Home
last modified time | relevance | path

Searched refs:polynomial (Results 1 - 25 of 27) sorted by relevance

12

/kernel/linux/linux-5.10/lib/
H A Dcrc8.c24 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order.
27 * @polynomial: polynomial for which table is to be filled.
29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument
38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb()
46 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order.
49 * @polynomial: polynomial for which table is to be filled.
51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument
59 t = (t >> 1) ^ (t & 1 ? polynomial in crc8_populate_lsb()
[all...]
H A Dcrc32.c144 * @polynomial: CRC32/CRC32c LE polynomial
148 u32 polynomial)
155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
235 * @polynomial: The modulus used to reduce the result to 32 bits.
244 u32 polynomial)
246 u32 power = polynomial; /* CRC of x^32 */
251 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
258 /* "power" is x^(2^i), modulo the polynomial */
260 crc = gf2_multiply(crc, power, polynomial);
146 crc32_le_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument
243 crc32_generic_shift(u32 crc, size_t len, u32 polynomial) global() argument
294 crc32_be_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument
[all...]
H A Dgen_crc32table.c37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument
46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
/kernel/linux/linux-6.6/lib/
H A Dcrc8.c24 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order.
27 * @polynomial: polynomial for which table is to be filled.
29 void crc8_populate_msb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_msb() argument
38 t = (t << 1) ^ (t & msbit ? polynomial : 0); in crc8_populate_msb()
46 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order.
49 * @polynomial: polynomial for which table is to be filled.
51 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial) in crc8_populate_lsb() argument
59 t = (t >> 1) ^ (t & 1 ? polynomial in crc8_populate_lsb()
[all...]
H A Dcrc32.c144 * @polynomial: CRC32/CRC32c LE polynomial
148 u32 polynomial)
155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
234 * @polynomial: The modulus used to reduce the result to 32 bits.
243 u32 polynomial)
245 u32 power = polynomial; /* CRC of x^32 */
250 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
257 /* "power" is x^(2^i), modulo the polynomial */
259 crc = gf2_multiply(crc, power, polynomial);
146 crc32_le_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument
242 crc32_generic_shift(u32 crc, size_t len, u32 polynomial) global() argument
293 crc32_be_generic(u32 crc, unsigned char const *p, size_t len, const u32 (*tab)[256], u32 polynomial) global() argument
[all...]
H A Dpolynomial.c3 * Generic polynomial calculation using integer coefficients.
15 #include <linux/polynomial.h>
44 * static const struct polynomial poly_temp_to_N = {
55 * static const struct polynomial poly_N_to_temp = {
68 * polynomial_calc - calculate a polynomial using integer arithmetic
70 * @poly: pointer to the descriptor of the polynomial
73 * Calculate the result of a polynomial using only integer arithmetic. For
77 * Returns the result of the polynomial calculation.
79 long polynomial_calc(const struct polynomial *poly, long data) in polynomial_calc()
87 * Here is the polynomial calculatio in polynomial_calc()
[all...]
H A Dgen_crc32table.c37 static void crc32init_le_generic(const uint32_t polynomial, in crc32init_le_generic() argument
46 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32init_le_generic()
H A DMakefile279 obj-$(CONFIG_POLYNOMIAL) += polynomial.o
/kernel/linux/linux-6.6/include/linux/
H A Dpolynomial.h10 * struct polynomial_term - one term descriptor of a polynomial
24 * struct polynomial - a polynomial descriptor
26 * @terms: polynomial terms, last term must have degree of 0
28 struct polynomial { struct
33 long polynomial_calc(const struct polynomial *poly, long data);
H A Dcrc8.h40 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order.
43 * @polynomial: polynomial for which table is to be filled.
45 * This function fills the provided table according the polynomial provided for
51 * For lsb first direction x^7 maps to the lsb. So the polynomial is as below.
55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial);
58 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order.
61 * @polynomial: polynomial for which table is to be filled.
63 * This function fills the provided table according the polynomial provide
[all...]
/kernel/linux/linux-5.10/include/linux/
H A Dcrc8.h40 * crc8_populate_lsb - fill crc table for given polynomial in regular bit order.
43 * @polynomial: polynomial for which table is to be filled.
45 * This function fills the provided table according the polynomial provided for
51 * For lsb first direction x^7 maps to the lsb. So the polynomial is as below.
55 void crc8_populate_lsb(u8 table[CRC8_TABLE_SIZE], u8 polynomial);
58 * crc8_populate_msb - fill crc table for given polynomial in reverse bit order.
61 * @polynomial: polynomial for which table is to be filled.
63 * This function fills the provided table according the polynomial provide
[all...]
/kernel/linux/linux-6.6/drivers/hwmon/
H A Dbt1-pvt.c29 #include <linux/polynomial.h>
69 static const struct polynomial __maybe_unused poly_temp_to_N = {
80 static const struct polynomial poly_N_to_temp = {
101 static const struct polynomial __maybe_unused poly_volt_to_N = {
109 static const struct polynomial poly_N_to_volt = {
H A Dlan966x-hwmon.c10 #include <linux/polynomial.h>
35 static const struct polynomial poly_N_to_temp = {
/kernel/linux/linux-5.10/arch/m68k/fpsp040/
H A Dslogn.S27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
H A Dsatan.S30 | Step 3. Approximate arctan(u) by a polynomial poly.
37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
H A Dssin.S41 | where cos(r) is approximated by an even polynomial in r,
46 | where sin(r) is approximated by an odd polynomial in r
H A Dsetox.S127 | Step 4. Approximate exp(R)-1 by a polynomial
247 | Step 4. Approximate exp(R)-1 by a polynomial
301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
311 | c) To fully preserve accuracy, the polynomial is computed
799 |--Step 9 exp(X)-1 by a simple polynomial
/kernel/linux/linux-6.6/arch/m68k/fpsp040/
H A Dslogn.S27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
34 | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
H A Dsatan.S30 | Step 3. Approximate arctan(u) by a polynomial poly.
37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
H A Dssin.S41 | where cos(r) is approximated by an even polynomial in r,
46 | where sin(r) is approximated by an odd polynomial in r
H A Dsetox.S127 | Step 4. Approximate exp(R)-1 by a polynomial
247 | Step 4. Approximate exp(R)-1 by a polynomial
301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
311 | c) To fully preserve accuracy, the polynomial is computed
799 |--Step 9 exp(X)-1 by a simple polynomial
/kernel/linux/linux-6.6/drivers/net/phy/
H A Dmxl-gpy.c14 #include <linux/polynomial.h>
149 static const struct polynomial poly_N_to_temp = {
/kernel/linux/linux-5.10/arch/arm/boot/compressed/
H A Dhead.S1519 ldr r3, =0xa001 @ CRC-16 polynomial
/kernel/linux/linux-5.10/arch/m68k/ifpsp060/src/
H A Dfplsp.S4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
4938 # where sin(r) is approximated by an odd polynomial in r #
6062 # Step 3. Approximate arctan(u) by a polynomial poly. #
6069 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
6072 # polynomial in X'. #
6784 # Step 4. Approximate exp(R)-1 by a polynomial #
6912 # Step 4. Approximate exp(R)-1 by a polynomial #
6970 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
6980 # c) To fully preserve accuracy, the polynomial is #
7428 #--Step 9 exp(X)-1 by a simple polynomial
[all...]
/kernel/linux/linux-6.6/arch/m68k/ifpsp060/src/
H A Dfplsp.S4933 # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
4938 # where sin(r) is approximated by an odd polynomial in r #
6062 # Step 3. Approximate arctan(u) by a polynomial poly. #
6069 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
6072 # polynomial in X'. #
6784 # Step 4. Approximate exp(R)-1 by a polynomial #
6912 # Step 4. Approximate exp(R)-1 by a polynomial #
6970 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
6980 # c) To fully preserve accuracy, the polynomial is #
7428 #--Step 9 exp(X)-1 by a simple polynomial
[all...]

Completed in 31 milliseconds

12