xref: /third_party/zlib/examples/zran.c (revision 275793ea)
1/* zran.c -- example of deflate stream indexing and random access
2 * Copyright (C) 2005, 2012, 2018, 2023 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 * Version 1.4  13 Apr 2023  Mark Adler */
5
6/* Version History:
7 1.0  29 May 2005  First version
8 1.1  29 Sep 2012  Fix memory reallocation error
9 1.2  14 Oct 2018  Handle gzip streams with multiple members
10                   Add a header file to facilitate usage in applications
11 1.3  18 Feb 2023  Permit raw deflate streams as well as zlib and gzip
12                   Permit crossing gzip member boundaries when extracting
13                   Support a size_t size when extracting (was an int)
14                   Do a binary search over the index for an access point
15                   Expose the access point type to enable save and load
16 1.4  13 Apr 2023  Add a NOPRIME define to not use inflatePrime()
17 */
18
19// Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
20// for random access of a compressed file. A file containing a raw deflate
21// stream is provided on the command line. The compressed stream is decoded in
22// its entirety, and an index built with access points about every SPAN bytes
23// in the uncompressed output. The compressed file is left open, and can then
24// be read randomly, having to decompress on the average SPAN/2 uncompressed
25// bytes before getting to the desired block of data.
26//
27// An access point can be created at the start of any deflate block, by saving
28// the starting file offset and bit of that block, and the 32K bytes of
29// uncompressed data that precede that block. Also the uncompressed offset of
30// that block is saved to provide a reference for locating a desired starting
31// point in the uncompressed stream. deflate_index_build() decompresses the
32// input raw deflate stream a block at a time, and at the end of each block
33// decides if enough uncompressed data has gone by to justify the creation of a
34// new access point. If so, that point is saved in a data structure that grows
35// as needed to accommodate the points.
36//
37// To use the index, an offset in the uncompressed data is provided, for which
38// the latest access point at or preceding that offset is located in the index.
39// The input file is positioned to the specified location in the index, and if
40// necessary the first few bits of the compressed data is read from the file.
41// inflate is initialized with those bits and the 32K of uncompressed data, and
42// decompression then proceeds until the desired offset in the file is reached.
43// Then decompression continues to read the requested uncompressed data from
44// the file.
45//
46// There is some fair bit of overhead to starting inflation for the random
47// access, mainly copying the 32K byte dictionary. If small pieces of the file
48// are being accessed, it would make sense to implement a cache to hold some
49// lookahead to avoid many calls to deflate_index_extract() for small lengths.
50//
51// Another way to build an index would be to use inflateCopy(). That would not
52// be constrained to have access points at block boundaries, but would require
53// more memory per access point, and could not be saved to a file due to the
54// use of pointers in the state. The approach here allows for storage of the
55// index in a file.
56
57#include <stdio.h>
58#include <stdlib.h>
59#include <string.h>
60#include <limits.h>
61#include "zlib.h"
62#include "zran.h"
63
64#define WINSIZE 32768U      // sliding window size
65#define CHUNK 16384         // file input buffer size
66
67// See comments in zran.h.
68void deflate_index_free(struct deflate_index *index)
69{
70    if (index != NULL) {
71        free(index->list);
72        free(index);
73    }
74}
75
76// Add an access point to the list. If out of memory, deallocate the existing
77// list and return NULL. index->mode is temporarily the allocated number of
78// access points, until it is time for deflate_index_build() to return. Then
79// index->mode is set to the mode of inflation.
80static struct deflate_index *add_point(struct deflate_index *index, int bits,
81                                       off_t in, off_t out, unsigned left,
82                                       unsigned char *window)
83{
84    if (index == NULL) {
85        // The list is empty. Create it, starting with eight access points.
86        index = malloc(sizeof(struct deflate_index));
87        if (index == NULL)
88            return NULL;
89        index->have = 0;
90        index->mode = 8;
91        index->list = malloc(sizeof(point_t) * index->mode);
92        if (index->list == NULL) {
93            free(index);
94            return NULL;
95        }
96    }
97
98    else if (index->have == index->mode) {
99        // The list is full. Make it bigger.
100        index->mode <<= 1;
101        point_t *next = realloc(index->list, sizeof(point_t) * index->mode);
102        if (next == NULL) {
103            deflate_index_free(index);
104            return NULL;
105        }
106        index->list = next;
107    }
108
109    // Fill in the access point and increment how many we have.
110    point_t *next = (point_t *)(index->list) + index->have++;
111    if (index->have < 0) {
112        // Overflowed the int!
113        deflate_index_free(index);
114        return NULL;
115    }
116    next->out = out;
117    next->in = in;
118    next->bits = bits;
119    if (left)
120        memcpy(next->window, window + WINSIZE - left, left);
121    if (left < WINSIZE)
122        memcpy(next->window + left, window, WINSIZE - left);
123
124    // Return the index, which may have been newly allocated or destroyed.
125    return index;
126}
127
128// Decompression modes. These are the inflateInit2() windowBits parameter.
129#define RAW -15
130#define ZLIB 15
131#define GZIP 31
132
133// See comments in zran.h.
134int deflate_index_build(FILE *in, off_t span, struct deflate_index **built)
135{
136    // Set up inflation state.
137    z_stream strm = {0};        // inflate engine (gets fired up later)
138    unsigned char buf[CHUNK];   // input buffer
139    unsigned char win[WINSIZE] = {0};   // output sliding window
140    off_t totin = 0;            // total bytes read from input
141    off_t totout = 0;           // total bytes uncompressed
142    int mode = 0;               // mode: RAW, ZLIB, or GZIP (0 => not set yet)
143
144    // Decompress from in, generating access points along the way.
145    int ret;                    // the return value from zlib, or Z_ERRNO
146    off_t last;                 // last access point uncompressed offset
147    struct deflate_index *index = NULL;     // list of access points
148    do {
149        // Assure available input, at least until reaching EOF.
150        if (strm.avail_in == 0) {
151            strm.avail_in = fread(buf, 1, sizeof(buf), in);
152            totin += strm.avail_in;
153            strm.next_in = buf;
154            if (strm.avail_in < sizeof(buf) && ferror(in)) {
155                ret = Z_ERRNO;
156                break;
157            }
158
159            if (mode == 0) {
160                // At the start of the input -- determine the type. Assume raw
161                // if it is neither zlib nor gzip. This could in theory result
162                // in a false positive for zlib, but in practice the fill bits
163                // after a stored block are always zeros, so a raw stream won't
164                // start with an 8 in the low nybble.
165                mode = strm.avail_in == 0 ? RAW :       // empty -- will fail
166                       (strm.next_in[0] & 0xf) == 8 ? ZLIB :
167                       strm.next_in[0] == 0x1f ? GZIP :
168                       /* else */ RAW;
169                ret = inflateInit2(&strm, mode);
170                if (ret != Z_OK)
171                    break;
172            }
173        }
174
175        // Assure available output. This rotates the output through, for use as
176        // a sliding window on the uncompressed data.
177        if (strm.avail_out == 0) {
178            strm.avail_out = sizeof(win);
179            strm.next_out = win;
180        }
181
182        if (mode == RAW && index == NULL)
183            // We skip the inflate() call at the start of raw deflate data in
184            // order generate an access point there. Set data_type to imitate
185            // the end of a header.
186            strm.data_type = 0x80;
187        else {
188            // Inflate and update the number of uncompressed bytes.
189            unsigned before = strm.avail_out;
190            ret = inflate(&strm, Z_BLOCK);
191            totout += before - strm.avail_out;
192        }
193
194        if ((strm.data_type & 0xc0) == 0x80 &&
195            (index == NULL || totout - last >= span)) {
196            // We are at the end of a header or a non-last deflate block, so we
197            // can add an access point here. Furthermore, we are either at the
198            // very start for the first access point, or there has been span or
199            // more uncompressed bytes since the last access point, so we want
200            // to add an access point here.
201            index = add_point(index, strm.data_type & 7, totin - strm.avail_in,
202                              totout, strm.avail_out, win);
203            if (index == NULL) {
204                ret = Z_MEM_ERROR;
205                break;
206            }
207            last = totout;
208        }
209
210        if (ret == Z_STREAM_END && mode == GZIP &&
211            (strm.avail_in || ungetc(getc(in), in) != EOF))
212            // There is more input after the end of a gzip member. Reset the
213            // inflate state to read another gzip member. On success, this will
214            // set ret to Z_OK to continue decompressing.
215            ret = inflateReset2(&strm, GZIP);
216
217        // Keep going until Z_STREAM_END or error. If the compressed data ends
218        // prematurely without a file read error, Z_BUF_ERROR is returned.
219    } while (ret == Z_OK);
220    inflateEnd(&strm);
221
222    if (ret != Z_STREAM_END) {
223        // An error was encountered. Discard the index and return a negative
224        // error code.
225        deflate_index_free(index);
226        return ret == Z_NEED_DICT ? Z_DATA_ERROR : ret;
227    }
228
229    // Shrink the index to only the occupied access points and return it.
230    index->mode = mode;
231    index->length = totout;
232    point_t *list = realloc(index->list, sizeof(point_t) * index->have);
233    if (list == NULL) {
234        // Seems like a realloc() to make something smaller should always work,
235        // but just in case.
236        deflate_index_free(index);
237        return Z_MEM_ERROR;
238    }
239    index->list = list;
240    *built = index;
241    return index->have;
242}
243
244#ifdef NOPRIME
245// Support zlib versions before 1.2.3 (July 2005), or incomplete zlib clones
246// that do not have inflatePrime().
247
248#  define INFLATEPRIME inflatePreface
249
250// Append the low bits bits of value to in[] at bit position *have, updating
251// *have. value must be zero above its low bits bits. bits must be positive.
252// This assumes that any bits above the *have bits in the last byte are zeros.
253// That assumption is preserved on return, as any bits above *have + bits in
254// the last byte written will be set to zeros.
255static inline void append_bits(unsigned value, int bits,
256                               unsigned char *in, int *have) {
257    in += *have >> 3;           // where the first bits from value will go
258    int k = *have & 7;          // the number of bits already there
259    *have += bits;
260    if (k)
261        *in |= value << k;      // write value above the low k bits
262    else
263        *in = value;
264    k = 8 - k;                  // the number of bits just appended
265    while (bits > k) {
266        value >>= k;            // drop the bits appended
267        bits -= k;
268        k = 8;                  // now at a byte boundary
269        *++in = value;
270    }
271}
272
273// Insert enough bits in the form of empty deflate blocks in front of the
274// low bits bits of value, in order to bring the sequence to a byte boundary.
275// Then feed that to inflate(). This does what inflatePrime() does, except that
276// a negative value of bits is not supported. bits must be in 0..16. If the
277// arguments are invalid, Z_STREAM_ERROR is returned. Otherwise the return
278// value from inflate() is returned.
279static int inflatePreface(z_stream *strm, int bits, int value)
280{
281    // Check input.
282    if (strm == Z_NULL || bits < 0 || bits > 16)
283        return Z_STREAM_ERROR;
284    if (bits == 0)
285        return Z_OK;
286    value &= (2 << (bits - 1)) - 1;
287
288    // An empty dynamic block with an odd number of bits (95). The high bit of
289    // the last byte is unused.
290    static const unsigned char dyn[] = {
291        4, 0xe0, 0x81, 8, 0, 0, 0, 0, 0x20, 0xa8, 0xab, 0x1f
292    };
293    const int dynlen = 95;          // number of bits in the block
294
295    // Build an input buffer for inflate that is a multiple of eight bits in
296    // length, and that ends with the low bits bits of value.
297    unsigned char in[(dynlen + 3 * 10 + 16 + 7) / 8];
298    int have = 0;
299    if (bits & 1) {
300        // Insert an empty dynamic block to get to an odd number of bits, so
301        // when bits bits from value are appended, we are at an even number of
302        // bits.
303        memcpy(in, dyn, sizeof(dyn));
304        have = dynlen;
305    }
306    while ((have + bits) & 7)
307        // Insert empty fixed blocks until appending bits bits would put us on
308        // a byte boundary. This will insert at most three fixed blocks.
309        append_bits(2, 10, in, &have);
310
311    // Append the bits bits from value, which takes us to a byte boundary.
312    append_bits(value, bits, in, &have);
313
314    // Deliver the input to inflate(). There is no output space provided, but
315    // inflate() can't get stuck waiting on output not ingesting all of the
316    // provided input. The reason is that there will be at most 16 bits of
317    // input from value after the empty deflate blocks (which themselves
318    // generate no output). At least ten bits are needed to generate the first
319    // output byte from a fixed block. The last two bytes of the buffer have to
320    // be ingested in order to get ten bits, which is the most that value can
321    // occupy.
322    strm->avail_in = have >> 3;
323    strm->next_in = in;
324    strm->avail_out = 0;
325    strm->next_out = in;                // not used, but can't be NULL
326    return inflate(strm, Z_NO_FLUSH);
327}
328
329#else
330#  define INFLATEPRIME inflatePrime
331#endif
332
333// See comments in zran.h.
334ptrdiff_t deflate_index_extract(FILE *in, struct deflate_index *index,
335                                off_t offset, unsigned char *buf, size_t len)
336{
337    // Do a quick sanity check on the index.
338    if (index == NULL || index->have < 1 || index->list[0].out != 0)
339        return Z_STREAM_ERROR;
340
341    // If nothing to extract, return zero bytes extracted.
342    if (len == 0 || offset < 0 || offset >= index->length)
343        return 0;
344
345    // Find the access point closest to but not after offset.
346    int lo = -1, hi = index->have;
347    point_t *point = index->list;
348    while (hi - lo > 1) {
349        int mid = (lo + hi) >> 1;
350        if (offset < point[mid].out)
351            hi = mid;
352        else
353            lo = mid;
354    }
355    point += lo;
356
357    // Initialize the input file and prime the inflate engine to start there.
358    int ret = fseeko(in, point->in - (point->bits ? 1 : 0), SEEK_SET);
359    if (ret == -1)
360        return Z_ERRNO;
361    int ch = 0;
362    if (point->bits && (ch = getc(in)) == EOF)
363        return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
364    z_stream strm = {0};
365    ret = inflateInit2(&strm, RAW);
366    if (ret != Z_OK)
367        return ret;
368    if (point->bits)
369        INFLATEPRIME(&strm, point->bits, ch >> (8 - point->bits));
370    inflateSetDictionary(&strm, point->window, WINSIZE);
371
372    // Skip uncompressed bytes until offset reached, then satisfy request.
373    unsigned char input[CHUNK];
374    unsigned char discard[WINSIZE];
375    offset -= point->out;       // number of bytes to skip to get to offset
376    size_t left = len;          // number of bytes left to read after offset
377    do {
378        if (offset) {
379            // Discard up to offset uncompressed bytes.
380            strm.avail_out = offset < WINSIZE ? (unsigned)offset : WINSIZE;
381            strm.next_out = discard;
382        }
383        else {
384            // Uncompress up to left bytes into buf.
385            strm.avail_out = left < UINT_MAX ? (unsigned)left : UINT_MAX;
386            strm.next_out = buf + len - left;
387        }
388
389        // Uncompress, setting got to the number of bytes uncompressed.
390        if (strm.avail_in == 0) {
391            // Assure available input.
392            strm.avail_in = fread(input, 1, CHUNK, in);
393            if (strm.avail_in < CHUNK && ferror(in)) {
394                ret = Z_ERRNO;
395                break;
396            }
397            strm.next_in = input;
398        }
399        unsigned got = strm.avail_out;
400        ret = inflate(&strm, Z_NO_FLUSH);
401        got -= strm.avail_out;
402
403        // Update the appropriate count.
404        if (offset)
405            offset -= got;
406        else
407            left -= got;
408
409        // If we're at the end of a gzip member and there's more to read,
410        // continue to the next gzip member.
411        if (ret == Z_STREAM_END && index->mode == GZIP) {
412            // Discard the gzip trailer.
413            unsigned drop = 8;              // length of gzip trailer
414            if (strm.avail_in >= drop) {
415                strm.avail_in -= drop;
416                strm.next_in += drop;
417            }
418            else {
419                // Read and discard the remainder of the gzip trailer.
420                drop -= strm.avail_in;
421                strm.avail_in = 0;
422                do {
423                    if (getc(in) == EOF)
424                        // The input does not have a complete trailer.
425                        return ferror(in) ? Z_ERRNO : Z_BUF_ERROR;
426                } while (--drop);
427            }
428
429            if (strm.avail_in || ungetc(getc(in), in) != EOF) {
430                // There's more after the gzip trailer. Use inflate to skip the
431                // gzip header and resume the raw inflate there.
432                inflateReset2(&strm, GZIP);
433                do {
434                    if (strm.avail_in == 0) {
435                        strm.avail_in = fread(input, 1, CHUNK, in);
436                        if (strm.avail_in < CHUNK && ferror(in)) {
437                            ret = Z_ERRNO;
438                            break;
439                        }
440                        strm.next_in = input;
441                    }
442                    strm.avail_out = WINSIZE;
443                    strm.next_out = discard;
444                    ret = inflate(&strm, Z_BLOCK);  // stop at end of header
445                } while (ret == Z_OK && (strm.data_type & 0x80) == 0);
446                if (ret != Z_OK)
447                    break;
448                inflateReset2(&strm, RAW);
449            }
450        }
451
452        // Continue until we have the requested data, the deflate data has
453        // ended, or an error is encountered.
454    } while (ret == Z_OK && left);
455    inflateEnd(&strm);
456
457    // Return the number of uncompressed bytes read into buf, or the error.
458    return ret == Z_OK || ret == Z_STREAM_END ? len - left : ret;
459}
460
461#ifdef TEST
462
463#define SPAN 1048576L       // desired distance between access points
464#define LEN 16384           // number of bytes to extract
465
466// Demonstrate the use of deflate_index_build() and deflate_index_extract() by
467// processing the file provided on the command line, and extracting LEN bytes
468// from 2/3rds of the way through the uncompressed output, writing that to
469// stdout. An offset can be provided as the second argument, in which case the
470// data is extracted from there instead.
471int main(int argc, char **argv)
472{
473    // Open the input file.
474    if (argc < 2 || argc > 3) {
475        fprintf(stderr, "usage: zran file.raw [offset]\n");
476        return 1;
477    }
478    FILE *in = fopen(argv[1], "rb");
479    if (in == NULL) {
480        fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
481        return 1;
482    }
483
484    // Get optional offset.
485    off_t offset = -1;
486    if (argc == 3) {
487        char *end;
488        offset = strtoll(argv[2], &end, 10);
489        if (*end || offset < 0) {
490            fprintf(stderr, "zran: %s is not a valid offset\n", argv[2]);
491            return 1;
492        }
493    }
494
495    // Build index.
496    struct deflate_index *index = NULL;
497    int len = deflate_index_build(in, SPAN, &index);
498    if (len < 0) {
499        fclose(in);
500        switch (len) {
501        case Z_MEM_ERROR:
502            fprintf(stderr, "zran: out of memory\n");
503            break;
504        case Z_BUF_ERROR:
505            fprintf(stderr, "zran: %s ended prematurely\n", argv[1]);
506            break;
507        case Z_DATA_ERROR:
508            fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
509            break;
510        case Z_ERRNO:
511            fprintf(stderr, "zran: read error on %s\n", argv[1]);
512            break;
513        default:
514            fprintf(stderr, "zran: error %d while building index\n", len);
515        }
516        return 1;
517    }
518    fprintf(stderr, "zran: built index with %d access points\n", len);
519
520    // Use index by reading some bytes from an arbitrary offset.
521    unsigned char buf[LEN];
522    if (offset == -1)
523        offset = ((index->length + 1) << 1) / 3;
524    ptrdiff_t got = deflate_index_extract(in, index, offset, buf, LEN);
525    if (got < 0)
526        fprintf(stderr, "zran: extraction failed: %s error\n",
527                got == Z_MEM_ERROR ? "out of memory" : "input corrupted");
528    else {
529        fwrite(buf, 1, got, stdout);
530        fprintf(stderr, "zran: extracted %ld bytes at %lld\n", got, offset);
531    }
532
533    // Clean up and exit.
534    deflate_index_free(index);
535    fclose(in);
536    return 0;
537}
538
539#endif
540