1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "task_manager.h"
17 
18 #include <cinttypes>
19 #include <securec.h>
20 #include <thread>
21 
22 #if defined(ENABLE_TASKPOOL_FFRT)
23 #include "bundle_info.h"
24 #include "bundle_mgr_interface.h"
25 #include "bundle_mgr_proxy.h"
26 #include "c/executor_task.h"
27 #include "ffrt_inner.h"
28 #include "iservice_registry.h"
29 #include "parameters.h"
30 #include "status_receiver_interface.h"
31 #include "system_ability_definition.h"
32 #endif
33 #include "commonlibrary/ets_utils/js_sys_module/timer/timer.h"
34 #include "helper/concurrent_helper.h"
35 #include "helper/error_helper.h"
36 #include "helper/hitrace_helper.h"
37 #include "taskpool.h"
38 #include "tools/log.h"
39 #include "worker.h"
40 
41 namespace Commonlibrary::Concurrent::TaskPoolModule {
42 using namespace OHOS::JsSysModule;
43 
44 static constexpr int8_t HIGH_PRIORITY_TASK_COUNT = 5;
45 static constexpr int8_t MEDIUM_PRIORITY_TASK_COUNT = 5;
46 static constexpr int32_t MAX_TASK_DURATION = 100; // 100: 100ms
47 static constexpr uint32_t STEP_SIZE = 2;
48 static constexpr uint32_t DEFAULT_THREADS = 3;
49 static constexpr uint32_t DEFAULT_MIN_THREADS = 1; // 1: minimum thread num when idle
50 static constexpr uint32_t MIN_TIMEOUT_TIME = 180000; // 180000: 3min
51 static constexpr uint32_t MAX_TIMEOUT_TIME = 600000; // 600000: 10min
52 static constexpr int32_t MAX_IDLE_TIME = 30000; // 30000: 30s
53 static constexpr uint32_t TRIGGER_INTERVAL = 30000; // 30000: 30s
54 static constexpr uint32_t SHRINK_STEP = 4; // 4: try to release 4 threads every time
55 [[maybe_unused]] static constexpr uint32_t IDLE_THRESHOLD = 2; // 2: 2 intervals later will release the thread
56 
57 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
58 static const std::map<Priority, OHOS::AppExecFwk::EventQueue::Priority> TASK_EVENTHANDLER_PRIORITY_MAP = {
59     {Priority::IDLE, OHOS::AppExecFwk::EventQueue::Priority::IDLE},
60     {Priority::LOW, OHOS::AppExecFwk::EventQueue::Priority::LOW},
61     {Priority::MEDIUM, OHOS::AppExecFwk::EventQueue::Priority::HIGH},
62     {Priority::HIGH, OHOS::AppExecFwk::EventQueue::Priority::IMMEDIATE},
63 };
64 #endif
65 
66 // ----------------------------------- TaskManager ----------------------------------------
GetInstance()67 TaskManager& TaskManager::GetInstance()
68 {
69     static TaskManager manager;
70     return manager;
71 }
72 
TaskManager()73 TaskManager::TaskManager()
74 {
75     for (size_t i = 0; i < taskQueues_.size(); i++) {
76         std::unique_ptr<ExecuteQueue> taskQueue = std::make_unique<ExecuteQueue>();
77         taskQueues_[i] = std::move(taskQueue);
78     }
79 }
80 
~TaskManager()81 TaskManager::~TaskManager()
82 {
83     HILOG_INFO("taskpool:: ~TaskManager");
84     if (timer_ == nullptr) {
85         HILOG_ERROR("taskpool:: timer_ is nullptr");
86     } else {
87         uv_timer_stop(timer_);
88         ConcurrentHelper::UvHandleClose(timer_);
89         ConcurrentHelper::UvHandleClose(expandHandle_);
90     }
91 
92     if (loop_ != nullptr) {
93         uv_stop(loop_);
94     }
95 
96     {
97         std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
98         for (auto& worker : workers_) {
99             delete worker;
100         }
101         workers_.clear();
102     }
103 
104     {
105         std::lock_guard<std::mutex> lock(callbackMutex_);
106         for (auto& [_, callbackPtr] : callbackTable_) {
107             if (callbackPtr == nullptr) {
108                 continue;
109             }
110             callbackPtr.reset();
111         }
112         callbackTable_.clear();
113     }
114 
115     {
116         std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
117         for (auto& [_, task] : tasks_) {
118             delete task;
119             task = nullptr;
120         }
121         tasks_.clear();
122     }
123     CountTraceForWorker();
124 }
125 
CountTraceForWorker()126 void TaskManager::CountTraceForWorker()
127 {
128     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
129     int64_t threadNum = static_cast<int64_t>(workers_.size());
130     int64_t idleWorkers = static_cast<int64_t>(idleWorkers_.size());
131     int64_t timeoutWorkers = static_cast<int64_t>(timeoutWorkers_.size());
132     HITRACE_HELPER_COUNT_TRACE("timeoutThreadNum", timeoutWorkers);
133     HITRACE_HELPER_COUNT_TRACE("threadNum", threadNum);
134     HITRACE_HELPER_COUNT_TRACE("runningThreadNum", threadNum - idleWorkers);
135     HITRACE_HELPER_COUNT_TRACE("idleThreadNum", idleWorkers);
136 }
137 
GetThreadInfos(napi_env env)138 napi_value TaskManager::GetThreadInfos(napi_env env)
139 {
140     napi_value threadInfos = nullptr;
141     napi_create_array(env, &threadInfos);
142     {
143         std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
144         int32_t i = 0;
145         for (auto& worker : workers_) {
146             if (worker->workerEnv_ == nullptr) {
147                 continue;
148             }
149             napi_value tid = NapiHelper::CreateUint32(env, static_cast<uint32_t>(worker->tid_));
150             napi_value priority = NapiHelper::CreateUint32(env, static_cast<uint32_t>(worker->priority_));
151 
152             napi_value taskId = nullptr;
153             napi_create_array(env, &taskId);
154             int32_t j = 0;
155             {
156                 std::lock_guard<std::mutex> lock(worker->currentTaskIdMutex_);
157                 for (auto& currentId : worker->currentTaskId_) {
158                     napi_value id = NapiHelper::CreateUint32(env, currentId);
159                     napi_set_element(env, taskId, j, id);
160                     j++;
161                 }
162             }
163             napi_value threadInfo = nullptr;
164             napi_create_object(env, &threadInfo);
165             napi_set_named_property(env, threadInfo, "tid", tid);
166             napi_set_named_property(env, threadInfo, "priority", priority);
167             napi_set_named_property(env, threadInfo, "taskIds", taskId);
168             napi_set_element(env, threadInfos, i, threadInfo);
169             i++;
170         }
171     }
172     return threadInfos;
173 }
174 
GetTaskInfos(napi_env env)175 napi_value TaskManager::GetTaskInfos(napi_env env)
176 {
177     napi_value taskInfos = nullptr;
178     napi_create_array(env, &taskInfos);
179     {
180         std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
181         int32_t i = 0;
182         for (const auto& [_, task] : tasks_) {
183             if (task->taskState_ == ExecuteState::NOT_FOUND || task->taskState_ == ExecuteState::DELAYED ||
184                 task->taskState_ == ExecuteState::FINISHED) {
185                 continue;
186             }
187             napi_value taskInfoValue = NapiHelper::CreateObject(env);
188             std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
189             napi_value taskId = NapiHelper::CreateUint32(env, task->taskId_);
190             napi_value name = nullptr;
191             napi_create_string_utf8(env, task->name_.c_str(), task->name_.size(), &name);
192             napi_set_named_property(env, taskInfoValue, "name", name);
193             ExecuteState state = task->taskState_;
194             uint64_t duration = 0;
195             if (state == ExecuteState::RUNNING || state == ExecuteState::ENDING) {
196                 duration = ConcurrentHelper::GetMilliseconds() - task->startTime_;
197             }
198             napi_value stateValue = NapiHelper::CreateUint32(env, static_cast<uint32_t>(state));
199             napi_set_named_property(env, taskInfoValue, "taskId", taskId);
200             napi_set_named_property(env, taskInfoValue, "state", stateValue);
201             napi_value durationValue = NapiHelper::CreateUint32(env, duration);
202             napi_set_named_property(env, taskInfoValue, "duration", durationValue);
203             napi_set_element(env, taskInfos, i, taskInfoValue);
204             i++;
205         }
206     }
207     return taskInfos;
208 }
209 
UpdateExecutedInfo(uint64_t duration)210 void TaskManager::UpdateExecutedInfo(uint64_t duration)
211 {
212     totalExecTime_ += duration;
213     totalExecCount_++;
214 }
215 
ComputeSuitableThreadNum()216 uint32_t TaskManager::ComputeSuitableThreadNum()
217 {
218     uint32_t targetNum = ComputeSuitableIdleNum() + GetRunningWorkers();
219     return targetNum;
220 }
221 
ComputeSuitableIdleNum()222 uint32_t TaskManager::ComputeSuitableIdleNum()
223 {
224     uint32_t targetNum = 0;
225     if (GetNonIdleTaskNum() != 0 && totalExecCount_ == 0) {
226         // this branch is used for avoiding time-consuming tasks that may block the taskpool
227         targetNum = std::min(STEP_SIZE, GetNonIdleTaskNum());
228     } else if (totalExecCount_ != 0) {
229         auto durationPerTask = static_cast<double>(totalExecTime_) / totalExecCount_;
230         uint32_t result = std::ceil(durationPerTask * GetNonIdleTaskNum() / MAX_TASK_DURATION);
231         targetNum = std::min(result, GetNonIdleTaskNum());
232     }
233     return targetNum;
234 }
235 
CheckForBlockedWorkers()236 void TaskManager::CheckForBlockedWorkers()
237 {
238     // the threshold will be dynamically modified to provide more flexibility in detecting exceptions
239     // if the thread num has reached the limit and the idle worker is not available, a short time will be used,
240     // else we will choose the longer one
241     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
242     bool needChecking = false;
243     bool state = (GetThreadNum() == ConcurrentHelper::GetMaxThreads()) && (GetIdleWorkers() == 0);
244     uint64_t threshold = state ? MIN_TIMEOUT_TIME : MAX_TIMEOUT_TIME;
245     for (auto iter = workers_.begin(); iter != workers_.end(); iter++) {
246         auto worker = *iter;
247         // if the worker thread is idle, just skip it, and only the worker in running state can be marked as timeout
248         // if the worker is executing the longTask, we will not do the check
249         if ((worker->state_ == WorkerState::IDLE) || (worker->IsExecutingLongTask()) ||
250             (ConcurrentHelper::GetMilliseconds() - worker->startTime_ < threshold) ||
251             !worker->UpdateWorkerState(WorkerState::RUNNING, WorkerState::BLOCKED)) {
252             continue;
253         }
254         // When executing the promise task, the worker state may not be updated and will be
255         // marked as 'BLOCKED', so we should exclude this situation.
256         // Besides, if the worker is not executing sync tasks or micro tasks, it may handle
257         // the task like I/O in uv threads, we should also exclude this situation.
258         auto workerEngine = reinterpret_cast<NativeEngine*>(worker->workerEnv_);
259         if (worker->idleState_ && !workerEngine->IsExecutingPendingJob()) {
260             if (!workerEngine->HasWaitingRequest()) {
261                 worker->UpdateWorkerState(WorkerState::BLOCKED, WorkerState::IDLE);
262             } else {
263                 worker->UpdateWorkerState(WorkerState::BLOCKED, WorkerState::RUNNING);
264                 worker->startTime_ = ConcurrentHelper::GetMilliseconds();
265             }
266             continue;
267         }
268 
269         HILOG_INFO("taskpool:: The worker has been marked as timeout.");
270         // If the current worker has a longTask and is not executing, we will only interrupt it.
271         if (worker->HasLongTask()) {
272             continue;
273         }
274         needChecking = true;
275         idleWorkers_.erase(worker);
276         timeoutWorkers_.insert(worker);
277     }
278     // should trigger the check when we have marked and removed workers
279     if (UNLIKELY(needChecking)) {
280         TryExpand();
281     }
282 }
283 
TryTriggerExpand()284 void TaskManager::TryTriggerExpand()
285 {
286     // post the signal to notify the monitor thread to expand
287     if (UNLIKELY(!isHandleInited_)) {
288         NotifyExecuteTask();
289         needChecking_ = true;
290         HILOG_DEBUG("taskpool:: the expandHandle_ is nullptr");
291         return;
292     }
293     uv_async_send(expandHandle_);
294 }
295 
296 #if defined(OHOS_PLATFORM)
297 // read /proc/[pid]/task/[tid]/stat to get the number of idle threads.
ReadThreadInfo(pid_t tid, char* buf, uint32_t size)298 bool TaskManager::ReadThreadInfo(pid_t tid, char* buf, uint32_t size)
299 {
300     char path[128]; // 128: buffer for path
301     pid_t pid = getpid();
302     ssize_t bytesLen = -1;
303     int ret = snprintf_s(path, sizeof(path), sizeof(path) - 1, "/proc/%d/task/%d/stat", pid, tid);
304     if (ret < 0) {
305         HILOG_ERROR("snprintf_s failed");
306         return false;
307     }
308     int fd = open(path, O_RDONLY | O_NONBLOCK);
309     if (UNLIKELY(fd == -1)) {
310         return false;
311     }
312     bytesLen = read(fd, buf, size - 1);
313     close(fd);
314     if (bytesLen <= 0) {
315         HILOG_ERROR("taskpool:: failed to read %{public}s", path);
316         return false;
317     }
318     buf[bytesLen] = '\0';
319     return true;
320 }
321 
GetIdleWorkers()322 uint32_t TaskManager::GetIdleWorkers()
323 {
324     char buf[4096]; // 4096: buffer for thread info
325     uint32_t idleCount = 0;
326     std::unordered_set<pid_t> tids {};
327     {
328         std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
329         for (auto& worker : idleWorkers_) {
330 #if defined(ENABLE_TASKPOOL_FFRT)
331             if (worker->ffrtTaskHandle_ != nullptr) {
332                 if (worker->GetWaitTime() > 0) {
333                     idleCount++;
334                 }
335                 continue;
336             }
337 #endif
338             tids.emplace(worker->tid_);
339         }
340     }
341     // The ffrt thread does not read thread info
342     for (auto tid : tids) {
343         if (!ReadThreadInfo(tid, buf, sizeof(buf))) {
344             continue;
345         }
346         char state;
347         if (sscanf_s(buf, "%*d %*s %c", &state, sizeof(state)) != 1) { // 1: state
348             HILOG_ERROR("taskpool: sscanf_s of state failed for %{public}c", state);
349             return 0;
350         }
351         if (state == 'S') {
352             idleCount++;
353         }
354     }
355     return idleCount;
356 }
357 
GetIdleWorkersList(uint32_t step)358 void TaskManager::GetIdleWorkersList(uint32_t step)
359 {
360     char buf[4096]; // 4096: buffer for thread info
361     for (auto& worker : idleWorkers_) {
362 #if defined(ENABLE_TASKPOOL_FFRT)
363         if (worker->ffrtTaskHandle_ != nullptr) {
364             uint64_t workerWaitTime = worker->GetWaitTime();
365             bool isWorkerLoopActive = worker->IsLoopActive();
366             if (workerWaitTime == 0) {
367                 continue;
368             }
369             uint64_t currTime = static_cast<uint64_t>(std::chrono::duration_cast<std::chrono::seconds>(
370                 std::chrono::steady_clock::now().time_since_epoch()).count());
371             if (!isWorkerLoopActive) {
372                 freeList_.emplace_back(worker);
373             } else if ((currTime - workerWaitTime) > IDLE_THRESHOLD * TRIGGER_INTERVAL) {
374                 freeList_.emplace_back(worker);
375                 HILOG_INFO("taskpool:: worker in ffrt epoll wait more than 2 intervals, force to free.");
376             } else {
377                 // worker uv alive, and will be free in 2 intervals if not wake
378                 HILOG_INFO("taskpool:: worker will be free if not wake.");
379             }
380             continue;
381         }
382 #endif
383         if (!ReadThreadInfo(worker->tid_, buf, sizeof(buf))) {
384             continue;
385         }
386         char state;
387         uint64_t utime;
388         if (sscanf_s(buf, "%*d %*s %c %*d %*d %*d %*d %*d %*u %*lu %*lu %*lu %*lu %llu",
389             &state, sizeof(state), &utime) != 2) { // 2: state and utime
390             HILOG_ERROR("taskpool: sscanf_s of state failed for %{public}d", worker->tid_);
391             return;
392         }
393         if (state != 'S' || utime != worker->lastCpuTime_) {
394             worker->idleCount_ = 0;
395             worker->lastCpuTime_ = utime;
396             continue;
397         }
398         if (++worker->idleCount_ >= IDLE_THRESHOLD) {
399             freeList_.emplace_back(worker);
400         }
401     }
402 }
403 
TriggerShrink(uint32_t step)404 void TaskManager::TriggerShrink(uint32_t step)
405 {
406     GetIdleWorkersList(step);
407     step = std::min(step, static_cast<uint32_t>(freeList_.size()));
408     uint32_t count = 0;
409     for (size_t i = 0; i < freeList_.size(); i++) {
410         auto worker = freeList_[i];
411         if (worker->state_ != WorkerState::IDLE || worker->HasLongTask()) {
412             continue;
413         }
414         auto idleTime = ConcurrentHelper::GetMilliseconds() - worker->idlePoint_;
415         if (idleTime < MAX_IDLE_TIME || worker->HasRunningTasks()) {
416             continue;
417         }
418         idleWorkers_.erase(worker);
419         HILOG_DEBUG("taskpool:: try to release idle thread: %{public}d", worker->tid_);
420         worker->PostReleaseSignal();
421         if (++count == step) {
422             break;
423         }
424     }
425     freeList_.clear();
426 }
427 #else
GetIdleWorkers()428 uint32_t TaskManager::GetIdleWorkers()
429 {
430     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
431     return idleWorkers_.size();
432 }
433 
TriggerShrink(uint32_t step)434 void TaskManager::TriggerShrink(uint32_t step)
435 {
436     for (uint32_t i = 0; i < step; i++) {
437         // try to free the worker that idle time meets the requirement
438         auto iter = std::find_if(idleWorkers_.begin(), idleWorkers_.end(), [](Worker *worker) {
439             auto idleTime = ConcurrentHelper::GetMilliseconds() - worker->idlePoint_;
440             return idleTime > MAX_IDLE_TIME && !worker->HasRunningTasks() && !worker->HasLongTask();
441         });
442         // remove it from all sets
443         if (iter != idleWorkers_.end()) {
444             auto worker = *iter;
445             idleWorkers_.erase(worker);
446             HILOG_DEBUG("taskpool:: try to release idle thread: %{public}d", worker->tid_);
447             worker->PostReleaseSignal();
448         }
449     }
450 }
451 #endif
452 
NotifyShrink(uint32_t targetNum)453 void TaskManager::NotifyShrink(uint32_t targetNum)
454 {
455     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
456     uint32_t workerCount = workers_.size();
457     uint32_t minThread = ConcurrentHelper::IsLowMemory() ? 0 : DEFAULT_MIN_THREADS;
458     if (minThread == 0) {
459         HILOG_INFO("taskpool:: the system now is under low memory");
460     }
461     if (workerCount > minThread && workerCount > targetNum) {
462         targetNum = std::max(minThread, targetNum);
463         uint32_t step = std::min(workerCount - targetNum, SHRINK_STEP);
464         TriggerShrink(step);
465     }
466     // remove all timeout workers
467     for (auto iter = timeoutWorkers_.begin(); iter != timeoutWorkers_.end();) {
468         auto worker = *iter;
469         if (workers_.find(worker) == workers_.end()) {
470             HILOG_WARN("taskpool:: current worker maybe release");
471             iter = timeoutWorkers_.erase(iter);
472         } else if (!worker->HasRunningTasks()) {
473             HILOG_DEBUG("taskpool:: try to release timeout thread: %{public}d", worker->tid_);
474             worker->PostReleaseSignal();
475             timeoutWorkers_.erase(iter++);
476             return;
477         } else {
478             iter++;
479         }
480     }
481     uint32_t idleNum = idleWorkers_.size();
482     // System memory state is moderate and the worker has exeuted tasks, we will try to release it
483     if (ConcurrentHelper::IsModerateMemory() && workerCount == idleNum && workerCount == DEFAULT_MIN_THREADS) {
484         auto worker = *(idleWorkers_.begin());
485         // worker that has longTask should not be released
486         if (worker == nullptr || worker->HasLongTask()) {
487             return;
488         }
489         if (worker->hasExecuted_) { // worker that hasn't execute any tasks should not be released
490             TriggerShrink(DEFAULT_MIN_THREADS);
491             return;
492         }
493     }
494 
495     // Create a worker for performance
496     if (!ConcurrentHelper::IsLowMemory() && workers_.empty()) {
497         CreateWorkers(hostEnv_);
498     }
499     // stop the timer
500     if ((workerCount == idleNum && workerCount <= minThread) && timeoutWorkers_.empty()) {
501         suspend_ = true;
502         uv_timer_stop(timer_);
503         HILOG_DEBUG("taskpool:: timer will be suspended");
504     }
505 }
506 
TriggerLoadBalance(const uv_timer_t* req)507 void TaskManager::TriggerLoadBalance(const uv_timer_t* req)
508 {
509     TaskManager& taskManager = TaskManager::GetInstance();
510     taskManager.CheckForBlockedWorkers();
511     uint32_t targetNum = taskManager.ComputeSuitableThreadNum();
512     taskManager.NotifyShrink(targetNum);
513     taskManager.CountTraceForWorker();
514 }
515 
TryExpand()516 void TaskManager::TryExpand()
517 {
518     // dispatch task in the TaskPoolManager thread
519     NotifyExecuteTask();
520     // do not trigger when there are more idleWorkers than tasks
521     uint32_t idleNum = GetIdleWorkers();
522     if (idleNum > GetNonIdleTaskNum()) {
523         return;
524     }
525     needChecking_ = false; // do not need to check
526     uint32_t targetNum = ComputeSuitableIdleNum();
527     uint32_t workerCount = 0;
528     uint32_t idleCount = 0;
529     uint32_t timeoutWorkers = 0;
530     {
531         std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
532         idleCount = idleWorkers_.size();
533         workerCount = workers_.size();
534         timeoutWorkers = timeoutWorkers_.size();
535     }
536     uint32_t maxThreads = std::max(ConcurrentHelper::GetMaxThreads(), DEFAULT_THREADS);
537     maxThreads = (timeoutWorkers == 0) ? maxThreads : maxThreads + 2; // 2: extra threads
538     if (workerCount < maxThreads && idleCount < targetNum) {
539         uint32_t step = std::min(maxThreads, targetNum) - idleCount;
540         // Prevent the total number of expanded threads from exceeding maxThreads
541         if (step + workerCount > maxThreads) {
542             step = maxThreads - workerCount;
543         }
544         CreateWorkers(hostEnv_, step);
545         HILOG_INFO("taskpool:: maxThreads: %{public}u, created num: %{public}u, total num: %{public}u",
546             maxThreads, step, GetThreadNum());
547     }
548     if (UNLIKELY(suspend_)) {
549         suspend_ = false;
550         uv_timer_again(timer_);
551     }
552 }
553 
NotifyExpand(const uv_async_t* req)554 void TaskManager::NotifyExpand(const uv_async_t* req)
555 {
556     TaskManager& taskManager = TaskManager::GetInstance();
557     taskManager.TryExpand();
558 }
559 
RunTaskManager()560 void TaskManager::RunTaskManager()
561 {
562     loop_ = uv_loop_new();
563     if (loop_ == nullptr) { // LCOV_EXCL_BR_LINE
564         HILOG_FATAL("taskpool:: new loop failed.");
565         return;
566     }
567     ConcurrentHelper::UvHandleInit(loop_, expandHandle_, TaskManager::NotifyExpand);
568     timer_ = new uv_timer_t;
569     uv_timer_init(loop_, timer_);
570     uv_timer_start(timer_, reinterpret_cast<uv_timer_cb>(TaskManager::TriggerLoadBalance), 0, TRIGGER_INTERVAL);
571     isHandleInited_ = true;
572 #if defined IOS_PLATFORM || defined MAC_PLATFORM
573     pthread_setname_np("OS_TaskManager");
574 #else
575     pthread_setname_np(pthread_self(), "OS_TaskManager");
576 #endif
577     if (UNLIKELY(needChecking_)) {
578         needChecking_ = false;
579         uv_async_send(expandHandle_);
580     }
581     uv_run(loop_, UV_RUN_DEFAULT);
582     if (loop_ != nullptr) {
583         uv_loop_delete(loop_);
584     }
585 }
586 
CancelTask(napi_env env, uint64_t taskId)587 void TaskManager::CancelTask(napi_env env, uint64_t taskId)
588 {
589     // 1. Cannot find taskInfo by executeId, throw error
590     // 2. Find executing taskInfo, skip it
591     // 3. Find waiting taskInfo, cancel it
592     // 4. Find canceled taskInfo, skip it
593     std::string strTrace = "CancelTask: taskId: " + std::to_string(taskId);
594     HILOG_INFO("taskpool:: %{public}s", strTrace.c_str());
595     HITRACE_HELPER_METER_NAME(strTrace);
596     Task* task = GetTask(taskId);
597     if (task == nullptr) {
598         std::string errMsg = "taskpool:: the task may not exist";
599         HILOG_ERROR("%{public}s", errMsg.c_str());
600         ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
601         return;
602     }
603     if (task->taskState_ == ExecuteState::CANCELED) {
604         HILOG_DEBUG("taskpool:: task has been canceled");
605         return;
606     }
607     std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
608     if (task->IsPeriodicTask()) {
609         task->CancelPendingTask(env);
610         uv_timer_stop(task->timer_);
611         uv_close(reinterpret_cast<uv_handle_t*>(task->timer_), [](uv_handle_t* handle) {
612             delete (uv_timer_t*)handle;
613             handle = nullptr;
614         });
615         return;
616     } else if (task->IsSeqRunnerTask()) {
617         CancelSeqRunnerTask(env, task);
618         return;
619     }
620     if ((task->currentTaskInfo_ == nullptr && task->taskState_ != ExecuteState::DELAYED) ||
621         task->taskState_ == ExecuteState::NOT_FOUND || task->taskState_ == ExecuteState::FINISHED ||
622         task->taskState_ == ExecuteState::ENDING) {
623         std::string errMsg = "taskpool:: task is not executed or has been executed";
624         HILOG_ERROR("%{public}s", errMsg.c_str());
625         ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
626         return;
627     }
628 
629     task->ClearDelayedTimers();
630     ExecuteState state = task->taskState_.exchange(ExecuteState::CANCELED);
631     task->CancelPendingTask(env);
632     if (state == ExecuteState::WAITING && task->currentTaskInfo_ != nullptr) {
633         reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
634         task->DecreaseTaskRefCount();
635         EraseWaitingTaskId(task->taskId_, task->currentTaskInfo_->priority);
636         napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: task has been canceled");
637         napi_reject_deferred(env, task->currentTaskInfo_->deferred, error);
638         napi_reference_unref(env, task->taskRef_, nullptr);
639         delete task->currentTaskInfo_;
640         task->currentTaskInfo_ = nullptr;
641     }
642 }
643 
CancelSeqRunnerTask(napi_env env, Task *task)644 void TaskManager::CancelSeqRunnerTask(napi_env env, Task *task)
645 {
646     if (task->taskState_ == ExecuteState::FINISHED) {
647         std::string errMsg = "taskpool:: sequenceRunner task has been executed";
648         HILOG_ERROR("%{public}s", errMsg.c_str());
649         ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
650     } else {
651         task->taskState_ = ExecuteState::CANCELED;
652     }
653 }
654 
NotifyWorkerIdle(Worker* worker)655 void TaskManager::NotifyWorkerIdle(Worker* worker)
656 {
657     {
658         std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
659         if (worker->state_ == WorkerState::BLOCKED) {
660             return;
661         }
662         idleWorkers_.insert(worker);
663     }
664     if (GetTaskNum() != 0) {
665         NotifyExecuteTask();
666     }
667     CountTraceForWorker();
668 }
669 
NotifyWorkerCreated(Worker* worker)670 void TaskManager::NotifyWorkerCreated(Worker* worker)
671 {
672     NotifyWorkerIdle(worker);
673 }
674 
NotifyWorkerAdded(Worker* worker)675 void TaskManager::NotifyWorkerAdded(Worker* worker)
676 {
677     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
678     workers_.insert(worker);
679     HILOG_DEBUG("taskpool:: a new worker has been added and the current num is %{public}zu", workers_.size());
680 }
681 
NotifyWorkerRunning(Worker* worker)682 void TaskManager::NotifyWorkerRunning(Worker* worker)
683 {
684     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
685     idleWorkers_.erase(worker);
686     CountTraceForWorker();
687 }
688 
GetRunningWorkers()689 uint32_t TaskManager::GetRunningWorkers()
690 {
691     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
692     return std::count_if(workers_.begin(), workers_.end(), [](const auto& worker) {
693         return worker->HasRunningTasks();
694     });
695 }
696 
GetTimeoutWorkers()697 uint32_t TaskManager::GetTimeoutWorkers()
698 {
699     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
700     return timeoutWorkers_.size();
701 }
702 
GetTaskNum()703 uint32_t TaskManager::GetTaskNum()
704 {
705     std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
706     uint32_t sum = 0;
707     for (const auto& elements : taskQueues_) {
708         sum += elements->GetTaskNum();
709     }
710     return sum;
711 }
712 
GetNonIdleTaskNum()713 uint32_t TaskManager::GetNonIdleTaskNum()
714 {
715     return nonIdleTaskNum_;
716 }
717 
IncreaseNumIfNoIdle(Priority priority)718 void TaskManager::IncreaseNumIfNoIdle(Priority priority)
719 {
720     if (priority != Priority::IDLE) {
721         ++nonIdleTaskNum_;
722     }
723 }
724 
DecreaseNumIfNoIdle(Priority priority)725 void TaskManager::DecreaseNumIfNoIdle(Priority priority)
726 {
727     if (priority != Priority::IDLE) {
728         --nonIdleTaskNum_;
729     }
730 }
731 
GetThreadNum()732 uint32_t TaskManager::GetThreadNum()
733 {
734     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
735     return workers_.size();
736 }
737 
EnqueueTaskId(uint64_t taskId, Priority priority)738 void TaskManager::EnqueueTaskId(uint64_t taskId, Priority priority)
739 {
740     {
741         std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
742         IncreaseNumIfNoIdle(priority);
743         taskQueues_[priority]->EnqueueTaskId(taskId);
744     }
745     TryTriggerExpand();
746     Task* task = GetTask(taskId);
747     if (task == nullptr) {
748         HILOG_FATAL("taskpool:: task is nullptr");
749         return;
750     }
751     task->IncreaseTaskRefCount();
752     if (task->onEnqueuedCallBackInfo_ != nullptr) {
753         task->ExecuteListenerCallback(task->onEnqueuedCallBackInfo_);
754     }
755 }
756 
EraseWaitingTaskId(uint64_t taskId, Priority priority)757 void TaskManager::EraseWaitingTaskId(uint64_t taskId, Priority priority)
758 {
759     std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
760     if (!taskQueues_[priority]->EraseWaitingTaskId(taskId)) {
761         HILOG_WARN("taskpool:: taskId is not in executeQueue when cancel");
762     }
763 }
764 
DequeueTaskId()765 std::pair<uint64_t, Priority> TaskManager::DequeueTaskId()
766 {
767     std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
768     auto& highTaskQueue = taskQueues_[Priority::HIGH];
769     if (!highTaskQueue->IsEmpty() && highPrioExecuteCount_ < HIGH_PRIORITY_TASK_COUNT) {
770         highPrioExecuteCount_++;
771         return GetTaskByPriority(highTaskQueue, Priority::HIGH);
772     }
773     highPrioExecuteCount_ = 0;
774 
775     auto& mediumTaskQueue = taskQueues_[Priority::MEDIUM];
776     if (!mediumTaskQueue->IsEmpty() && mediumPrioExecuteCount_ < MEDIUM_PRIORITY_TASK_COUNT) {
777         mediumPrioExecuteCount_++;
778         return GetTaskByPriority(mediumTaskQueue, Priority::MEDIUM);
779     }
780     mediumPrioExecuteCount_ = 0;
781 
782     auto& lowTaskQueue = taskQueues_[Priority::LOW];
783     if (!lowTaskQueue->IsEmpty()) {
784         return GetTaskByPriority(lowTaskQueue, Priority::LOW);
785     }
786 
787     auto& idleTaskQueue = taskQueues_[Priority::IDLE];
788     if (highTaskQueue->IsEmpty() && mediumTaskQueue->IsEmpty() && !idleTaskQueue->IsEmpty() && IsChooseIdle()) {
789         return GetTaskByPriority(idleTaskQueue, Priority::IDLE);
790     }
791     return std::make_pair(0, Priority::LOW);
792 }
793 
IsChooseIdle()794 bool TaskManager::IsChooseIdle()
795 {
796     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
797     for (auto& worker : workers_) {
798         if (worker->state_ == WorkerState::IDLE) {
799             // If worker->state_ is WorkerState::IDLE, it means that the worker is free
800             continue;
801         }
802         // If there is a worker running a task, do not take the idle task.
803         return false;
804     }
805     // Only when all workers are free, will idle task be taken.
806     return true;
807 }
808 
GetTaskByPriority(const std::unique_ptr<ExecuteQueue>& taskQueue, Priority priority)809 std::pair<uint64_t, Priority> TaskManager::GetTaskByPriority(const std::unique_ptr<ExecuteQueue>& taskQueue,
810     Priority priority)
811 {
812     uint64_t taskId = taskQueue->DequeueTaskId();
813     if (IsDependendByTaskId(taskId)) {
814         EnqueuePendingTaskInfo(taskId, priority);
815         return std::make_pair(0, priority);
816     }
817     DecreaseNumIfNoIdle(priority);
818     return std::make_pair(taskId, priority);
819 }
820 
NotifyExecuteTask()821 void TaskManager::NotifyExecuteTask()
822 {
823     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
824     if (GetNonIdleTaskNum() == 0 && workers_.size() != idleWorkers_.size()) {
825         // When there are only idle tasks and workers executing them, it is not triggered
826         return;
827     }
828     for (auto& worker : idleWorkers_) {
829         worker->NotifyExecuteTask();
830     }
831 }
832 
InitTaskManager(napi_env env)833 void TaskManager::InitTaskManager(napi_env env)
834 {
835     HITRACE_HELPER_METER_NAME("InitTaskManager");
836     if (!isInitialized_.exchange(true, std::memory_order_relaxed)) {
837 #if defined(ENABLE_TASKPOOL_FFRT)
838         globalEnableFfrtFlag_ = OHOS::system::GetIntParameter<int>("persist.commonlibrary.taskpoolglobalenableffrt", 0);
839         if (!globalEnableFfrtFlag_) {
840             UpdateSystemAppFlag();
841             if (IsSystemApp()) {
842                 disableFfrtFlag_ = OHOS::system::GetIntParameter<int>("persist.commonlibrary.taskpooldisableffrt", 0);
843             }
844         }
845         if (EnableFfrt()) {
846             HILOG_INFO("taskpool:: apps use ffrt");
847         } else {
848             HILOG_INFO("taskpool:: apps do not use ffrt");
849         }
850 #endif
851 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
852         mainThreadHandler_ = std::make_shared<OHOS::AppExecFwk::EventHandler>(
853             OHOS::AppExecFwk::EventRunner::GetMainEventRunner());
854 #endif
855         auto mainThreadEngine = NativeEngine::GetMainThreadEngine();
856         if (mainThreadEngine == nullptr) {
857             HILOG_FATAL("taskpool:: mainThreadEngine is nullptr");
858             return;
859         }
860         hostEnv_ = reinterpret_cast<napi_env>(mainThreadEngine);
861         // Add a reserved thread for taskpool
862         CreateWorkers(hostEnv_);
863         // Create a timer to manage worker threads
864         std::thread workerManager([this] {this->RunTaskManager();});
865         workerManager.detach();
866     }
867 }
868 
CreateWorkers(napi_env env, uint32_t num)869 void TaskManager::CreateWorkers(napi_env env, uint32_t num)
870 {
871     HILOG_DEBUG("taskpool:: CreateWorkers, num:%{public}u", num);
872     for (uint32_t i = 0; i < num; i++) {
873         auto worker = Worker::WorkerConstructor(env);
874         NotifyWorkerAdded(worker);
875     }
876     CountTraceForWorker();
877 }
878 
RemoveWorker(Worker* worker)879 void TaskManager::RemoveWorker(Worker* worker)
880 {
881     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
882     idleWorkers_.erase(worker);
883     timeoutWorkers_.erase(worker);
884     workers_.erase(worker);
885 }
886 
RestoreWorker(Worker* worker)887 void TaskManager::RestoreWorker(Worker* worker)
888 {
889     std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
890     if (UNLIKELY(suspend_)) {
891         suspend_ = false;
892         uv_timer_again(timer_);
893     }
894     if (worker->state_ == WorkerState::BLOCKED) {
895         // since the worker is blocked, we should add it to the timeout set
896         timeoutWorkers_.insert(worker);
897         return;
898     }
899     // Since the worker may be executing some tasks in IO thread, we should add it to the
900     // worker sets and call the 'NotifyWorkerIdle', which can still execute some tasks in its own thread.
901     HILOG_DEBUG("taskpool:: worker has been restored and the current num is: %{public}zu", workers_.size());
902     idleWorkers_.emplace_hint(idleWorkers_.end(), worker);
903     if (GetTaskNum() != 0) {
904         NotifyExecuteTask();
905     }
906 }
907 
908 // ---------------------------------- SendData ---------------------------------------
RegisterCallback(napi_env env, uint64_t taskId, std::shared_ptr<CallbackInfo> callbackInfo)909 void TaskManager::RegisterCallback(napi_env env, uint64_t taskId, std::shared_ptr<CallbackInfo> callbackInfo)
910 {
911     std::lock_guard<std::mutex> lock(callbackMutex_);
912     callbackTable_[taskId] = callbackInfo;
913 }
914 
GetCallbackInfo(uint64_t taskId)915 std::shared_ptr<CallbackInfo> TaskManager::GetCallbackInfo(uint64_t taskId)
916 {
917     std::lock_guard<std::mutex> lock(callbackMutex_);
918     auto iter = callbackTable_.find(taskId);
919     if (iter == callbackTable_.end() || iter->second == nullptr) {
920         HILOG_ERROR("taskpool:: the callback does not exist");
921         return nullptr;
922     }
923     return iter->second;
924 }
925 
IncreaseRefCount(uint64_t taskId)926 void TaskManager::IncreaseRefCount(uint64_t taskId)
927 {
928     if (taskId == 0) { // do not support func
929         return;
930     }
931     std::lock_guard<std::mutex> lock(callbackMutex_);
932     auto iter = callbackTable_.find(taskId);
933     if (iter == callbackTable_.end() || iter->second == nullptr) {
934         return;
935     }
936     iter->second->refCount++;
937 }
938 
DecreaseRefCount(napi_env env, uint64_t taskId)939 void TaskManager::DecreaseRefCount(napi_env env, uint64_t taskId)
940 {
941     if (taskId == 0) { // do not support func
942         return;
943     }
944     std::lock_guard<std::mutex> lock(callbackMutex_);
945     auto iter = callbackTable_.find(taskId);
946     if (iter == callbackTable_.end() || iter->second == nullptr) {
947         return;
948     }
949 
950     auto task = reinterpret_cast<Task*>(taskId);
951     if (!task->IsValid()) {
952         callbackTable_.erase(iter);
953         return;
954     }
955 
956     iter->second->refCount--;
957     if (iter->second->refCount == 0) {
958         callbackTable_.erase(iter);
959     }
960 }
961 
NotifyCallbackExecute(napi_env env, TaskResultInfo* resultInfo, Task* task)962 napi_value TaskManager::NotifyCallbackExecute(napi_env env, TaskResultInfo* resultInfo, Task* task)
963 {
964     HILOG_DEBUG("taskpool:: task:%{public}s NotifyCallbackExecute", std::to_string(task->taskId_).c_str());
965     std::lock_guard<std::mutex> lock(callbackMutex_);
966     auto iter = callbackTable_.find(task->taskId_);
967     if (iter == callbackTable_.end() || iter->second == nullptr) {
968         HILOG_ERROR("taskpool:: the callback in SendData is not registered on the host side");
969         ErrorHelper::ThrowError(env, ErrorHelper::ERR_NOT_REGISTERED);
970         delete resultInfo;
971         return nullptr;
972     }
973     Worker* worker = static_cast<Worker*>(task->worker_);
974     worker->Enqueue(task->env_, resultInfo);
975     auto callbackInfo = iter->second;
976     callbackInfo->refCount++;
977     callbackInfo->worker = worker;
978     auto workerEngine = reinterpret_cast<NativeEngine*>(env);
979     workerEngine->IncreaseListeningCounter();
980 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
981     if (task->IsMainThreadTask()) {
982         HITRACE_HELPER_METER_NAME("NotifyCallbackExecute: PostTask");
983         auto onCallbackTask = [callbackInfo]() {
984             TaskPool::ExecuteCallbackTask(callbackInfo.get());
985         };
986         TaskManager::GetInstance().PostTask(onCallbackTask, "TaskPoolOnCallbackTask", worker->priority_);
987     } else {
988         callbackInfo->onCallbackSignal->data = callbackInfo.get();
989         uv_async_send(callbackInfo->onCallbackSignal);
990     }
991 #else
992     callbackInfo->onCallbackSignal->data = callbackInfo.get();
993     uv_async_send(callbackInfo->onCallbackSignal);
994 #endif
995     return nullptr;
996 }
997 
GetMessageQueue(const uv_async_t* req)998 MsgQueue* TaskManager::GetMessageQueue(const uv_async_t* req)
999 {
1000     std::lock_guard<std::mutex> lock(callbackMutex_);
1001     auto info = static_cast<CallbackInfo*>(req->data);
1002     if (info == nullptr || info->worker == nullptr) {
1003         HILOG_ERROR("taskpool:: info or worker is nullptr");
1004         return nullptr;
1005     }
1006     auto worker = info->worker;
1007     MsgQueue* queue = nullptr;
1008     worker->Dequeue(info->hostEnv, queue);
1009     return queue;
1010 }
1011 
GetMessageQueueFromCallbackInfo(CallbackInfo* callbackInfo)1012 MsgQueue* TaskManager::GetMessageQueueFromCallbackInfo(CallbackInfo* callbackInfo)
1013 {
1014     std::lock_guard<std::mutex> lock(callbackMutex_);
1015     if (callbackInfo == nullptr || callbackInfo->worker == nullptr) {
1016         HILOG_ERROR("taskpool:: callbackInfo or worker is nullptr");
1017         return nullptr;
1018     }
1019     auto worker = callbackInfo->worker;
1020     MsgQueue* queue = nullptr;
1021     worker->Dequeue(callbackInfo->hostEnv, queue);
1022     return queue;
1023 }
1024 // ---------------------------------- SendData ---------------------------------------
1025 
NotifyDependencyTaskInfo(uint64_t taskId)1026 void TaskManager::NotifyDependencyTaskInfo(uint64_t taskId)
1027 {
1028     HILOG_DEBUG("taskpool:: task:%{public}s NotifyDependencyTaskInfo", std::to_string(taskId).c_str());
1029     HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
1030     std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1031     auto iter = dependentTaskInfos_.find(taskId);
1032     if (iter == dependentTaskInfos_.end() || iter->second.empty()) {
1033         HILOG_DEBUG("taskpool:: dependentTaskInfo empty");
1034         return;
1035     }
1036     for (auto taskIdIter = iter->second.begin(); taskIdIter != iter->second.end();) {
1037         auto taskInfo = DequeuePendingTaskInfo(*taskIdIter);
1038         RemoveDependencyById(taskId, *taskIdIter);
1039         taskIdIter = iter->second.erase(taskIdIter);
1040         if (taskInfo.first != 0) {
1041             EnqueueTaskId(taskInfo.first, taskInfo.second);
1042         }
1043     }
1044 }
1045 
RemoveDependencyById(uint64_t dependentTaskId, uint64_t taskId)1046 void TaskManager::RemoveDependencyById(uint64_t dependentTaskId, uint64_t taskId)
1047 {
1048     HILOG_DEBUG("taskpool::task:%{public}s RemoveDependencyById", std::to_string(taskId).c_str());
1049     // remove dependency after task execute
1050     std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1051     auto dependTaskIter = dependTaskInfos_.find(taskId);
1052     if (dependTaskIter != dependTaskInfos_.end()) {
1053         auto dependTaskInnerIter = dependTaskIter->second.find(dependentTaskId);
1054         if (dependTaskInnerIter != dependTaskIter->second.end()) {
1055             dependTaskIter->second.erase(dependTaskInnerIter);
1056         }
1057     }
1058 }
1059 
IsDependendByTaskId(uint64_t taskId)1060 bool TaskManager::IsDependendByTaskId(uint64_t taskId)
1061 {
1062     std::shared_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1063     auto iter = dependTaskInfos_.find(taskId);
1064     if (iter == dependTaskInfos_.end() || iter->second.empty()) {
1065         return false;
1066     }
1067     return true;
1068 }
1069 
IsDependentByTaskId(uint64_t dependentTaskId)1070 bool TaskManager::IsDependentByTaskId(uint64_t dependentTaskId)
1071 {
1072     std::shared_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1073     auto iter = dependentTaskInfos_.find(dependentTaskId);
1074     if (iter == dependentTaskInfos_.end() || iter->second.empty()) {
1075         return false;
1076     }
1077     return true;
1078 }
1079 
StoreTaskDependency(uint64_t taskId, std::set<uint64_t> taskIdSet)1080 bool TaskManager::StoreTaskDependency(uint64_t taskId, std::set<uint64_t> taskIdSet)
1081 {
1082     HILOG_DEBUG("taskpool:: task:%{public}s StoreTaskDependency", std::to_string(taskId).c_str());
1083     StoreDependentTaskInfo(taskIdSet, taskId);
1084     std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1085     auto iter = dependTaskInfos_.find(taskId);
1086     if (iter == dependTaskInfos_.end()) {
1087         for (const auto& dependentId : taskIdSet) {
1088             auto idIter = dependTaskInfos_.find(dependentId);
1089             if (idIter == dependTaskInfos_.end()) {
1090                 continue;
1091             }
1092             if (!CheckCircularDependency(taskIdSet, idIter->second, taskId)) {
1093                 return false;
1094             }
1095         }
1096         dependTaskInfos_.emplace(taskId, std::move(taskIdSet));
1097         return true;
1098     }
1099 
1100     for (const auto& dependentId : iter->second) {
1101         auto idIter = dependTaskInfos_.find(dependentId);
1102         if (idIter == dependTaskInfos_.end()) {
1103             continue;
1104         }
1105         if (!CheckCircularDependency(iter->second, idIter->second, taskId)) {
1106             return false;
1107         }
1108     }
1109     iter->second.insert(taskIdSet.begin(), taskIdSet.end());
1110     return true;
1111 }
1112 
CheckCircularDependency(std::set<uint64_t> dependentIdSet, std::set<uint64_t> idSet, uint64_t taskId)1113 bool TaskManager::CheckCircularDependency(std::set<uint64_t> dependentIdSet, std::set<uint64_t> idSet, uint64_t taskId)
1114 {
1115     for (const auto& id : idSet) {
1116         if (id == taskId) {
1117             return false;
1118         }
1119         auto iter = dependentIdSet.find(id);
1120         if (iter != dependentIdSet.end()) {
1121             continue;
1122         }
1123         auto dIter = dependTaskInfos_.find(id);
1124         if (dIter == dependTaskInfos_.end()) {
1125             continue;
1126         }
1127         if (!CheckCircularDependency(dependentIdSet, dIter->second, taskId)) {
1128             return false;
1129         }
1130     }
1131     return true;
1132 }
1133 
RemoveTaskDependency(uint64_t taskId, uint64_t dependentId)1134 bool TaskManager::RemoveTaskDependency(uint64_t taskId, uint64_t dependentId)
1135 {
1136     HILOG_DEBUG("taskpool:: task:%{public}s RemoveTaskDependency", std::to_string(taskId).c_str());
1137     RemoveDependentTaskInfo(dependentId, taskId);
1138     std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1139     auto iter = dependTaskInfos_.find(taskId);
1140     if (iter == dependTaskInfos_.end()) {
1141         return false;
1142     }
1143     auto dependIter = iter->second.find(dependentId);
1144     if (dependIter ==  iter->second.end()) {
1145         return false;
1146     }
1147     iter->second.erase(dependIter);
1148     return true;
1149 }
1150 
EnqueuePendingTaskInfo(uint64_t taskId, Priority priority)1151 void TaskManager::EnqueuePendingTaskInfo(uint64_t taskId, Priority priority)
1152 {
1153     if (taskId == 0) {
1154         return;
1155     }
1156     std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1157     pendingTaskInfos_.emplace(taskId, priority);
1158 }
1159 
DequeuePendingTaskInfo(uint64_t taskId)1160 std::pair<uint64_t, Priority> TaskManager::DequeuePendingTaskInfo(uint64_t taskId)
1161 {
1162     std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1163     if (pendingTaskInfos_.empty()) {
1164         return std::make_pair(0, Priority::DEFAULT);
1165     }
1166     std::pair<uint64_t, Priority> result;
1167     for (auto it = pendingTaskInfos_.begin(); it != pendingTaskInfos_.end(); ++it) {
1168         if (it->first == taskId) {
1169             result = std::make_pair(it->first, it->second);
1170             it = pendingTaskInfos_.erase(it);
1171             break;
1172         }
1173     }
1174     return result;
1175 }
1176 
RemovePendingTaskInfo(uint64_t taskId)1177 void TaskManager::RemovePendingTaskInfo(uint64_t taskId)
1178 {
1179     HILOG_DEBUG("taskpool:: task:%{public}s RemovePendingTaskInfo", std::to_string(taskId).c_str());
1180     std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1181     pendingTaskInfos_.erase(taskId);
1182 }
1183 
StoreDependentTaskInfo(std::set<uint64_t> dependentTaskIdSet, uint64_t taskId)1184 void TaskManager::StoreDependentTaskInfo(std::set<uint64_t> dependentTaskIdSet, uint64_t taskId)
1185 {
1186     HILOG_DEBUG("taskpool:: task:%{public}s StoreDependentTaskInfo", std::to_string(taskId).c_str());
1187     std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1188     for (const auto& id : dependentTaskIdSet) {
1189         auto iter = dependentTaskInfos_.find(id);
1190         if (iter == dependentTaskInfos_.end()) {
1191             std::set<uint64_t> set{taskId};
1192             dependentTaskInfos_.emplace(id, std::move(set));
1193         } else {
1194             iter->second.emplace(taskId);
1195         }
1196     }
1197 }
1198 
RemoveDependentTaskInfo(uint64_t dependentTaskId, uint64_t taskId)1199 void TaskManager::RemoveDependentTaskInfo(uint64_t dependentTaskId, uint64_t taskId)
1200 {
1201     HILOG_DEBUG("taskpool:: task:%{public}s RemoveDependentTaskInfo", std::to_string(taskId).c_str());
1202     std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1203     auto iter = dependentTaskInfos_.find(dependentTaskId);
1204     if (iter == dependentTaskInfos_.end()) {
1205         return;
1206     }
1207     auto taskIter = iter->second.find(taskId);
1208     if (taskIter == iter->second.end()) {
1209         return;
1210     }
1211     iter->second.erase(taskIter);
1212 }
1213 
GetTaskDependInfoToString(uint64_t taskId)1214 std::string TaskManager::GetTaskDependInfoToString(uint64_t taskId)
1215 {
1216     std::shared_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1217     std::string str = "TaskInfos: taskId: " + std::to_string(taskId) + ", dependTaskId:";
1218     auto iter = dependTaskInfos_.find(taskId);
1219     if (iter != dependTaskInfos_.end()) {
1220         for (const auto& id : iter->second) {
1221             str += " " + std::to_string(id);
1222         }
1223     }
1224     return str;
1225 }
1226 
StoreTaskDuration(uint64_t taskId, uint64_t totalDuration, uint64_t cpuDuration)1227 void TaskManager::StoreTaskDuration(uint64_t taskId, uint64_t totalDuration, uint64_t cpuDuration)
1228 {
1229     HILOG_DEBUG("taskpool:: task:%{public}s StoreTaskDuration", std::to_string(taskId).c_str());
1230     std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1231     auto iter = taskDurationInfos_.find(taskId);
1232     if (iter == taskDurationInfos_.end()) {
1233         std::pair<uint64_t, uint64_t> durationData = std::make_pair(totalDuration, cpuDuration);
1234         taskDurationInfos_.emplace(taskId, std::move(durationData));
1235     } else {
1236         if (totalDuration != 0) {
1237             iter->second.first = totalDuration;
1238         }
1239         if (cpuDuration != 0) {
1240             iter->second.second = cpuDuration;
1241         }
1242     }
1243 }
1244 
GetTaskDuration(uint64_t taskId, std::string durationType)1245 uint64_t TaskManager::GetTaskDuration(uint64_t taskId, std::string durationType)
1246 {
1247     std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1248     auto iter = taskDurationInfos_.find(taskId);
1249     if (iter == taskDurationInfos_.end()) {
1250         return 0;
1251     }
1252     if (durationType == TASK_TOTAL_TIME) {
1253         return iter->second.first;
1254     } else if (durationType == TASK_CPU_TIME) {
1255         return iter->second.second;
1256     } else if (iter->second.first == 0) {
1257         return 0;
1258     }
1259     return iter->second.first - iter->second.second;
1260 }
1261 
RemoveTaskDuration(uint64_t taskId)1262 void TaskManager::RemoveTaskDuration(uint64_t taskId)
1263 {
1264     HILOG_DEBUG("taskpool:: task:%{public}s RemoveTaskDuration", std::to_string(taskId).c_str());
1265     std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1266     auto iter = taskDurationInfos_.find(taskId);
1267     if (iter != taskDurationInfos_.end()) {
1268         taskDurationInfos_.erase(iter);
1269     }
1270 }
1271 
StoreLongTaskInfo(uint64_t taskId, Worker* worker)1272 void TaskManager::StoreLongTaskInfo(uint64_t taskId, Worker* worker)
1273 {
1274     std::unique_lock<std::shared_mutex> lock(longTasksMutex_);
1275     longTasksMap_.emplace(taskId, worker);
1276 }
1277 
RemoveLongTaskInfo(uint64_t taskId)1278 void TaskManager::RemoveLongTaskInfo(uint64_t taskId)
1279 {
1280     std::unique_lock<std::shared_mutex> lock(longTasksMutex_);
1281     longTasksMap_.erase(taskId);
1282 }
1283 
GetLongTaskInfo(uint64_t taskId)1284 Worker* TaskManager::GetLongTaskInfo(uint64_t taskId)
1285 {
1286     std::shared_lock<std::shared_mutex> lock(longTasksMutex_);
1287     auto iter = longTasksMap_.find(taskId);
1288     return iter != longTasksMap_.end() ? iter->second : nullptr;
1289 }
1290 
TerminateTask(uint64_t taskId)1291 void TaskManager::TerminateTask(uint64_t taskId)
1292 {
1293     HILOG_DEBUG("taskpool:: task:%{public}s TerminateTask", std::to_string(taskId).c_str());
1294     auto worker = GetLongTaskInfo(taskId);
1295     if (UNLIKELY(worker == nullptr)) {
1296         return;
1297     }
1298     worker->TerminateTask(taskId);
1299     RemoveLongTaskInfo(taskId);
1300 }
1301 
ReleaseTaskData(napi_env env, Task* task, bool shouldDeleteTask)1302 void TaskManager::ReleaseTaskData(napi_env env, Task* task, bool shouldDeleteTask)
1303 {
1304     uint64_t taskId = task->taskId_;
1305     if (shouldDeleteTask) {
1306         RemoveTask(taskId);
1307     }
1308     if (task->onResultSignal_ != nullptr) {
1309         if (!uv_is_closing((uv_handle_t*)task->onResultSignal_)) {
1310             ConcurrentHelper::UvHandleClose(task->onResultSignal_);
1311         } else {
1312             delete task->onResultSignal_;
1313         }
1314         task->onResultSignal_ = nullptr;
1315     }
1316 
1317     if (task->currentTaskInfo_ != nullptr) {
1318         delete task->currentTaskInfo_;
1319         task->currentTaskInfo_ = nullptr;
1320     }
1321 
1322     task->CancelPendingTask(env);
1323 
1324     task->ClearDelayedTimers();
1325 
1326     if (task->IsFunctionTask() || task->IsGroupFunctionTask()) {
1327         return;
1328     }
1329     DecreaseRefCount(env, taskId);
1330     RemoveTaskDuration(taskId);
1331     RemovePendingTaskInfo(taskId);
1332     ReleaseCallBackInfo(task);
1333     {
1334         std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1335         for (auto dependentTaskIter = dependentTaskInfos_.begin(); dependentTaskIter != dependentTaskInfos_.end();) {
1336             if (dependentTaskIter->second.find(taskId) != dependentTaskIter->second.end()) {
1337                 dependentTaskIter = dependentTaskInfos_.erase(dependentTaskIter);
1338             } else {
1339                 ++dependentTaskIter;
1340             }
1341         }
1342     }
1343     std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1344     auto dependTaskIter = dependTaskInfos_.find(taskId);
1345     if (dependTaskIter != dependTaskInfos_.end()) {
1346         dependTaskInfos_.erase(dependTaskIter);
1347     }
1348 }
1349 
ReleaseCallBackInfo(Task* task)1350 void TaskManager::ReleaseCallBackInfo(Task* task)
1351 {
1352     HILOG_DEBUG("taskpool:: ReleaseCallBackInfo task:%{public}s", std::to_string(task->taskId_).c_str());
1353     if (task->onEnqueuedCallBackInfo_ != nullptr) {
1354         delete task->onEnqueuedCallBackInfo_;
1355         task->onEnqueuedCallBackInfo_ = nullptr;
1356     }
1357 
1358     if (task->onStartExecutionCallBackInfo_ != nullptr) {
1359         delete task->onStartExecutionCallBackInfo_;
1360         task->onStartExecutionCallBackInfo_ = nullptr;
1361     }
1362 
1363     if (task->onExecutionFailedCallBackInfo_ != nullptr) {
1364         delete task->onExecutionFailedCallBackInfo_;
1365         task->onExecutionFailedCallBackInfo_ = nullptr;
1366     }
1367 
1368     if (task->onExecutionSucceededCallBackInfo_ != nullptr) {
1369         delete task->onExecutionSucceededCallBackInfo_;
1370         task->onExecutionSucceededCallBackInfo_ = nullptr;
1371     }
1372 
1373 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
1374     if (!task->IsMainThreadTask() && task->onStartExecutionSignal_ != nullptr) {
1375         if (!uv_is_closing((uv_handle_t*)task->onStartExecutionSignal_)) {
1376             ConcurrentHelper::UvHandleClose(task->onStartExecutionSignal_);
1377         } else {
1378             delete task->onStartExecutionSignal_;
1379         }
1380         task->onStartExecutionSignal_ = nullptr;
1381     }
1382 #else
1383     if (task->onStartExecutionSignal_ != nullptr) {
1384         if (!uv_is_closing((uv_handle_t*)task->onStartExecutionSignal_)) {
1385             ConcurrentHelper::UvHandleClose(task->onStartExecutionSignal_);
1386         } else {
1387             delete task->onStartExecutionSignal_;
1388         }
1389         task->onStartExecutionSignal_ = nullptr;
1390     }
1391 #endif
1392 }
1393 
StoreTask(uint64_t taskId, Task* task)1394 void TaskManager::StoreTask(uint64_t taskId, Task* task)
1395 {
1396     std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1397     tasks_.emplace(taskId, task);
1398 }
1399 
RemoveTask(uint64_t taskId)1400 void TaskManager::RemoveTask(uint64_t taskId)
1401 {
1402     std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1403     tasks_.erase(taskId);
1404 }
1405 
GetTask(uint64_t taskId)1406 Task* TaskManager::GetTask(uint64_t taskId)
1407 {
1408     std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1409     auto iter = tasks_.find(taskId);
1410     if (iter == tasks_.end()) {
1411         return nullptr;
1412     }
1413     return iter->second;
1414 }
1415 
1416 #if defined(ENABLE_TASKPOOL_FFRT)
UpdateSystemAppFlag()1417 void TaskManager::UpdateSystemAppFlag()
1418 {
1419     auto abilityManager = OHOS::SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
1420     if (abilityManager == nullptr) {
1421         HILOG_ERROR("taskpool:: fail to GetSystemAbility abilityManager is nullptr.");
1422         return;
1423     }
1424     auto bundleObj = abilityManager->GetSystemAbility(OHOS::BUNDLE_MGR_SERVICE_SYS_ABILITY_ID);
1425     if (bundleObj == nullptr) {
1426         HILOG_ERROR("taskpool:: fail to get bundle manager service.");
1427         return;
1428     }
1429     auto bundleMgr = OHOS::iface_cast<OHOS::AppExecFwk::IBundleMgr>(bundleObj);
1430     if (bundleMgr == nullptr) {
1431         HILOG_ERROR("taskpool:: Bundle manager is nullptr.");
1432         return;
1433     }
1434     OHOS::AppExecFwk::BundleInfo bundleInfo;
1435     if (bundleMgr->GetBundleInfoForSelf(
1436         static_cast<int32_t>(OHOS::AppExecFwk::GetBundleInfoFlag::GET_BUNDLE_INFO_WITH_APPLICATION), bundleInfo)
1437         != OHOS::ERR_OK) {
1438         HILOG_ERROR("taskpool:: fail to GetBundleInfoForSelf");
1439         return;
1440     }
1441     isSystemApp_ = bundleInfo.applicationInfo.isSystemApp;
1442 }
1443 #endif
1444 
1445 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
PostTask(std::function<void()> task, const char* taskName, Priority priority)1446 bool TaskManager::PostTask(std::function<void()> task, const char* taskName, Priority priority)
1447 {
1448     return mainThreadHandler_->PostTask(task, taskName, 0, TASK_EVENTHANDLER_PRIORITY_MAP.at(priority));
1449 }
1450 #endif
1451 
CheckTask(uint64_t taskId)1452 bool TaskManager::CheckTask(uint64_t taskId)
1453 {
1454     std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1455     auto item = tasks_.find(taskId);
1456     return item != tasks_.end();
1457 }
1458 
1459 // ----------------------------------- TaskGroupManager ----------------------------------------
GetInstance()1460 TaskGroupManager& TaskGroupManager::GetInstance()
1461 {
1462     static TaskGroupManager groupManager;
1463     return groupManager;
1464 }
1465 
AddTask(uint64_t groupId, napi_ref taskRef, uint64_t taskId)1466 void TaskGroupManager::AddTask(uint64_t groupId, napi_ref taskRef, uint64_t taskId)
1467 {
1468     std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1469     auto groupIter = taskGroups_.find(groupId);
1470     if (groupIter == taskGroups_.end()) {
1471         HILOG_DEBUG("taskpool:: taskGroup has been released");
1472         return;
1473     }
1474     auto taskGroup = reinterpret_cast<TaskGroup*>(groupIter->second);
1475     if (taskGroup == nullptr) {
1476         HILOG_ERROR("taskpool:: taskGroup is null");
1477         return;
1478     }
1479     taskGroup->taskRefs_.push_back(taskRef);
1480     taskGroup->taskNum_++;
1481     taskGroup->taskIds_.push_back(taskId);
1482 }
1483 
ReleaseTaskGroupData(napi_env env, TaskGroup* group)1484 void TaskGroupManager::ReleaseTaskGroupData(napi_env env, TaskGroup* group)
1485 {
1486     HILOG_DEBUG("taskpool:: ReleaseTaskGroupData group");
1487     TaskGroupManager::GetInstance().RemoveTaskGroup(group->groupId_);
1488     for (uint64_t taskId : group->taskIds_) {
1489         Task* task = TaskManager::GetInstance().GetTask(taskId);
1490         if (task == nullptr || !task->IsValid()) {
1491             continue;
1492         }
1493         napi_reference_unref(task->env_, task->taskRef_, nullptr);
1494     }
1495 
1496     if (group->currentGroupInfo_ != nullptr) {
1497         delete group->currentGroupInfo_;
1498     }
1499 
1500     group->CancelPendingGroup(env);
1501 }
1502 
CancelGroup(napi_env env, uint64_t groupId)1503 void TaskGroupManager::CancelGroup(napi_env env, uint64_t groupId)
1504 {
1505     std::string strTrace = "CancelGroup: groupId: " + std::to_string(groupId);
1506     HITRACE_HELPER_METER_NAME(strTrace);
1507     HILOG_INFO("taskpool:: %{public}s", strTrace.c_str());
1508     TaskGroup* taskGroup = GetTaskGroup(groupId);
1509     if (taskGroup == nullptr) {
1510         HILOG_ERROR("taskpool:: CancelGroup group is nullptr");
1511         return;
1512     }
1513     if (taskGroup->groupState_ == ExecuteState::CANCELED) {
1514         return;
1515     }
1516     std::lock_guard<RECURSIVE_MUTEX> lock(taskGroup->taskGroupMutex_);
1517     if (taskGroup->currentGroupInfo_ == nullptr || taskGroup->groupState_ == ExecuteState::NOT_FOUND ||
1518         taskGroup->groupState_ == ExecuteState::FINISHED) {
1519         std::string errMsg = "taskpool:: taskGroup is not executed or has been executed";
1520         HILOG_ERROR("%{public}s", errMsg.c_str());
1521         ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK_GROUP, errMsg.c_str());
1522         return;
1523     }
1524     ExecuteState groupState = taskGroup->groupState_;
1525     taskGroup->groupState_ = ExecuteState::CANCELED;
1526     taskGroup->CancelPendingGroup(env);
1527     if (taskGroup->currentGroupInfo_->finishedTask != taskGroup->taskNum_) {
1528         for (uint64_t taskId : taskGroup->taskIds_) {
1529             CancelGroupTask(env, taskId, taskGroup);
1530         }
1531     }
1532     if (groupState == ExecuteState::WAITING && taskGroup->currentGroupInfo_ != nullptr) {
1533         auto engine = reinterpret_cast<NativeEngine*>(env);
1534         for (size_t i = 0; i < taskGroup->taskIds_.size(); i++) {
1535             engine->DecreaseSubEnvCounter();
1536         }
1537         napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: taskGroup has been canceled");
1538         napi_reject_deferred(env, taskGroup->currentGroupInfo_->deferred, error);
1539         napi_delete_reference(env, taskGroup->currentGroupInfo_->resArr);
1540         napi_reference_unref(env, taskGroup->groupRef_, nullptr);
1541         delete taskGroup->currentGroupInfo_;
1542         taskGroup->currentGroupInfo_ = nullptr;
1543     }
1544 }
1545 
CancelGroupTask(napi_env env, uint64_t taskId, TaskGroup* group)1546 void TaskGroupManager::CancelGroupTask(napi_env env, uint64_t taskId, TaskGroup* group)
1547 {
1548     HILOG_DEBUG("taskpool:: CancelGroupTask task:%{public}s", std::to_string(taskId).c_str());
1549     auto task = TaskManager::GetInstance().GetTask(taskId);
1550     if (task == nullptr) {
1551         HILOG_INFO("taskpool:: CancelGroupTask task is nullptr");
1552         return;
1553     }
1554     std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
1555     if (task->taskState_ == ExecuteState::WAITING && task->currentTaskInfo_ != nullptr) {
1556         reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
1557         task->DecreaseTaskRefCount();
1558         TaskManager::GetInstance().EraseWaitingTaskId(task->taskId_, task->currentTaskInfo_->priority);
1559         delete task->currentTaskInfo_;
1560         task->currentTaskInfo_ = nullptr;
1561     }
1562     task->taskState_ = ExecuteState::CANCELED;
1563 }
1564 
StoreSequenceRunner(uint64_t seqRunnerId, SequenceRunner* seqRunner)1565 void TaskGroupManager::StoreSequenceRunner(uint64_t seqRunnerId, SequenceRunner* seqRunner)
1566 {
1567     std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1568     seqRunners_.emplace(seqRunnerId, seqRunner);
1569 }
1570 
RemoveSequenceRunner(uint64_t seqRunnerId)1571 void TaskGroupManager::RemoveSequenceRunner(uint64_t seqRunnerId)
1572 {
1573     std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1574     seqRunners_.erase(seqRunnerId);
1575 }
1576 
GetSeqRunner(uint64_t seqRunnerId)1577 SequenceRunner* TaskGroupManager::GetSeqRunner(uint64_t seqRunnerId)
1578 {
1579     std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1580     auto iter = seqRunners_.find(seqRunnerId);
1581     if (iter != seqRunners_.end()) {
1582         return iter->second;
1583     }
1584     HILOG_DEBUG("taskpool:: sequenceRunner has been released.");
1585     return nullptr;
1586 }
1587 
AddTaskToSeqRunner(uint64_t seqRunnerId, Task* task)1588 void TaskGroupManager::AddTaskToSeqRunner(uint64_t seqRunnerId, Task* task)
1589 {
1590     std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1591     auto iter = seqRunners_.find(seqRunnerId);
1592     if (iter == seqRunners_.end()) {
1593         HILOG_ERROR("seqRunner:: seqRunner not found.");
1594         return;
1595     } else {
1596         std::unique_lock<std::shared_mutex> seqRunnerLock(iter->second->seqRunnerMutex_);
1597         iter->second->seqRunnerTasks_.push(task);
1598     }
1599 }
1600 
TriggerSeqRunner(napi_env env, Task* lastTask)1601 bool TaskGroupManager::TriggerSeqRunner(napi_env env, Task* lastTask)
1602 {
1603     uint64_t seqRunnerId = lastTask->seqRunnerId_;
1604     SequenceRunner* seqRunner = GetSeqRunner(seqRunnerId);
1605     if (seqRunner == nullptr) {
1606         HILOG_ERROR("seqRunner:: trigger seqRunner not exist.");
1607         return false;
1608     }
1609     if (!SequenceRunnerManager::GetInstance().TriggerGlobalSeqRunner(env, seqRunner)) {
1610         HILOG_ERROR("seqRunner:: trigger globalSeqRunner not exist.");
1611         return false;
1612     }
1613     if (seqRunner->currentTaskId_ != lastTask->taskId_) {
1614         HILOG_ERROR("seqRunner:: only front task can trigger seqRunner.");
1615         return false;
1616     }
1617     {
1618         std::unique_lock<std::shared_mutex> lock(seqRunner->seqRunnerMutex_);
1619         if (seqRunner->seqRunnerTasks_.empty()) {
1620             HILOG_DEBUG("seqRunner:: seqRunner %{public}s empty.", std::to_string(seqRunnerId).c_str());
1621             seqRunner->currentTaskId_ = 0;
1622             return true;
1623         }
1624         Task* task = seqRunner->seqRunnerTasks_.front();
1625         seqRunner->seqRunnerTasks_.pop();
1626         while (task->taskState_ == ExecuteState::CANCELED) {
1627             DisposeCanceledTask(env, task);
1628             if (seqRunner->seqRunnerTasks_.empty()) {
1629                 HILOG_DEBUG("seqRunner:: seqRunner %{public}s empty in cancel loop.",
1630                             std::to_string(seqRunnerId).c_str());
1631                 seqRunner->currentTaskId_ = 0;
1632                 return true;
1633             }
1634             task = seqRunner->seqRunnerTasks_.front();
1635             seqRunner->seqRunnerTasks_.pop();
1636         }
1637         seqRunner->currentTaskId_ = task->taskId_;
1638         task->IncreaseRefCount();
1639         task->taskState_ = ExecuteState::WAITING;
1640         HILOG_DEBUG("seqRunner:: Trigger task %{public}s in seqRunner %{public}s.",
1641                     std::to_string(task->taskId_).c_str(), std::to_string(seqRunnerId).c_str());
1642         TaskManager::GetInstance().EnqueueTaskId(task->taskId_, seqRunner->priority_);
1643     }
1644     return true;
1645 }
1646 
DisposeCanceledTask(napi_env env, Task* task)1647 void TaskGroupManager::DisposeCanceledTask(napi_env env, Task* task)
1648 {
1649     napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: sequenceRunner task has been canceled");
1650     napi_reject_deferred(env, task->currentTaskInfo_->deferred, error);
1651     reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
1652     napi_reference_unref(env, task->taskRef_, nullptr);
1653     delete task->currentTaskInfo_;
1654     task->currentTaskInfo_ = nullptr;
1655 }
1656 
StoreTaskGroup(uint64_t groupId, TaskGroup* taskGroup)1657 void TaskGroupManager::StoreTaskGroup(uint64_t groupId, TaskGroup* taskGroup)
1658 {
1659     std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1660     taskGroups_.emplace(groupId, taskGroup);
1661 }
1662 
RemoveTaskGroup(uint64_t groupId)1663 void TaskGroupManager::RemoveTaskGroup(uint64_t groupId)
1664 {
1665     std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1666     taskGroups_.erase(groupId);
1667 }
1668 
GetTaskGroup(uint64_t groupId)1669 TaskGroup* TaskGroupManager::GetTaskGroup(uint64_t groupId)
1670 {
1671     std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1672     auto groupIter = taskGroups_.find(groupId);
1673     if (groupIter == taskGroups_.end()) {
1674         return nullptr;
1675     }
1676     return reinterpret_cast<TaskGroup*>(groupIter->second);
1677 }
1678 
UpdateGroupState(uint64_t groupId)1679 bool TaskGroupManager::UpdateGroupState(uint64_t groupId)
1680 {
1681     HILOG_DEBUG("taskpool:: UpdateGroupState groupId:%{public}s", std::to_string(groupId).c_str());
1682     // During the modification process of the group, prevent other sub threads from performing other
1683     // operations on the group pointer, which may cause the modification to fail.
1684     std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1685     auto groupIter = taskGroups_.find(groupId);
1686     if (groupIter == taskGroups_.end()) {
1687         return false;
1688     }
1689     TaskGroup* group = reinterpret_cast<TaskGroup*>(groupIter->second);
1690     if (group == nullptr || group->groupState_ == ExecuteState::CANCELED) {
1691         HILOG_DEBUG("taskpool:: UpdateGroupState taskGroup has been released or canceled");
1692         return false;
1693     }
1694     group->groupState_ = ExecuteState::RUNNING;
1695     return true;
1696 }
1697 
1698 // ----------------------------------- SequenceRunnerManager ----------------------------------------
GetInstance()1699 SequenceRunnerManager& SequenceRunnerManager::GetInstance()
1700 {
1701     static SequenceRunnerManager sequenceRunnerManager;
1702     return sequenceRunnerManager;
1703 }
1704 
CreateOrGetGlobalRunner(napi_env env, napi_value thisVar, size_t argc, const std::string &name, uint32_t priority)1705 SequenceRunner* SequenceRunnerManager::CreateOrGetGlobalRunner(napi_env env, napi_value thisVar, size_t argc,
1706                                                                const std::string &name, uint32_t priority)
1707 {
1708     std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1709     SequenceRunner *seqRunner = nullptr;
1710     auto iter = globalSeqRunner_.find(name);
1711     if (iter == globalSeqRunner_.end()) {
1712         seqRunner = new SequenceRunner();
1713         // refresh priority default values on first creation
1714         if (argc == 2) { // 2: The number of parameters is 2.
1715             seqRunner->priority_ = static_cast<Priority>(priority);
1716         }
1717         seqRunner->isGlobalRunner_ = true;
1718         seqRunner->seqName_ = name;
1719         globalSeqRunner_.emplace(name, seqRunner);
1720     } else {
1721         seqRunner = iter->second;
1722         if (priority != seqRunner->priority_) {
1723             ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "seqRunner:: priority can not changed.");
1724             return nullptr;
1725         }
1726     }
1727     seqRunner->count_++;
1728     auto tmpIter = seqRunner->globalSeqRunnerRef_.find(env);
1729     if (tmpIter == seqRunner->globalSeqRunnerRef_.end()) {
1730         napi_ref gloableSeqRunnerRef = nullptr;
1731         napi_create_reference(env, thisVar, 0, &gloableSeqRunnerRef);
1732         seqRunner->globalSeqRunnerRef_.emplace(env, gloableSeqRunnerRef);
1733     }
1734 
1735     return seqRunner;
1736 }
1737 
TriggerGlobalSeqRunner(napi_env env, SequenceRunner* seqRunner)1738 bool SequenceRunnerManager::TriggerGlobalSeqRunner(napi_env env, SequenceRunner* seqRunner)
1739 {
1740     std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1741     if (seqRunner->isGlobalRunner_) {
1742         auto iter = seqRunner->globalSeqRunnerRef_.find(env);
1743         if (iter == seqRunner->globalSeqRunnerRef_.end()) {
1744             return false;
1745         }
1746         napi_reference_unref(env, iter->second, nullptr);
1747     } else {
1748         napi_reference_unref(env, seqRunner->seqRunnerRef_, nullptr);
1749     }
1750     return true;
1751 }
1752 
DecreaseSeqCount(SequenceRunner* seqRunner)1753 uint64_t SequenceRunnerManager::DecreaseSeqCount(SequenceRunner* seqRunner)
1754 {
1755     std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1756     return --(seqRunner->count_);
1757 }
1758 
RemoveGlobalSeqRunnerRef(napi_env env, SequenceRunner* seqRunner)1759 void SequenceRunnerManager::RemoveGlobalSeqRunnerRef(napi_env env, SequenceRunner* seqRunner)
1760 {
1761     std::lock_guard<std::mutex> lock(globalSeqRunnerMutex_);
1762     auto iter = seqRunner->globalSeqRunnerRef_.find(env);
1763     if (iter != seqRunner->globalSeqRunnerRef_.end()) {
1764         napi_delete_reference(env, iter->second);
1765         seqRunner->globalSeqRunnerRef_.erase(iter);
1766     }
1767 }
1768 
RemoveSequenceRunner(const std::string &name)1769 void SequenceRunnerManager::RemoveSequenceRunner(const std::string &name)
1770 {
1771     std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1772     auto iter = globalSeqRunner_.find(name.c_str());
1773     if (iter != globalSeqRunner_.end()) {
1774         globalSeqRunner_.erase(iter->first);
1775     }
1776 }
1777 
GlobalSequenceRunnerDestructor(napi_env env, SequenceRunner *seqRunner)1778 void SequenceRunnerManager::GlobalSequenceRunnerDestructor(napi_env env, SequenceRunner *seqRunner)
1779 {
1780     RemoveGlobalSeqRunnerRef(env, seqRunner);
1781     if (DecreaseSeqCount(seqRunner) == 0) {
1782         RemoveSequenceRunner(seqRunner->seqName_);
1783         TaskGroupManager::GetInstance().RemoveSequenceRunner(seqRunner->seqRunnerId_);
1784         delete seqRunner;
1785     }
1786 }
1787 } // namespace Commonlibrary::Concurrent::TaskPoolModule