1 /*
2 * Copyright (c) 2022 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "task_manager.h"
17
18 #include <cinttypes>
19 #include <securec.h>
20 #include <thread>
21
22 #if defined(ENABLE_TASKPOOL_FFRT)
23 #include "bundle_info.h"
24 #include "bundle_mgr_interface.h"
25 #include "bundle_mgr_proxy.h"
26 #include "c/executor_task.h"
27 #include "ffrt_inner.h"
28 #include "iservice_registry.h"
29 #include "parameters.h"
30 #include "status_receiver_interface.h"
31 #include "system_ability_definition.h"
32 #endif
33 #include "commonlibrary/ets_utils/js_sys_module/timer/timer.h"
34 #include "helper/concurrent_helper.h"
35 #include "helper/error_helper.h"
36 #include "helper/hitrace_helper.h"
37 #include "taskpool.h"
38 #include "tools/log.h"
39 #include "worker.h"
40
41 namespace Commonlibrary::Concurrent::TaskPoolModule {
42 using namespace OHOS::JsSysModule;
43
44 static constexpr int8_t HIGH_PRIORITY_TASK_COUNT = 5;
45 static constexpr int8_t MEDIUM_PRIORITY_TASK_COUNT = 5;
46 static constexpr int32_t MAX_TASK_DURATION = 100; // 100: 100ms
47 static constexpr uint32_t STEP_SIZE = 2;
48 static constexpr uint32_t DEFAULT_THREADS = 3;
49 static constexpr uint32_t DEFAULT_MIN_THREADS = 1; // 1: minimum thread num when idle
50 static constexpr uint32_t MIN_TIMEOUT_TIME = 180000; // 180000: 3min
51 static constexpr uint32_t MAX_TIMEOUT_TIME = 600000; // 600000: 10min
52 static constexpr int32_t MAX_IDLE_TIME = 30000; // 30000: 30s
53 static constexpr uint32_t TRIGGER_INTERVAL = 30000; // 30000: 30s
54 static constexpr uint32_t SHRINK_STEP = 4; // 4: try to release 4 threads every time
55 [[maybe_unused]] static constexpr uint32_t IDLE_THRESHOLD = 2; // 2: 2 intervals later will release the thread
56
57 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
58 static const std::map<Priority, OHOS::AppExecFwk::EventQueue::Priority> TASK_EVENTHANDLER_PRIORITY_MAP = {
59 {Priority::IDLE, OHOS::AppExecFwk::EventQueue::Priority::IDLE},
60 {Priority::LOW, OHOS::AppExecFwk::EventQueue::Priority::LOW},
61 {Priority::MEDIUM, OHOS::AppExecFwk::EventQueue::Priority::HIGH},
62 {Priority::HIGH, OHOS::AppExecFwk::EventQueue::Priority::IMMEDIATE},
63 };
64 #endif
65
66 // ----------------------------------- TaskManager ----------------------------------------
GetInstance()67 TaskManager& TaskManager::GetInstance()
68 {
69 static TaskManager manager;
70 return manager;
71 }
72
TaskManager()73 TaskManager::TaskManager()
74 {
75 for (size_t i = 0; i < taskQueues_.size(); i++) {
76 std::unique_ptr<ExecuteQueue> taskQueue = std::make_unique<ExecuteQueue>();
77 taskQueues_[i] = std::move(taskQueue);
78 }
79 }
80
~TaskManager()81 TaskManager::~TaskManager()
82 {
83 HILOG_INFO("taskpool:: ~TaskManager");
84 if (timer_ == nullptr) {
85 HILOG_ERROR("taskpool:: timer_ is nullptr");
86 } else {
87 uv_timer_stop(timer_);
88 ConcurrentHelper::UvHandleClose(timer_);
89 ConcurrentHelper::UvHandleClose(expandHandle_);
90 }
91
92 if (loop_ != nullptr) {
93 uv_stop(loop_);
94 }
95
96 {
97 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
98 for (auto& worker : workers_) {
99 delete worker;
100 }
101 workers_.clear();
102 }
103
104 {
105 std::lock_guard<std::mutex> lock(callbackMutex_);
106 for (auto& [_, callbackPtr] : callbackTable_) {
107 if (callbackPtr == nullptr) {
108 continue;
109 }
110 callbackPtr.reset();
111 }
112 callbackTable_.clear();
113 }
114
115 {
116 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
117 for (auto& [_, task] : tasks_) {
118 delete task;
119 task = nullptr;
120 }
121 tasks_.clear();
122 }
123 CountTraceForWorker();
124 }
125
CountTraceForWorker()126 void TaskManager::CountTraceForWorker()
127 {
128 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
129 int64_t threadNum = static_cast<int64_t>(workers_.size());
130 int64_t idleWorkers = static_cast<int64_t>(idleWorkers_.size());
131 int64_t timeoutWorkers = static_cast<int64_t>(timeoutWorkers_.size());
132 HITRACE_HELPER_COUNT_TRACE("timeoutThreadNum", timeoutWorkers);
133 HITRACE_HELPER_COUNT_TRACE("threadNum", threadNum);
134 HITRACE_HELPER_COUNT_TRACE("runningThreadNum", threadNum - idleWorkers);
135 HITRACE_HELPER_COUNT_TRACE("idleThreadNum", idleWorkers);
136 }
137
GetThreadInfos(napi_env env)138 napi_value TaskManager::GetThreadInfos(napi_env env)
139 {
140 napi_value threadInfos = nullptr;
141 napi_create_array(env, &threadInfos);
142 {
143 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
144 int32_t i = 0;
145 for (auto& worker : workers_) {
146 if (worker->workerEnv_ == nullptr) {
147 continue;
148 }
149 napi_value tid = NapiHelper::CreateUint32(env, static_cast<uint32_t>(worker->tid_));
150 napi_value priority = NapiHelper::CreateUint32(env, static_cast<uint32_t>(worker->priority_));
151
152 napi_value taskId = nullptr;
153 napi_create_array(env, &taskId);
154 int32_t j = 0;
155 {
156 std::lock_guard<std::mutex> lock(worker->currentTaskIdMutex_);
157 for (auto& currentId : worker->currentTaskId_) {
158 napi_value id = NapiHelper::CreateUint32(env, currentId);
159 napi_set_element(env, taskId, j, id);
160 j++;
161 }
162 }
163 napi_value threadInfo = nullptr;
164 napi_create_object(env, &threadInfo);
165 napi_set_named_property(env, threadInfo, "tid", tid);
166 napi_set_named_property(env, threadInfo, "priority", priority);
167 napi_set_named_property(env, threadInfo, "taskIds", taskId);
168 napi_set_element(env, threadInfos, i, threadInfo);
169 i++;
170 }
171 }
172 return threadInfos;
173 }
174
GetTaskInfos(napi_env env)175 napi_value TaskManager::GetTaskInfos(napi_env env)
176 {
177 napi_value taskInfos = nullptr;
178 napi_create_array(env, &taskInfos);
179 {
180 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
181 int32_t i = 0;
182 for (const auto& [_, task] : tasks_) {
183 if (task->taskState_ == ExecuteState::NOT_FOUND || task->taskState_ == ExecuteState::DELAYED ||
184 task->taskState_ == ExecuteState::FINISHED) {
185 continue;
186 }
187 napi_value taskInfoValue = NapiHelper::CreateObject(env);
188 std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
189 napi_value taskId = NapiHelper::CreateUint32(env, task->taskId_);
190 napi_value name = nullptr;
191 napi_create_string_utf8(env, task->name_.c_str(), task->name_.size(), &name);
192 napi_set_named_property(env, taskInfoValue, "name", name);
193 ExecuteState state = task->taskState_;
194 uint64_t duration = 0;
195 if (state == ExecuteState::RUNNING || state == ExecuteState::ENDING) {
196 duration = ConcurrentHelper::GetMilliseconds() - task->startTime_;
197 }
198 napi_value stateValue = NapiHelper::CreateUint32(env, static_cast<uint32_t>(state));
199 napi_set_named_property(env, taskInfoValue, "taskId", taskId);
200 napi_set_named_property(env, taskInfoValue, "state", stateValue);
201 napi_value durationValue = NapiHelper::CreateUint32(env, duration);
202 napi_set_named_property(env, taskInfoValue, "duration", durationValue);
203 napi_set_element(env, taskInfos, i, taskInfoValue);
204 i++;
205 }
206 }
207 return taskInfos;
208 }
209
UpdateExecutedInfo(uint64_t duration)210 void TaskManager::UpdateExecutedInfo(uint64_t duration)
211 {
212 totalExecTime_ += duration;
213 totalExecCount_++;
214 }
215
ComputeSuitableThreadNum()216 uint32_t TaskManager::ComputeSuitableThreadNum()
217 {
218 uint32_t targetNum = ComputeSuitableIdleNum() + GetRunningWorkers();
219 return targetNum;
220 }
221
ComputeSuitableIdleNum()222 uint32_t TaskManager::ComputeSuitableIdleNum()
223 {
224 uint32_t targetNum = 0;
225 if (GetNonIdleTaskNum() != 0 && totalExecCount_ == 0) {
226 // this branch is used for avoiding time-consuming tasks that may block the taskpool
227 targetNum = std::min(STEP_SIZE, GetNonIdleTaskNum());
228 } else if (totalExecCount_ != 0) {
229 auto durationPerTask = static_cast<double>(totalExecTime_) / totalExecCount_;
230 uint32_t result = std::ceil(durationPerTask * GetNonIdleTaskNum() / MAX_TASK_DURATION);
231 targetNum = std::min(result, GetNonIdleTaskNum());
232 }
233 return targetNum;
234 }
235
CheckForBlockedWorkers()236 void TaskManager::CheckForBlockedWorkers()
237 {
238 // the threshold will be dynamically modified to provide more flexibility in detecting exceptions
239 // if the thread num has reached the limit and the idle worker is not available, a short time will be used,
240 // else we will choose the longer one
241 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
242 bool needChecking = false;
243 bool state = (GetThreadNum() == ConcurrentHelper::GetMaxThreads()) && (GetIdleWorkers() == 0);
244 uint64_t threshold = state ? MIN_TIMEOUT_TIME : MAX_TIMEOUT_TIME;
245 for (auto iter = workers_.begin(); iter != workers_.end(); iter++) {
246 auto worker = *iter;
247 // if the worker thread is idle, just skip it, and only the worker in running state can be marked as timeout
248 // if the worker is executing the longTask, we will not do the check
249 if ((worker->state_ == WorkerState::IDLE) || (worker->IsExecutingLongTask()) ||
250 (ConcurrentHelper::GetMilliseconds() - worker->startTime_ < threshold) ||
251 !worker->UpdateWorkerState(WorkerState::RUNNING, WorkerState::BLOCKED)) {
252 continue;
253 }
254 // When executing the promise task, the worker state may not be updated and will be
255 // marked as 'BLOCKED', so we should exclude this situation.
256 // Besides, if the worker is not executing sync tasks or micro tasks, it may handle
257 // the task like I/O in uv threads, we should also exclude this situation.
258 auto workerEngine = reinterpret_cast<NativeEngine*>(worker->workerEnv_);
259 if (worker->idleState_ && !workerEngine->IsExecutingPendingJob()) {
260 if (!workerEngine->HasWaitingRequest()) {
261 worker->UpdateWorkerState(WorkerState::BLOCKED, WorkerState::IDLE);
262 } else {
263 worker->UpdateWorkerState(WorkerState::BLOCKED, WorkerState::RUNNING);
264 worker->startTime_ = ConcurrentHelper::GetMilliseconds();
265 }
266 continue;
267 }
268
269 HILOG_INFO("taskpool:: The worker has been marked as timeout.");
270 // If the current worker has a longTask and is not executing, we will only interrupt it.
271 if (worker->HasLongTask()) {
272 continue;
273 }
274 needChecking = true;
275 idleWorkers_.erase(worker);
276 timeoutWorkers_.insert(worker);
277 }
278 // should trigger the check when we have marked and removed workers
279 if (UNLIKELY(needChecking)) {
280 TryExpand();
281 }
282 }
283
TryTriggerExpand()284 void TaskManager::TryTriggerExpand()
285 {
286 // post the signal to notify the monitor thread to expand
287 if (UNLIKELY(!isHandleInited_)) {
288 NotifyExecuteTask();
289 needChecking_ = true;
290 HILOG_DEBUG("taskpool:: the expandHandle_ is nullptr");
291 return;
292 }
293 uv_async_send(expandHandle_);
294 }
295
296 #if defined(OHOS_PLATFORM)
297 // read /proc/[pid]/task/[tid]/stat to get the number of idle threads.
ReadThreadInfo(pid_t tid, char* buf, uint32_t size)298 bool TaskManager::ReadThreadInfo(pid_t tid, char* buf, uint32_t size)
299 {
300 char path[128]; // 128: buffer for path
301 pid_t pid = getpid();
302 ssize_t bytesLen = -1;
303 int ret = snprintf_s(path, sizeof(path), sizeof(path) - 1, "/proc/%d/task/%d/stat", pid, tid);
304 if (ret < 0) {
305 HILOG_ERROR("snprintf_s failed");
306 return false;
307 }
308 int fd = open(path, O_RDONLY | O_NONBLOCK);
309 if (UNLIKELY(fd == -1)) {
310 return false;
311 }
312 bytesLen = read(fd, buf, size - 1);
313 close(fd);
314 if (bytesLen <= 0) {
315 HILOG_ERROR("taskpool:: failed to read %{public}s", path);
316 return false;
317 }
318 buf[bytesLen] = '\0';
319 return true;
320 }
321
GetIdleWorkers()322 uint32_t TaskManager::GetIdleWorkers()
323 {
324 char buf[4096]; // 4096: buffer for thread info
325 uint32_t idleCount = 0;
326 std::unordered_set<pid_t> tids {};
327 {
328 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
329 for (auto& worker : idleWorkers_) {
330 #if defined(ENABLE_TASKPOOL_FFRT)
331 if (worker->ffrtTaskHandle_ != nullptr) {
332 if (worker->GetWaitTime() > 0) {
333 idleCount++;
334 }
335 continue;
336 }
337 #endif
338 tids.emplace(worker->tid_);
339 }
340 }
341 // The ffrt thread does not read thread info
342 for (auto tid : tids) {
343 if (!ReadThreadInfo(tid, buf, sizeof(buf))) {
344 continue;
345 }
346 char state;
347 if (sscanf_s(buf, "%*d %*s %c", &state, sizeof(state)) != 1) { // 1: state
348 HILOG_ERROR("taskpool: sscanf_s of state failed for %{public}c", state);
349 return 0;
350 }
351 if (state == 'S') {
352 idleCount++;
353 }
354 }
355 return idleCount;
356 }
357
GetIdleWorkersList(uint32_t step)358 void TaskManager::GetIdleWorkersList(uint32_t step)
359 {
360 char buf[4096]; // 4096: buffer for thread info
361 for (auto& worker : idleWorkers_) {
362 #if defined(ENABLE_TASKPOOL_FFRT)
363 if (worker->ffrtTaskHandle_ != nullptr) {
364 uint64_t workerWaitTime = worker->GetWaitTime();
365 bool isWorkerLoopActive = worker->IsLoopActive();
366 if (workerWaitTime == 0) {
367 continue;
368 }
369 uint64_t currTime = static_cast<uint64_t>(std::chrono::duration_cast<std::chrono::seconds>(
370 std::chrono::steady_clock::now().time_since_epoch()).count());
371 if (!isWorkerLoopActive) {
372 freeList_.emplace_back(worker);
373 } else if ((currTime - workerWaitTime) > IDLE_THRESHOLD * TRIGGER_INTERVAL) {
374 freeList_.emplace_back(worker);
375 HILOG_INFO("taskpool:: worker in ffrt epoll wait more than 2 intervals, force to free.");
376 } else {
377 // worker uv alive, and will be free in 2 intervals if not wake
378 HILOG_INFO("taskpool:: worker will be free if not wake.");
379 }
380 continue;
381 }
382 #endif
383 if (!ReadThreadInfo(worker->tid_, buf, sizeof(buf))) {
384 continue;
385 }
386 char state;
387 uint64_t utime;
388 if (sscanf_s(buf, "%*d %*s %c %*d %*d %*d %*d %*d %*u %*lu %*lu %*lu %*lu %llu",
389 &state, sizeof(state), &utime) != 2) { // 2: state and utime
390 HILOG_ERROR("taskpool: sscanf_s of state failed for %{public}d", worker->tid_);
391 return;
392 }
393 if (state != 'S' || utime != worker->lastCpuTime_) {
394 worker->idleCount_ = 0;
395 worker->lastCpuTime_ = utime;
396 continue;
397 }
398 if (++worker->idleCount_ >= IDLE_THRESHOLD) {
399 freeList_.emplace_back(worker);
400 }
401 }
402 }
403
TriggerShrink(uint32_t step)404 void TaskManager::TriggerShrink(uint32_t step)
405 {
406 GetIdleWorkersList(step);
407 step = std::min(step, static_cast<uint32_t>(freeList_.size()));
408 uint32_t count = 0;
409 for (size_t i = 0; i < freeList_.size(); i++) {
410 auto worker = freeList_[i];
411 if (worker->state_ != WorkerState::IDLE || worker->HasLongTask()) {
412 continue;
413 }
414 auto idleTime = ConcurrentHelper::GetMilliseconds() - worker->idlePoint_;
415 if (idleTime < MAX_IDLE_TIME || worker->HasRunningTasks()) {
416 continue;
417 }
418 idleWorkers_.erase(worker);
419 HILOG_DEBUG("taskpool:: try to release idle thread: %{public}d", worker->tid_);
420 worker->PostReleaseSignal();
421 if (++count == step) {
422 break;
423 }
424 }
425 freeList_.clear();
426 }
427 #else
GetIdleWorkers()428 uint32_t TaskManager::GetIdleWorkers()
429 {
430 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
431 return idleWorkers_.size();
432 }
433
TriggerShrink(uint32_t step)434 void TaskManager::TriggerShrink(uint32_t step)
435 {
436 for (uint32_t i = 0; i < step; i++) {
437 // try to free the worker that idle time meets the requirement
438 auto iter = std::find_if(idleWorkers_.begin(), idleWorkers_.end(), [](Worker *worker) {
439 auto idleTime = ConcurrentHelper::GetMilliseconds() - worker->idlePoint_;
440 return idleTime > MAX_IDLE_TIME && !worker->HasRunningTasks() && !worker->HasLongTask();
441 });
442 // remove it from all sets
443 if (iter != idleWorkers_.end()) {
444 auto worker = *iter;
445 idleWorkers_.erase(worker);
446 HILOG_DEBUG("taskpool:: try to release idle thread: %{public}d", worker->tid_);
447 worker->PostReleaseSignal();
448 }
449 }
450 }
451 #endif
452
NotifyShrink(uint32_t targetNum)453 void TaskManager::NotifyShrink(uint32_t targetNum)
454 {
455 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
456 uint32_t workerCount = workers_.size();
457 uint32_t minThread = ConcurrentHelper::IsLowMemory() ? 0 : DEFAULT_MIN_THREADS;
458 if (minThread == 0) {
459 HILOG_INFO("taskpool:: the system now is under low memory");
460 }
461 if (workerCount > minThread && workerCount > targetNum) {
462 targetNum = std::max(minThread, targetNum);
463 uint32_t step = std::min(workerCount - targetNum, SHRINK_STEP);
464 TriggerShrink(step);
465 }
466 // remove all timeout workers
467 for (auto iter = timeoutWorkers_.begin(); iter != timeoutWorkers_.end();) {
468 auto worker = *iter;
469 if (workers_.find(worker) == workers_.end()) {
470 HILOG_WARN("taskpool:: current worker maybe release");
471 iter = timeoutWorkers_.erase(iter);
472 } else if (!worker->HasRunningTasks()) {
473 HILOG_DEBUG("taskpool:: try to release timeout thread: %{public}d", worker->tid_);
474 worker->PostReleaseSignal();
475 timeoutWorkers_.erase(iter++);
476 return;
477 } else {
478 iter++;
479 }
480 }
481 uint32_t idleNum = idleWorkers_.size();
482 // System memory state is moderate and the worker has exeuted tasks, we will try to release it
483 if (ConcurrentHelper::IsModerateMemory() && workerCount == idleNum && workerCount == DEFAULT_MIN_THREADS) {
484 auto worker = *(idleWorkers_.begin());
485 // worker that has longTask should not be released
486 if (worker == nullptr || worker->HasLongTask()) {
487 return;
488 }
489 if (worker->hasExecuted_) { // worker that hasn't execute any tasks should not be released
490 TriggerShrink(DEFAULT_MIN_THREADS);
491 return;
492 }
493 }
494
495 // Create a worker for performance
496 if (!ConcurrentHelper::IsLowMemory() && workers_.empty()) {
497 CreateWorkers(hostEnv_);
498 }
499 // stop the timer
500 if ((workerCount == idleNum && workerCount <= minThread) && timeoutWorkers_.empty()) {
501 suspend_ = true;
502 uv_timer_stop(timer_);
503 HILOG_DEBUG("taskpool:: timer will be suspended");
504 }
505 }
506
TriggerLoadBalance(const uv_timer_t* req)507 void TaskManager::TriggerLoadBalance(const uv_timer_t* req)
508 {
509 TaskManager& taskManager = TaskManager::GetInstance();
510 taskManager.CheckForBlockedWorkers();
511 uint32_t targetNum = taskManager.ComputeSuitableThreadNum();
512 taskManager.NotifyShrink(targetNum);
513 taskManager.CountTraceForWorker();
514 }
515
TryExpand()516 void TaskManager::TryExpand()
517 {
518 // dispatch task in the TaskPoolManager thread
519 NotifyExecuteTask();
520 // do not trigger when there are more idleWorkers than tasks
521 uint32_t idleNum = GetIdleWorkers();
522 if (idleNum > GetNonIdleTaskNum()) {
523 return;
524 }
525 needChecking_ = false; // do not need to check
526 uint32_t targetNum = ComputeSuitableIdleNum();
527 uint32_t workerCount = 0;
528 uint32_t idleCount = 0;
529 uint32_t timeoutWorkers = 0;
530 {
531 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
532 idleCount = idleWorkers_.size();
533 workerCount = workers_.size();
534 timeoutWorkers = timeoutWorkers_.size();
535 }
536 uint32_t maxThreads = std::max(ConcurrentHelper::GetMaxThreads(), DEFAULT_THREADS);
537 maxThreads = (timeoutWorkers == 0) ? maxThreads : maxThreads + 2; // 2: extra threads
538 if (workerCount < maxThreads && idleCount < targetNum) {
539 uint32_t step = std::min(maxThreads, targetNum) - idleCount;
540 // Prevent the total number of expanded threads from exceeding maxThreads
541 if (step + workerCount > maxThreads) {
542 step = maxThreads - workerCount;
543 }
544 CreateWorkers(hostEnv_, step);
545 HILOG_INFO("taskpool:: maxThreads: %{public}u, created num: %{public}u, total num: %{public}u",
546 maxThreads, step, GetThreadNum());
547 }
548 if (UNLIKELY(suspend_)) {
549 suspend_ = false;
550 uv_timer_again(timer_);
551 }
552 }
553
NotifyExpand(const uv_async_t* req)554 void TaskManager::NotifyExpand(const uv_async_t* req)
555 {
556 TaskManager& taskManager = TaskManager::GetInstance();
557 taskManager.TryExpand();
558 }
559
RunTaskManager()560 void TaskManager::RunTaskManager()
561 {
562 loop_ = uv_loop_new();
563 if (loop_ == nullptr) { // LCOV_EXCL_BR_LINE
564 HILOG_FATAL("taskpool:: new loop failed.");
565 return;
566 }
567 ConcurrentHelper::UvHandleInit(loop_, expandHandle_, TaskManager::NotifyExpand);
568 timer_ = new uv_timer_t;
569 uv_timer_init(loop_, timer_);
570 uv_timer_start(timer_, reinterpret_cast<uv_timer_cb>(TaskManager::TriggerLoadBalance), 0, TRIGGER_INTERVAL);
571 isHandleInited_ = true;
572 #if defined IOS_PLATFORM || defined MAC_PLATFORM
573 pthread_setname_np("OS_TaskManager");
574 #else
575 pthread_setname_np(pthread_self(), "OS_TaskManager");
576 #endif
577 if (UNLIKELY(needChecking_)) {
578 needChecking_ = false;
579 uv_async_send(expandHandle_);
580 }
581 uv_run(loop_, UV_RUN_DEFAULT);
582 if (loop_ != nullptr) {
583 uv_loop_delete(loop_);
584 }
585 }
586
CancelTask(napi_env env, uint64_t taskId)587 void TaskManager::CancelTask(napi_env env, uint64_t taskId)
588 {
589 // 1. Cannot find taskInfo by executeId, throw error
590 // 2. Find executing taskInfo, skip it
591 // 3. Find waiting taskInfo, cancel it
592 // 4. Find canceled taskInfo, skip it
593 std::string strTrace = "CancelTask: taskId: " + std::to_string(taskId);
594 HILOG_INFO("taskpool:: %{public}s", strTrace.c_str());
595 HITRACE_HELPER_METER_NAME(strTrace);
596 Task* task = GetTask(taskId);
597 if (task == nullptr) {
598 std::string errMsg = "taskpool:: the task may not exist";
599 HILOG_ERROR("%{public}s", errMsg.c_str());
600 ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
601 return;
602 }
603 if (task->taskState_ == ExecuteState::CANCELED) {
604 HILOG_DEBUG("taskpool:: task has been canceled");
605 return;
606 }
607 std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
608 if (task->IsPeriodicTask()) {
609 task->CancelPendingTask(env);
610 uv_timer_stop(task->timer_);
611 uv_close(reinterpret_cast<uv_handle_t*>(task->timer_), [](uv_handle_t* handle) {
612 delete (uv_timer_t*)handle;
613 handle = nullptr;
614 });
615 return;
616 } else if (task->IsSeqRunnerTask()) {
617 CancelSeqRunnerTask(env, task);
618 return;
619 }
620 if ((task->currentTaskInfo_ == nullptr && task->taskState_ != ExecuteState::DELAYED) ||
621 task->taskState_ == ExecuteState::NOT_FOUND || task->taskState_ == ExecuteState::FINISHED ||
622 task->taskState_ == ExecuteState::ENDING) {
623 std::string errMsg = "taskpool:: task is not executed or has been executed";
624 HILOG_ERROR("%{public}s", errMsg.c_str());
625 ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
626 return;
627 }
628
629 task->ClearDelayedTimers();
630 ExecuteState state = task->taskState_.exchange(ExecuteState::CANCELED);
631 task->CancelPendingTask(env);
632 if (state == ExecuteState::WAITING && task->currentTaskInfo_ != nullptr) {
633 reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
634 task->DecreaseTaskRefCount();
635 EraseWaitingTaskId(task->taskId_, task->currentTaskInfo_->priority);
636 napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: task has been canceled");
637 napi_reject_deferred(env, task->currentTaskInfo_->deferred, error);
638 napi_reference_unref(env, task->taskRef_, nullptr);
639 delete task->currentTaskInfo_;
640 task->currentTaskInfo_ = nullptr;
641 }
642 }
643
CancelSeqRunnerTask(napi_env env, Task *task)644 void TaskManager::CancelSeqRunnerTask(napi_env env, Task *task)
645 {
646 if (task->taskState_ == ExecuteState::FINISHED) {
647 std::string errMsg = "taskpool:: sequenceRunner task has been executed";
648 HILOG_ERROR("%{public}s", errMsg.c_str());
649 ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK, errMsg.c_str());
650 } else {
651 task->taskState_ = ExecuteState::CANCELED;
652 }
653 }
654
NotifyWorkerIdle(Worker* worker)655 void TaskManager::NotifyWorkerIdle(Worker* worker)
656 {
657 {
658 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
659 if (worker->state_ == WorkerState::BLOCKED) {
660 return;
661 }
662 idleWorkers_.insert(worker);
663 }
664 if (GetTaskNum() != 0) {
665 NotifyExecuteTask();
666 }
667 CountTraceForWorker();
668 }
669
NotifyWorkerCreated(Worker* worker)670 void TaskManager::NotifyWorkerCreated(Worker* worker)
671 {
672 NotifyWorkerIdle(worker);
673 }
674
NotifyWorkerAdded(Worker* worker)675 void TaskManager::NotifyWorkerAdded(Worker* worker)
676 {
677 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
678 workers_.insert(worker);
679 HILOG_DEBUG("taskpool:: a new worker has been added and the current num is %{public}zu", workers_.size());
680 }
681
NotifyWorkerRunning(Worker* worker)682 void TaskManager::NotifyWorkerRunning(Worker* worker)
683 {
684 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
685 idleWorkers_.erase(worker);
686 CountTraceForWorker();
687 }
688
GetRunningWorkers()689 uint32_t TaskManager::GetRunningWorkers()
690 {
691 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
692 return std::count_if(workers_.begin(), workers_.end(), [](const auto& worker) {
693 return worker->HasRunningTasks();
694 });
695 }
696
GetTimeoutWorkers()697 uint32_t TaskManager::GetTimeoutWorkers()
698 {
699 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
700 return timeoutWorkers_.size();
701 }
702
GetTaskNum()703 uint32_t TaskManager::GetTaskNum()
704 {
705 std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
706 uint32_t sum = 0;
707 for (const auto& elements : taskQueues_) {
708 sum += elements->GetTaskNum();
709 }
710 return sum;
711 }
712
GetNonIdleTaskNum()713 uint32_t TaskManager::GetNonIdleTaskNum()
714 {
715 return nonIdleTaskNum_;
716 }
717
IncreaseNumIfNoIdle(Priority priority)718 void TaskManager::IncreaseNumIfNoIdle(Priority priority)
719 {
720 if (priority != Priority::IDLE) {
721 ++nonIdleTaskNum_;
722 }
723 }
724
DecreaseNumIfNoIdle(Priority priority)725 void TaskManager::DecreaseNumIfNoIdle(Priority priority)
726 {
727 if (priority != Priority::IDLE) {
728 --nonIdleTaskNum_;
729 }
730 }
731
GetThreadNum()732 uint32_t TaskManager::GetThreadNum()
733 {
734 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
735 return workers_.size();
736 }
737
EnqueueTaskId(uint64_t taskId, Priority priority)738 void TaskManager::EnqueueTaskId(uint64_t taskId, Priority priority)
739 {
740 {
741 std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
742 IncreaseNumIfNoIdle(priority);
743 taskQueues_[priority]->EnqueueTaskId(taskId);
744 }
745 TryTriggerExpand();
746 Task* task = GetTask(taskId);
747 if (task == nullptr) {
748 HILOG_FATAL("taskpool:: task is nullptr");
749 return;
750 }
751 task->IncreaseTaskRefCount();
752 if (task->onEnqueuedCallBackInfo_ != nullptr) {
753 task->ExecuteListenerCallback(task->onEnqueuedCallBackInfo_);
754 }
755 }
756
EraseWaitingTaskId(uint64_t taskId, Priority priority)757 void TaskManager::EraseWaitingTaskId(uint64_t taskId, Priority priority)
758 {
759 std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
760 if (!taskQueues_[priority]->EraseWaitingTaskId(taskId)) {
761 HILOG_WARN("taskpool:: taskId is not in executeQueue when cancel");
762 }
763 }
764
DequeueTaskId()765 std::pair<uint64_t, Priority> TaskManager::DequeueTaskId()
766 {
767 std::lock_guard<FFRT_MUTEX> lock(taskQueuesMutex_);
768 auto& highTaskQueue = taskQueues_[Priority::HIGH];
769 if (!highTaskQueue->IsEmpty() && highPrioExecuteCount_ < HIGH_PRIORITY_TASK_COUNT) {
770 highPrioExecuteCount_++;
771 return GetTaskByPriority(highTaskQueue, Priority::HIGH);
772 }
773 highPrioExecuteCount_ = 0;
774
775 auto& mediumTaskQueue = taskQueues_[Priority::MEDIUM];
776 if (!mediumTaskQueue->IsEmpty() && mediumPrioExecuteCount_ < MEDIUM_PRIORITY_TASK_COUNT) {
777 mediumPrioExecuteCount_++;
778 return GetTaskByPriority(mediumTaskQueue, Priority::MEDIUM);
779 }
780 mediumPrioExecuteCount_ = 0;
781
782 auto& lowTaskQueue = taskQueues_[Priority::LOW];
783 if (!lowTaskQueue->IsEmpty()) {
784 return GetTaskByPriority(lowTaskQueue, Priority::LOW);
785 }
786
787 auto& idleTaskQueue = taskQueues_[Priority::IDLE];
788 if (highTaskQueue->IsEmpty() && mediumTaskQueue->IsEmpty() && !idleTaskQueue->IsEmpty() && IsChooseIdle()) {
789 return GetTaskByPriority(idleTaskQueue, Priority::IDLE);
790 }
791 return std::make_pair(0, Priority::LOW);
792 }
793
IsChooseIdle()794 bool TaskManager::IsChooseIdle()
795 {
796 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
797 for (auto& worker : workers_) {
798 if (worker->state_ == WorkerState::IDLE) {
799 // If worker->state_ is WorkerState::IDLE, it means that the worker is free
800 continue;
801 }
802 // If there is a worker running a task, do not take the idle task.
803 return false;
804 }
805 // Only when all workers are free, will idle task be taken.
806 return true;
807 }
808
GetTaskByPriority(const std::unique_ptr<ExecuteQueue>& taskQueue, Priority priority)809 std::pair<uint64_t, Priority> TaskManager::GetTaskByPriority(const std::unique_ptr<ExecuteQueue>& taskQueue,
810 Priority priority)
811 {
812 uint64_t taskId = taskQueue->DequeueTaskId();
813 if (IsDependendByTaskId(taskId)) {
814 EnqueuePendingTaskInfo(taskId, priority);
815 return std::make_pair(0, priority);
816 }
817 DecreaseNumIfNoIdle(priority);
818 return std::make_pair(taskId, priority);
819 }
820
NotifyExecuteTask()821 void TaskManager::NotifyExecuteTask()
822 {
823 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
824 if (GetNonIdleTaskNum() == 0 && workers_.size() != idleWorkers_.size()) {
825 // When there are only idle tasks and workers executing them, it is not triggered
826 return;
827 }
828 for (auto& worker : idleWorkers_) {
829 worker->NotifyExecuteTask();
830 }
831 }
832
InitTaskManager(napi_env env)833 void TaskManager::InitTaskManager(napi_env env)
834 {
835 HITRACE_HELPER_METER_NAME("InitTaskManager");
836 if (!isInitialized_.exchange(true, std::memory_order_relaxed)) {
837 #if defined(ENABLE_TASKPOOL_FFRT)
838 globalEnableFfrtFlag_ = OHOS::system::GetIntParameter<int>("persist.commonlibrary.taskpoolglobalenableffrt", 0);
839 if (!globalEnableFfrtFlag_) {
840 UpdateSystemAppFlag();
841 if (IsSystemApp()) {
842 disableFfrtFlag_ = OHOS::system::GetIntParameter<int>("persist.commonlibrary.taskpooldisableffrt", 0);
843 }
844 }
845 if (EnableFfrt()) {
846 HILOG_INFO("taskpool:: apps use ffrt");
847 } else {
848 HILOG_INFO("taskpool:: apps do not use ffrt");
849 }
850 #endif
851 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
852 mainThreadHandler_ = std::make_shared<OHOS::AppExecFwk::EventHandler>(
853 OHOS::AppExecFwk::EventRunner::GetMainEventRunner());
854 #endif
855 auto mainThreadEngine = NativeEngine::GetMainThreadEngine();
856 if (mainThreadEngine == nullptr) {
857 HILOG_FATAL("taskpool:: mainThreadEngine is nullptr");
858 return;
859 }
860 hostEnv_ = reinterpret_cast<napi_env>(mainThreadEngine);
861 // Add a reserved thread for taskpool
862 CreateWorkers(hostEnv_);
863 // Create a timer to manage worker threads
864 std::thread workerManager([this] {this->RunTaskManager();});
865 workerManager.detach();
866 }
867 }
868
CreateWorkers(napi_env env, uint32_t num)869 void TaskManager::CreateWorkers(napi_env env, uint32_t num)
870 {
871 HILOG_DEBUG("taskpool:: CreateWorkers, num:%{public}u", num);
872 for (uint32_t i = 0; i < num; i++) {
873 auto worker = Worker::WorkerConstructor(env);
874 NotifyWorkerAdded(worker);
875 }
876 CountTraceForWorker();
877 }
878
RemoveWorker(Worker* worker)879 void TaskManager::RemoveWorker(Worker* worker)
880 {
881 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
882 idleWorkers_.erase(worker);
883 timeoutWorkers_.erase(worker);
884 workers_.erase(worker);
885 }
886
RestoreWorker(Worker* worker)887 void TaskManager::RestoreWorker(Worker* worker)
888 {
889 std::lock_guard<RECURSIVE_MUTEX> lock(workersMutex_);
890 if (UNLIKELY(suspend_)) {
891 suspend_ = false;
892 uv_timer_again(timer_);
893 }
894 if (worker->state_ == WorkerState::BLOCKED) {
895 // since the worker is blocked, we should add it to the timeout set
896 timeoutWorkers_.insert(worker);
897 return;
898 }
899 // Since the worker may be executing some tasks in IO thread, we should add it to the
900 // worker sets and call the 'NotifyWorkerIdle', which can still execute some tasks in its own thread.
901 HILOG_DEBUG("taskpool:: worker has been restored and the current num is: %{public}zu", workers_.size());
902 idleWorkers_.emplace_hint(idleWorkers_.end(), worker);
903 if (GetTaskNum() != 0) {
904 NotifyExecuteTask();
905 }
906 }
907
908 // ---------------------------------- SendData ---------------------------------------
RegisterCallback(napi_env env, uint64_t taskId, std::shared_ptr<CallbackInfo> callbackInfo)909 void TaskManager::RegisterCallback(napi_env env, uint64_t taskId, std::shared_ptr<CallbackInfo> callbackInfo)
910 {
911 std::lock_guard<std::mutex> lock(callbackMutex_);
912 callbackTable_[taskId] = callbackInfo;
913 }
914
GetCallbackInfo(uint64_t taskId)915 std::shared_ptr<CallbackInfo> TaskManager::GetCallbackInfo(uint64_t taskId)
916 {
917 std::lock_guard<std::mutex> lock(callbackMutex_);
918 auto iter = callbackTable_.find(taskId);
919 if (iter == callbackTable_.end() || iter->second == nullptr) {
920 HILOG_ERROR("taskpool:: the callback does not exist");
921 return nullptr;
922 }
923 return iter->second;
924 }
925
IncreaseRefCount(uint64_t taskId)926 void TaskManager::IncreaseRefCount(uint64_t taskId)
927 {
928 if (taskId == 0) { // do not support func
929 return;
930 }
931 std::lock_guard<std::mutex> lock(callbackMutex_);
932 auto iter = callbackTable_.find(taskId);
933 if (iter == callbackTable_.end() || iter->second == nullptr) {
934 return;
935 }
936 iter->second->refCount++;
937 }
938
DecreaseRefCount(napi_env env, uint64_t taskId)939 void TaskManager::DecreaseRefCount(napi_env env, uint64_t taskId)
940 {
941 if (taskId == 0) { // do not support func
942 return;
943 }
944 std::lock_guard<std::mutex> lock(callbackMutex_);
945 auto iter = callbackTable_.find(taskId);
946 if (iter == callbackTable_.end() || iter->second == nullptr) {
947 return;
948 }
949
950 auto task = reinterpret_cast<Task*>(taskId);
951 if (!task->IsValid()) {
952 callbackTable_.erase(iter);
953 return;
954 }
955
956 iter->second->refCount--;
957 if (iter->second->refCount == 0) {
958 callbackTable_.erase(iter);
959 }
960 }
961
NotifyCallbackExecute(napi_env env, TaskResultInfo* resultInfo, Task* task)962 napi_value TaskManager::NotifyCallbackExecute(napi_env env, TaskResultInfo* resultInfo, Task* task)
963 {
964 HILOG_DEBUG("taskpool:: task:%{public}s NotifyCallbackExecute", std::to_string(task->taskId_).c_str());
965 std::lock_guard<std::mutex> lock(callbackMutex_);
966 auto iter = callbackTable_.find(task->taskId_);
967 if (iter == callbackTable_.end() || iter->second == nullptr) {
968 HILOG_ERROR("taskpool:: the callback in SendData is not registered on the host side");
969 ErrorHelper::ThrowError(env, ErrorHelper::ERR_NOT_REGISTERED);
970 delete resultInfo;
971 return nullptr;
972 }
973 Worker* worker = static_cast<Worker*>(task->worker_);
974 worker->Enqueue(task->env_, resultInfo);
975 auto callbackInfo = iter->second;
976 callbackInfo->refCount++;
977 callbackInfo->worker = worker;
978 auto workerEngine = reinterpret_cast<NativeEngine*>(env);
979 workerEngine->IncreaseListeningCounter();
980 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
981 if (task->IsMainThreadTask()) {
982 HITRACE_HELPER_METER_NAME("NotifyCallbackExecute: PostTask");
983 auto onCallbackTask = [callbackInfo]() {
984 TaskPool::ExecuteCallbackTask(callbackInfo.get());
985 };
986 TaskManager::GetInstance().PostTask(onCallbackTask, "TaskPoolOnCallbackTask", worker->priority_);
987 } else {
988 callbackInfo->onCallbackSignal->data = callbackInfo.get();
989 uv_async_send(callbackInfo->onCallbackSignal);
990 }
991 #else
992 callbackInfo->onCallbackSignal->data = callbackInfo.get();
993 uv_async_send(callbackInfo->onCallbackSignal);
994 #endif
995 return nullptr;
996 }
997
GetMessageQueue(const uv_async_t* req)998 MsgQueue* TaskManager::GetMessageQueue(const uv_async_t* req)
999 {
1000 std::lock_guard<std::mutex> lock(callbackMutex_);
1001 auto info = static_cast<CallbackInfo*>(req->data);
1002 if (info == nullptr || info->worker == nullptr) {
1003 HILOG_ERROR("taskpool:: info or worker is nullptr");
1004 return nullptr;
1005 }
1006 auto worker = info->worker;
1007 MsgQueue* queue = nullptr;
1008 worker->Dequeue(info->hostEnv, queue);
1009 return queue;
1010 }
1011
GetMessageQueueFromCallbackInfo(CallbackInfo* callbackInfo)1012 MsgQueue* TaskManager::GetMessageQueueFromCallbackInfo(CallbackInfo* callbackInfo)
1013 {
1014 std::lock_guard<std::mutex> lock(callbackMutex_);
1015 if (callbackInfo == nullptr || callbackInfo->worker == nullptr) {
1016 HILOG_ERROR("taskpool:: callbackInfo or worker is nullptr");
1017 return nullptr;
1018 }
1019 auto worker = callbackInfo->worker;
1020 MsgQueue* queue = nullptr;
1021 worker->Dequeue(callbackInfo->hostEnv, queue);
1022 return queue;
1023 }
1024 // ---------------------------------- SendData ---------------------------------------
1025
NotifyDependencyTaskInfo(uint64_t taskId)1026 void TaskManager::NotifyDependencyTaskInfo(uint64_t taskId)
1027 {
1028 HILOG_DEBUG("taskpool:: task:%{public}s NotifyDependencyTaskInfo", std::to_string(taskId).c_str());
1029 HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
1030 std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1031 auto iter = dependentTaskInfos_.find(taskId);
1032 if (iter == dependentTaskInfos_.end() || iter->second.empty()) {
1033 HILOG_DEBUG("taskpool:: dependentTaskInfo empty");
1034 return;
1035 }
1036 for (auto taskIdIter = iter->second.begin(); taskIdIter != iter->second.end();) {
1037 auto taskInfo = DequeuePendingTaskInfo(*taskIdIter);
1038 RemoveDependencyById(taskId, *taskIdIter);
1039 taskIdIter = iter->second.erase(taskIdIter);
1040 if (taskInfo.first != 0) {
1041 EnqueueTaskId(taskInfo.first, taskInfo.second);
1042 }
1043 }
1044 }
1045
RemoveDependencyById(uint64_t dependentTaskId, uint64_t taskId)1046 void TaskManager::RemoveDependencyById(uint64_t dependentTaskId, uint64_t taskId)
1047 {
1048 HILOG_DEBUG("taskpool::task:%{public}s RemoveDependencyById", std::to_string(taskId).c_str());
1049 // remove dependency after task execute
1050 std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1051 auto dependTaskIter = dependTaskInfos_.find(taskId);
1052 if (dependTaskIter != dependTaskInfos_.end()) {
1053 auto dependTaskInnerIter = dependTaskIter->second.find(dependentTaskId);
1054 if (dependTaskInnerIter != dependTaskIter->second.end()) {
1055 dependTaskIter->second.erase(dependTaskInnerIter);
1056 }
1057 }
1058 }
1059
IsDependendByTaskId(uint64_t taskId)1060 bool TaskManager::IsDependendByTaskId(uint64_t taskId)
1061 {
1062 std::shared_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1063 auto iter = dependTaskInfos_.find(taskId);
1064 if (iter == dependTaskInfos_.end() || iter->second.empty()) {
1065 return false;
1066 }
1067 return true;
1068 }
1069
IsDependentByTaskId(uint64_t dependentTaskId)1070 bool TaskManager::IsDependentByTaskId(uint64_t dependentTaskId)
1071 {
1072 std::shared_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1073 auto iter = dependentTaskInfos_.find(dependentTaskId);
1074 if (iter == dependentTaskInfos_.end() || iter->second.empty()) {
1075 return false;
1076 }
1077 return true;
1078 }
1079
StoreTaskDependency(uint64_t taskId, std::set<uint64_t> taskIdSet)1080 bool TaskManager::StoreTaskDependency(uint64_t taskId, std::set<uint64_t> taskIdSet)
1081 {
1082 HILOG_DEBUG("taskpool:: task:%{public}s StoreTaskDependency", std::to_string(taskId).c_str());
1083 StoreDependentTaskInfo(taskIdSet, taskId);
1084 std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1085 auto iter = dependTaskInfos_.find(taskId);
1086 if (iter == dependTaskInfos_.end()) {
1087 for (const auto& dependentId : taskIdSet) {
1088 auto idIter = dependTaskInfos_.find(dependentId);
1089 if (idIter == dependTaskInfos_.end()) {
1090 continue;
1091 }
1092 if (!CheckCircularDependency(taskIdSet, idIter->second, taskId)) {
1093 return false;
1094 }
1095 }
1096 dependTaskInfos_.emplace(taskId, std::move(taskIdSet));
1097 return true;
1098 }
1099
1100 for (const auto& dependentId : iter->second) {
1101 auto idIter = dependTaskInfos_.find(dependentId);
1102 if (idIter == dependTaskInfos_.end()) {
1103 continue;
1104 }
1105 if (!CheckCircularDependency(iter->second, idIter->second, taskId)) {
1106 return false;
1107 }
1108 }
1109 iter->second.insert(taskIdSet.begin(), taskIdSet.end());
1110 return true;
1111 }
1112
CheckCircularDependency(std::set<uint64_t> dependentIdSet, std::set<uint64_t> idSet, uint64_t taskId)1113 bool TaskManager::CheckCircularDependency(std::set<uint64_t> dependentIdSet, std::set<uint64_t> idSet, uint64_t taskId)
1114 {
1115 for (const auto& id : idSet) {
1116 if (id == taskId) {
1117 return false;
1118 }
1119 auto iter = dependentIdSet.find(id);
1120 if (iter != dependentIdSet.end()) {
1121 continue;
1122 }
1123 auto dIter = dependTaskInfos_.find(id);
1124 if (dIter == dependTaskInfos_.end()) {
1125 continue;
1126 }
1127 if (!CheckCircularDependency(dependentIdSet, dIter->second, taskId)) {
1128 return false;
1129 }
1130 }
1131 return true;
1132 }
1133
RemoveTaskDependency(uint64_t taskId, uint64_t dependentId)1134 bool TaskManager::RemoveTaskDependency(uint64_t taskId, uint64_t dependentId)
1135 {
1136 HILOG_DEBUG("taskpool:: task:%{public}s RemoveTaskDependency", std::to_string(taskId).c_str());
1137 RemoveDependentTaskInfo(dependentId, taskId);
1138 std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1139 auto iter = dependTaskInfos_.find(taskId);
1140 if (iter == dependTaskInfos_.end()) {
1141 return false;
1142 }
1143 auto dependIter = iter->second.find(dependentId);
1144 if (dependIter == iter->second.end()) {
1145 return false;
1146 }
1147 iter->second.erase(dependIter);
1148 return true;
1149 }
1150
EnqueuePendingTaskInfo(uint64_t taskId, Priority priority)1151 void TaskManager::EnqueuePendingTaskInfo(uint64_t taskId, Priority priority)
1152 {
1153 if (taskId == 0) {
1154 return;
1155 }
1156 std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1157 pendingTaskInfos_.emplace(taskId, priority);
1158 }
1159
DequeuePendingTaskInfo(uint64_t taskId)1160 std::pair<uint64_t, Priority> TaskManager::DequeuePendingTaskInfo(uint64_t taskId)
1161 {
1162 std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1163 if (pendingTaskInfos_.empty()) {
1164 return std::make_pair(0, Priority::DEFAULT);
1165 }
1166 std::pair<uint64_t, Priority> result;
1167 for (auto it = pendingTaskInfos_.begin(); it != pendingTaskInfos_.end(); ++it) {
1168 if (it->first == taskId) {
1169 result = std::make_pair(it->first, it->second);
1170 it = pendingTaskInfos_.erase(it);
1171 break;
1172 }
1173 }
1174 return result;
1175 }
1176
RemovePendingTaskInfo(uint64_t taskId)1177 void TaskManager::RemovePendingTaskInfo(uint64_t taskId)
1178 {
1179 HILOG_DEBUG("taskpool:: task:%{public}s RemovePendingTaskInfo", std::to_string(taskId).c_str());
1180 std::unique_lock<std::shared_mutex> lock(pendingTaskInfosMutex_);
1181 pendingTaskInfos_.erase(taskId);
1182 }
1183
StoreDependentTaskInfo(std::set<uint64_t> dependentTaskIdSet, uint64_t taskId)1184 void TaskManager::StoreDependentTaskInfo(std::set<uint64_t> dependentTaskIdSet, uint64_t taskId)
1185 {
1186 HILOG_DEBUG("taskpool:: task:%{public}s StoreDependentTaskInfo", std::to_string(taskId).c_str());
1187 std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1188 for (const auto& id : dependentTaskIdSet) {
1189 auto iter = dependentTaskInfos_.find(id);
1190 if (iter == dependentTaskInfos_.end()) {
1191 std::set<uint64_t> set{taskId};
1192 dependentTaskInfos_.emplace(id, std::move(set));
1193 } else {
1194 iter->second.emplace(taskId);
1195 }
1196 }
1197 }
1198
RemoveDependentTaskInfo(uint64_t dependentTaskId, uint64_t taskId)1199 void TaskManager::RemoveDependentTaskInfo(uint64_t dependentTaskId, uint64_t taskId)
1200 {
1201 HILOG_DEBUG("taskpool:: task:%{public}s RemoveDependentTaskInfo", std::to_string(taskId).c_str());
1202 std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1203 auto iter = dependentTaskInfos_.find(dependentTaskId);
1204 if (iter == dependentTaskInfos_.end()) {
1205 return;
1206 }
1207 auto taskIter = iter->second.find(taskId);
1208 if (taskIter == iter->second.end()) {
1209 return;
1210 }
1211 iter->second.erase(taskIter);
1212 }
1213
GetTaskDependInfoToString(uint64_t taskId)1214 std::string TaskManager::GetTaskDependInfoToString(uint64_t taskId)
1215 {
1216 std::shared_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1217 std::string str = "TaskInfos: taskId: " + std::to_string(taskId) + ", dependTaskId:";
1218 auto iter = dependTaskInfos_.find(taskId);
1219 if (iter != dependTaskInfos_.end()) {
1220 for (const auto& id : iter->second) {
1221 str += " " + std::to_string(id);
1222 }
1223 }
1224 return str;
1225 }
1226
StoreTaskDuration(uint64_t taskId, uint64_t totalDuration, uint64_t cpuDuration)1227 void TaskManager::StoreTaskDuration(uint64_t taskId, uint64_t totalDuration, uint64_t cpuDuration)
1228 {
1229 HILOG_DEBUG("taskpool:: task:%{public}s StoreTaskDuration", std::to_string(taskId).c_str());
1230 std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1231 auto iter = taskDurationInfos_.find(taskId);
1232 if (iter == taskDurationInfos_.end()) {
1233 std::pair<uint64_t, uint64_t> durationData = std::make_pair(totalDuration, cpuDuration);
1234 taskDurationInfos_.emplace(taskId, std::move(durationData));
1235 } else {
1236 if (totalDuration != 0) {
1237 iter->second.first = totalDuration;
1238 }
1239 if (cpuDuration != 0) {
1240 iter->second.second = cpuDuration;
1241 }
1242 }
1243 }
1244
GetTaskDuration(uint64_t taskId, std::string durationType)1245 uint64_t TaskManager::GetTaskDuration(uint64_t taskId, std::string durationType)
1246 {
1247 std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1248 auto iter = taskDurationInfos_.find(taskId);
1249 if (iter == taskDurationInfos_.end()) {
1250 return 0;
1251 }
1252 if (durationType == TASK_TOTAL_TIME) {
1253 return iter->second.first;
1254 } else if (durationType == TASK_CPU_TIME) {
1255 return iter->second.second;
1256 } else if (iter->second.first == 0) {
1257 return 0;
1258 }
1259 return iter->second.first - iter->second.second;
1260 }
1261
RemoveTaskDuration(uint64_t taskId)1262 void TaskManager::RemoveTaskDuration(uint64_t taskId)
1263 {
1264 HILOG_DEBUG("taskpool:: task:%{public}s RemoveTaskDuration", std::to_string(taskId).c_str());
1265 std::unique_lock<std::shared_mutex> lock(taskDurationInfosMutex_);
1266 auto iter = taskDurationInfos_.find(taskId);
1267 if (iter != taskDurationInfos_.end()) {
1268 taskDurationInfos_.erase(iter);
1269 }
1270 }
1271
StoreLongTaskInfo(uint64_t taskId, Worker* worker)1272 void TaskManager::StoreLongTaskInfo(uint64_t taskId, Worker* worker)
1273 {
1274 std::unique_lock<std::shared_mutex> lock(longTasksMutex_);
1275 longTasksMap_.emplace(taskId, worker);
1276 }
1277
RemoveLongTaskInfo(uint64_t taskId)1278 void TaskManager::RemoveLongTaskInfo(uint64_t taskId)
1279 {
1280 std::unique_lock<std::shared_mutex> lock(longTasksMutex_);
1281 longTasksMap_.erase(taskId);
1282 }
1283
GetLongTaskInfo(uint64_t taskId)1284 Worker* TaskManager::GetLongTaskInfo(uint64_t taskId)
1285 {
1286 std::shared_lock<std::shared_mutex> lock(longTasksMutex_);
1287 auto iter = longTasksMap_.find(taskId);
1288 return iter != longTasksMap_.end() ? iter->second : nullptr;
1289 }
1290
TerminateTask(uint64_t taskId)1291 void TaskManager::TerminateTask(uint64_t taskId)
1292 {
1293 HILOG_DEBUG("taskpool:: task:%{public}s TerminateTask", std::to_string(taskId).c_str());
1294 auto worker = GetLongTaskInfo(taskId);
1295 if (UNLIKELY(worker == nullptr)) {
1296 return;
1297 }
1298 worker->TerminateTask(taskId);
1299 RemoveLongTaskInfo(taskId);
1300 }
1301
ReleaseTaskData(napi_env env, Task* task, bool shouldDeleteTask)1302 void TaskManager::ReleaseTaskData(napi_env env, Task* task, bool shouldDeleteTask)
1303 {
1304 uint64_t taskId = task->taskId_;
1305 if (shouldDeleteTask) {
1306 RemoveTask(taskId);
1307 }
1308 if (task->onResultSignal_ != nullptr) {
1309 if (!uv_is_closing((uv_handle_t*)task->onResultSignal_)) {
1310 ConcurrentHelper::UvHandleClose(task->onResultSignal_);
1311 } else {
1312 delete task->onResultSignal_;
1313 }
1314 task->onResultSignal_ = nullptr;
1315 }
1316
1317 if (task->currentTaskInfo_ != nullptr) {
1318 delete task->currentTaskInfo_;
1319 task->currentTaskInfo_ = nullptr;
1320 }
1321
1322 task->CancelPendingTask(env);
1323
1324 task->ClearDelayedTimers();
1325
1326 if (task->IsFunctionTask() || task->IsGroupFunctionTask()) {
1327 return;
1328 }
1329 DecreaseRefCount(env, taskId);
1330 RemoveTaskDuration(taskId);
1331 RemovePendingTaskInfo(taskId);
1332 ReleaseCallBackInfo(task);
1333 {
1334 std::unique_lock<std::shared_mutex> lock(dependentTaskInfosMutex_);
1335 for (auto dependentTaskIter = dependentTaskInfos_.begin(); dependentTaskIter != dependentTaskInfos_.end();) {
1336 if (dependentTaskIter->second.find(taskId) != dependentTaskIter->second.end()) {
1337 dependentTaskIter = dependentTaskInfos_.erase(dependentTaskIter);
1338 } else {
1339 ++dependentTaskIter;
1340 }
1341 }
1342 }
1343 std::unique_lock<std::shared_mutex> lock(dependTaskInfosMutex_);
1344 auto dependTaskIter = dependTaskInfos_.find(taskId);
1345 if (dependTaskIter != dependTaskInfos_.end()) {
1346 dependTaskInfos_.erase(dependTaskIter);
1347 }
1348 }
1349
ReleaseCallBackInfo(Task* task)1350 void TaskManager::ReleaseCallBackInfo(Task* task)
1351 {
1352 HILOG_DEBUG("taskpool:: ReleaseCallBackInfo task:%{public}s", std::to_string(task->taskId_).c_str());
1353 if (task->onEnqueuedCallBackInfo_ != nullptr) {
1354 delete task->onEnqueuedCallBackInfo_;
1355 task->onEnqueuedCallBackInfo_ = nullptr;
1356 }
1357
1358 if (task->onStartExecutionCallBackInfo_ != nullptr) {
1359 delete task->onStartExecutionCallBackInfo_;
1360 task->onStartExecutionCallBackInfo_ = nullptr;
1361 }
1362
1363 if (task->onExecutionFailedCallBackInfo_ != nullptr) {
1364 delete task->onExecutionFailedCallBackInfo_;
1365 task->onExecutionFailedCallBackInfo_ = nullptr;
1366 }
1367
1368 if (task->onExecutionSucceededCallBackInfo_ != nullptr) {
1369 delete task->onExecutionSucceededCallBackInfo_;
1370 task->onExecutionSucceededCallBackInfo_ = nullptr;
1371 }
1372
1373 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
1374 if (!task->IsMainThreadTask() && task->onStartExecutionSignal_ != nullptr) {
1375 if (!uv_is_closing((uv_handle_t*)task->onStartExecutionSignal_)) {
1376 ConcurrentHelper::UvHandleClose(task->onStartExecutionSignal_);
1377 } else {
1378 delete task->onStartExecutionSignal_;
1379 }
1380 task->onStartExecutionSignal_ = nullptr;
1381 }
1382 #else
1383 if (task->onStartExecutionSignal_ != nullptr) {
1384 if (!uv_is_closing((uv_handle_t*)task->onStartExecutionSignal_)) {
1385 ConcurrentHelper::UvHandleClose(task->onStartExecutionSignal_);
1386 } else {
1387 delete task->onStartExecutionSignal_;
1388 }
1389 task->onStartExecutionSignal_ = nullptr;
1390 }
1391 #endif
1392 }
1393
StoreTask(uint64_t taskId, Task* task)1394 void TaskManager::StoreTask(uint64_t taskId, Task* task)
1395 {
1396 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1397 tasks_.emplace(taskId, task);
1398 }
1399
RemoveTask(uint64_t taskId)1400 void TaskManager::RemoveTask(uint64_t taskId)
1401 {
1402 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1403 tasks_.erase(taskId);
1404 }
1405
GetTask(uint64_t taskId)1406 Task* TaskManager::GetTask(uint64_t taskId)
1407 {
1408 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1409 auto iter = tasks_.find(taskId);
1410 if (iter == tasks_.end()) {
1411 return nullptr;
1412 }
1413 return iter->second;
1414 }
1415
1416 #if defined(ENABLE_TASKPOOL_FFRT)
UpdateSystemAppFlag()1417 void TaskManager::UpdateSystemAppFlag()
1418 {
1419 auto abilityManager = OHOS::SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
1420 if (abilityManager == nullptr) {
1421 HILOG_ERROR("taskpool:: fail to GetSystemAbility abilityManager is nullptr.");
1422 return;
1423 }
1424 auto bundleObj = abilityManager->GetSystemAbility(OHOS::BUNDLE_MGR_SERVICE_SYS_ABILITY_ID);
1425 if (bundleObj == nullptr) {
1426 HILOG_ERROR("taskpool:: fail to get bundle manager service.");
1427 return;
1428 }
1429 auto bundleMgr = OHOS::iface_cast<OHOS::AppExecFwk::IBundleMgr>(bundleObj);
1430 if (bundleMgr == nullptr) {
1431 HILOG_ERROR("taskpool:: Bundle manager is nullptr.");
1432 return;
1433 }
1434 OHOS::AppExecFwk::BundleInfo bundleInfo;
1435 if (bundleMgr->GetBundleInfoForSelf(
1436 static_cast<int32_t>(OHOS::AppExecFwk::GetBundleInfoFlag::GET_BUNDLE_INFO_WITH_APPLICATION), bundleInfo)
1437 != OHOS::ERR_OK) {
1438 HILOG_ERROR("taskpool:: fail to GetBundleInfoForSelf");
1439 return;
1440 }
1441 isSystemApp_ = bundleInfo.applicationInfo.isSystemApp;
1442 }
1443 #endif
1444
1445 #if defined(ENABLE_TASKPOOL_EVENTHANDLER)
PostTask(std::function<void()> task, const char* taskName, Priority priority)1446 bool TaskManager::PostTask(std::function<void()> task, const char* taskName, Priority priority)
1447 {
1448 return mainThreadHandler_->PostTask(task, taskName, 0, TASK_EVENTHANDLER_PRIORITY_MAP.at(priority));
1449 }
1450 #endif
1451
CheckTask(uint64_t taskId)1452 bool TaskManager::CheckTask(uint64_t taskId)
1453 {
1454 std::lock_guard<RECURSIVE_MUTEX> lock(tasksMutex_);
1455 auto item = tasks_.find(taskId);
1456 return item != tasks_.end();
1457 }
1458
1459 // ----------------------------------- TaskGroupManager ----------------------------------------
GetInstance()1460 TaskGroupManager& TaskGroupManager::GetInstance()
1461 {
1462 static TaskGroupManager groupManager;
1463 return groupManager;
1464 }
1465
AddTask(uint64_t groupId, napi_ref taskRef, uint64_t taskId)1466 void TaskGroupManager::AddTask(uint64_t groupId, napi_ref taskRef, uint64_t taskId)
1467 {
1468 std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1469 auto groupIter = taskGroups_.find(groupId);
1470 if (groupIter == taskGroups_.end()) {
1471 HILOG_DEBUG("taskpool:: taskGroup has been released");
1472 return;
1473 }
1474 auto taskGroup = reinterpret_cast<TaskGroup*>(groupIter->second);
1475 if (taskGroup == nullptr) {
1476 HILOG_ERROR("taskpool:: taskGroup is null");
1477 return;
1478 }
1479 taskGroup->taskRefs_.push_back(taskRef);
1480 taskGroup->taskNum_++;
1481 taskGroup->taskIds_.push_back(taskId);
1482 }
1483
ReleaseTaskGroupData(napi_env env, TaskGroup* group)1484 void TaskGroupManager::ReleaseTaskGroupData(napi_env env, TaskGroup* group)
1485 {
1486 HILOG_DEBUG("taskpool:: ReleaseTaskGroupData group");
1487 TaskGroupManager::GetInstance().RemoveTaskGroup(group->groupId_);
1488 for (uint64_t taskId : group->taskIds_) {
1489 Task* task = TaskManager::GetInstance().GetTask(taskId);
1490 if (task == nullptr || !task->IsValid()) {
1491 continue;
1492 }
1493 napi_reference_unref(task->env_, task->taskRef_, nullptr);
1494 }
1495
1496 if (group->currentGroupInfo_ != nullptr) {
1497 delete group->currentGroupInfo_;
1498 }
1499
1500 group->CancelPendingGroup(env);
1501 }
1502
CancelGroup(napi_env env, uint64_t groupId)1503 void TaskGroupManager::CancelGroup(napi_env env, uint64_t groupId)
1504 {
1505 std::string strTrace = "CancelGroup: groupId: " + std::to_string(groupId);
1506 HITRACE_HELPER_METER_NAME(strTrace);
1507 HILOG_INFO("taskpool:: %{public}s", strTrace.c_str());
1508 TaskGroup* taskGroup = GetTaskGroup(groupId);
1509 if (taskGroup == nullptr) {
1510 HILOG_ERROR("taskpool:: CancelGroup group is nullptr");
1511 return;
1512 }
1513 if (taskGroup->groupState_ == ExecuteState::CANCELED) {
1514 return;
1515 }
1516 std::lock_guard<RECURSIVE_MUTEX> lock(taskGroup->taskGroupMutex_);
1517 if (taskGroup->currentGroupInfo_ == nullptr || taskGroup->groupState_ == ExecuteState::NOT_FOUND ||
1518 taskGroup->groupState_ == ExecuteState::FINISHED) {
1519 std::string errMsg = "taskpool:: taskGroup is not executed or has been executed";
1520 HILOG_ERROR("%{public}s", errMsg.c_str());
1521 ErrorHelper::ThrowError(env, ErrorHelper::ERR_CANCEL_NONEXIST_TASK_GROUP, errMsg.c_str());
1522 return;
1523 }
1524 ExecuteState groupState = taskGroup->groupState_;
1525 taskGroup->groupState_ = ExecuteState::CANCELED;
1526 taskGroup->CancelPendingGroup(env);
1527 if (taskGroup->currentGroupInfo_->finishedTask != taskGroup->taskNum_) {
1528 for (uint64_t taskId : taskGroup->taskIds_) {
1529 CancelGroupTask(env, taskId, taskGroup);
1530 }
1531 }
1532 if (groupState == ExecuteState::WAITING && taskGroup->currentGroupInfo_ != nullptr) {
1533 auto engine = reinterpret_cast<NativeEngine*>(env);
1534 for (size_t i = 0; i < taskGroup->taskIds_.size(); i++) {
1535 engine->DecreaseSubEnvCounter();
1536 }
1537 napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: taskGroup has been canceled");
1538 napi_reject_deferred(env, taskGroup->currentGroupInfo_->deferred, error);
1539 napi_delete_reference(env, taskGroup->currentGroupInfo_->resArr);
1540 napi_reference_unref(env, taskGroup->groupRef_, nullptr);
1541 delete taskGroup->currentGroupInfo_;
1542 taskGroup->currentGroupInfo_ = nullptr;
1543 }
1544 }
1545
CancelGroupTask(napi_env env, uint64_t taskId, TaskGroup* group)1546 void TaskGroupManager::CancelGroupTask(napi_env env, uint64_t taskId, TaskGroup* group)
1547 {
1548 HILOG_DEBUG("taskpool:: CancelGroupTask task:%{public}s", std::to_string(taskId).c_str());
1549 auto task = TaskManager::GetInstance().GetTask(taskId);
1550 if (task == nullptr) {
1551 HILOG_INFO("taskpool:: CancelGroupTask task is nullptr");
1552 return;
1553 }
1554 std::lock_guard<RECURSIVE_MUTEX> lock(task->taskMutex_);
1555 if (task->taskState_ == ExecuteState::WAITING && task->currentTaskInfo_ != nullptr) {
1556 reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
1557 task->DecreaseTaskRefCount();
1558 TaskManager::GetInstance().EraseWaitingTaskId(task->taskId_, task->currentTaskInfo_->priority);
1559 delete task->currentTaskInfo_;
1560 task->currentTaskInfo_ = nullptr;
1561 }
1562 task->taskState_ = ExecuteState::CANCELED;
1563 }
1564
StoreSequenceRunner(uint64_t seqRunnerId, SequenceRunner* seqRunner)1565 void TaskGroupManager::StoreSequenceRunner(uint64_t seqRunnerId, SequenceRunner* seqRunner)
1566 {
1567 std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1568 seqRunners_.emplace(seqRunnerId, seqRunner);
1569 }
1570
RemoveSequenceRunner(uint64_t seqRunnerId)1571 void TaskGroupManager::RemoveSequenceRunner(uint64_t seqRunnerId)
1572 {
1573 std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1574 seqRunners_.erase(seqRunnerId);
1575 }
1576
GetSeqRunner(uint64_t seqRunnerId)1577 SequenceRunner* TaskGroupManager::GetSeqRunner(uint64_t seqRunnerId)
1578 {
1579 std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1580 auto iter = seqRunners_.find(seqRunnerId);
1581 if (iter != seqRunners_.end()) {
1582 return iter->second;
1583 }
1584 HILOG_DEBUG("taskpool:: sequenceRunner has been released.");
1585 return nullptr;
1586 }
1587
AddTaskToSeqRunner(uint64_t seqRunnerId, Task* task)1588 void TaskGroupManager::AddTaskToSeqRunner(uint64_t seqRunnerId, Task* task)
1589 {
1590 std::unique_lock<std::mutex> lock(seqRunnersMutex_);
1591 auto iter = seqRunners_.find(seqRunnerId);
1592 if (iter == seqRunners_.end()) {
1593 HILOG_ERROR("seqRunner:: seqRunner not found.");
1594 return;
1595 } else {
1596 std::unique_lock<std::shared_mutex> seqRunnerLock(iter->second->seqRunnerMutex_);
1597 iter->second->seqRunnerTasks_.push(task);
1598 }
1599 }
1600
TriggerSeqRunner(napi_env env, Task* lastTask)1601 bool TaskGroupManager::TriggerSeqRunner(napi_env env, Task* lastTask)
1602 {
1603 uint64_t seqRunnerId = lastTask->seqRunnerId_;
1604 SequenceRunner* seqRunner = GetSeqRunner(seqRunnerId);
1605 if (seqRunner == nullptr) {
1606 HILOG_ERROR("seqRunner:: trigger seqRunner not exist.");
1607 return false;
1608 }
1609 if (!SequenceRunnerManager::GetInstance().TriggerGlobalSeqRunner(env, seqRunner)) {
1610 HILOG_ERROR("seqRunner:: trigger globalSeqRunner not exist.");
1611 return false;
1612 }
1613 if (seqRunner->currentTaskId_ != lastTask->taskId_) {
1614 HILOG_ERROR("seqRunner:: only front task can trigger seqRunner.");
1615 return false;
1616 }
1617 {
1618 std::unique_lock<std::shared_mutex> lock(seqRunner->seqRunnerMutex_);
1619 if (seqRunner->seqRunnerTasks_.empty()) {
1620 HILOG_DEBUG("seqRunner:: seqRunner %{public}s empty.", std::to_string(seqRunnerId).c_str());
1621 seqRunner->currentTaskId_ = 0;
1622 return true;
1623 }
1624 Task* task = seqRunner->seqRunnerTasks_.front();
1625 seqRunner->seqRunnerTasks_.pop();
1626 while (task->taskState_ == ExecuteState::CANCELED) {
1627 DisposeCanceledTask(env, task);
1628 if (seqRunner->seqRunnerTasks_.empty()) {
1629 HILOG_DEBUG("seqRunner:: seqRunner %{public}s empty in cancel loop.",
1630 std::to_string(seqRunnerId).c_str());
1631 seqRunner->currentTaskId_ = 0;
1632 return true;
1633 }
1634 task = seqRunner->seqRunnerTasks_.front();
1635 seqRunner->seqRunnerTasks_.pop();
1636 }
1637 seqRunner->currentTaskId_ = task->taskId_;
1638 task->IncreaseRefCount();
1639 task->taskState_ = ExecuteState::WAITING;
1640 HILOG_DEBUG("seqRunner:: Trigger task %{public}s in seqRunner %{public}s.",
1641 std::to_string(task->taskId_).c_str(), std::to_string(seqRunnerId).c_str());
1642 TaskManager::GetInstance().EnqueueTaskId(task->taskId_, seqRunner->priority_);
1643 }
1644 return true;
1645 }
1646
DisposeCanceledTask(napi_env env, Task* task)1647 void TaskGroupManager::DisposeCanceledTask(napi_env env, Task* task)
1648 {
1649 napi_value error = ErrorHelper::NewError(env, 0, "taskpool:: sequenceRunner task has been canceled");
1650 napi_reject_deferred(env, task->currentTaskInfo_->deferred, error);
1651 reinterpret_cast<NativeEngine*>(env)->DecreaseSubEnvCounter();
1652 napi_reference_unref(env, task->taskRef_, nullptr);
1653 delete task->currentTaskInfo_;
1654 task->currentTaskInfo_ = nullptr;
1655 }
1656
StoreTaskGroup(uint64_t groupId, TaskGroup* taskGroup)1657 void TaskGroupManager::StoreTaskGroup(uint64_t groupId, TaskGroup* taskGroup)
1658 {
1659 std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1660 taskGroups_.emplace(groupId, taskGroup);
1661 }
1662
RemoveTaskGroup(uint64_t groupId)1663 void TaskGroupManager::RemoveTaskGroup(uint64_t groupId)
1664 {
1665 std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1666 taskGroups_.erase(groupId);
1667 }
1668
GetTaskGroup(uint64_t groupId)1669 TaskGroup* TaskGroupManager::GetTaskGroup(uint64_t groupId)
1670 {
1671 std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1672 auto groupIter = taskGroups_.find(groupId);
1673 if (groupIter == taskGroups_.end()) {
1674 return nullptr;
1675 }
1676 return reinterpret_cast<TaskGroup*>(groupIter->second);
1677 }
1678
UpdateGroupState(uint64_t groupId)1679 bool TaskGroupManager::UpdateGroupState(uint64_t groupId)
1680 {
1681 HILOG_DEBUG("taskpool:: UpdateGroupState groupId:%{public}s", std::to_string(groupId).c_str());
1682 // During the modification process of the group, prevent other sub threads from performing other
1683 // operations on the group pointer, which may cause the modification to fail.
1684 std::lock_guard<std::mutex> lock(taskGroupsMutex_);
1685 auto groupIter = taskGroups_.find(groupId);
1686 if (groupIter == taskGroups_.end()) {
1687 return false;
1688 }
1689 TaskGroup* group = reinterpret_cast<TaskGroup*>(groupIter->second);
1690 if (group == nullptr || group->groupState_ == ExecuteState::CANCELED) {
1691 HILOG_DEBUG("taskpool:: UpdateGroupState taskGroup has been released or canceled");
1692 return false;
1693 }
1694 group->groupState_ = ExecuteState::RUNNING;
1695 return true;
1696 }
1697
1698 // ----------------------------------- SequenceRunnerManager ----------------------------------------
GetInstance()1699 SequenceRunnerManager& SequenceRunnerManager::GetInstance()
1700 {
1701 static SequenceRunnerManager sequenceRunnerManager;
1702 return sequenceRunnerManager;
1703 }
1704
CreateOrGetGlobalRunner(napi_env env, napi_value thisVar, size_t argc, const std::string &name, uint32_t priority)1705 SequenceRunner* SequenceRunnerManager::CreateOrGetGlobalRunner(napi_env env, napi_value thisVar, size_t argc,
1706 const std::string &name, uint32_t priority)
1707 {
1708 std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1709 SequenceRunner *seqRunner = nullptr;
1710 auto iter = globalSeqRunner_.find(name);
1711 if (iter == globalSeqRunner_.end()) {
1712 seqRunner = new SequenceRunner();
1713 // refresh priority default values on first creation
1714 if (argc == 2) { // 2: The number of parameters is 2.
1715 seqRunner->priority_ = static_cast<Priority>(priority);
1716 }
1717 seqRunner->isGlobalRunner_ = true;
1718 seqRunner->seqName_ = name;
1719 globalSeqRunner_.emplace(name, seqRunner);
1720 } else {
1721 seqRunner = iter->second;
1722 if (priority != seqRunner->priority_) {
1723 ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "seqRunner:: priority can not changed.");
1724 return nullptr;
1725 }
1726 }
1727 seqRunner->count_++;
1728 auto tmpIter = seqRunner->globalSeqRunnerRef_.find(env);
1729 if (tmpIter == seqRunner->globalSeqRunnerRef_.end()) {
1730 napi_ref gloableSeqRunnerRef = nullptr;
1731 napi_create_reference(env, thisVar, 0, &gloableSeqRunnerRef);
1732 seqRunner->globalSeqRunnerRef_.emplace(env, gloableSeqRunnerRef);
1733 }
1734
1735 return seqRunner;
1736 }
1737
TriggerGlobalSeqRunner(napi_env env, SequenceRunner* seqRunner)1738 bool SequenceRunnerManager::TriggerGlobalSeqRunner(napi_env env, SequenceRunner* seqRunner)
1739 {
1740 std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1741 if (seqRunner->isGlobalRunner_) {
1742 auto iter = seqRunner->globalSeqRunnerRef_.find(env);
1743 if (iter == seqRunner->globalSeqRunnerRef_.end()) {
1744 return false;
1745 }
1746 napi_reference_unref(env, iter->second, nullptr);
1747 } else {
1748 napi_reference_unref(env, seqRunner->seqRunnerRef_, nullptr);
1749 }
1750 return true;
1751 }
1752
DecreaseSeqCount(SequenceRunner* seqRunner)1753 uint64_t SequenceRunnerManager::DecreaseSeqCount(SequenceRunner* seqRunner)
1754 {
1755 std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1756 return --(seqRunner->count_);
1757 }
1758
RemoveGlobalSeqRunnerRef(napi_env env, SequenceRunner* seqRunner)1759 void SequenceRunnerManager::RemoveGlobalSeqRunnerRef(napi_env env, SequenceRunner* seqRunner)
1760 {
1761 std::lock_guard<std::mutex> lock(globalSeqRunnerMutex_);
1762 auto iter = seqRunner->globalSeqRunnerRef_.find(env);
1763 if (iter != seqRunner->globalSeqRunnerRef_.end()) {
1764 napi_delete_reference(env, iter->second);
1765 seqRunner->globalSeqRunnerRef_.erase(iter);
1766 }
1767 }
1768
RemoveSequenceRunner(const std::string &name)1769 void SequenceRunnerManager::RemoveSequenceRunner(const std::string &name)
1770 {
1771 std::unique_lock<std::mutex> lock(globalSeqRunnerMutex_);
1772 auto iter = globalSeqRunner_.find(name.c_str());
1773 if (iter != globalSeqRunner_.end()) {
1774 globalSeqRunner_.erase(iter->first);
1775 }
1776 }
1777
GlobalSequenceRunnerDestructor(napi_env env, SequenceRunner *seqRunner)1778 void SequenceRunnerManager::GlobalSequenceRunnerDestructor(napi_env env, SequenceRunner *seqRunner)
1779 {
1780 RemoveGlobalSeqRunnerRef(env, seqRunner);
1781 if (DecreaseSeqCount(seqRunner) == 0) {
1782 RemoveSequenceRunner(seqRunner->seqName_);
1783 TaskGroupManager::GetInstance().RemoveSequenceRunner(seqRunner->seqRunnerId_);
1784 delete seqRunner;
1785 }
1786 }
1787 } // namespace Commonlibrary::Concurrent::TaskPoolModule