each domain is its child domain.
1173 */
1174
get_group(int cpu, struct sd_data *sdd)1175 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1176 {
1177 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1178 struct sched_domain *child = sd->child;
1179 struct sched_group *sg;
1180 bool already_visited;
1181
1182 if (child) {
1183 cpu = cpumask_first(sched_domain_span(child));
1184 }
1185
1186 sg = *per_cpu_ptr(sdd->sg, cpu);
1187 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1188
1189 /* Increase refcounts for claim_allocations: */
1190 already_visited = atomic_inc_return(&sg->ref) > 1;
1191 /* sgc visits should follow a similar trend as sg */
1192 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1193
1194 /* If we have already visited that group, it's already initialized. */
1195 if (already_visited) {
1196 return sg;
1197 }
1198
1199 if (child) {
1200 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202 } else {
1203 cpumask_set_cpu(cpu, sched_group_span(sg));
1204 cpumask_set_cpu(cpu, group_balance_mask(sg));
1205 }
1206
1207 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1208 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1209 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1210
1211 return sg;
1212 }
1213
1214 /*
1215 * build_sched_groups will build a circular linked list of the groups
1216 * covered by the given span, will set each group's ->cpumask correctly,
1217 * and will initialize their ->sgc.
1218 *
1219 * Assumes the sched_domain tree is fully constructed
1220 */
build_sched_groups(struct sched_domain *sd, int cpu)1221 static int build_sched_groups(struct sched_domain *sd, int cpu)
1222 {
1223 struct sched_group *first = NULL, *last = NULL;
1224 struct sd_data *sdd = sd->private;
1225 const struct cpumask *span = sched_domain_span(sd);
1226 struct cpumask *covered;
1227 int i;
1228
1229 lockdep_assert_held(&sched_domains_mutex);
1230 covered = sched_domains_tmpmask;
1231
1232 cpumask_clear(covered);
1233
1234 for_each_cpu_wrap(i, span, cpu)
1235 {
1236 struct sched_group *sg;
1237
1238 if (cpumask_test_cpu(i, covered)) {
1239 continue;
1240 }
1241
1242 sg = get_group(i, sdd);
1243
1244 cpumask_or(covered, covered, sched_group_span(sg));
1245
1246 if (!first) {
1247 first = sg;
1248 }
1249 if (last) {
1250 last->next = sg;
1251 }
1252 last = sg;
1253 }
1254 last->next = first;
1255 sd->groups = first;
1256
1257 return 0;
1258 }
1259
1260 /*
1261 * Initialize sched groups cpu_capacity.
1262 *
1263 * cpu_capacity indicates the capacity of sched group, which is used while
1264 * distributing the load between different sched groups in a sched domain.
1265 * Typically cpu_capacity for all the groups in a sched domain will be same
1266 * unless there are asymmetries in the topology. If there are asymmetries,
1267 * group having more cpu_capacity will pickup more load compared to the
1268 * group having less cpu_capacity.
1269 */
init_sched_groups_capacity(int cpu, struct sched_domain *sd)1270 void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1271 {
1272 struct sched_group *sg = sd->groups;
1273 #ifdef CONFIG_CPU_ISOLATION_OPT
1274 cpumask_t avail_mask;
1275 #endif
1276
1277 WARN_ON(!sg);
1278
1279 do {
1280 int cpu, max_cpu = -1;
1281
1282 #ifdef CONFIG_CPU_ISOLATION_OPT
1283 cpumask_andnot(&avail_mask, sched_group_span(sg), cpu_isolated_mask);
1284 sg->group_weight = cpumask_weight(&avail_mask);
1285 #else
1286 sg->group_weight = cpumask_weight(sched_group_span(sg));
1287 #endif
1288
1289 if (!(sd->flags & SD_ASYM_PACKING)) {
1290 goto next;
1291 }
1292
1293 for_each_cpu(cpu, sched_group_span(sg))
1294 {
1295 if (max_cpu < 0) {
1296 max_cpu = cpu;
1297 } else if (sched_asym_prefer(cpu, max_cpu)) {
1298 max_cpu = cpu;
1299 }
1300 }
1301 sg->asym_prefer_cpu = max_cpu;
1302
1303 next:
1304 sg = sg->next;
1305 } while (sg != sd->groups);
1306
1307 if (cpu != group_balance_cpu(sg)) {
1308 return;
1309 }
1310
1311 update_group_capacity(sd, cpu);
1312 }
1313
1314 /*
1315 * Initializers for schedule domains
1316 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1317 */
1318
1319 static int default_relax_domain_level = -1;
1320 int sched_domain_level_max;
1321
setup_relax_domain_level(char *str)1322 static int __init setup_relax_domain_level(char *str)
1323 {
1324 if (kstrtoint(str, 0, &default_relax_domain_level)) {
1325 pr_warn("Unable to set relax_domain_level\n");
1326 }
1327
1328 return 1;
1329 }
1330 __setup("relax_domain_level=", setup_relax_domain_level);
1331
set_domain_attribute(struct sched_domain *sd, struct sched_domain_attr *attr)1332 static void set_domain_attribute(struct sched_domain *sd, struct sched_domain_attr *attr)
1333 {
1334 int request;
1335
1336 if (!attr || attr->relax_domain_level < 0) {
1337 if (default_relax_domain_level < 0) {
1338 return;
1339 }
1340 request = default_relax_domain_level;
1341 } else {
1342 request = attr->relax_domain_level;
1343 }
1344
1345 if (sd->level > request) {
1346 /* Turn off idle balance on this domain: */
1347 sd->flags &= ~(SD_BALANCE_WAKE | SD_BALANCE_NEWIDLE);
1348 }
1349 }
1350
1351 static void __sdt_free(const struct cpumask *cpu_map);
1352 static int __sdt_alloc(const struct cpumask *cpu_map);
1353
__free_domain_allocs(struct s_data *d, enum s_alloc what, const struct cpumask *cpu_map)1354 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, const struct cpumask *cpu_map)
1355 {
1356 switch (what) {
1357 case sa_rootdomain:
1358 if (!atomic_read(&d->rd->refcount)) {
1359 free_rootdomain(&d->rd->rcu);
1360 }
1361 fallthrough;
1362 case sa_sd:
1363 free_percpu(d->sd);
1364 fallthrough;
1365 case sa_sd_storage:
1366 __sdt_free(cpu_map);
1367 fallthrough;
1368 case sa_none:
1369 break;
1370 }
1371 }
1372
__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)1373 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1374 {
1375 memset(d, 0, sizeof(*d));
1376
1377 if (__sdt_alloc(cpu_map)) {
1378 return sa_sd_storage;
1379 }
1380 d->sd = alloc_percpu(struct sched_domain *);
1381 if (!d->sd) {
1382 return sa_sd_storage;
1383 }
1384 d->rd = alloc_rootdomain();
1385 if (!d->rd) {
1386 return sa_sd;
1387 }
1388
1389 return sa_rootdomain;
1390 }
1391
1392 /*
1393 * NULL the sd_data elements we've used to build the sched_domain and
1394 * sched_group structure so that the subsequent __free_domain_allocs()
1395 * will not free the data we're using.
1396 */
claim_allocations(int cpu, struct sched_domain *sd)1397 static void claim_allocations(int cpu, struct sched_domain *sd)
1398 {
1399 struct sd_data *sdd = sd->private;
1400
1401 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1402 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1403
1404 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) {
1405 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1406 }
1407
1408 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) {
1409 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1410 }
1411
1412 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) {
1413 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1414 }
1415 }
1416
1417 #ifdef CONFIG_NUMA
1418 enum numa_topology_type sched_numa_topology_type;
1419
1420 static int sched_domains_numa_levels;
1421 static int sched_domains_curr_level;
1422
1423 int sched_max_numa_distance;
1424 static int *sched_domains_numa_distance;
1425 static struct cpumask ***sched_domains_numa_masks;
1426 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1427 #endif
1428
1429 /*
1430 * SD_flags allowed in topology descriptions.
1431 *
1432 * These flags are purely descriptive of the topology and do not prescribe
1433 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1434 * function:
1435 *
1436 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1437 * SD_SHARE_PKG_RESOURCES - describes shared caches
1438 * SD_NUMA - describes NUMA topologies
1439 *
1440 * Odd one out, which beside describing the topology has a quirk also
1441 * prescribes the desired behaviour that goes along with it:
1442 *
1443 * SD_ASYM_PACKING - describes SMT quirks
1444 */
1445 #define TOPOLOGY_SD_FLAGS (SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES | SD_NUMA | SD_ASYM_PACKING)
1446
sd_init(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map, struct sched_domain *child, int dflags, int cpu)1447 static struct sched_domain *sd_init(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map,
1448 struct sched_domain *child, int dflags, int cpu)
1449 {
1450 struct sd_data *sdd = &tl->data;
1451 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1452 int sd_id, sd_weight, sd_flags = 0;
1453
1454 #ifdef CONFIG_NUMA
1455 /*
1456 * Ugly hack to pass state to sd_numa_mask()...
1457 */
1458 sched_domains_curr_level = tl->numa_level;
1459 #endif
1460
1461 sd_weight = cpumask_weight(tl->mask(cpu));
1462
1463 if (tl->sd_flags) {
1464 sd_flags = (*tl->sd_flags)();
1465 }
1466 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, "wrong sd_flags in topology description\n")) {
1467 sd_flags &= TOPOLOGY_SD_FLAGS;
1468 }
1469
1470 /* Apply detected topology flags */
1471 sd_flags |= dflags;
1472
1473 *sd = (struct sched_domain) {
1474 .min_interval = sd_weight,
1475 .max_interval = 2 * sd_weight,
1476 .busy_factor = 16,
1477 .imbalance_pct = 117,
1478
1479 .cache_nice_tries = 0,
1480
1481 .flags = 1 * SD_BALANCE_NEWIDLE | 1 * SD_BALANCE_EXEC | 1 * SD_BALANCE_FORK | 0 * SD_BALANCE_WAKE |
1482 1 * SD_WAKE_AFFINE | 0 * SD_SHARE_CPUCAPACITY | 0 * SD_SHARE_PKG_RESOURCES | 0 * SD_SERIALIZE |
1483 1 * SD_PREFER_SIBLING | 0 * SD_NUMA | sd_flags,
1484
1485 .last_balance = jiffies,
1486 .balance_interval = sd_weight,
1487 .max_newidle_lb_cost = 0,
1488 .next_decay_max_lb_cost = jiffies,
1489 .child = child,
1490 #ifdef CONFIG_SCHED_DEBUG
1491 .name = tl->name,
1492 #endif
1493 };
1494
1495 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1496 sd_id = cpumask_first(sched_domain_span(sd));
1497
1498 /*
1499 * Convert topological properties into behaviour.
1500 */
1501
1502 /* Don't attempt to spread across CPUs of different capacities. */
1503 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) {
1504 sd->child->flags &= ~SD_PREFER_SIBLING;
1505 }
1506
1507 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1508 sd->imbalance_pct = IMBALANCE_SD_SHARE_CPUCAPACITY;
1509 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1510 sd->imbalance_pct = IMBALANCE_SD_SHARE_PKG;
1511 sd->cache_nice_tries = 1;
1512
1513 #ifdef CONFIG_NUMA
1514 } else if (sd->flags & SD_NUMA) {
1515 sd->cache_nice_tries = IMBALANCE_SD_NUMA;
1516
1517 sd->flags &= ~SD_PREFER_SIBLING;
1518 sd->flags |= SD_SERIALIZE;
1519 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1520 sd->flags &= ~(SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE);
1521 }
1522
1523 #endif
1524 } else {
1525 sd->cache_nice_tries = 1;
1526 }
1527
1528 /*
1529 * For all levels sharing cache; connect a sched_domain_shared
1530 * instance.
1531 */
1532 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1533 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1534 atomic_inc(&sd->shared->ref);
1535 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1536 }
1537
1538 sd->private = sdd;
1539
1540 return sd;
1541 }
1542
1543 /*
1544 * Topology list, bottom-up.
1545 */
1546 static struct sched_domain_topology_level default_topology[] = {
1547 #ifdef CONFIG_SCHED_SMT
1548 {cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT)},
1549 #endif
1550 #ifdef CONFIG_SCHED_MC
1551 {cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC)},
1552 #endif
1553 {cpu_cpu_mask, SD_INIT_NAME(DIE)},
1554 {
1555 NULL,
1556 },
1557 };
1558
1559 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
1560
1561 #define for_each_sd_topology(tl) for (tl = sched_domain_topology; (tl)->mask; (tl)++)
1562
set_sched_topology(struct sched_domain_topology_level *tl)1563 void set_sched_topology(struct sched_domain_topology_level *tl)
1564 {
1565 if (WARN_ON_ONCE(sched_smp_initialized)) {
1566 return;
1567 }
1568
1569 sched_domain_topology = tl;
1570 }
1571
1572 #ifdef CONFIG_NUMA
1573
sd_numa_mask(int cpu)1574 static const struct cpumask *sd_numa_mask(int cpu)
1575 {
1576 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1577 }
1578
sched_numa_warn(const char *str)1579 static void sched_numa_warn(const char *str)
1580 {
1581 static int done = false;
1582 int i, j;
1583
1584 if (done) {
1585 return;
1586 }
1587
1588 done = true;
1589
1590 printk(KERN_WARNING "ERROR: %s\n\n", str);
1591
1592 for (i = 0; i < nr_node_ids; i++) {
1593 printk(KERN_WARNING " ");
1594 for (j = 0; j < nr_node_ids; j++) {
1595 printk(KERN_CONT "%02d ", node_distance(i, j));
1596 }
1597 printk(KERN_CONT "\n");
1598 }
1599 printk(KERN_WARNING "\n");
1600 }
1601
find_numa_distance(int distance)1602 bool find_numa_distance(int distance)
1603 {
1604 int i;
1605
1606 if (distance == node_distance(0, 0)) {
1607 return true;
1608 }
1609
1610 for (i = 0; i < sched_domains_numa_levels; i++) {
1611 if (sched_domains_numa_distance[i] == distance) {
1612 return true;
1613 }
1614 }
1615
1616 return false;
1617 }
1618
1619 /*
1620 * A system can have three types of NUMA topology:
1621 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1622 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1623 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1624 *
1625 * The difference between a glueless mesh topology and a backplane
1626 * topology lies in whether communication between not directly
1627 * connected nodes goes through intermediary nodes (where programs
1628 * could run), or through backplane controllers. This affects
1629 * placement of programs.
1630 *
1631 * The type of topology can be discerned with the following tests:
1632 * - If the maximum distance between any nodes is 1 hop, the system
1633 * is directly connected.
1634 * - If for two nodes A and B, located N > 1 hops away from each other,
1635 * there is an intermediary node C, which is < N hops away from both
1636 * nodes A and B, the system is a glueless mesh.
1637 */
init_numa_topology_type(void)1638 static void init_numa_topology_type(void)
1639 {
1640 int a, b, c, n;
1641
1642 n = sched_max_numa_distance;
1643
1644 if (sched_domains_numa_levels <= IMBALANCE_SD_NUMA_DIRECT) {
1645 sched_numa_topology_type = NUMA_DIRECT;
1646 return;
1647 }
1648
1649 for_each_online_node(a)
1650 {
1651 for_each_online_node(b)
1652 {
1653 /* Find two nodes furthest removed from each other. */
1654 if (node_distance(a, b) < n) {
1655 continue;
1656 }
1657
1658 /* Is there an intermediary node between a and b? */
1659 for_each_online_node(c)
1660 {
1661 if (node_distance(a, c) < n && node_distance(b, c) < n) {
1662 sched_numa_topology_type = NUMA_GLUELESS_MESH;
1663 return;
1664 }
1665 }
1666
1667 sched_numa_topology_type = NUMA_BACKPLANE;
1668 return;
1669 }
1670 }
1671 }
1672
1673 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1674
sched_init_numa(void)1675 void sched_init_numa(void)
1676 {
1677 struct sched_domain_topology_level *tl;
1678 unsigned long *distance_map;
1679 int nr_levels = 0;
1680 int i, j;
1681
1682 /*
1683 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1684 * unique distances in the node_distance() table.
1685 */
1686 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1687 if (!distance_map) {
1688 return;
1689 }
1690
1691 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1692 for (i = 0; i < nr_node_ids; i++) {
1693 for (j = 0; j < nr_node_ids; j++) {
1694 int distance = node_distance(i, j);
1695 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1696 sched_numa_warn("Invalid distance value range");
1697 return;
1698 }
1699
1700 bitmap_set(distance_map, distance, 1);
1701 }
1702 }
1703 /*
1704 * We can now figure out how many unique distance values there are and
1705 * allocate memory accordingly.
1706 */
1707 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1708
1709 sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1710 if (!sched_domains_numa_distance) {
1711 bitmap_free(distance_map);
1712 return;
1713 }
1714
1715 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1716 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1717 sched_domains_numa_distance[i] = j;
1718 }
1719
1720 bitmap_free(distance_map);
1721
1722 /*
1723 * 'nr_levels' contains the number of unique distances
1724 *
1725 * The sched_domains_numa_distance[] array includes the actual distance
1726 * numbers.
1727 */
1728
1729 /*
1730 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1731 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1732 * the array will contain less then 'nr_levels' members. This could be
1733 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1734 * in other functions.
1735 *
1736 * We reset it to 'nr_levels' at the end of this function.
1737 */
1738 sched_domains_numa_levels = 0;
1739
1740 sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1741 if (!sched_domains_numa_masks) {
1742 return;
1743 }
1744
1745 /*
1746 * Now for each level, construct a mask per node which contains all
1747 * CPUs of nodes that are that many hops away from us.
1748 */
1749 for (i = 0; i < nr_levels; i++) {
1750 sched_domains_numa_masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1751 if (!sched_domains_numa_masks[i]) {
1752 return;
1753 }
1754
1755 for (j = 0; j < nr_node_ids; j++) {
1756 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1757 int k;
1758
1759 if (!mask) {
1760 return;
1761 }
1762
1763 sched_domains_numa_masks[i][j] = mask;
1764
1765 for_each_node(k)
1766 {
1767 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) {
1768 sched_numa_warn("Node-distance not symmetric");
1769 }
1770
1771 if (node_distance(j, k) > sched_domains_numa_distance[i]) {
1772 continue;
1773 }
1774
1775 cpumask_or(mask, mask, cpumask_of_node(k));
1776 }
1777 }
1778 }
1779
1780 /* Compute default topology size */
1781 for (i = 0; sched_domain_topology[i].mask; i++) {
1782 ;
1783 }
1784
1785 tl = kzalloc((i + nr_levels + 1) * sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1786 if (!tl) {
1787 return;
1788 }
1789
1790 /*
1791 * Copy the default topology bits..
1792 */
1793 for (i = 0; sched_domain_topology[i].mask; i++) {
1794 tl[i] = sched_domain_topology[i];
1795 }
1796
1797 /*
1798 * Add the NUMA identity distance, aka single NODE.
1799 */
1800 tl[i++] = (struct sched_domain_topology_level) {.mask = sd_numa_mask, .numa_level = 0, SD_INIT_NAME(NODE)};
1801
1802 /*
1803 * .. and append 'j' levels of NUMA goodness.
1804 */
1805 for (j = 1; j < nr_levels; i++, j++) {
1806 tl[i] = (struct sched_domain_topology_level) {
1807 .mask = sd_numa_mask,
1808 .sd_flags = cpu_numa_flags,
1809 .flags = SDTL_OVERLAP,
1810 .numa_level = j,
1811 SD_INIT_NAME(NUMA)};
1812 }
1813
1814 sched_domain_topology = tl;
1815
1816 sched_domains_numa_levels = nr_levels;
1817 sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1818
1819 init_numa_topology_type();
1820 }
1821
sched_domains_numa_masks_set(unsigned int cpu)1822 void sched_domains_numa_masks_set(unsigned int cpu)
1823 {
1824 int node = cpu_to_node(cpu);
1825 int i, j;
1826
1827 for (i = 0; i < sched_domains_numa_levels; i++) {
1828 for (j = 0; j < nr_node_ids; j++) {
1829 if (node_distance(j, node) <= sched_domains_numa_distance[i]) {
1830 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1831 }
1832 }
1833 }
1834 }
1835
sched_domains_numa_masks_clear(unsigned int cpu)1836 void sched_domains_numa_masks_clear(unsigned int cpu)
1837 {
1838 int i, j;
1839
1840 for (i = 0; i < sched_domains_numa_levels; i++) {
1841 for (j = 0; j < nr_node_ids; j++) {
1842 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1843 }
1844 }
1845 }
1846
1847 /*
1848 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1849 * closest to @cpu from @cpumask.
1850 * cpumask: cpumask to find a cpu from
1851 * cpu: cpu to be close to
1852 *
1853 * returns: cpu, or nr_cpu_ids when nothing found.
1854 */
sched_numa_find_closest(const struct cpumask *cpus, int cpu)1855 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1856 {
1857 int i, j = cpu_to_node(cpu);
1858
1859 for (i = 0; i < sched_domains_numa_levels; i++) {
1860 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1861 if (cpu < nr_cpu_ids) {
1862 return cpu;
1863 }
1864 }
1865 return nr_cpu_ids;
1866 }
1867
1868 #endif /* CONFIG_NUMA */
1869
__sdt_alloc(const struct cpumask *cpu_map)1870 static int __sdt_alloc(const struct cpumask *cpu_map)
1871 {
1872 struct sched_domain_topology_level *tl;
1873 int j;
1874
1875 for (tl = sched_domain_topology; (tl)->mask; (tl)++) {
1876 struct sd_data *sdd = &tl->data;
1877
1878 sdd->sd = alloc_percpu(struct sched_domain *);
1879 if (!sdd->sd) {
1880 return -ENOMEM;
1881 }
1882
1883 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1884 if (!sdd->sds) {
1885 return -ENOMEM;
1886 }
1887
1888 sdd->sg = alloc_percpu(struct sched_group *);
1889 if (!sdd->sg) {
1890 return -ENOMEM;
1891 }
1892
1893 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1894 if (!sdd->sgc) {
1895 return -ENOMEM;
1896 }
1897
1898 for_each_cpu(j, cpu_map)
1899 {
1900 struct sched_domain *sd;
1901 struct sched_domain_shared *sds;
1902 struct sched_group *sg;
1903 struct sched_group_capacity *sgc;
1904
1905 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), GFP_KERNEL, cpu_to_node(j));
1906 if (!sd) {
1907 return -ENOMEM;
1908 }
1909
1910 *per_cpu_ptr(sdd->sd, j) = sd;
1911
1912 sds = kzalloc_node(sizeof(struct sched_domain_shared), GFP_KERNEL, cpu_to_node(j));
1913 if (!sds) {
1914 return -ENOMEM;
1915 }
1916
1917 *per_cpu_ptr(sdd->sds, j) = sds;
1918
1919 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, cpu_to_node(j));
1920 if (!sg) {
1921 return -ENOMEM;
1922 }
1923
1924 sg->next = sg;
1925
1926 *per_cpu_ptr(sdd->sg, j) = sg;
1927
1928 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), GFP_KERNEL, cpu_to_node(j));
1929 if (!sgc) {
1930 return -ENOMEM;
1931 }
1932
1933 #ifdef CONFIG_SCHED_DEBUG
1934 sgc->id = j;
1935 #endif
1936
1937 *per_cpu_ptr(sdd->sgc, j) = sgc;
1938 }
1939 }
1940
1941 return 0;
1942 }
1943
__sdt_free(const struct cpumask *cpu_map)1944 static void __sdt_free(const struct cpumask *cpu_map)
1945 {
1946 struct sched_domain_topology_level *tl;
1947 int j;
1948
1949 for (tl = sched_domain_topology; (tl)->mask; (tl)++) {
1950 struct sd_data *sdd = &tl->data;
1951
1952 for_each_cpu(j, cpu_map) {
1953 struct sched_domain *sd;
1954
1955 if (sdd->sd) {
1956 sd = *per_cpu_ptr(sdd->sd, j);
1957 if (sd && (sd->flags & SD_OVERLAP)) {
1958 free_sched_groups(sd->groups, 0);
1959 }
1960 kfree(*per_cpu_ptr(sdd->sd, j));
1961 }
1962
1963 if (sdd->sds) {
1964 kfree(*per_cpu_ptr(sdd->sds, j));
1965 }
1966 if (sdd->sg) {
1967 kfree(*per_cpu_ptr(sdd->sg, j));
1968 }
1969 if (sdd->sgc) {
1970 kfree(*per_cpu_ptr(sdd->sgc, j));
1971 }
1972 }
1973 free_percpu(sdd->sd);
1974 sdd->sd = NULL;
1975 free_percpu(sdd->sds);
1976 sdd->sds = NULL;
1977 free_percpu(sdd->sg);
1978 sdd->sg = NULL;
1979 free_percpu(sdd->sgc);
1980 sdd->sgc = NULL;
1981 }
1982 }
1983
build_sched_domain(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map, struct sched_domain_attr *attr, struct sched_domain *child, int dflags, int cpu)1984 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map,
1985 struct sched_domain_attr *attr, struct sched_domain *child, int dflags,
1986 int cpu)
1987 {
1988 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1989
1990 if (child) {
1991 sd->level = child->level + 1;
1992 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1993 child->parent = sd;
1994
1995 if (!cpumask_subset(sched_domain_span(child), sched_domain_span(sd))) {
1996 pr_err("BUG: arch topology borken\n");
1997 #ifdef CONFIG_SCHED_DEBUG
1998 pr_err(" the %s domain not a subset of the %s domain\n", child->name, sd->name);
1999 #endif
2000 /* Fixup, ensure @sd has at least @child CPUs. */
2001 cpumask_or(sched_domain_span(sd), sched_domain_span(sd), sched_domain_span(child));
2002 }
2003 }
2004 set_domain_attribute(sd, attr);
2005
2006 return sd;
2007 }
2008
2009 /*
2010 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2011 * any two given CPUs at this (non-NUMA) topology level.
2012 */
topology_span_sane(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map, int cpu)2013 static bool topology_span_sane(struct sched_domain_topology_level *tl, const struct cpumask *cpu_map, int cpu)
2014 {
2015 int i;
2016
2017 /* NUMA levels are allowed to overlap */
2018 if (tl->flags & SDTL_OVERLAP) {
2019 return true;
2020 }
2021
2022 /*
2023 * Non-NUMA levels cannot partially overlap - they must be either
2024 * completely equal or completely disjoint. Otherwise we can end up
2025 * breaking the sched_group lists - i.e. a later get_group() pass
2026 * breaks the linking done for an earlier span.
2027 */
2028 for_each_cpu(i, cpu_map)
2029 {
2030 if (i == cpu) {
2031 continue;
2032 }
2033 /*
2034 * We should 'and' all those masks with 'cpu_map' to exactly
2035 * match the topology we're about to build, but that can only
2036 * remove CPUs, which only lessens our ability to detect
2037 * overlaps
2038 */
2039 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && cpumask_intersects(tl->mask(cpu), tl->mask(i))) {
2040 return false;
2041 }
2042 }
2043
2044 return true;
2045 }
2046
2047 /*
2048 * Find the sched_domain_topology_level where all CPU capacities are visible
2049 * for all CPUs.
2050 */
asym_cpu_capacity_level(const struct cpumask *cpu_map)2051 static struct sched_domain_topology_level *asym_cpu_capacity_level(const struct cpumask *cpu_map)
2052 {
2053 int i, j, asym_level = 0;
2054 bool asym = false;
2055 struct sched_domain_topology_level *tl, *asym_tl = NULL;
2056 unsigned long cap;
2057
2058 /* Is there any asymmetry? */
2059 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
2060
2061 for_each_cpu(i, cpu_map)
2062 {
2063 if (arch_scale_cpu_capacity(i) != cap) {
2064 asym = true;
2065 break;
2066 }
2067 }
2068
2069 if (!asym) {
2070 return NULL;
2071 }
2072
2073 /*
2074 * Examine topology from all CPU's point of views to detect the lowest
2075 * sched_domain_topology_level where a highest capacity CPU is visible
2076 * to everyone.
2077 */
2078 for_each_cpu(i, cpu_map)
2079 {
2080 unsigned long max_capacity = arch_scale_cpu_capacity(i);
2081 int tl_id = 0;
2082
2083 for (tl = sched_domain_topology; (tl)->mask; (tl)++) {
2084 if (tl_id < asym_level) {
2085 goto next_level;
2086 }
2087
2088 for_each_cpu_and(j, tl->mask(i), cpu_map) {
2089 unsigned long capacity;
2090
2091 capacity = arch_scale_cpu_capacity(j);
2092 if (capacity <= max_capacity) {
2093 continue;
2094 }
2095
2096 max_capacity = capacity;
2097 asym_level = tl_id;
2098 asym_tl = tl;
2099 }
2100 next_level:
2101 tl_id++;
2102 }
2103 }
2104
2105 return asym_tl;
2106 }
2107
2108 /*
2109 * Build sched domains for a given set of CPUs and attach the sched domains
2110 * to the individual CPUs
2111 */
build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)2112 static int build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2113 {
2114 enum s_alloc alloc_state = sa_none;
2115 struct sched_domain *sd;
2116 struct s_data d;
2117 struct rq *rq = NULL;
2118 int i, ret = -ENOMEM;
2119 struct sched_domain_topology_level *tl_asym;
2120 bool has_asym = false;
2121
2122 if (WARN_ON(cpumask_empty(cpu_map))) {
2123 goto error;
2124 }
2125
2126 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2127 if (alloc_state != sa_rootdomain) {
2128 goto error;
2129 }
2130
2131 tl_asym = asym_cpu_capacity_level(cpu_map);
2132
2133 /* Set up domains for CPUs specified by the cpu_map: */
2134 for_each_cpu(i, cpu_map)
2135 {
2136 struct sched_domain_topology_level *tl;
2137 int dflags = 0;
2138
2139 sd = NULL;
2140 for (tl = sched_domain_topology; (tl)->mask; (tl)++) {
2141 if (tl == tl_asym) {
2142 dflags |= SD_ASYM_CPUCAPACITY;
2143 has_asym = true;
2144 }
2145
2146 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) {
2147 goto error;
2148 }
2149
2150 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2151
2152 if (tl == sched_domain_topology) {
2153 *per_cpu_ptr(d.sd, i) = sd;
2154 }
2155 if (tl->flags & SDTL_OVERLAP) {
2156 sd->flags |= SD_OVERLAP;
2157 }
2158 if (cpumask_equal(cpu_map, sched_domain_span(sd))) {
2159 break;
2160 }
2161 }
2162 }
2163
2164 /* Build the groups for the domains */
2165 for_each_cpu(i, cpu_map)
2166 {
2167 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2168 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2169 if (sd->flags & SD_OVERLAP) {
2170 if (build_overlap_sched_groups(sd, i)) {
2171 goto error;
2172 }
2173 } else {
2174 if (build_sched_groups(sd, i)) {
2175 goto error;
2176 }
2177 }
2178 }
2179 }
2180
2181 /* Calculate CPU capacity for physical packages and nodes */
2182 for (i = nr_cpumask_bits - 1; i >= 0; i--) {
2183 if (!cpumask_test_cpu(i, cpu_map)) {
2184 continue;
2185 }
2186
2187 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2188 claim_allocations(i, sd);
2189 init_sched_groups_capacity(i, sd);
2190 }
2191 }
2192
2193 /* Attach the domains */
2194 rcu_read_lock();
2195 for_each_cpu(i, cpu_map)
2196 {
2197 #ifdef CONFIG_SCHED_RT_CAS
2198 int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
2199 #endif
2200
2201 rq = cpu_rq(i);
2202 sd = *per_cpu_ptr(d.sd, i);
2203
2204 #ifdef CONFIG_SCHED_RT_CAS
2205 if (max_cpu < 0 || arch_scale_cpu_capacity(i) > arch_scale_cpu_capacity(max_cpu)) {
2206 WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
2207 }
2208 #endif
2209
2210 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2211 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) {
2212 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2213 }
2214
2215 cpu_attach_domain(sd, d.rd, i);
2216 }
2217 rcu_read_unlock();
2218
2219 if (has_asym) {
2220 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2221 }
2222
2223 if (rq && sched_debug_enabled) {
2224 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", cpumask_pr_args(cpu_map),
2225 rq->rd->max_cpu_capacity);
2226 }
2227
2228 ret = 0;
2229 error:
2230 __free_domain_allocs(&d, alloc_state, cpu_map);
2231
2232 return ret;
2233 }
2234
2235 /* Current sched domains: */
2236 static cpumask_var_t *doms_cur;
2237
2238 /* Number of sched domains in 'doms_cur': */
2239 static int ndoms_cur;
2240
2241 /* Attribues of custom domains in 'doms_cur' */
2242 static struct sched_domain_attr *dattr_cur;
2243
2244 /*
2245 * Special case: If a kmalloc() of a doms_cur partition (array of
2246 * cpumask) fails, then fallback to a single sched domain,
2247 * as determined by the single cpumask fallback_doms.
2248 */
2249 static cpumask_var_t fallback_doms;
2250
2251 /*
2252 * arch_update_cpu_topology lets virtualized architectures update the
2253 * CPU core maps. It is supposed to return 1 if the topology changed
2254 * or 0 if it stayed the same.
2255 */
arch_update_cpu_topology(void)2256 int __weak arch_update_cpu_topology(void)
2257 {
2258 return 0;
2259 }
2260
alloc_sched_domains(unsigned int ndoms)2261 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2262 {
2263 int i;
2264 cpumask_var_t *doms;
2265
2266 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2267 if (!doms) {
2268 return NULL;
2269 }
2270 for (i = 0; i < ndoms; i++) {
2271 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2272 free_sched_domains(doms, i);
2273 return NULL;
2274 }
2275 }
2276 return doms;
2277 }
2278
free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)2279 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2280 {
2281 unsigned int i;
2282 for (i = 0; i < ndoms; i++) {
2283 free_cpumask_var(doms[i]);
2284 }
2285 kfree(doms);
2286 }
2287
2288 /*
2289 * Set up scheduler domains and groups. For now this just excludes isolated
2290 * CPUs, but could be used to exclude other special cases in the future.
2291 */
sched_init_domains(const struct cpumask *cpu_map)2292 int sched_init_domains(const struct cpumask *cpu_map)
2293 {
2294 int err;
2295
2296 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2297 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2298 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2299
2300 arch_update_cpu_topology();
2301 ndoms_cur = 1;
2302 doms_cur = alloc_sched_domains(ndoms_cur);
2303 if (!doms_cur) {
2304 doms_cur = &fallback_doms;
2305 }
2306 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2307 err = build_sched_domains(doms_cur[0], NULL);
2308 register_sched_domain_sysctl();
2309
2310 return err;
2311 }
2312
2313 /*
2314 * Detach sched domains from a group of CPUs specified in cpu_map
2315 * These CPUs will now be attached to the NULL domain
2316 */
detach_destroy_domains(const struct cpumask *cpu_map)2317 static void detach_destroy_domains(const struct cpumask *cpu_map)
2318 {
2319 unsigned int cpu = cpumask_any(cpu_map);
2320 int i;
2321
2322 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) {
2323 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2324 }
2325
2326 rcu_read_lock();
2327 for_each_cpu(i, cpu_map) cpu_attach_domain(NULL, &def_root_domain, i);
2328 rcu_read_unlock();
2329 }
2330
2331 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr *cur, int idx_cur, struct sched_domain_attr *new, int idx_new)2332 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, struct sched_domain_attr *new, int idx_new)
2333 {
2334 struct sched_domain_attr tmp;
2335
2336 /* Fast path: */
2337 if (!new && !cur) {
2338 return 1;
2339 }
2340
2341 tmp = SD_ATTR_INIT;
2342
2343 return !memcmp(cur ? (cur + idx_cur) : &tmp, new ? (new + idx_new) : &tmp, sizeof(struct sched_domain_attr));
2344 }
2345
2346 /*
2347 * Partition sched domains as specified by the 'ndoms_new'
2348 * cpumasks in the array doms_new[] of cpumasks. This compares
2349 * doms_new[] to the current sched domain partitioning, doms_cur[].
2350 * It destroys each deleted domain and builds each new domain.
2351 *
2352 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2353 * The masks don't intersect (don't overlap.) We should setup one
2354 * sched domain for each mask. CPUs not in any of the cpumasks will
2355 * not be load balanced. If the same cpumask appears both in the
2356 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2357 * it as it is.
2358 *
2359 * The passed in 'doms_new' should be allocated using
2360 * alloc_sched_domains. This routine takes ownership of it and will
2361 * free_sched_domains it when done with it. If the caller failed the
2362 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2363 * and partition_sched_domains() will fallback to the single partition
2364 * 'fallback_doms', it also forces the domains to be rebuilt.
2365 *
2366 * If doms_new == NULL it will be replaced with cpu_online_mask.
2367 * ndoms_new == 0 is a special case for destroying existing domains,
2368 * and it will not create the default domain.
2369 *
2370 * Call with hotplug lock and sched_domains_mutex held
2371 */
partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new)2372 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new)
2373 {
2374 bool __maybe_unused has_eas = false;
2375 int i, j, n;
2376 int new_topology;
2377
2378 lockdep_assert_held(&sched_domains_mutex);
2379
2380 /* Always unregister in case we don't destroy any domains: */
2381 unregister_sched_domain_sysctl();
2382
2383 /* Let the architecture update CPU core mappings: */
2384 new_topology = arch_update_cpu_topology();
2385
2386 if (!doms_new) {
2387 WARN_ON_ONCE(dattr_new);
2388 n = 0;
2389 doms_new = alloc_sched_domains(1);
2390 if (doms_new) {
2391 n = 1;
2392 cpumask_and(doms_new[0], cpu_active_mask, housekeeping_cpumask(HK_FLAG_DOMAIN));
2393 }
2394 } else {
2395 n = ndoms_new;
2396 }
2397
2398 /* Destroy deleted domains: */
2399 for (i = 0; i < ndoms_cur; i++) {
2400 for (j = 0; j < n && !new_topology; j++) {
2401 if (cpumask_equal(doms_cur[i], doms_new[j]) && dattrs_equal(dattr_cur, i, dattr_new, j)) {
2402 struct root_domain *rd;
2403
2404 /*
2405 * This domain won't be destroyed and as such
2406 * its dl_bw->total_bw needs to be cleared. It
2407 * will be recomputed in function
2408 * update_tasks_root_domain().
2409 */
2410 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2411 dl_clear_root_domain(rd);
2412 goto match1;
2413 }
2414 }
2415 /* No match - a current sched domain not in new doms_new[] */
2416 detach_destroy_domains(doms_cur[i]);
2417 match1:;
2418 }
2419
2420 n = ndoms_cur;
2421 if (!doms_new) {
2422 n = 0;
2423 doms_new = &fallback_doms;
2424 cpumask_and(doms_new[0], cpu_active_mask, housekeeping_cpumask(HK_FLAG_DOMAIN));
2425 }
2426
2427 /* Build new domains: */
2428 for (i = 0; i < ndoms_new; i++) {
2429 for (j = 0; j < n && !new_topology; j++) {
2430 if (cpumask_equal(doms_new[i], doms_cur[j]) && dattrs_equal(dattr_new, i, dattr_cur, j)) {
2431 goto match2;
2432 }
2433 }
2434 /* No match - add a new doms_new */
2435 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2436 match2:;
2437 }
2438
2439 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2440 /* Build perf. domains: */
2441 for (i = 0; i < ndoms_new; i++) {
2442 for (j = 0; j < n && !sched_energy_update; j++) {
2443 if (cpumask_equal(doms_new[i], doms_cur[j]) && cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2444 has_eas = true;
2445 goto match3;
2446 }
2447 }
2448 /* No match - add perf. domains for a new rd */
2449 has_eas |= build_perf_domains(doms_new[i]);
2450 match3:;
2451 }
2452 sched_energy_set(has_eas);
2453 #endif
2454
2455 /* Remember the new sched domains: */
2456 if (doms_cur != &fallback_doms) {
2457 free_sched_domains(doms_cur, ndoms_cur);
2458 }
2459
2460 kfree(dattr_cur);
2461 doms_cur = doms_new;
2462 dattr_cur = dattr_new;
2463 ndoms_cur = ndoms_new;
2464
2465 register_sched_domain_sysctl();
2466 }
2467
2468 /*
2469 * Call with hotplug lock held
2470 */
partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new)2471 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new)
2472 {
2473 mutex_lock(&sched_domains_mutex);
2474 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2475 mutex_unlock(&sched_domains_mutex);
2476 }
2477