18c2ecf20Sopenharmony_ci/* 28c2ecf20Sopenharmony_ci * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin 38c2ecf20Sopenharmony_ci * cleaned up code to current version of sparse and added the slicing-by-8 48c2ecf20Sopenharmony_ci * algorithm to the closely similar existing slicing-by-4 algorithm. 58c2ecf20Sopenharmony_ci * 68c2ecf20Sopenharmony_ci * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> 78c2ecf20Sopenharmony_ci * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! 88c2ecf20Sopenharmony_ci * Code was from the public domain, copyright abandoned. Code was 98c2ecf20Sopenharmony_ci * subsequently included in the kernel, thus was re-licensed under the 108c2ecf20Sopenharmony_ci * GNU GPL v2. 118c2ecf20Sopenharmony_ci * 128c2ecf20Sopenharmony_ci * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> 138c2ecf20Sopenharmony_ci * Same crc32 function was used in 5 other places in the kernel. 148c2ecf20Sopenharmony_ci * I made one version, and deleted the others. 158c2ecf20Sopenharmony_ci * There are various incantations of crc32(). Some use a seed of 0 or ~0. 168c2ecf20Sopenharmony_ci * Some xor at the end with ~0. The generic crc32() function takes 178c2ecf20Sopenharmony_ci * seed as an argument, and doesn't xor at the end. Then individual 188c2ecf20Sopenharmony_ci * users can do whatever they need. 198c2ecf20Sopenharmony_ci * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. 208c2ecf20Sopenharmony_ci * fs/jffs2 uses seed 0, doesn't xor with ~0. 218c2ecf20Sopenharmony_ci * fs/partitions/efi.c uses seed ~0, xor's with ~0. 228c2ecf20Sopenharmony_ci * 238c2ecf20Sopenharmony_ci * This source code is licensed under the GNU General Public License, 248c2ecf20Sopenharmony_ci * Version 2. See the file COPYING for more details. 258c2ecf20Sopenharmony_ci */ 268c2ecf20Sopenharmony_ci 278c2ecf20Sopenharmony_ci/* see: Documentation/staging/crc32.rst for a description of algorithms */ 288c2ecf20Sopenharmony_ci 298c2ecf20Sopenharmony_ci#include <linux/crc32.h> 308c2ecf20Sopenharmony_ci#include <linux/crc32poly.h> 318c2ecf20Sopenharmony_ci#include <linux/module.h> 328c2ecf20Sopenharmony_ci#include <linux/types.h> 338c2ecf20Sopenharmony_ci#include <linux/sched.h> 348c2ecf20Sopenharmony_ci#include "crc32defs.h" 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci#if CRC_LE_BITS > 8 378c2ecf20Sopenharmony_ci# define tole(x) ((__force u32) cpu_to_le32(x)) 388c2ecf20Sopenharmony_ci#else 398c2ecf20Sopenharmony_ci# define tole(x) (x) 408c2ecf20Sopenharmony_ci#endif 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci#if CRC_BE_BITS > 8 438c2ecf20Sopenharmony_ci# define tobe(x) ((__force u32) cpu_to_be32(x)) 448c2ecf20Sopenharmony_ci#else 458c2ecf20Sopenharmony_ci# define tobe(x) (x) 468c2ecf20Sopenharmony_ci#endif 478c2ecf20Sopenharmony_ci 488c2ecf20Sopenharmony_ci#include "crc32table.h" 498c2ecf20Sopenharmony_ci 508c2ecf20Sopenharmony_ciMODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); 518c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Various CRC32 calculations"); 528c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 538c2ecf20Sopenharmony_ci 548c2ecf20Sopenharmony_ci#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8 558c2ecf20Sopenharmony_ci 568c2ecf20Sopenharmony_ci/* implements slicing-by-4 or slicing-by-8 algorithm */ 578c2ecf20Sopenharmony_cistatic inline u32 __pure 588c2ecf20Sopenharmony_cicrc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) 598c2ecf20Sopenharmony_ci{ 608c2ecf20Sopenharmony_ci# ifdef __LITTLE_ENDIAN 618c2ecf20Sopenharmony_ci# define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8) 628c2ecf20Sopenharmony_ci# define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \ 638c2ecf20Sopenharmony_ci t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255]) 648c2ecf20Sopenharmony_ci# define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \ 658c2ecf20Sopenharmony_ci t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255]) 668c2ecf20Sopenharmony_ci# else 678c2ecf20Sopenharmony_ci# define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8) 688c2ecf20Sopenharmony_ci# define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \ 698c2ecf20Sopenharmony_ci t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255]) 708c2ecf20Sopenharmony_ci# define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \ 718c2ecf20Sopenharmony_ci t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255]) 728c2ecf20Sopenharmony_ci# endif 738c2ecf20Sopenharmony_ci const u32 *b; 748c2ecf20Sopenharmony_ci size_t rem_len; 758c2ecf20Sopenharmony_ci# ifdef CONFIG_X86 768c2ecf20Sopenharmony_ci size_t i; 778c2ecf20Sopenharmony_ci# endif 788c2ecf20Sopenharmony_ci const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3]; 798c2ecf20Sopenharmony_ci# if CRC_LE_BITS != 32 808c2ecf20Sopenharmony_ci const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7]; 818c2ecf20Sopenharmony_ci# endif 828c2ecf20Sopenharmony_ci u32 q; 838c2ecf20Sopenharmony_ci 848c2ecf20Sopenharmony_ci /* Align it */ 858c2ecf20Sopenharmony_ci if (unlikely((long)buf & 3 && len)) { 868c2ecf20Sopenharmony_ci do { 878c2ecf20Sopenharmony_ci DO_CRC(*buf++); 888c2ecf20Sopenharmony_ci } while ((--len) && ((long)buf)&3); 898c2ecf20Sopenharmony_ci } 908c2ecf20Sopenharmony_ci 918c2ecf20Sopenharmony_ci# if CRC_LE_BITS == 32 928c2ecf20Sopenharmony_ci rem_len = len & 3; 938c2ecf20Sopenharmony_ci len = len >> 2; 948c2ecf20Sopenharmony_ci# else 958c2ecf20Sopenharmony_ci rem_len = len & 7; 968c2ecf20Sopenharmony_ci len = len >> 3; 978c2ecf20Sopenharmony_ci# endif 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci b = (const u32 *)buf; 1008c2ecf20Sopenharmony_ci# ifdef CONFIG_X86 1018c2ecf20Sopenharmony_ci --b; 1028c2ecf20Sopenharmony_ci for (i = 0; i < len; i++) { 1038c2ecf20Sopenharmony_ci# else 1048c2ecf20Sopenharmony_ci for (--b; len; --len) { 1058c2ecf20Sopenharmony_ci# endif 1068c2ecf20Sopenharmony_ci q = crc ^ *++b; /* use pre increment for speed */ 1078c2ecf20Sopenharmony_ci# if CRC_LE_BITS == 32 1088c2ecf20Sopenharmony_ci crc = DO_CRC4; 1098c2ecf20Sopenharmony_ci# else 1108c2ecf20Sopenharmony_ci crc = DO_CRC8; 1118c2ecf20Sopenharmony_ci q = *++b; 1128c2ecf20Sopenharmony_ci crc ^= DO_CRC4; 1138c2ecf20Sopenharmony_ci# endif 1148c2ecf20Sopenharmony_ci } 1158c2ecf20Sopenharmony_ci len = rem_len; 1168c2ecf20Sopenharmony_ci /* And the last few bytes */ 1178c2ecf20Sopenharmony_ci if (len) { 1188c2ecf20Sopenharmony_ci u8 *p = (u8 *)(b + 1) - 1; 1198c2ecf20Sopenharmony_ci# ifdef CONFIG_X86 1208c2ecf20Sopenharmony_ci for (i = 0; i < len; i++) 1218c2ecf20Sopenharmony_ci DO_CRC(*++p); /* use pre increment for speed */ 1228c2ecf20Sopenharmony_ci# else 1238c2ecf20Sopenharmony_ci do { 1248c2ecf20Sopenharmony_ci DO_CRC(*++p); /* use pre increment for speed */ 1258c2ecf20Sopenharmony_ci } while (--len); 1268c2ecf20Sopenharmony_ci# endif 1278c2ecf20Sopenharmony_ci } 1288c2ecf20Sopenharmony_ci return crc; 1298c2ecf20Sopenharmony_ci#undef DO_CRC 1308c2ecf20Sopenharmony_ci#undef DO_CRC4 1318c2ecf20Sopenharmony_ci#undef DO_CRC8 1328c2ecf20Sopenharmony_ci} 1338c2ecf20Sopenharmony_ci#endif 1348c2ecf20Sopenharmony_ci 1358c2ecf20Sopenharmony_ci 1368c2ecf20Sopenharmony_ci/** 1378c2ecf20Sopenharmony_ci * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II 1388c2ecf20Sopenharmony_ci * CRC32/CRC32C 1398c2ecf20Sopenharmony_ci * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other 1408c2ecf20Sopenharmony_ci * uses, or the previous crc32/crc32c value if computing incrementally. 1418c2ecf20Sopenharmony_ci * @p: pointer to buffer over which CRC32/CRC32C is run 1428c2ecf20Sopenharmony_ci * @len: length of buffer @p 1438c2ecf20Sopenharmony_ci * @tab: little-endian Ethernet table 1448c2ecf20Sopenharmony_ci * @polynomial: CRC32/CRC32c LE polynomial 1458c2ecf20Sopenharmony_ci */ 1468c2ecf20Sopenharmony_cistatic inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p, 1478c2ecf20Sopenharmony_ci size_t len, const u32 (*tab)[256], 1488c2ecf20Sopenharmony_ci u32 polynomial) 1498c2ecf20Sopenharmony_ci{ 1508c2ecf20Sopenharmony_ci#if CRC_LE_BITS == 1 1518c2ecf20Sopenharmony_ci int i; 1528c2ecf20Sopenharmony_ci while (len--) { 1538c2ecf20Sopenharmony_ci crc ^= *p++; 1548c2ecf20Sopenharmony_ci for (i = 0; i < 8; i++) 1558c2ecf20Sopenharmony_ci crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); 1568c2ecf20Sopenharmony_ci } 1578c2ecf20Sopenharmony_ci# elif CRC_LE_BITS == 2 1588c2ecf20Sopenharmony_ci while (len--) { 1598c2ecf20Sopenharmony_ci crc ^= *p++; 1608c2ecf20Sopenharmony_ci crc = (crc >> 2) ^ tab[0][crc & 3]; 1618c2ecf20Sopenharmony_ci crc = (crc >> 2) ^ tab[0][crc & 3]; 1628c2ecf20Sopenharmony_ci crc = (crc >> 2) ^ tab[0][crc & 3]; 1638c2ecf20Sopenharmony_ci crc = (crc >> 2) ^ tab[0][crc & 3]; 1648c2ecf20Sopenharmony_ci } 1658c2ecf20Sopenharmony_ci# elif CRC_LE_BITS == 4 1668c2ecf20Sopenharmony_ci while (len--) { 1678c2ecf20Sopenharmony_ci crc ^= *p++; 1688c2ecf20Sopenharmony_ci crc = (crc >> 4) ^ tab[0][crc & 15]; 1698c2ecf20Sopenharmony_ci crc = (crc >> 4) ^ tab[0][crc & 15]; 1708c2ecf20Sopenharmony_ci } 1718c2ecf20Sopenharmony_ci# elif CRC_LE_BITS == 8 1728c2ecf20Sopenharmony_ci /* aka Sarwate algorithm */ 1738c2ecf20Sopenharmony_ci while (len--) { 1748c2ecf20Sopenharmony_ci crc ^= *p++; 1758c2ecf20Sopenharmony_ci crc = (crc >> 8) ^ tab[0][crc & 255]; 1768c2ecf20Sopenharmony_ci } 1778c2ecf20Sopenharmony_ci# else 1788c2ecf20Sopenharmony_ci crc = (__force u32) __cpu_to_le32(crc); 1798c2ecf20Sopenharmony_ci crc = crc32_body(crc, p, len, tab); 1808c2ecf20Sopenharmony_ci crc = __le32_to_cpu((__force __le32)crc); 1818c2ecf20Sopenharmony_ci#endif 1828c2ecf20Sopenharmony_ci return crc; 1838c2ecf20Sopenharmony_ci} 1848c2ecf20Sopenharmony_ci 1858c2ecf20Sopenharmony_ci#if CRC_LE_BITS == 1 1868c2ecf20Sopenharmony_ciu32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len) 1878c2ecf20Sopenharmony_ci{ 1888c2ecf20Sopenharmony_ci return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE); 1898c2ecf20Sopenharmony_ci} 1908c2ecf20Sopenharmony_ciu32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len) 1918c2ecf20Sopenharmony_ci{ 1928c2ecf20Sopenharmony_ci return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE); 1938c2ecf20Sopenharmony_ci} 1948c2ecf20Sopenharmony_ci#else 1958c2ecf20Sopenharmony_ciu32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len) 1968c2ecf20Sopenharmony_ci{ 1978c2ecf20Sopenharmony_ci return crc32_le_generic(crc, p, len, 1988c2ecf20Sopenharmony_ci (const u32 (*)[256])crc32table_le, CRC32_POLY_LE); 1998c2ecf20Sopenharmony_ci} 2008c2ecf20Sopenharmony_ciu32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len) 2018c2ecf20Sopenharmony_ci{ 2028c2ecf20Sopenharmony_ci return crc32_le_generic(crc, p, len, 2038c2ecf20Sopenharmony_ci (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE); 2048c2ecf20Sopenharmony_ci} 2058c2ecf20Sopenharmony_ci#endif 2068c2ecf20Sopenharmony_ciEXPORT_SYMBOL(crc32_le); 2078c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__crc32c_le); 2088c2ecf20Sopenharmony_ci 2098c2ecf20Sopenharmony_ciu32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le); 2108c2ecf20Sopenharmony_ciu32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le); 2118c2ecf20Sopenharmony_ci 2128c2ecf20Sopenharmony_ci/* 2138c2ecf20Sopenharmony_ci * This multiplies the polynomials x and y modulo the given modulus. 2148c2ecf20Sopenharmony_ci * This follows the "little-endian" CRC convention that the lsbit 2158c2ecf20Sopenharmony_ci * represents the highest power of x, and the msbit represents x^0. 2168c2ecf20Sopenharmony_ci */ 2178c2ecf20Sopenharmony_cistatic u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus) 2188c2ecf20Sopenharmony_ci{ 2198c2ecf20Sopenharmony_ci u32 product = x & 1 ? y : 0; 2208c2ecf20Sopenharmony_ci int i; 2218c2ecf20Sopenharmony_ci 2228c2ecf20Sopenharmony_ci for (i = 0; i < 31; i++) { 2238c2ecf20Sopenharmony_ci product = (product >> 1) ^ (product & 1 ? modulus : 0); 2248c2ecf20Sopenharmony_ci x >>= 1; 2258c2ecf20Sopenharmony_ci product ^= x & 1 ? y : 0; 2268c2ecf20Sopenharmony_ci } 2278c2ecf20Sopenharmony_ci 2288c2ecf20Sopenharmony_ci return product; 2298c2ecf20Sopenharmony_ci} 2308c2ecf20Sopenharmony_ci 2318c2ecf20Sopenharmony_ci/** 2328c2ecf20Sopenharmony_ci * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time 2338c2ecf20Sopenharmony_ci * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient) 2348c2ecf20Sopenharmony_ci * @len: The number of bytes. @crc is multiplied by x^(8*@len) 2358c2ecf20Sopenharmony_ci * @polynomial: The modulus used to reduce the result to 32 bits. 2368c2ecf20Sopenharmony_ci * 2378c2ecf20Sopenharmony_ci * It's possible to parallelize CRC computations by computing a CRC 2388c2ecf20Sopenharmony_ci * over separate ranges of a buffer, then summing them. 2398c2ecf20Sopenharmony_ci * This shifts the given CRC by 8*len bits (i.e. produces the same effect 2408c2ecf20Sopenharmony_ci * as appending len bytes of zero to the data), in time proportional 2418c2ecf20Sopenharmony_ci * to log(len). 2428c2ecf20Sopenharmony_ci */ 2438c2ecf20Sopenharmony_cistatic u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len, 2448c2ecf20Sopenharmony_ci u32 polynomial) 2458c2ecf20Sopenharmony_ci{ 2468c2ecf20Sopenharmony_ci u32 power = polynomial; /* CRC of x^32 */ 2478c2ecf20Sopenharmony_ci int i; 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_ci /* Shift up to 32 bits in the simple linear way */ 2508c2ecf20Sopenharmony_ci for (i = 0; i < 8 * (int)(len & 3); i++) 2518c2ecf20Sopenharmony_ci crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0); 2528c2ecf20Sopenharmony_ci 2538c2ecf20Sopenharmony_ci len >>= 2; 2548c2ecf20Sopenharmony_ci if (!len) 2558c2ecf20Sopenharmony_ci return crc; 2568c2ecf20Sopenharmony_ci 2578c2ecf20Sopenharmony_ci for (;;) { 2588c2ecf20Sopenharmony_ci /* "power" is x^(2^i), modulo the polynomial */ 2598c2ecf20Sopenharmony_ci if (len & 1) 2608c2ecf20Sopenharmony_ci crc = gf2_multiply(crc, power, polynomial); 2618c2ecf20Sopenharmony_ci 2628c2ecf20Sopenharmony_ci len >>= 1; 2638c2ecf20Sopenharmony_ci if (!len) 2648c2ecf20Sopenharmony_ci break; 2658c2ecf20Sopenharmony_ci 2668c2ecf20Sopenharmony_ci /* Square power, advancing to x^(2^(i+1)) */ 2678c2ecf20Sopenharmony_ci power = gf2_multiply(power, power, polynomial); 2688c2ecf20Sopenharmony_ci } 2698c2ecf20Sopenharmony_ci 2708c2ecf20Sopenharmony_ci return crc; 2718c2ecf20Sopenharmony_ci} 2728c2ecf20Sopenharmony_ci 2738c2ecf20Sopenharmony_ciu32 __attribute_const__ crc32_le_shift(u32 crc, size_t len) 2748c2ecf20Sopenharmony_ci{ 2758c2ecf20Sopenharmony_ci return crc32_generic_shift(crc, len, CRC32_POLY_LE); 2768c2ecf20Sopenharmony_ci} 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_ciu32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len) 2798c2ecf20Sopenharmony_ci{ 2808c2ecf20Sopenharmony_ci return crc32_generic_shift(crc, len, CRC32C_POLY_LE); 2818c2ecf20Sopenharmony_ci} 2828c2ecf20Sopenharmony_ciEXPORT_SYMBOL(crc32_le_shift); 2838c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__crc32c_le_shift); 2848c2ecf20Sopenharmony_ci 2858c2ecf20Sopenharmony_ci/** 2868c2ecf20Sopenharmony_ci * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 2878c2ecf20Sopenharmony_ci * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for 2888c2ecf20Sopenharmony_ci * other uses, or the previous crc32 value if computing incrementally. 2898c2ecf20Sopenharmony_ci * @p: pointer to buffer over which CRC32 is run 2908c2ecf20Sopenharmony_ci * @len: length of buffer @p 2918c2ecf20Sopenharmony_ci * @tab: big-endian Ethernet table 2928c2ecf20Sopenharmony_ci * @polynomial: CRC32 BE polynomial 2938c2ecf20Sopenharmony_ci */ 2948c2ecf20Sopenharmony_cistatic inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p, 2958c2ecf20Sopenharmony_ci size_t len, const u32 (*tab)[256], 2968c2ecf20Sopenharmony_ci u32 polynomial) 2978c2ecf20Sopenharmony_ci{ 2988c2ecf20Sopenharmony_ci#if CRC_BE_BITS == 1 2998c2ecf20Sopenharmony_ci int i; 3008c2ecf20Sopenharmony_ci while (len--) { 3018c2ecf20Sopenharmony_ci crc ^= *p++ << 24; 3028c2ecf20Sopenharmony_ci for (i = 0; i < 8; i++) 3038c2ecf20Sopenharmony_ci crc = 3048c2ecf20Sopenharmony_ci (crc << 1) ^ ((crc & 0x80000000) ? polynomial : 3058c2ecf20Sopenharmony_ci 0); 3068c2ecf20Sopenharmony_ci } 3078c2ecf20Sopenharmony_ci# elif CRC_BE_BITS == 2 3088c2ecf20Sopenharmony_ci while (len--) { 3098c2ecf20Sopenharmony_ci crc ^= *p++ << 24; 3108c2ecf20Sopenharmony_ci crc = (crc << 2) ^ tab[0][crc >> 30]; 3118c2ecf20Sopenharmony_ci crc = (crc << 2) ^ tab[0][crc >> 30]; 3128c2ecf20Sopenharmony_ci crc = (crc << 2) ^ tab[0][crc >> 30]; 3138c2ecf20Sopenharmony_ci crc = (crc << 2) ^ tab[0][crc >> 30]; 3148c2ecf20Sopenharmony_ci } 3158c2ecf20Sopenharmony_ci# elif CRC_BE_BITS == 4 3168c2ecf20Sopenharmony_ci while (len--) { 3178c2ecf20Sopenharmony_ci crc ^= *p++ << 24; 3188c2ecf20Sopenharmony_ci crc = (crc << 4) ^ tab[0][crc >> 28]; 3198c2ecf20Sopenharmony_ci crc = (crc << 4) ^ tab[0][crc >> 28]; 3208c2ecf20Sopenharmony_ci } 3218c2ecf20Sopenharmony_ci# elif CRC_BE_BITS == 8 3228c2ecf20Sopenharmony_ci while (len--) { 3238c2ecf20Sopenharmony_ci crc ^= *p++ << 24; 3248c2ecf20Sopenharmony_ci crc = (crc << 8) ^ tab[0][crc >> 24]; 3258c2ecf20Sopenharmony_ci } 3268c2ecf20Sopenharmony_ci# else 3278c2ecf20Sopenharmony_ci crc = (__force u32) __cpu_to_be32(crc); 3288c2ecf20Sopenharmony_ci crc = crc32_body(crc, p, len, tab); 3298c2ecf20Sopenharmony_ci crc = __be32_to_cpu((__force __be32)crc); 3308c2ecf20Sopenharmony_ci# endif 3318c2ecf20Sopenharmony_ci return crc; 3328c2ecf20Sopenharmony_ci} 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_ci#if CRC_BE_BITS == 1 3358c2ecf20Sopenharmony_ciu32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) 3368c2ecf20Sopenharmony_ci{ 3378c2ecf20Sopenharmony_ci return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE); 3388c2ecf20Sopenharmony_ci} 3398c2ecf20Sopenharmony_ci#else 3408c2ecf20Sopenharmony_ciu32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) 3418c2ecf20Sopenharmony_ci{ 3428c2ecf20Sopenharmony_ci return crc32_be_generic(crc, p, len, 3438c2ecf20Sopenharmony_ci (const u32 (*)[256])crc32table_be, CRC32_POLY_BE); 3448c2ecf20Sopenharmony_ci} 3458c2ecf20Sopenharmony_ci#endif 3468c2ecf20Sopenharmony_ciEXPORT_SYMBOL(crc32_be); 347