1 /*
2 * Copyright (c) 2021-2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15 #define HILOG_TAG "PerfRecord"
16
17 #include "perf_event_record.h"
18 #include "spe_decoder.h"
19 #include <cinttypes>
20
21 #include "utilities.h"
22
23 using namespace OHOS::HiviewDFX;
24 using namespace std;
25 namespace OHOS {
26 namespace Developtools {
27 namespace HiPerf {
28
29 void *g_sampleMemCache = nullptr; // for read record from buf thread
30 void *g_sampleMemCacheMain = nullptr; // for main thread:collecttionsymbol
31 constexpr size_t SAMPLE_CACHE_SIZE = 4 * 1024;
32
GetPerfEventRecord(const int type, uint8_t *p, const perf_event_attr &attr)33 std::unique_ptr<PerfEventRecord> GetPerfEventRecord(const int type, uint8_t *p,
34 const perf_event_attr &attr)
35 {
36 HLOG_ASSERT(p);
37 uint8_t *data = p;
38
39 // check kernel
40 switch (type) {
41 case PERF_RECORD_SAMPLE:
42 return std::make_unique<PerfRecordSample>(data, attr);
43 case PERF_RECORD_MMAP:
44 return std::make_unique<PerfRecordMmap>(data);
45 case PERF_RECORD_MMAP2:
46 return std::make_unique<PerfRecordMmap2>(data);
47 case PERF_RECORD_LOST:
48 return std::make_unique<PerfRecordLost>(data);
49 case PERF_RECORD_COMM:
50 return std::make_unique<PerfRecordComm>(data);
51 case PERF_RECORD_EXIT:
52 return std::make_unique<PerfRecordExit>(data);
53 case PERF_RECORD_THROTTLE:
54 return std::make_unique<PerfRecordThrottle>(data);
55 case PERF_RECORD_UNTHROTTLE:
56 return std::make_unique<PerfRecordUnthrottle>(data);
57 case PERF_RECORD_FORK:
58 return std::make_unique<PerfRecordFork>(data);
59 case PERF_RECORD_READ:
60 return std::make_unique<PerfRecordRead>(data);
61 case PERF_RECORD_AUX:
62 return std::make_unique<PerfRecordAux>(data);
63 case PERF_RECORD_AUXTRACE:
64 return std::make_unique<PerfRecordAuxtrace>(data);
65 case PERF_RECORD_ITRACE_START:
66 return std::make_unique<PerfRecordItraceStart>(data);
67 case PERF_RECORD_LOST_SAMPLES:
68 return std::make_unique<PerfRecordLostSamples>(data);
69 case PERF_RECORD_SWITCH:
70 return std::make_unique<PerfRecordSwitch>(data);
71 case PERF_RECORD_SWITCH_CPU_WIDE:
72 return std::make_unique<PerfRecordSwitchCpuWide>(data);
73 default:
74 HLOGE("unknown record type %d\n", type);
75 return nullptr;
76 }
77 }
78
GetPerfSampleFromCache(const int type, uint8_t *p, const perf_event_attr &attr)79 std::unique_ptr<PerfEventRecord> GetPerfSampleFromCache(const int type, uint8_t *p,
80 const perf_event_attr &attr)
81 {
82 HLOG_ASSERT(p);
83 uint8_t *data = p;
84
85 if (type == PERF_RECORD_SAMPLE) {
86 if (g_sampleMemCache != nullptr) {
87 memset_s(g_sampleMemCache, SAMPLE_CACHE_SIZE, 0, SAMPLE_CACHE_SIZE);
88 return std::unique_ptr<PerfEventRecord>(new (g_sampleMemCache) PerfRecordSample(data, attr));
89 } else {
90 g_sampleMemCache = std::malloc(SAMPLE_CACHE_SIZE);
91 memset_s(g_sampleMemCache, SAMPLE_CACHE_SIZE, 0, SAMPLE_CACHE_SIZE);
92 return std::unique_ptr<PerfEventRecord>(new (g_sampleMemCache) PerfRecordSample(data, attr));
93 }
94 }
95 return GetPerfEventRecord(type, p, attr);
96 }
97
GetPerfSampleFromCacheMain(const int type, uint8_t *p, const perf_event_attr &attr)98 std::unique_ptr<PerfEventRecord> GetPerfSampleFromCacheMain(const int type, uint8_t *p,
99 const perf_event_attr &attr)
100 {
101 HLOG_ASSERT(p);
102 uint8_t *data = p;
103
104 if (type == PERF_RECORD_SAMPLE) {
105 if (g_sampleMemCacheMain != nullptr) {
106 memset_s(g_sampleMemCacheMain, SAMPLE_CACHE_SIZE, 0, SAMPLE_CACHE_SIZE);
107 return std::unique_ptr<PerfEventRecord>(new (g_sampleMemCacheMain) PerfRecordSample(data, attr));
108 } else {
109 g_sampleMemCacheMain = std::malloc(SAMPLE_CACHE_SIZE);
110 memset_s(g_sampleMemCacheMain, SAMPLE_CACHE_SIZE, 0, SAMPLE_CACHE_SIZE);
111 return std::unique_ptr<PerfEventRecord>(new (g_sampleMemCacheMain) PerfRecordSample(data, attr));
112 }
113 }
114 return GetPerfEventRecord(type, p, attr);
115 }
116
117 template<typename T>
PushToBinary(bool condition, uint8_t *&p, const T &v)118 inline void PushToBinary(bool condition, uint8_t *&p, const T &v)
119 {
120 if (condition) {
121 *(reinterpret_cast<T *>(p)) = v;
122 p += sizeof(T);
123 }
124 }
125
126 template<typename T1, typename T2>
PushToBinary2(bool condition, uint8_t *&p, const T1 &v1, const T2 &v2)127 inline void PushToBinary2(bool condition, uint8_t *&p, const T1 &v1, const T2 &v2)
128 {
129 if (condition) {
130 *(reinterpret_cast<T1 *>(p)) = v1;
131 p += sizeof(T1);
132 *(reinterpret_cast<T2 *>(p)) = v2;
133 p += sizeof(T2);
134 }
135 }
136
137 template<typename T>
PopFromBinary(bool condition, uint8_t *&p, T &v)138 inline void PopFromBinary(bool condition, uint8_t *&p, T &v)
139 {
140 if (condition) {
141 v = *(reinterpret_cast<const T *>(p));
142 p += sizeof(T);
143 }
144 }
145
146 template<typename T1, typename T2>
PopFromBinary2(bool condition, uint8_t *&p, T1 &v1, T2 &v2)147 inline void PopFromBinary2(bool condition, uint8_t *&p, T1 &v1, T2 &v2)
148 {
149 if (condition) {
150 v1 = *(reinterpret_cast<const T1 *>(p));
151 p += sizeof(T1);
152 v2 = *(reinterpret_cast<const T2 *>(p));
153 p += sizeof(T2);
154 }
155 }
156
157 // PerfEventRecord
PerfEventRecord(perf_event_type type, bool inKernel, const std::string &name)158 PerfEventRecord::PerfEventRecord(perf_event_type type, bool inKernel, const std::string &name)
159 : name_(name)
160 {
161 header.type = type;
162 header.misc = inKernel ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER;
163 header.size = sizeof(header);
164 }
165
PerfEventRecord(perf_event_hiperf_ext_type type, const std::string &name)166 PerfEventRecord::PerfEventRecord(perf_event_hiperf_ext_type type, const std::string &name)
167 : name_(name)
168 {
169 header.type = type;
170 header.misc = PERF_RECORD_MISC_USER;
171 header.size = sizeof(header);
172 }
173
PerfEventRecord(uint8_t *p, const std::string &name)174 PerfEventRecord::PerfEventRecord(uint8_t *p, const std::string &name) : name_(name)
175 {
176 if (p == nullptr) {
177 header.type = PERF_RECORD_MMAP;
178 header.misc = PERF_RECORD_MISC_USER;
179 header.size = 0;
180 return;
181 }
182 header = *(reinterpret_cast<perf_event_header *>(p));
183 }
184
GetHeaderBinary(std::vector<uint8_t> &buf) const185 void PerfEventRecord::GetHeaderBinary(std::vector<uint8_t> &buf) const
186 {
187 if (buf.size() < GetHeaderSize()) {
188 buf.resize(GetHeaderSize());
189 }
190 uint8_t *p = buf.data();
191 *(reinterpret_cast<perf_event_header *>(p)) = header;
192 }
193
Dump(int indent, std::string outputFilename, FILE *outputDump) const194 void PerfEventRecord::Dump(int indent, std::string outputFilename, FILE *outputDump) const
195 {
196 if (outputDump != nullptr) {
197 g_outputDump = outputDump;
198 } else if (!outputFilename.empty() && g_outputDump == nullptr) {
199 std::string resolvedPath = CanonicalizeSpecPath(outputFilename.c_str());
200 g_outputDump = fopen(resolvedPath.c_str(), "w");
201 if (g_outputDump == nullptr) {
202 printf("unable open file to '%s' because '%d'\n", outputFilename.c_str(), errno);
203 return;
204 }
205 }
206 PRINT_INDENT(indent, "\n");
207 PRINT_INDENT(indent, "record %s: type %u, misc %u, size %zu\n", GetName().c_str(), GetType(),
208 GetMisc(), GetSize());
209 DumpData(indent + 1);
210 }
211
DumpLog(const std::string &prefix) const212 void PerfEventRecord::DumpLog(const std::string &prefix) const
213 {
214 HLOGV("%s: record %s: type %u, misc %u, size %zu\n", prefix.c_str(), GetName().c_str(),
215 GetType(), GetMisc(), GetSize());
216 }
217
218 std::vector<u64> PerfRecordSample::ips_ = {};
219 std::vector<DfxFrame> PerfRecordSample::callFrames_ = {};
220 std::vector<pid_t> PerfRecordSample::serverPidMap_ = {};
221
PerfRecordAuxtrace(uint8_t *p)222 PerfRecordAuxtrace::PerfRecordAuxtrace(uint8_t *p) : PerfEventRecord(p, "auxtrace")
223 {
224 if (header.size >= sizeof(header)) {
225 size_t copySize = header.size - sizeof(header);
226 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
227 HLOGE("memcpy_s retren failed !!!");
228 }
229 } else {
230 HLOGE("PerfRecordAuxtrace retren failed !!!");
231 }
232 rawData_ = p + header.size;
233 }
234
PerfRecordAuxtrace(u64 size, u64 offset, u64 reference, u32 idx, u32 tid, u32 cpu, u32 pid)235 PerfRecordAuxtrace::PerfRecordAuxtrace(u64 size, u64 offset, u64 reference, u32 idx, u32 tid, u32 cpu, u32 pid)
236 : PerfEventRecord(PERF_RECORD_AUXTRACE, "auxtrace")
237 {
238 data_.size = size;
239 data_.offset = offset;
240 data_.reference = reference;
241 data_.idx = idx;
242 data_.tid = tid;
243 data_.cpu = cpu;
244 data_.reserved__ = pid;
245
246 header.size = sizeof(header) + sizeof(data_);
247 }
248
GetBinary1(std::vector<uint8_t> &buf) const249 bool PerfRecordAuxtrace::GetBinary1(std::vector<uint8_t> &buf) const
250 {
251 if (buf.size() < header.size) {
252 buf.resize(header.size);
253 }
254
255 GetHeaderBinary(buf);
256 uint8_t *p = buf.data() + GetHeaderSize();
257
258 size_t copySize = header.size - GetHeaderSize();
259 if (memcpy_s(p, sizeof(data_), reinterpret_cast<const uint8_t *>(&data_), copySize) != 0) {
260 HLOGE("memcpy_s return failed");
261 return false;
262 }
263 return true;
264 }
265
GetBinary(std::vector<uint8_t> &buf) const266 bool PerfRecordAuxtrace::GetBinary(std::vector<uint8_t> &buf) const
267 {
268 if (buf.size() < GetSize()) {
269 buf.resize(GetSize());
270 }
271
272 GetHeaderBinary(buf);
273 uint8_t *p = buf.data() + GetHeaderSize();
274
275 size_t copySize = header.size - GetHeaderSize();
276 if (memcpy_s(p, sizeof(data_), reinterpret_cast<const uint8_t *>(&data_), copySize) != 0) {
277 HLOGE("memcpy_s return failed");
278 return false;
279 }
280 p += header.size - GetHeaderSize();
281 if (memcpy_s(p, data_.size, static_cast<uint8_t *>(rawData_), data_.size) != 0) {
282 HLOGE("memcpy_s return failed");
283 return false;
284 }
285 return true;
286 }
287
DumpData(int indent) const288 void PerfRecordAuxtrace::DumpData(int indent) const
289 {
290 PRINT_INDENT(indent, "size 0x%llx, offset 0x%llx, reference 0x%llx, idx %u, tid %u, cpu %u, pid %u\n",
291 data_.size, data_.offset, data_.reference, data_.idx, data_.tid, data_.cpu, data_.reserved__);
292 #if defined(is_ohos) && is_ohos
293 if (!SpeDumpRawData(rawData_, data_.size, indent, g_outputDump)) {
294 HLOGE("SpeDumpRawData failed");
295 }
296 #endif
297 }
298
DumpLog(const std::string &prefix) const299 void PerfRecordAuxtrace::DumpLog(const std::string &prefix) const
300 {
301 HLOGV("size %llu, offset 0x%llx, reference 0x%llx, idx %u, tid %u, cpu %u\n",
302 data_.size, data_.offset, data_.reference, data_.idx, data_.tid, data_.cpu);
303 }
304
GetSize() const305 size_t PerfRecordAuxtrace::GetSize() const
306 {
307 return header.size + data_.size;
308 }
309
DumpLog(const std::string &prefix) const310 void PerfRecordSample::DumpLog(const std::string &prefix) const
311 {
312 HLOGV("%s: SAMPLE: id= %llu size %d pid %u tid %u ips %llu regs %llu, stacks %llu time %llu",
313 prefix.c_str(), data_.sample_id, header.size, data_.pid, data_.tid, data_.nr,
314 data_.reg_nr, data_.dyn_size, data_.time);
315 }
316
RecoverCallStack()317 void PerfRecordSample::RecoverCallStack()
318 {
319 data_.ips = ips_.data();
320 data_.nr = ips_.size();
321 removeStack_ = true;
322 }
323
ReplaceWithCallStack(size_t originalSize)324 void PerfRecordSample::ReplaceWithCallStack(size_t originalSize)
325 {
326 // first we check if we have some user unwind stack need to merge ?
327 if (callFrames_.size() != 0) {
328 // when we have some kernel ips , we cp it first
329 // new size is user call frames + kernel call frames
330 // + PERF_CONTEXT_USER(last + 1) + expand mark(also PERF_CONTEXT_USER)
331 const unsigned int perfContextSize = 2;
332 ips_.reserve(data_.nr + callFrames_.size() + perfContextSize);
333 if (data_.nr > 0) {
334 ips_.assign(data_.ips, data_.ips + data_.nr);
335 }
336 // add user context mark
337 ips_.emplace_back(PERF_CONTEXT_USER);
338 // we also need make a expand mark just for debug only
339 const size_t beginIpsSize = ips_.size();
340 bool ret = std::all_of(callFrames_.begin(), callFrames_.end(), [&](const DfxFrame &frame) {
341 ips_.emplace_back(frame.pc);
342 if (originalSize != 0 and (originalSize != callFrames_.size()) and
343 ips_.size() == (originalSize + beginIpsSize)) {
344 // just for debug
345 // so we can see which frame begin is expand call frames
346 ips_.emplace_back(PERF_CONTEXT_USER);
347 }
348 return true;
349 });
350 if (ret) {
351 HLOGV("combed %zu", callFrames_.size());
352 } else {
353 HLOGV("failed to combed %zu", callFrames_.size());
354 }
355
356 if (sampleType_ & PERF_SAMPLE_REGS_USER) {
357 header.size -= data_.reg_nr * sizeof(u64);
358 data_.reg_nr = 0;
359 data_.user_abi = 0;
360 }
361
362 if (sampleType_ & PERF_SAMPLE_STACK_USER) {
363 // 1. remove the user stack
364 header.size -= data_.stack_size;
365 header.size -= sizeof(data_.dyn_size);
366
367 // 2. clean the size
368 data_.stack_size = 0;
369 data_.dyn_size = 0;
370 }
371
372 if (sampleType_ & PERF_SAMPLE_CALLCHAIN) {
373 HLOGV("ips change from %llu -> %zu", data_.nr, ips_.size());
374
375 // 3. remove the nr size
376 header.size -= data_.nr * sizeof(u64);
377
378 // 4. add new nr size
379 data_.nr = ips_.size();
380 header.size += data_.nr * sizeof(u64);
381
382 // 5. change ips potin to our ips array and hold it.
383 data_.ips = ips_.data();
384 }
385 } else {
386 // nothing need change
387 return;
388 }
389 }
390
PerfRecordSample(uint8_t *p, const perf_event_attr &attr)391 PerfRecordSample::PerfRecordSample(uint8_t *p, const perf_event_attr &attr)
392 : PerfEventRecord(p, "sample")
393 {
394 if (p == nullptr) {
395 HLOG_ASSERT(p);
396 return;
397 }
398 // clear the static vector data
399 Clean();
400 sampleType_ = attr.sample_type;
401
402 uint8_t *start = p;
403
404 p += sizeof(header);
405
406 // parse record according SAMPLE_TYPE
407 PopFromBinary(sampleType_ & PERF_SAMPLE_IDENTIFIER, p, data_.sample_id);
408 PopFromBinary(sampleType_ & PERF_SAMPLE_IP, p, data_.ip);
409 PopFromBinary2(sampleType_ & PERF_SAMPLE_TID, p, data_.pid, data_.tid);
410 PopFromBinary(sampleType_ & PERF_SAMPLE_TIME, p, data_.time);
411 PopFromBinary(sampleType_ & PERF_SAMPLE_ADDR, p, data_.addr);
412 PopFromBinary(sampleType_ & PERF_SAMPLE_ID, p, data_.id);
413 PopFromBinary(sampleType_ & PERF_SAMPLE_STREAM_ID, p, data_.stream_id);
414 PopFromBinary2(sampleType_ & PERF_SAMPLE_CPU, p, data_.cpu, data_.res);
415 PopFromBinary(sampleType_ & PERF_SAMPLE_PERIOD, p, data_.period);
416 PopFromBinary(sampleType_ & PERF_SAMPLE_CALLCHAIN, p, data_.nr);
417 if (data_.nr > 0) {
418 // the pointer is from input(p), require caller keep input(p) with *this together
419 // think it in next time
420 data_.ips = reinterpret_cast<u64 *>(p);
421 p += data_.nr * sizeof(u64);
422 }
423 PopFromBinary(sampleType_ & PERF_SAMPLE_RAW, p, data_.raw_size);
424 if (data_.raw_size > 0) {
425 data_.raw_data = p;
426 p += data_.raw_size * sizeof(u8);
427 }
428 PopFromBinary(sampleType_ & PERF_SAMPLE_BRANCH_STACK, p, data_.bnr);
429 if (data_.bnr > 0) {
430 data_.lbr = reinterpret_cast<PerfBranchEntry *>(p);
431 p += data_.bnr * sizeof(PerfBranchEntry);
432 }
433 PopFromBinary(sampleType_ & PERF_SAMPLE_REGS_USER, p, data_.user_abi);
434 if (data_.user_abi > 0) {
435 data_.reg_mask = attr.sample_regs_user;
436 data_.reg_nr = __builtin_popcountll(data_.reg_mask);
437 data_.user_regs = reinterpret_cast<u64 *>(p);
438 p += data_.reg_nr * sizeof(u64);
439 }
440 PopFromBinary(sampleType_ & PERF_SAMPLE_SERVER_PID, p, data_.server_nr);
441 if (data_.server_nr > 0) {
442 data_.server_pids = reinterpret_cast<u64 *>(p);
443 p += data_.server_nr * sizeof(u64);
444 }
445 PopFromBinary(sampleType_ & PERF_SAMPLE_STACK_USER, p, data_.stack_size);
446 if (data_.stack_size > 0) {
447 data_.stack_data = p;
448 p += data_.stack_size;
449 PopFromBinary(true, p, data_.dyn_size);
450 }
451 uint32_t remain = header.size - (p - start);
452 if (data_.nr == 0 && dumpRemoveStack_ && remain == sizeof(stackId_)) {
453 PopFromBinary(true, p, stackId_.value);
454 }
455 }
456
GetBinary(std::vector<uint8_t> &buf) const457 bool PerfRecordSample::GetBinary(std::vector<uint8_t> &buf) const
458 {
459 if (buf.size() < GetSize()) {
460 buf.resize(GetSize());
461 }
462
463 GetHeaderBinary(buf);
464 uint8_t *p = buf.data() + GetHeaderSize();
465
466 PushToBinary(sampleType_ & PERF_SAMPLE_IDENTIFIER, p, data_.sample_id);
467 PushToBinary(sampleType_ & PERF_SAMPLE_IP, p, data_.ip);
468 PushToBinary2(sampleType_ & PERF_SAMPLE_TID, p, data_.pid, data_.tid);
469 PushToBinary(sampleType_ & PERF_SAMPLE_TIME, p, data_.time);
470 PushToBinary(sampleType_ & PERF_SAMPLE_ADDR, p, data_.addr);
471 PushToBinary(sampleType_ & PERF_SAMPLE_ID, p, data_.id);
472 PushToBinary(sampleType_ & PERF_SAMPLE_STREAM_ID, p, data_.stream_id);
473 PushToBinary2(sampleType_ & PERF_SAMPLE_CPU, p, data_.cpu, data_.res);
474 PushToBinary(sampleType_ & PERF_SAMPLE_PERIOD, p, data_.period);
475 PushToBinary(sampleType_ & PERF_SAMPLE_CALLCHAIN, p, data_.nr);
476 if (data_.nr > 0 && !removeStack_) {
477 std::copy(data_.ips + skipKernel_, data_.ips + data_.nr + skipKernel_,
478 reinterpret_cast<u64 *>(p));
479 p += data_.nr * sizeof(u64);
480 }
481 PushToBinary(sampleType_ & PERF_SAMPLE_RAW, p, data_.raw_size);
482 if (data_.raw_size > 0) {
483 std::copy(data_.raw_data, data_.raw_data + data_.raw_size, p);
484 p += data_.raw_size * sizeof(u8);
485 }
486 PushToBinary(sampleType_ & PERF_SAMPLE_BRANCH_STACK, p, data_.bnr);
487 if (data_.bnr > 0) {
488 std::copy(data_.lbr, data_.lbr + data_.bnr, reinterpret_cast<PerfBranchEntry *>(p));
489 p += data_.bnr * sizeof(PerfBranchEntry);
490 }
491 PushToBinary(sampleType_ & PERF_SAMPLE_REGS_USER, p, data_.user_abi);
492 if (data_.user_abi > 0 && data_.reg_nr > 0) {
493 std::copy(data_.user_regs, data_.user_regs + data_.reg_nr, reinterpret_cast<u64 *>(p));
494 p += data_.reg_nr * sizeof(u64);
495 }
496 PushToBinary(sampleType_ & PERF_SAMPLE_SERVER_PID, p, data_.server_nr);
497 if (data_.server_nr > 0) {
498 std::copy(data_.server_pids + skipPid_, data_.server_pids + data_.server_nr + skipPid_,
499 reinterpret_cast<u64 *>(p));
500 p += data_.server_nr * sizeof(u64);
501 }
502 PushToBinary(sampleType_ & PERF_SAMPLE_STACK_USER, p, data_.stack_size);
503 if (data_.stack_size > 0) {
504 std::copy(data_.stack_data, data_.stack_data + data_.stack_size, p);
505 p += data_.stack_size * sizeof(u8);
506 PushToBinary(true, p, data_.dyn_size);
507 }
508 PushToBinary(removeStack_, p, stackId_.value);
509 return true;
510 }
511
DumpData(int indent) const512 void PerfRecordSample::DumpData(int indent) const
513 {
514 PRINT_INDENT(indent, "sample_type: 0x%" PRIx64 "\n", sampleType_);
515
516 // dump record according sampleType
517 if (sampleType_ & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) {
518 PRINT_INDENT(indent, "ID %" PRIu64 "\n", static_cast<uint64_t>(data_.sample_id));
519 }
520 if (sampleType_ & PERF_SAMPLE_IP) {
521 PRINT_INDENT(indent, "ip %llx\n", data_.ip);
522 }
523 if (sampleType_ & PERF_SAMPLE_TID) {
524 PRINT_INDENT(indent, "pid %u, tid %u\n", data_.pid, data_.tid);
525 }
526 if (sampleType_ & PERF_SAMPLE_TIME) {
527 PRINT_INDENT(indent, "time %llu\n", data_.time);
528 }
529 if (sampleType_ & PERF_SAMPLE_ADDR) {
530 PRINT_INDENT(indent, "addr %p\n", reinterpret_cast<void *>(data_.addr));
531 }
532 if (sampleType_ & PERF_SAMPLE_STREAM_ID) {
533 PRINT_INDENT(indent, "stream_id %" PRIu64 "\n", static_cast<uint64_t>(data_.stream_id));
534 }
535 if (sampleType_ & PERF_SAMPLE_CPU) {
536 PRINT_INDENT(indent, "cpu %u, res %u\n", data_.cpu, data_.res);
537 }
538 if (sampleType_ & PERF_SAMPLE_PERIOD) {
539 PRINT_INDENT(indent, "period %" PRIu64 "\n", static_cast<uint64_t>(data_.period));
540 }
541 if (stackId_.section.id > 0) {
542 PRINT_INDENT(indent, "stackid %" PRIu64 "\n", static_cast<uint64_t>(stackId_.section.id));
543 }
544 if (sampleType_ & PERF_SAMPLE_CALLCHAIN) {
545 bool userContext = false;
546 PRINT_INDENT(indent, "callchain nr=%lld\n", data_.nr);
547 for (uint64_t i = 0; i < data_.nr; ++i) {
548 std::string_view supplement = "";
549 if ((sampleType_ & PERF_SAMPLE_STACK_USER) == 0 || data_.ips[i] != PERF_CONTEXT_USER) {
550 PRINT_INDENT(indent + 1, "0x%llx%s\n", data_.ips[i], supplement.data());
551 continue;
552 }
553 // is PERF_SAMPLE_STACK_USER type and is PERF_CONTEXT_USER
554 if (!userContext) {
555 userContext = true;
556 supplement = " <unwind callstack>";
557 } else {
558 supplement = " <expand callstack>";
559 }
560 PRINT_INDENT(indent + 1, "0x%llx%s\n", data_.ips[i], supplement.data());
561 }
562 }
563 if (sampleType_ & PERF_SAMPLE_RAW) {
564 PRINT_INDENT(indent, "raw size=%u\n", data_.raw_size);
565 const uint32_t *data = reinterpret_cast<const uint32_t *>(data_.raw_data);
566 size_t size = data_.raw_size / sizeof(uint32_t);
567 for (size_t i = 0; i < size; ++i) {
568 PRINT_INDENT(indent + 1, "0x%08x (%x)\n", data[i], data[i]);
569 }
570 }
571 if (sampleType_ & PERF_SAMPLE_BRANCH_STACK) {
572 PRINT_INDENT(indent, "branch_stack nr=%lld\n", data_.bnr);
573 for (uint64_t i = 0; i < data_.bnr; ++i) {
574 auto &item = data_.lbr[i];
575 PRINT_INDENT(indent + 1, "from 0x%llx, to 0x%llx, flags 0x%llx\n", item.from, item.to, item.flags);
576 }
577 }
578 if (sampleType_ & PERF_SAMPLE_REGS_USER) {
579 PRINT_INDENT(indent, "user regs: abi=%lld, reg_nr=%lld\n", data_.user_abi, data_.reg_nr);
580 for (uint64_t i = 0; i < data_.reg_nr; ++i) {
581 PRINT_INDENT(indent + 1, "0x%llx\n", data_.user_regs[i]);
582 }
583 }
584 if (sampleType_ & PERF_SAMPLE_SERVER_PID) {
585 PRINT_INDENT(indent, "server nr=%lld\n", data_.server_nr);
586 for (uint64_t i = 0; i < data_.server_nr; ++i) {
587 PRINT_INDENT(indent + 1, "pid: %llu\n", data_.server_pids[i]);
588 }
589 }
590 if (sampleType_ & PERF_SAMPLE_STACK_USER) {
591 PRINT_INDENT(indent, "user stack: size %llu dyn_size %lld\n", data_.stack_size,
592 data_.dyn_size);
593 }
594 }
595
GetPid() const596 inline pid_t PerfRecordSample::GetPid() const
597 {
598 return data_.pid;
599 }
600
Clean()601 void PerfRecordSample::Clean()
602 {
603 ips_.clear();
604 callFrames_.clear();
605 serverPidMap_.clear();
606 }
607
PerfRecordMmap(uint8_t *p)608 PerfRecordMmap::PerfRecordMmap(uint8_t *p) : PerfEventRecord(p, "mmap")
609 {
610 size_t dataSize = GetSize();
611 if (dataSize >= sizeof(header)) {
612 size_t copySize = dataSize - sizeof(header);
613 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
614 HLOGE("memcpy_s retren failed !!!");
615 }
616 } else {
617 HLOGE("PerfRecordMmap retren failed !!!");
618 }
619 }
620
PerfRecordMmap(bool inKernel, u32 pid, u32 tid, u64 addr, u64 len, u64 pgoff, const std::string &filename)621 PerfRecordMmap::PerfRecordMmap(bool inKernel, u32 pid, u32 tid, u64 addr, u64 len, u64 pgoff,
622 const std::string &filename)
623 : PerfEventRecord(PERF_RECORD_MMAP, inKernel, "mmap")
624 {
625 data_.pid = pid;
626 data_.tid = tid;
627 data_.addr = addr;
628 data_.len = len;
629 data_.pgoff = pgoff;
630 if (strncpy_s(data_.filename, KILO, filename.c_str(), filename.size()) != 0) {
631 HLOGE("strncpy_s failed");
632 }
633
634 header.size = sizeof(header) + sizeof(data_) - KILO + filename.size() + 1;
635 }
636
GetBinary(std::vector<uint8_t> &buf) const637 bool PerfRecordMmap::GetBinary(std::vector<uint8_t> &buf) const
638 {
639 if (buf.size() < GetSize()) {
640 buf.resize(GetSize());
641 }
642
643 GetHeaderBinary(buf);
644 uint8_t *p = buf.data() + GetHeaderSize();
645
646 // data_.filename[] is variable-length
647 std::copy(reinterpret_cast<const uint8_t *>(&data_),
648 reinterpret_cast<const uint8_t *>(&data_) + GetSize() - GetHeaderSize(), p);
649 return true;
650 }
651
DumpData(int indent) const652 void PerfRecordMmap::DumpData(int indent) const
653 {
654 #if defined(is_ohos) && is_ohos
655 if (IsRoot()) {
656 PRINT_INDENT(indent, "pid %u, tid %u, addr 0x%llx, len 0x%llx\n", data_.pid, data_.tid,
657 data_.addr, data_.len);
658 PRINT_INDENT(indent, "pgoff 0x%llx, filename %s\n", data_.pgoff, data_.filename);
659 }
660 #endif
661 }
662
DumpLog(const std::string &prefix) const663 void PerfRecordMmap::DumpLog(const std::string &prefix) const
664 {
665 HLOGV("%s: MMAP: size %d pid %u tid %u dso '%s' (0x%llx-0x%llx)@0x%llx", prefix.c_str(),
666 header.size, data_.pid, data_.tid, data_.filename, data_.addr, data_.addr + data_.len, data_.pgoff);
667 }
668
PerfRecordMmap2(uint8_t *p)669 PerfRecordMmap2::PerfRecordMmap2(uint8_t *p) : PerfEventRecord(p, "mmap2")
670 {
671 size_t dataSize = GetSize();
672 if (dataSize >= sizeof(header)) {
673 size_t copySize = dataSize - sizeof(header);
674 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
675 HLOGE("memcpy_s retren failed !!!");
676 }
677 } else {
678 HLOGE("PerfRecordMmap2 retren failed !!!");
679 }
680 }
681
PerfRecordMmap2(bool inKernel, u32 pid, u32 tid, u64 addr, u64 len, u64 pgoff, u32 maj, u32 min, u64 ino, u32 prot, u32 flags, const std::string &filename)682 PerfRecordMmap2::PerfRecordMmap2(bool inKernel, u32 pid, u32 tid, u64 addr, u64 len, u64 pgoff,
683 u32 maj, u32 min, u64 ino, u32 prot, u32 flags,
684 const std::string &filename)
685 : PerfEventRecord(PERF_RECORD_MMAP2, inKernel, "mmap2")
686 {
687 data_.pid = pid;
688 data_.tid = tid;
689 data_.addr = addr;
690 data_.len = len;
691 data_.pgoff = pgoff;
692 data_.maj = maj;
693 data_.min = min;
694 data_.ino = ino;
695 data_.ino_generation = 0;
696 data_.prot = prot;
697 data_.flags = flags;
698 if (strncpy_s(data_.filename, KILO, filename.c_str(), filename.size()) != 0) {
699 HLOGE("strncpy_s failed");
700 }
701
702 header.size = sizeof(header) + sizeof(data_) - KILO + filename.size() + 1;
703 }
704
PerfRecordMmap2(bool inKernel, u32 pid, u32 tid, std::shared_ptr<DfxMap> item)705 PerfRecordMmap2::PerfRecordMmap2(bool inKernel, u32 pid, u32 tid, std::shared_ptr<DfxMap> item)
706 : PerfEventRecord(PERF_RECORD_MMAP2, inKernel, "mmap2")
707 {
708 data_.pid = pid;
709 data_.tid = tid;
710 if (item != nullptr) {
711 data_.addr = item->begin;
712 data_.len = item->end - item->begin;
713 data_.pgoff = item->offset;
714 data_.maj = item->major;
715 data_.min = item->minor;
716 data_.ino = item->inode;
717 data_.ino_generation = 0;
718 // r--p 00000000 103:3e 12307 /data/storage/el1/bundle/entry.hap
719 // why prot get from this is 7. rwxp
720 DfxMap::PermsToProts(item->perms, data_.prot, data_.flags);
721 if (strncpy_s(data_.filename, KILO, item->name.c_str(), item->name.size()) != 0) {
722 HLOGE("strncpy_s failed");
723 }
724
725 header.size = sizeof(header) + sizeof(data_) - KILO + item->name.size() + 1;
726 } else {
727 data_.addr = 0;
728 data_.len = 0;
729 data_.pgoff = 0;
730 data_.maj = 0;
731 data_.min = 0;
732 data_.ino = 0;
733 data_.ino_generation = 0;
734 if (memset_s(data_.filename, KILO, 0, KILO) != EOK) {
735 HLOGE("memset_s failed");
736 }
737 }
738 }
739
GetBinary(std::vector<uint8_t> &buf) const740 bool PerfRecordMmap2::GetBinary(std::vector<uint8_t> &buf) const
741 {
742 if (buf.size() < GetSize()) {
743 buf.resize(GetSize());
744 }
745
746 GetHeaderBinary(buf);
747 uint8_t *p = buf.data() + GetHeaderSize();
748
749 // data_.filename[] is variable-length
750 std::copy(reinterpret_cast<const uint8_t *>(&data_),
751 reinterpret_cast<const uint8_t *>(&data_) + GetSize() - GetHeaderSize(), p);
752 return true;
753 }
754
DumpData(int indent) const755 void PerfRecordMmap2::DumpData(int indent) const
756 {
757 #if defined(is_ohos) && is_ohos
758 if (IsRoot()) {
759 PRINT_INDENT(indent, "pid %u, tid %u, addr 0x%llx, len 0x%llx\n", data_.pid, data_.tid,
760 data_.addr, data_.len);
761 PRINT_INDENT(indent, "pgoff 0x%llx, maj %u, min %u, ino %llu, ino_generation %llu\n",
762 data_.pgoff, data_.maj, data_.min, data_.ino, data_.ino_generation);
763 PRINT_INDENT(indent, "prot %u, flags %u, filename %s\n", data_.prot, data_.flags,
764 data_.filename);
765 }
766 #endif
767 }
DumpLog(const std::string &prefix) const768 void PerfRecordMmap2::DumpLog(const std::string &prefix) const
769 {
770 HLOGV("%s: MMAP2: size %d pid %u tid %u dso '%s' (0x%llx-0x%llx)@0x%llx", prefix.c_str(),
771 header.size, data_.pid, data_.tid, data_.filename, data_.addr, data_.addr + data_.len,
772 data_.pgoff);
773 }
774
PerfRecordLost(uint8_t *p)775 PerfRecordLost::PerfRecordLost(uint8_t *p) : PerfEventRecord(p, "lost")
776 {
777 size_t dataSize = GetSize();
778 if (dataSize >= sizeof(header)) {
779 size_t copySize = dataSize - sizeof(header);
780 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
781 HLOGE("memcpy_s retren failed !!!");
782 }
783 } else {
784 HLOGE("PerfRecordLost retren failed !!!");
785 }
786 }
787
GetBinary(std::vector<uint8_t> &buf) const788 bool PerfRecordLost::GetBinary(std::vector<uint8_t> &buf) const
789 {
790 if (buf.size() < GetSize()) {
791 buf.resize(GetSize());
792 }
793
794 GetHeaderBinary(buf);
795 uint8_t *p = buf.data() + GetHeaderSize();
796
797 auto pDest = reinterpret_cast<PerfRecordLostData *>(p);
798 *pDest = data_;
799
800 return true;
801 }
802
DumpData(int indent) const803 void PerfRecordLost::DumpData(int indent) const
804 {
805 PRINT_INDENT(indent, "id %llu, lost %llu\n", data_.id, data_.lost);
806 }
807
PerfRecordComm(uint8_t *p)808 PerfRecordComm::PerfRecordComm(uint8_t *p) : PerfEventRecord(p, "comm")
809 {
810 size_t dataSize = GetSize();
811 if (dataSize >= sizeof(header)) {
812 size_t copySize = dataSize - sizeof(header);
813 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
814 HLOGE("memcpy_s retren failed !!!");
815 }
816 } else {
817 HLOGE("PerfRecordComm retren failed !!!");
818 }
819 }
820
PerfRecordComm(bool inKernel, u32 pid, u32 tid, const std::string &comm)821 PerfRecordComm::PerfRecordComm(bool inKernel, u32 pid, u32 tid, const std::string &comm)
822 : PerfEventRecord(PERF_RECORD_COMM, inKernel, "comm")
823 {
824 data_.pid = pid;
825 data_.tid = tid;
826 if (strncpy_s(data_.comm, KILO, comm.c_str(), comm.size()) != 0) {
827 HLOGE("strncpy_s failed !!!");
828 }
829
830 header.size = sizeof(header) + sizeof(data_) - KILO + comm.size() + 1;
831 }
832
GetBinary(std::vector<uint8_t> &buf) const833 bool PerfRecordComm::GetBinary(std::vector<uint8_t> &buf) const
834 {
835 if (buf.size() < GetSize()) {
836 buf.resize(GetSize());
837 }
838
839 GetHeaderBinary(buf);
840 uint8_t *p = buf.data() + GetHeaderSize();
841
842 // data_.comm[] is variable-length
843 std::copy(reinterpret_cast<const uint8_t *>(&data_),
844 reinterpret_cast<const uint8_t *>(&data_) + GetSize() - GetHeaderSize(), p);
845
846 return true;
847 }
848
DumpData(int indent) const849 void PerfRecordComm::DumpData(int indent) const
850 {
851 PRINT_INDENT(indent, "pid %u, tid %u, comm %s\n", data_.pid, data_.tid, data_.comm);
852 }
853
DumpLog(const std::string &prefix) const854 void PerfRecordComm::DumpLog(const std::string &prefix) const
855 {
856 HLOGV("pid %u, tid %u, comm %s\n", data_.pid, data_.tid, data_.comm);
857 }
858
PerfRecordExit(uint8_t *p)859 PerfRecordExit::PerfRecordExit(uint8_t *p) : PerfEventRecord(p, "exit")
860 {
861 size_t dataSize = GetSize();
862 if (dataSize >= sizeof(header)) {
863 size_t copySize = dataSize - sizeof(header);
864 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
865 HLOGE("memcpy_s retren failed !!!");
866 }
867 } else {
868 HLOGE("PerfRecordExit retren failed !!!");
869 }
870 }
871
GetBinary(std::vector<uint8_t> &buf) const872 bool PerfRecordExit::GetBinary(std::vector<uint8_t> &buf) const
873 {
874 if (buf.size() < GetSize()) {
875 buf.resize(GetSize());
876 }
877
878 GetHeaderBinary(buf);
879 uint8_t *p = buf.data() + GetHeaderSize();
880
881 auto pDest = reinterpret_cast<PerfRecordExitData *>(p);
882 *pDest = data_;
883 return true;
884 }
885
DumpData(int indent) const886 void PerfRecordExit::DumpData(int indent) const
887 {
888 PRINT_INDENT(indent, "pid %u, ppid %u, tid %u, ptid %u time 0x%llx\n", data_.pid, data_.ppid,
889 data_.tid, data_.ptid, data_.time);
890 }
891
PerfRecordThrottle(uint8_t *p)892 PerfRecordThrottle::PerfRecordThrottle(uint8_t *p) : PerfEventRecord(p, "throttle")
893 {
894 size_t dataSize = GetSize();
895 if (dataSize >= sizeof(header)) {
896 size_t copySize = dataSize - sizeof(header);
897 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
898 HLOGE("memcpy_s retren failed !!!");
899 }
900 } else {
901 HLOGE("PerfRecordThrottle retren failed !!!");
902 }
903 }
904
GetBinary(std::vector<uint8_t> &buf) const905 bool PerfRecordThrottle::GetBinary(std::vector<uint8_t> &buf) const
906 {
907 if (buf.size() < GetSize()) {
908 buf.resize(GetSize());
909 }
910
911 GetHeaderBinary(buf);
912 uint8_t *p = buf.data() + GetHeaderSize();
913
914 auto pDest = reinterpret_cast<PerfRecordThrottleData *>(p);
915 *pDest = data_;
916 return true;
917 }
918
DumpData(int indent) const919 void PerfRecordThrottle::DumpData(int indent) const
920 {
921 PRINT_INDENT(indent, "time 0x%llx, id %llx, stream_id %llx\n", data_.time, data_.id,
922 data_.stream_id);
923 }
924
PerfRecordUnthrottle(uint8_t *p)925 PerfRecordUnthrottle::PerfRecordUnthrottle(uint8_t *p) : PerfEventRecord(p, "unthrottle")
926 {
927 size_t dataSize = GetSize();
928 if (dataSize >= sizeof(header)) {
929 size_t copySize = dataSize - sizeof(header);
930 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
931 HLOGE("memcpy_s retren failed !!!");
932 }
933 } else {
934 HLOGE("PerfRecordUnthrottle retren failed !!!");
935 }
936 }
937
GetBinary(std::vector<uint8_t> &buf) const938 bool PerfRecordUnthrottle::GetBinary(std::vector<uint8_t> &buf) const
939 {
940 if (buf.size() < GetSize()) {
941 buf.resize(GetSize());
942 }
943
944 GetHeaderBinary(buf);
945 uint8_t *p = buf.data() + GetHeaderSize();
946
947 auto pDest = reinterpret_cast<PerfRecordThrottleData *>(p);
948 *pDest = data_;
949 return true;
950 }
DumpData(int indent) const951 void PerfRecordUnthrottle::DumpData(int indent) const
952 {
953 PRINT_INDENT(indent, "time 0x%llx, id %llx, stream_id %llx\n", data_.time, data_.id,
954 data_.stream_id);
955 }
956
PerfRecordFork(uint8_t *p)957 PerfRecordFork::PerfRecordFork(uint8_t *p) : PerfEventRecord(p, "fork")
958 {
959 size_t dataSize = GetSize();
960 if (dataSize >= sizeof(header)) {
961 size_t copySize = dataSize - sizeof(header);
962 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
963 HLOGE("memcpy_s retren failed !!!");
964 }
965 } else {
966 HLOGE("PerfRecordFork retren failed !!!");
967 }
968 }
969
GetBinary(std::vector<uint8_t> &buf) const970 bool PerfRecordFork::GetBinary(std::vector<uint8_t> &buf) const
971 {
972 if (buf.size() < GetSize()) {
973 buf.resize(GetSize());
974 }
975
976 GetHeaderBinary(buf);
977 uint8_t *p = buf.data() + GetHeaderSize();
978
979 auto pDest = reinterpret_cast<PerfRecordForkData *>(p);
980 *pDest = data_;
981 return true;
982 }
983
DumpData(int indent) const984 void PerfRecordFork::DumpData(int indent) const
985 {
986 PRINT_INDENT(indent, "pid %u, ppid %u, tid %u, ptid %u\n", data_.pid, data_.ppid, data_.tid,
987 data_.ptid);
988 }
989
PerfRecordRead(uint8_t *p)990 PerfRecordRead::PerfRecordRead(uint8_t *p) : PerfEventRecord(p, "read")
991 {
992 size_t dataSize = GetSize();
993 if (dataSize >= sizeof(header)) {
994 size_t copySize = dataSize - sizeof(header);
995 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
996 HLOGE("memcpy_s retren failed !!!");
997 }
998 } else {
999 HLOGE("PerfRecordRead retren failed !!!");
1000 }
1001 }
1002
GetBinary(std::vector<uint8_t> &buf) const1003 bool PerfRecordRead::GetBinary(std::vector<uint8_t> &buf) const
1004 {
1005 if (buf.size() < GetSize()) {
1006 buf.resize(GetSize());
1007 }
1008
1009 GetHeaderBinary(buf);
1010 uint8_t *p = buf.data() + GetHeaderSize();
1011
1012 auto pDest = reinterpret_cast<PerfRecordReadData *>(p);
1013 *pDest = data_;
1014 return true;
1015 }
1016
DumpData(int indent) const1017 void PerfRecordRead::DumpData(int indent) const
1018 {
1019 PRINT_INDENT(indent, "pid %u, tid %u\n", data_.pid, data_.tid);
1020 PRINT_INDENT(indent, "values: value %llx, timeEnabled %llx, timeRunning %llx, id %llx\n",
1021 data_.values.value, data_.values.timeEnabled, data_.values.timeRunning, data_.values.id);
1022 }
1023
PerfRecordAux(uint8_t *p)1024 PerfRecordAux::PerfRecordAux(uint8_t *p) : PerfEventRecord(p, "aux")
1025 {
1026 size_t dataSize = GetSize();
1027 if (dataSize >= sizeof(header)) {
1028 size_t copySize = dataSize - sizeof(header);
1029 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
1030 HLOGE("memcpy_s retren failed !!!");
1031 }
1032 } else {
1033 HLOGE("PerfRecordAux retren failed !!!");
1034 }
1035 }
1036
GetBinary(std::vector<uint8_t> &buf) const1037 bool PerfRecordAux::GetBinary(std::vector<uint8_t> &buf) const
1038 {
1039 if (buf.size() < GetSize()) {
1040 buf.resize(GetSize());
1041 }
1042
1043 GetHeaderBinary(buf);
1044 uint8_t *p = buf.data() + GetHeaderSize();
1045
1046 PushToBinary(true, p, data_.aux_offset);
1047 PushToBinary(true, p, data_.aux_size);
1048 PushToBinary(true, p, data_.flags);
1049 PushToBinary2(sampleType_ & PERF_SAMPLE_TID, p, data_.sample_id.pid, data_.sample_id.tid);
1050 PushToBinary(sampleType_ & PERF_SAMPLE_TIME, p, data_.sample_id.time);
1051 PushToBinary(sampleType_ & PERF_SAMPLE_ID, p, data_.sample_id.id);
1052 PushToBinary(sampleType_ & PERF_SAMPLE_STREAM_ID, p, data_.sample_id.stream_id);
1053
1054 PushToBinary2(sampleType_ & PERF_SAMPLE_CPU, p, data_.sample_id.cpu, data_.sample_id.res);
1055 PushToBinary(sampleType_ & PERF_SAMPLE_IDENTIFIER, p, data_.sample_id.id2);
1056 return true;
1057 }
1058
DumpData(int indent) const1059 void PerfRecordAux::DumpData(int indent) const
1060 {
1061 PRINT_INDENT(indent, "aux_offset 0x%llx aux_size 0x%llx flags 0x%llx pid %u tid %u time %llu",
1062 data_.aux_offset, data_.aux_size, data_.flags, data_.sample_id.pid, data_.sample_id.tid,
1063 data_.sample_id.time);
1064 }
1065
PerfRecordItraceStart(uint8_t *p)1066 PerfRecordItraceStart::PerfRecordItraceStart(uint8_t *p) : PerfEventRecord(p, "itraceStart")
1067 {
1068 size_t dataSize = GetSize();
1069 if (dataSize >= sizeof(header)) {
1070 size_t copySize = dataSize - sizeof(header);
1071 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
1072 HLOGE("memcpy_s retren failed !!!");
1073 }
1074 } else {
1075 HLOGE("PerfRecordItraceStart retren failed !!!");
1076 }
1077 }
1078
GetBinary(std::vector<uint8_t> &buf) const1079 bool PerfRecordItraceStart::GetBinary(std::vector<uint8_t> &buf) const
1080 {
1081 if (buf.size() < GetSize()) {
1082 buf.resize(GetSize());
1083 }
1084
1085 GetHeaderBinary(buf);
1086 uint8_t *p = buf.data() + GetHeaderSize();
1087
1088 auto pDest = reinterpret_cast<PerfRecordItraceStartData *>(p);
1089 *pDest = data_;
1090 return true;
1091 }
1092
DumpData(int indent) const1093 void PerfRecordItraceStart::DumpData(int indent) const
1094 {
1095 PRINT_INDENT(indent, "pid %u, tid %u\n", data_.pid, data_.tid);
1096 }
1097
PerfRecordLostSamples(uint8_t *p)1098 PerfRecordLostSamples::PerfRecordLostSamples(uint8_t *p) : PerfEventRecord(p, "lostSamples")
1099 {
1100 size_t dataSize = GetSize();
1101 if (dataSize >= sizeof(header)) {
1102 size_t copySize = dataSize - sizeof(header);
1103 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
1104 HLOGE("memcpy_s retren failed !!!");
1105 }
1106 } else {
1107 HLOGE("PerfRecordLostSamples retren failed !!!");
1108 }
1109 }
1110
GetBinary(std::vector<uint8_t> &buf) const1111 bool PerfRecordLostSamples::GetBinary(std::vector<uint8_t> &buf) const
1112 {
1113 if (buf.size() < GetSize()) {
1114 buf.resize(GetSize());
1115 }
1116
1117 GetHeaderBinary(buf);
1118 uint8_t *p = buf.data() + GetHeaderSize();
1119
1120 auto pDest = reinterpret_cast<PerfRecordLostSamplesData *>(p);
1121 *pDest = data_;
1122 return true;
1123 }
1124
DumpData(int indent) const1125 void PerfRecordLostSamples::DumpData(int indent) const
1126 {
1127 PRINT_INDENT(indent, "lost %llu\n", data_.lost);
1128 }
1129
PerfRecordSwitch(uint8_t *p)1130 PerfRecordSwitch::PerfRecordSwitch(uint8_t *p) : PerfEventRecord(p, "switch")
1131 {
1132 size_t dataSize = GetSize();
1133 if (dataSize >= sizeof(header)) {
1134 size_t copySize = dataSize - sizeof(header);
1135 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
1136 HLOGE("memcpy_s retren failed !!!");
1137 }
1138 } else {
1139 HLOGE("PerfRecordSwitch retren failed !!!");
1140 }
1141 }
1142
GetBinary(std::vector<uint8_t> &buf) const1143 bool PerfRecordSwitch::GetBinary(std::vector<uint8_t> &buf) const
1144 {
1145 if (buf.size() < GetSize()) {
1146 buf.resize(GetSize());
1147 }
1148
1149 GetHeaderBinary(buf);
1150 uint8_t *p = buf.data() + GetHeaderSize();
1151
1152 auto pDest = reinterpret_cast<PerfRecordSwitchData *>(p);
1153 *pDest = data_;
1154 return true;
1155 }
1156
PerfRecordSwitchCpuWide(uint8_t *p)1157 PerfRecordSwitchCpuWide::PerfRecordSwitchCpuWide(uint8_t *p) : PerfEventRecord(p, "switchCpuWide")
1158 {
1159 size_t dataSize = GetSize();
1160 if (dataSize >= sizeof(header)) {
1161 size_t copySize = dataSize - sizeof(header);
1162 if (memcpy_s(reinterpret_cast<uint8_t *>(&data_), sizeof(data_), p + sizeof(header), copySize) != 0) {
1163 HLOGE("memcpy_s retren failed !!!");
1164 }
1165 } else {
1166 HLOGE("PerfRecordSwitchCpuWide retren failed !!!");
1167 }
1168 }
1169
GetBinary(std::vector<uint8_t> &buf) const1170 bool PerfRecordSwitchCpuWide::GetBinary(std::vector<uint8_t> &buf) const
1171 {
1172 if (buf.size() < GetSize()) {
1173 buf.resize(GetSize());
1174 }
1175
1176 GetHeaderBinary(buf);
1177 uint8_t *p = buf.data() + GetHeaderSize();
1178
1179 auto pDest = reinterpret_cast<PerfRecordSwitchCpuWideData *>(p);
1180 *pDest = data_;
1181 return true;
1182 }
1183
DumpData(int indent) const1184 void PerfRecordSwitchCpuWide::DumpData(int indent) const
1185 {
1186 PRINT_INDENT(indent, "next_prev_pid %u, next_prev_tid %u\n", data_.next_prev_pid,
1187 data_.next_prev_tid);
1188 }
1189
GetUstackServerPid()1190 pid_t PerfRecordSample::GetUstackServerPid()
1191 {
1192 if (!data_.server_nr) {
1193 return data_.pid;
1194 }
1195
1196 size_t currServer = 0;
1197 // ipNr == 1...nr: server_pid of data_.ips[nr]
1198 for (size_t i = 0; i < data_.nr; i++) {
1199 // context change, use next server pid
1200 if (data_.ips[i] >= PERF_CONTEXT_MAX) {
1201 currServer++;
1202 }
1203 }
1204 // ipNr == nr + 1: server_pid of ustack
1205 if (currServer > 0) {
1206 currServer++;
1207 }
1208 if (currServer >= data_.server_nr) {
1209 HLOGE("ustack server pid nr %zu out of range", currServer);
1210 return data_.pid;
1211 }
1212
1213 // return server pid
1214 return data_.server_pids[currServer];
1215 }
1216
GetServerPidof(unsigned int ipNr)1217 pid_t PerfRecordSample::GetServerPidof(unsigned int ipNr)
1218 {
1219 if (!data_.server_nr) {
1220 return data_.pid;
1221 }
1222
1223 // init serverPidMap_
1224 if (!serverPidMap_.size()) {
1225 size_t currServer = 0;
1226 // ipNr == 0: server_pid of data_.ip
1227 serverPidMap_.emplace_back(data_.server_pids[currServer]);
1228 // ipNr == 1...nr: server_pid of data_.ips[nr]
1229 for (size_t i = 1; i < data_.nr; i++) {
1230 // context change, use next server pid
1231 if (data_.ips[i] >= PERF_CONTEXT_MAX) {
1232 currServer++;
1233 }
1234 if (currServer >= data_.server_nr) {
1235 HLOGE("callchain server pid nr %zu out of range", currServer);
1236 break;
1237 }
1238 serverPidMap_.emplace_back(data_.server_pids[currServer]);
1239 }
1240 }
1241
1242 // return server pid
1243 if (ipNr >= serverPidMap_.size()) {
1244 return data_.pid;
1245 } else {
1246 return serverPidMap_[ipNr];
1247 }
1248 }
1249 } // namespace HiPerf
1250 } // namespace Developtools
1251 } // namespace OHOS
1252