1/*------------------------------------------------------------------------- 2 * drawElements Quality Program Tester Core 3 * ---------------------------------------- 4 * 5 * Copyright 2016 The Android Open Source Project 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); 8 * you may not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, 15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 *//*! 20 * \file 21 * \brief ASTC Utilities. 22 *//*--------------------------------------------------------------------*/ 23 24#include "tcuAstcUtil.hpp" 25#include "deFloat16.h" 26#include "deRandom.hpp" 27#include "deMeta.hpp" 28 29#include <algorithm> 30 31namespace tcu 32{ 33namespace astc 34{ 35 36using std::vector; 37 38namespace 39{ 40 41// Common utilities 42 43enum 44{ 45 MAX_BLOCK_WIDTH = 12, 46 MAX_BLOCK_HEIGHT = 12 47}; 48 49inline deUint32 getBit (deUint32 src, int ndx) 50{ 51 DE_ASSERT(de::inBounds(ndx, 0, 32)); 52 return (src >> ndx) & 1; 53} 54 55inline deUint32 getBits (deUint32 src, int low, int high) 56{ 57 const int numBits = (high-low) + 1; 58 59 DE_ASSERT(de::inRange(numBits, 1, 32)); 60 61 if (numBits < 32) 62 return (deUint32)((src >> low) & ((1u<<numBits)-1)); 63 else 64 return (deUint32)((src >> low) & 0xFFFFFFFFu); 65} 66 67inline bool isBitSet (deUint32 src, int ndx) 68{ 69 return getBit(src, ndx) != 0; 70} 71 72inline deUint32 reverseBits (deUint32 src, int numBits) 73{ 74 DE_ASSERT(de::inRange(numBits, 0, 32)); 75 deUint32 result = 0; 76 for (int i = 0; i < numBits; i++) 77 result |= ((src >> i) & 1) << (numBits-1-i); 78 return result; 79} 80 81inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits) 82{ 83 DE_ASSERT(numSrcBits <= numDstBits); 84 DE_ASSERT((src & ((1<<numSrcBits)-1)) == src); 85 deUint32 dst = 0; 86 for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits) 87 dst |= shift >= 0 ? src << shift : src >> -shift; 88 return dst; 89} 90 91inline deInt32 signExtend (deInt32 src, int numSrcBits) 92{ 93 DE_ASSERT(de::inRange(numSrcBits, 2, 31)); 94 const bool negative = (src & (1 << (numSrcBits-1))) != 0; 95 return src | (negative ? ~((1 << numSrcBits) - 1) : 0); 96} 97 98inline bool isFloat16InfOrNan (deFloat16 v) 99{ 100 return getBits(v, 10, 14) == 31; 101} 102 103enum ISEMode 104{ 105 ISEMODE_TRIT = 0, 106 ISEMODE_QUINT, 107 ISEMODE_PLAIN_BIT, 108 109 ISEMODE_LAST 110}; 111 112struct ISEParams 113{ 114 ISEMode mode; 115 int numBits; 116 117 ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {} 118}; 119 120inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues) 121{ 122 switch (iseParams.mode) 123 { 124 case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits; 125 case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits; 126 case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits; 127 default: 128 DE_ASSERT(false); 129 return -1; 130 } 131} 132 133ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence) 134{ 135 int curBitsForTritMode = 6; 136 int curBitsForQuintMode = 5; 137 int curBitsForPlainBitMode = 8; 138 139 while (true) 140 { 141 DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); 142 143 const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; 144 const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; 145 const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; 146 const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange); 147 148 if (maxRange == tritRange) 149 { 150 const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); 151 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) 152 return ISEParams(ISEMODE_TRIT, curBitsForTritMode); 153 curBitsForTritMode--; 154 } 155 else if (maxRange == quintRange) 156 { 157 const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); 158 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) 159 return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); 160 curBitsForQuintMode--; 161 } 162 else 163 { 164 const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); 165 DE_ASSERT(maxRange == plainBitRange); 166 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) 167 return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); 168 curBitsForPlainBitMode--; 169 } 170 } 171} 172 173inline int computeNumColorEndpointValues (deUint32 endpointMode) 174{ 175 DE_ASSERT(endpointMode < 16); 176 return (endpointMode/4 + 1) * 2; 177} 178 179// Decompression utilities 180 181enum DecompressResult 182{ 183 DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block 184 DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written 185 186 DECOMPRESS_RESULT_LAST 187}; 188 189// A helper for getting bits from a 128-bit block. 190class Block128 191{ 192private: 193 typedef deUint64 Word; 194 195 enum 196 { 197 WORD_BYTES = sizeof(Word), 198 WORD_BITS = 8*WORD_BYTES, 199 NUM_WORDS = 128 / WORD_BITS 200 }; 201 202 DE_STATIC_ASSERT(128 % WORD_BITS == 0); 203 204public: 205 Block128 (const deUint8* src) 206 { 207 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) 208 { 209 m_words[wordNdx] = 0; 210 for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) 211 m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx); 212 } 213 } 214 215 deUint32 getBit (int ndx) const 216 { 217 DE_ASSERT(de::inBounds(ndx, 0, 128)); 218 return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; 219 } 220 221 deUint32 getBits (int low, int high) const 222 { 223 DE_ASSERT(de::inBounds(low, 0, 128)); 224 DE_ASSERT(de::inBounds(high, 0, 128)); 225 DE_ASSERT(de::inRange(high-low+1, 0, 32)); 226 227 if (high-low+1 == 0) 228 return 0; 229 230 const int word0Ndx = low / WORD_BITS; 231 const int word1Ndx = high / WORD_BITS; 232 233 // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. 234 235 if (word0Ndx == word1Ndx) 236 return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS)); 237 else 238 { 239 DE_ASSERT(word1Ndx == word0Ndx + 1); 240 241 return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) | 242 (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS)); 243 } 244 } 245 246 bool isBitSet (int ndx) const 247 { 248 DE_ASSERT(de::inBounds(ndx, 0, 128)); 249 return getBit(ndx) != 0; 250 } 251 252private: 253 Word m_words[NUM_WORDS]; 254}; 255 256// A helper for sequential access into a Block128. 257class BitAccessStream 258{ 259public: 260 BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward) 261 : m_src (src) 262 , m_startNdxInSrc (startNdxInSrc) 263 , m_length (length) 264 , m_forward (forward) 265 , m_ndx (0) 266 { 267 } 268 269 // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. 270 deUint32 getNext (int num) 271 { 272 if (num == 0 || m_ndx >= m_length) 273 return 0; 274 275 const int end = m_ndx + num; 276 const int numBitsFromSrc = de::max(0, de::min(m_length, end) - m_ndx); 277 const int low = m_ndx; 278 const int high = m_ndx + numBitsFromSrc - 1; 279 280 m_ndx += num; 281 282 return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) 283 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); 284 } 285 286private: 287 const Block128& m_src; 288 const int m_startNdxInSrc; 289 const int m_length; 290 const bool m_forward; 291 292 int m_ndx; 293}; 294 295struct ISEDecodedResult 296{ 297 deUint32 m; 298 deUint32 tq; //!< Trit or quint value, depending on ISE mode. 299 deUint32 v; 300}; 301 302// Data from an ASTC block's "block mode" part (i.e. bits [0,10]). 303struct ASTCBlockMode 304{ 305 bool isError; 306 // \note Following fields only relevant if !isError. 307 bool isVoidExtent; 308 // \note Following fields only relevant if !isVoidExtent. 309 bool isDualPlane; 310 int weightGridWidth; 311 int weightGridHeight; 312 ISEParams weightISEParams; 313 314 ASTCBlockMode (void) 315 : isError (true) 316 , isVoidExtent (true) 317 , isDualPlane (true) 318 , weightGridWidth (-1) 319 , weightGridHeight (-1) 320 , weightISEParams (ISEMODE_LAST, -1) 321 { 322 } 323}; 324 325inline int computeNumWeights (const ASTCBlockMode& mode) 326{ 327 return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); 328} 329 330struct ColorEndpointPair 331{ 332 UVec4 e0; 333 UVec4 e1; 334}; 335 336struct TexelWeightPair 337{ 338 deUint32 w[2]; 339}; 340 341ASTCBlockMode getASTCBlockMode (deUint32 blockModeData) 342{ 343 ASTCBlockMode blockMode; 344 blockMode.isError = true; // \note Set to false later, if not error. 345 346 blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; 347 348 if (!blockMode.isVoidExtent) 349 { 350 if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0) 351 return blockMode; // Invalid ("reserved"). 352 353 deUint32 r = (deUint32)-1; // \note Set in the following branches. 354 355 if (getBits(blockModeData, 0, 1) == 0) 356 { 357 const deUint32 r0 = getBit(blockModeData, 4); 358 const deUint32 r1 = getBit(blockModeData, 2); 359 const deUint32 r2 = getBit(blockModeData, 3); 360 const deUint32 i78 = getBits(blockModeData, 7, 8); 361 362 r = (r2 << 2) | (r1 << 1) | (r0 << 0); 363 364 if (i78 == 3) 365 { 366 const bool i5 = isBitSet(blockModeData, 5); 367 blockMode.weightGridWidth = i5 ? 10 : 6; 368 blockMode.weightGridHeight = i5 ? 6 : 10; 369 } 370 else 371 { 372 const deUint32 a = getBits(blockModeData, 5, 6); 373 switch (i78) 374 { 375 case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break; 376 case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break; 377 case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break; 378 default: DE_ASSERT(false); 379 } 380 } 381 } 382 else 383 { 384 const deUint32 r0 = getBit(blockModeData, 4); 385 const deUint32 r1 = getBit(blockModeData, 0); 386 const deUint32 r2 = getBit(blockModeData, 1); 387 const deUint32 i23 = getBits(blockModeData, 2, 3); 388 const deUint32 a = getBits(blockModeData, 5, 6); 389 390 r = (r2 << 2) | (r1 << 1) | (r0 << 0); 391 392 if (i23 == 3) 393 { 394 const deUint32 b = getBit(blockModeData, 7); 395 const bool i8 = isBitSet(blockModeData, 8); 396 blockMode.weightGridWidth = i8 ? b+2 : a+2; 397 blockMode.weightGridHeight = i8 ? a+2 : b+6; 398 } 399 else 400 { 401 const deUint32 b = getBits(blockModeData, 7, 8); 402 403 switch (i23) 404 { 405 case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break; 406 case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break; 407 case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break; 408 default: DE_ASSERT(false); 409 } 410 } 411 } 412 413 const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; 414 const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); 415 blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); 416 417 { 418 ISEMode& m = blockMode.weightISEParams.mode; 419 int& b = blockMode.weightISEParams.numBits; 420 m = ISEMODE_PLAIN_BIT; 421 b = 0; 422 423 if (h) 424 { 425 switch (r) 426 { 427 case 2: m = ISEMODE_QUINT; b = 1; break; 428 case 3: m = ISEMODE_TRIT; b = 2; break; 429 case 4: b = 4; break; 430 case 5: m = ISEMODE_QUINT; b = 2; break; 431 case 6: m = ISEMODE_TRIT; b = 3; break; 432 case 7: b = 5; break; 433 default: DE_ASSERT(false); 434 } 435 } 436 else 437 { 438 switch (r) 439 { 440 case 2: b = 1; break; 441 case 3: m = ISEMODE_TRIT; break; 442 case 4: b = 2; break; 443 case 5: m = ISEMODE_QUINT; break; 444 case 6: m = ISEMODE_TRIT; b = 1; break; 445 case 7: b = 3; break; 446 default: DE_ASSERT(false); 447 } 448 } 449 } 450 } 451 452 blockMode.isError = false; 453 return blockMode; 454} 455 456inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB) 457{ 458 if (isSRGB) 459 { 460 deUint8* const dstU = (deUint8*)dst; 461 462 for (int i = 0; i < blockWidth*blockHeight; i++) 463 { 464 dstU[4*i + 0] = 0xff; 465 dstU[4*i + 1] = 0; 466 dstU[4*i + 2] = 0xff; 467 dstU[4*i + 3] = 0xff; 468 } 469 } 470 else 471 { 472 float* const dstF = (float*)dst; 473 474 for (int i = 0; i < blockWidth*blockHeight; i++) 475 { 476 dstF[4*i + 0] = 1.0f; 477 dstF[4*i + 1] = 0.0f; 478 dstF[4*i + 2] = 1.0f; 479 dstF[4*i + 3] = 1.0f; 480 } 481 } 482} 483 484DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode) 485{ 486 const deUint32 minSExtent = blockData.getBits(12, 24); 487 const deUint32 maxSExtent = blockData.getBits(25, 37); 488 const deUint32 minTExtent = blockData.getBits(38, 50); 489 const deUint32 maxTExtent = blockData.getBits(51, 63); 490 const bool allExtentsAllOnes = minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff; 491 const bool isHDRBlock = blockData.isBitSet(9); 492 493 if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) 494 { 495 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); 496 return DECOMPRESS_RESULT_ERROR; 497 } 498 499 const deUint32 rgba[4] = 500 { 501 blockData.getBits(64, 79), 502 blockData.getBits(80, 95), 503 blockData.getBits(96, 111), 504 blockData.getBits(112, 127) 505 }; 506 507 if (isSRGB) 508 { 509 deUint8* const dstU = (deUint8*)dst; 510 for (int i = 0; i < blockWidth*blockHeight; i++) 511 for (int c = 0; c < 4; c++) 512 dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8); 513 } 514 else 515 { 516 float* const dstF = (float*)dst; 517 518 if (isHDRBlock) 519 { 520 for (int c = 0; c < 4; c++) 521 { 522 if (isFloat16InfOrNan((deFloat16)rgba[c])) 523 throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)"); 524 } 525 526 for (int i = 0; i < blockWidth*blockHeight; i++) 527 for (int c = 0; c < 4; c++) 528 dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]); 529 } 530 else 531 { 532 for (int i = 0; i < blockWidth*blockHeight; i++) 533 for (int c = 0; c < 4; c++) 534 dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f; 535 } 536 } 537 538 return DECOMPRESS_RESULT_VALID_BLOCK; 539} 540 541void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart) 542{ 543 if (numPartitions == 1) 544 endpointModesDst[0] = blockData.getBits(13, 16); 545 else 546 { 547 const deUint32 highLevelSelector = blockData.getBits(23, 24); 548 549 if (highLevelSelector == 0) 550 { 551 const deUint32 mode = blockData.getBits(25, 28); 552 for (int i = 0; i < numPartitions; i++) 553 endpointModesDst[i] = mode; 554 } 555 else 556 { 557 for (int partNdx = 0; partNdx < numPartitions; partNdx++) 558 { 559 const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); 560 const deUint32 lowBit0Ndx = numPartitions + 2*partNdx; 561 const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1; 562 const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4); 563 const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4); 564 565 endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; 566 } 567 } 568 } 569} 570 571int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions) 572{ 573 int result = 0; 574 for (int i = 0; i < numPartitions; i++) 575 result += computeNumColorEndpointValues(endpointModes[i]); 576 return result; 577} 578 579void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) 580{ 581 DE_ASSERT(de::inRange(numValues, 1, 5)); 582 583 deUint32 m[5]; 584 585 m[0] = data.getNext(numBits); 586 deUint32 T01 = data.getNext(2); 587 m[1] = data.getNext(numBits); 588 deUint32 T23 = data.getNext(2); 589 m[2] = data.getNext(numBits); 590 deUint32 T4 = data.getNext(1); 591 m[3] = data.getNext(numBits); 592 deUint32 T56 = data.getNext(2); 593 m[4] = data.getNext(numBits); 594 deUint32 T7 = data.getNext(1); 595 596 switch (numValues) 597 { 598 case 1: 599 T23 = 0; 600 // Fallthrough 601 case 2: 602 T4 = 0; 603 // Fallthrough 604 case 3: 605 T56 = 0; 606 // Fallthrough 607 case 4: 608 T7 = 0; 609 // Fallthrough 610 case 5: 611 break; 612 default: 613 DE_ASSERT(false); 614 } 615 616 const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); 617 618 static const deUint32 tritsFromT[256][5] = 619 { 620 { 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 }, 621 { 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 }, 622 { 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 }, 623 { 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 }, 624 { 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 }, 625 { 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 }, 626 { 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 }, 627 { 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 }, 628 { 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 }, 629 { 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 }, 630 { 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 }, 631 { 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 }, 632 { 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 }, 633 { 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 }, 634 { 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 }, 635 { 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 } 636 }; 637 638 const deUint32 (& trits)[5] = tritsFromT[T]; 639 640 for (int i = 0; i < numValues; i++) 641 { 642 dst[i].m = m[i]; 643 dst[i].tq = trits[i]; 644 dst[i].v = (trits[i] << numBits) + m[i]; 645 } 646} 647 648void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) 649{ 650 DE_ASSERT(de::inRange(numValues, 1, 3)); 651 652 deUint32 m[3]; 653 654 m[0] = data.getNext(numBits); 655 deUint32 Q012 = data.getNext(3); 656 m[1] = data.getNext(numBits); 657 deUint32 Q34 = data.getNext(2); 658 m[2] = data.getNext(numBits); 659 deUint32 Q56 = data.getNext(2); 660 661 switch (numValues) 662 { 663 case 1: 664 Q34 = 0; 665 // Fallthrough 666 case 2: 667 Q56 = 0; 668 // Fallthrough 669 case 3: 670 break; 671 default: 672 DE_ASSERT(false); 673 } 674 675 const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); 676 677 static const deUint32 quintsFromQ[256][3] = 678 { 679 { 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 }, 680 { 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 }, 681 { 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 }, 682 { 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 }, 683 { 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 }, 684 { 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 }, 685 { 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 }, 686 { 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 } 687 }; 688 689 const deUint32 (& quints)[3] = quintsFromQ[Q]; 690 691 for (int i = 0; i < numValues; i++) 692 { 693 dst[i].m = m[i]; 694 dst[i].tq = quints[i]; 695 dst[i].v = (quints[i] << numBits) + m[i]; 696 } 697} 698 699inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits) 700{ 701 dst[0].m = data.getNext(numBits); 702 dst[0].v = dst[0].m; 703} 704 705void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params) 706{ 707 if (params.mode == ISEMODE_TRIT) 708 { 709 const int numBlocks = deDivRoundUp32(numValues, 5); 710 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 711 { 712 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; 713 decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits); 714 } 715 } 716 else if (params.mode == ISEMODE_QUINT) 717 { 718 const int numBlocks = deDivRoundUp32(numValues, 3); 719 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 720 { 721 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; 722 decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits); 723 } 724 } 725 else 726 { 727 DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); 728 for (int i = 0; i < numValues; i++) 729 decodeISEBitBlock(&dst[i], data, params.numBits); 730 } 731} 732 733void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams) 734{ 735 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) 736 { 737 const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); 738 DE_ASSERT(de::inRange(rangeCase, 0, 10)); 739 static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 }; 740 const deUint32 C = Ca[rangeCase]; 741 742 for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) 743 { 744 const deUint32 a = getBit(iseResults[endpointNdx].m, 0); 745 const deUint32 b = getBit(iseResults[endpointNdx].m, 1); 746 const deUint32 c = getBit(iseResults[endpointNdx].m, 2); 747 const deUint32 d = getBit(iseResults[endpointNdx].m, 3); 748 const deUint32 e = getBit(iseResults[endpointNdx].m, 4); 749 const deUint32 f = getBit(iseResults[endpointNdx].m, 5); 750 751 const deUint32 A = a == 0 ? 0 : (1<<9)-1; 752 const deUint32 B = rangeCase == 0 ? 0 753 : rangeCase == 1 ? 0 754 : rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1) 755 : rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2) 756 : rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0) 757 : rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0) 758 : rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0) 759 : rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0) 760 : rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0) 761 : rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0) 762 : rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0) 763 : (deUint32)-1; 764 DE_ASSERT(B != (deUint32)-1); 765 766 dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80); 767 } 768 } 769 else 770 { 771 DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); 772 773 for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) 774 dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); 775 } 776} 777 778inline void bitTransferSigned (deInt32& a, deInt32& b) 779{ 780 b >>= 1; 781 b |= a & 0x80; 782 a >>= 1; 783 a &= 0x3f; 784 if (isBitSet(a, 5)) 785 a -= 0x40; 786} 787 788inline UVec4 clampedRGBA (const IVec4& rgba) 789{ 790 return UVec4(de::clamp(rgba.x(), 0, 0xff), 791 de::clamp(rgba.y(), 0, 0xff), 792 de::clamp(rgba.z(), 0, 0xff), 793 de::clamp(rgba.w(), 0, 0xff)); 794} 795 796inline IVec4 blueContract (int r, int g, int b, int a) 797{ 798 return IVec4((r+b)>>1, (g+b)>>1, b, a); 799} 800 801inline bool isColorEndpointModeHDR (deUint32 mode) 802{ 803 return mode == 2 || 804 mode == 3 || 805 mode == 7 || 806 mode == 11 || 807 mode == 14 || 808 mode == 15; 809} 810 811void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3) 812{ 813 const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); 814 const deUint32 m23 = getBits(v0, 6, 7); 815 const deUint32 majComp = m10 != 3 ? m10 816 : m23 != 3 ? m23 817 : 0; 818 const deUint32 mode = m10 != 3 ? m23 819 : m23 != 3 ? 4 820 : 5; 821 822 deInt32 red = (deInt32)getBits(v0, 0, 5); 823 deInt32 green = (deInt32)getBits(v1, 0, 4); 824 deInt32 blue = (deInt32)getBits(v2, 0, 4); 825 deInt32 scale = (deInt32)getBits(v3, 0, 4); 826 827 { 828#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) 829#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false) 830 831 const deUint32 x0 = getBit(v1, 6); 832 const deUint32 x1 = getBit(v1, 5); 833 const deUint32 x2 = getBit(v2, 6); 834 const deUint32 x3 = getBit(v2, 5); 835 const deUint32 x4 = getBit(v3, 7); 836 const deUint32 x5 = getBit(v3, 6); 837 const deUint32 x6 = getBit(v3, 5); 838 839 deInt32& R = red; 840 deInt32& G = green; 841 deInt32& B = blue; 842 deInt32& S = scale; 843 844 switch (mode) 845 { 846 case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break; 847 case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break; 848 case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break; 849 case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break; 850 case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break; 851 case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break; 852 default: 853 DE_ASSERT(false); 854 } 855 856#undef ASSIGN_X_BITS 857#undef SHOR 858 } 859 860 static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 }; 861 DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); 862 863 red <<= shiftAmounts[mode]; 864 green <<= shiftAmounts[mode]; 865 blue <<= shiftAmounts[mode]; 866 scale <<= shiftAmounts[mode]; 867 868 if (mode != 5) 869 { 870 green = red - green; 871 blue = red - blue; 872 } 873 874 if (majComp == 1) 875 std::swap(red, green); 876 else if (majComp == 2) 877 std::swap(red, blue); 878 879 e0 = UVec4(de::clamp(red - scale, 0, 0xfff), 880 de::clamp(green - scale, 0, 0xfff), 881 de::clamp(blue - scale, 0, 0xfff), 882 0x780); 883 884 e1 = UVec4(de::clamp(red, 0, 0xfff), 885 de::clamp(green, 0, 0xfff), 886 de::clamp(blue, 0, 0xfff), 887 0x780); 888} 889 890void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5) 891{ 892 const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7); 893 894 if (major == 3) 895 { 896 e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780); 897 e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780); 898 } 899 else 900 { 901 const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); 902 903 deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0); 904 deInt32 c = (deInt32)(getBits(v1, 0, 5)); 905 deInt32 b0 = (deInt32)(getBits(v2, 0, 5)); 906 deInt32 b1 = (deInt32)(getBits(v3, 0, 5)); 907 deInt32 d0 = (deInt32)(getBits(v4, 0, 4)); 908 deInt32 d1 = (deInt32)(getBits(v5, 0, 4)); 909 910 { 911#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) 912#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false) 913 914 const deUint32 x0 = getBit(v2, 6); 915 const deUint32 x1 = getBit(v3, 6); 916 const deUint32 x2 = getBit(v4, 6); 917 const deUint32 x3 = getBit(v5, 6); 918 const deUint32 x4 = getBit(v4, 5); 919 const deUint32 x5 = getBit(v5, 5); 920 921 switch (mode) 922 { 923 case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break; 924 case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break; 925 case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break; 926 case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break; 927 case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break; 928 case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break; 929 case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break; 930 case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break; 931 default: 932 DE_ASSERT(false); 933 } 934 935#undef ASSIGN_X_BITS 936#undef SHOR 937 } 938 939 static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 }; 940 DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); 941 942 d0 = signExtend(d0, numDBits[mode]); 943 d1 = signExtend(d1, numDBits[mode]); 944 945 const int shiftAmount = (mode >> 1) ^ 3; 946 a <<= shiftAmount; 947 c <<= shiftAmount; 948 b0 <<= shiftAmount; 949 b1 <<= shiftAmount; 950 d0 <<= shiftAmount; 951 d1 <<= shiftAmount; 952 953 e0 = UVec4(de::clamp(a-c, 0, 0xfff), 954 de::clamp(a-b0-c-d0, 0, 0xfff), 955 de::clamp(a-b1-c-d1, 0, 0xfff), 956 0x780); 957 958 e1 = UVec4(de::clamp(a, 0, 0xfff), 959 de::clamp(a-b0, 0, 0xfff), 960 de::clamp(a-b1, 0, 0xfff), 961 0x780); 962 963 if (major == 1) 964 { 965 std::swap(e0.x(), e0.y()); 966 std::swap(e1.x(), e1.y()); 967 } 968 else if (major == 2) 969 { 970 std::swap(e0.x(), e0.z()); 971 std::swap(e1.x(), e1.z()); 972 } 973 } 974} 975 976void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In) 977{ 978 decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); 979 980 const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); 981 deInt32 v6 = (deInt32)getBits(v6In, 0, 6); 982 deInt32 v7 = (deInt32)getBits(v7In, 0, 6); 983 984 if (mode == 3) 985 { 986 e0.w() = v6 << 5; 987 e1.w() = v7 << 5; 988 } 989 else 990 { 991 v6 |= (v7 << (mode+1)) & 0x780; 992 v7 &= (0x3f >> mode); 993 v7 ^= 0x20 >> mode; 994 v7 -= 0x20 >> mode; 995 v6 <<= 4-mode; 996 v7 <<= 4-mode; 997 998 v7 += v6; 999 v7 = de::clamp(v7, 0, 0xfff); 1000 e0.w() = v6; 1001 e1.w() = v7; 1002 } 1003} 1004 1005void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions) 1006{ 1007 int unquantizedNdx = 0; 1008 1009 for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) 1010 { 1011 const deUint32 endpointMode = endpointModes[partitionNdx]; 1012 const deUint32* v = &unquantizedEndpoints[unquantizedNdx]; 1013 UVec4& e0 = dst[partitionNdx].e0; 1014 UVec4& e1 = dst[partitionNdx].e1; 1015 1016 unquantizedNdx += computeNumColorEndpointValues(endpointMode); 1017 1018 switch (endpointMode) 1019 { 1020 case 0: 1021 e0 = UVec4(v[0], v[0], v[0], 0xff); 1022 e1 = UVec4(v[1], v[1], v[1], 0xff); 1023 break; 1024 1025 case 1: 1026 { 1027 const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); 1028 const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5)); 1029 e0 = UVec4(L0, L0, L0, 0xff); 1030 e1 = UVec4(L1, L1, L1, 0xff); 1031 break; 1032 } 1033 1034 case 2: 1035 { 1036 const deUint32 v1Gr = v[1] >= v[0]; 1037 const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8; 1038 const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8; 1039 1040 e0 = UVec4(y0, y0, y0, 0x780); 1041 e1 = UVec4(y1, y1, y1, 0x780); 1042 break; 1043 } 1044 1045 case 3: 1046 { 1047 const bool m = isBitSet(v[0], 7); 1048 const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) 1049 : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); 1050 const deUint32 d = m ? getBits(v[1], 0, 4) << 2 1051 : getBits(v[1], 0, 3) << 1; 1052 const deUint32 y1 = de::min(0xfffu, y0+d); 1053 1054 e0 = UVec4(y0, y0, y0, 0x780); 1055 e1 = UVec4(y1, y1, y1, 0x780); 1056 break; 1057 } 1058 1059 case 4: 1060 e0 = UVec4(v[0], v[0], v[0], v[2]); 1061 e1 = UVec4(v[1], v[1], v[1], v[3]); 1062 break; 1063 1064 case 5: 1065 { 1066 deInt32 v0 = (deInt32)v[0]; 1067 deInt32 v1 = (deInt32)v[1]; 1068 deInt32 v2 = (deInt32)v[2]; 1069 deInt32 v3 = (deInt32)v[3]; 1070 bitTransferSigned(v1, v0); 1071 bitTransferSigned(v3, v2); 1072 1073 e0 = clampedRGBA(IVec4(v0, v0, v0, v2)); 1074 e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3)); 1075 break; 1076 } 1077 1078 case 6: 1079 e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff); 1080 e1 = UVec4(v[0], v[1], v[2], 0xff); 1081 break; 1082 1083 case 7: 1084 decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); 1085 break; 1086 1087 case 8: 1088 if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) 1089 { 1090 e0 = UVec4(v[0], v[2], v[4], 0xff); 1091 e1 = UVec4(v[1], v[3], v[5], 0xff); 1092 } 1093 else 1094 { 1095 e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); 1096 e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); 1097 } 1098 break; 1099 1100 case 9: 1101 { 1102 deInt32 v0 = (deInt32)v[0]; 1103 deInt32 v1 = (deInt32)v[1]; 1104 deInt32 v2 = (deInt32)v[2]; 1105 deInt32 v3 = (deInt32)v[3]; 1106 deInt32 v4 = (deInt32)v[4]; 1107 deInt32 v5 = (deInt32)v[5]; 1108 bitTransferSigned(v1, v0); 1109 bitTransferSigned(v3, v2); 1110 bitTransferSigned(v5, v4); 1111 1112 if (v1+v3+v5 >= 0) 1113 { 1114 e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff)); 1115 e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff)); 1116 } 1117 else 1118 { 1119 e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff)); 1120 e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); 1121 } 1122 break; 1123 } 1124 1125 case 10: 1126 e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]); 1127 e1 = UVec4(v[0], v[1], v[2], v[5]); 1128 break; 1129 1130 case 11: 1131 decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); 1132 break; 1133 1134 case 12: 1135 if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) 1136 { 1137 e0 = UVec4(v[0], v[2], v[4], v[6]); 1138 e1 = UVec4(v[1], v[3], v[5], v[7]); 1139 } 1140 else 1141 { 1142 e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); 1143 e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); 1144 } 1145 break; 1146 1147 case 13: 1148 { 1149 deInt32 v0 = (deInt32)v[0]; 1150 deInt32 v1 = (deInt32)v[1]; 1151 deInt32 v2 = (deInt32)v[2]; 1152 deInt32 v3 = (deInt32)v[3]; 1153 deInt32 v4 = (deInt32)v[4]; 1154 deInt32 v5 = (deInt32)v[5]; 1155 deInt32 v6 = (deInt32)v[6]; 1156 deInt32 v7 = (deInt32)v[7]; 1157 bitTransferSigned(v1, v0); 1158 bitTransferSigned(v3, v2); 1159 bitTransferSigned(v5, v4); 1160 bitTransferSigned(v7, v6); 1161 1162 if (v1+v3+v5 >= 0) 1163 { 1164 e0 = clampedRGBA(IVec4(v0, v2, v4, v6)); 1165 e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7)); 1166 } 1167 else 1168 { 1169 e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7)); 1170 e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); 1171 } 1172 1173 break; 1174 } 1175 1176 case 14: 1177 decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); 1178 e0.w() = v[6]; 1179 e1.w() = v[7]; 1180 break; 1181 1182 case 15: 1183 decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); 1184 break; 1185 1186 default: 1187 DE_ASSERT(false); 1188 } 1189 } 1190} 1191 1192void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable) 1193{ 1194 const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29; 1195 ISEDecodedResult colorEndpointData[18]; 1196 1197 { 1198 BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); 1199 decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); 1200 } 1201 1202 { 1203 deUint32 unquantizedEndpoints[18]; 1204 unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); 1205 decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); 1206 } 1207} 1208 1209void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode) 1210{ 1211 const int numWeights = computeNumWeights(blockMode); 1212 const ISEParams& iseParams = blockMode.weightISEParams; 1213 1214 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) 1215 { 1216 const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); 1217 1218 if (rangeCase == 0 || rangeCase == 1) 1219 { 1220 static const deUint32 map0[3] = { 0, 32, 63 }; 1221 static const deUint32 map1[5] = { 0, 16, 32, 47, 63 }; 1222 const deUint32* const map = rangeCase == 0 ? &map0[0] : &map1[0]; 1223 for (int i = 0; i < numWeights; i++) 1224 { 1225 DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); 1226 dst[i] = map[weightGrid[i].v]; 1227 } 1228 } 1229 else 1230 { 1231 DE_ASSERT(rangeCase <= 6); 1232 static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 }; 1233 const deUint32 C = Ca[rangeCase-2]; 1234 1235 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) 1236 { 1237 const deUint32 a = getBit(weightGrid[weightNdx].m, 0); 1238 const deUint32 b = getBit(weightGrid[weightNdx].m, 1); 1239 const deUint32 c = getBit(weightGrid[weightNdx].m, 2); 1240 1241 const deUint32 A = a == 0 ? 0 : (1<<7)-1; 1242 const deUint32 B = rangeCase == 2 ? 0 1243 : rangeCase == 3 ? 0 1244 : rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0) 1245 : rangeCase == 5 ? (b << 6) | (b << 1) 1246 : rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0) 1247 : (deUint32)-1; 1248 1249 dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20); 1250 } 1251 } 1252 } 1253 else 1254 { 1255 DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); 1256 1257 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) 1258 dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); 1259 } 1260 1261 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) 1262 dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; 1263 1264 // Initialize nonexistent weights to poison values 1265 for (int weightNdx = numWeights; weightNdx < 64; weightNdx++) 1266 dst[weightNdx] = ~0u; 1267 1268} 1269 1270void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) 1271{ 1272 const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; 1273 const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1); 1274 const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1); 1275 1276 DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights)); 1277 1278 for (int texelY = 0; texelY < blockHeight; texelY++) 1279 { 1280 for (int texelX = 0; texelX < blockWidth; texelX++) 1281 { 1282 const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6; 1283 const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6; 1284 const deUint32 jX = gX >> 4; 1285 const deUint32 jY = gY >> 4; 1286 const deUint32 fX = gX & 0xf; 1287 const deUint32 fY = gY & 0xf; 1288 1289 const deUint32 w11 = (fX*fY + 8) >> 4; 1290 const deUint32 w10 = fY - w11; 1291 const deUint32 w01 = fX - w11; 1292 const deUint32 w00 = 16 - fX - fY + w11; 1293 1294 const deUint32 i00 = jY*blockMode.weightGridWidth + jX; 1295 const deUint32 i01 = i00 + 1; 1296 const deUint32 i10 = i00 + blockMode.weightGridWidth; 1297 const deUint32 i11 = i00 + blockMode.weightGridWidth + 1; 1298 1299 // These addresses can be out of bounds, but respective weights will be 0 then. 1300 DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0); 1301 DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0); 1302 DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0); 1303 DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0); 1304 1305 for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) 1306 { 1307 // & 0x3f clamps address to bounds of unquantizedWeights 1308 const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; 1309 const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; 1310 const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; 1311 const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; 1312 1313 dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; 1314 } 1315 } 1316 } 1317} 1318 1319void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) 1320{ 1321 ISEDecodedResult weightGrid[64]; 1322 1323 { 1324 BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); 1325 decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); 1326 } 1327 1328 { 1329 deUint32 unquantizedWeights[64]; 1330 unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); 1331 interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode); 1332 } 1333} 1334 1335inline deUint32 hash52 (deUint32 v) 1336{ 1337 deUint32 p = v; 1338 p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; 1339 p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; 1340 p ^= p << 6; p ^= p >> 17; 1341 return p; 1342} 1343 1344int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock) 1345{ 1346 DE_ASSERT(zIn == 0); 1347 const deUint32 x = smallBlock ? xIn << 1 : xIn; 1348 const deUint32 y = smallBlock ? yIn << 1 : yIn; 1349 const deUint32 z = smallBlock ? zIn << 1 : zIn; 1350 const deUint32 seed = seedIn + 1024*(numPartitions-1); 1351 const deUint32 rnum = hash52(seed); 1352 deUint8 seed1 = (deUint8)( rnum & 0xf); 1353 deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf); 1354 deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf); 1355 deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf); 1356 deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf); 1357 deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf); 1358 deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf); 1359 deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf); 1360 deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf); 1361 deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf); 1362 deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf); 1363 deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf); 1364 1365 seed1 = (deUint8)(seed1 * seed1 ); 1366 seed2 = (deUint8)(seed2 * seed2 ); 1367 seed3 = (deUint8)(seed3 * seed3 ); 1368 seed4 = (deUint8)(seed4 * seed4 ); 1369 seed5 = (deUint8)(seed5 * seed5 ); 1370 seed6 = (deUint8)(seed6 * seed6 ); 1371 seed7 = (deUint8)(seed7 * seed7 ); 1372 seed8 = (deUint8)(seed8 * seed8 ); 1373 seed9 = (deUint8)(seed9 * seed9 ); 1374 seed10 = (deUint8)(seed10 * seed10); 1375 seed11 = (deUint8)(seed11 * seed11); 1376 seed12 = (deUint8)(seed12 * seed12); 1377 1378 const int shA = (seed & 2) != 0 ? 4 : 5; 1379 const int shB = numPartitions == 3 ? 6 : 5; 1380 const int sh1 = (seed & 1) != 0 ? shA : shB; 1381 const int sh2 = (seed & 1) != 0 ? shB : shA; 1382 const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; 1383 1384 seed1 = (deUint8)(seed1 >> sh1); 1385 seed2 = (deUint8)(seed2 >> sh2); 1386 seed3 = (deUint8)(seed3 >> sh1); 1387 seed4 = (deUint8)(seed4 >> sh2); 1388 seed5 = (deUint8)(seed5 >> sh1); 1389 seed6 = (deUint8)(seed6 >> sh2); 1390 seed7 = (deUint8)(seed7 >> sh1); 1391 seed8 = (deUint8)(seed8 >> sh2); 1392 seed9 = (deUint8)(seed9 >> sh3); 1393 seed10 = (deUint8)(seed10 >> sh3); 1394 seed11 = (deUint8)(seed11 >> sh3); 1395 seed12 = (deUint8)(seed12 >> sh3); 1396 1397 const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14)); 1398 const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10)); 1399 const int c = numPartitions >= 3 ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0; 1400 const int d = numPartitions >= 4 ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0; 1401 1402 return a >= b && a >= c && a >= d ? 0 1403 : b >= c && b >= d ? 1 1404 : c >= d ? 2 1405 : 3; 1406} 1407 1408DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed, 1409 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes) 1410{ 1411 const bool smallBlock = blockWidth*blockHeight < 31; 1412 DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK; 1413 bool isHDREndpoint[4]; 1414 1415 for (int i = 0; i < numPartitions; i++) 1416 isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); 1417 1418 for (int texelY = 0; texelY < blockHeight; texelY++) 1419 for (int texelX = 0; texelX < blockWidth; texelX++) 1420 { 1421 const int texelNdx = texelY*blockWidth + texelX; 1422 const int colorEndpointNdx = numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock); 1423 DE_ASSERT(colorEndpointNdx < numPartitions); 1424 const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0; 1425 const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1; 1426 const TexelWeightPair& weight = texelWeights[texelNdx]; 1427 1428 if (isLDRMode && isHDREndpoint[colorEndpointNdx]) 1429 { 1430 if (isSRGB) 1431 { 1432 ((deUint8*)dst)[texelNdx*4 + 0] = 0xff; 1433 ((deUint8*)dst)[texelNdx*4 + 1] = 0; 1434 ((deUint8*)dst)[texelNdx*4 + 2] = 0xff; 1435 ((deUint8*)dst)[texelNdx*4 + 3] = 0xff; 1436 } 1437 else 1438 { 1439 ((float*)dst)[texelNdx*4 + 0] = 1.0f; 1440 ((float*)dst)[texelNdx*4 + 1] = 0; 1441 ((float*)dst)[texelNdx*4 + 2] = 1.0f; 1442 ((float*)dst)[texelNdx*4 + 3] = 1.0f; 1443 } 1444 1445 result = DECOMPRESS_RESULT_ERROR; 1446 } 1447 else 1448 { 1449 for (int channelNdx = 0; channelNdx < 4; channelNdx++) 1450 { 1451 if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR. 1452 { 1453 const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); 1454 const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); 1455 const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; 1456 const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; 1457 1458 if (isSRGB) 1459 ((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8); 1460 else 1461 ((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f; 1462 } 1463 else 1464 { 1465 DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value)); 1466 const deUint32 c0 = e0[channelNdx] << 4; 1467 const deUint32 c1 = e1[channelNdx] << 4; 1468 const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; 1469 const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; 1470 const deUint32 e = getBits(c, 11, 15); 1471 const deUint32 m = getBits(c, 0, 10); 1472 const deUint32 mt = m < 512 ? 3*m 1473 : m >= 1536 ? 5*m - 2048 1474 : 4*m - 512; 1475 const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3)); 1476 1477 ((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); 1478 } 1479 } 1480 } 1481 } 1482 1483 return result; 1484} 1485 1486DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) 1487{ 1488 DE_ASSERT(isLDR || !isSRGB); 1489 1490 // Decode block mode. 1491 1492 const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); 1493 1494 // Check for block mode errors. 1495 1496 if (blockMode.isError) 1497 { 1498 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); 1499 return DECOMPRESS_RESULT_ERROR; 1500 } 1501 1502 // Separate path for void-extent. 1503 1504 if (blockMode.isVoidExtent) 1505 return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); 1506 1507 // Compute weight grid values. 1508 1509 const int numWeights = computeNumWeights(blockMode); 1510 const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); 1511 const int numPartitions = (int)blockData.getBits(11, 12) + 1; 1512 1513 // Check for errors in weight grid, partition and dual-plane parameters. 1514 1515 if (numWeights > 64 || 1516 numWeightDataBits > 96 || 1517 numWeightDataBits < 24 || 1518 blockMode.weightGridWidth > blockWidth || 1519 blockMode.weightGridHeight > blockHeight || 1520 (numPartitions == 4 && blockMode.isDualPlane)) 1521 { 1522 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); 1523 return DECOMPRESS_RESULT_ERROR; 1524 } 1525 1526 // Compute number of bits available for color endpoint data. 1527 1528 const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0; 1529 const int numConfigDataBits = (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) + 1530 (blockMode.isDualPlane ? 2 : 0); 1531 const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; 1532 const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 1533 : numPartitions == 4 ? 7 1534 : numPartitions == 3 ? 4 1535 : numPartitions == 2 ? 1 1536 : 0); 1537 // Decode color endpoint modes. 1538 1539 deUint32 colorEndpointModes[4]; 1540 decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); 1541 1542 const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); 1543 1544 // Check for errors in color endpoint value count. 1545 1546 if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5)) 1547 { 1548 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); 1549 return DECOMPRESS_RESULT_ERROR; 1550 } 1551 1552 // Compute color endpoints. 1553 1554 ColorEndpointPair colorEndpoints[4]; 1555 computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, 1556 computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints); 1557 1558 // Compute texel weights. 1559 1560 TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT]; 1561 computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); 1562 1563 // Set texel colors. 1564 1565 const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1; 1566 const deUint32 partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1; 1567 1568 return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); 1569} 1570 1571void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR) 1572{ 1573 DE_ASSERT(isLDR || !isSRGB); 1574 1575 const int blockWidth = dst.getWidth(); 1576 const int blockHeight = dst.getHeight(); 1577 1578 union 1579 { 1580 deUint8 sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4]; 1581 float linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4]; 1582 } decompressedBuffer; 1583 1584 const Block128 blockData(data); 1585 decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0], 1586 blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR); 1587 1588 if (isSRGB) 1589 { 1590 for (int i = 0; i < blockHeight; i++) 1591 for (int j = 0; j < blockWidth; j++) 1592 { 1593 dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0], 1594 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1], 1595 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2], 1596 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i); 1597 } 1598 } 1599 else 1600 { 1601 for (int i = 0; i < blockHeight; i++) 1602 for (int j = 0; j < blockWidth; j++) 1603 { 1604 dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0], 1605 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1], 1606 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2], 1607 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i); 1608 } 1609 } 1610} 1611 1612// Helper class for setting bits in a 128-bit block. 1613class AssignBlock128 1614{ 1615private: 1616 typedef deUint64 Word; 1617 1618 enum 1619 { 1620 WORD_BYTES = sizeof(Word), 1621 WORD_BITS = 8*WORD_BYTES, 1622 NUM_WORDS = 128 / WORD_BITS 1623 }; 1624 1625 DE_STATIC_ASSERT(128 % WORD_BITS == 0); 1626 1627public: 1628 AssignBlock128 (void) 1629 { 1630 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) 1631 m_words[wordNdx] = 0; 1632 } 1633 1634 void setBit (int ndx, deUint32 val) 1635 { 1636 DE_ASSERT(de::inBounds(ndx, 0, 128)); 1637 DE_ASSERT((val & 1) == val); 1638 const int wordNdx = ndx / WORD_BITS; 1639 const int bitNdx = ndx % WORD_BITS; 1640 m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx); 1641 } 1642 1643 void setBits (int low, int high, deUint32 bits) 1644 { 1645 DE_ASSERT(de::inBounds(low, 0, 128)); 1646 DE_ASSERT(de::inBounds(high, 0, 128)); 1647 DE_ASSERT(de::inRange(high-low+1, 0, 32)); 1648 DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits); 1649 1650 if (high-low+1 == 0) 1651 return; 1652 1653 const int word0Ndx = low / WORD_BITS; 1654 const int word1Ndx = high / WORD_BITS; 1655 const int lowNdxInW0 = low % WORD_BITS; 1656 1657 if (word0Ndx == word1Ndx) 1658 m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0); 1659 else 1660 { 1661 DE_ASSERT(word1Ndx == word0Ndx + 1); 1662 1663 const int highNdxInW1 = high % WORD_BITS; 1664 const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0; 1665 const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1; 1666 1667 m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0); 1668 m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1)) | (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0); 1669 } 1670 } 1671 1672 void assignToMemory (deUint8* dst) const 1673 { 1674 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) 1675 { 1676 for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) 1677 dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff); 1678 } 1679 } 1680 1681 void pushBytesToVector (vector<deUint8>& dst) const 1682 { 1683 const int assignStartIndex = (int)dst.size(); 1684 dst.resize(dst.size() + BLOCK_SIZE_BYTES); 1685 assignToMemory(&dst[assignStartIndex]); 1686 } 1687 1688private: 1689 Word m_words[NUM_WORDS]; 1690}; 1691 1692// A helper for sequential access into a AssignBlock128. 1693class BitAssignAccessStream 1694{ 1695public: 1696 BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward) 1697 : m_dst (dst) 1698 , m_startNdxInSrc (startNdxInSrc) 1699 , m_length (length) 1700 , m_forward (forward) 1701 , m_ndx (0) 1702 { 1703 } 1704 1705 // Set the next num bits. Bits at positions greater than or equal to m_length are not touched. 1706 void setNext (int num, deUint32 bits) 1707 { 1708 DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits); 1709 1710 if (num == 0 || m_ndx >= m_length) 1711 return; 1712 1713 const int end = m_ndx + num; 1714 const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx); 1715 const int low = m_ndx; 1716 const int high = m_ndx + numBitsToDst - 1; 1717 const deUint32 actualBits = getBits(bits, 0, numBitsToDst-1); 1718 1719 m_ndx += num; 1720 1721 return m_forward ? m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits) 1722 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst)); 1723 } 1724 1725private: 1726 AssignBlock128& m_dst; 1727 const int m_startNdxInSrc; 1728 const int m_length; 1729 const bool m_forward; 1730 1731 int m_ndx; 1732}; 1733 1734struct VoidExtentParams 1735{ 1736 DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value)); 1737 bool isHDR; 1738 deUint16 r; 1739 deUint16 g; 1740 deUint16 b; 1741 deUint16 a; 1742 // \note Currently extent coordinates are all set to all-ones. 1743 1744 VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {} 1745}; 1746 1747static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params) 1748{ 1749 AssignBlock128 block; 1750 1751 block.setBits(0, 8, 0x1fc); // \note Marks void-extent block. 1752 block.setBit(9, params.isHDR); 1753 block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose. 1754 1755 // Extent coordinates - currently all-ones. 1756 block.setBits(12, 24, 0x1fff); 1757 block.setBits(25, 37, 0x1fff); 1758 block.setBits(38, 50, 0x1fff); 1759 block.setBits(51, 63, 0x1fff); 1760 1761 DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) && 1762 !isFloat16InfOrNan(params.g) && 1763 !isFloat16InfOrNan(params.b) && 1764 !isFloat16InfOrNan(params.a))); 1765 1766 block.setBits(64, 79, params.r); 1767 block.setBits(80, 95, params.g); 1768 block.setBits(96, 111, params.b); 1769 block.setBits(112, 127, params.a); 1770 1771 return block; 1772} 1773 1774// An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the 1775// range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed 1776// so we can test all possible values of T and Q in a block, since multiple T or Q values may map 1777// to the same set of decoded values. 1778struct ISEInput 1779{ 1780 struct Block 1781 { 1782 deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block. 1783 deUint32 bitValues[5]; 1784 }; 1785 1786 bool isGivenInBlockForm; 1787 union 1788 { 1789 //!< \note 64 comes from the maximum number of weight values in an ASTC block. 1790 deUint32 plain[64]; 1791 Block block[64]; 1792 } value; 1793 1794 ISEInput (void) 1795 : isGivenInBlockForm (false) 1796 { 1797 } 1798}; 1799 1800static inline deUint32 computeISERangeMax (const ISEParams& iseParams) 1801{ 1802 switch (iseParams.mode) 1803 { 1804 case ISEMODE_TRIT: return (1u << iseParams.numBits) * 3 - 1; 1805 case ISEMODE_QUINT: return (1u << iseParams.numBits) * 5 - 1; 1806 case ISEMODE_PLAIN_BIT: return (1u << iseParams.numBits) - 1; 1807 default: 1808 DE_ASSERT(false); 1809 return -1; 1810 } 1811} 1812 1813struct NormalBlockParams 1814{ 1815 int weightGridWidth; 1816 int weightGridHeight; 1817 ISEParams weightISEParams; 1818 bool isDualPlane; 1819 deUint32 ccs; //! \note Irrelevant if !isDualPlane. 1820 int numPartitions; 1821 deUint32 colorEndpointModes[4]; 1822 // \note Below members are irrelevant if numPartitions == 1. 1823 bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0]. 1824 deUint32 partitionSeed; 1825 1826 NormalBlockParams (void) 1827 : weightGridWidth (-1) 1828 , weightGridHeight (-1) 1829 , weightISEParams (ISEMODE_LAST, -1) 1830 , isDualPlane (true) 1831 , ccs ((deUint32)-1) 1832 , numPartitions (-1) 1833 , isMultiPartSingleCemMode (false) 1834 , partitionSeed ((deUint32)-1) 1835 { 1836 colorEndpointModes[0] = 0; 1837 colorEndpointModes[1] = 0; 1838 colorEndpointModes[2] = 0; 1839 colorEndpointModes[3] = 0; 1840 } 1841}; 1842 1843struct NormalBlockISEInputs 1844{ 1845 ISEInput weight; 1846 ISEInput endpoint; 1847 1848 NormalBlockISEInputs (void) 1849 : weight () 1850 , endpoint () 1851 { 1852 } 1853}; 1854 1855static inline int computeNumWeights (const NormalBlockParams& params) 1856{ 1857 return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1); 1858} 1859 1860static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params) 1861{ 1862 const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params)); 1863 const int numConfigDataBits = (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) + 1864 (params.isDualPlane ? 2 : 0); 1865 1866 return 128 - numWeightBits - numConfigDataBits; 1867} 1868 1869static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode) 1870{ 1871 if (isMultiPartSingleCemMode) 1872 return numPartitions * computeNumColorEndpointValues(endpointModes[0]); 1873 else 1874 { 1875 int result = 0; 1876 for (int i = 0; i < numPartitions; i++) 1877 result += computeNumColorEndpointValues(endpointModes[i]); 1878 return result; 1879 } 1880} 1881 1882static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight) 1883{ 1884 const int numWeights = computeNumWeights(params); 1885 const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights); 1886 const int numColorEndpointValues = computeNumColorEndpointValues(¶ms.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode); 1887 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params); 1888 1889 return numWeights <= 64 && 1890 de::inRange(numWeightBits, 24, 96) && 1891 params.weightGridWidth <= blockWidth && 1892 params.weightGridHeight <= blockHeight && 1893 !(params.numPartitions == 4 && params.isDualPlane) && 1894 numColorEndpointValues <= 18 && 1895 numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5); 1896} 1897 1898// Write bits 0 to 10 of an ASTC block. 1899static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams) 1900{ 1901 const deUint32 d = blockParams.isDualPlane != 0; 1902 // r and h initialized in switch below. 1903 deUint32 r; 1904 deUint32 h; 1905 // a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below. 1906 deUint32 a = (deUint32)-1; 1907 deUint32 b = (deUint32)-1; 1908 int blockModeLayoutNdx; 1909 1910 // Find the values of r and h (ISE range). 1911 switch (computeISERangeMax(blockParams.weightISEParams)) 1912 { 1913 case 1: r = 2; h = 0; break; 1914 case 2: r = 3; h = 0; break; 1915 case 3: r = 4; h = 0; break; 1916 case 4: r = 5; h = 0; break; 1917 case 5: r = 6; h = 0; break; 1918 case 7: r = 7; h = 0; break; 1919 1920 case 9: r = 2; h = 1; break; 1921 case 11: r = 3; h = 1; break; 1922 case 15: r = 4; h = 1; break; 1923 case 19: r = 5; h = 1; break; 1924 case 23: r = 6; h = 1; break; 1925 case 31: r = 7; h = 1; break; 1926 1927 default: 1928 DE_ASSERT(false); 1929 r = (deUint32)-1; 1930 h = (deUint32)-1; 1931 } 1932 1933 // Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec. 1934 1935 { 1936 enum BlockModeLayoutABVariable { Z=0, A=1, B=2 }; 1937 1938 static const struct BlockModeLayout 1939 { 1940 int aNumBits; 1941 int bNumBits; 1942 BlockModeLayoutABVariable gridWidthVariableTerm; 1943 int gridWidthConstantTerm; 1944 BlockModeLayoutABVariable gridHeightVariableTerm; 1945 int gridHeightConstantTerm; 1946 } blockModeLayouts[] = 1947 { 1948 { 2, 2, B, 4, A, 2}, 1949 { 2, 2, B, 8, A, 2}, 1950 { 2, 2, A, 2, B, 8}, 1951 { 2, 1, A, 2, B, 6}, 1952 { 2, 1, B, 2, A, 2}, 1953 { 2, 0, Z, 12, A, 2}, 1954 { 2, 0, A, 2, Z, 12}, 1955 { 0, 0, Z, 6, Z, 10}, 1956 { 0, 0, Z, 10, Z, 6}, 1957 { 2, 2, A, 6, B, 6} 1958 }; 1959 1960 for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++) 1961 { 1962 const BlockModeLayout& layout = blockModeLayouts[blockModeLayoutNdx]; 1963 const int aMax = (1 << layout.aNumBits) - 1; 1964 const int bMax = (1 << layout.bNumBits) - 1; 1965 const int variableOffsetsMax[3] = { 0, aMax, bMax }; 1966 const int widthMin = layout.gridWidthConstantTerm; 1967 const int heightMin = layout.gridHeightConstantTerm; 1968 const int widthMax = widthMin + variableOffsetsMax[layout.gridWidthVariableTerm]; 1969 const int heightMax = heightMin + variableOffsetsMax[layout.gridHeightVariableTerm]; 1970 1971 DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z); 1972 1973 if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) && 1974 de::inRange(blockParams.weightGridHeight, heightMin, heightMax)) 1975 { 1976 deUint32 defaultvalue = 0; 1977 deUint32& widthVariable = layout.gridWidthVariableTerm == A ? a : layout.gridWidthVariableTerm == B ? b : defaultvalue; 1978 deUint32& heightVariable = layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : defaultvalue; 1979 1980 widthVariable = blockParams.weightGridWidth - layout.gridWidthConstantTerm; 1981 heightVariable = blockParams.weightGridHeight - layout.gridHeightConstantTerm; 1982 1983 break; 1984 } 1985 } 1986 } 1987 1988 // Set block mode bits. 1989 1990 const deUint32 a0 = getBit(a, 0); 1991 const deUint32 a1 = getBit(a, 1); 1992 const deUint32 b0 = getBit(b, 0); 1993 const deUint32 b1 = getBit(b, 1); 1994 const deUint32 r0 = getBit(r, 0); 1995 const deUint32 r1 = getBit(r, 1); 1996 const deUint32 r2 = getBit(r, 2); 1997 1998#define SB(NDX, VAL) dst.setBit((NDX), (VAL)) 1999#define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false) 2000 2001 switch (blockModeLayoutNdx) 2002 { 2003 case 0: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 0, r2, r1); break; 2004 case 1: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 1, r2, r1); break; 2005 case 2: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 1, 0, r2, r1); break; 2006 case 3: ASSIGN_BITS(d, h, 0, b, a1, a0, r0, 1, 1, r2, r1); break; 2007 case 4: ASSIGN_BITS(d, h, 1, b, a1, a0, r0, 1, 1, r2, r1); break; 2008 case 5: ASSIGN_BITS(d, h, 0, 0, a1, a0, r0, r2, r1, 0, 0); break; 2009 case 6: ASSIGN_BITS(d, h, 0, 1, a1, a0, r0, r2, r1, 0, 0); break; 2010 case 7: ASSIGN_BITS(d, h, 1, 1, 0, 0, r0, r2, r1, 0, 0); break; 2011 case 8: ASSIGN_BITS(d, h, 1, 1, 0, 1, r0, r2, r1, 0, 0); break; 2012 case 9: ASSIGN_BITS(b1, b0, 1, 0, a1, a0, r0, r2, r1, 0, 0); DE_ASSERT(d == 0 && h == 0); break; 2013 default: 2014 DE_ASSERT(false); 2015 } 2016 2017#undef ASSIGN_BITS 2018#undef SB 2019} 2020 2021// Write color endpoint mode data of an ASTC block. 2022static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart) 2023{ 2024 if (numPartitions == 1) 2025 dst.setBits(13, 16, colorEndpointModes[0]); 2026 else 2027 { 2028 if (isMultiPartSingleCemMode) 2029 { 2030 dst.setBits(23, 24, 0); 2031 dst.setBits(25, 28, colorEndpointModes[0]); 2032 } 2033 else 2034 { 2035 DE_ASSERT(numPartitions > 0); 2036 const deUint32 minCem = *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); 2037 const deUint32 maxCem = *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); 2038 const deUint32 minCemClass = minCem/4; 2039 const deUint32 maxCemClass = maxCem/4; 2040 DE_ASSERT(maxCemClass - minCemClass <= 1); 2041 DE_UNREF(minCemClass); // \note For non-debug builds. 2042 const deUint32 highLevelSelector = de::max(1u, maxCemClass); 2043 2044 dst.setBits(23, 24, highLevelSelector); 2045 2046 for (int partNdx = 0; partNdx < numPartitions; partNdx++) 2047 { 2048 const deUint32 c = colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0; 2049 const deUint32 m = colorEndpointModes[partNdx] % 4; 2050 const deUint32 lowMBit0Ndx = numPartitions + 2*partNdx; 2051 const deUint32 lowMBit1Ndx = numPartitions + 2*partNdx + 1; 2052 dst.setBit(25 + partNdx, c); 2053 dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0)); 2054 dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1)); 2055 } 2056 } 2057 } 2058} 2059 2060static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues) 2061{ 2062 // tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded. 2063 static const deUint32 tritBlockTValue[3][3][3][3][3] = 2064 { 2065 { 2066 {{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}}, 2067 {{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}}, 2068 {{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}} 2069 }, 2070 { 2071 {{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}}, 2072 {{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}}, 2073 {{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}} 2074 }, 2075 { 2076 {{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}}, 2077 {{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}}, 2078 {{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}} 2079 } 2080 }; 2081 2082 DE_ASSERT(de::inRange(numValues, 1, 5)); 2083 2084 deUint32 tritParts[5]; 2085 deUint32 bitParts[5]; 2086 2087 for (int i = 0; i < 5; i++) 2088 { 2089 if (i < numValues) 2090 { 2091 if (fromExplicitInputBlock) 2092 { 2093 bitParts[i] = blockInput.bitValues[i]; 2094 tritParts[i] = -1; // \note Won't be used, but silences warning. 2095 } 2096 else 2097 { 2098 // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense 2099 bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0; 2100 tritParts[i] = nonBlockInput[i] >> numBits; 2101 } 2102 } 2103 else 2104 { 2105 bitParts[i] = 0; 2106 tritParts[i] = 0; 2107 } 2108 } 2109 2110 const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]] 2111 [tritParts[1]] 2112 [tritParts[2]] 2113 [tritParts[3]] 2114 [tritParts[4]]; 2115 2116 dst.setNext(numBits, bitParts[0]); 2117 dst.setNext(2, getBits(T, 0, 1)); 2118 dst.setNext(numBits, bitParts[1]); 2119 dst.setNext(2, getBits(T, 2, 3)); 2120 dst.setNext(numBits, bitParts[2]); 2121 dst.setNext(1, getBit(T, 4)); 2122 dst.setNext(numBits, bitParts[3]); 2123 dst.setNext(2, getBits(T, 5, 6)); 2124 dst.setNext(numBits, bitParts[4]); 2125 dst.setNext(1, getBit(T, 7)); 2126} 2127 2128static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues) 2129{ 2130 // quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded. 2131 static const deUint32 quintBlockQValue[5][5][5] = 2132 { 2133 {{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}}, 2134 {{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}}, 2135 {{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}}, 2136 {{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}}, 2137 {{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}} 2138 }; 2139 2140 DE_ASSERT(de::inRange(numValues, 1, 3)); 2141 2142 deUint32 quintParts[3]; 2143 deUint32 bitParts[3]; 2144 2145 for (int i = 0; i < 3; i++) 2146 { 2147 if (i < numValues) 2148 { 2149 if (fromExplicitInputBlock) 2150 { 2151 bitParts[i] = blockInput.bitValues[i]; 2152 quintParts[i] = -1; // \note Won't be used, but silences warning. 2153 } 2154 else 2155 { 2156 // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense 2157 bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0; 2158 quintParts[i] = nonBlockInput[i] >> numBits; 2159 } 2160 } 2161 else 2162 { 2163 bitParts[i] = 0; 2164 quintParts[i] = 0; 2165 } 2166 } 2167 2168 const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]] 2169 [quintParts[1]] 2170 [quintParts[2]]; 2171 2172 dst.setNext(numBits, bitParts[0]); 2173 dst.setNext(3, getBits(Q, 0, 2)); 2174 dst.setNext(numBits, bitParts[1]); 2175 dst.setNext(2, getBits(Q, 3, 4)); 2176 dst.setNext(numBits, bitParts[2]); 2177 dst.setNext(2, getBits(Q, 5, 6)); 2178} 2179 2180static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value) 2181{ 2182 DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1)); 2183 dst.setNext(numBits, value); 2184} 2185 2186static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues) 2187{ 2188 if (params.mode == ISEMODE_TRIT) 2189 { 2190 const int numBlocks = deDivRoundUp32(numValues, 5); 2191 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2192 { 2193 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; 2194 encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm, 2195 input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), 2196 input.isGivenInBlockForm ? DE_NULL : &input.value.plain[5*blockNdx], 2197 numValuesInBlock); 2198 } 2199 } 2200 else if (params.mode == ISEMODE_QUINT) 2201 { 2202 const int numBlocks = deDivRoundUp32(numValues, 3); 2203 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2204 { 2205 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; 2206 encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm, 2207 input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), 2208 input.isGivenInBlockForm ? DE_NULL : &input.value.plain[3*blockNdx], 2209 numValuesInBlock); 2210 } 2211 } 2212 else 2213 { 2214 DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); 2215 for (int i = 0; i < numValues; i++) 2216 encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]); 2217 } 2218} 2219 2220static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights) 2221{ 2222 const int numWeightBits = computeNumRequiredBits(iseParams, numWeights); 2223 BitAssignAccessStream access (dst, 127, numWeightBits, false); 2224 encodeISE(access, iseParams, input, numWeights); 2225} 2226 2227static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx) 2228{ 2229 BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true); 2230 encodeISE(access, iseParams, input, numEndpoints); 2231} 2232 2233static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs) 2234{ 2235 DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight)); 2236 DE_UNREF(blockWidth); // \note For non-debug builds. 2237 DE_UNREF(blockHeight); // \note For non-debug builds. 2238 2239 AssignBlock128 block; 2240 const int numWeights = computeNumWeights(blockParams); 2241 const int numWeightBits = computeNumRequiredBits(blockParams.weightISEParams, numWeights); 2242 2243 writeBlockMode(block, blockParams); 2244 2245 block.setBits(11, 12, blockParams.numPartitions - 1); 2246 if (blockParams.numPartitions > 1) 2247 block.setBits(13, 22, blockParams.partitionSeed); 2248 2249 { 2250 const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode ? -1 2251 : blockParams.numPartitions == 4 ? 7 2252 : blockParams.numPartitions == 3 ? 4 2253 : blockParams.numPartitions == 2 ? 1 2254 : 0); 2255 2256 writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart); 2257 2258 if (blockParams.isDualPlane) 2259 block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs); 2260 } 2261 2262 writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights); 2263 2264 { 2265 const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); 2266 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); 2267 const int colorEndpointDataStartNdx = blockParams.numPartitions == 1 ? 17 : 29; 2268 const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); 2269 2270 writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx); 2271 } 2272 2273 return block; 2274} 2275 2276// Generate default ISE inputs for weight and endpoint data - gradient-ish values. 2277static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams) 2278{ 2279 NormalBlockISEInputs result; 2280 2281 { 2282 result.weight.isGivenInBlockForm = false; 2283 2284 const int numWeights = computeNumWeights(blockParams); 2285 const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); 2286 2287 if (blockParams.isDualPlane) 2288 { 2289 for (int i = 0; i < numWeights; i += 2) 2290 result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); 2291 2292 for (int i = 1; i < numWeights; i += 2) 2293 result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); 2294 } 2295 else 2296 { 2297 for (int i = 0; i < numWeights; i++) 2298 result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); 2299 } 2300 } 2301 2302 { 2303 result.endpoint.isGivenInBlockForm = false; 2304 2305 const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); 2306 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); 2307 const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); 2308 const int colorEndpointRangeMax = computeISERangeMax(colorEndpointISEParams); 2309 2310 for (int i = 0; i < numColorEndpointValues; i++) 2311 result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1); 2312 } 2313 2314 return result; 2315} 2316 2317static const ISEParams s_weightISEParamsCandidates[] = 2318{ 2319 ISEParams(ISEMODE_PLAIN_BIT, 1), 2320 ISEParams(ISEMODE_TRIT, 0), 2321 ISEParams(ISEMODE_PLAIN_BIT, 2), 2322 ISEParams(ISEMODE_QUINT, 0), 2323 ISEParams(ISEMODE_TRIT, 1), 2324 ISEParams(ISEMODE_PLAIN_BIT, 3), 2325 ISEParams(ISEMODE_QUINT, 1), 2326 ISEParams(ISEMODE_TRIT, 2), 2327 ISEParams(ISEMODE_PLAIN_BIT, 4), 2328 ISEParams(ISEMODE_QUINT, 2), 2329 ISEParams(ISEMODE_TRIT, 3), 2330 ISEParams(ISEMODE_PLAIN_BIT, 5) 2331}; 2332 2333void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd) 2334{ 2335 DE_ASSERT(blockSize.z() == 1); 2336 2337 if (rnd.getFloat() < 0.1f) 2338 { 2339 // Void extent block. 2340 const bool isVoidExtentHDR = rnd.getBool(); 2341 const deUint16 r = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff); 2342 const deUint16 g = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff); 2343 const deUint16 b = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff); 2344 const deUint16 a = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff); 2345 generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst); 2346 } 2347 else 2348 { 2349 // Not void extent block. 2350 2351 // Generate block params. 2352 2353 NormalBlockParams blockParams; 2354 2355 do 2356 { 2357 blockParams.weightGridWidth = rnd.getInt(2, blockSize.x()); 2358 blockParams.weightGridHeight = rnd.getInt(2, blockSize.y()); 2359 blockParams.weightISEParams = s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)]; 2360 blockParams.numPartitions = rnd.getInt(1, 4); 2361 blockParams.isMultiPartSingleCemMode = rnd.getFloat() < 0.25f; 2362 blockParams.isDualPlane = blockParams.numPartitions != 4 && rnd.getBool(); 2363 blockParams.ccs = rnd.getInt(0, 3); 2364 blockParams.partitionSeed = rnd.getInt(0, 1023); 2365 2366 blockParams.colorEndpointModes[0] = rnd.getInt(0, 15); 2367 2368 { 2369 const int cemDiff = blockParams.isMultiPartSingleCemMode ? 0 2370 : blockParams.colorEndpointModes[0] == 0 ? 1 2371 : blockParams.colorEndpointModes[0] == 15 ? -1 2372 : rnd.getBool() ? 1 : -1; 2373 2374 for (int i = 1; i < blockParams.numPartitions; i++) 2375 blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0); 2376 } 2377 } while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())); 2378 2379 // Generate ISE inputs for both weight and endpoint data. 2380 2381 NormalBlockISEInputs iseInputs; 2382 2383 for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++) 2384 { 2385 const bool setWeights = weightOrEndpoints == 0; 2386 const int numValues = setWeights ? computeNumWeights(blockParams) : 2387 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); 2388 const ISEParams iseParams = setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues); 2389 ISEInput& iseInput = setWeights ? iseInputs.weight : iseInputs.endpoint; 2390 2391 iseInput.isGivenInBlockForm = rnd.getBool(); 2392 2393 if (iseInput.isGivenInBlockForm) 2394 { 2395 const int numValuesPerISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 2396 : iseParams.mode == ISEMODE_QUINT ? 3 2397 : 1; 2398 const int iseBitMax = (1 << iseParams.numBits) - 1; 2399 const int numISEBlocks = deDivRoundUp32(numValues, numValuesPerISEBlock); 2400 2401 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++) 2402 { 2403 iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255); 2404 for (int i = 0; i < numValuesPerISEBlock; i++) 2405 iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax); 2406 } 2407 } 2408 else 2409 { 2410 const int rangeMax = computeISERangeMax(iseParams); 2411 2412 for (int valueNdx = 0; valueNdx < numValues; valueNdx++) 2413 iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax); 2414 } 2415 } 2416 2417 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst); 2418 } 2419} 2420 2421} // anonymous 2422 2423// Generate block data for a given BlockTestType and format. 2424void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType) 2425{ 2426 DE_ASSERT(isAstcFormat(format)); 2427 DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType))); 2428 2429 const IVec3 blockSize = getBlockPixelSize(format); 2430 DE_ASSERT(blockSize.z() == 1); 2431 2432 switch (testType) 2433 { 2434 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: 2435 // Generate a gradient-like set of LDR void-extent blocks. 2436 { 2437 const int numBlocks = 1<<13; 2438 const deUint32 numValues = 1<<16; 2439 dst.reserve(numBlocks*BLOCK_SIZE_BYTES); 2440 2441 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2442 { 2443 const deUint32 baseValue = blockNdx*(numValues-1) / (numBlocks-1); 2444 const deUint16 r = (deUint16)((baseValue + numValues*0/4) % numValues); 2445 const deUint16 g = (deUint16)((baseValue + numValues*1/4) % numValues); 2446 const deUint16 b = (deUint16)((baseValue + numValues*2/4) % numValues); 2447 const deUint16 a = (deUint16)((baseValue + numValues*3/4) % numValues); 2448 AssignBlock128 block; 2449 2450 generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst); 2451 } 2452 2453 break; 2454 } 2455 2456 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: 2457 // Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16. 2458 { 2459 const float minValue = -65504.0f; 2460 const float maxValue = +65504.0f; 2461 const int numBlocks = 1<<13; 2462 dst.reserve(numBlocks*BLOCK_SIZE_BYTES); 2463 2464 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2465 { 2466 const int rNdx = (blockNdx + numBlocks*0/4) % numBlocks; 2467 const int gNdx = (blockNdx + numBlocks*1/4) % numBlocks; 2468 const int bNdx = (blockNdx + numBlocks*2/4) % numBlocks; 2469 const int aNdx = (blockNdx + numBlocks*3/4) % numBlocks; 2470 const deFloat16 r = deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1)); 2471 const deFloat16 g = deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1)); 2472 const deFloat16 b = deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1)); 2473 const deFloat16 a = deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1)); 2474 2475 generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst); 2476 } 2477 2478 break; 2479 } 2480 2481 case BLOCK_TEST_TYPE_WEIGHT_GRID: 2482 // Generate different combinations of plane count, weight ISE params, and grid size. 2483 { 2484 for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) 2485 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) 2486 for (int weightGridWidth = 2; weightGridWidth <= 12; weightGridWidth++) 2487 for (int weightGridHeight = 2; weightGridHeight <= 12; weightGridHeight++) 2488 { 2489 NormalBlockParams blockParams; 2490 NormalBlockISEInputs iseInputs; 2491 2492 blockParams.weightGridWidth = weightGridWidth; 2493 blockParams.weightGridHeight = weightGridHeight; 2494 blockParams.isDualPlane = isDualPlane != 0; 2495 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; 2496 blockParams.ccs = 0; 2497 blockParams.numPartitions = 1; 2498 blockParams.colorEndpointModes[0] = 0; 2499 2500 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) 2501 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); 2502 } 2503 2504 break; 2505 } 2506 2507 case BLOCK_TEST_TYPE_WEIGHT_ISE: 2508 // For each weight ISE param set, generate blocks that cover: 2509 // - each single value of the ISE's range, at each position inside an ISE block 2510 // - for trit and quint ISEs, each single T or Q value of an ISE block 2511 { 2512 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) 2513 { 2514 const ISEParams& iseParams = s_weightISEParamsCandidates[iseParamsNdx]; 2515 NormalBlockParams blockParams; 2516 2517 blockParams.weightGridWidth = 4; 2518 blockParams.weightGridHeight = 4; 2519 blockParams.weightISEParams = iseParams; 2520 blockParams.numPartitions = 1; 2521 blockParams.isDualPlane = blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false; 2522 blockParams.ccs = 0; 2523 blockParams.colorEndpointModes[0] = 0; 2524 2525 while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) 2526 { 2527 blockParams.weightGridWidth--; 2528 blockParams.weightGridHeight--; 2529 } 2530 2531 const int numValuesInISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1; 2532 const int numWeights = computeNumWeights(blockParams); 2533 2534 { 2535 const int numWeightValues = (int)computeISERangeMax(iseParams) + 1; 2536 const int numBlocks = deDivRoundUp32(numWeightValues, numWeights); 2537 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2538 iseInputs.weight.isGivenInBlockForm = false; 2539 2540 for (int offset = 0; offset < numValuesInISEBlock; offset++) 2541 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2542 { 2543 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) 2544 iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues; 2545 2546 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); 2547 } 2548 } 2549 2550 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) 2551 { 2552 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2553 iseInputs.weight.isGivenInBlockForm = true; 2554 2555 const int numTQValues = 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7); 2556 const int numISEBlocksPerBlock = deDivRoundUp32(numWeights, numValuesInISEBlock); 2557 const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock); 2558 2559 for (int offset = 0; offset < numValuesInISEBlock; offset++) 2560 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2561 { 2562 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) 2563 { 2564 for (int i = 0; i < numValuesInISEBlock; i++) 2565 iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0; 2566 iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; 2567 } 2568 2569 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); 2570 } 2571 } 2572 } 2573 2574 break; 2575 } 2576 2577 case BLOCK_TEST_TYPE_CEMS: 2578 // For each plane count & partition count combination, generate all color endpoint mode combinations. 2579 { 2580 for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) 2581 for (int numPartitions = 1; numPartitions <= (isDualPlane != 0 ? 3 : 4); numPartitions++) 2582 { 2583 // Multi-partition, single-CEM mode. 2584 if (numPartitions > 1) 2585 { 2586 for (deUint32 singleCem = 0; singleCem < 16; singleCem++) 2587 { 2588 NormalBlockParams blockParams; 2589 blockParams.weightGridWidth = 4; 2590 blockParams.weightGridHeight = 4; 2591 blockParams.isDualPlane = isDualPlane != 0; 2592 blockParams.ccs = 0; 2593 blockParams.numPartitions = numPartitions; 2594 blockParams.isMultiPartSingleCemMode = true; 2595 blockParams.colorEndpointModes[0] = singleCem; 2596 blockParams.partitionSeed = 634; 2597 2598 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) 2599 { 2600 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; 2601 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) 2602 { 2603 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); 2604 break; 2605 } 2606 } 2607 } 2608 } 2609 2610 // Separate-CEM mode. 2611 for (deUint32 cem0 = 0; cem0 < 16; cem0++) 2612 for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++) 2613 for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++) 2614 for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++) 2615 { 2616 NormalBlockParams blockParams; 2617 blockParams.weightGridWidth = 4; 2618 blockParams.weightGridHeight = 4; 2619 blockParams.isDualPlane = isDualPlane != 0; 2620 blockParams.ccs = 0; 2621 blockParams.numPartitions = numPartitions; 2622 blockParams.isMultiPartSingleCemMode = false; 2623 blockParams.colorEndpointModes[0] = cem0; 2624 blockParams.colorEndpointModes[1] = cem1; 2625 blockParams.colorEndpointModes[2] = cem2; 2626 blockParams.colorEndpointModes[3] = cem3; 2627 blockParams.partitionSeed = 634; 2628 2629 { 2630 const deUint32 minCem = *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); 2631 const deUint32 maxCem = *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); 2632 const deUint32 minCemClass = minCem/4; 2633 const deUint32 maxCemClass = maxCem/4; 2634 2635 if (maxCemClass - minCemClass > 1) 2636 continue; 2637 } 2638 2639 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++) 2640 { 2641 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx]; 2642 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) 2643 { 2644 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); 2645 break; 2646 } 2647 } 2648 } 2649 } 2650 2651 break; 2652 } 2653 2654 case BLOCK_TEST_TYPE_PARTITION_SEED: 2655 // Test all partition seeds ("partition pattern indices"). 2656 { 2657 for (int numPartitions = 2; numPartitions <= 4; numPartitions++) 2658 for (deUint32 partitionSeed = 0; partitionSeed < 1<<10; partitionSeed++) 2659 { 2660 NormalBlockParams blockParams; 2661 blockParams.weightGridWidth = 4; 2662 blockParams.weightGridHeight = 4; 2663 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); 2664 blockParams.isDualPlane = false; 2665 blockParams.numPartitions = numPartitions; 2666 blockParams.isMultiPartSingleCemMode = true; 2667 blockParams.colorEndpointModes[0] = 0; 2668 blockParams.partitionSeed = partitionSeed; 2669 2670 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); 2671 } 2672 2673 break; 2674 } 2675 2676 // \note Fall-through. 2677 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: 2678 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: 2679 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: 2680 // For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair. 2681 // \note Separate modes for HDR and mode 15 due to different color scales and biases. 2682 { 2683 for (deUint32 cem = 0; cem < 16; cem++) 2684 { 2685 const bool isHDRCem = cem == 2 || 2686 cem == 3 || 2687 cem == 7 || 2688 cem == 11 || 2689 cem == 14 || 2690 cem == 15; 2691 2692 if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR && isHDRCem) || 2693 (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 && (!isHDRCem || cem == 15)) || 2694 (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15 && cem != 15)) 2695 continue; 2696 2697 NormalBlockParams blockParams; 2698 blockParams.weightGridWidth = 3; 2699 blockParams.weightGridHeight = 4; 2700 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); 2701 blockParams.isDualPlane = false; 2702 blockParams.numPartitions = 1; 2703 blockParams.colorEndpointModes[0] = cem; 2704 2705 { 2706 const int numBitsForEndpoints = computeNumBitsForColorEndpoints(blockParams); 2707 const int numEndpointParts = computeNumColorEndpointValues(cem); 2708 const ISEParams endpointISE = computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts); 2709 const int endpointISERangeMax = computeISERangeMax(endpointISE); 2710 2711 for (int endpointPartNdx0 = 0; endpointPartNdx0 < numEndpointParts; endpointPartNdx0++) 2712 for (int endpointPartNdx1 = endpointPartNdx0+1; endpointPartNdx1 < numEndpointParts; endpointPartNdx1++) 2713 { 2714 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2715 const int numEndpointValues = de::min(10, endpointISERangeMax+1); 2716 2717 for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++) 2718 for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++) 2719 { 2720 const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1); 2721 const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1); 2722 2723 iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0; 2724 iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1; 2725 2726 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); 2727 } 2728 } 2729 } 2730 } 2731 2732 break; 2733 } 2734 2735 case BLOCK_TEST_TYPE_ENDPOINT_ISE: 2736 // Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above. 2737 { 2738 static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 }; 2739 2740 for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++) 2741 { 2742 bool validCaseGenerated = false; 2743 2744 for (int numPartitions = 1; !validCaseGenerated && numPartitions <= 4; numPartitions++) 2745 for (int isDual = 0; !validCaseGenerated && isDual <= 1; isDual++) 2746 for (int weightISEParamsNdx = 0; !validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); weightISEParamsNdx++) 2747 for (int weightGridWidth = 2; !validCaseGenerated && weightGridWidth <= 12; weightGridWidth++) 2748 for (int weightGridHeight = 2; !validCaseGenerated && weightGridHeight <= 12; weightGridHeight++) 2749 { 2750 NormalBlockParams blockParams; 2751 blockParams.weightGridWidth = weightGridWidth; 2752 blockParams.weightGridHeight = weightGridHeight; 2753 blockParams.weightISEParams = s_weightISEParamsCandidates[weightISEParamsNdx]; 2754 blockParams.isDualPlane = isDual != 0; 2755 blockParams.ccs = 0; 2756 blockParams.numPartitions = numPartitions; 2757 blockParams.isMultiPartSingleCemMode = true; 2758 blockParams.colorEndpointModes[0] = 12; 2759 blockParams.partitionSeed = 634; 2760 2761 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) 2762 { 2763 const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), 2764 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true)); 2765 2766 if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx]) 2767 { 2768 validCaseGenerated = true; 2769 2770 const int numColorEndpoints = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode); 2771 const int numValuesInISEBlock = endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1; 2772 2773 { 2774 const int numColorEndpointValues = (int)computeISERangeMax(endpointISEParams) + 1; 2775 const int numBlocks = deDivRoundUp32(numColorEndpointValues, numColorEndpoints); 2776 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2777 iseInputs.endpoint.isGivenInBlockForm = false; 2778 2779 for (int offset = 0; offset < numValuesInISEBlock; offset++) 2780 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2781 { 2782 for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++) 2783 iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues; 2784 2785 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); 2786 } 2787 } 2788 2789 if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT) 2790 { 2791 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2792 iseInputs.endpoint.isGivenInBlockForm = true; 2793 2794 const int numTQValues = 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7); 2795 const int numISEBlocksPerBlock = deDivRoundUp32(numColorEndpoints, numValuesInISEBlock); 2796 const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock); 2797 2798 for (int offset = 0; offset < numValuesInISEBlock; offset++) 2799 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2800 { 2801 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) 2802 { 2803 for (int i = 0; i < numValuesInISEBlock; i++) 2804 iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0; 2805 iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; 2806 } 2807 2808 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); 2809 } 2810 } 2811 } 2812 } 2813 } 2814 2815 DE_ASSERT(validCaseGenerated); 2816 } 2817 2818 break; 2819 } 2820 2821 case BLOCK_TEST_TYPE_CCS: 2822 // For all partition counts, test all values of the CCS (color component selector). 2823 { 2824 for (int numPartitions = 1; numPartitions <= 3; numPartitions++) 2825 for (deUint32 ccs = 0; ccs < 4; ccs++) 2826 { 2827 NormalBlockParams blockParams; 2828 blockParams.weightGridWidth = 3; 2829 blockParams.weightGridHeight = 3; 2830 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); 2831 blockParams.isDualPlane = true; 2832 blockParams.ccs = ccs; 2833 blockParams.numPartitions = numPartitions; 2834 blockParams.isMultiPartSingleCemMode = true; 2835 blockParams.colorEndpointModes[0] = 8; 2836 blockParams.partitionSeed = 634; 2837 2838 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); 2839 } 2840 2841 break; 2842 } 2843 2844 case BLOCK_TEST_TYPE_RANDOM: 2845 // Generate a number of random (including invalid) blocks. 2846 { 2847 const int numBlocks = 16384; 2848 const deUint32 seed = 1; 2849 2850 dst.resize(numBlocks*BLOCK_SIZE_BYTES); 2851 2852 generateRandomBlocks(&dst[0], numBlocks, format, seed); 2853 2854 break; 2855 } 2856 2857 default: 2858 DE_ASSERT(false); 2859 } 2860} 2861 2862void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed) 2863{ 2864 const IVec3 blockSize = getBlockPixelSize(format); 2865 de::Random rnd (seed); 2866 size_t numBlocksGenerated = 0; 2867 2868 DE_ASSERT(isAstcFormat(format)); 2869 DE_ASSERT(blockSize.z() == 1); 2870 2871 for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++) 2872 { 2873 deUint8* const curBlockPtr = dst + numBlocksGenerated*BLOCK_SIZE_BYTES; 2874 2875 generateRandomBlock(curBlockPtr, blockSize, rnd); 2876 } 2877} 2878 2879void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed) 2880{ 2881 const IVec3 blockSize = getBlockPixelSize(format); 2882 de::Random rnd (seed); 2883 size_t numBlocksGenerated = 0; 2884 2885 DE_ASSERT(isAstcFormat(format)); 2886 DE_ASSERT(blockSize.z() == 1); 2887 2888 for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++) 2889 { 2890 deUint8* const curBlockPtr = dst + numBlocksGenerated*BLOCK_SIZE_BYTES; 2891 2892 do 2893 { 2894 generateRandomBlock(curBlockPtr, blockSize, rnd); 2895 } while (!isValidBlock(curBlockPtr, format, mode)); 2896 } 2897} 2898 2899// Generate a number of trivial blocks to fill unneeded space in a texture. 2900void generateDefaultVoidExtentBlocks (deUint8* dst, size_t numBlocks) 2901{ 2902 AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0)); 2903 for (size_t ndx = 0; ndx < numBlocks; ndx++) 2904 block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]); 2905} 2906 2907void generateDefaultNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight) 2908{ 2909 NormalBlockParams blockParams; 2910 2911 blockParams.weightGridWidth = 3; 2912 blockParams.weightGridHeight = 3; 2913 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 5); 2914 blockParams.isDualPlane = false; 2915 blockParams.numPartitions = 1; 2916 blockParams.colorEndpointModes[0] = 8; 2917 2918 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); 2919 iseInputs.weight.isGivenInBlockForm = false; 2920 2921 const int numWeights = computeNumWeights(blockParams); 2922 const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); 2923 2924 for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++) 2925 { 2926 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) 2927 iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1)); 2928 2929 generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES); 2930 } 2931} 2932 2933bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode) 2934{ 2935 const tcu::IVec3 blockPixelSize = getBlockPixelSize(format); 2936 const bool isSRGB = isAstcSRGBFormat(format); 2937 const bool isLDR = isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR; 2938 2939 // sRGB is not supported in HDR mode 2940 DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB)); 2941 2942 union 2943 { 2944 deUint8 sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4]; 2945 float linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4]; 2946 } tmpBuffer; 2947 const Block128 blockData (data); 2948 const DecompressResult result = decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]), 2949 blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR); 2950 2951 return result == DECOMPRESS_RESULT_VALID_BLOCK; 2952} 2953 2954void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode) 2955{ 2956 const bool isSRGBFormat = isAstcSRGBFormat(format); 2957 2958#if defined(DE_DEBUG) 2959 const tcu::IVec3 blockPixelSize = getBlockPixelSize(format); 2960 2961 DE_ASSERT(dst.getWidth() == blockPixelSize.x() && 2962 dst.getHeight() == blockPixelSize.y() && 2963 dst.getDepth() == blockPixelSize.z()); 2964 DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR); 2965#endif 2966 2967 // sRGB is not supported in HDR mode 2968 DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat)); 2969 2970 decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR); 2971} 2972 2973const char* getBlockTestTypeName (BlockTestType testType) 2974{ 2975 switch (testType) 2976 { 2977 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "void_extent_ldr"; 2978 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "void_extent_hdr"; 2979 case BLOCK_TEST_TYPE_WEIGHT_GRID: return "weight_grid"; 2980 case BLOCK_TEST_TYPE_WEIGHT_ISE: return "weight_ise"; 2981 case BLOCK_TEST_TYPE_CEMS: return "color_endpoint_modes"; 2982 case BLOCK_TEST_TYPE_PARTITION_SEED: return "partition_pattern_index"; 2983 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "endpoint_value_ldr"; 2984 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "endpoint_value_hdr_cem_not_15"; 2985 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "endpoint_value_hdr_cem_15"; 2986 case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "endpoint_ise"; 2987 case BLOCK_TEST_TYPE_CCS: return "color_component_selector"; 2988 case BLOCK_TEST_TYPE_RANDOM: return "random"; 2989 default: 2990 DE_ASSERT(false); 2991 return DE_NULL; 2992 } 2993} 2994 2995const char* getBlockTestTypeDescription (BlockTestType testType) 2996{ 2997 switch (testType) 2998 { 2999 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "Test void extent block, LDR mode"; 3000 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "Test void extent block, HDR mode"; 3001 case BLOCK_TEST_TYPE_WEIGHT_GRID: return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size"; 3002 case BLOCK_TEST_TYPE_WEIGHT_ISE: return "Test different integer sequence encoding block values for weight grid"; 3003 case BLOCK_TEST_TYPE_CEMS: return "Test different color endpoint mode combinations, combined with different plane and partition counts"; 3004 case BLOCK_TEST_TYPE_PARTITION_SEED: return "Test different partition pattern indices"; 3005 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode"; 3006 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15"; 3007 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15"; 3008 case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "Test different integer sequence encoding block values for color endpoints"; 3009 case BLOCK_TEST_TYPE_CCS: return "Test color component selector, for different partition counts"; 3010 case BLOCK_TEST_TYPE_RANDOM: return "Random block test"; 3011 default: 3012 DE_ASSERT(false); 3013 return DE_NULL; 3014 } 3015} 3016 3017bool isBlockTestTypeHDROnly (BlockTestType testType) 3018{ 3019 return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR || 3020 testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 || 3021 testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15; 3022} 3023 3024Vec4 getBlockTestTypeColorScale (BlockTestType testType) 3025{ 3026 switch (testType) 3027 { 3028 case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f/65504.0f); 3029 case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f); 3030 case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return Vec4(1.0f/65504.0f); 3031 default: return Vec4(1.0f); 3032 } 3033} 3034 3035Vec4 getBlockTestTypeColorBias (BlockTestType testType) 3036{ 3037 switch (testType) 3038 { 3039 case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f); 3040 default: return Vec4(0.0f); 3041 } 3042} 3043 3044} // astc 3045} // tcu 3046