1e5b75505Sopenharmony_ci/* 2e5b75505Sopenharmony_ci * TLS PRF (SHA1 + MD5) 3e5b75505Sopenharmony_ci * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi> 4e5b75505Sopenharmony_ci * 5e5b75505Sopenharmony_ci * This software may be distributed under the terms of the BSD license. 6e5b75505Sopenharmony_ci * See README for more details. 7e5b75505Sopenharmony_ci */ 8e5b75505Sopenharmony_ci 9e5b75505Sopenharmony_ci#include "includes.h" 10e5b75505Sopenharmony_ci 11e5b75505Sopenharmony_ci#include "common.h" 12e5b75505Sopenharmony_ci#include "sha1.h" 13e5b75505Sopenharmony_ci#include "md5.h" 14e5b75505Sopenharmony_ci 15e5b75505Sopenharmony_ci 16e5b75505Sopenharmony_ci/** 17e5b75505Sopenharmony_ci * tls_prf_sha1_md5 - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246) 18e5b75505Sopenharmony_ci * @secret: Key for PRF 19e5b75505Sopenharmony_ci * @secret_len: Length of the key in bytes 20e5b75505Sopenharmony_ci * @label: A unique label for each purpose of the PRF 21e5b75505Sopenharmony_ci * @seed: Seed value to bind into the key 22e5b75505Sopenharmony_ci * @seed_len: Length of the seed 23e5b75505Sopenharmony_ci * @out: Buffer for the generated pseudo-random key 24e5b75505Sopenharmony_ci * @outlen: Number of bytes of key to generate 25e5b75505Sopenharmony_ci * Returns: 0 on success, -1 on failure. 26e5b75505Sopenharmony_ci * 27e5b75505Sopenharmony_ci * This function is used to derive new, cryptographically separate keys from a 28e5b75505Sopenharmony_ci * given key in TLS. This PRF is defined in RFC 2246, Chapter 5. 29e5b75505Sopenharmony_ci */ 30e5b75505Sopenharmony_ciint tls_prf_sha1_md5(const u8 *secret, size_t secret_len, const char *label, 31e5b75505Sopenharmony_ci const u8 *seed, size_t seed_len, u8 *out, size_t outlen) 32e5b75505Sopenharmony_ci{ 33e5b75505Sopenharmony_ci size_t L_S1, L_S2, i; 34e5b75505Sopenharmony_ci const u8 *S1, *S2; 35e5b75505Sopenharmony_ci u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN]; 36e5b75505Sopenharmony_ci u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN]; 37e5b75505Sopenharmony_ci int MD5_pos, SHA1_pos; 38e5b75505Sopenharmony_ci const u8 *MD5_addr[3]; 39e5b75505Sopenharmony_ci size_t MD5_len[3]; 40e5b75505Sopenharmony_ci const unsigned char *SHA1_addr[3]; 41e5b75505Sopenharmony_ci size_t SHA1_len[3]; 42e5b75505Sopenharmony_ci 43e5b75505Sopenharmony_ci MD5_addr[0] = A_MD5; 44e5b75505Sopenharmony_ci MD5_len[0] = MD5_MAC_LEN; 45e5b75505Sopenharmony_ci MD5_addr[1] = (unsigned char *) label; 46e5b75505Sopenharmony_ci MD5_len[1] = os_strlen(label); 47e5b75505Sopenharmony_ci MD5_addr[2] = seed; 48e5b75505Sopenharmony_ci MD5_len[2] = seed_len; 49e5b75505Sopenharmony_ci 50e5b75505Sopenharmony_ci SHA1_addr[0] = A_SHA1; 51e5b75505Sopenharmony_ci SHA1_len[0] = SHA1_MAC_LEN; 52e5b75505Sopenharmony_ci SHA1_addr[1] = (unsigned char *) label; 53e5b75505Sopenharmony_ci SHA1_len[1] = os_strlen(label); 54e5b75505Sopenharmony_ci SHA1_addr[2] = seed; 55e5b75505Sopenharmony_ci SHA1_len[2] = seed_len; 56e5b75505Sopenharmony_ci 57e5b75505Sopenharmony_ci /* RFC 2246, Chapter 5 58e5b75505Sopenharmony_ci * A(0) = seed, A(i) = HMAC(secret, A(i-1)) 59e5b75505Sopenharmony_ci * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + .. 60e5b75505Sopenharmony_ci * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed) 61e5b75505Sopenharmony_ci */ 62e5b75505Sopenharmony_ci 63e5b75505Sopenharmony_ci L_S1 = L_S2 = (secret_len + 1) / 2; 64e5b75505Sopenharmony_ci S1 = secret; 65e5b75505Sopenharmony_ci S2 = secret + L_S1; 66e5b75505Sopenharmony_ci if (secret_len & 1) { 67e5b75505Sopenharmony_ci /* The last byte of S1 will be shared with S2 */ 68e5b75505Sopenharmony_ci S2--; 69e5b75505Sopenharmony_ci } 70e5b75505Sopenharmony_ci 71e5b75505Sopenharmony_ci hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5); 72e5b75505Sopenharmony_ci hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1); 73e5b75505Sopenharmony_ci 74e5b75505Sopenharmony_ci MD5_pos = MD5_MAC_LEN; 75e5b75505Sopenharmony_ci SHA1_pos = SHA1_MAC_LEN; 76e5b75505Sopenharmony_ci for (i = 0; i < outlen; i++) { 77e5b75505Sopenharmony_ci if (MD5_pos == MD5_MAC_LEN) { 78e5b75505Sopenharmony_ci hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5); 79e5b75505Sopenharmony_ci MD5_pos = 0; 80e5b75505Sopenharmony_ci hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5); 81e5b75505Sopenharmony_ci } 82e5b75505Sopenharmony_ci if (SHA1_pos == SHA1_MAC_LEN) { 83e5b75505Sopenharmony_ci hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len, 84e5b75505Sopenharmony_ci P_SHA1); 85e5b75505Sopenharmony_ci SHA1_pos = 0; 86e5b75505Sopenharmony_ci hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1); 87e5b75505Sopenharmony_ci } 88e5b75505Sopenharmony_ci 89e5b75505Sopenharmony_ci out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos]; 90e5b75505Sopenharmony_ci 91e5b75505Sopenharmony_ci MD5_pos++; 92e5b75505Sopenharmony_ci SHA1_pos++; 93e5b75505Sopenharmony_ci } 94e5b75505Sopenharmony_ci 95e5b75505Sopenharmony_ci forced_memzero(A_MD5, MD5_MAC_LEN); 96e5b75505Sopenharmony_ci forced_memzero(P_MD5, MD5_MAC_LEN); 97e5b75505Sopenharmony_ci forced_memzero(A_SHA1, SHA1_MAC_LEN); 98e5b75505Sopenharmony_ci forced_memzero(P_SHA1, SHA1_MAC_LEN); 99e5b75505Sopenharmony_ci 100e5b75505Sopenharmony_ci return 0; 101e5b75505Sopenharmony_ci} 102