1/*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2016 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief ASTC Utilities.
22 *//*--------------------------------------------------------------------*/
23
24#include "tcuAstcUtil.hpp"
25#include "deFloat16.h"
26#include "deRandom.hpp"
27#include "deMeta.hpp"
28
29#include <algorithm>
30
31namespace tcu
32{
33namespace astc
34{
35
36using std::vector;
37
38namespace
39{
40
41// Common utilities
42
43enum
44{
45	MAX_BLOCK_WIDTH		= 12,
46	MAX_BLOCK_HEIGHT	= 12
47};
48
49inline deUint32 getBit (deUint32 src, int ndx)
50{
51	DE_ASSERT(de::inBounds(ndx, 0, 32));
52	return (src >> ndx) & 1;
53}
54
55inline deUint32 getBits (deUint32 src, int low, int high)
56{
57	const int numBits = (high-low) + 1;
58
59	DE_ASSERT(de::inRange(numBits, 1, 32));
60
61	if (numBits < 32)
62		return (deUint32)((src >> low) & ((1u<<numBits)-1));
63	else
64		return (deUint32)((src >> low) & 0xFFFFFFFFu);
65}
66
67inline bool isBitSet (deUint32 src, int ndx)
68{
69	return getBit(src, ndx) != 0;
70}
71
72inline deUint32 reverseBits (deUint32 src, int numBits)
73{
74	DE_ASSERT(de::inRange(numBits, 0, 32));
75	deUint32 result = 0;
76	for (int i = 0; i < numBits; i++)
77		result |= ((src >> i) & 1) << (numBits-1-i);
78	return result;
79}
80
81inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82{
83	DE_ASSERT(numSrcBits <= numDstBits);
84	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85	deUint32 dst = 0;
86	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87		dst |= shift >= 0 ? src << shift : src >> -shift;
88	return dst;
89}
90
91inline deInt32 signExtend (deInt32 src, int numSrcBits)
92{
93	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96}
97
98inline bool isFloat16InfOrNan (deFloat16 v)
99{
100	return getBits(v, 10, 14) == 31;
101}
102
103enum ISEMode
104{
105	ISEMODE_TRIT = 0,
106	ISEMODE_QUINT,
107	ISEMODE_PLAIN_BIT,
108
109	ISEMODE_LAST
110};
111
112struct ISEParams
113{
114	ISEMode		mode;
115	int			numBits;
116
117	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118};
119
120inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121{
122	switch (iseParams.mode)
123	{
124		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
127		default:
128			DE_ASSERT(false);
129			return -1;
130	}
131}
132
133ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134{
135	int curBitsForTritMode		= 6;
136	int curBitsForQuintMode		= 5;
137	int curBitsForPlainBitMode	= 8;
138
139	while (true)
140	{
141		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142
143		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
144		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
145		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
146		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
147
148		if (maxRange == tritRange)
149		{
150			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153			curBitsForTritMode--;
154		}
155		else if (maxRange == quintRange)
156		{
157			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160			curBitsForQuintMode--;
161		}
162		else
163		{
164			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165			DE_ASSERT(maxRange == plainBitRange);
166			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168			curBitsForPlainBitMode--;
169		}
170	}
171}
172
173inline int computeNumColorEndpointValues (deUint32 endpointMode)
174{
175	DE_ASSERT(endpointMode < 16);
176	return (endpointMode/4 + 1) * 2;
177}
178
179// Decompression utilities
180
181enum DecompressResult
182{
183	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
184	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
185
186	DECOMPRESS_RESULT_LAST
187};
188
189// A helper for getting bits from a 128-bit block.
190class Block128
191{
192private:
193	typedef deUint64 Word;
194
195	enum
196	{
197		WORD_BYTES	= sizeof(Word),
198		WORD_BITS	= 8*WORD_BYTES,
199		NUM_WORDS	= 128 / WORD_BITS
200	};
201
202	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203
204public:
205	Block128 (const deUint8* src)
206	{
207		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208		{
209			m_words[wordNdx] = 0;
210			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212		}
213	}
214
215	deUint32 getBit (int ndx) const
216	{
217		DE_ASSERT(de::inBounds(ndx, 0, 128));
218		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219	}
220
221	deUint32 getBits (int low, int high) const
222	{
223		DE_ASSERT(de::inBounds(low, 0, 128));
224		DE_ASSERT(de::inBounds(high, 0, 128));
225		DE_ASSERT(de::inRange(high-low+1, 0, 32));
226
227		if (high-low+1 == 0)
228			return 0;
229
230		const int word0Ndx = low / WORD_BITS;
231		const int word1Ndx = high / WORD_BITS;
232
233		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234
235		if (word0Ndx == word1Ndx)
236			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237		else
238		{
239			DE_ASSERT(word1Ndx == word0Ndx + 1);
240
241			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243		}
244	}
245
246	bool isBitSet (int ndx) const
247	{
248		DE_ASSERT(de::inBounds(ndx, 0, 128));
249		return getBit(ndx) != 0;
250	}
251
252private:
253	Word m_words[NUM_WORDS];
254};
255
256// A helper for sequential access into a Block128.
257class BitAccessStream
258{
259public:
260	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261		: m_src				(src)
262		, m_startNdxInSrc	(startNdxInSrc)
263		, m_length			(length)
264		, m_forward			(forward)
265		, m_ndx				(0)
266	{
267	}
268
269	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
270	deUint32 getNext (int num)
271	{
272		if (num == 0 || m_ndx >= m_length)
273			return 0;
274
275		const int end				= m_ndx + num;
276		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
277		const int low				= m_ndx;
278		const int high				= m_ndx + numBitsFromSrc - 1;
279
280		m_ndx += num;
281
282		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
283						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284	}
285
286private:
287	const Block128&		m_src;
288	const int			m_startNdxInSrc;
289	const int			m_length;
290	const bool			m_forward;
291
292	int					m_ndx;
293};
294
295struct ISEDecodedResult
296{
297	deUint32 m;
298	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299	deUint32 v;
300};
301
302// Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303struct ASTCBlockMode
304{
305	bool		isError;
306	// \note Following fields only relevant if !isError.
307	bool		isVoidExtent;
308	// \note Following fields only relevant if !isVoidExtent.
309	bool		isDualPlane;
310	int			weightGridWidth;
311	int			weightGridHeight;
312	ISEParams	weightISEParams;
313
314	ASTCBlockMode (void)
315		: isError			(true)
316		, isVoidExtent		(true)
317		, isDualPlane		(true)
318		, weightGridWidth	(-1)
319		, weightGridHeight	(-1)
320		, weightISEParams	(ISEMODE_LAST, -1)
321	{
322	}
323};
324
325inline int computeNumWeights (const ASTCBlockMode& mode)
326{
327	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328}
329
330struct ColorEndpointPair
331{
332	UVec4 e0;
333	UVec4 e1;
334};
335
336struct TexelWeightPair
337{
338	deUint32 w[2];
339};
340
341ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342{
343	ASTCBlockMode blockMode;
344	blockMode.isError = true; // \note Set to false later, if not error.
345
346	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347
348	if (!blockMode.isVoidExtent)
349	{
350		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351			return blockMode; // Invalid ("reserved").
352
353		deUint32 r = (deUint32)-1; // \note Set in the following branches.
354
355		if (getBits(blockModeData, 0, 1) == 0)
356		{
357			const deUint32 r0	= getBit(blockModeData, 4);
358			const deUint32 r1	= getBit(blockModeData, 2);
359			const deUint32 r2	= getBit(blockModeData, 3);
360			const deUint32 i78	= getBits(blockModeData, 7, 8);
361
362			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363
364			if (i78 == 3)
365			{
366				const bool i5 = isBitSet(blockModeData, 5);
367				blockMode.weightGridWidth	= i5 ? 10 : 6;
368				blockMode.weightGridHeight	= i5 ? 6  : 10;
369			}
370			else
371			{
372				const deUint32 a = getBits(blockModeData, 5, 6);
373				switch (i78)
374				{
375					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
376					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
377					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
378					default: DE_ASSERT(false);
379				}
380			}
381		}
382		else
383		{
384			const deUint32 r0	= getBit(blockModeData, 4);
385			const deUint32 r1	= getBit(blockModeData, 0);
386			const deUint32 r2	= getBit(blockModeData, 1);
387			const deUint32 i23	= getBits(blockModeData, 2, 3);
388			const deUint32 a	= getBits(blockModeData, 5, 6);
389
390			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391
392			if (i23 == 3)
393			{
394				const deUint32	b	= getBit(blockModeData, 7);
395				const bool		i8	= isBitSet(blockModeData, 8);
396				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
397				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
398			}
399			else
400			{
401				const deUint32 b = getBits(blockModeData, 7, 8);
402
403				switch (i23)
404				{
405					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
406					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
407					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
408					default: DE_ASSERT(false);
409				}
410			}
411		}
412
413		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
415		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
416
417		{
418			ISEMode&	m	= blockMode.weightISEParams.mode;
419			int&		b	= blockMode.weightISEParams.numBits;
420			m = ISEMODE_PLAIN_BIT;
421			b = 0;
422
423			if (h)
424			{
425				switch (r)
426				{
427					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
428					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
429					case 4:												b = 4;	break;
430					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
431					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
432					case 7:												b = 5;	break;
433					default:	DE_ASSERT(false);
434				}
435			}
436			else
437			{
438				switch (r)
439				{
440					case 2:												b = 1;	break;
441					case 3:		m = ISEMODE_TRIT;								break;
442					case 4:												b = 2;	break;
443					case 5:							m = ISEMODE_QUINT;			break;
444					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
445					case 7:												b = 3;	break;
446					default:	DE_ASSERT(false);
447				}
448			}
449		}
450	}
451
452	blockMode.isError = false;
453	return blockMode;
454}
455
456inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457{
458	if (isSRGB)
459	{
460		deUint8* const dstU = (deUint8*)dst;
461
462		for (int i = 0; i < blockWidth*blockHeight; i++)
463		{
464			dstU[4*i + 0] = 0xff;
465			dstU[4*i + 1] = 0;
466			dstU[4*i + 2] = 0xff;
467			dstU[4*i + 3] = 0xff;
468		}
469	}
470	else
471	{
472		float* const dstF = (float*)dst;
473
474		for (int i = 0; i < blockWidth*blockHeight; i++)
475		{
476			dstF[4*i + 0] = 1.0f;
477			dstF[4*i + 1] = 0.0f;
478			dstF[4*i + 2] = 1.0f;
479			dstF[4*i + 3] = 1.0f;
480		}
481	}
482}
483
484DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485{
486	const deUint32	minSExtent			= blockData.getBits(12, 24);
487	const deUint32	maxSExtent			= blockData.getBits(25, 37);
488	const deUint32	minTExtent			= blockData.getBits(38, 50);
489	const deUint32	maxTExtent			= blockData.getBits(51, 63);
490	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491	const bool		isHDRBlock			= blockData.isBitSet(9);
492
493	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494	{
495		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496		return DECOMPRESS_RESULT_ERROR;
497	}
498
499	const deUint32 rgba[4] =
500	{
501		blockData.getBits(64,  79),
502		blockData.getBits(80,  95),
503		blockData.getBits(96,  111),
504		blockData.getBits(112, 127)
505	};
506
507	if (isSRGB)
508	{
509		deUint8* const dstU = (deUint8*)dst;
510		for (int i = 0; i < blockWidth*blockHeight; i++)
511		for (int c = 0; c < 4; c++)
512			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513	}
514	else
515	{
516		float* const dstF = (float*)dst;
517
518		if (isHDRBlock)
519		{
520			for (int c = 0; c < 4; c++)
521			{
522				if (isFloat16InfOrNan((deFloat16)rgba[c]))
523					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524			}
525
526			for (int i = 0; i < blockWidth*blockHeight; i++)
527			for (int c = 0; c < 4; c++)
528				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529		}
530		else
531		{
532			for (int i = 0; i < blockWidth*blockHeight; i++)
533			for (int c = 0; c < 4; c++)
534				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535		}
536	}
537
538	return DECOMPRESS_RESULT_VALID_BLOCK;
539}
540
541void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542{
543	if (numPartitions == 1)
544		endpointModesDst[0] = blockData.getBits(13, 16);
545	else
546	{
547		const deUint32 highLevelSelector = blockData.getBits(23, 24);
548
549		if (highLevelSelector == 0)
550		{
551			const deUint32 mode = blockData.getBits(25, 28);
552			for (int i = 0; i < numPartitions; i++)
553				endpointModesDst[i] = mode;
554		}
555		else
556		{
557			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558			{
559				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
561				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
562				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564
565				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566			}
567		}
568	}
569}
570
571int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572{
573	int result = 0;
574	for (int i = 0; i < numPartitions; i++)
575		result += computeNumColorEndpointValues(endpointModes[i]);
576	return result;
577}
578
579void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580{
581	DE_ASSERT(de::inRange(numValues, 1, 5));
582
583	deUint32 m[5];
584
585	m[0]			= data.getNext(numBits);
586	deUint32 T01	= data.getNext(2);
587	m[1]			= data.getNext(numBits);
588	deUint32 T23	= data.getNext(2);
589	m[2]			= data.getNext(numBits);
590	deUint32 T4		= data.getNext(1);
591	m[3]			= data.getNext(numBits);
592	deUint32 T56	= data.getNext(2);
593	m[4]			= data.getNext(numBits);
594	deUint32 T7		= data.getNext(1);
595
596	switch (numValues)
597	{
598		case 1:
599			T23	= 0;
600		// Fallthrough
601		case 2:
602			T4	= 0;
603		// Fallthrough
604		case 3:
605			T56	= 0;
606		// Fallthrough
607		case 4:
608			T7	= 0;
609		// Fallthrough
610		case 5:
611			break;
612		default:
613			DE_ASSERT(false);
614	}
615
616	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
617
618	static const deUint32 tritsFromT[256][5] =
619	{
620		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
621		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
622		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
623		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
624		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
625		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
626		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
627		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
628		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
629		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
630		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
631		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
632		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
633		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
634		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
635		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
636	};
637
638	const deUint32 (& trits)[5] = tritsFromT[T];
639
640	for (int i = 0; i < numValues; i++)
641	{
642		dst[i].m	= m[i];
643		dst[i].tq	= trits[i];
644		dst[i].v	= (trits[i] << numBits) + m[i];
645	}
646}
647
648void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
649{
650	DE_ASSERT(de::inRange(numValues, 1, 3));
651
652	deUint32 m[3];
653
654	m[0]			= data.getNext(numBits);
655	deUint32 Q012	= data.getNext(3);
656	m[1]			= data.getNext(numBits);
657	deUint32 Q34	= data.getNext(2);
658	m[2]			= data.getNext(numBits);
659	deUint32 Q56	= data.getNext(2);
660
661	switch (numValues)
662	{
663		case 1:
664			Q34	= 0;
665		// Fallthrough
666		case 2:
667			Q56	= 0;
668		// Fallthrough
669		case 3:
670			break;
671		default:
672			DE_ASSERT(false);
673	}
674
675	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
676
677	static const deUint32 quintsFromQ[256][3] =
678	{
679		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
680		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
681		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
682		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
683		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
684		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
685		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
686		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
687	};
688
689	const deUint32 (& quints)[3] = quintsFromQ[Q];
690
691	for (int i = 0; i < numValues; i++)
692	{
693		dst[i].m	= m[i];
694		dst[i].tq	= quints[i];
695		dst[i].v	= (quints[i] << numBits) + m[i];
696	}
697}
698
699inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
700{
701	dst[0].m = data.getNext(numBits);
702	dst[0].v = dst[0].m;
703}
704
705void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
706{
707	if (params.mode == ISEMODE_TRIT)
708	{
709		const int numBlocks = deDivRoundUp32(numValues, 5);
710		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
711		{
712			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
713			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
714		}
715	}
716	else if (params.mode == ISEMODE_QUINT)
717	{
718		const int numBlocks = deDivRoundUp32(numValues, 3);
719		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
720		{
721			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
722			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
723		}
724	}
725	else
726	{
727		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
728		for (int i = 0; i < numValues; i++)
729			decodeISEBitBlock(&dst[i], data, params.numBits);
730	}
731}
732
733void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
734{
735	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
736	{
737		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
738		DE_ASSERT(de::inRange(rangeCase, 0, 10));
739		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
740		const deUint32			C		= Ca[rangeCase];
741
742		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
743		{
744			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
745			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
746			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
747			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
748			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
749			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
750
751			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
752			const deUint32 B = rangeCase == 0	? 0
753							 : rangeCase == 1	? 0
754							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
755							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
756							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
757							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
758							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
759							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
760							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
761							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
762							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
763							 : (deUint32)-1;
764			DE_ASSERT(B != (deUint32)-1);
765
766			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
767		}
768	}
769	else
770	{
771		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
772
773		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
774			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
775	}
776}
777
778inline void bitTransferSigned (deInt32& a, deInt32& b)
779{
780	b >>= 1;
781	b |= a & 0x80;
782	a >>= 1;
783	a &= 0x3f;
784	if (isBitSet(a, 5))
785		a -= 0x40;
786}
787
788inline UVec4 clampedRGBA (const IVec4& rgba)
789{
790	return UVec4(de::clamp(rgba.x(), 0, 0xff),
791				 de::clamp(rgba.y(), 0, 0xff),
792				 de::clamp(rgba.z(), 0, 0xff),
793				 de::clamp(rgba.w(), 0, 0xff));
794}
795
796inline IVec4 blueContract (int r, int g, int b, int a)
797{
798	return IVec4((r+b)>>1, (g+b)>>1, b, a);
799}
800
801inline bool isColorEndpointModeHDR (deUint32 mode)
802{
803	return mode == 2	||
804		   mode == 3	||
805		   mode == 7	||
806		   mode == 11	||
807		   mode == 14	||
808		   mode == 15;
809}
810
811void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
812{
813	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
814	const deUint32 m23		= getBits(v0, 6, 7);
815	const deUint32 majComp	= m10 != 3	? m10
816							: m23 != 3	? m23
817							:			  0;
818	const deUint32 mode		= m10 != 3	? m23
819							: m23 != 3	? 4
820							:			  5;
821
822	deInt32			red		= (deInt32)getBits(v0, 0, 5);
823	deInt32			green	= (deInt32)getBits(v1, 0, 4);
824	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
825	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
826
827	{
828#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
829#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
830
831		const deUint32	x0	= getBit(v1, 6);
832		const deUint32	x1	= getBit(v1, 5);
833		const deUint32	x2	= getBit(v2, 6);
834		const deUint32	x3	= getBit(v2, 5);
835		const deUint32	x4	= getBit(v3, 7);
836		const deUint32	x5	= getBit(v3, 6);
837		const deUint32	x6	= getBit(v3, 5);
838
839		deInt32&		R	= red;
840		deInt32&		G	= green;
841		deInt32&		B	= blue;
842		deInt32&		S	= scale;
843
844		switch (mode)
845		{
846			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
847			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
848			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
849			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
850			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
851			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
852			default:
853				DE_ASSERT(false);
854		}
855
856#undef ASSIGN_X_BITS
857#undef SHOR
858	}
859
860	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
861	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
862
863	red		<<= shiftAmounts[mode];
864	green	<<= shiftAmounts[mode];
865	blue	<<= shiftAmounts[mode];
866	scale	<<= shiftAmounts[mode];
867
868	if (mode != 5)
869	{
870		green	= red - green;
871		blue	= red - blue;
872	}
873
874	if (majComp == 1)
875		std::swap(red, green);
876	else if (majComp == 2)
877		std::swap(red, blue);
878
879	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
880			   de::clamp(green	- scale,	0, 0xfff),
881			   de::clamp(blue	- scale,	0, 0xfff),
882			   0x780);
883
884	e1 = UVec4(de::clamp(red,				0, 0xfff),
885			   de::clamp(green,				0, 0xfff),
886			   de::clamp(blue,				0, 0xfff),
887			   0x780);
888}
889
890void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
891{
892	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
893
894	if (major == 3)
895	{
896		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
897		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
898	}
899	else
900	{
901		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
902
903		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
904		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
905		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
906		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
907		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
908		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
909
910		{
911#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
912#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
913
914			const deUint32 x0 = getBit(v2, 6);
915			const deUint32 x1 = getBit(v3, 6);
916			const deUint32 x2 = getBit(v4, 6);
917			const deUint32 x3 = getBit(v5, 6);
918			const deUint32 x4 = getBit(v4, 5);
919			const deUint32 x5 = getBit(v5, 5);
920
921			switch (mode)
922			{
923				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
924				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
925				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
926				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
927				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
928				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
929				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
930				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
931				default:
932					DE_ASSERT(false);
933			}
934
935#undef ASSIGN_X_BITS
936#undef SHOR
937		}
938
939		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
940		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
941
942		d0 = signExtend(d0, numDBits[mode]);
943		d1 = signExtend(d1, numDBits[mode]);
944
945		const int shiftAmount = (mode >> 1) ^ 3;
946		a	<<= shiftAmount;
947		c	<<= shiftAmount;
948		b0	<<= shiftAmount;
949		b1	<<= shiftAmount;
950		d0	<<= shiftAmount;
951		d1	<<= shiftAmount;
952
953		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
954				   de::clamp(a-b0-c-d0,		0, 0xfff),
955				   de::clamp(a-b1-c-d1,		0, 0xfff),
956				   0x780);
957
958		e1 = UVec4(de::clamp(a,				0, 0xfff),
959				   de::clamp(a-b0,			0, 0xfff),
960				   de::clamp(a-b1,			0, 0xfff),
961				   0x780);
962
963		if (major == 1)
964		{
965			std::swap(e0.x(), e0.y());
966			std::swap(e1.x(), e1.y());
967		}
968		else if (major == 2)
969		{
970			std::swap(e0.x(), e0.z());
971			std::swap(e1.x(), e1.z());
972		}
973	}
974}
975
976void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
977{
978	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
979
980	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
981	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
982	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
983
984	if (mode == 3)
985	{
986		e0.w() = v6 << 5;
987		e1.w() = v7 << 5;
988	}
989	else
990	{
991		v6 |= (v7 << (mode+1)) & 0x780;
992		v7 &= (0x3f >> mode);
993		v7 ^= 0x20 >> mode;
994		v7 -= 0x20 >> mode;
995		v6 <<= 4-mode;
996		v7 <<= 4-mode;
997
998		v7 += v6;
999		v7 = de::clamp(v7, 0, 0xfff);
1000		e0.w() = v6;
1001		e1.w() = v7;
1002	}
1003}
1004
1005void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
1006{
1007	int unquantizedNdx = 0;
1008
1009	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
1010	{
1011		const deUint32		endpointMode	= endpointModes[partitionNdx];
1012		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1013		UVec4&				e0				= dst[partitionNdx].e0;
1014		UVec4&				e1				= dst[partitionNdx].e1;
1015
1016		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1017
1018		switch (endpointMode)
1019		{
1020			case 0:
1021				e0 = UVec4(v[0], v[0], v[0], 0xff);
1022				e1 = UVec4(v[1], v[1], v[1], 0xff);
1023				break;
1024
1025			case 1:
1026			{
1027				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1028				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1029				e0 = UVec4(L0, L0, L0, 0xff);
1030				e1 = UVec4(L1, L1, L1, 0xff);
1031				break;
1032			}
1033
1034			case 2:
1035			{
1036				const deUint32 v1Gr		= v[1] >= v[0];
1037				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1038				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1039
1040				e0 = UVec4(y0, y0, y0, 0x780);
1041				e1 = UVec4(y1, y1, y1, 0x780);
1042				break;
1043			}
1044
1045			case 3:
1046			{
1047				const bool		m	= isBitSet(v[0], 7);
1048				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1049										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1050				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1051										: getBits(v[1], 0, 3) << 1;
1052				const deUint32	y1	= de::min(0xfffu, y0+d);
1053
1054				e0 = UVec4(y0, y0, y0, 0x780);
1055				e1 = UVec4(y1, y1, y1, 0x780);
1056				break;
1057			}
1058
1059			case 4:
1060				e0 = UVec4(v[0], v[0], v[0], v[2]);
1061				e1 = UVec4(v[1], v[1], v[1], v[3]);
1062				break;
1063
1064			case 5:
1065			{
1066				deInt32 v0 = (deInt32)v[0];
1067				deInt32 v1 = (deInt32)v[1];
1068				deInt32 v2 = (deInt32)v[2];
1069				deInt32 v3 = (deInt32)v[3];
1070				bitTransferSigned(v1, v0);
1071				bitTransferSigned(v3, v2);
1072
1073				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
1074				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
1075				break;
1076			}
1077
1078			case 6:
1079				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
1080				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
1081				break;
1082
1083			case 7:
1084				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1085				break;
1086
1087			case 8:
1088				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1089				{
1090					e0 = UVec4(v[0], v[2], v[4], 0xff);
1091					e1 = UVec4(v[1], v[3], v[5], 0xff);
1092				}
1093				else
1094				{
1095					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1096					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1097				}
1098				break;
1099
1100			case 9:
1101			{
1102				deInt32 v0 = (deInt32)v[0];
1103				deInt32 v1 = (deInt32)v[1];
1104				deInt32 v2 = (deInt32)v[2];
1105				deInt32 v3 = (deInt32)v[3];
1106				deInt32 v4 = (deInt32)v[4];
1107				deInt32 v5 = (deInt32)v[5];
1108				bitTransferSigned(v1, v0);
1109				bitTransferSigned(v3, v2);
1110				bitTransferSigned(v5, v4);
1111
1112				if (v1+v3+v5 >= 0)
1113				{
1114					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
1115					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
1116				}
1117				else
1118				{
1119					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
1120					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
1121				}
1122				break;
1123			}
1124
1125			case 10:
1126				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
1127				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
1128				break;
1129
1130			case 11:
1131				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1132				break;
1133
1134			case 12:
1135				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1136				{
1137					e0 = UVec4(v[0], v[2], v[4], v[6]);
1138					e1 = UVec4(v[1], v[3], v[5], v[7]);
1139				}
1140				else
1141				{
1142					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1143					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1144				}
1145				break;
1146
1147			case 13:
1148			{
1149				deInt32 v0 = (deInt32)v[0];
1150				deInt32 v1 = (deInt32)v[1];
1151				deInt32 v2 = (deInt32)v[2];
1152				deInt32 v3 = (deInt32)v[3];
1153				deInt32 v4 = (deInt32)v[4];
1154				deInt32 v5 = (deInt32)v[5];
1155				deInt32 v6 = (deInt32)v[6];
1156				deInt32 v7 = (deInt32)v[7];
1157				bitTransferSigned(v1, v0);
1158				bitTransferSigned(v3, v2);
1159				bitTransferSigned(v5, v4);
1160				bitTransferSigned(v7, v6);
1161
1162				if (v1+v3+v5 >= 0)
1163				{
1164					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
1165					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1166				}
1167				else
1168				{
1169					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1170					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
1171				}
1172
1173				break;
1174			}
1175
1176			case 14:
1177				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1178				e0.w() = v[6];
1179				e1.w() = v[7];
1180				break;
1181
1182			case 15:
1183				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1184				break;
1185
1186			default:
1187				DE_ASSERT(false);
1188		}
1189	}
1190}
1191
1192void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1193{
1194	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1195	ISEDecodedResult	colorEndpointData[18];
1196
1197	{
1198		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1199		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1200	}
1201
1202	{
1203		deUint32 unquantizedEndpoints[18];
1204		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1205		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1206	}
1207}
1208
1209void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1210{
1211	const int			numWeights	= computeNumWeights(blockMode);
1212	const ISEParams&	iseParams	= blockMode.weightISEParams;
1213
1214	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1215	{
1216		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1217
1218		if (rangeCase == 0 || rangeCase == 1)
1219		{
1220			static const deUint32 map0[3]	= { 0, 32, 63 };
1221			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
1222			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
1223			for (int i = 0; i < numWeights; i++)
1224			{
1225				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1226				dst[i] = map[weightGrid[i].v];
1227			}
1228		}
1229		else
1230		{
1231			DE_ASSERT(rangeCase <= 6);
1232			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
1233			const deUint32			C		= Ca[rangeCase-2];
1234
1235			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1236			{
1237				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1238				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1239				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1240
1241				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1242				const deUint32 B = rangeCase == 2 ? 0
1243								 : rangeCase == 3 ? 0
1244								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
1245								 : rangeCase == 5 ? (b << 6) |								(b << 1)
1246								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
1247								 : (deUint32)-1;
1248
1249				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1250			}
1251		}
1252	}
1253	else
1254	{
1255		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1256
1257		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1258			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1259	}
1260
1261	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1262		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1263
1264	// Initialize nonexistent weights to poison values
1265	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1266		dst[weightNdx] = ~0u;
1267
1268}
1269
1270void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1271{
1272	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
1273	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
1274	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
1275
1276	DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
1277
1278	for (int texelY = 0; texelY < blockHeight; texelY++)
1279	{
1280		for (int texelX = 0; texelX < blockWidth; texelX++)
1281		{
1282			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1283			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1284			const deUint32 jX	= gX >> 4;
1285			const deUint32 jY	= gY >> 4;
1286			const deUint32 fX	= gX & 0xf;
1287			const deUint32 fY	= gY & 0xf;
1288
1289			const deUint32 w11	= (fX*fY + 8) >> 4;
1290			const deUint32 w10	= fY - w11;
1291			const deUint32 w01	= fX - w11;
1292			const deUint32 w00	= 16 - fX - fY + w11;
1293
1294			const deUint32 i00	= jY*blockMode.weightGridWidth + jX;
1295			const deUint32 i01	= i00 + 1;
1296			const deUint32 i10	= i00 + blockMode.weightGridWidth;
1297			const deUint32 i11	= i00 + blockMode.weightGridWidth + 1;
1298
1299			// These addresses can be out of bounds, but respective weights will be 0 then.
1300			DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1301			DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1302			DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1303			DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1304
1305			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1306			{
1307				// & 0x3f clamps address to bounds of unquantizedWeights
1308				const deUint32 p00	= unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1309				const deUint32 p01	= unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1310				const deUint32 p10	= unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1311				const deUint32 p11	= unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1312
1313				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1314			}
1315		}
1316	}
1317}
1318
1319void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1320{
1321	ISEDecodedResult weightGrid[64];
1322
1323	{
1324		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1325		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1326	}
1327
1328	{
1329		deUint32 unquantizedWeights[64];
1330		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1331		interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1332	}
1333}
1334
1335inline deUint32 hash52 (deUint32 v)
1336{
1337	deUint32 p = v;
1338	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
1339	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
1340	p ^= p <<  6;	p ^= p >> 17;
1341	return p;
1342}
1343
1344int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1345{
1346	DE_ASSERT(zIn == 0);
1347	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
1348	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
1349	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
1350	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
1351	const deUint32	rnum	= hash52(seed);
1352	deUint8			seed1	= (deUint8)( rnum							& 0xf);
1353	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
1354	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
1355	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
1356	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
1357	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
1358	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
1359	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
1360	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
1361	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
1362	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
1363	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
1364
1365	seed1  = (deUint8)(seed1  * seed1 );
1366	seed2  = (deUint8)(seed2  * seed2 );
1367	seed3  = (deUint8)(seed3  * seed3 );
1368	seed4  = (deUint8)(seed4  * seed4 );
1369	seed5  = (deUint8)(seed5  * seed5 );
1370	seed6  = (deUint8)(seed6  * seed6 );
1371	seed7  = (deUint8)(seed7  * seed7 );
1372	seed8  = (deUint8)(seed8  * seed8 );
1373	seed9  = (deUint8)(seed9  * seed9 );
1374	seed10 = (deUint8)(seed10 * seed10);
1375	seed11 = (deUint8)(seed11 * seed11);
1376	seed12 = (deUint8)(seed12 * seed12);
1377
1378	const int shA = (seed & 2) != 0		? 4		: 5;
1379	const int shB = numPartitions == 3	? 6		: 5;
1380	const int sh1 = (seed & 1) != 0		? shA	: shB;
1381	const int sh2 = (seed & 1) != 0		? shB	: shA;
1382	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
1383
1384	seed1  = (deUint8)(seed1  >> sh1);
1385	seed2  = (deUint8)(seed2  >> sh2);
1386	seed3  = (deUint8)(seed3  >> sh1);
1387	seed4  = (deUint8)(seed4  >> sh2);
1388	seed5  = (deUint8)(seed5  >> sh1);
1389	seed6  = (deUint8)(seed6  >> sh2);
1390	seed7  = (deUint8)(seed7  >> sh1);
1391	seed8  = (deUint8)(seed8  >> sh2);
1392	seed9  = (deUint8)(seed9  >> sh3);
1393	seed10 = (deUint8)(seed10 >> sh3);
1394	seed11 = (deUint8)(seed11 >> sh3);
1395	seed12 = (deUint8)(seed12 >> sh3);
1396
1397	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1398	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1399	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
1400	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
1401
1402	return a >= b && a >= c && a >= d	? 0
1403		 : b >= c && b >= d				? 1
1404		 : c >= d						? 2
1405		 :								  3;
1406}
1407
1408DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1409								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1410{
1411	const bool			smallBlock	= blockWidth*blockHeight < 31;
1412	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
1413	bool				isHDREndpoint[4];
1414
1415	for (int i = 0; i < numPartitions; i++)
1416		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1417
1418	for (int texelY = 0; texelY < blockHeight; texelY++)
1419	for (int texelX = 0; texelX < blockWidth; texelX++)
1420	{
1421		const int				texelNdx			= texelY*blockWidth + texelX;
1422		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1423		DE_ASSERT(colorEndpointNdx < numPartitions);
1424		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
1425		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
1426		const TexelWeightPair&	weight				= texelWeights[texelNdx];
1427
1428		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1429		{
1430			if (isSRGB)
1431			{
1432				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1433				((deUint8*)dst)[texelNdx*4 + 1] = 0;
1434				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1435				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1436			}
1437			else
1438			{
1439				((float*)dst)[texelNdx*4 + 0] = 1.0f;
1440				((float*)dst)[texelNdx*4 + 1] = 0;
1441				((float*)dst)[texelNdx*4 + 2] = 1.0f;
1442				((float*)dst)[texelNdx*4 + 3] = 1.0f;
1443			}
1444
1445			result = DECOMPRESS_RESULT_ERROR;
1446		}
1447		else
1448		{
1449			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1450			{
1451				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1452				{
1453					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1454					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1455					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
1456					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
1457
1458					if (isSRGB)
1459						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1460					else
1461						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1462				}
1463				else
1464				{
1465					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1466					const deUint32		c0	= e0[channelNdx] << 4;
1467					const deUint32		c1	= e1[channelNdx] << 4;
1468					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
1469					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
1470					const deUint32		e	= getBits(c, 11, 15);
1471					const deUint32		m	= getBits(c, 0, 10);
1472					const deUint32		mt	= m < 512		? 3*m
1473											: m >= 1536		? 5*m - 2048
1474											:				  4*m - 512;
1475					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
1476
1477					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1478				}
1479			}
1480		}
1481	}
1482
1483	return result;
1484}
1485
1486DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1487{
1488	DE_ASSERT(isLDR || !isSRGB);
1489
1490	// Decode block mode.
1491
1492	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1493
1494	// Check for block mode errors.
1495
1496	if (blockMode.isError)
1497	{
1498		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1499		return DECOMPRESS_RESULT_ERROR;
1500	}
1501
1502	// Separate path for void-extent.
1503
1504	if (blockMode.isVoidExtent)
1505		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1506
1507	// Compute weight grid values.
1508
1509	const int numWeights			= computeNumWeights(blockMode);
1510	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1511	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
1512
1513	// Check for errors in weight grid, partition and dual-plane parameters.
1514
1515	if (numWeights > 64								||
1516		numWeightDataBits > 96						||
1517		numWeightDataBits < 24						||
1518		blockMode.weightGridWidth > blockWidth		||
1519		blockMode.weightGridHeight > blockHeight	||
1520		(numPartitions == 4 && blockMode.isDualPlane))
1521	{
1522		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1523		return DECOMPRESS_RESULT_ERROR;
1524	}
1525
1526	// Compute number of bits available for color endpoint data.
1527
1528	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
1529	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1530											  (blockMode.isDualPlane ? 2 : 0);
1531	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
1532	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
1533																		: numPartitions == 4	? 7
1534																		: numPartitions == 3	? 4
1535																		: numPartitions == 2	? 1
1536																		: 0);
1537	// Decode color endpoint modes.
1538
1539	deUint32 colorEndpointModes[4];
1540	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1541
1542	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1543
1544	// Check for errors in color endpoint value count.
1545
1546	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1547	{
1548		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1549		return DECOMPRESS_RESULT_ERROR;
1550	}
1551
1552	// Compute color endpoints.
1553
1554	ColorEndpointPair colorEndpoints[4];
1555	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1556						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1557
1558	// Compute texel weights.
1559
1560	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1561	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1562
1563	// Set texel colors.
1564
1565	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1566	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1567
1568	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1569}
1570
1571void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1572{
1573	DE_ASSERT(isLDR || !isSRGB);
1574
1575	const int blockWidth = dst.getWidth();
1576	const int blockHeight = dst.getHeight();
1577
1578	union
1579	{
1580		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1581		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1582	} decompressedBuffer;
1583
1584	const Block128 blockData(data);
1585	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1586					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1587
1588	if (isSRGB)
1589	{
1590		for (int i = 0; i < blockHeight; i++)
1591		for (int j = 0; j < blockWidth; j++)
1592		{
1593			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1594							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1595							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1596							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1597		}
1598	}
1599	else
1600	{
1601		for (int i = 0; i < blockHeight; i++)
1602		for (int j = 0; j < blockWidth; j++)
1603		{
1604			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1605							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1606							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1607							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1608		}
1609	}
1610}
1611
1612// Helper class for setting bits in a 128-bit block.
1613class AssignBlock128
1614{
1615private:
1616	typedef deUint64 Word;
1617
1618	enum
1619	{
1620		WORD_BYTES	= sizeof(Word),
1621		WORD_BITS	= 8*WORD_BYTES,
1622		NUM_WORDS	= 128 / WORD_BITS
1623	};
1624
1625	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1626
1627public:
1628	AssignBlock128 (void)
1629	{
1630		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1631			m_words[wordNdx] = 0;
1632	}
1633
1634	void setBit (int ndx, deUint32 val)
1635	{
1636		DE_ASSERT(de::inBounds(ndx, 0, 128));
1637		DE_ASSERT((val & 1) == val);
1638		const int wordNdx	= ndx / WORD_BITS;
1639		const int bitNdx	= ndx % WORD_BITS;
1640		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1641	}
1642
1643	void setBits (int low, int high, deUint32 bits)
1644	{
1645		DE_ASSERT(de::inBounds(low, 0, 128));
1646		DE_ASSERT(de::inBounds(high, 0, 128));
1647		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1648		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1649
1650		if (high-low+1 == 0)
1651			return;
1652
1653		const int word0Ndx		= low / WORD_BITS;
1654		const int word1Ndx		= high / WORD_BITS;
1655		const int lowNdxInW0	= low % WORD_BITS;
1656
1657		if (word0Ndx == word1Ndx)
1658			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1659		else
1660		{
1661			DE_ASSERT(word1Ndx == word0Ndx + 1);
1662
1663			const int	highNdxInW1			= high % WORD_BITS;
1664			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
1665			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
1666
1667			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
1668			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1669		}
1670	}
1671
1672	void assignToMemory (deUint8* dst) const
1673	{
1674		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1675		{
1676			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1677				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1678		}
1679	}
1680
1681	void pushBytesToVector (vector<deUint8>& dst) const
1682	{
1683		const int assignStartIndex = (int)dst.size();
1684		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1685		assignToMemory(&dst[assignStartIndex]);
1686	}
1687
1688private:
1689	Word m_words[NUM_WORDS];
1690};
1691
1692// A helper for sequential access into a AssignBlock128.
1693class BitAssignAccessStream
1694{
1695public:
1696	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1697		: m_dst				(dst)
1698		, m_startNdxInSrc	(startNdxInSrc)
1699		, m_length			(length)
1700		, m_forward			(forward)
1701		, m_ndx				(0)
1702	{
1703	}
1704
1705	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
1706	void setNext (int num, deUint32 bits)
1707	{
1708		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1709
1710		if (num == 0 || m_ndx >= m_length)
1711			return;
1712
1713		const int		end				= m_ndx + num;
1714		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
1715		const int		low				= m_ndx;
1716		const int		high			= m_ndx + numBitsToDst - 1;
1717		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
1718
1719		m_ndx += num;
1720
1721		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
1722						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1723	}
1724
1725private:
1726	AssignBlock128&		m_dst;
1727	const int			m_startNdxInSrc;
1728	const int			m_length;
1729	const bool			m_forward;
1730
1731	int					m_ndx;
1732};
1733
1734struct VoidExtentParams
1735{
1736	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1737	bool		isHDR;
1738	deUint16	r;
1739	deUint16	g;
1740	deUint16	b;
1741	deUint16	a;
1742	// \note Currently extent coordinates are all set to all-ones.
1743
1744	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1745};
1746
1747static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1748{
1749	AssignBlock128 block;
1750
1751	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1752	block.setBit(9, params.isHDR);
1753	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1754
1755	// Extent coordinates - currently all-ones.
1756	block.setBits(12, 24, 0x1fff);
1757	block.setBits(25, 37, 0x1fff);
1758	block.setBits(38, 50, 0x1fff);
1759	block.setBits(51, 63, 0x1fff);
1760
1761	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1762								!isFloat16InfOrNan(params.g) &&
1763								!isFloat16InfOrNan(params.b) &&
1764								!isFloat16InfOrNan(params.a)));
1765
1766	block.setBits(64,  79,  params.r);
1767	block.setBits(80,  95,  params.g);
1768	block.setBits(96,  111, params.b);
1769	block.setBits(112, 127, params.a);
1770
1771	return block;
1772}
1773
1774// An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1775// range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1776// so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1777// to the same set of decoded values.
1778struct ISEInput
1779{
1780	struct Block
1781	{
1782		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1783		deUint32 bitValues[5];
1784	};
1785
1786	bool isGivenInBlockForm;
1787	union
1788	{
1789		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
1790		deUint32	plain[64];
1791		Block		block[64];
1792	} value;
1793
1794	ISEInput (void)
1795		: isGivenInBlockForm (false)
1796	{
1797	}
1798};
1799
1800static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1801{
1802	switch (iseParams.mode)
1803	{
1804		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
1805		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
1806		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
1807		default:
1808			DE_ASSERT(false);
1809			return -1;
1810	}
1811}
1812
1813struct NormalBlockParams
1814{
1815	int					weightGridWidth;
1816	int					weightGridHeight;
1817	ISEParams			weightISEParams;
1818	bool				isDualPlane;
1819	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
1820	int					numPartitions;
1821	deUint32			colorEndpointModes[4];
1822	// \note Below members are irrelevant if numPartitions == 1.
1823	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1824	deUint32			partitionSeed;
1825
1826	NormalBlockParams (void)
1827		: weightGridWidth			(-1)
1828		, weightGridHeight			(-1)
1829		, weightISEParams			(ISEMODE_LAST, -1)
1830		, isDualPlane				(true)
1831		, ccs						((deUint32)-1)
1832		, numPartitions				(-1)
1833		, isMultiPartSingleCemMode	(false)
1834		, partitionSeed				((deUint32)-1)
1835	{
1836		colorEndpointModes[0] = 0;
1837		colorEndpointModes[1] = 0;
1838		colorEndpointModes[2] = 0;
1839		colorEndpointModes[3] = 0;
1840	}
1841};
1842
1843struct NormalBlockISEInputs
1844{
1845	ISEInput weight;
1846	ISEInput endpoint;
1847
1848	NormalBlockISEInputs (void)
1849		: weight	()
1850		, endpoint	()
1851	{
1852	}
1853};
1854
1855static inline int computeNumWeights (const NormalBlockParams& params)
1856{
1857	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1858}
1859
1860static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1861{
1862	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1863	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1864									  (params.isDualPlane ? 2 : 0);
1865
1866	return 128 - numWeightBits - numConfigDataBits;
1867}
1868
1869static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1870{
1871	if (isMultiPartSingleCemMode)
1872		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1873	else
1874	{
1875		int result = 0;
1876		for (int i = 0; i < numPartitions; i++)
1877			result += computeNumColorEndpointValues(endpointModes[i]);
1878		return result;
1879	}
1880}
1881
1882static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1883{
1884	const int numWeights				= computeNumWeights(params);
1885	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
1886	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1887	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
1888
1889	return numWeights <= 64										&&
1890		   de::inRange(numWeightBits, 24, 96)					&&
1891		   params.weightGridWidth <= blockWidth					&&
1892		   params.weightGridHeight <= blockHeight				&&
1893		   !(params.numPartitions == 4 && params.isDualPlane)	&&
1894		   numColorEndpointValues <= 18							&&
1895		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1896}
1897
1898// Write bits 0 to 10 of an ASTC block.
1899static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1900{
1901	const deUint32	d = blockParams.isDualPlane != 0;
1902	// r and h initialized in switch below.
1903	deUint32		r;
1904	deUint32		h;
1905	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1906	deUint32		a = (deUint32)-1;
1907	deUint32		b = (deUint32)-1;
1908	int				blockModeLayoutNdx;
1909
1910	// Find the values of r and h (ISE range).
1911	switch (computeISERangeMax(blockParams.weightISEParams))
1912	{
1913		case 1:		r = 2; h = 0;	break;
1914		case 2:		r = 3; h = 0;	break;
1915		case 3:		r = 4; h = 0;	break;
1916		case 4:		r = 5; h = 0;	break;
1917		case 5:		r = 6; h = 0;	break;
1918		case 7:		r = 7; h = 0;	break;
1919
1920		case 9:		r = 2; h = 1;	break;
1921		case 11:	r = 3; h = 1;	break;
1922		case 15:	r = 4; h = 1;	break;
1923		case 19:	r = 5; h = 1;	break;
1924		case 23:	r = 6; h = 1;	break;
1925		case 31:	r = 7; h = 1;	break;
1926
1927		default:
1928			DE_ASSERT(false);
1929			r = (deUint32)-1;
1930			h = (deUint32)-1;
1931	}
1932
1933	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1934
1935	{
1936		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1937
1938		static const struct BlockModeLayout
1939		{
1940			int							aNumBits;
1941			int							bNumBits;
1942			BlockModeLayoutABVariable	gridWidthVariableTerm;
1943			int							gridWidthConstantTerm;
1944			BlockModeLayoutABVariable	gridHeightVariableTerm;
1945			int							gridHeightConstantTerm;
1946		} blockModeLayouts[] =
1947		{
1948			{ 2, 2,   B,  4,   A,  2},
1949			{ 2, 2,   B,  8,   A,  2},
1950			{ 2, 2,   A,  2,   B,  8},
1951			{ 2, 1,   A,  2,   B,  6},
1952			{ 2, 1,   B,  2,   A,  2},
1953			{ 2, 0,   Z, 12,   A,  2},
1954			{ 2, 0,   A,  2,   Z, 12},
1955			{ 0, 0,   Z,  6,   Z, 10},
1956			{ 0, 0,   Z, 10,   Z,  6},
1957			{ 2, 2,   A,  6,   B,  6}
1958		};
1959
1960		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1961		{
1962			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
1963			const int				aMax					= (1 << layout.aNumBits) - 1;
1964			const int				bMax					= (1 << layout.bNumBits) - 1;
1965			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
1966			const int				widthMin				= layout.gridWidthConstantTerm;
1967			const int				heightMin				= layout.gridHeightConstantTerm;
1968			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
1969			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1970
1971			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1972
1973			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1974				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1975			{
1976				deUint32	defaultvalue	= 0;
1977				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : defaultvalue;
1978				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : defaultvalue;
1979
1980				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
1981				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1982
1983				break;
1984			}
1985		}
1986	}
1987
1988	// Set block mode bits.
1989
1990	const deUint32 a0 = getBit(a, 0);
1991	const deUint32 a1 = getBit(a, 1);
1992	const deUint32 b0 = getBit(b, 0);
1993	const deUint32 b1 = getBit(b, 1);
1994	const deUint32 r0 = getBit(r, 0);
1995	const deUint32 r1 = getBit(r, 1);
1996	const deUint32 r2 = getBit(r, 2);
1997
1998#define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1999#define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
2000
2001	switch (blockModeLayoutNdx)
2002	{
2003		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
2004		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
2005		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
2006		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
2007		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
2008		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
2009		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
2010		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
2011		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
2012		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
2013		default:
2014			DE_ASSERT(false);
2015	}
2016
2017#undef ASSIGN_BITS
2018#undef SB
2019}
2020
2021// Write color endpoint mode data of an ASTC block.
2022static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
2023{
2024	if (numPartitions == 1)
2025		dst.setBits(13, 16, colorEndpointModes[0]);
2026	else
2027	{
2028		if (isMultiPartSingleCemMode)
2029		{
2030			dst.setBits(23, 24, 0);
2031			dst.setBits(25, 28, colorEndpointModes[0]);
2032		}
2033		else
2034		{
2035			DE_ASSERT(numPartitions > 0);
2036			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2037			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2038			const deUint32 minCemClass			= minCem/4;
2039			const deUint32 maxCemClass			= maxCem/4;
2040			DE_ASSERT(maxCemClass - minCemClass <= 1);
2041			DE_UNREF(minCemClass); // \note For non-debug builds.
2042			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
2043
2044			dst.setBits(23, 24, highLevelSelector);
2045
2046			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2047			{
2048				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2049				const deUint32 m			= colorEndpointModes[partNdx] % 4;
2050				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
2051				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
2052				dst.setBit(25 + partNdx, c);
2053				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2054				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2055			}
2056		}
2057	}
2058}
2059
2060static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2061{
2062	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2063	static const deUint32 tritBlockTValue[3][3][3][3][3] =
2064	{
2065		{
2066			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2067			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2068			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2069		},
2070		{
2071			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2072			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2073			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2074		},
2075		{
2076			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2077			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2078			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2079		}
2080	};
2081
2082	DE_ASSERT(de::inRange(numValues, 1, 5));
2083
2084	deUint32 tritParts[5];
2085	deUint32 bitParts[5];
2086
2087	for (int i = 0; i < 5; i++)
2088	{
2089		if (i < numValues)
2090		{
2091			if (fromExplicitInputBlock)
2092			{
2093				bitParts[i]		= blockInput.bitValues[i];
2094				tritParts[i]	= -1; // \note Won't be used, but silences warning.
2095			}
2096			else
2097			{
2098				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2099				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2100				tritParts[i]	= nonBlockInput[i] >> numBits;
2101			}
2102		}
2103		else
2104		{
2105			bitParts[i]		= 0;
2106			tritParts[i]	= 0;
2107		}
2108	}
2109
2110	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2111																					  [tritParts[1]]
2112																					  [tritParts[2]]
2113																					  [tritParts[3]]
2114																					  [tritParts[4]];
2115
2116	dst.setNext(numBits,	bitParts[0]);
2117	dst.setNext(2,			getBits(T, 0, 1));
2118	dst.setNext(numBits,	bitParts[1]);
2119	dst.setNext(2,			getBits(T, 2, 3));
2120	dst.setNext(numBits,	bitParts[2]);
2121	dst.setNext(1,			getBit(T, 4));
2122	dst.setNext(numBits,	bitParts[3]);
2123	dst.setNext(2,			getBits(T, 5, 6));
2124	dst.setNext(numBits,	bitParts[4]);
2125	dst.setNext(1,			getBit(T, 7));
2126}
2127
2128static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2129{
2130	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2131	static const deUint32 quintBlockQValue[5][5][5] =
2132	{
2133		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2134		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2135		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2136		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2137		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2138	};
2139
2140	DE_ASSERT(de::inRange(numValues, 1, 3));
2141
2142	deUint32 quintParts[3];
2143	deUint32 bitParts[3];
2144
2145	for (int i = 0; i < 3; i++)
2146	{
2147		if (i < numValues)
2148		{
2149			if (fromExplicitInputBlock)
2150			{
2151				bitParts[i]		= blockInput.bitValues[i];
2152				quintParts[i]	= -1; // \note Won't be used, but silences warning.
2153			}
2154			else
2155			{
2156				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2157				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2158				quintParts[i]	= nonBlockInput[i] >> numBits;
2159			}
2160		}
2161		else
2162		{
2163			bitParts[i]		= 0;
2164			quintParts[i]	= 0;
2165		}
2166	}
2167
2168	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2169																					   [quintParts[1]]
2170																					   [quintParts[2]];
2171
2172	dst.setNext(numBits,	bitParts[0]);
2173	dst.setNext(3,			getBits(Q, 0, 2));
2174	dst.setNext(numBits,	bitParts[1]);
2175	dst.setNext(2,			getBits(Q, 3, 4));
2176	dst.setNext(numBits,	bitParts[2]);
2177	dst.setNext(2,			getBits(Q, 5, 6));
2178}
2179
2180static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2181{
2182	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2183	dst.setNext(numBits, value);
2184}
2185
2186static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2187{
2188	if (params.mode == ISEMODE_TRIT)
2189	{
2190		const int numBlocks = deDivRoundUp32(numValues, 5);
2191		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2192		{
2193			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2194			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2195							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2196							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
2197							   numValuesInBlock);
2198		}
2199	}
2200	else if (params.mode == ISEMODE_QUINT)
2201	{
2202		const int numBlocks = deDivRoundUp32(numValues, 3);
2203		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2204		{
2205			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2206			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2207								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2208								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
2209								numValuesInBlock);
2210		}
2211	}
2212	else
2213	{
2214		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2215		for (int i = 0; i < numValues; i++)
2216			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2217	}
2218}
2219
2220static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2221{
2222	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
2223	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
2224	encodeISE(access, iseParams, input, numWeights);
2225}
2226
2227static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2228{
2229	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2230	encodeISE(access, iseParams, input, numEndpoints);
2231}
2232
2233static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2234{
2235	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2236	DE_UNREF(blockWidth);	// \note For non-debug builds.
2237	DE_UNREF(blockHeight);	// \note For non-debug builds.
2238
2239	AssignBlock128	block;
2240	const int		numWeights		= computeNumWeights(blockParams);
2241	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2242
2243	writeBlockMode(block, blockParams);
2244
2245	block.setBits(11, 12, blockParams.numPartitions - 1);
2246	if (blockParams.numPartitions > 1)
2247		block.setBits(13, 22, blockParams.partitionSeed);
2248
2249	{
2250		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
2251															: blockParams.numPartitions == 4											? 7
2252															: blockParams.numPartitions == 3											? 4
2253															: blockParams.numPartitions == 2											? 1
2254															: 0);
2255
2256		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2257
2258		if (blockParams.isDualPlane)
2259			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2260	}
2261
2262	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2263
2264	{
2265		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2266		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2267		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
2268		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2269
2270		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2271	}
2272
2273	return block;
2274}
2275
2276// Generate default ISE inputs for weight and endpoint data - gradient-ish values.
2277static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2278{
2279	NormalBlockISEInputs result;
2280
2281	{
2282		result.weight.isGivenInBlockForm = false;
2283
2284		const int numWeights		= computeNumWeights(blockParams);
2285		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2286
2287		if (blockParams.isDualPlane)
2288		{
2289			for (int i = 0; i < numWeights; i += 2)
2290				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2291
2292			for (int i = 1; i < numWeights; i += 2)
2293				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2294		}
2295		else
2296		{
2297			for (int i = 0; i < numWeights; i++)
2298				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2299		}
2300	}
2301
2302	{
2303		result.endpoint.isGivenInBlockForm = false;
2304
2305		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2306		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2307		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2308		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
2309
2310		for (int i = 0; i < numColorEndpointValues; i++)
2311			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2312	}
2313
2314	return result;
2315}
2316
2317static const ISEParams s_weightISEParamsCandidates[] =
2318{
2319	ISEParams(ISEMODE_PLAIN_BIT,	1),
2320	ISEParams(ISEMODE_TRIT,			0),
2321	ISEParams(ISEMODE_PLAIN_BIT,	2),
2322	ISEParams(ISEMODE_QUINT,		0),
2323	ISEParams(ISEMODE_TRIT,			1),
2324	ISEParams(ISEMODE_PLAIN_BIT,	3),
2325	ISEParams(ISEMODE_QUINT,		1),
2326	ISEParams(ISEMODE_TRIT,			2),
2327	ISEParams(ISEMODE_PLAIN_BIT,	4),
2328	ISEParams(ISEMODE_QUINT,		2),
2329	ISEParams(ISEMODE_TRIT,			3),
2330	ISEParams(ISEMODE_PLAIN_BIT,	5)
2331};
2332
2333void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2334{
2335	DE_ASSERT(blockSize.z() == 1);
2336
2337	if (rnd.getFloat() < 0.1f)
2338	{
2339		// Void extent block.
2340		const bool		isVoidExtentHDR		= rnd.getBool();
2341		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2342		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2343		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2344		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2345		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2346	}
2347	else
2348	{
2349		// Not void extent block.
2350
2351		// Generate block params.
2352
2353		NormalBlockParams blockParams;
2354
2355		do
2356		{
2357			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
2358			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
2359			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2360			blockParams.numPartitions				= rnd.getInt(1, 4);
2361			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
2362			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
2363			blockParams.ccs							= rnd.getInt(0, 3);
2364			blockParams.partitionSeed				= rnd.getInt(0, 1023);
2365
2366			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2367
2368			{
2369				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
2370									: blockParams.colorEndpointModes[0] == 0	? 1
2371									: blockParams.colorEndpointModes[0] == 15	? -1
2372									: rnd.getBool()								? 1 : -1;
2373
2374				for (int i = 1; i < blockParams.numPartitions; i++)
2375					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2376			}
2377		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2378
2379		// Generate ISE inputs for both weight and endpoint data.
2380
2381		NormalBlockISEInputs iseInputs;
2382
2383		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2384		{
2385			const bool			setWeights	= weightOrEndpoints == 0;
2386			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
2387												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2388			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2389			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
2390
2391			iseInput.isGivenInBlockForm = rnd.getBool();
2392
2393			if (iseInput.isGivenInBlockForm)
2394			{
2395				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
2396												: iseParams.mode == ISEMODE_QUINT	? 3
2397												:									  1;
2398				const int iseBitMax				= (1 << iseParams.numBits) - 1;
2399				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
2400
2401				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2402				{
2403					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2404					for (int i = 0; i < numValuesPerISEBlock; i++)
2405						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2406				}
2407			}
2408			else
2409			{
2410				const int rangeMax = computeISERangeMax(iseParams);
2411
2412				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2413					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2414			}
2415		}
2416
2417		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2418	}
2419}
2420
2421} // anonymous
2422
2423// Generate block data for a given BlockTestType and format.
2424void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2425{
2426	DE_ASSERT(isAstcFormat(format));
2427	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2428
2429	const IVec3 blockSize = getBlockPixelSize(format);
2430	DE_ASSERT(blockSize.z() == 1);
2431
2432	switch (testType)
2433	{
2434		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2435		// Generate a gradient-like set of LDR void-extent blocks.
2436		{
2437			const int			numBlocks	= 1<<13;
2438			const deUint32		numValues	= 1<<16;
2439			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2440
2441			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2442			{
2443				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
2444				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
2445				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
2446				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
2447				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
2448				AssignBlock128 block;
2449
2450				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2451			}
2452
2453			break;
2454		}
2455
2456		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2457		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2458		{
2459			const float		minValue	= -65504.0f;
2460			const float		maxValue	= +65504.0f;
2461			const int		numBlocks	= 1<<13;
2462			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2463
2464			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2465			{
2466				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
2467				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
2468				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
2469				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
2470				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2471				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2472				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2473				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2474
2475				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2476			}
2477
2478			break;
2479		}
2480
2481		case BLOCK_TEST_TYPE_WEIGHT_GRID:
2482		// Generate different combinations of plane count, weight ISE params, and grid size.
2483		{
2484			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
2485			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2486			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
2487			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
2488			{
2489				NormalBlockParams		blockParams;
2490				NormalBlockISEInputs	iseInputs;
2491
2492				blockParams.weightGridWidth			= weightGridWidth;
2493				blockParams.weightGridHeight		= weightGridHeight;
2494				blockParams.isDualPlane				= isDualPlane != 0;
2495				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
2496				blockParams.ccs						= 0;
2497				blockParams.numPartitions			= 1;
2498				blockParams.colorEndpointModes[0]	= 0;
2499
2500				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2501					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2502			}
2503
2504			break;
2505		}
2506
2507		case BLOCK_TEST_TYPE_WEIGHT_ISE:
2508		// For each weight ISE param set, generate blocks that cover:
2509		// - each single value of the ISE's range, at each position inside an ISE block
2510		// - for trit and quint ISEs, each single T or Q value of an ISE block
2511		{
2512			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2513			{
2514				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2515				NormalBlockParams	blockParams;
2516
2517				blockParams.weightGridWidth			= 4;
2518				blockParams.weightGridHeight		= 4;
2519				blockParams.weightISEParams			= iseParams;
2520				blockParams.numPartitions			= 1;
2521				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2522				blockParams.ccs						= 0;
2523				blockParams.colorEndpointModes[0]	= 0;
2524
2525				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2526				{
2527					blockParams.weightGridWidth--;
2528					blockParams.weightGridHeight--;
2529				}
2530
2531				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2532				const int numWeights			= computeNumWeights(blockParams);
2533
2534				{
2535					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
2536					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
2537					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2538					iseInputs.weight.isGivenInBlockForm = false;
2539
2540					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2541					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2542					{
2543						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2544							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2545
2546						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2547					}
2548				}
2549
2550				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2551				{
2552					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2553					iseInputs.weight.isGivenInBlockForm = true;
2554
2555					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2556					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
2557					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2558
2559					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2560					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2561					{
2562						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2563						{
2564							for (int i = 0; i < numValuesInISEBlock; i++)
2565								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2566							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2567						}
2568
2569						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2570					}
2571				}
2572			}
2573
2574			break;
2575		}
2576
2577		case BLOCK_TEST_TYPE_CEMS:
2578		// For each plane count & partition count combination, generate all color endpoint mode combinations.
2579		{
2580			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
2581			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
2582			{
2583				// Multi-partition, single-CEM mode.
2584				if (numPartitions > 1)
2585				{
2586					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2587					{
2588						NormalBlockParams blockParams;
2589						blockParams.weightGridWidth				= 4;
2590						blockParams.weightGridHeight			= 4;
2591						blockParams.isDualPlane					= isDualPlane != 0;
2592						blockParams.ccs							= 0;
2593						blockParams.numPartitions				= numPartitions;
2594						blockParams.isMultiPartSingleCemMode	= true;
2595						blockParams.colorEndpointModes[0]		= singleCem;
2596						blockParams.partitionSeed				= 634;
2597
2598						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2599						{
2600							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2601							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2602							{
2603								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2604								break;
2605							}
2606						}
2607					}
2608				}
2609
2610				// Separate-CEM mode.
2611				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2612				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2613				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2614				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2615				{
2616					NormalBlockParams blockParams;
2617					blockParams.weightGridWidth				= 4;
2618					blockParams.weightGridHeight			= 4;
2619					blockParams.isDualPlane					= isDualPlane != 0;
2620					blockParams.ccs							= 0;
2621					blockParams.numPartitions				= numPartitions;
2622					blockParams.isMultiPartSingleCemMode	= false;
2623					blockParams.colorEndpointModes[0]		= cem0;
2624					blockParams.colorEndpointModes[1]		= cem1;
2625					blockParams.colorEndpointModes[2]		= cem2;
2626					blockParams.colorEndpointModes[3]		= cem3;
2627					blockParams.partitionSeed				= 634;
2628
2629					{
2630						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2631						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2632						const deUint32 minCemClass	= minCem/4;
2633						const deUint32 maxCemClass	= maxCem/4;
2634
2635						if (maxCemClass - minCemClass > 1)
2636							continue;
2637					}
2638
2639					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2640					{
2641						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2642						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2643						{
2644							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2645							break;
2646						}
2647					}
2648				}
2649			}
2650
2651			break;
2652		}
2653
2654		case BLOCK_TEST_TYPE_PARTITION_SEED:
2655		// Test all partition seeds ("partition pattern indices").
2656		{
2657			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
2658			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
2659			{
2660				NormalBlockParams blockParams;
2661				blockParams.weightGridWidth				= 4;
2662				blockParams.weightGridHeight			= 4;
2663				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2664				blockParams.isDualPlane					= false;
2665				blockParams.numPartitions				= numPartitions;
2666				blockParams.isMultiPartSingleCemMode	= true;
2667				blockParams.colorEndpointModes[0]		= 0;
2668				blockParams.partitionSeed				= partitionSeed;
2669
2670				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2671			}
2672
2673			break;
2674		}
2675
2676		// \note Fall-through.
2677		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2678		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2679		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2680		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2681		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
2682		{
2683			for (deUint32 cem = 0; cem < 16; cem++)
2684			{
2685				const bool isHDRCem = cem == 2		||
2686									  cem == 3		||
2687									  cem == 7		||
2688									  cem == 11		||
2689									  cem == 14		||
2690									  cem == 15;
2691
2692				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
2693					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
2694					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
2695					continue;
2696
2697				NormalBlockParams blockParams;
2698				blockParams.weightGridWidth			= 3;
2699				blockParams.weightGridHeight		= 4;
2700				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
2701				blockParams.isDualPlane				= false;
2702				blockParams.numPartitions			= 1;
2703				blockParams.colorEndpointModes[0]	= cem;
2704
2705				{
2706					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
2707					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
2708					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2709					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
2710
2711					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2712					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2713					{
2714						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2715						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
2716
2717						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2718						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2719						{
2720							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2721							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2722
2723							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2724							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2725
2726							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2727						}
2728					}
2729				}
2730			}
2731
2732			break;
2733		}
2734
2735		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2736		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2737		{
2738			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2739
2740			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2741			{
2742				bool validCaseGenerated = false;
2743
2744				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
2745				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
2746				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
2747				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
2748				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
2749				{
2750					NormalBlockParams blockParams;
2751					blockParams.weightGridWidth				= weightGridWidth;
2752					blockParams.weightGridHeight			= weightGridHeight;
2753					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
2754					blockParams.isDualPlane					= isDual != 0;
2755					blockParams.ccs							= 0;
2756					blockParams.numPartitions				= numPartitions;
2757					blockParams.isMultiPartSingleCemMode	= true;
2758					blockParams.colorEndpointModes[0]		= 12;
2759					blockParams.partitionSeed				= 634;
2760
2761					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2762					{
2763						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2764																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2765
2766						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2767						{
2768							validCaseGenerated = true;
2769
2770							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2771							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2772
2773							{
2774								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
2775								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2776								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
2777								iseInputs.endpoint.isGivenInBlockForm = false;
2778
2779								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2780								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2781								{
2782									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2783										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2784
2785									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2786								}
2787							}
2788
2789							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2790							{
2791								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2792								iseInputs.endpoint.isGivenInBlockForm = true;
2793
2794								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2795								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2796								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2797
2798								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2799								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2800								{
2801									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2802									{
2803										for (int i = 0; i < numValuesInISEBlock; i++)
2804											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2805										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2806									}
2807
2808									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2809								}
2810							}
2811						}
2812					}
2813				}
2814
2815				DE_ASSERT(validCaseGenerated);
2816			}
2817
2818			break;
2819		}
2820
2821		case BLOCK_TEST_TYPE_CCS:
2822		// For all partition counts, test all values of the CCS (color component selector).
2823		{
2824			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
2825			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
2826			{
2827				NormalBlockParams blockParams;
2828				blockParams.weightGridWidth				= 3;
2829				blockParams.weightGridHeight			= 3;
2830				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2831				blockParams.isDualPlane					= true;
2832				blockParams.ccs							= ccs;
2833				blockParams.numPartitions				= numPartitions;
2834				blockParams.isMultiPartSingleCemMode	= true;
2835				blockParams.colorEndpointModes[0]		= 8;
2836				blockParams.partitionSeed				= 634;
2837
2838				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2839			}
2840
2841			break;
2842		}
2843
2844		case BLOCK_TEST_TYPE_RANDOM:
2845		// Generate a number of random (including invalid) blocks.
2846		{
2847			const int		numBlocks	= 16384;
2848			const deUint32	seed		= 1;
2849
2850			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2851
2852			generateRandomBlocks(&dst[0], numBlocks, format, seed);
2853
2854			break;
2855		}
2856
2857		default:
2858			DE_ASSERT(false);
2859	}
2860}
2861
2862void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2863{
2864	const IVec3		blockSize			= getBlockPixelSize(format);
2865	de::Random		rnd					(seed);
2866	size_t			numBlocksGenerated	= 0;
2867
2868	DE_ASSERT(isAstcFormat(format));
2869	DE_ASSERT(blockSize.z() == 1);
2870
2871	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2872	{
2873		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2874
2875		generateRandomBlock(curBlockPtr, blockSize, rnd);
2876	}
2877}
2878
2879void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2880{
2881	const IVec3		blockSize			= getBlockPixelSize(format);
2882	de::Random		rnd					(seed);
2883	size_t			numBlocksGenerated	= 0;
2884
2885	DE_ASSERT(isAstcFormat(format));
2886	DE_ASSERT(blockSize.z() == 1);
2887
2888	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2889	{
2890		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2891
2892		do
2893		{
2894			generateRandomBlock(curBlockPtr, blockSize, rnd);
2895		} while (!isValidBlock(curBlockPtr, format, mode));
2896	}
2897}
2898
2899// Generate a number of trivial blocks to fill unneeded space in a texture.
2900void generateDefaultVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2901{
2902	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2903	for (size_t ndx = 0; ndx < numBlocks; ndx++)
2904		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2905}
2906
2907void generateDefaultNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2908{
2909	NormalBlockParams blockParams;
2910
2911	blockParams.weightGridWidth			= 3;
2912	blockParams.weightGridHeight		= 3;
2913	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
2914	blockParams.isDualPlane				= false;
2915	blockParams.numPartitions			= 1;
2916	blockParams.colorEndpointModes[0]	= 8;
2917
2918	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2919	iseInputs.weight.isGivenInBlockForm = false;
2920
2921	const int numWeights		= computeNumWeights(blockParams);
2922	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2923
2924	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2925	{
2926		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2927			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2928
2929		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2930	}
2931}
2932
2933bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2934{
2935	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
2936	const bool				isSRGB			= isAstcSRGBFormat(format);
2937	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2938
2939	// sRGB is not supported in HDR mode
2940	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
2941
2942	union
2943	{
2944		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2945		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2946	} tmpBuffer;
2947	const Block128			blockData		(data);
2948	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2949															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2950
2951	return result == DECOMPRESS_RESULT_VALID_BLOCK;
2952}
2953
2954void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2955{
2956	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
2957
2958#if defined(DE_DEBUG)
2959	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
2960
2961	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
2962			  dst.getHeight()	== blockPixelSize.y() &&
2963			  dst.getDepth()	== blockPixelSize.z());
2964	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2965#endif
2966
2967	// sRGB is not supported in HDR mode
2968	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
2969
2970	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2971}
2972
2973const char* getBlockTestTypeName (BlockTestType testType)
2974{
2975	switch (testType)
2976	{
2977		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
2978		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
2979		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
2980		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
2981		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
2982		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
2983		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
2984		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
2985		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
2986		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
2987		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
2988		case BLOCK_TEST_TYPE_RANDOM:					return "random";
2989		default:
2990			DE_ASSERT(false);
2991			return DE_NULL;
2992	}
2993}
2994
2995const char* getBlockTestTypeDescription (BlockTestType testType)
2996{
2997	switch (testType)
2998	{
2999		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
3000		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
3001		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
3002		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
3003		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
3004		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
3005		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
3006		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
3007		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
3008		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
3009		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
3010		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
3011		default:
3012			DE_ASSERT(false);
3013			return DE_NULL;
3014	}
3015}
3016
3017bool isBlockTestTypeHDROnly (BlockTestType testType)
3018{
3019	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
3020		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
3021		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
3022}
3023
3024Vec4 getBlockTestTypeColorScale (BlockTestType testType)
3025{
3026	switch (testType)
3027	{
3028		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
3029		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
3030		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
3031		default:													return Vec4(1.0f);
3032	}
3033}
3034
3035Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3036{
3037	switch (testType)
3038	{
3039		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
3040		default:											return Vec4(0.0f);
3041	}
3042}
3043
3044} // astc
3045} // tcu
3046