xref: /third_party/zlib/deflate.c (revision 275793ea)
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63typedef enum {
64    need_more,      /* block not completed, need more input or more output */
65    block_done,     /* block flush performed */
66    finish_started, /* finish started, need only more output at next deflate */
67    finish_done     /* finish done, accept no more input or output */
68} block_state;
69
70typedef block_state (*compress_func)(deflate_state *s, int flush);
71/* Compression function. Returns the block state after the call. */
72
73local block_state deflate_stored(deflate_state *s, int flush);
74local block_state deflate_fast(deflate_state *s, int flush);
75#ifndef FASTEST
76local block_state deflate_slow(deflate_state *s, int flush);
77#endif
78local block_state deflate_rle(deflate_state *s, int flush);
79local block_state deflate_huff(deflate_state *s, int flush);
80
81/* ===========================================================================
82 * Local data
83 */
84
85#define NIL 0
86/* Tail of hash chains */
87
88#ifndef TOO_FAR
89#  define TOO_FAR 4096
90#endif
91/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93/* Values for max_lazy_match, good_match and max_chain_length, depending on
94 * the desired pack level (0..9). The values given below have been tuned to
95 * exclude worst case performance for pathological files. Better values may be
96 * found for specific files.
97 */
98typedef struct config_s {
99   ush good_length; /* reduce lazy search above this match length */
100   ush max_lazy;    /* do not perform lazy search above this match length */
101   ush nice_length; /* quit search above this match length */
102   ush max_chain;
103   compress_func func;
104} config;
105
106#ifdef FASTEST
107local const config configuration_table[2] = {
108/*      good lazy nice chain */
109/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111#else
112local const config configuration_table[10] = {
113/*      good lazy nice chain */
114/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116/* 2 */ {4,    5, 16,    8, deflate_fast},
117/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120/* 5 */ {8,   16, 32,   32, deflate_slow},
121/* 6 */ {8,   16, 128, 128, deflate_slow},
122/* 7 */ {8,   32, 128, 256, deflate_slow},
123/* 8 */ {32, 128, 258, 1024, deflate_slow},
124/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125#endif
126
127/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129 * meaning.
130 */
131
132/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135/* ===========================================================================
136 * Update a hash value with the given input byte
137 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138 *    characters, so that a running hash key can be computed from the previous
139 *    key instead of complete recalculation each time.
140 */
141#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144/* ===========================================================================
145 * Insert string str in the dictionary and set match_head to the previous head
146 * of the hash chain (the most recent string with same hash key). Return
147 * the previous length of the hash chain.
148 * If this file is compiled with -DFASTEST, the compression level is forced
149 * to 1, and no hash chains are maintained.
150 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151 *    characters and the first MIN_MATCH bytes of str are valid (except for
152 *    the last MIN_MATCH-1 bytes of the input file).
153 */
154#ifdef FASTEST
155#define INSERT_STRING(s, str, match_head) \
156   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157    match_head = s->head[s->ins_h], \
158    s->head[s->ins_h] = (Pos)(str))
159#else
160#define INSERT_STRING(s, str, match_head) \
161   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163    s->head[s->ins_h] = (Pos)(str))
164#endif
165
166/* ===========================================================================
167 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168 * prev[] will be initialized on the fly.
169 */
170#define CLEAR_HASH(s) \
171    do { \
172        s->head[s->hash_size - 1] = NIL; \
173        zmemzero((Bytef *)s->head, \
174                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175    } while (0)
176
177/* ===========================================================================
178 * Slide the hash table when sliding the window down (could be avoided with 32
179 * bit values at the expense of memory usage). We slide even when level == 0 to
180 * keep the hash table consistent if we switch back to level > 0 later.
181 */
182#if defined(__has_feature)
183#  if __has_feature(memory_sanitizer)
184     __attribute__((no_sanitize("memory")))
185#  endif
186#endif
187local void slide_hash(deflate_state *s)
188{
189    unsigned n, m;
190    Posf *p;
191    uInt wsize = s->w_size;
192
193    n = s->hash_size;
194    p = &s->head[n];
195    do {
196        m = *--p;
197        *p = (Pos)(m >= wsize ? m - wsize : NIL);
198    } while (--n);
199    n = wsize;
200#ifndef FASTEST
201    p = &s->prev[n];
202    do {
203        m = *--p;
204        *p = (Pos)(m >= wsize ? m - wsize : NIL);
205        /* If n is not on any hash chain, prev[n] is garbage but
206         * its value will never be used.
207         */
208    } while (--n);
209#endif
210}
211
212/* ===========================================================================
213 * Read a new buffer from the current input stream, update the adler32
214 * and total number of bytes read.  All deflate() input goes through
215 * this function so some applications may wish to modify it to avoid
216 * allocating a large strm->next_in buffer and copying from it.
217 * (See also flush_pending()).
218 */
219local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size)
220{
221    unsigned len = strm->avail_in;
222
223    if (len > size) len = size;
224    if (len == 0) return 0;
225
226    strm->avail_in  -= len;
227
228    zmemcpy(buf, strm->next_in, len);
229    if (strm->state->wrap == 1) {
230        strm->adler = adler32(strm->adler, buf, len);
231    }
232#ifdef GZIP
233    else if (strm->state->wrap == 2) {
234        strm->adler = crc32(strm->adler, buf, len);
235    }
236#endif
237    strm->next_in  += len;
238    strm->total_in += len;
239
240    return len;
241}
242
243/* ===========================================================================
244 * Fill the window when the lookahead becomes insufficient.
245 * Updates strstart and lookahead.
246 *
247 * IN assertion: lookahead < MIN_LOOKAHEAD
248 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249 *    At least one byte has been read, or avail_in == 0; reads are
250 *    performed for at least two bytes (required for the zip translate_eol
251 *    option -- not supported here).
252 */
253local void fill_window(deflate_state *s)
254{
255    unsigned n;
256    unsigned more;    /* Amount of free space at the end of the window. */
257    uInt wsize = s->w_size;
258
259    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
260
261    do {
262        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
263
264        /* Deal with !@#$% 64K limit: */
265        if (sizeof(int) <= 2) {
266            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
267                more = wsize;
268
269            } else if (more == (unsigned)(-1)) {
270                /* Very unlikely, but possible on 16 bit machine if
271                 * strstart == 0 && lookahead == 1 (input done a byte at time)
272                 */
273                more--;
274            }
275        }
276
277        /* If the window is almost full and there is insufficient lookahead,
278         * move the upper half to the lower one to make room in the upper half.
279         */
280        if (s->strstart >= wsize + MAX_DIST(s)) {
281
282            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
283            s->match_start -= wsize;
284            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
285            s->block_start -= (long) wsize;
286            if (s->insert > s->strstart)
287                s->insert = s->strstart;
288            slide_hash(s);
289            more += wsize;
290        }
291        if (s->strm->avail_in == 0) break;
292
293        /* If there was no sliding:
294         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
295         *    more == window_size - lookahead - strstart
296         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
297         * => more >= window_size - 2*WSIZE + 2
298         * In the BIG_MEM or MMAP case (not yet supported),
299         *   window_size == input_size + MIN_LOOKAHEAD  &&
300         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
301         * Otherwise, window_size == 2*WSIZE so more >= 2.
302         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
303         */
304        Assert(more >= 2, "more < 2");
305
306        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
307        s->lookahead += n;
308
309        /* Initialize the hash value now that we have some input: */
310        if (s->lookahead + s->insert >= MIN_MATCH) {
311            uInt str = s->strstart - s->insert;
312            s->ins_h = s->window[str];
313            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
314#if MIN_MATCH != 3
315            Call UPDATE_HASH() MIN_MATCH-3 more times
316#endif
317            while (s->insert) {
318                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
319#ifndef FASTEST
320                s->prev[str & s->w_mask] = s->head[s->ins_h];
321#endif
322                s->head[s->ins_h] = (Pos)str;
323                str++;
324                s->insert--;
325                if (s->lookahead + s->insert < MIN_MATCH)
326                    break;
327            }
328        }
329        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
330         * but this is not important since only literal bytes will be emitted.
331         */
332
333    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
334
335    /* If the WIN_INIT bytes after the end of the current data have never been
336     * written, then zero those bytes in order to avoid memory check reports of
337     * the use of uninitialized (or uninitialised as Julian writes) bytes by
338     * the longest match routines.  Update the high water mark for the next
339     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
340     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
341     */
342    if (s->high_water < s->window_size) {
343        ulg curr = s->strstart + (ulg)(s->lookahead);
344        ulg init;
345
346        if (s->high_water < curr) {
347            /* Previous high water mark below current data -- zero WIN_INIT
348             * bytes or up to end of window, whichever is less.
349             */
350            init = s->window_size - curr;
351            if (init > WIN_INIT)
352                init = WIN_INIT;
353            zmemzero(s->window + curr, (unsigned)init);
354            s->high_water = curr + init;
355        }
356        else if (s->high_water < (ulg)curr + WIN_INIT) {
357            /* High water mark at or above current data, but below current data
358             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
359             * to end of window, whichever is less.
360             */
361            init = (ulg)curr + WIN_INIT - s->high_water;
362            if (init > s->window_size - s->high_water)
363                init = s->window_size - s->high_water;
364            zmemzero(s->window + s->high_water, (unsigned)init);
365            s->high_water += init;
366        }
367    }
368
369    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
370           "not enough room for search");
371}
372
373/* ========================================================================= */
374int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
375                         int stream_size) {
376    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
377                         Z_DEFAULT_STRATEGY, version, stream_size);
378    /* To do: ignore strm->next_in if we use it as window */
379}
380
381/* ========================================================================= */
382int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
383                          int windowBits, int memLevel, int strategy,
384                          const char *version, int stream_size) {
385    deflate_state *s;
386    int wrap = 1;
387    static const char my_version[] = ZLIB_VERSION;
388
389    if (version == Z_NULL || version[0] != my_version[0] ||
390        stream_size != sizeof(z_stream)) {
391        return Z_VERSION_ERROR;
392    }
393    if (strm == Z_NULL) return Z_STREAM_ERROR;
394
395    strm->msg = Z_NULL;
396    if (strm->zalloc == (alloc_func)0) {
397#ifdef Z_SOLO
398        return Z_STREAM_ERROR;
399#else
400        strm->zalloc = zcalloc;
401        strm->opaque = (voidpf)0;
402#endif
403    }
404    if (strm->zfree == (free_func)0)
405#ifdef Z_SOLO
406        return Z_STREAM_ERROR;
407#else
408        strm->zfree = zcfree;
409#endif
410
411#ifdef FASTEST
412    if (level != 0) level = 1;
413#else
414    if (level == Z_DEFAULT_COMPRESSION) level = 6;
415#endif
416
417    if (windowBits < 0) { /* suppress zlib wrapper */
418        wrap = 0;
419        if (windowBits < -15)
420            return Z_STREAM_ERROR;
421        windowBits = -windowBits;
422    }
423#ifdef GZIP
424    else if (windowBits > 15) {
425        wrap = 2;       /* write gzip wrapper instead */
426        windowBits -= 16;
427    }
428#endif
429    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
430        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
431        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
432        return Z_STREAM_ERROR;
433    }
434    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
435    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
436    if (s == Z_NULL) return Z_MEM_ERROR;
437    strm->state = (struct internal_state FAR *)s;
438    s->strm = strm;
439    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
440
441    s->wrap = wrap;
442    s->gzhead = Z_NULL;
443    s->w_bits = (uInt)windowBits;
444    s->w_size = 1 << s->w_bits;
445    s->w_mask = s->w_size - 1;
446
447    s->hash_bits = (uInt)memLevel + 7;
448    s->hash_size = 1 << s->hash_bits;
449    s->hash_mask = s->hash_size - 1;
450    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
451
452    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
453    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
454    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
455
456    s->high_water = 0;      /* nothing written to s->window yet */
457
458    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
459
460    /* We overlay pending_buf and sym_buf. This works since the average size
461     * for length/distance pairs over any compressed block is assured to be 31
462     * bits or less.
463     *
464     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
465     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
466     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
467     * possible fixed-codes length/distance pair is then 31 bits total.
468     *
469     * sym_buf starts one-fourth of the way into pending_buf. So there are
470     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
471     * in sym_buf is three bytes -- two for the distance and one for the
472     * literal/length. As each symbol is consumed, the pointer to the next
473     * sym_buf value to read moves forward three bytes. From that symbol, up to
474     * 31 bits are written to pending_buf. The closest the written pending_buf
475     * bits gets to the next sym_buf symbol to read is just before the last
476     * code is written. At that time, 31*(n - 2) bits have been written, just
477     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
478     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
479     * symbols are written.) The closest the writing gets to what is unread is
480     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
481     * can range from 128 to 32768.
482     *
483     * Therefore, at a minimum, there are 142 bits of space between what is
484     * written and what is read in the overlain buffers, so the symbols cannot
485     * be overwritten by the compressed data. That space is actually 139 bits,
486     * due to the three-bit fixed-code block header.
487     *
488     * That covers the case where either Z_FIXED is specified, forcing fixed
489     * codes, or when the use of fixed codes is chosen, because that choice
490     * results in a smaller compressed block than dynamic codes. That latter
491     * condition then assures that the above analysis also covers all dynamic
492     * blocks. A dynamic-code block will only be chosen to be emitted if it has
493     * fewer bits than a fixed-code block would for the same set of symbols.
494     * Therefore its average symbol length is assured to be less than 31. So
495     * the compressed data for a dynamic block also cannot overwrite the
496     * symbols from which it is being constructed.
497     */
498
499    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
500    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
501
502    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
503        s->pending_buf == Z_NULL) {
504        s->status = FINISH_STATE;
505        strm->msg = ERR_MSG(Z_MEM_ERROR);
506        deflateEnd (strm);
507        return Z_MEM_ERROR;
508    }
509#ifdef LIT_MEM
510    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
511    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
512    s->sym_end = s->lit_bufsize - 1;
513#else
514    s->sym_buf = s->pending_buf + s->lit_bufsize;
515    s->sym_end = (s->lit_bufsize - 1) * 3;
516#endif
517    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
518     * on 16 bit machines and because stored blocks are restricted to
519     * 64K-1 bytes.
520     */
521
522    s->level = level;
523    s->strategy = strategy;
524    s->method = (Byte)method;
525
526    return deflateReset(strm);
527}
528
529/* =========================================================================
530 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
531 */
532local int deflateStateCheck(z_streamp strm)
533{
534    deflate_state *s;
535    if (strm == Z_NULL ||
536        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
537        return 1;
538    s = strm->state;
539    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
540#ifdef GZIP
541                                           s->status != GZIP_STATE &&
542#endif
543                                           s->status != EXTRA_STATE &&
544                                           s->status != NAME_STATE &&
545                                           s->status != COMMENT_STATE &&
546                                           s->status != HCRC_STATE &&
547                                           s->status != BUSY_STATE &&
548                                           s->status != FINISH_STATE))
549        return 1;
550    return 0;
551}
552
553/* ========================================================================= */
554int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
555                                 uInt  dictLength) {
556    deflate_state *s;
557    uInt str, n;
558    int wrap;
559    unsigned avail;
560    z_const unsigned char *next;
561
562    if (deflateStateCheck(strm) || dictionary == Z_NULL)
563        return Z_STREAM_ERROR;
564    s = strm->state;
565    wrap = s->wrap;
566    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
567        return Z_STREAM_ERROR;
568
569    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
570    if (wrap == 1)
571        strm->adler = adler32(strm->adler, dictionary, dictLength);
572    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
573
574    /* if dictionary would fill window, just replace the history */
575    if (dictLength >= s->w_size) {
576        if (wrap == 0) {            /* already empty otherwise */
577            CLEAR_HASH(s);
578            s->strstart = 0;
579            s->block_start = 0L;
580            s->insert = 0;
581        }
582        dictionary += dictLength - s->w_size;  /* use the tail */
583        dictLength = s->w_size;
584    }
585
586    /* insert dictionary into window and hash */
587    avail = strm->avail_in;
588    next = strm->next_in;
589    strm->avail_in = dictLength;
590    strm->next_in = (z_const Bytef *)dictionary;
591    fill_window(s);
592    while (s->lookahead >= MIN_MATCH) {
593        str = s->strstart;
594        n = s->lookahead - (MIN_MATCH-1);
595        do {
596            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
597#ifndef FASTEST
598            s->prev[str & s->w_mask] = s->head[s->ins_h];
599#endif
600            s->head[s->ins_h] = (Pos)str;
601            str++;
602        } while (--n);
603        s->strstart = str;
604        s->lookahead = MIN_MATCH-1;
605        fill_window(s);
606    }
607    s->strstart += s->lookahead;
608    s->block_start = (long)s->strstart;
609    s->insert = s->lookahead;
610    s->lookahead = 0;
611    s->match_length = s->prev_length = MIN_MATCH-1;
612    s->match_available = 0;
613    strm->next_in = next;
614    strm->avail_in = avail;
615    s->wrap = wrap;
616    return Z_OK;
617}
618
619/* ========================================================================= */
620int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
621                                 uInt *dictLength) {
622    deflate_state *s;
623    uInt len;
624
625    if (deflateStateCheck(strm))
626        return Z_STREAM_ERROR;
627    s = strm->state;
628    len = s->strstart + s->lookahead;
629    if (len > s->w_size)
630        len = s->w_size;
631    if (dictionary != Z_NULL && len)
632        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
633    if (dictLength != Z_NULL)
634        *dictLength = len;
635    return Z_OK;
636}
637
638/* ========================================================================= */
639int ZEXPORT deflateResetKeep(z_streamp strm) {
640    deflate_state *s;
641
642    if (deflateStateCheck(strm)) {
643        return Z_STREAM_ERROR;
644    }
645
646    strm->total_in = strm->total_out = 0;
647    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
648    strm->data_type = Z_UNKNOWN;
649
650    s = (deflate_state *)strm->state;
651    s->pending = 0;
652    s->pending_out = s->pending_buf;
653
654    if (s->wrap < 0) {
655        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
656    }
657    s->status =
658#ifdef GZIP
659        s->wrap == 2 ? GZIP_STATE :
660#endif
661        INIT_STATE;
662    strm->adler =
663#ifdef GZIP
664        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
665#endif
666        adler32(0L, Z_NULL, 0);
667    s->last_flush = -2;
668
669    _tr_init(s);
670
671    return Z_OK;
672}
673
674/* ===========================================================================
675 * Initialize the "longest match" routines for a new zlib stream
676 */
677local void lm_init(deflate_state *s)
678{
679    s->window_size = (ulg)2L*s->w_size;
680
681    CLEAR_HASH(s);
682
683    /* Set the default configuration parameters:
684     */
685    s->max_lazy_match   = configuration_table[s->level].max_lazy;
686    s->good_match       = configuration_table[s->level].good_length;
687    s->nice_match       = configuration_table[s->level].nice_length;
688    s->max_chain_length = configuration_table[s->level].max_chain;
689
690    s->strstart = 0;
691    s->block_start = 0L;
692    s->lookahead = 0;
693    s->insert = 0;
694    s->match_length = s->prev_length = MIN_MATCH-1;
695    s->match_available = 0;
696    s->ins_h = 0;
697}
698
699/* ========================================================================= */
700int ZEXPORT deflateReset(z_streamp strm) {
701    int ret;
702
703    ret = deflateResetKeep(strm);
704    if (ret == Z_OK)
705        lm_init(strm->state);
706    return ret;
707}
708
709/* ========================================================================= */
710int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
711    if (deflateStateCheck(strm) || strm->state->wrap != 2)
712        return Z_STREAM_ERROR;
713    strm->state->gzhead = head;
714    return Z_OK;
715}
716
717/* ========================================================================= */
718int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
719    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
720    if (pending != Z_NULL)
721        *pending = strm->state->pending;
722    if (bits != Z_NULL)
723        *bits = strm->state->bi_valid;
724    return Z_OK;
725}
726
727/* ========================================================================= */
728int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
729    deflate_state *s;
730    int put;
731
732    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
733    s = strm->state;
734#ifdef LIT_MEM
735    if (bits < 0 || bits > 16 ||
736        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
737        return Z_BUF_ERROR;
738#else
739    if (bits < 0 || bits > 16 ||
740        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
741        return Z_BUF_ERROR;
742#endif
743    do {
744        put = Buf_size - s->bi_valid;
745        if (put > bits)
746            put = bits;
747        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
748        s->bi_valid += put;
749        _tr_flush_bits(s);
750        value >>= put;
751        bits -= put;
752    } while (bits);
753    return Z_OK;
754}
755
756/* ========================================================================= */
757int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
758    deflate_state *s;
759    compress_func func;
760
761    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
762    s = strm->state;
763
764#ifdef FASTEST
765    if (level != 0) level = 1;
766#else
767    if (level == Z_DEFAULT_COMPRESSION) level = 6;
768#endif
769    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
770        return Z_STREAM_ERROR;
771    }
772    func = configuration_table[s->level].func;
773
774    if ((strategy != s->strategy || func != configuration_table[level].func) &&
775        s->last_flush != -2) {
776        /* Flush the last buffer: */
777        int err = deflate(strm, Z_BLOCK);
778        if (err == Z_STREAM_ERROR)
779            return err;
780        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
781            return Z_BUF_ERROR;
782    }
783    if (s->level != level) {
784        if (s->level == 0 && s->matches != 0) {
785            if (s->matches == 1)
786                slide_hash(s);
787            else
788                CLEAR_HASH(s);
789            s->matches = 0;
790        }
791        s->level = level;
792        s->max_lazy_match   = configuration_table[level].max_lazy;
793        s->good_match       = configuration_table[level].good_length;
794        s->nice_match       = configuration_table[level].nice_length;
795        s->max_chain_length = configuration_table[level].max_chain;
796    }
797    s->strategy = strategy;
798    return Z_OK;
799}
800
801/* ========================================================================= */
802int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
803                        int nice_length, int max_chain) {
804    deflate_state *s;
805
806    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
807    s = strm->state;
808    s->good_match = (uInt)good_length;
809    s->max_lazy_match = (uInt)max_lazy;
810    s->nice_match = nice_length;
811    s->max_chain_length = (uInt)max_chain;
812    return Z_OK;
813}
814
815/* =========================================================================
816 * For the default windowBits of 15 and memLevel of 8, this function returns a
817 * close to exact, as well as small, upper bound on the compressed size. This
818 * is an expansion of ~0.03%, plus a small constant.
819 *
820 * For any setting other than those defaults for windowBits and memLevel, one
821 * of two worst case bounds is returned. This is at most an expansion of ~4% or
822 * ~13%, plus a small constant.
823 *
824 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
825 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
826 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
827 * expansion results from five bytes of header for each stored block.
828 *
829 * The larger expansion of 13% results from a window size less than or equal to
830 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
831 * the data being compressed may have slid out of the sliding window, impeding
832 * a stored block from being emitted. Then the only choice is a fixed or
833 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
834 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
835 * which this can occur is 255 (memLevel == 2).
836 *
837 * Shifts are used to approximate divisions, for speed.
838 */
839uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen)
840{
841    deflate_state *s;
842    uLong fixedlen, storelen, wraplen;
843
844    /* upper bound for fixed blocks with 9-bit literals and length 255
845       (memLevel == 2, which is the lowest that may not use stored blocks) --
846       ~13% overhead plus a small constant */
847    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
848               (sourceLen >> 9) + 4;
849
850    /* upper bound for stored blocks with length 127 (memLevel == 1) --
851       ~4% overhead plus a small constant */
852    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
853               (sourceLen >> 11) + 7;
854
855    /* if can't get parameters, return larger bound plus a zlib wrapper */
856    if (deflateStateCheck(strm))
857        return (fixedlen > storelen ? fixedlen : storelen) + 6;
858
859    /* compute wrapper length */
860    s = strm->state;
861    switch (s->wrap) {
862    case 0:                                 /* raw deflate */
863        wraplen = 0;
864        break;
865    case 1:                                 /* zlib wrapper */
866        wraplen = 6 + (s->strstart ? 4 : 0);
867        break;
868#ifdef GZIP
869    case 2:                                 /* gzip wrapper */
870        wraplen = 18;
871        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
872            Bytef *str;
873            if (s->gzhead->extra != Z_NULL)
874                wraplen += 2 + s->gzhead->extra_len;
875            str = s->gzhead->name;
876            if (str != Z_NULL)
877                do {
878                    wraplen++;
879                } while (*str++);
880            str = s->gzhead->comment;
881            if (str != Z_NULL)
882                do {
883                    wraplen++;
884                } while (*str++);
885            if (s->gzhead->hcrc)
886                wraplen += 2;
887        }
888        break;
889#endif
890    default:                                /* for compiler happiness */
891        wraplen = 6;
892    }
893
894    /* if not default parameters, return one of the conservative bounds */
895    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
896        return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
897               wraplen;
898
899    /* default settings: return tight bound for that case -- ~0.03% overhead
900       plus a small constant */
901    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
902           (sourceLen >> 25) + 13 - 6 + wraplen;
903}
904
905/* =========================================================================
906 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
907 * IN assertion: the stream state is correct and there is enough room in
908 * pending_buf.
909 */
910local void putShortMSB(deflate_state *s, uInt b)
911{
912    put_byte(s, (Byte)(b >> 8));
913    put_byte(s, (Byte)(b & 0xff));
914}
915
916/* =========================================================================
917 * Flush as much pending output as possible. All deflate() output, except for
918 * some deflate_stored() output, goes through this function so some
919 * applications may wish to modify it to avoid allocating a large
920 * strm->next_out buffer and copying into it. (See also read_buf()).
921 */
922local void flush_pending(z_streamp strm)
923{
924    unsigned len;
925    deflate_state *s = strm->state;
926
927    _tr_flush_bits(s);
928    len = s->pending;
929    if (len > strm->avail_out) len = strm->avail_out;
930    if (len == 0) return;
931
932    zmemcpy(strm->next_out, s->pending_out, len);
933    strm->next_out  += len;
934    s->pending_out  += len;
935    strm->total_out += len;
936    strm->avail_out -= len;
937    s->pending      -= len;
938    if (s->pending == 0) {
939        s->pending_out = s->pending_buf;
940    }
941}
942
943/* ===========================================================================
944 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
945 */
946#define HCRC_UPDATE(beg) \
947    do { \
948        if (s->gzhead->hcrc && s->pending > (beg)) \
949            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
950                                s->pending - (beg)); \
951    } while (0)
952
953/* ========================================================================= */
954int ZEXPORT deflate(z_streamp strm, int flush) {
955    int old_flush; /* value of flush param for previous deflate call */
956    deflate_state *s;
957
958    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
959        return Z_STREAM_ERROR;
960    }
961    s = strm->state;
962
963    if (strm->next_out == Z_NULL ||
964        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
965        (s->status == FINISH_STATE && flush != Z_FINISH)) {
966        ERR_RETURN(strm, Z_STREAM_ERROR);
967    }
968    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
969
970    old_flush = s->last_flush;
971    s->last_flush = flush;
972
973    /* Flush as much pending output as possible */
974    if (s->pending != 0) {
975        flush_pending(strm);
976        if (strm->avail_out == 0) {
977            /* Since avail_out is 0, deflate will be called again with
978             * more output space, but possibly with both pending and
979             * avail_in equal to zero. There won't be anything to do,
980             * but this is not an error situation so make sure we
981             * return OK instead of BUF_ERROR at next call of deflate:
982             */
983            s->last_flush = -1;
984            return Z_OK;
985        }
986
987    /* Make sure there is something to do and avoid duplicate consecutive
988     * flushes. For repeated and useless calls with Z_FINISH, we keep
989     * returning Z_STREAM_END instead of Z_BUF_ERROR.
990     */
991    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
992               flush != Z_FINISH) {
993        ERR_RETURN(strm, Z_BUF_ERROR);
994    }
995
996    /* User must not provide more input after the first FINISH: */
997    if (s->status == FINISH_STATE && strm->avail_in != 0) {
998        ERR_RETURN(strm, Z_BUF_ERROR);
999    }
1000
1001    /* Write the header */
1002    if (s->status == INIT_STATE && s->wrap == 0)
1003        s->status = BUSY_STATE;
1004    if (s->status == INIT_STATE) {
1005        /* zlib header */
1006        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1007        uInt level_flags;
1008
1009        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1010            level_flags = 0;
1011        else if (s->level < 6)
1012            level_flags = 1;
1013        else if (s->level == 6)
1014            level_flags = 2;
1015        else
1016            level_flags = 3;
1017        header |= (level_flags << 6);
1018        if (s->strstart != 0) header |= PRESET_DICT;
1019        header += 31 - (header % 31);
1020
1021        putShortMSB(s, header);
1022
1023        /* Save the adler32 of the preset dictionary: */
1024        if (s->strstart != 0) {
1025            putShortMSB(s, (uInt)(strm->adler >> 16));
1026            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1027        }
1028        strm->adler = adler32(0L, Z_NULL, 0);
1029        s->status = BUSY_STATE;
1030
1031        /* Compression must start with an empty pending buffer */
1032        flush_pending(strm);
1033        if (s->pending != 0) {
1034            s->last_flush = -1;
1035            return Z_OK;
1036        }
1037    }
1038#ifdef GZIP
1039    if (s->status == GZIP_STATE) {
1040        /* gzip header */
1041        strm->adler = crc32(0L, Z_NULL, 0);
1042        put_byte(s, 31);
1043        put_byte(s, 139);
1044        put_byte(s, 8);
1045        if (s->gzhead == Z_NULL) {
1046            put_byte(s, 0);
1047            put_byte(s, 0);
1048            put_byte(s, 0);
1049            put_byte(s, 0);
1050            put_byte(s, 0);
1051            put_byte(s, s->level == 9 ? 2 :
1052                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1053                      4 : 0));
1054            put_byte(s, OS_CODE);
1055            s->status = BUSY_STATE;
1056
1057            /* Compression must start with an empty pending buffer */
1058            flush_pending(strm);
1059            if (s->pending != 0) {
1060                s->last_flush = -1;
1061                return Z_OK;
1062            }
1063        }
1064        else {
1065            put_byte(s, (s->gzhead->text ? 1 : 0) +
1066                     (s->gzhead->hcrc ? 2 : 0) +
1067                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1068                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1069                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1070                     );
1071            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1072            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1073            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1074            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1075            put_byte(s, s->level == 9 ? 2 :
1076                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1077                      4 : 0));
1078            put_byte(s, s->gzhead->os & 0xff);
1079            if (s->gzhead->extra != Z_NULL) {
1080                put_byte(s, s->gzhead->extra_len & 0xff);
1081                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1082            }
1083            if (s->gzhead->hcrc)
1084                strm->adler = crc32(strm->adler, s->pending_buf,
1085                                    s->pending);
1086            s->gzindex = 0;
1087            s->status = EXTRA_STATE;
1088        }
1089    }
1090    if (s->status == EXTRA_STATE) {
1091        if (s->gzhead->extra != Z_NULL) {
1092            ulg beg = s->pending;   /* start of bytes to update crc */
1093            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1094            while (s->pending + left > s->pending_buf_size) {
1095                uInt copy = s->pending_buf_size - s->pending;
1096                zmemcpy(s->pending_buf + s->pending,
1097                        s->gzhead->extra + s->gzindex, copy);
1098                s->pending = s->pending_buf_size;
1099                HCRC_UPDATE(beg);
1100                s->gzindex += copy;
1101                flush_pending(strm);
1102                if (s->pending != 0) {
1103                    s->last_flush = -1;
1104                    return Z_OK;
1105                }
1106                beg = 0;
1107                left -= copy;
1108            }
1109            zmemcpy(s->pending_buf + s->pending,
1110                    s->gzhead->extra + s->gzindex, left);
1111            s->pending += left;
1112            HCRC_UPDATE(beg);
1113            s->gzindex = 0;
1114        }
1115        s->status = NAME_STATE;
1116    }
1117    if (s->status == NAME_STATE) {
1118        if (s->gzhead->name != Z_NULL) {
1119            ulg beg = s->pending;   /* start of bytes to update crc */
1120            int val;
1121            do {
1122                if (s->pending == s->pending_buf_size) {
1123                    HCRC_UPDATE(beg);
1124                    flush_pending(strm);
1125                    if (s->pending != 0) {
1126                        s->last_flush = -1;
1127                        return Z_OK;
1128                    }
1129                    beg = 0;
1130                }
1131                val = s->gzhead->name[s->gzindex++];
1132                put_byte(s, val);
1133            } while (val != 0);
1134            HCRC_UPDATE(beg);
1135            s->gzindex = 0;
1136        }
1137        s->status = COMMENT_STATE;
1138    }
1139    if (s->status == COMMENT_STATE) {
1140        if (s->gzhead->comment != Z_NULL) {
1141            ulg beg = s->pending;   /* start of bytes to update crc */
1142            int val;
1143            do {
1144                if (s->pending == s->pending_buf_size) {
1145                    HCRC_UPDATE(beg);
1146                    flush_pending(strm);
1147                    if (s->pending != 0) {
1148                        s->last_flush = -1;
1149                        return Z_OK;
1150                    }
1151                    beg = 0;
1152                }
1153                val = s->gzhead->comment[s->gzindex++];
1154                put_byte(s, val);
1155            } while (val != 0);
1156            HCRC_UPDATE(beg);
1157        }
1158        s->status = HCRC_STATE;
1159    }
1160    if (s->status == HCRC_STATE) {
1161        if (s->gzhead->hcrc) {
1162            if (s->pending + 2 > s->pending_buf_size) {
1163                flush_pending(strm);
1164                if (s->pending != 0) {
1165                    s->last_flush = -1;
1166                    return Z_OK;
1167                }
1168            }
1169            put_byte(s, (Byte)(strm->adler & 0xff));
1170            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1171            strm->adler = crc32(0L, Z_NULL, 0);
1172        }
1173        s->status = BUSY_STATE;
1174
1175        /* Compression must start with an empty pending buffer */
1176        flush_pending(strm);
1177        if (s->pending != 0) {
1178            s->last_flush = -1;
1179            return Z_OK;
1180        }
1181    }
1182#endif
1183
1184    /* Start a new block or continue the current one.
1185     */
1186    if (strm->avail_in != 0 || s->lookahead != 0 ||
1187        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1188        block_state bstate;
1189
1190        bstate = s->level == 0 ? deflate_stored(s, flush) :
1191                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1192                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1193                 (*(configuration_table[s->level].func))(s, flush);
1194
1195        if (bstate == finish_started || bstate == finish_done) {
1196            s->status = FINISH_STATE;
1197        }
1198        if (bstate == need_more || bstate == finish_started) {
1199            if (strm->avail_out == 0) {
1200                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1201            }
1202            return Z_OK;
1203            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1204             * of deflate should use the same flush parameter to make sure
1205             * that the flush is complete. So we don't have to output an
1206             * empty block here, this will be done at next call. This also
1207             * ensures that for a very small output buffer, we emit at most
1208             * one empty block.
1209             */
1210        }
1211        if (bstate == block_done) {
1212            if (flush == Z_PARTIAL_FLUSH) {
1213                _tr_align(s);
1214            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1215                _tr_stored_block(s, (char*)0, 0L, 0);
1216                /* For a full flush, this empty block will be recognized
1217                 * as a special marker by inflate_sync().
1218                 */
1219                if (flush == Z_FULL_FLUSH) {
1220                    CLEAR_HASH(s);             /* forget history */
1221                    if (s->lookahead == 0) {
1222                        s->strstart = 0;
1223                        s->block_start = 0L;
1224                        s->insert = 0;
1225                    }
1226                }
1227            }
1228            flush_pending(strm);
1229            if (strm->avail_out == 0) {
1230              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1231              return Z_OK;
1232            }
1233        }
1234    }
1235
1236    if (flush != Z_FINISH) return Z_OK;
1237    if (s->wrap <= 0) return Z_STREAM_END;
1238
1239    /* Write the trailer */
1240#ifdef GZIP
1241    if (s->wrap == 2) {
1242        put_byte(s, (Byte)(strm->adler & 0xff));
1243        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1244        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1245        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1246        put_byte(s, (Byte)(strm->total_in & 0xff));
1247        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1248        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1249        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1250    }
1251    else
1252#endif
1253    {
1254        putShortMSB(s, (uInt)(strm->adler >> 16));
1255        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1256    }
1257    flush_pending(strm);
1258    /* If avail_out is zero, the application will call deflate again
1259     * to flush the rest.
1260     */
1261    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1262    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1263}
1264
1265/* ========================================================================= */
1266int ZEXPORT deflateEnd(z_streamp strm) {
1267    int status;
1268
1269    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1270
1271    status = strm->state->status;
1272
1273    /* Deallocate in reverse order of allocations: */
1274    TRY_FREE(strm, strm->state->pending_buf);
1275    TRY_FREE(strm, strm->state->head);
1276    TRY_FREE(strm, strm->state->prev);
1277    TRY_FREE(strm, strm->state->window);
1278
1279    ZFREE(strm, strm->state);
1280    strm->state = Z_NULL;
1281
1282    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1283}
1284
1285/* =========================================================================
1286 * Copy the source state to the destination state.
1287 * To simplify the source, this is not supported for 16-bit MSDOS (which
1288 * doesn't have enough memory anyway to duplicate compression states).
1289 */
1290int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1291#ifdef MAXSEG_64K
1292    (void)dest;
1293    (void)source;
1294    return Z_STREAM_ERROR;
1295#else
1296    deflate_state *ds;
1297    deflate_state *ss;
1298
1299
1300    if (deflateStateCheck(source) || dest == Z_NULL) {
1301        return Z_STREAM_ERROR;
1302    }
1303
1304    ss = source->state;
1305
1306    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1307
1308    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1309    if (ds == Z_NULL) return Z_MEM_ERROR;
1310    dest->state = (struct internal_state FAR *) ds;
1311    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1312    ds->strm = dest;
1313
1314    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1315    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1316    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1317    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1318
1319    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1320        ds->pending_buf == Z_NULL) {
1321        deflateEnd (dest);
1322        return Z_MEM_ERROR;
1323    }
1324    /* following zmemcpy do not work for 16-bit MSDOS */
1325    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1326    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1327    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1328    zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1329
1330    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1331#ifdef LIT_MEM
1332    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1333    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1334#else
1335    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1336#endif
1337
1338    ds->l_desc.dyn_tree = ds->dyn_ltree;
1339    ds->d_desc.dyn_tree = ds->dyn_dtree;
1340    ds->bl_desc.dyn_tree = ds->bl_tree;
1341
1342    return Z_OK;
1343#endif /* MAXSEG_64K */
1344}
1345
1346#ifndef FASTEST
1347/* ===========================================================================
1348 * Set match_start to the longest match starting at the given string and
1349 * return its length. Matches shorter or equal to prev_length are discarded,
1350 * in which case the result is equal to prev_length and match_start is
1351 * garbage.
1352 * IN assertions: cur_match is the head of the hash chain for the current
1353 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1354 * OUT assertion: the match length is not greater than s->lookahead.
1355 */
1356local uInt longest_match(deflate_state *s, IPos cur_match)
1357{
1358    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1359    register Bytef *scan = s->window + s->strstart; /* current string */
1360    register Bytef *match;                      /* matched string */
1361    register int len;                           /* length of current match */
1362    int best_len = (int)s->prev_length;         /* best match length so far */
1363    int nice_match = s->nice_match;             /* stop if match long enough */
1364    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1365        s->strstart - (IPos)MAX_DIST(s) : NIL;
1366    /* Stop when cur_match becomes <= limit. To simplify the code,
1367     * we prevent matches with the string of window index 0.
1368     */
1369    Posf *prev = s->prev;
1370    uInt wmask = s->w_mask;
1371
1372#ifdef UNALIGNED_OK
1373    /* Compare two bytes at a time. Note: this is not always beneficial.
1374     * Try with and without -DUNALIGNED_OK to check.
1375     */
1376    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1377    register ush scan_start = *(ushf*)scan;
1378    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1379#else
1380    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1381    register Byte scan_end1  = scan[best_len - 1];
1382    register Byte scan_end   = scan[best_len];
1383#endif
1384
1385    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1386     * It is easy to get rid of this optimization if necessary.
1387     */
1388    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1389
1390    /* Do not waste too much time if we already have a good match: */
1391    if (s->prev_length >= s->good_match) {
1392        chain_length >>= 2;
1393    }
1394    /* Do not look for matches beyond the end of the input. This is necessary
1395     * to make deflate deterministic.
1396     */
1397    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1398
1399    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1400           "need lookahead");
1401
1402    do {
1403        Assert(cur_match < s->strstart, "no future");
1404        match = s->window + cur_match;
1405
1406        /* Skip to next match if the match length cannot increase
1407         * or if the match length is less than 2.  Note that the checks below
1408         * for insufficient lookahead only occur occasionally for performance
1409         * reasons.  Therefore uninitialized memory will be accessed, and
1410         * conditional jumps will be made that depend on those values.
1411         * However the length of the match is limited to the lookahead, so
1412         * the output of deflate is not affected by the uninitialized values.
1413         */
1414#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1415        /* This code assumes sizeof(unsigned short) == 2. Do not use
1416         * UNALIGNED_OK if your compiler uses a different size.
1417         */
1418        if (*(ushf*)(match + best_len - 1) != scan_end ||
1419            *(ushf*)match != scan_start) continue;
1420
1421        /* It is not necessary to compare scan[2] and match[2] since they are
1422         * always equal when the other bytes match, given that the hash keys
1423         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1424         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1425         * lookahead only every 4th comparison; the 128th check will be made
1426         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1427         * necessary to put more guard bytes at the end of the window, or
1428         * to check more often for insufficient lookahead.
1429         */
1430        Assert(scan[2] == match[2], "scan[2]?");
1431        scan++, match++;
1432        do {
1433        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1434                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1435                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1436                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1437                 scan < strend);
1438        /* The funny "do {}" generates better code on most compilers */
1439
1440        /* Here, scan <= window + strstart + 257 */
1441        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1442               "wild scan");
1443        if (*scan == *match) scan++;
1444
1445        len = (MAX_MATCH - 1) - (int)(strend - scan);
1446        scan = strend - (MAX_MATCH-1);
1447
1448#else /* UNALIGNED_OK */
1449
1450        if (match[best_len]     != scan_end  ||
1451            match[best_len - 1] != scan_end1 ||
1452            *match              != *scan     ||
1453            *++match            != scan[1])      continue;
1454
1455        /* The check at best_len - 1 can be removed because it will be made
1456         * again later. (This heuristic is not always a win.)
1457         * It is not necessary to compare scan[2] and match[2] since they
1458         * are always equal when the other bytes match, given that
1459         * the hash keys are equal and that HASH_BITS >= 8.
1460         */
1461        scan += 2, match++;
1462        Assert(*scan == *match, "match[2]?");
1463
1464        /* We check for insufficient lookahead only every 8th comparison;
1465         * the 256th check will be made at strstart + 258.
1466         */
1467        do {
1468        } while (*++scan == *++match && *++scan == *++match &&
1469                 *++scan == *++match && *++scan == *++match &&
1470                 *++scan == *++match && *++scan == *++match &&
1471                 *++scan == *++match && *++scan == *++match &&
1472                 scan < strend);
1473
1474        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1475               "wild scan");
1476
1477        len = MAX_MATCH - (int)(strend - scan);
1478        scan = strend - MAX_MATCH;
1479
1480#endif /* UNALIGNED_OK */
1481
1482        if (len > best_len) {
1483            s->match_start = cur_match;
1484            best_len = len;
1485            if (len >= nice_match) break;
1486#ifdef UNALIGNED_OK
1487            scan_end = *(ushf*)(scan + best_len - 1);
1488#else
1489            scan_end1  = scan[best_len - 1];
1490            scan_end   = scan[best_len];
1491#endif
1492        }
1493    } while ((cur_match = prev[cur_match & wmask]) > limit
1494             && --chain_length != 0);
1495
1496    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1497    return s->lookahead;
1498}
1499
1500#else /* FASTEST */
1501
1502/* ---------------------------------------------------------------------------
1503 * Optimized version for FASTEST only
1504 */
1505local uInt longest_match(deflate_state *s, IPos cur_match)
1506{
1507    register Bytef *scan = s->window + s->strstart; /* current string */
1508    register Bytef *match;                       /* matched string */
1509    register int len;                           /* length of current match */
1510    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1511
1512    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1513     * It is easy to get rid of this optimization if necessary.
1514     */
1515    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1516
1517    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1518           "need lookahead");
1519
1520    Assert(cur_match < s->strstart, "no future");
1521
1522    match = s->window + cur_match;
1523
1524    /* Return failure if the match length is less than 2:
1525     */
1526    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1527
1528    /* The check at best_len - 1 can be removed because it will be made
1529     * again later. (This heuristic is not always a win.)
1530     * It is not necessary to compare scan[2] and match[2] since they
1531     * are always equal when the other bytes match, given that
1532     * the hash keys are equal and that HASH_BITS >= 8.
1533     */
1534    scan += 2, match += 2;
1535    Assert(*scan == *match, "match[2]?");
1536
1537    /* We check for insufficient lookahead only every 8th comparison;
1538     * the 256th check will be made at strstart + 258.
1539     */
1540    do {
1541    } while (*++scan == *++match && *++scan == *++match &&
1542             *++scan == *++match && *++scan == *++match &&
1543             *++scan == *++match && *++scan == *++match &&
1544             *++scan == *++match && *++scan == *++match &&
1545             scan < strend);
1546
1547    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1548
1549    len = MAX_MATCH - (int)(strend - scan);
1550
1551    if (len < MIN_MATCH) return MIN_MATCH - 1;
1552
1553    s->match_start = cur_match;
1554    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1555}
1556
1557#endif /* FASTEST */
1558
1559#ifdef ZLIB_DEBUG
1560
1561#define EQUAL 0
1562/* result of memcmp for equal strings */
1563
1564/* ===========================================================================
1565 * Check that the match at match_start is indeed a match.
1566 */
1567local void check_match(deflate_state *s, IPos start, IPos match, int length)
1568{
1569    /* check that the match is indeed a match */
1570    Bytef *back = s->window + (int)match, *here = s->window + start;
1571    IPos len = length;
1572    if (match == (IPos)-1) {
1573        /* match starts one byte before the current window -- just compare the
1574           subsequent length-1 bytes */
1575        back++;
1576        here++;
1577        len--;
1578    }
1579    if (zmemcmp(back, here, len) != EQUAL) {
1580        fprintf(stderr, " start %u, match %d, length %d\n",
1581                start, (int)match, length);
1582        do {
1583            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1584        } while (--len != 0);
1585        z_error("invalid match");
1586    }
1587    if (z_verbose > 1) {
1588        fprintf(stderr,"\\[%d,%d]", start - match, length);
1589        do { putc(s->window[start++], stderr); } while (--length != 0);
1590    }
1591}
1592#else
1593#  define check_match(s, start, match, length)
1594#endif /* ZLIB_DEBUG */
1595
1596/* ===========================================================================
1597 * Flush the current block, with given end-of-file flag.
1598 * IN assertion: strstart is set to the end of the current match.
1599 */
1600#define FLUSH_BLOCK_ONLY(s, last) { \
1601   _tr_flush_block(s, (s->block_start >= 0L ? \
1602                   (charf *)&s->window[(unsigned)s->block_start] : \
1603                   (charf *)Z_NULL), \
1604                (ulg)((long)s->strstart - s->block_start), \
1605                (last)); \
1606   s->block_start = s->strstart; \
1607   flush_pending(s->strm); \
1608   Tracev((stderr,"[FLUSH]")); \
1609}
1610
1611/* Same but force premature exit if necessary. */
1612#define FLUSH_BLOCK(s, last) { \
1613   FLUSH_BLOCK_ONLY(s, last); \
1614   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1615}
1616
1617/* Maximum stored block length in deflate format (not including header). */
1618#define MAX_STORED 65535
1619
1620/* Minimum of a and b. */
1621#define MIN(a, b) ((a) > (b) ? (b) : (a))
1622
1623/* ===========================================================================
1624 * Copy without compression as much as possible from the input stream, return
1625 * the current block state.
1626 *
1627 * In case deflateParams() is used to later switch to a non-zero compression
1628 * level, s->matches (otherwise unused when storing) keeps track of the number
1629 * of hash table slides to perform. If s->matches is 1, then one hash table
1630 * slide will be done when switching. If s->matches is 2, the maximum value
1631 * allowed here, then the hash table will be cleared, since two or more slides
1632 * is the same as a clear.
1633 *
1634 * deflate_stored() is written to minimize the number of times an input byte is
1635 * copied. It is most efficient with large input and output buffers, which
1636 * maximizes the opportunities to have a single copy from next_in to next_out.
1637 */
1638local block_state deflate_stored(deflate_state *s, int flush)
1639{
1640    /* Smallest worthy block size when not flushing or finishing. By default
1641     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1642     * large input and output buffers, the stored block size will be larger.
1643     */
1644    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1645
1646    /* Copy as many min_block or larger stored blocks directly to next_out as
1647     * possible. If flushing, copy the remaining available input to next_out as
1648     * stored blocks, if there is enough space.
1649     */
1650    unsigned len, left, have, last = 0;
1651    unsigned used = s->strm->avail_in;
1652    do {
1653        /* Set len to the maximum size block that we can copy directly with the
1654         * available input data and output space. Set left to how much of that
1655         * would be copied from what's left in the window.
1656         */
1657        len = MAX_STORED;       /* maximum deflate stored block length */
1658        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1659        if (s->strm->avail_out < have)          /* need room for header */
1660            break;
1661            /* maximum stored block length that will fit in avail_out: */
1662        have = s->strm->avail_out - have;
1663        left = s->strstart - s->block_start;    /* bytes left in window */
1664        if (len > (ulg)left + s->strm->avail_in)
1665            len = left + s->strm->avail_in;     /* limit len to the input */
1666        if (len > have)
1667            len = have;                         /* limit len to the output */
1668
1669        /* If the stored block would be less than min_block in length, or if
1670         * unable to copy all of the available input when flushing, then try
1671         * copying to the window and the pending buffer instead. Also don't
1672         * write an empty block when flushing -- deflate() does that.
1673         */
1674        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1675                                flush == Z_NO_FLUSH ||
1676                                len != left + s->strm->avail_in))
1677            break;
1678
1679        /* Make a dummy stored block in pending to get the header bytes,
1680         * including any pending bits. This also updates the debugging counts.
1681         */
1682        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1683        _tr_stored_block(s, (char *)0, 0L, last);
1684
1685        /* Replace the lengths in the dummy stored block with len. */
1686        s->pending_buf[s->pending - 4] = len;
1687        s->pending_buf[s->pending - 3] = len >> 8;
1688        s->pending_buf[s->pending - 2] = ~len;
1689        s->pending_buf[s->pending - 1] = ~len >> 8;
1690
1691        /* Write the stored block header bytes. */
1692        flush_pending(s->strm);
1693
1694#ifdef ZLIB_DEBUG
1695        /* Update debugging counts for the data about to be copied. */
1696        s->compressed_len += len << 3;
1697        s->bits_sent += len << 3;
1698#endif
1699
1700        /* Copy uncompressed bytes from the window to next_out. */
1701        if (left) {
1702            if (left > len)
1703                left = len;
1704            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1705            s->strm->next_out += left;
1706            s->strm->avail_out -= left;
1707            s->strm->total_out += left;
1708            s->block_start += left;
1709            len -= left;
1710        }
1711
1712        /* Copy uncompressed bytes directly from next_in to next_out, updating
1713         * the check value.
1714         */
1715        if (len) {
1716            read_buf(s->strm, s->strm->next_out, len);
1717            s->strm->next_out += len;
1718            s->strm->avail_out -= len;
1719            s->strm->total_out += len;
1720        }
1721    } while (last == 0);
1722
1723    /* Update the sliding window with the last s->w_size bytes of the copied
1724     * data, or append all of the copied data to the existing window if less
1725     * than s->w_size bytes were copied. Also update the number of bytes to
1726     * insert in the hash tables, in the event that deflateParams() switches to
1727     * a non-zero compression level.
1728     */
1729    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1730    if (used) {
1731        /* If any input was used, then no unused input remains in the window,
1732         * therefore s->block_start == s->strstart.
1733         */
1734        if (used >= s->w_size) {    /* supplant the previous history */
1735            s->matches = 2;         /* clear hash */
1736            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1737            s->strstart = s->w_size;
1738            s->insert = s->strstart;
1739        }
1740        else {
1741            if (s->window_size - s->strstart <= used) {
1742                /* Slide the window down. */
1743                s->strstart -= s->w_size;
1744                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1745                if (s->matches < 2)
1746                    s->matches++;   /* add a pending slide_hash() */
1747                if (s->insert > s->strstart)
1748                    s->insert = s->strstart;
1749            }
1750            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1751            s->strstart += used;
1752            s->insert += MIN(used, s->w_size - s->insert);
1753        }
1754        s->block_start = s->strstart;
1755    }
1756    if (s->high_water < s->strstart)
1757        s->high_water = s->strstart;
1758
1759    /* If the last block was written to next_out, then done. */
1760    if (last)
1761        return finish_done;
1762
1763    /* If flushing and all input has been consumed, then done. */
1764    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1765        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1766        return block_done;
1767
1768    /* Fill the window with any remaining input. */
1769    have = s->window_size - s->strstart;
1770    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1771        /* Slide the window down. */
1772        s->block_start -= s->w_size;
1773        s->strstart -= s->w_size;
1774        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1775        if (s->matches < 2)
1776            s->matches++;           /* add a pending slide_hash() */
1777        have += s->w_size;          /* more space now */
1778        if (s->insert > s->strstart)
1779            s->insert = s->strstart;
1780    }
1781    if (have > s->strm->avail_in)
1782        have = s->strm->avail_in;
1783    if (have) {
1784        read_buf(s->strm, s->window + s->strstart, have);
1785        s->strstart += have;
1786        s->insert += MIN(have, s->w_size - s->insert);
1787    }
1788    if (s->high_water < s->strstart)
1789        s->high_water = s->strstart;
1790
1791    /* There was not enough avail_out to write a complete worthy or flushed
1792     * stored block to next_out. Write a stored block to pending instead, if we
1793     * have enough input for a worthy block, or if flushing and there is enough
1794     * room for the remaining input as a stored block in the pending buffer.
1795     */
1796    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1797        /* maximum stored block length that will fit in pending: */
1798    have = MIN(s->pending_buf_size - have, MAX_STORED);
1799    min_block = MIN(have, s->w_size);
1800    left = s->strstart - s->block_start;
1801    if (left >= min_block ||
1802        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1803         s->strm->avail_in == 0 && left <= have)) {
1804        len = MIN(left, have);
1805        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1806               len == left ? 1 : 0;
1807        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1808        s->block_start += len;
1809        flush_pending(s->strm);
1810    }
1811
1812    /* We've done all we can with the available input and output. */
1813    return last ? finish_started : need_more;
1814}
1815
1816/* ===========================================================================
1817 * Compress as much as possible from the input stream, return the current
1818 * block state.
1819 * This function does not perform lazy evaluation of matches and inserts
1820 * new strings in the dictionary only for unmatched strings or for short
1821 * matches. It is used only for the fast compression options.
1822 */
1823local block_state deflate_fast(deflate_state *s, int flush)
1824{
1825    IPos hash_head;       /* head of the hash chain */
1826    int bflush;           /* set if current block must be flushed */
1827
1828    for (;;) {
1829        /* Make sure that we always have enough lookahead, except
1830         * at the end of the input file. We need MAX_MATCH bytes
1831         * for the next match, plus MIN_MATCH bytes to insert the
1832         * string following the next match.
1833         */
1834        if (s->lookahead < MIN_LOOKAHEAD) {
1835            fill_window(s);
1836            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1837                return need_more;
1838            }
1839            if (s->lookahead == 0) break; /* flush the current block */
1840        }
1841
1842        /* Insert the string window[strstart .. strstart + 2] in the
1843         * dictionary, and set hash_head to the head of the hash chain:
1844         */
1845        hash_head = NIL;
1846        if (s->lookahead >= MIN_MATCH) {
1847            INSERT_STRING(s, s->strstart, hash_head);
1848        }
1849
1850        /* Find the longest match, discarding those <= prev_length.
1851         * At this point we have always match_length < MIN_MATCH
1852         */
1853        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1854            /* To simplify the code, we prevent matches with the string
1855             * of window index 0 (in particular we have to avoid a match
1856             * of the string with itself at the start of the input file).
1857             */
1858            s->match_length = longest_match (s, hash_head);
1859            /* longest_match() sets match_start */
1860        }
1861        if (s->match_length >= MIN_MATCH) {
1862            check_match(s, s->strstart, s->match_start, s->match_length);
1863
1864            _tr_tally_dist(s, s->strstart - s->match_start,
1865                           s->match_length - MIN_MATCH, bflush);
1866
1867            s->lookahead -= s->match_length;
1868
1869            /* Insert new strings in the hash table only if the match length
1870             * is not too large. This saves time but degrades compression.
1871             */
1872#ifndef FASTEST
1873            if (s->match_length <= s->max_insert_length &&
1874                s->lookahead >= MIN_MATCH) {
1875                s->match_length--; /* string at strstart already in table */
1876                do {
1877                    s->strstart++;
1878                    INSERT_STRING(s, s->strstart, hash_head);
1879                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1880                     * always MIN_MATCH bytes ahead.
1881                     */
1882                } while (--s->match_length != 0);
1883                s->strstart++;
1884            } else
1885#endif
1886            {
1887                s->strstart += s->match_length;
1888                s->match_length = 0;
1889                s->ins_h = s->window[s->strstart];
1890                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1891#if MIN_MATCH != 3
1892                Call UPDATE_HASH() MIN_MATCH-3 more times
1893#endif
1894                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1895                 * matter since it will be recomputed at next deflate call.
1896                 */
1897            }
1898        } else {
1899            /* No match, output a literal byte */
1900            Tracevv((stderr,"%c", s->window[s->strstart]));
1901            _tr_tally_lit(s, s->window[s->strstart], bflush);
1902            s->lookahead--;
1903            s->strstart++;
1904        }
1905        if (bflush) FLUSH_BLOCK(s, 0);
1906    }
1907    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1908    if (flush == Z_FINISH) {
1909        FLUSH_BLOCK(s, 1);
1910        return finish_done;
1911    }
1912    if (s->sym_next)
1913        FLUSH_BLOCK(s, 0);
1914    return block_done;
1915}
1916
1917#ifndef FASTEST
1918/* ===========================================================================
1919 * Same as above, but achieves better compression. We use a lazy
1920 * evaluation for matches: a match is finally adopted only if there is
1921 * no better match at the next window position.
1922 */
1923local block_state deflate_slow(deflate_state *s, int flush)
1924{
1925    IPos hash_head;          /* head of hash chain */
1926    int bflush;              /* set if current block must be flushed */
1927
1928    /* Process the input block. */
1929    for (;;) {
1930        /* Make sure that we always have enough lookahead, except
1931         * at the end of the input file. We need MAX_MATCH bytes
1932         * for the next match, plus MIN_MATCH bytes to insert the
1933         * string following the next match.
1934         */
1935        if (s->lookahead < MIN_LOOKAHEAD) {
1936            fill_window(s);
1937            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1938                return need_more;
1939            }
1940            if (s->lookahead == 0) break; /* flush the current block */
1941        }
1942
1943        /* Insert the string window[strstart .. strstart + 2] in the
1944         * dictionary, and set hash_head to the head of the hash chain:
1945         */
1946        hash_head = NIL;
1947        if (s->lookahead >= MIN_MATCH) {
1948            INSERT_STRING(s, s->strstart, hash_head);
1949        }
1950
1951        /* Find the longest match, discarding those <= prev_length.
1952         */
1953        s->prev_length = s->match_length, s->prev_match = s->match_start;
1954        s->match_length = MIN_MATCH-1;
1955
1956        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1957            s->strstart - hash_head <= MAX_DIST(s)) {
1958            /* To simplify the code, we prevent matches with the string
1959             * of window index 0 (in particular we have to avoid a match
1960             * of the string with itself at the start of the input file).
1961             */
1962            s->match_length = longest_match (s, hash_head);
1963            /* longest_match() sets match_start */
1964
1965            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1966#if TOO_FAR <= 32767
1967                || (s->match_length == MIN_MATCH &&
1968                    s->strstart - s->match_start > TOO_FAR)
1969#endif
1970                )) {
1971
1972                /* If prev_match is also MIN_MATCH, match_start is garbage
1973                 * but we will ignore the current match anyway.
1974                 */
1975                s->match_length = MIN_MATCH-1;
1976            }
1977        }
1978        /* If there was a match at the previous step and the current
1979         * match is not better, output the previous match:
1980         */
1981        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1982            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1983            /* Do not insert strings in hash table beyond this. */
1984
1985            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1986
1987            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1988                           s->prev_length - MIN_MATCH, bflush);
1989
1990            /* Insert in hash table all strings up to the end of the match.
1991             * strstart - 1 and strstart are already inserted. If there is not
1992             * enough lookahead, the last two strings are not inserted in
1993             * the hash table.
1994             */
1995            s->lookahead -= s->prev_length - 1;
1996            s->prev_length -= 2;
1997            do {
1998                if (++s->strstart <= max_insert) {
1999                    INSERT_STRING(s, s->strstart, hash_head);
2000                }
2001            } while (--s->prev_length != 0);
2002            s->match_available = 0;
2003            s->match_length = MIN_MATCH-1;
2004            s->strstart++;
2005
2006            if (bflush) FLUSH_BLOCK(s, 0);
2007
2008        } else if (s->match_available) {
2009            /* If there was no match at the previous position, output a
2010             * single literal. If there was a match but the current match
2011             * is longer, truncate the previous match to a single literal.
2012             */
2013            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2014            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2015            if (bflush) {
2016                FLUSH_BLOCK_ONLY(s, 0);
2017            }
2018            s->strstart++;
2019            s->lookahead--;
2020            if (s->strm->avail_out == 0) return need_more;
2021        } else {
2022            /* There is no previous match to compare with, wait for
2023             * the next step to decide.
2024             */
2025            s->match_available = 1;
2026            s->strstart++;
2027            s->lookahead--;
2028        }
2029    }
2030    Assert (flush != Z_NO_FLUSH, "no flush?");
2031    if (s->match_available) {
2032        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2033        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2034        s->match_available = 0;
2035    }
2036    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2037    if (flush == Z_FINISH) {
2038        FLUSH_BLOCK(s, 1);
2039        return finish_done;
2040    }
2041    if (s->sym_next)
2042        FLUSH_BLOCK(s, 0);
2043    return block_done;
2044}
2045#endif /* FASTEST */
2046
2047/* ===========================================================================
2048 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2049 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2050 * deflate switches away from Z_RLE.)
2051 */
2052local block_state deflate_rle(deflate_state *s, int flush)
2053{
2054    int bflush;             /* set if current block must be flushed */
2055    uInt prev;              /* byte at distance one to match */
2056    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2057
2058    for (;;) {
2059        /* Make sure that we always have enough lookahead, except
2060         * at the end of the input file. We need MAX_MATCH bytes
2061         * for the longest run, plus one for the unrolled loop.
2062         */
2063        if (s->lookahead <= MAX_MATCH) {
2064            fill_window(s);
2065            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2066                return need_more;
2067            }
2068            if (s->lookahead == 0) break; /* flush the current block */
2069        }
2070
2071        /* See how many times the previous byte repeats */
2072        s->match_length = 0;
2073        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2074            scan = s->window + s->strstart - 1;
2075            prev = *scan;
2076            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2077                strend = s->window + s->strstart + MAX_MATCH;
2078                do {
2079                } while (prev == *++scan && prev == *++scan &&
2080                         prev == *++scan && prev == *++scan &&
2081                         prev == *++scan && prev == *++scan &&
2082                         prev == *++scan && prev == *++scan &&
2083                         scan < strend);
2084                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2085                if (s->match_length > s->lookahead)
2086                    s->match_length = s->lookahead;
2087            }
2088            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2089                   "wild scan");
2090        }
2091
2092        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2093        if (s->match_length >= MIN_MATCH) {
2094            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2095
2096            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2097
2098            s->lookahead -= s->match_length;
2099            s->strstart += s->match_length;
2100            s->match_length = 0;
2101        } else {
2102            /* No match, output a literal byte */
2103            Tracevv((stderr,"%c", s->window[s->strstart]));
2104            _tr_tally_lit(s, s->window[s->strstart], bflush);
2105            s->lookahead--;
2106            s->strstart++;
2107        }
2108        if (bflush) FLUSH_BLOCK(s, 0);
2109    }
2110    s->insert = 0;
2111    if (flush == Z_FINISH) {
2112        FLUSH_BLOCK(s, 1);
2113        return finish_done;
2114    }
2115    if (s->sym_next)
2116        FLUSH_BLOCK(s, 0);
2117    return block_done;
2118}
2119
2120/* ===========================================================================
2121 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2122 * (It will be regenerated if this run of deflate switches away from Huffman.)
2123 */
2124local block_state deflate_huff(deflate_state *s, int flush)
2125{
2126    int bflush;             /* set if current block must be flushed */
2127
2128    for (;;) {
2129        /* Make sure that we have a literal to write. */
2130        if (s->lookahead == 0) {
2131            fill_window(s);
2132            if (s->lookahead == 0) {
2133                if (flush == Z_NO_FLUSH)
2134                    return need_more;
2135                break;      /* flush the current block */
2136            }
2137        }
2138
2139        /* Output a literal byte */
2140        s->match_length = 0;
2141        Tracevv((stderr,"%c", s->window[s->strstart]));
2142        _tr_tally_lit(s, s->window[s->strstart], bflush);
2143        s->lookahead--;
2144        s->strstart++;
2145        if (bflush) FLUSH_BLOCK(s, 0);
2146    }
2147    s->insert = 0;
2148    if (flush == Z_FINISH) {
2149        FLUSH_BLOCK(s, 1);
2150        return finish_done;
2151    }
2152    if (s->sym_next)
2153        FLUSH_BLOCK(s, 0);
2154    return block_done;
2155}
2156