/kernel/linux/linux-5.10/lib/ |
H A D | crc8.c | 24 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order. 27 * @polynomial: polynomial for which table is to be filled. 29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument 38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb() 46 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order. 49 * @polynomial: polynomial for which table is to be filled. 51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument 59 t = (t >> 1) ^ (t & 1 ? polynomial in crc8_populate_lsb() [all...] |
H A D | crc32.c | 144 * @polynomial: CRC32/CRC32c LE polynomial 148 u32 polynomial) 155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); 235 * @polynomial: The modulus used to reduce the result to 32 bits. 244 u32 polynomial) 246 u32 power = polynomial; /* CRC of x^32 */ 251 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0); 258 /* "power" is x^(2^i), modulo the polynomial */ 260 crc = gf2_multiply(crc, power, polynomial); 146 crc32_le_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument 243 crc32_generic_shift(u32 crc, size_t len, u32 polynomial) global() argument 294 crc32_be_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument [all...] |
H A D | gen_crc32table.c | 37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument 46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
|
/kernel/linux/linux-6.6/lib/ |
H A D | crc8.c | 24 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order. 27 * @polynomial: polynomial for which table is to be filled. 29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument 38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb() 46 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order. 49 * @polynomial: polynomial for which table is to be filled. 51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument 59 t = (t >> 1) ^ (t & 1 ? polynomial in crc8_populate_lsb() [all...] |
H A D | crc32.c | 144 * @polynomial: CRC32/CRC32c LE polynomial 148 u32 polynomial) 155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); 234 * @polynomial: The modulus used to reduce the result to 32 bits. 243 u32 polynomial) 245 u32 power = polynomial; /* CRC of x^32 */ 250 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0); 257 /* "power" is x^(2^i), modulo the polynomial */ 259 crc = gf2_multiply(crc, power, polynomial); 146 crc32_le_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument 242 crc32_generic_shift(u32 crc, size_t len, u32 polynomial) global() argument 293 crc32_be_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument [all...] |
H A D | polynomial.c | 3 * Generic polynomial calculation using integer coefficients. 15 #include <linux/polynomial.h> 44 * static const struct polynomial poly_temp_to_N = { 55 * static const struct polynomial poly_N_to_temp = { 68 * polynomial_calc - calculate a polynomial using integer arithmetic 70 * @poly: pointer to the descriptor of the polynomial 73 * Calculate the result of a polynomial using only integer arithmetic. For 77 * Returns the result of the polynomial calculation. 79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc() 87 * Here is the polynomial calculatio in polynomial_calc() [all...] |
H A D | gen_crc32table.c | 37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument 46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
|
H A D | Makefile | 279 obj-$(CONFIG_POLYNOMIAL) += polynomial.o
|
/kernel/linux/linux-6.6/include/linux/ |
H A D | polynomial.h | 10 * struct polynomial_term - one term descriptor of a polynomial 24 * struct polynomial - a polynomial descriptor 26 * @terms: polynomial terms, last term must have degree of 0 28 struct polynomial { struct 33 long polynomial_calc(const struct polynomial *poly, long data);
|
H A D | crc8.h | 40 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order. 43 * @polynomial: polynomial for which table is to be filled. 45 * This function fills the provided table according the polynomial provided for 51 * For lsb first direction x^7 maps to the lsb. So the polynomial is as below. 55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial); 58 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order. 61 * @polynomial: polynomial for which table is to be filled. 63 * This function fills the provided table according the polynomial provide [all...] |
/kernel/linux/linux-5.10/include/linux/ |
H A D | crc8.h | 40 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order. 43 * @polynomial: polynomial for which table is to be filled. 45 * This function fills the provided table according the polynomial provided for 51 * For lsb first direction x^7 maps to the lsb. So the polynomial is as below. 55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial); 58 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order. 61 * @polynomial: polynomial for which table is to be filled. 63 * This function fills the provided table according the polynomial provide [all...] |
/kernel/linux/linux-6.6/drivers/hwmon/ |
H A D | bt1-pvt.c | 29 #include <linux/polynomial.h> 69 static const struct polynomial __maybe_unused poly_temp_to_N = { 80 static const struct polynomial poly_N_to_temp = { 101 static const struct polynomial __maybe_unused poly_volt_to_N = { 109 static const struct polynomial poly_N_to_volt = {
|
H A D | lan966x-hwmon.c | 10 #include <linux/polynomial.h> 35 static const struct polynomial poly_N_to_temp = {
|
/kernel/linux/linux-5.10/arch/m68k/fpsp040/ |
H A D | slogn.S | 27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, 42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
|
H A D | satan.S | 30 | Step 3. Approximate arctan(u) by a polynomial poly. 37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. 39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
|
H A D | ssin.S | 41 | where cos(r) is approximated by an even polynomial in r, 46 | where sin(r) is approximated by an odd polynomial in r
|
H A D | setox.S | 127 | Step 4. Approximate exp(R)-1 by a polynomial 247 | Step 4. Approximate exp(R)-1 by a polynomial 301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial 311 | c) To fully preserve accuracy, the polynomial is computed 799 |--Step 9 exp(X)-1 by a simple polynomial
|
/kernel/linux/linux-6.6/arch/m68k/fpsp040/ |
H A D | slogn.S | 27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, 42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
|
H A D | satan.S | 30 | Step 3. Approximate arctan(u) by a polynomial poly. 37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. 39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
|
H A D | ssin.S | 41 | where cos(r) is approximated by an even polynomial in r, 46 | where sin(r) is approximated by an odd polynomial in r
|
H A D | setox.S | 127 | Step 4. Approximate exp(R)-1 by a polynomial 247 | Step 4. Approximate exp(R)-1 by a polynomial 301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial 311 | c) To fully preserve accuracy, the polynomial is computed 799 |--Step 9 exp(X)-1 by a simple polynomial
|
/kernel/linux/linux-6.6/drivers/net/phy/ |
H A D | mxl-gpy.c | 14 #include <linux/polynomial.h> 149 static const struct polynomial poly_N_to_temp = {
|
/kernel/linux/linux-5.10/arch/arm/boot/compressed/ |
H A D | head.S | 1519 ldr r3, =0xa001 @ CRC-16 polynomial
|
/kernel/linux/linux-5.10/arch/m68k/ifpsp060/src/ |
H A D | fplsp.S | 4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # 4938 # where sin(r) is approximated by an odd polynomial in r # 6062 # Step 3. Approximate arctan(u) by a polynomial poly. # 6069 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # 6072 # polynomial in X'. # 6784 # Step 4. Approximate exp(R)-1 by a polynomial # 6912 # Step 4. Approximate exp(R)-1 by a polynomial # 6970 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # 6980 # c) To fully preserve accuracy, the polynomial is # 7428 #--Step 9 exp(X)-1 by a simple polynomial [all...] |
/kernel/linux/linux-6.6/arch/m68k/ifpsp060/src/ |
H A D | fplsp.S | 4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # 4938 # where sin(r) is approximated by an odd polynomial in r # 6062 # Step 3. Approximate arctan(u) by a polynomial poly. # 6069 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # 6072 # polynomial in X'. # 6784 # Step 4. Approximate exp(R)-1 by a polynomial # 6912 # Step 4. Approximate exp(R)-1 by a polynomial # 6970 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # 6980 # c) To fully preserve accuracy, the polynomial is # 7428 #--Step 9 exp(X)-1 by a simple polynomial [all...] |