1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 #include "walt.h"
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13 /* More than 4 hours if BW_SHIFT equals 20. */
14 static const u64 max_rt_runtime = MAX_BW;
15 
16 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 
18 struct rt_bandwidth def_rt_bandwidth;
19 
20 #ifdef CONFIG_SCHED_RT_CAS
21 unsigned int sysctl_sched_enable_rt_cas = 1;
22 #endif
23 
24 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
25 unsigned int sysctl_sched_enable_rt_active_lb = 1;
26 #endif
27 
sched_rt_period_timer(struct hrtimer *timer)28 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
29 {
30     struct rt_bandwidth *rt_b = container_of(timer, struct rt_bandwidth, rt_period_timer);
31     int idle = 0;
32     int overrun;
33 
34     raw_spin_lock(&rt_b->rt_runtime_lock);
35     for (;;) {
36         overrun = hrtimer_forward_now(timer, rt_b->rt_period);
37         if (!overrun) {
38             break;
39         }
40 
41         raw_spin_unlock(&rt_b->rt_runtime_lock);
42         idle = do_sched_rt_period_timer(rt_b, overrun);
43         raw_spin_lock(&rt_b->rt_runtime_lock);
44     }
45     if (idle) {
46         rt_b->rt_period_active = 0;
47     }
48     raw_spin_unlock(&rt_b->rt_runtime_lock);
49 
50     return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
51 }
52 
init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)53 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
54 {
55     rt_b->rt_period = ns_to_ktime(period);
56     rt_b->rt_runtime = runtime;
57 
58     raw_spin_lock_init(&rt_b->rt_runtime_lock);
59 
60     hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
61     rt_b->rt_period_timer.function = sched_rt_period_timer;
62 }
63 
start_rt_bandwidth(struct rt_bandwidth *rt_b)64 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
65 {
66     if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) {
67         return;
68     }
69 
70     raw_spin_lock(&rt_b->rt_runtime_lock);
71     if (!rt_b->rt_period_active) {
72         rt_b->rt_period_active = 1;
73         /*
74          * SCHED_DEADLINE updates the bandwidth, as a run away
75          * RT task with a DL task could hog a CPU. But DL does
76          * not reset the period. If a deadline task was running
77          * without an RT task running, it can cause RT tasks to
78          * throttle when they start up. Kick the timer right away
79          * to update the period.
80          */
81         hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
82         hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED_HARD);
83     }
84     raw_spin_unlock(&rt_b->rt_runtime_lock);
85 }
86 
init_rt_rq(struct rt_rq *rt_rq)87 void init_rt_rq(struct rt_rq *rt_rq)
88 {
89     struct rt_prio_array *array;
90     int i;
91 
92     array = &rt_rq->active;
93     for (i = 0; i < MAX_RT_PRIO; i++) {
94         INIT_LIST_HEAD(array->queue + i);
95         __clear_bit(i, array->bitmap);
96     }
97     /* delimiter for bitsearch: */
98     __set_bit(MAX_RT_PRIO, array->bitmap);
99 
100 #if defined CONFIG_SMP
101     rt_rq->highest_prio.curr = MAX_RT_PRIO;
102     rt_rq->highest_prio.next = MAX_RT_PRIO;
103     rt_rq->rt_nr_migratory = 0;
104     rt_rq->overloaded = 0;
105     plist_head_init(&rt_rq->pushable_tasks);
106 #endif /* CONFIG_SMP */
107     /* We start is dequeued state, because no RT tasks are queued */
108     rt_rq->rt_queued = 0;
109 
110     rt_rq->rt_time = 0;
111     rt_rq->rt_throttled = 0;
112     rt_rq->rt_runtime = 0;
113     raw_spin_lock_init(&rt_rq->rt_runtime_lock);
114 }
115 
116 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth *rt_b)117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 {
119     hrtimer_cancel(&rt_b->rt_period_timer);
120 }
121 
122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123 
rt_task_of(struct sched_rt_entity *rt_se)124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 {
126 #ifdef CONFIG_SCHED_DEBUG
127     WARN_ON_ONCE(!rt_entity_is_task(rt_se));
128 #endif
129     return container_of(rt_se, struct task_struct, rt);
130 }
131 
rq_of_rt_rq(struct rt_rq *rt_rq)132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 {
134     return rt_rq->rq;
135 }
136 
rt_rq_of_se(struct sched_rt_entity *rt_se)137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 {
139     return rt_se->rt_rq;
140 }
141 
rq_of_rt_se(struct sched_rt_entity *rt_se)142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 {
144     struct rt_rq *rt_rq = rt_se->rt_rq;
145 
146     return rt_rq->rq;
147 }
148 
free_rt_sched_group(struct task_group *tg)149 void free_rt_sched_group(struct task_group *tg)
150 {
151     int i;
152 
153     if (tg->rt_se) {
154         destroy_rt_bandwidth(&tg->rt_bandwidth);
155     }
156 
157     for_each_possible_cpu(i)
158     {
159         if (tg->rt_rq) {
160             kfree(tg->rt_rq[i]);
161         }
162         if (tg->rt_se) {
163             kfree(tg->rt_se[i]);
164         }
165     }
166 
167     kfree(tg->rt_rq);
168     kfree(tg->rt_se);
169 }
170 
init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent)171 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu,
172                       struct sched_rt_entity *parent)
173 {
174     struct rq *rq = cpu_rq(cpu);
175 
176     rt_rq->highest_prio.curr = MAX_RT_PRIO;
177     rt_rq->rt_nr_boosted = 0;
178     rt_rq->rq = rq;
179     rt_rq->tg = tg;
180 
181     tg->rt_rq[cpu] = rt_rq;
182     tg->rt_se[cpu] = rt_se;
183 
184     if (!rt_se) {
185         return;
186     }
187 
188     if (!parent) {
189         rt_se->rt_rq = &rq->rt;
190     } else {
191         rt_se->rt_rq = parent->my_q;
192     }
193 
194     rt_se->my_q = rt_rq;
195     rt_se->parent = parent;
196     INIT_LIST_HEAD(&rt_se->run_list);
197 }
198 
alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)199 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
200 {
201     struct rt_rq *rt_rq;
202     struct sched_rt_entity *rt_se;
203     int i;
204 
205     tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
206     if (!tg->rt_rq) {
207         goto err;
208     }
209     tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
210     if (!tg->rt_se) {
211         goto err;
212     }
213 
214     init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(def_rt_bandwidth.rt_period), 0);
215 
216     for_each_possible_cpu(i)
217     {
218         rt_rq = kzalloc_node(sizeof(struct rt_rq), GFP_KERNEL, cpu_to_node(i));
219         if (!rt_rq) {
220             goto err;
221         }
222 
223         rt_se = kzalloc_node(sizeof(struct sched_rt_entity), GFP_KERNEL, cpu_to_node(i));
224         if (!rt_se) {
225             goto err_free_rq;
226         }
227 
228         init_rt_rq(rt_rq);
229         rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
230         init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
231     }
232 
233     return 1;
234 
235 err_free_rq:
236     kfree(rt_rq);
237 err:
238     return 0;
239 }
240 
241 #else /* CONFIG_RT_GROUP_SCHED */
242 
243 #define rt_entity_is_task(rt_se) (1)
244 
rt_task_of(struct sched_rt_entity *rt_se)245 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
246 {
247     return container_of(rt_se, struct task_struct, rt);
248 }
249 
rq_of_rt_rq(struct rt_rq *rt_rq)250 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
251 {
252     return container_of(rt_rq, struct rq, rt);
253 }
254 
rq_of_rt_se(struct sched_rt_entity *rt_se)255 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
256 {
257     struct task_struct *p = rt_task_of(rt_se);
258 
259     return task_rq(p);
260 }
261 
rt_rq_of_se(struct sched_rt_entity *rt_se)262 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
263 {
264     struct rq *rq = rq_of_rt_se(rt_se);
265 
266     return &rq->rt;
267 }
268 
free_rt_sched_group(struct task_group *tg)269 void free_rt_sched_group(struct task_group *tg)
270 {
271 }
272 
alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)273 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
274 {
275     return 1;
276 }
277 #endif /* CONFIG_RT_GROUP_SCHED */
278 
279 #ifdef CONFIG_SMP
280 
281 static void pull_rt_task(struct rq *this_rq);
282 
need_pull_rt_task(struct rq *rq, struct task_struct *prev)283 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
284 {
285     /*
286      * Try to pull RT tasks here if we lower this rq's prio and cpu is not
287      * isolated
288      */
289     return rq->rt.highest_prio.curr > prev->prio && !cpu_isolated(cpu_of(rq));
290 }
291 
rt_overloaded(struct rq *rq)292 static inline int rt_overloaded(struct rq *rq)
293 {
294     return atomic_read(&rq->rd->rto_count);
295 }
296 
rt_set_overload(struct rq *rq)297 static inline void rt_set_overload(struct rq *rq)
298 {
299     if (!rq->online) {
300         return;
301     }
302 
303     cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
304     /*
305      * Make sure the mask is visible before we set
306      * the overload count. That is checked to determine
307      * if we should look at the mask. It would be a shame
308      * if we looked at the mask, but the mask was not
309      * updated yet.
310      *
311      * Matched by the barrier in pull_rt_task().
312      */
313     smp_wmb();
314     atomic_inc(&rq->rd->rto_count);
315 }
316 
rt_clear_overload(struct rq *rq)317 static inline void rt_clear_overload(struct rq *rq)
318 {
319     if (!rq->online) {
320         return;
321     }
322 
323     /* the order here really doesn't matter */
324     atomic_dec(&rq->rd->rto_count);
325     cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
326 }
327 
update_rt_migration(struct rt_rq *rt_rq)328 static void update_rt_migration(struct rt_rq *rt_rq)
329 {
330     if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
331         if (!rt_rq->overloaded) {
332             rt_set_overload(rq_of_rt_rq(rt_rq));
333             rt_rq->overloaded = 1;
334         }
335     } else if (rt_rq->overloaded) {
336         rt_clear_overload(rq_of_rt_rq(rt_rq));
337         rt_rq->overloaded = 0;
338     }
339 }
340 
inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)341 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
342 {
343     struct task_struct *p;
344 
345     if (!rt_entity_is_task(rt_se)) {
346         return;
347     }
348 
349     p = rt_task_of(rt_se);
350     rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351 
352     rt_rq->rt_nr_total++;
353     if (p->nr_cpus_allowed > 1) {
354         rt_rq->rt_nr_migratory++;
355     }
356 
357     update_rt_migration(rt_rq);
358 }
359 
dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)360 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
361 {
362     struct task_struct *p;
363 
364     if (!rt_entity_is_task(rt_se)) {
365         return;
366     }
367 
368     p = rt_task_of(rt_se);
369     rt_rq = &rq_of_rt_rq(rt_rq)->rt;
370 
371     rt_rq->rt_nr_total--;
372     if (p->nr_cpus_allowed > 1) {
373         rt_rq->rt_nr_migratory--;
374     }
375 
376     update_rt_migration(rt_rq);
377 }
378 
has_pushable_tasks(struct rq *rq)379 static inline int has_pushable_tasks(struct rq *rq)
380 {
381     return !plist_head_empty(&rq->rt.pushable_tasks);
382 }
383 
384 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
385 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
386 
387 static void push_rt_tasks(struct rq *);
388 static void pull_rt_task(struct rq *);
389 
rt_queue_push_tasks(struct rq *rq)390 static inline void rt_queue_push_tasks(struct rq *rq)
391 {
392     if (!has_pushable_tasks(rq)) {
393         return;
394     }
395 
396     queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
397 }
398 
rt_queue_pull_task(struct rq *rq)399 static inline void rt_queue_pull_task(struct rq *rq)
400 {
401     queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
402 }
403 
enqueue_pushable_task(struct rq *rq, struct task_struct *p)404 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406     plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407     plist_node_init(&p->pushable_tasks, p->prio);
408     plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
409 
410     /* Update the highest prio pushable task */
411     if (p->prio < rq->rt.highest_prio.next) {
412         rq->rt.highest_prio.next = p->prio;
413     }
414 }
415 
dequeue_pushable_task(struct rq *rq, struct task_struct *p)416 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
417 {
418     plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
419 
420     /* Update the new highest prio pushable task */
421     if (has_pushable_tasks(rq)) {
422         p = plist_first_entry(&rq->rt.pushable_tasks, struct task_struct, pushable_tasks);
423         rq->rt.highest_prio.next = p->prio;
424     } else {
425         rq->rt.highest_prio.next = MAX_RT_PRIO;
426     }
427 }
428 
429 #else
430 
enqueue_pushable_task(struct rq *rq, struct task_struct *p)431 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
432 {
433 }
434 
dequeue_pushable_task(struct rq *rq, struct task_struct *p)435 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
436 {
437 }
438 
inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)439 static inline void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
440 {
441 }
442 
dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)443 static inline void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
444 {
445 }
446 
need_pull_rt_task(struct rq *rq, struct task_struct *prev)447 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
448 {
449     return false;
450 }
451 
pull_rt_task(struct rq *this_rq)452 static inline void pull_rt_task(struct rq *this_rq)
453 {
454 }
455 
rt_queue_push_tasks(struct rq *rq)456 static inline void rt_queue_push_tasks(struct rq *rq)
457 {
458 }
459 #endif /* CONFIG_SMP */
460 
461 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
462 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
463 
on_rt_rq(struct sched_rt_entity *rt_se)464 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
465 {
466     return rt_se->on_rq;
467 }
468 
469 #ifdef CONFIG_UCLAMP_TASK
470 /*
471  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
472  * settings.
473  *
474  * This check is only important for heterogeneous systems where uclamp_min value
475  * is higher than the capacity of a @cpu. For non-heterogeneous system this
476  * function will always return true.
477  *
478  * The function will return true if the capacity of the @cpu is >= the
479  * uclamp_min and false otherwise.
480  *
481  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
482  * > uclamp_max.
483  */
rt_task_fits_capacity(struct task_struct *p, int cpu)484 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
485 {
486     unsigned int min_cap;
487     unsigned int max_cap;
488     unsigned int cpu_cap;
489 
490     /* Only heterogeneous systems can benefit from this check */
491     if (!static_branch_unlikely(&sched_asym_cpucapacity)) {
492         return true;
493     }
494 
495     min_cap = uclamp_eff_value(p, UCLAMP_MIN);
496     max_cap = uclamp_eff_value(p, UCLAMP_MAX);
497 
498     cpu_cap = capacity_orig_of(cpu);
499 
500     return cpu_cap >= min(min_cap, max_cap);
501 }
502 #else
rt_task_fits_capacity(struct task_struct *p, int cpu)503 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
504 {
505     return true;
506 }
507 #endif
508 
509 #ifdef CONFIG_RT_GROUP_SCHED
510 
sched_rt_runtime(struct rt_rq *rt_rq)511 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
512 {
513     if (!rt_rq->tg) {
514         return RUNTIME_INF;
515     }
516 
517     return rt_rq->rt_runtime;
518 }
519 
sched_rt_period(struct rt_rq *rt_rq)520 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
521 {
522     return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
523 }
524 
525 typedef struct task_group *rt_rq_iter_t;
526 
next_task_group(struct task_group *tg)527 static inline struct task_group *next_task_group(struct task_group *tg)
528 {
529     do {
530         tg = list_entry_rcu(tg->list.next, typeof(struct task_group), list);
531     } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
532 
533     if (&tg->list == &task_groups) {
534         tg = NULL;
535     }
536 
537     return tg;
538 }
539 
540 #define cycle_each_rt_rq(rt_rq, iter, rq)
541     do {                                                                                    \
542         for (iter = container_of(&task_groups, typeof(*iter), list);                        \
543              (iter = next_task_group(iter)) && (rt_rq = iter->rt_rq[cpu_of(rq)]);)          \
544     } while (0)
545 
546 #define cycle_each_sched_rt_entity(rt_se) for (; rt_se; rt_se = rt_se->parent)
547 
group_rt_rq(struct sched_rt_entity *rt_se)548 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
549 {
550     return rt_se->my_q;
551 }
552 
553 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
554 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
555 
sched_rt_rq_enqueue(struct rt_rq *rt_rq)556 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
557 {
558     struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
559     struct rq *rq = rq_of_rt_rq(rt_rq);
560     struct sched_rt_entity *rt_se;
561 
562     int cpu = cpu_of(rq);
563 
564     rt_se = rt_rq->tg->rt_se[cpu];
565 
566     if (rt_rq->rt_nr_running) {
567         if (!rt_se) {
568             enqueue_top_rt_rq(rt_rq);
569         } else if (!on_rt_rq(rt_se)) {
570             enqueue_rt_entity(rt_se, 0);
571         }
572 
573         if (rt_rq->highest_prio.curr < curr->prio) {
574             resched_curr(rq);
575         }
576     }
577 }
578 
sched_rt_rq_dequeue(struct rt_rq *rt_rq)579 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
580 {
581     struct sched_rt_entity *rt_se;
582     int cpu = cpu_of(rq_of_rt_rq(rt_rq));
583 
584     rt_se = rt_rq->tg->rt_se[cpu];
585 
586     if (!rt_se) {
587         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
588         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
589         cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
590     } else if (on_rt_rq(rt_se)) {
591         dequeue_rt_entity(rt_se, 0);
592     }
593 }
594 
rt_rq_throttled(struct rt_rq *rt_rq)595 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
596 {
597     return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
598 }
599 
rt_se_boosted(struct sched_rt_entity *rt_se)600 static int rt_se_boosted(struct sched_rt_entity *rt_se)
601 {
602     struct rt_rq *rt_rq = group_rt_rq(rt_se);
603     struct task_struct *p;
604 
605     if (rt_rq) {
606         return !!rt_rq->rt_nr_boosted;
607     }
608 
609     p = rt_task_of(rt_se);
610     return p->prio != p->normal_prio;
611 }
612 
613 #ifdef CONFIG_SMP
sched_rt_period_mask(void)614 static inline const struct cpumask *sched_rt_period_mask(void)
615 {
616     return this_rq()->rd->span;
617 }
618 #else
sched_rt_period_mask(void)619 static inline const struct cpumask *sched_rt_period_mask(void)
620 {
621     return cpu_online_mask;
622 }
623 #endif
624 
sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)625 static inline struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
626 {
627     return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
628 }
629 
sched_rt_bandwidth(struct rt_rq *rt_rq)630 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
631 {
632     return &rt_rq->tg->rt_bandwidth;
633 }
634 
635 #else /* !CONFIG_RT_GROUP_SCHED */
636 
sched_rt_runtime(struct rt_rq *rt_rq)637 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
638 {
639     return rt_rq->rt_runtime;
640 }
641 
sched_rt_period(struct rt_rq *rt_rq)642 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
643 {
644     return ktime_to_ns(def_rt_bandwidth.rt_period);
645 }
646 
647 typedef struct rt_rq *rt_rq_iter_t;
648 
649 #define cycle_each_rt_rq(rt_rq, iter, rq) for ((void)(iter), (rt_rq) = &(rq)->rt; (rt_rq); (rt_rq) = NULL)
650 
651 #define cycle_each_sched_rt_entity(rt_se) for (; rt_se; rt_se = NULL)
652 
group_rt_rq(struct sched_rt_entity *rt_se)653 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
654 {
655     return NULL;
656 }
657 
sched_rt_rq_enqueue(struct rt_rq *rt_rq)658 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
659 {
660     struct rq *rq = rq_of_rt_rq(rt_rq);
661 
662     if (!rt_rq->rt_nr_running) {
663         return;
664     }
665 
666     enqueue_top_rt_rq(rt_rq);
667     resched_curr(rq);
668 }
669 
sched_rt_rq_dequeue(struct rt_rq *rt_rq)670 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
671 {
672         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
673 }
674 
rt_rq_throttled(struct rt_rq *rt_rq)675 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
676 {
677     return rt_rq->rt_throttled;
678 }
679 
sched_rt_period_mask(void)680 static inline const struct cpumask *sched_rt_period_mask(void)
681 {
682     return cpu_online_mask;
683 }
684 
sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)685 static inline struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
686 {
687     return &cpu_rq(cpu)->rt;
688 }
689 
sched_rt_bandwidth(struct rt_rq *rt_rq)690 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
691 {
692     return &def_rt_bandwidth;
693 }
694 
695 #endif /* CONFIG_RT_GROUP_SCHED */
696 
sched_rt_bandwidth_account(struct rt_rq *rt_rq)697 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
698 {
699     struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 
701     return (hrtimer_active(&rt_b->rt_period_timer) || rt_rq->rt_time < rt_b->rt_runtime);
702 }
703 
704 #ifdef CONFIG_SMP
705 /*
706  * We ran out of runtime, see if we can borrow some from our neighbours.
707  */
do_balance_runtime(struct rt_rq *rt_rq)708 static void do_balance_runtime(struct rt_rq *rt_rq)
709 {
710     struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
711     struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
712     int i, weight;
713     u64 rt_period;
714 
715     weight = cpumask_weight(rd->span);
716 
717     raw_spin_lock(&rt_b->rt_runtime_lock);
718     rt_period = ktime_to_ns(rt_b->rt_period);
719     for_each_cpu(i, rd->span)
720     {
721         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
722         s64 diff;
723 
724         if (iter == rt_rq) {
725             continue;
726         }
727 
728         raw_spin_lock(&iter->rt_runtime_lock);
729         /*
730          * Either all rqs have inf runtime and there's nothing to steal
731          * or __disable_runtime() below sets a specific rq to inf to
732          * indicate its been disabled and disalow stealing.
733          */
734         if (iter->rt_runtime == RUNTIME_INF) {
735             goto next;
736         }
737 
738         /*
739          * From runqueues with spare time, take 1/n part of their
740          * spare time, but no more than our period.
741          */
742         diff = iter->rt_runtime - iter->rt_time;
743         if (diff > 0) {
744             diff = div_u64((u64)diff, weight);
745             if (rt_rq->rt_runtime + diff > rt_period) {
746                 diff = rt_period - rt_rq->rt_runtime;
747             }
748             iter->rt_runtime -= diff;
749             rt_rq->rt_runtime += diff;
750             if (rt_rq->rt_runtime == rt_period) {
751                 raw_spin_unlock(&iter->rt_runtime_lock);
752                 break;
753             }
754         }
755     next:
756         raw_spin_unlock(&iter->rt_runtime_lock);
757     }
758     raw_spin_unlock(&rt_b->rt_runtime_lock);
759 }
760 
761 /*
762  * Ensure this RQ takes back all the runtime it lend to its neighbours.
763  */
__disable_runtime(struct rq *rq)764 static void __disable_runtime(struct rq *rq)
765 {
766     struct root_domain *rd = rq->rd;
767     rt_rq_iter_t iter;
768     struct rt_rq *rt_rq;
769 
770     if (unlikely(!scheduler_running)) {
771         return;
772     }
773 
774     cycle_each_rt_rq(rt_rq, iter, rq) {
775         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
776         s64 want;
777         int i;
778 
779         raw_spin_lock(&rt_b->rt_runtime_lock);
780         raw_spin_lock(&rt_rq->rt_runtime_lock);
781         /*
782          * Either we're all inf and nobody needs to borrow, or we're
783          * already disabled and thus have nothing to do, or we have
784          * exactly the right amount of runtime to take out.
785          */
786         if (rt_rq->rt_runtime == RUNTIME_INF || rt_rq->rt_runtime == rt_b->rt_runtime) {
787             goto balanced;
788         }
789         raw_spin_unlock(&rt_rq->rt_runtime_lock);
790 
791         /*
792          * Calculate the difference between what we started out with
793          * and what we current have, that's the amount of runtime
794          * we lend and now have to reclaim.
795          */
796         want = rt_b->rt_runtime - rt_rq->rt_runtime;
797 
798         /*
799          * Greedy reclaim, take back as much as we can.
800          */
801         for_each_cpu(i, rd->span)
802         {
803             struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
804             s64 diff;
805 
806             /*
807              * Can't reclaim from ourselves or disabled runqueues.
808              */
809             if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) {
810                 continue;
811             }
812 
813             raw_spin_lock(&iter->rt_runtime_lock);
814             if (want > 0) {
815                 diff = min_t(s64, iter->rt_runtime, want);
816                 iter->rt_runtime -= diff;
817                 want -= diff;
818             } else {
819                 iter->rt_runtime -= want;
820                 want -= want;
821             }
822             raw_spin_unlock(&iter->rt_runtime_lock);
823 
824             if (!want) {
825                 break;
826             }
827         }
828 
829         raw_spin_lock(&rt_rq->rt_runtime_lock);
830         /*
831          * We cannot be left wanting - that would mean some runtime
832          * leaked out of the system.
833          */
834         BUG_ON(want);
835     balanced:
836         /*
837          * Disable all the borrow logic by pretending we have inf
838          * runtime - in which case borrowing doesn't make sense.
839          */
840         rt_rq->rt_runtime = RUNTIME_INF;
841         rt_rq->rt_throttled = 0;
842         raw_spin_unlock(&rt_rq->rt_runtime_lock);
843         raw_spin_unlock(&rt_b->rt_runtime_lock);
844 
845         /* Make rt_rq available for pick_next_task() */
846         sched_rt_rq_enqueue(rt_rq);
847     }
848 }
849 
__enable_runtime(struct rq *rq)850 static void __enable_runtime(struct rq *rq)
851 {
852     rt_rq_iter_t iter;
853     struct rt_rq *rt_rq;
854 
855     if (unlikely(!scheduler_running)) {
856         return;
857     }
858 
859     /*
860      * Reset each runqueue's bandwidth settings
861      */
862     cycle_each_rt_rq(rt_rq, iter, rq) {
863         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
864 
865         raw_spin_lock(&rt_b->rt_runtime_lock);
866         raw_spin_lock(&rt_rq->rt_runtime_lock);
867         rt_rq->rt_runtime = rt_b->rt_runtime;
868         rt_rq->rt_time = 0;
869         rt_rq->rt_throttled = 0;
870         raw_spin_unlock(&rt_rq->rt_runtime_lock);
871         raw_spin_unlock(&rt_b->rt_runtime_lock);
872     }
873 }
874 
balance_runtime(struct rt_rq *rt_rq)875 static void balance_runtime(struct rt_rq *rt_rq)
876 {
877     if (!sched_feat(RT_RUNTIME_SHARE)) {
878         return;
879     }
880 
881     if (rt_rq->rt_time > rt_rq->rt_runtime) {
882         raw_spin_unlock(&rt_rq->rt_runtime_lock);
883         do_balance_runtime(rt_rq);
884         raw_spin_lock(&rt_rq->rt_runtime_lock);
885     }
886 }
887 #else  /* !CONFIG_SMP */
balance_runtime(struct rt_rq *rt_rq)888 static inline void balance_runtime(struct rt_rq *rt_rq)
889 {
890 }
891 #endif /* CONFIG_SMP */
892 
do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)893 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
894 {
895     int i, idle = 1, throttled = 0;
896     const struct cpumask *span;
897 
898     span = sched_rt_period_mask();
899 #ifdef CONFIG_RT_GROUP_SCHED
900     /*
901      * When the tasks in the task_group run on either isolated
902      * CPUs or non-isolated CPUs, whether they are isolcpus or
903      * were isolated via cpusets, check all the online rt_rq
904      * to lest the timer run on a CPU which does not service
905      * all runqueues, potentially leaving other CPUs indefinitely
906      * throttled.
907      */
908     span = cpu_online_mask;
909 #endif
910     for_each_cpu(i, span)
911     {
912         int enqueue = 0;
913         struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
914         struct rq *rq = rq_of_rt_rq(rt_rq);
915         int skip;
916 
917         /*
918          * When span == cpu_online_mask, taking each rq->lock
919          * can be time-consuming. Try to avoid it when possible.
920          */
921         raw_spin_lock(&rt_rq->rt_runtime_lock);
922         if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) {
923             rt_rq->rt_runtime = rt_b->rt_runtime;
924         }
925         skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
926         raw_spin_unlock(&rt_rq->rt_runtime_lock);
927         if (skip) {
928             continue;
929         }
930 
931         raw_spin_lock(&rq->lock);
932         update_rq_clock(rq);
933 
934         if (rt_rq->rt_time) {
935             u64 runtime;
936 
937             raw_spin_lock(&rt_rq->rt_runtime_lock);
938             if (rt_rq->rt_throttled) {
939                 balance_runtime(rt_rq);
940             }
941             runtime = rt_rq->rt_runtime;
942             rt_rq->rt_time -= min(rt_rq->rt_time, overrun * runtime);
943             if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
944                 rt_rq->rt_throttled = 0;
945                 enqueue = 1;
946 
947                 /*
948                  * When we're idle and a woken (rt) task is
949                  * throttled check_preempt_curr() will set
950                  * skip_update and the time between the wakeup
951                  * and this unthrottle will get accounted as
952                  * 'runtime'.
953                  */
954                 if (rt_rq->rt_nr_running && rq->curr == rq->idle) {
955                     rq_clock_cancel_skipupdate(rq);
956                 }
957             }
958             if (rt_rq->rt_time || rt_rq->rt_nr_running) {
959                 idle = 0;
960             }
961             raw_spin_unlock(&rt_rq->rt_runtime_lock);
962         } else if (rt_rq->rt_nr_running) {
963             idle = 0;
964             if (!rt_rq_throttled(rt_rq)) {
965                 enqueue = 1;
966             }
967         }
968         if (rt_rq->rt_throttled) {
969             throttled = 1;
970         }
971 
972         if (enqueue) {
973             sched_rt_rq_enqueue(rt_rq);
974         }
975         raw_spin_unlock(&rq->lock);
976     }
977 
978     if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) {
979         return 1;
980     }
981 
982     return idle;
983 }
984 
rt_se_prio(struct sched_rt_entity *rt_se)985 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
986 {
987 #ifdef CONFIG_RT_GROUP_SCHED
988     struct rt_rq *rt_rq = group_rt_rq(rt_se);
989 
990     if (rt_rq) {
991         return rt_rq->highest_prio.curr;
992     }
993 #endif
994 
995     return rt_task_of(rt_se)->prio;
996 }
997 
try_start_rt_bandwidth(struct rt_bandwidth *rt_b)998 static inline void try_start_rt_bandwidth(struct rt_bandwidth *rt_b)
999 {
1000     raw_spin_lock(&rt_b->rt_runtime_lock);
1001     if (!rt_b->rt_period_active) {
1002         rt_b->rt_period_active = 1;
1003         hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
1004         hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1005     }
1006     raw_spin_unlock(&rt_b->rt_runtime_lock);
1007 }
1008 
sched_rt_runtime_exceeded(struct rt_rq *rt_rq)1009 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1010 {
1011     u64 runtime = sched_rt_runtime(rt_rq);
1012 
1013     if (rt_rq->rt_throttled) {
1014         return rt_rq_throttled(rt_rq);
1015     }
1016 
1017     if (runtime >= sched_rt_period(rt_rq)) {
1018         return 0;
1019     }
1020 
1021     balance_runtime(rt_rq);
1022     runtime = sched_rt_runtime(rt_rq);
1023     if (runtime == RUNTIME_INF) {
1024         return 0;
1025     }
1026 
1027     if (rt_rq->rt_time > runtime) {
1028         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1029 
1030         /*
1031          * Don't actually throttle groups that have no runtime assigned
1032          * but accrue some time due to boosting.
1033          */
1034         if (likely(rt_b->rt_runtime)) {
1035             rt_rq->rt_throttled = 1;
1036             printk_deferred_once("sched: RT throttling activated\n");
1037         } else {
1038             /*
1039              * In case we did anyway, make it go away,
1040              * replenishment is a joke, since it will replenish us
1041              * with exactly 0 ns.
1042              */
1043             rt_rq->rt_time = 0;
1044         }
1045 
1046         if (rt_rq_throttled(rt_rq)) {
1047             sched_rt_rq_dequeue(rt_rq);
1048             return 1;
1049         }
1050     }
1051 
1052     return 0;
1053 }
1054 
1055 /*
1056  * Update the current task's runtime statistics. Skip current tasks that
1057  * are not in our scheduling class.
1058  */
update_curr_rt(struct rq *rq)1059 static void update_curr_rt(struct rq *rq)
1060 {
1061     struct task_struct *curr = rq->curr;
1062     struct sched_rt_entity *rt_se = &curr->rt;
1063     u64 delta_exec;
1064     u64 now;
1065 
1066     if (curr->sched_class != &rt_sched_class) {
1067         return;
1068     }
1069 
1070     now = rq_clock_task(rq);
1071     delta_exec = now - curr->se.exec_start;
1072     if (unlikely((s64)delta_exec <= 0)) {
1073         return;
1074     }
1075 
1076     schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
1077 
1078     curr->se.sum_exec_runtime += delta_exec;
1079     account_group_exec_runtime(curr, delta_exec);
1080 
1081     curr->se.exec_start = now;
1082     cgroup_account_cputime(curr, delta_exec);
1083 
1084     if (!rt_bandwidth_enabled()) {
1085         return;
1086     }
1087 
1088     cycle_each_sched_rt_entity(rt_se) {
1089         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1090         int exceeded;
1091 
1092         if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1093             raw_spin_lock(&rt_rq->rt_runtime_lock);
1094             rt_rq->rt_time += delta_exec;
1095             exceeded = sched_rt_runtime_exceeded(rt_rq);
1096             if (exceeded) {
1097                 resched_curr(rq);
1098             }
1099             raw_spin_unlock(&rt_rq->rt_runtime_lock);
1100             if (exceeded) {
1101                 try_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1102             }
1103         }
1104     }
1105 }
1106 
dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)1107 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1108 {
1109     struct rq *rq = rq_of_rt_rq(rt_rq);
1110 
1111     BUG_ON(&rq->rt != rt_rq);
1112 
1113     if (!rt_rq->rt_queued) {
1114         return;
1115     }
1116 
1117     BUG_ON(!rq->nr_running);
1118 
1119     sub_nr_running(rq, count);
1120     rt_rq->rt_queued = 0;
1121 }
1122 
enqueue_top_rt_rq(struct rt_rq *rt_rq)1123 static void enqueue_top_rt_rq(struct rt_rq *rt_rq)
1124 {
1125     struct rq *rq = rq_of_rt_rq(rt_rq);
1126 
1127     BUG_ON(&rq->rt != rt_rq);
1128 
1129     if (rt_rq->rt_queued) {
1130         return;
1131     }
1132 
1133     if (rt_rq_throttled(rt_rq)) {
1134         return;
1135     }
1136 
1137     if (rt_rq->rt_nr_running) {
1138         add_nr_running(rq, rt_rq->rt_nr_running);
1139         rt_rq->rt_queued = 1;
1140     }
1141 
1142     /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1143     cpufreq_update_util(rq, 0);
1144 }
1145 
1146 #if defined CONFIG_SMP
1147 
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)1148 static void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1149 {
1150     struct rq *rq = rq_of_rt_rq(rt_rq);
1151 
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153     /*
1154      * Change rq's cpupri only if rt_rq is the top queue.
1155      */
1156     if (&rq->rt != rt_rq) {
1157         return;
1158     }
1159 #endif
1160     if (rq->online && prio < prev_prio) {
1161         cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1162     }
1163 }
1164 
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)1165 static void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1166 {
1167     struct rq *rq = rq_of_rt_rq(rt_rq);
1168 
1169 #ifdef CONFIG_RT_GROUP_SCHED
1170     /*
1171      * Change rq's cpupri only if rt_rq is the top queue.
1172      */
1173     if (&rq->rt != rt_rq) {
1174         return;
1175     }
1176 #endif
1177     if (rq->online && rt_rq->highest_prio.curr != prev_prio) {
1178         cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1179     }
1180 }
1181 
1182 #else /* CONFIG_SMP */
1183 
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)1184 static inline void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1185 {
1186 }
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)1187 static inline void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1188 {
1189 }
1190 
1191 #endif /* CONFIG_SMP */
1192 
1193 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
inc_rt_prio(struct rt_rq *rt_rq, int prio)1194 static void inc_rt_prio(struct rt_rq *rt_rq, int prio)
1195 {
1196     int prev_prio = rt_rq->highest_prio.curr;
1197 
1198     if (prio < prev_prio) {
1199         rt_rq->highest_prio.curr = prio;
1200     }
1201 
1202     inc_rt_prio_smp(rt_rq, prio, prev_prio);
1203 }
1204 
dec_rt_prio(struct rt_rq *rt_rq, int prio)1205 static void dec_rt_prio(struct rt_rq *rt_rq, int prio)
1206 {
1207     int prev_prio = rt_rq->highest_prio.curr;
1208 
1209     if (rt_rq->rt_nr_running) {
1210         WARN_ON(prio < prev_prio);
1211 
1212         /*
1213          * This may have been our highest task, and therefore
1214          * we may have some recomputation to do
1215          */
1216         if (prio == prev_prio) {
1217             struct rt_prio_array *array = &rt_rq->active;
1218 
1219             rt_rq->highest_prio.curr = sched_find_first_bit(array->bitmap);
1220         }
1221     } else {
1222         rt_rq->highest_prio.curr = MAX_RT_PRIO;
1223     }
1224 
1225     dec_rt_prio_smp(rt_rq, prio, prev_prio);
1226 }
1227 
1228 #else
1229 
inc_rt_prio(struct rt_rq *rt_rq, int prio)1230 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio)
1231 {
1232 }
dec_rt_prio(struct rt_rq *rt_rq, int prio)1233 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio)
1234 {
1235 }
1236 
1237 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1238 
1239 #ifdef CONFIG_RT_GROUP_SCHED
1240 
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1241 static void inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1242 {
1243     if (rt_se_boosted(rt_se)) {
1244         rt_rq->rt_nr_boosted++;
1245     }
1246 
1247     if (rt_rq->tg) {
1248         start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1249     }
1250 }
1251 
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1252 static void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1253 {
1254     if (rt_se_boosted(rt_se)) {
1255         rt_rq->rt_nr_boosted--;
1256     }
1257 
1258     WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1259 }
1260 
1261 #else /* CONFIG_RT_GROUP_SCHED */
1262 
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1263 static void inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1264 {
1265     start_rt_bandwidth(&def_rt_bandwidth);
1266 }
1267 
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1268 static inline void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1269 {
1270 }
1271 
1272 #endif /* CONFIG_RT_GROUP_SCHED */
1273 
rt_se_nr_running(struct sched_rt_entity *rt_se)1274 static inline unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1275 {
1276     struct rt_rq *group_rq = group_rt_rq(rt_se);
1277 
1278     if (group_rq) {
1279         return group_rq->rt_nr_running;
1280     } else {
1281         return 1;
1282     }
1283 }
1284 
rt_se_rr_nr_running(struct sched_rt_entity *rt_se)1285 static inline unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1286 {
1287     struct rt_rq *group_rq = group_rt_rq(rt_se);
1288     struct task_struct *tsk;
1289 
1290     if (group_rq) {
1291         return group_rq->rr_nr_running;
1292     }
1293 
1294     tsk = rt_task_of(rt_se);
1295 
1296     return (tsk->policy == SCHED_RR) ? 1 : 0;
1297 }
1298 
inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1299 static inline void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1300 {
1301     int prio = rt_se_prio(rt_se);
1302 
1303     WARN_ON(!rt_prio(prio));
1304     rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1305     rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1306 
1307     inc_rt_prio(rt_rq, prio);
1308     inc_rt_migration(rt_se, rt_rq);
1309     inc_rt_group(rt_se, rt_rq);
1310 }
1311 
dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)1312 static inline void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1313 {
1314     WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1315     WARN_ON(!rt_rq->rt_nr_running);
1316     rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1317     rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1318 
1319     dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1320     dec_rt_migration(rt_se, rt_rq);
1321     dec_rt_group(rt_se, rt_rq);
1322 }
1323 
1324 /*
1325  * Change rt_se->run_list location unless SAVE && !MOVE
1326  *
1327  * assumes ENQUEUE/DEQUEUE flags match
1328  */
move_entity(unsigned int flags)1329 static inline bool move_entity(unsigned int flags)
1330 {
1331     if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) {
1332         return false;
1333     }
1334 
1335     return true;
1336 }
1337 
__delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)1338 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1339 {
1340     list_del_init(&rt_se->run_list);
1341 
1342     if (list_empty(array->queue + rt_se_prio(rt_se))) {
1343         __clear_bit(rt_se_prio(rt_se), array->bitmap);
1344     }
1345 
1346     rt_se->on_list = 0;
1347 }
1348 
__enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)1349 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351     struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1352     struct rt_prio_array *array = &rt_rq->active;
1353     struct rt_rq *group_rq = group_rt_rq(rt_se);
1354     struct list_head *queue = array->queue + rt_se_prio(rt_se);
1355 
1356     /*
1357      * Don't enqueue the group if its throttled, or when empty.
1358      * The latter is a consequence of the former when a child group
1359      * get throttled and the current group doesn't have any other
1360      * active members.
1361      */
1362     if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1363         if (rt_se->on_list) {
1364             __delist_rt_entity(rt_se, array);
1365         }
1366         return;
1367     }
1368 
1369     if (move_entity(flags)) {
1370         WARN_ON_ONCE(rt_se->on_list);
1371         if (flags & ENQUEUE_HEAD) {
1372             list_add(&rt_se->run_list, queue);
1373         } else {
1374             list_add_tail(&rt_se->run_list, queue);
1375         }
1376 
1377         __set_bit(rt_se_prio(rt_se), array->bitmap);
1378         rt_se->on_list = 1;
1379     }
1380     rt_se->on_rq = 1;
1381 
1382     inc_rt_tasks(rt_se, rt_rq);
1383 }
1384 
__dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)1385 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1386 {
1387     struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1388     struct rt_prio_array *array = &rt_rq->active;
1389 
1390     if (move_entity(flags)) {
1391         WARN_ON_ONCE(!rt_se->on_list);
1392         __delist_rt_entity(rt_se, array);
1393     }
1394     rt_se->on_rq = 0;
1395 
1396     dec_rt_tasks(rt_se, rt_rq);
1397 }
1398 
1399 /*
1400  * Because the prio of an upper entry depends on the lower
1401  * entries, we must remove entries top - down.
1402  */
dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)1403 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1404 {
1405     struct sched_rt_entity *back = NULL;
1406     unsigned int rt_nr_running;
1407 
1408     cycle_each_sched_rt_entity(rt_se) {
1409         rt_se->back = back;
1410         back = rt_se;
1411     }
1412 
1413     rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1414 
1415     for (rt_se = back; rt_se; rt_se = rt_se->back) {
1416         if (on_rt_rq(rt_se)) {
1417             __dequeue_rt_entity(rt_se, flags);
1418         }
1419     }
1420     dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1421 }
1422 
enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)1423 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1424 {
1425     struct rq *rq = rq_of_rt_se(rt_se);
1426 
1427     dequeue_rt_stack(rt_se, flags);
1428     cycle_each_sched_rt_entity(rt_se) __enqueue_rt_entity(rt_se, flags);
1429     enqueue_top_rt_rq(&rq->rt);
1430 }
1431 
dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)1432 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1433 {
1434     struct rq *rq = rq_of_rt_se(rt_se);
1435 
1436     dequeue_rt_stack(rt_se, flags);
1437 
1438     cycle_each_sched_rt_entity(rt_se) {
1439         struct rt_rq *rt_rq = group_rt_rq(rt_se);
1440 
1441         if (rt_rq && rt_rq->rt_nr_running) {
1442             __enqueue_rt_entity(rt_se, flags);
1443         }
1444     }
1445     enqueue_top_rt_rq(&rq->rt);
1446 }
1447 
1448 #ifdef CONFIG_SMP
should_honor_rt_sync(struct rq *rq, struct task_struct *p, bool sync)1449 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p, bool sync)
1450 {
1451     /*
1452      * If the waker is CFS, then an RT sync wakeup would preempt the waker
1453      * and force it to run for a likely small time after the RT wakee is
1454      * done. So, only honor RT sync wakeups from RT wakers.
1455      */
1456     return sync && task_has_rt_policy(rq->curr) && p->prio <= rq->rt.highest_prio.next && rq->rt.rt_nr_running <= 0x2;
1457 }
1458 #else
should_honor_rt_sync(struct rq *rq, struct task_struct *p, bool sync)1459 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p, bool sync)
1460 {
1461     return 0;
1462 }
1463 #endif
1464 
1465 /*
1466  * Adding/removing a task to/from a priority array:
1467  */
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)1468 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1469 {
1470     struct sched_rt_entity *rt_se = &p->rt;
1471     bool sync = !!(flags & ENQUEUE_WAKEUP_SYNC);
1472 
1473     if (flags & ENQUEUE_WAKEUP) {
1474         rt_se->timeout = 0;
1475     }
1476 
1477     enqueue_rt_entity(rt_se, flags);
1478     walt_inc_cumulative_runnable_avg(rq, p);
1479 
1480     if (!task_current(rq, p) && p->nr_cpus_allowed > 1 && !should_honor_rt_sync(rq, p, sync)) {
1481         enqueue_pushable_task(rq, p);
1482     }
1483 }
1484 
dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)1485 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1486 {
1487     struct sched_rt_entity *rt_se = &p->rt;
1488 
1489     update_curr_rt(rq);
1490     dequeue_rt_entity(rt_se, flags);
1491     walt_dec_cumulative_runnable_avg(rq, p);
1492 
1493     dequeue_pushable_task(rq, p);
1494 }
1495 
1496 /*
1497  * Put task to the head or the end of the run list without the overhead of
1498  * dequeue followed by enqueue.
1499  */
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)1500 static void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1501 {
1502     if (on_rt_rq(rt_se)) {
1503         struct rt_prio_array *array = &rt_rq->active;
1504         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1505 
1506         if (head) {
1507             list_move(&rt_se->run_list, queue);
1508         } else {
1509             list_move_tail(&rt_se->run_list, queue);
1510         }
1511     }
1512 }
1513 
requeue_task_rt(struct rq *rq, struct task_struct *p, int head)1514 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1515 {
1516     struct sched_rt_entity *rt_se = &p->rt;
1517     struct rt_rq *rt_rq;
1518 
1519     cycle_each_sched_rt_entity(rt_se) {
1520         rt_rq = rt_rq_of_se(rt_se);
1521         requeue_rt_entity(rt_rq, rt_se, head);
1522     }
1523 }
1524 
yield_task_rt(struct rq *rq)1525 static void yield_task_rt(struct rq *rq)
1526 {
1527     requeue_task_rt(rq, rq->curr, 0);
1528 }
1529 
1530 #ifdef CONFIG_SMP
1531 static int find_lowest_rq(struct task_struct *task);
1532 
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)1533 static int select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1534 {
1535     struct task_struct *curr;
1536     struct rq *rq;
1537     struct rq *this_cpu_rq;
1538     bool test;
1539     int target_cpu = -1;
1540     bool sync = !!(flags & WF_SYNC);
1541     int this_cpu;
1542 
1543     /* For anything but wake ups, just return the task_cpu */
1544     if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) {
1545         goto out;
1546     }
1547 
1548     rq = cpu_rq(cpu);
1549 
1550     rcu_read_lock();
1551     curr = READ_ONCE(rq->curr); /* unlocked access */
1552     this_cpu = smp_processor_id();
1553     this_cpu_rq = cpu_rq(this_cpu);
1554 
1555     /*
1556      * If the current task on @p's runqueue is an RT task, then
1557      * try to see if we can wake this RT task up on another
1558      * runqueue. Otherwise simply start this RT task
1559      * on its current runqueue.
1560      *
1561      * We want to avoid overloading runqueues. If the woken
1562      * task is a higher priority, then it will stay on this CPU
1563      * and the lower prio task should be moved to another CPU.
1564      * Even though this will probably make the lower prio task
1565      * lose its cache, we do not want to bounce a higher task
1566      * around just because it gave up its CPU, perhaps for a
1567      * lock?
1568      *
1569      * For equal prio tasks, we just let the scheduler sort it out.
1570      *
1571      * Otherwise, just let it ride on the affined RQ and the
1572      * post-schedule router will push the preempted task away
1573      *
1574      * This test is optimistic, if we get it wrong the load-balancer
1575      * will have to sort it out.
1576      *
1577      * We take into account the capacity of the CPU to ensure it fits the
1578      * requirement of the task - which is only important on heterogeneous
1579      * systems like big.LITTLE.
1580      */
1581     test = curr && unlikely(rt_task(curr)) && (curr->nr_cpus_allowed < 0x2 || curr->prio <= p->prio);
1582 
1583     /*
1584      * Respect the sync flag as long as the task can run on this CPU.
1585      */
1586     if (should_honor_rt_sync(this_cpu_rq, p, sync) && cpumask_test_cpu(this_cpu, p->cpus_ptr)) {
1587         cpu = this_cpu;
1588         goto out_unlock;
1589     }
1590 
1591     if (test || !rt_task_fits_capacity(p, cpu)) {
1592         int target = find_lowest_rq(p);
1593         /*
1594          * Bail out if we were forcing a migration to find a better
1595          * fitting CPU but our search failed.
1596          */
1597         if (!test && target != -1 && !rt_task_fits_capacity(p, target)) {
1598             goto out_unlock;
1599         }
1600 
1601         /*
1602          * Don't bother moving it if the destination CPU is
1603          * not running a lower priority task.
1604          */
1605         if (target != -1 && p->prio < cpu_rq(target)->rt.highest_prio.curr) {
1606             cpu = target;
1607         }
1608     }
1609 
1610 out_unlock:
1611     rcu_read_unlock();
1612 
1613 out:
1614     return cpu;
1615 }
1616 
check_preempt_equal_prio(struct rq *rq, struct task_struct *p)1617 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1618 {
1619     /*
1620      * Current can't be migrated, useless to reschedule,
1621      * let's hope p can move out.
1622      */
1623     if (rq->curr->nr_cpus_allowed == 1 || !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) {
1624         return;
1625     }
1626 
1627     /*
1628      * p is migratable, so let's not schedule it and
1629      * see if it is pushed or pulled somewhere else.
1630      */
1631     if (p->nr_cpus_allowed != 1 && cpupri_find(&rq->rd->cpupri, p, NULL)) {
1632         return;
1633     }
1634 
1635     /*
1636      * There appear to be other CPUs that can accept
1637      * the current task but none can run 'p', so lets reschedule
1638      * to try and push the current task away:
1639      */
1640     requeue_task_rt(rq, p, 1);
1641     resched_curr(rq);
1642 }
1643 
balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)1644 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1645 {
1646     if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1647         /*
1648          * This is OK, because current is on_cpu, which avoids it being
1649          * picked for load-balance and preemption/IRQs are still
1650          * disabled avoiding further scheduler activity on it and we've
1651          * not yet started the picking loop.
1652          */
1653         rq_unpin_lock(rq, rf);
1654         pull_rt_task(rq);
1655         rq_repin_lock(rq, rf);
1656     }
1657 
1658     return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1659 }
1660 #endif /* CONFIG_SMP */
1661 
1662 /*
1663  * Preempt the current task with a newly woken task if needed:
1664  */
check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)1665 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1666 {
1667     if (p->prio < rq->curr->prio) {
1668         resched_curr(rq);
1669         return;
1670     }
1671 
1672 #ifdef CONFIG_SMP
1673     /*
1674      * If:
1675      *
1676      * - the newly woken task is of equal priority to the current task
1677      * - the newly woken task is non-migratable while current is migratable
1678      * - current will be preempted on the next reschedule
1679      *
1680      * we should check to see if current can readily move to a different
1681      * cpu.  If so, we will reschedule to allow the push logic to try
1682      * to move current somewhere else, making room for our non-migratable
1683      * task.
1684      */
1685     if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) {
1686         check_preempt_equal_prio(rq, p);
1687     }
1688 #endif
1689 }
1690 
set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)1691 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1692 {
1693     p->se.exec_start = rq_clock_task(rq);
1694 
1695     /* The running task is never eligible for pushing */
1696     dequeue_pushable_task(rq, p);
1697 
1698     if (!first) {
1699         return;
1700     }
1701 
1702     /*
1703      * If prev task was rt, put_prev_task() has already updated the
1704      * utilization. We only care of the case where we start to schedule a
1705      * rt task
1706      */
1707     if (rq->curr->sched_class != &rt_sched_class) {
1708         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1709     }
1710 
1711     rt_queue_push_tasks(rq);
1712 }
1713 
pick_next_rt_entity(struct rq *rq, struct rt_rq *rt_rq)1714 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, struct rt_rq *rt_rq)
1715 {
1716     struct rt_prio_array *array = &rt_rq->active;
1717     struct sched_rt_entity *next = NULL;
1718     struct list_head *queue;
1719     int idx;
1720 
1721     idx = sched_find_first_bit(array->bitmap);
1722     BUG_ON(idx >= MAX_RT_PRIO);
1723 
1724     queue = array->queue + idx;
1725     next = list_entry(queue->next, struct sched_rt_entity, run_list);
1726 
1727     return next;
1728 }
1729 
_pick_next_task_rt(struct rq *rq)1730 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1731 {
1732     struct sched_rt_entity *rt_se;
1733     struct rt_rq *rt_rq = &rq->rt;
1734 
1735     do {
1736         rt_se = pick_next_rt_entity(rq, rt_rq);
1737         BUG_ON(!rt_se);
1738         rt_rq = group_rt_rq(rt_se);
1739     } while (rt_rq);
1740 
1741     return rt_task_of(rt_se);
1742 }
1743 
pick_next_task_rt(struct rq *rq)1744 static struct task_struct *pick_next_task_rt(struct rq *rq)
1745 {
1746     struct task_struct *p;
1747 
1748     if (!sched_rt_runnable(rq)) {
1749         return NULL;
1750     }
1751 
1752     p = _pick_next_task_rt(rq);
1753     set_next_task_rt(rq, p, true);
1754     return p;
1755 }
1756 
put_prev_task_rt(struct rq *rq, struct task_struct *p)1757 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1758 {
1759     update_curr_rt(rq);
1760 
1761     update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1762 
1763     /*
1764      * The previous task needs to be made eligible for pushing
1765      * if it is still active
1766      */
1767     if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) {
1768         enqueue_pushable_task(rq, p);
1769     }
1770 }
1771 
1772 #ifdef CONFIG_SMP
1773 
1774 /* Only try algorithms three times */
1775 #define RT_MAX_TRIES 3
1776 
pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)1777 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1778 {
1779     if (!task_running(rq, p) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
1780         return 1;
1781     }
1782 
1783     return 0;
1784 }
1785 
1786 /*
1787  * Return the highest pushable rq's task, which is suitable to be executed
1788  * on the CPU, NULL otherwise
1789  */
pick_highest_pushable_task(struct rq *rq, int cpu)1790 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1791 {
1792     struct plist_head *head = &rq->rt.pushable_tasks;
1793     struct task_struct *p;
1794 
1795     if (!has_pushable_tasks(rq)) {
1796         return NULL;
1797     }
1798 
1799     plist_for_each_entry(p, head, pushable_tasks)
1800     {
1801         if (pick_rt_task(rq, p, cpu)) {
1802             return p;
1803         }
1804     }
1805 
1806     return NULL;
1807 }
1808 
1809 #ifdef CONFIG_SCHED_RT_CAS
find_cas_cpu(struct sched_domain *sd, struct task_struct *task, struct cpumask *lowest_mask)1810 static int find_cas_cpu(struct sched_domain *sd, struct task_struct *task, struct cpumask *lowest_mask)
1811 {
1812     struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
1813     struct sched_group *sg = NULL;
1814     struct sched_group *sg_target = NULL;
1815     struct sched_group *sg_backup = NULL;
1816     struct cpumask search_cpu, backup_search_cpu;
1817     int cpu = -1;
1818     int target_cpu = -1;
1819     unsigned long cpu_capacity;
1820     unsigned long boosted_tutil = uclamp_task_util(task);
1821     unsigned long target_capacity = ULONG_MAX;
1822     unsigned long util;
1823     unsigned long target_cpu_util = ULONG_MAX;
1824     int prev_cpu = task_cpu(task);
1825 #ifdef CONFIG_SCHED_RTG
1826     struct cpumask *rtg_target = NULL;
1827 #endif
1828     bool boosted = uclamp_boosted(task);
1829 
1830     if (!sysctl_sched_enable_rt_cas) {
1831         return -1;
1832     }
1833 
1834     rcu_read_lock();
1835 
1836 #ifdef CONFIG_SCHED_RTG
1837     rtg_target = find_rtg_target(task);
1838 #endif
1839 
1840     sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, 0));
1841     if (!sd) {
1842         rcu_read_unlock();
1843         return -1;
1844     }
1845 
1846     sg = sd->groups;
1847     do {
1848         if (!cpumask_intersects(lowest_mask, sched_group_span(sg))) {
1849             continue;
1850         }
1851 
1852         if (boosted) {
1853             if (cpumask_test_cpu(rd->max_cap_orig_cpu, sched_group_span(sg))) {
1854                 sg_target = sg;
1855                 break;
1856             }
1857         }
1858 
1859         cpu = group_first_cpu(sg);
1860 #ifdef CONFIG_SCHED_RTG
1861         /* honor the rtg tasks */
1862         if (rtg_target) {
1863             if (cpumask_test_cpu(cpu, rtg_target)) {
1864                 sg_target = sg;
1865                 break;
1866             }
1867 
1868             /* active LB or big_task favor cpus with more capacity */
1869             if (task->state == TASK_RUNNING || boosted) {
1870                 if (capacity_orig_of(cpu) > capacity_orig_of(cpumask_any(rtg_target))) {
1871                     sg_target = sg;
1872                     break;
1873                 }
1874 
1875                 sg_backup = sg;
1876                 continue;
1877             }
1878         }
1879 #endif
1880         /*
1881          * 1. add margin to support task migration
1882          * 2. if task_util is high then all cpus, make sure the
1883          * sg_backup with the most powerful cpus is selected
1884          */
1885         if (!rt_task_fits_capacity(task, cpu)) {
1886             sg_backup = sg;
1887             continue;
1888         }
1889 
1890         /* support task boost */
1891         cpu_capacity = capacity_orig_of(cpu);
1892         if (boosted_tutil > cpu_capacity) {
1893             sg_backup = sg;
1894             continue;
1895         }
1896 
1897         /* sg_target: select the sg with smaller capacity */
1898         if (cpu_capacity < target_capacity) {
1899             target_capacity = cpu_capacity;
1900             sg_target = sg;
1901         }
1902     } while (sg = sg->next, sg != sd->groups);
1903 
1904     if (!sg_target) {
1905         sg_target = sg_backup;
1906     }
1907 
1908     if (sg_target) {
1909         cpumask_and(&search_cpu, lowest_mask, sched_group_span(sg_target));
1910         cpumask_copy(&backup_search_cpu, lowest_mask);
1911         cpumask_andnot(&backup_search_cpu, &backup_search_cpu, &search_cpu);
1912     } else {
1913         cpumask_copy(&search_cpu, lowest_mask);
1914         cpumask_clear(&backup_search_cpu);
1915     }
1916 
1917 retry:
1918     cpu = cpumask_first(&search_cpu);
1919     do {
1920         trace_sched_find_cas_cpu_each(task, cpu, target_cpu, cpu_isolated(cpu), idle_cpu(cpu), boosted_tutil,
1921                                       cpu_util(cpu), capacity_orig_of(cpu));
1922 
1923         if (cpu_isolated(cpu)) {
1924             continue;
1925         }
1926 
1927         if (!cpumask_test_cpu(cpu, task->cpus_ptr)) {
1928             continue;
1929         }
1930 
1931         /* find best cpu with smallest max_capacity */
1932         if (target_cpu != -1 && capacity_orig_of(cpu) > capacity_orig_of(target_cpu)) {
1933             continue;
1934         }
1935 
1936         util = cpu_util(cpu);
1937         /* Find the least loaded CPU */
1938         if (util > target_cpu_util) {
1939             continue;
1940         }
1941 
1942         /*
1943          * If the preivous CPU has same load, keep it as
1944          * target_cpu
1945          */
1946         if (target_cpu_util == util && target_cpu == prev_cpu) {
1947             continue;
1948         }
1949 
1950         /*
1951          * If candidate CPU is the previous CPU, select it.
1952          * If all above conditions are same, select the least
1953          * cumulative window demand CPU.
1954          */
1955         target_cpu_util = util;
1956         target_cpu = cpu;
1957     } while ((cpu = cpumask_next(cpu, &search_cpu)) < nr_cpu_ids);
1958 
1959     if (target_cpu != -1 && cpumask_test_cpu(target_cpu, lowest_mask)) {
1960         goto done;
1961     } else if (!cpumask_empty(&backup_search_cpu)) {
1962         cpumask_copy(&search_cpu, &backup_search_cpu);
1963         cpumask_clear(&backup_search_cpu);
1964         goto retry;
1965     }
1966 
1967 done:
1968     trace_sched_find_cas_cpu(task, lowest_mask, boosted_tutil, prev_cpu, target_cpu);
1969     rcu_read_unlock();
1970     return target_cpu;
1971 }
1972 #endif
1973 
1974 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1975 
find_lowest_rq(struct task_struct *task)1976 static int find_lowest_rq(struct task_struct *task)
1977 {
1978     struct sched_domain *sd;
1979     struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1980     int this_cpu = smp_processor_id();
1981     int cpu = task_cpu(task);
1982     int ret;
1983 #ifdef CONFIG_SCHED_RT_CAS
1984     int cas_cpu;
1985 #endif
1986 
1987     /* Make sure the mask is initialized first */
1988     if (unlikely(!lowest_mask)) {
1989         return -1;
1990     }
1991 
1992     if (task->nr_cpus_allowed == 1) {
1993         return -1; /* No other targets possible */
1994     }
1995 
1996     /*
1997      * If we're on asym system ensure we consider the different capacities
1998      * of the CPUs when searching for the lowest_mask.
1999      */
2000     if (static_branch_unlikely(&sched_asym_cpucapacity)) {
2001         ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, task, lowest_mask, rt_task_fits_capacity);
2002     } else {
2003         ret = cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask);
2004     }
2005 
2006     if (!ret) {
2007         return -1; /* No targets found */
2008     }
2009 
2010 #ifdef CONFIG_SCHED_RT_CAS
2011     cas_cpu = find_cas_cpu(sd, task, lowest_mask);
2012     if (cas_cpu != -1) {
2013         return cas_cpu;
2014     }
2015 #endif
2016 
2017     /*
2018      * At this point we have built a mask of CPUs representing the
2019      * lowest priority tasks in the system.  Now we want to elect
2020      * the best one based on our affinity and topology.
2021      *
2022      * We prioritize the last CPU that the task executed on since
2023      * it is most likely cache-hot in that location.
2024      */
2025     if (cpumask_test_cpu(cpu, lowest_mask)) {
2026         return cpu;
2027     }
2028 
2029     /*
2030      * Otherwise, we consult the sched_domains span maps to figure
2031      * out which CPU is logically closest to our hot cache data.
2032      */
2033     if (!cpumask_test_cpu(this_cpu, lowest_mask)) {
2034         this_cpu = -1; /* Skip this_cpu opt if not among lowest */
2035     }
2036 
2037     rcu_read_lock();
2038     for_each_domain(cpu, sd)
2039     {
2040         if (sd->flags & SD_WAKE_AFFINE) {
2041             int best_cpu;
2042 
2043             /*
2044              * "this_cpu" is cheaper to preempt than a
2045              * remote processor.
2046              */
2047             if (this_cpu != -1 && cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2048                 rcu_read_unlock();
2049                 return this_cpu;
2050             }
2051 
2052             best_cpu = cpumask_first_and(lowest_mask, sched_domain_span(sd));
2053             if (best_cpu < nr_cpu_ids) {
2054                 rcu_read_unlock();
2055                 return best_cpu;
2056             }
2057         }
2058     }
2059     rcu_read_unlock();
2060 
2061     /*
2062      * And finally, if there were no matches within the domains
2063      * just give the caller *something* to work with from the compatible
2064      * locations.
2065      */
2066     if (this_cpu != -1) {
2067         return this_cpu;
2068     }
2069 
2070     cpu = cpumask_any(lowest_mask);
2071     if (cpu < nr_cpu_ids) {
2072         return cpu;
2073     }
2074 
2075     return -1;
2076 }
2077 
pick_next_pushable_task(struct rq *rq)2078 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2079 {
2080     struct task_struct *p;
2081 
2082     if (!has_pushable_tasks(rq)) {
2083         return NULL;
2084     }
2085 
2086     p = plist_first_entry(&rq->rt.pushable_tasks, struct task_struct, pushable_tasks);
2087 
2088     BUG_ON(rq->cpu != task_cpu(p));
2089     BUG_ON(task_current(rq, p));
2090     BUG_ON(p->nr_cpus_allowed <= 1);
2091 
2092     BUG_ON(!task_on_rq_queued(p));
2093     BUG_ON(!rt_task(p));
2094 
2095     return p;
2096 }
2097 
2098 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct *task, struct rq *rq)2099 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
2100 {
2101     struct rq *lowest_rq = NULL;
2102     int tries;
2103     int cpu;
2104 
2105     for (tries = 0; tries < RT_MAX_TRIES; tries++) {
2106         cpu = find_lowest_rq(task);
2107         if ((cpu == -1) || (cpu == rq->cpu)) {
2108             break;
2109         }
2110 
2111         lowest_rq = cpu_rq(cpu);
2112         if (lowest_rq->rt.highest_prio.curr <= task->prio) {
2113             /*
2114              * Target rq has tasks of equal or higher priority,
2115              * retrying does not release any lock and is unlikely
2116              * to yield a different result.
2117              */
2118             lowest_rq = NULL;
2119             break;
2120         }
2121 
2122         /* if the prio of this runqueue changed, try again */
2123         if (double_lock_balance(rq, lowest_rq)) {
2124             /*
2125              * We had to unlock the run queue. In
2126              * the mean time, task could have
2127              * migrated already or had its affinity changed.
2128              */
2129             struct task_struct *next_task = pick_next_pushable_task(rq);
2130             if (unlikely(next_task != task || !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr))) {
2131                 double_unlock_balance(rq, lowest_rq);
2132                 lowest_rq = NULL;
2133                 break;
2134             }
2135         }
2136 
2137         /* If this rq is still suitable use it. */
2138         if (lowest_rq->rt.highest_prio.curr > task->prio) {
2139             break;
2140         }
2141 
2142         /* try again */
2143         double_unlock_balance(rq, lowest_rq);
2144         lowest_rq = NULL;
2145     }
2146 
2147     return lowest_rq;
2148 }
2149 
2150 /*
2151  * If the current CPU has more than one RT task, see if the non
2152  * running task can migrate over to a CPU that is running a task
2153  * of lesser priority.
2154  */
push_rt_task(struct rq *rq)2155 static int push_rt_task(struct rq *rq)
2156 {
2157     struct task_struct *next_task;
2158     struct rq *lowest_rq;
2159     int ret = 0;
2160 
2161     if (!rq->rt.overloaded) {
2162         return 0;
2163     }
2164 
2165     next_task = pick_next_pushable_task(rq);
2166     if (!next_task) {
2167         return 0;
2168     }
2169 
2170 retry:
2171     if (WARN_ON(next_task == rq->curr)) {
2172         return 0;
2173     }
2174 
2175     /*
2176      * It's possible that the next_task slipped in of
2177      * higher priority than current. If that's the case
2178      * just reschedule current.
2179      */
2180     if (unlikely(next_task->prio < rq->curr->prio)) {
2181         resched_curr(rq);
2182         return 0;
2183     }
2184 
2185     /* We might release rq lock */
2186     get_task_struct(next_task);
2187 
2188     /* find_lock_lowest_rq locks the rq if found */
2189     lowest_rq = find_lock_lowest_rq(next_task, rq);
2190     if (!lowest_rq) {
2191         struct task_struct *task;
2192         /*
2193          * find_lock_lowest_rq releases rq->lock
2194          * so it is possible that next_task has migrated.
2195          *
2196          * We need to make sure that the task is still on the same
2197          * run-queue and is also still the next task eligible for
2198          * pushing.
2199          */
2200         task = pick_next_pushable_task(rq);
2201         if (task == next_task) {
2202             /*
2203              * The task hasn't migrated, and is still the next
2204              * eligible task, but we failed to find a run-queue
2205              * to push it to.  Do not retry in this case, since
2206              * other CPUs will pull from us when ready.
2207              */
2208             goto out;
2209         }
2210 
2211         if (!task) {
2212             /* No more tasks, just exit */
2213             goto out;
2214         }
2215 
2216         /*
2217          * Something has shifted, try again.
2218          */
2219         put_task_struct(next_task);
2220         next_task = task;
2221         goto retry;
2222     }
2223 
2224     deactivate_task(rq, next_task, 0);
2225     set_task_cpu(next_task, lowest_rq->cpu);
2226     activate_task(lowest_rq, next_task, 0);
2227     ret = 1;
2228 
2229     resched_curr(lowest_rq);
2230 
2231     double_unlock_balance(rq, lowest_rq);
2232 
2233 out:
2234     put_task_struct(next_task);
2235 
2236     return ret;
2237 }
2238 
push_rt_tasks(struct rq *rq)2239 static void push_rt_tasks(struct rq *rq)
2240 {
2241     /* push_rt_task will return true if it moved an RT */
2242     while (push_rt_task(rq)) {
2243         ;
2244     }
2245 }
2246 
2247 #ifdef HAVE_RT_PUSH_IPI
2248 
2249 /*
2250  * When a high priority task schedules out from a CPU and a lower priority
2251  * task is scheduled in, a check is made to see if there's any RT tasks
2252  * on other CPUs that are waiting to run because a higher priority RT task
2253  * is currently running on its CPU. In this case, the CPU with multiple RT
2254  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2255  * up that may be able to run one of its non-running queued RT tasks.
2256  *
2257  * All CPUs with overloaded RT tasks need to be notified as there is currently
2258  * no way to know which of these CPUs have the highest priority task waiting
2259  * to run. Instead of trying to take a spinlock on each of these CPUs,
2260  * which has shown to cause large latency when done on machines with many
2261  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2262  * RT tasks waiting to run.
2263  *
2264  * Just sending an IPI to each of the CPUs is also an issue, as on large
2265  * count CPU machines, this can cause an IPI storm on a CPU, especially
2266  * if its the only CPU with multiple RT tasks queued, and a large number
2267  * of CPUs scheduling a lower priority task at the same time.
2268  *
2269  * Each root domain has its own irq work function that can iterate over
2270  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2271  * tassk must be checked if there's one or many CPUs that are lowering
2272  * their priority, there's a single irq work iterator that will try to
2273  * push off RT tasks that are waiting to run.
2274  *
2275  * When a CPU schedules a lower priority task, it will kick off the
2276  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2277  * As it only takes the first CPU that schedules a lower priority task
2278  * to start the process, the rto_start variable is incremented and if
2279  * the atomic result is one, then that CPU will try to take the rto_lock.
2280  * This prevents high contention on the lock as the process handles all
2281  * CPUs scheduling lower priority tasks.
2282  *
2283  * All CPUs that are scheduling a lower priority task will increment the
2284  * rt_loop_next variable. This will make sure that the irq work iterator
2285  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2286  * priority task, even if the iterator is in the middle of a scan. Incrementing
2287  * the rt_loop_next will cause the iterator to perform another scan.
2288  *
2289  */
rto_next_cpu(struct root_domain *rd)2290 static int rto_next_cpu(struct root_domain *rd)
2291 {
2292     int next;
2293     int cpu;
2294 
2295     /*
2296      * When starting the IPI RT pushing, the rto_cpu is set to -1,
2297      * rt_next_cpu() will simply return the first CPU found in
2298      * the rto_mask.
2299      *
2300      * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2301      * will return the next CPU found in the rto_mask.
2302      *
2303      * If there are no more CPUs left in the rto_mask, then a check is made
2304      * against rto_loop and rto_loop_next. rto_loop is only updated with
2305      * the rto_lock held, but any CPU may increment the rto_loop_next
2306      * without any locking.
2307      */
2308     for (;;) {
2309         /* When rto_cpu is -1 this acts like cpumask_first() */
2310         cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2311 
2312         rd->rto_cpu = cpu;
2313 
2314         if (cpu < nr_cpu_ids) {
2315             return cpu;
2316         }
2317 
2318         rd->rto_cpu = -1;
2319 
2320         /*
2321          * ACQUIRE ensures we see the @rto_mask changes
2322          * made prior to the @next value observed.
2323          *
2324          * Matches WMB in rt_set_overload().
2325          */
2326         next = atomic_read_acquire(&rd->rto_loop_next);
2327         if (rd->rto_loop == next) {
2328             break;
2329         }
2330 
2331         rd->rto_loop = next;
2332     }
2333 
2334     return -1;
2335 }
2336 
rto_start_trylock(atomic_t *v)2337 static inline bool rto_start_trylock(atomic_t *v)
2338 {
2339     return !atomic_cmpxchg_acquire(v, 0, 1);
2340 }
2341 
rto_start_unlock(atomic_t *v)2342 static inline void rto_start_unlock(atomic_t *v)
2343 {
2344     atomic_set_release(v, 0);
2345 }
2346 
tell_cpu_to_push(struct rq *rq)2347 static void tell_cpu_to_push(struct rq *rq)
2348 {
2349     int cpu = -1;
2350 
2351     /* Keep the loop going if the IPI is currently active */
2352     atomic_inc(&rq->rd->rto_loop_next);
2353 
2354     /* Only one CPU can initiate a loop at a time */
2355     if (!rto_start_trylock(&rq->rd->rto_loop_start)) {
2356         return;
2357     }
2358 
2359     raw_spin_lock(&rq->rd->rto_lock);
2360 
2361     /*
2362      * The rto_cpu is updated under the lock, if it has a valid CPU
2363      * then the IPI is still running and will continue due to the
2364      * update to loop_next, and nothing needs to be done here.
2365      * Otherwise it is finishing up and an ipi needs to be sent.
2366      */
2367     if (rq->rd->rto_cpu < 0) {
2368         cpu = rto_next_cpu(rq->rd);
2369     }
2370 
2371     raw_spin_unlock(&rq->rd->rto_lock);
2372 
2373     rto_start_unlock(&rq->rd->rto_loop_start);
2374 
2375     if (cpu >= 0) {
2376         /* Make sure the rd does not get freed while pushing */
2377         sched_get_rd(rq->rd);
2378         irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2379     }
2380 }
2381 
2382 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work *work)2383 void rto_push_irq_work_func(struct irq_work *work)
2384 {
2385     struct root_domain *rd = container_of(work, struct root_domain, rto_push_work);
2386     struct rq *rq;
2387     int cpu;
2388 
2389     rq = this_rq();
2390     /*
2391      * We do not need to grab the lock to check for has_pushable_tasks.
2392      * When it gets updated, a check is made if a push is possible.
2393      */
2394     if (has_pushable_tasks(rq)) {
2395         raw_spin_lock(&rq->lock);
2396         push_rt_tasks(rq);
2397         raw_spin_unlock(&rq->lock);
2398     }
2399 
2400     raw_spin_lock(&rd->rto_lock);
2401 
2402     /* Pass the IPI to the next rt overloaded queue */
2403     cpu = rto_next_cpu(rd);
2404 
2405     raw_spin_unlock(&rd->rto_lock);
2406 
2407     if (cpu < 0) {
2408         sched_put_rd(rd);
2409         return;
2410     }
2411 
2412     /* Try the next RT overloaded CPU */
2413     irq_work_queue_on(&rd->rto_push_work, cpu);
2414 }
2415 #endif /* HAVE_RT_PUSH_IPI */
2416 
pull_rt_task(struct rq *this_rq)2417 static void pull_rt_task(struct rq *this_rq)
2418 {
2419     int this_cpu = this_rq->cpu, cpu;
2420     bool resched = false;
2421     struct task_struct *p;
2422     struct rq *src_rq;
2423     int rt_overload_count = rt_overloaded(this_rq);
2424     if (likely(!rt_overload_count)) {
2425         return;
2426     }
2427 
2428     /*
2429      * Match the barrier from rt_set_overloaded; this guarantees that if we
2430      * see overloaded we must also see the rto_mask bit.
2431      */
2432     smp_rmb();
2433 
2434     /* If we are the only overloaded CPU do nothing */
2435     if (rt_overload_count == 1 && cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) {
2436         return;
2437     }
2438 
2439 #ifdef HAVE_RT_PUSH_IPI
2440     if (sched_feat(RT_PUSH_IPI)) {
2441         tell_cpu_to_push(this_rq);
2442         return;
2443     }
2444 #endif
2445 
2446     for_each_cpu(cpu, this_rq->rd->rto_mask)
2447     {
2448         if (this_cpu == cpu) {
2449             continue;
2450         }
2451 
2452         src_rq = cpu_rq(cpu);
2453         /*
2454          * Don't bother taking the src_rq->lock if the next highest
2455          * task is known to be lower-priority than our current task.
2456          * This may look racy, but if this value is about to go
2457          * logically higher, the src_rq will push this task away.
2458          * And if its going logically lower, we do not care
2459          */
2460         if (src_rq->rt.highest_prio.next >= this_rq->rt.highest_prio.curr) {
2461             continue;
2462         }
2463 
2464         /*
2465          * We can potentially drop this_rq's lock in
2466          * double_lock_balance, and another CPU could
2467          * alter this_rq
2468          */
2469         double_lock_balance(this_rq, src_rq);
2470 
2471         /*
2472          * We can pull only a task, which is pushable
2473          * on its rq, and no others.
2474          */
2475         p = pick_highest_pushable_task(src_rq, this_cpu);
2476         /*
2477          * Do we have an RT task that preempts
2478          * the to-be-scheduled task?
2479          */
2480         if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2481             WARN_ON(p == src_rq->curr);
2482             WARN_ON(!task_on_rq_queued(p));
2483 
2484             /*
2485              * There's a chance that p is higher in priority
2486              * than what's currently running on its CPU.
2487              * This is just that p is wakeing up and hasn't
2488              * had a chance to schedule. We only pull
2489              * p if it is lower in priority than the
2490              * current task on the run queue
2491              */
2492             if (p->prio < src_rq->curr->prio) {
2493                 goto skip;
2494             }
2495 
2496             resched = true;
2497 
2498             deactivate_task(src_rq, p, 0);
2499             set_task_cpu(p, this_cpu);
2500             activate_task(this_rq, p, 0);
2501             /*
2502              * We continue with the search, just in
2503              * case there's an even higher prio task
2504              * in another runqueue. (low likelihood
2505              * but possible)
2506              */
2507         }
2508     skip:
2509         double_unlock_balance(this_rq, src_rq);
2510     }
2511 
2512     if (resched) {
2513         resched_curr(this_rq);
2514     }
2515 }
2516 
2517 /*
2518  * If we are not running and we are not going to reschedule soon, we should
2519  * try to push tasks away now
2520  */
task_woken_rt(struct rq *rq, struct task_struct *p)2521 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2522 {
2523     bool need_to_push = !task_running(rq, p) && !test_tsk_need_resched(rq->curr) && p->nr_cpus_allowed > 1 &&
2524                         (dl_task(rq->curr) || rt_task(rq->curr)) &&
2525                         (rq->curr->nr_cpus_allowed < 2 || rq->curr->prio <= p->prio);
2526     if (need_to_push) {
2527         push_rt_tasks(rq);
2528     }
2529 }
2530 
2531 /* Assumes rq->lock is held */
rq_online_rt(struct rq *rq)2532 static void rq_online_rt(struct rq *rq)
2533 {
2534     if (rq->rt.overloaded) {
2535         rt_set_overload(rq);
2536     }
2537 
2538     __enable_runtime(rq);
2539 
2540     cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2541 }
2542 
2543 /* Assumes rq->lock is held */
rq_offline_rt(struct rq *rq)2544 static void rq_offline_rt(struct rq *rq)
2545 {
2546     if (rq->rt.overloaded) {
2547         rt_clear_overload(rq);
2548     }
2549 
2550     __disable_runtime(rq);
2551 
2552     cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2553 }
2554 
2555 /*
2556  * When switch from the rt queue, we bring ourselves to a position
2557  * that we might want to pull RT tasks from other runqueues.
2558  */
switched_from_rt(struct rq *rq, struct task_struct *p)2559 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2560 {
2561     /*
2562      * If there are other RT tasks then we will reschedule
2563      * and the scheduling of the other RT tasks will handle
2564      * the balancing. But if we are the last RT task
2565      * we may need to handle the pulling of RT tasks
2566      * now.
2567      */
2568     if (!task_on_rq_queued(p) || rq->rt.rt_nr_running || cpu_isolated(cpu_of(rq))) {
2569         return;
2570     }
2571 
2572     rt_queue_pull_task(rq);
2573 }
2574 
init_sched_rt_class(void)2575 void __init init_sched_rt_class(void)
2576 {
2577     unsigned int i;
2578 
2579     for_each_possible_cpu(i)
2580     {
2581         zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), GFP_KERNEL, cpu_to_node(i));
2582     }
2583 }
2584 #endif /* CONFIG_SMP */
2585 
2586 /*
2587  * When switching a task to RT, we may overload the runqueue
2588  * with RT tasks. In this case we try to push them off to
2589  * other runqueues.
2590  */
switched_to_rt(struct rq *rq, struct task_struct *p)2591 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2592 {
2593     /*
2594      * If we are running, update the avg_rt tracking, as the running time
2595      * will now on be accounted into the latter.
2596      */
2597     if (task_current(rq, p)) {
2598         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2599         return;
2600     }
2601 
2602     /*
2603      * If we are not running we may need to preempt the current
2604      * running task. If that current running task is also an RT task
2605      * then see if we can move to another run queue.
2606      */
2607     if (task_on_rq_queued(p)) {
2608 #ifdef CONFIG_SMP
2609         if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) {
2610             rt_queue_push_tasks(rq);
2611         }
2612 #endif /* CONFIG_SMP */
2613         if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) {
2614             resched_curr(rq);
2615         }
2616     }
2617 }
2618 
2619 /*
2620  * Priority of the task has changed. This may cause
2621  * us to initiate a push or pull.
2622  */
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)2623 static void prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2624 {
2625     if (!task_on_rq_queued(p)) {
2626         return;
2627     }
2628 
2629     if (rq->curr == p) {
2630 #ifdef CONFIG_SMP
2631         /*
2632          * If our priority decreases while running, we
2633          * may need to pull tasks to this runqueue.
2634          */
2635         if (oldprio < p->prio) {
2636             rt_queue_pull_task(rq);
2637         }
2638 
2639         /*
2640          * If there's a higher priority task waiting to run
2641          * then reschedule.
2642          */
2643         if (p->prio > rq->rt.highest_prio.curr) {
2644             resched_curr(rq);
2645         }
2646 #else
2647         /* For UP simply resched on drop of prio */
2648         if (oldprio < p->prio) {
2649             resched_curr(rq);
2650         }
2651 #endif /* CONFIG_SMP */
2652     } else {
2653         /*
2654          * This task is not running, but if it is
2655          * greater than the current running task
2656          * then reschedule.
2657          */
2658         if (p->prio < rq->curr->prio) {
2659             resched_curr(rq);
2660         }
2661     }
2662 }
2663 
2664 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq *rq, struct task_struct *p)2665 static void watchdog(struct rq *rq, struct task_struct *p)
2666 {
2667     unsigned long soft, hard;
2668 
2669     /* max may change after cur was read, this will be fixed next tick */
2670     soft = task_rlimit(p, RLIMIT_RTTIME);
2671     hard = task_rlimit_max(p, RLIMIT_RTTIME);
2672 
2673     if (soft != RLIM_INFINITY) {
2674         unsigned long next;
2675 
2676         if (p->rt.watchdog_stamp != jiffies) {
2677             p->rt.timeout++;
2678             p->rt.watchdog_stamp = jiffies;
2679         }
2680 
2681         next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC / HZ);
2682         if (p->rt.timeout > next) {
2683             posix_cputimers_rt_watchdog(&p->posix_cputimers, p->se.sum_exec_runtime);
2684         }
2685     }
2686 }
2687 #else
watchdog(struct rq *rq, struct task_struct *p)2688 static inline void watchdog(struct rq *rq, struct task_struct *p)
2689 {
2690 }
2691 #endif
2692 
2693 /*
2694  * scheduler tick hitting a task of our scheduling class.
2695  *
2696  * NOTE: This function can be called remotely by the tick offload that
2697  * goes along full dynticks. Therefore no local assumption can be made
2698  * and everything must be accessed through the @rq and @curr passed in
2699  * parameters.
2700  */
task_tick_rt(struct rq *rq, struct task_struct *p, int queued)2701 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2702 {
2703     struct sched_rt_entity *rt_se = &p->rt;
2704 
2705     update_curr_rt(rq);
2706     update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2707 
2708     watchdog(rq, p);
2709 
2710     /*
2711      * RR tasks need a special form of timeslice management.
2712      * FIFO tasks have no timeslices.
2713      */
2714     if (p->policy != SCHED_RR) {
2715         return;
2716     }
2717 
2718     if (--p->rt.time_slice) {
2719         return;
2720     }
2721 
2722     p->rt.time_slice = sched_rr_timeslice;
2723 
2724     /*
2725      * Requeue to the end of queue if we (and all of our ancestors) are not
2726      * the only element on the queue
2727      */
2728     cycle_each_sched_rt_entity(rt_se) {
2729         if (rt_se->run_list.prev != rt_se->run_list.next) {
2730             requeue_task_rt(rq, p, 0);
2731             resched_curr(rq);
2732             return;
2733         }
2734     }
2735 }
2736 
2737 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
rt_active_load_balance_cpu_stop(void *data)2738 static int rt_active_load_balance_cpu_stop(void *data)
2739 {
2740     struct rq *busiest_rq = data;
2741     struct task_struct *next_task = busiest_rq->rt_push_task;
2742     struct rq *lowest_rq = NULL;
2743     unsigned long flags;
2744 
2745     raw_spin_lock_irqsave(&busiest_rq->lock, flags);
2746     busiest_rq->rt_active_balance = 0;
2747 
2748     /* find_lock_lowest_rq locks the rq if found */
2749     lowest_rq = find_lock_lowest_rq(next_task, busiest_rq);
2750     if (!lowest_rq) {
2751         goto out;
2752     }
2753 
2754     if (capacity_orig_of(cpu_of(lowest_rq)) <= capacity_orig_of(task_cpu(next_task))) {
2755         goto unlock;
2756     }
2757 
2758     deactivate_task(busiest_rq, next_task, 0);
2759     set_task_cpu(next_task, lowest_rq->cpu);
2760     activate_task(lowest_rq, next_task, 0);
2761 
2762     resched_curr(lowest_rq);
2763 unlock:
2764     double_unlock_balance(busiest_rq, lowest_rq);
2765 out:
2766     put_task_struct(next_task);
2767     raw_spin_unlock_irqrestore(&busiest_rq->lock, flags);
2768 
2769     return 0;
2770 }
2771 
check_for_migration_rt(struct rq *rq, struct task_struct *p)2772 static void check_for_migration_rt(struct rq *rq, struct task_struct *p)
2773 {
2774     bool need_actvie_lb = false;
2775     bool misfit_task = false;
2776     int cpu = task_cpu(p);
2777     unsigned long cpu_orig_cap;
2778 #ifdef CONFIG_SCHED_RTG
2779     struct cpumask *rtg_target = NULL;
2780 #endif
2781 
2782     if (!sysctl_sched_enable_rt_active_lb) {
2783         return;
2784     }
2785 
2786     if (p->nr_cpus_allowed == 1) {
2787         return;
2788     }
2789 
2790     cpu_orig_cap = capacity_orig_of(cpu);
2791     /* cpu has max capacity, no need to do balance */
2792     if (cpu_orig_cap == rq->rd->max_cpu_capacity) {
2793         return;
2794     }
2795 
2796 #ifdef CONFIG_SCHED_RTG
2797     rtg_target = find_rtg_target(p);
2798     if (rtg_target) {
2799         misfit_task = capacity_orig_of(cpumask_first(rtg_target)) > cpu_orig_cap;
2800     } else {
2801         misfit_task = !rt_task_fits_capacity(p, cpu);
2802     }
2803 #else
2804     misfit_task = !rt_task_fits_capacity(p, cpu);
2805 #endif
2806     if (misfit_task) {
2807         raw_spin_lock(&rq->lock);
2808         if (!rq->active_balance && !rq->rt_active_balance) {
2809             rq->rt_active_balance = 1;
2810             rq->rt_push_task = p;
2811             get_task_struct(p);
2812             need_actvie_lb = true;
2813         }
2814         raw_spin_unlock(&rq->lock);
2815 
2816         if (need_actvie_lb) {
2817             stop_one_cpu_nowait(task_cpu(p), rt_active_load_balance_cpu_stop, rq, &rq->rt_active_balance_work);
2818         }
2819     }
2820 }
2821 #endif
2822 
get_rr_interval_rt(struct rq *rq, struct task_struct *task)2823 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2824 {
2825     /*
2826      * Time slice is 0 for SCHED_FIFO tasks
2827      */
2828     if (task->policy == SCHED_RR) {
2829         return sched_rr_timeslice;
2830     } else {
2831         return 0;
2832     }
2833 }
2834 
2835 const struct sched_class rt_sched_class __section("__rt_sched_class") = {
2836     .enqueue_task = enqueue_task_rt,
2837     .dequeue_task = dequeue_task_rt,
2838     .yield_task = yield_task_rt,
2839 
2840     .check_preempt_curr = check_preempt_curr_rt,
2841 
2842     .pick_next_task = pick_next_task_rt,
2843     .put_prev_task = put_prev_task_rt,
2844     .set_next_task = set_next_task_rt,
2845 
2846 #ifdef CONFIG_SMP
2847     .balance = balance_rt,
2848     .select_task_rq = select_task_rq_rt,
2849     .set_cpus_allowed = set_cpus_allowed_common,
2850     .rq_online = rq_online_rt,
2851     .rq_offline = rq_offline_rt,
2852     .task_woken = task_woken_rt,
2853     .switched_from = switched_from_rt,
2854 #endif
2855 
2856     .task_tick = task_tick_rt,
2857 
2858     .get_rr_interval = get_rr_interval_rt,
2859 
2860     .prio_changed = prio_changed_rt,
2861     .switched_to = switched_to_rt,
2862 
2863     .update_curr = update_curr_rt,
2864 
2865 #ifdef CONFIG_UCLAMP_TASK
2866     .uclamp_enabled = 1,
2867 #endif
2868 #ifdef CONFIG_SCHED_WALT
2869     .fixup_walt_sched_stats = fixup_walt_sched_stats_common,
2870 #endif
2871 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
2872     .check_for_migration = check_for_migration_rt,
2873 #endif
2874 };
2875 
2876 #ifdef CONFIG_RT_GROUP_SCHED
2877 /*
2878  * Ensure that the real time constraints are schedulable.
2879  */
2880 static DEFINE_MUTEX(rt_constraints_mutex);
2881 
tg_has_rt_tasks(struct task_group *tg)2882 static inline int tg_has_rt_tasks(struct task_group *tg)
2883 {
2884     struct task_struct *task;
2885     struct css_task_iter it;
2886     int ret = 0;
2887 
2888     /*
2889      * Autogroups do not have RT tasks; see autogroup_create().
2890      */
2891     if (task_group_is_autogroup(tg)) {
2892         return 0;
2893     }
2894 
2895     css_task_iter_start(&tg->css, 0, &it);
2896     while (!ret && (task = css_task_iter_next(&it))) {
2897         ret |= rt_task(task);
2898     }
2899     css_task_iter_end(&it);
2900 
2901     return ret;
2902 }
2903 
2904 struct rt_schedulable_data {
2905     struct task_group *tg;
2906     u64 rt_period;
2907     u64 rt_runtime;
2908 };
2909 
tg_rt_schedulable(struct task_group *tg, void *data)2910 static int tg_rt_schedulable(struct task_group *tg, void *data)
2911 {
2912     struct rt_schedulable_data *d = data;
2913     struct task_group *child;
2914     unsigned long total, sum = 0;
2915     u64 period, runtime;
2916 
2917     period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2918     runtime = tg->rt_bandwidth.rt_runtime;
2919 
2920     if (tg == d->tg) {
2921         period = d->rt_period;
2922         runtime = d->rt_runtime;
2923     }
2924 
2925     /*
2926      * Cannot have more runtime than the period.
2927      */
2928     if (runtime > period && runtime != RUNTIME_INF) {
2929         return -EINVAL;
2930     }
2931 
2932     /*
2933      * Ensure we don't starve existing RT tasks if runtime turns zero.
2934      */
2935     if (rt_bandwidth_enabled() && !runtime && tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) {
2936         return -EBUSY;
2937     }
2938 
2939     total = to_ratio(period, runtime);
2940     /*
2941      * Nobody can have more than the global setting allows.
2942      */
2943     if (total > to_ratio(global_rt_period(), global_rt_runtime())) {
2944         return -EINVAL;
2945     }
2946 
2947     /*
2948      * The sum of our children's runtime should not exceed our own.
2949      */
2950     list_for_each_entry_rcu(child, &tg->children, siblings)
2951     {
2952         period = ktime_to_ns(child->rt_bandwidth.rt_period);
2953         runtime = child->rt_bandwidth.rt_runtime;
2954 
2955         if (child == d->tg) {
2956             period = d->rt_period;
2957             runtime = d->rt_runtime;
2958         }
2959 
2960         sum += to_ratio(period, runtime);
2961     }
2962 
2963     if (sum > total) {
2964         return -EINVAL;
2965     }
2966 
2967     return 0;
2968 }
2969 
__rt_schedulable(struct task_group *tg, u64 period, u64 runtime)2970 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2971 {
2972     int ret;
2973 
2974     struct rt_schedulable_data data = {
2975         .tg = tg,
2976         .rt_period = period,
2977         .rt_runtime = runtime,
2978     };
2979 
2980     rcu_read_lock();
2981     ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2982     rcu_read_unlock();
2983 
2984     return ret;
2985 }
2986 
tg_set_rt_bandwidth(struct task_group *tg, u64 rt_period, u64 rt_runtime)2987 static int tg_set_rt_bandwidth(struct task_group *tg, u64 rt_period, u64 rt_runtime)
2988 {
2989     int i, err = 0;
2990 
2991     /*
2992      * Disallowing the root group RT runtime is BAD, it would disallow the
2993      * kernel creating (and or operating) RT threads.
2994      */
2995     if (tg == &root_task_group && rt_runtime == 0) {
2996         return -EINVAL;
2997     }
2998 
2999     /* No period doesn't make any sense. */
3000     if (rt_period == 0) {
3001         return -EINVAL;
3002     }
3003 
3004     /*
3005      * Bound quota to defend quota against overflow during bandwidth shift.
3006      */
3007     if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) {
3008         return -EINVAL;
3009     }
3010 
3011     mutex_lock(&rt_constraints_mutex);
3012     err = __rt_schedulable(tg, rt_period, rt_runtime);
3013     if (err) {
3014         goto unlock;
3015     }
3016 
3017     raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
3018     tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
3019     tg->rt_bandwidth.rt_runtime = rt_runtime;
3020 
3021     for_each_possible_cpu(i)
3022     {
3023         struct rt_rq *rt_rq = tg->rt_rq[i];
3024 
3025         raw_spin_lock(&rt_rq->rt_runtime_lock);
3026         rt_rq->rt_runtime = rt_runtime;
3027         raw_spin_unlock(&rt_rq->rt_runtime_lock);
3028     }
3029     raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
3030 unlock:
3031     mutex_unlock(&rt_constraints_mutex);
3032 
3033     return err;
3034 }
3035 
sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)3036 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
3037 {
3038     u64 rt_runtime, rt_period;
3039 
3040     rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
3041     rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
3042     if (rt_runtime_us < 0) {
3043         rt_runtime = RUNTIME_INF;
3044     } else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) {
3045         return -EINVAL;
3046     }
3047 
3048     return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
3049 }
3050 
sched_group_rt_runtime(struct task_group *tg)3051 long sched_group_rt_runtime(struct task_group *tg)
3052 {
3053     u64 rt_runtime_us;
3054 
3055     if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) {
3056         return -1;
3057     }
3058 
3059     rt_runtime_us = tg->rt_bandwidth.rt_runtime;
3060     do_div(rt_runtime_us, NSEC_PER_USEC);
3061     return rt_runtime_us;
3062 }
3063 
sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)3064 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
3065 {
3066     u64 rt_runtime, rt_period;
3067 
3068     if (rt_period_us > U64_MAX / NSEC_PER_USEC) {
3069         return -EINVAL;
3070     }
3071 
3072     rt_period = rt_period_us * NSEC_PER_USEC;
3073     rt_runtime = tg->rt_bandwidth.rt_runtime;
3074 
3075     return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
3076 }
3077 
sched_group_rt_period(struct task_group *tg)3078 long sched_group_rt_period(struct task_group *tg)
3079 {
3080     u64 rt_period_us;
3081 
3082     rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
3083     do_div(rt_period_us, NSEC_PER_USEC);
3084     return rt_period_us;
3085 }
3086 
sched_rt_global_constraints(void)3087 static int sched_rt_global_constraints(void)
3088 {
3089     int ret = 0;
3090 
3091     mutex_lock(&rt_constraints_mutex);
3092     ret = __rt_schedulable(NULL, 0, 0);
3093     mutex_unlock(&rt_constraints_mutex);
3094 
3095     return ret;
3096 }
3097 
sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)3098 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
3099 {
3100     /* Don't accept realtime tasks when there is no way for them to run */
3101     if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) {
3102         return 0;
3103     }
3104 
3105     return 1;
3106 }
3107 
3108 #else  /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)3109 static int sched_rt_global_constraints(void)
3110 {
3111     unsigned long flags;
3112     int i;
3113 
3114     raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3115     for_each_possible_cpu(i)
3116     {
3117         struct rt_rq *rt_rq = &cpu_rq(i)->rt;
3118 
3119         raw_spin_lock(&rt_rq->rt_runtime_lock);
3120         rt_rq->rt_runtime = global_rt_runtime();
3121         raw_spin_unlock(&rt_rq->rt_runtime_lock);
3122     }
3123     raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3124 
3125     return 0;
3126 }
3127 #endif /* CONFIG_RT_GROUP_SCHED */
3128 
sched_rt_global_validate(void)3129 static int sched_rt_global_validate(void)
3130 {
3131     if (sysctl_sched_rt_period <= 0) {
3132         return -EINVAL;
3133     }
3134 
3135     if ((sysctl_sched_rt_runtime != RUNTIME_INF) && ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
3136                                                      ((u64)sysctl_sched_rt_runtime * NSEC_PER_USEC > max_rt_runtime))) {
3137         return -EINVAL;
3138     }
3139 
3140     return 0;
3141 }
3142 
sched_rt_do_global(void)3143 static void sched_rt_do_global(void)
3144 {
3145     raw_spin_lock(&def_rt_bandwidth.rt_runtime_lock);
3146     def_rt_bandwidth.rt_runtime = global_rt_runtime();
3147     def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3148     raw_spin_unlock(&def_rt_bandwidth.rt_runtime_lock);
3149 }
3150 
sched_rt_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)3151 int sched_rt_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)
3152 {
3153     int old_period, old_runtime;
3154     static DEFINE_MUTEX(mutex);
3155     int ret;
3156 
3157     mutex_lock(&mutex);
3158     old_period = sysctl_sched_rt_period;
3159     old_runtime = sysctl_sched_rt_runtime;
3160 
3161     ret = proc_dointvec(table, write, buffer, lenp, ppos);
3162     if (!ret && write) {
3163         ret = sched_rt_global_validate();
3164         if (ret) {
3165             goto undo;
3166         }
3167 
3168         ret = sched_dl_global_validate();
3169         if (ret) {
3170             goto undo;
3171         }
3172 
3173         ret = sched_rt_global_constraints();
3174         if (ret) {
3175             goto undo;
3176         }
3177 
3178         sched_rt_do_global();
3179         sched_dl_do_global();
3180     }
3181     if (0) {
3182     undo:
3183         sysctl_sched_rt_period = old_period;
3184         sysctl_sched_rt_runtime = old_runtime;
3185     }
3186     mutex_unlock(&mutex);
3187 
3188     return ret;
3189 }
3190 
sched_rr_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)3191 int sched_rr_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)
3192 {
3193     int ret;
3194     static DEFINE_MUTEX(mutex);
3195 
3196     mutex_lock(&mutex);
3197     ret = proc_dointvec(table, write, buffer, lenp, ppos);
3198     /*
3199      * Make sure that internally we keep jiffies.
3200      * Also, writing zero resets the timeslice to default:
3201      */
3202     if (!ret && write) {
3203         sched_rr_timeslice =
3204             sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : msecs_to_jiffies(sysctl_sched_rr_timeslice);
3205     }
3206     mutex_unlock(&mutex);
3207 
3208     return ret;
3209 }
3210 
3211 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file *m, int cpu)3212 void print_rt_stats(struct seq_file *m, int cpu)
3213 {
3214     rt_rq_iter_t iter;
3215     struct rt_rq *rt_rq;
3216 
3217     rcu_read_lock();
3218     cycle_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) print_rt_rq(m, cpu, rt_rq);
3219     rcu_read_unlock();
3220 }
3221 #endif /* CONFIG_SCHED_DEBUG */
3222