1e5b75505Sopenharmony_ci/*
2e5b75505Sopenharmony_ci * TLS PRF (SHA1 + MD5)
3e5b75505Sopenharmony_ci * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4e5b75505Sopenharmony_ci *
5e5b75505Sopenharmony_ci * This software may be distributed under the terms of the BSD license.
6e5b75505Sopenharmony_ci * See README for more details.
7e5b75505Sopenharmony_ci */
8e5b75505Sopenharmony_ci
9e5b75505Sopenharmony_ci#include "includes.h"
10e5b75505Sopenharmony_ci
11e5b75505Sopenharmony_ci#include "common.h"
12e5b75505Sopenharmony_ci#include "sha1.h"
13e5b75505Sopenharmony_ci#include "md5.h"
14e5b75505Sopenharmony_ci
15e5b75505Sopenharmony_ci
16e5b75505Sopenharmony_ci/**
17e5b75505Sopenharmony_ci * tls_prf_sha1_md5 - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
18e5b75505Sopenharmony_ci * @secret: Key for PRF
19e5b75505Sopenharmony_ci * @secret_len: Length of the key in bytes
20e5b75505Sopenharmony_ci * @label: A unique label for each purpose of the PRF
21e5b75505Sopenharmony_ci * @seed: Seed value to bind into the key
22e5b75505Sopenharmony_ci * @seed_len: Length of the seed
23e5b75505Sopenharmony_ci * @out: Buffer for the generated pseudo-random key
24e5b75505Sopenharmony_ci * @outlen: Number of bytes of key to generate
25e5b75505Sopenharmony_ci * Returns: 0 on success, -1 on failure.
26e5b75505Sopenharmony_ci *
27e5b75505Sopenharmony_ci * This function is used to derive new, cryptographically separate keys from a
28e5b75505Sopenharmony_ci * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
29e5b75505Sopenharmony_ci */
30e5b75505Sopenharmony_ciint tls_prf_sha1_md5(const u8 *secret, size_t secret_len, const char *label,
31e5b75505Sopenharmony_ci		     const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
32e5b75505Sopenharmony_ci{
33e5b75505Sopenharmony_ci	size_t L_S1, L_S2, i;
34e5b75505Sopenharmony_ci	const u8 *S1, *S2;
35e5b75505Sopenharmony_ci	u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
36e5b75505Sopenharmony_ci	u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
37e5b75505Sopenharmony_ci	int MD5_pos, SHA1_pos;
38e5b75505Sopenharmony_ci	const u8 *MD5_addr[3];
39e5b75505Sopenharmony_ci	size_t MD5_len[3];
40e5b75505Sopenharmony_ci	const unsigned char *SHA1_addr[3];
41e5b75505Sopenharmony_ci	size_t SHA1_len[3];
42e5b75505Sopenharmony_ci
43e5b75505Sopenharmony_ci	MD5_addr[0] = A_MD5;
44e5b75505Sopenharmony_ci	MD5_len[0] = MD5_MAC_LEN;
45e5b75505Sopenharmony_ci	MD5_addr[1] = (unsigned char *) label;
46e5b75505Sopenharmony_ci	MD5_len[1] = os_strlen(label);
47e5b75505Sopenharmony_ci	MD5_addr[2] = seed;
48e5b75505Sopenharmony_ci	MD5_len[2] = seed_len;
49e5b75505Sopenharmony_ci
50e5b75505Sopenharmony_ci	SHA1_addr[0] = A_SHA1;
51e5b75505Sopenharmony_ci	SHA1_len[0] = SHA1_MAC_LEN;
52e5b75505Sopenharmony_ci	SHA1_addr[1] = (unsigned char *) label;
53e5b75505Sopenharmony_ci	SHA1_len[1] = os_strlen(label);
54e5b75505Sopenharmony_ci	SHA1_addr[2] = seed;
55e5b75505Sopenharmony_ci	SHA1_len[2] = seed_len;
56e5b75505Sopenharmony_ci
57e5b75505Sopenharmony_ci	/* RFC 2246, Chapter 5
58e5b75505Sopenharmony_ci	 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
59e5b75505Sopenharmony_ci	 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
60e5b75505Sopenharmony_ci	 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
61e5b75505Sopenharmony_ci	 */
62e5b75505Sopenharmony_ci
63e5b75505Sopenharmony_ci	L_S1 = L_S2 = (secret_len + 1) / 2;
64e5b75505Sopenharmony_ci	S1 = secret;
65e5b75505Sopenharmony_ci	S2 = secret + L_S1;
66e5b75505Sopenharmony_ci	if (secret_len & 1) {
67e5b75505Sopenharmony_ci		/* The last byte of S1 will be shared with S2 */
68e5b75505Sopenharmony_ci		S2--;
69e5b75505Sopenharmony_ci	}
70e5b75505Sopenharmony_ci
71e5b75505Sopenharmony_ci	hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
72e5b75505Sopenharmony_ci	hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
73e5b75505Sopenharmony_ci
74e5b75505Sopenharmony_ci	MD5_pos = MD5_MAC_LEN;
75e5b75505Sopenharmony_ci	SHA1_pos = SHA1_MAC_LEN;
76e5b75505Sopenharmony_ci	for (i = 0; i < outlen; i++) {
77e5b75505Sopenharmony_ci		if (MD5_pos == MD5_MAC_LEN) {
78e5b75505Sopenharmony_ci			hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
79e5b75505Sopenharmony_ci			MD5_pos = 0;
80e5b75505Sopenharmony_ci			hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
81e5b75505Sopenharmony_ci		}
82e5b75505Sopenharmony_ci		if (SHA1_pos == SHA1_MAC_LEN) {
83e5b75505Sopenharmony_ci			hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
84e5b75505Sopenharmony_ci					 P_SHA1);
85e5b75505Sopenharmony_ci			SHA1_pos = 0;
86e5b75505Sopenharmony_ci			hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
87e5b75505Sopenharmony_ci		}
88e5b75505Sopenharmony_ci
89e5b75505Sopenharmony_ci		out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
90e5b75505Sopenharmony_ci
91e5b75505Sopenharmony_ci		MD5_pos++;
92e5b75505Sopenharmony_ci		SHA1_pos++;
93e5b75505Sopenharmony_ci	}
94e5b75505Sopenharmony_ci
95e5b75505Sopenharmony_ci	forced_memzero(A_MD5, MD5_MAC_LEN);
96e5b75505Sopenharmony_ci	forced_memzero(P_MD5, MD5_MAC_LEN);
97e5b75505Sopenharmony_ci	forced_memzero(A_SHA1, SHA1_MAC_LEN);
98e5b75505Sopenharmony_ci	forced_memzero(P_SHA1, SHA1_MAC_LEN);
99e5b75505Sopenharmony_ci
100e5b75505Sopenharmony_ci	return 0;
101e5b75505Sopenharmony_ci}
102