xref: /third_party/zlib/adler32.c (revision 275793ea)
1/* adler32.c -- compute the Adler-32 checksum of a data stream
2 * Copyright (C) 1995-2011, 2016 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/* @(#) $Id$ */
7
8#include "zutil.h"
9
10#define BASE 65521U     /* largest prime smaller than 65536 */
11#define NMAX 5552
12/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13
14#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18#define DO16(buf)   DO8(buf,0); DO8(buf,8);
19
20/* use NO_DIVIDE if your processor does not do division in hardware --
21   try it both ways to see which is faster */
22#ifdef NO_DIVIDE
23/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24   (thank you to John Reiser for pointing this out) */
25#  define CHOP(a) \
26    do { \
27        unsigned long tmp = a >> 16; \
28        a &= 0xffffUL; \
29        a += (tmp << 4) - tmp; \
30    } while (0)
31#  define MOD28(a) \
32    do { \
33        CHOP(a); \
34        if (a >= BASE) a -= BASE; \
35    } while (0)
36#  define MOD(a) \
37    do { \
38        CHOP(a); \
39        MOD28(a); \
40    } while (0)
41#  define MOD63(a) \
42    do { /* this assumes a is not negative */ \
43        z_off64_t tmp = a >> 32; \
44        a &= 0xffffffffL; \
45        a += (tmp << 8) - (tmp << 5) + tmp; \
46        tmp = a >> 16; \
47        a &= 0xffffL; \
48        a += (tmp << 4) - tmp; \
49        tmp = a >> 16; \
50        a &= 0xffffL; \
51        a += (tmp << 4) - tmp; \
52        if (a >= BASE) a -= BASE; \
53    } while (0)
54#else
55#  define MOD(a) a %= BASE
56#  define MOD28(a) a %= BASE
57#  define MOD63(a) a %= BASE
58#endif
59
60/* ========================================================================= */
61uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len)
62{
63    unsigned long sum2;
64    unsigned n;
65
66    /* split Adler-32 into component sums */
67    sum2 = (adler >> 16) & 0xffff;
68    adler &= 0xffff;
69
70    /* in case user likes doing a byte at a time, keep it fast */
71    if (len == 1) {
72        adler += buf[0];
73        if (adler >= BASE)
74            adler -= BASE;
75        sum2 += adler;
76        if (sum2 >= BASE)
77            sum2 -= BASE;
78        return adler | (sum2 << 16);
79    }
80
81    /* initial Adler-32 value (deferred check for len == 1 speed) */
82    if (buf == Z_NULL)
83        return 1L;
84
85    /* in case short lengths are provided, keep it somewhat fast */
86    if (len < 16) {
87        while (len--) {
88            adler += *buf++;
89            sum2 += adler;
90        }
91        if (adler >= BASE)
92            adler -= BASE;
93        MOD28(sum2);            /* only added so many BASE's */
94        return adler | (sum2 << 16);
95    }
96
97    /* do length NMAX blocks -- requires just one modulo operation */
98    while (len >= NMAX) {
99        len -= NMAX;
100        n = NMAX / 16;          /* NMAX is divisible by 16 */
101        do {
102            DO16(buf);          /* 16 sums unrolled */
103            buf += 16;
104        } while (--n);
105        MOD(adler);
106        MOD(sum2);
107    }
108
109    /* do remaining bytes (less than NMAX, still just one modulo) */
110    if (len) {                  /* avoid modulos if none remaining */
111        while (len >= 16) {
112            len -= 16;
113            DO16(buf);
114            buf += 16;
115        }
116        while (len--) {
117            adler += *buf++;
118            sum2 += adler;
119        }
120        MOD(adler);
121        MOD(sum2);
122    }
123
124    /* return recombined sums */
125    return adler | (sum2 << 16);
126}
127
128/* ========================================================================= */
129uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
130{
131    return adler32_z(adler, buf, len);
132}
133
134/* ========================================================================= */
135local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2)
136{
137    unsigned long sum1;
138    unsigned long sum2;
139    unsigned rem;
140
141    /* for negative len, return invalid adler32 as a clue for debugging */
142    if (len2 < 0)
143        return 0xffffffffUL;
144
145    /* the derivation of this formula is left as an exercise for the reader */
146    MOD63(len2);                /* assumes len2 >= 0 */
147    rem = (unsigned)len2;
148    sum1 = adler1 & 0xffff;
149    sum2 = rem * sum1;
150    MOD(sum2);
151    sum1 += (adler2 & 0xffff) + BASE - 1;
152    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
153    if (sum1 >= BASE) sum1 -= BASE;
154    if (sum1 >= BASE) sum1 -= BASE;
155    if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
156    if (sum2 >= BASE) sum2 -= BASE;
157    return sum1 | (sum2 << 16);
158}
159
160/* ========================================================================= */
161uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2)
162{
163    return adler32_combine_(adler1, adler2, len2);
164}
165
166uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2)
167{
168    return adler32_combine_(adler1, adler2, len2);
169}
170